xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 13db93bc)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
729                             int rm, gen_helper_gvec_3_ptr *fn)
730 {
731     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
732 
733     tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
734     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
735                        vec_full_reg_offset(s, rn),
736                        vec_full_reg_offset(s, rm), qc_ptr,
737                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
738 }
739 
740 /* Expand a 4-operand operation using an out-of-line helper.  */
741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
742                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
743 {
744     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
745                        vec_full_reg_offset(s, rn),
746                        vec_full_reg_offset(s, rm),
747                        vec_full_reg_offset(s, ra),
748                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
749 }
750 
751 /*
752  * Expand a 4-operand + fpstatus pointer + simd data value operation using
753  * an out-of-line helper.
754  */
755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
756                               int rm, int ra, bool is_fp16, int data,
757                               gen_helper_gvec_4_ptr *fn)
758 {
759     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
760     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
761                        vec_full_reg_offset(s, rn),
762                        vec_full_reg_offset(s, rm),
763                        vec_full_reg_offset(s, ra), fpst,
764                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
765 }
766 
767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
768  * than the 32 bit equivalent.
769  */
770 static inline void gen_set_NZ64(TCGv_i64 result)
771 {
772     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
773     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
774 }
775 
776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
777 static inline void gen_logic_CC(int sf, TCGv_i64 result)
778 {
779     if (sf) {
780         gen_set_NZ64(result);
781     } else {
782         tcg_gen_extrl_i64_i32(cpu_ZF, result);
783         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
784     }
785     tcg_gen_movi_i32(cpu_CF, 0);
786     tcg_gen_movi_i32(cpu_VF, 0);
787 }
788 
789 /* dest = T0 + T1; compute C, N, V and Z flags */
790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
791 {
792     TCGv_i64 result, flag, tmp;
793     result = tcg_temp_new_i64();
794     flag = tcg_temp_new_i64();
795     tmp = tcg_temp_new_i64();
796 
797     tcg_gen_movi_i64(tmp, 0);
798     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
799 
800     tcg_gen_extrl_i64_i32(cpu_CF, flag);
801 
802     gen_set_NZ64(result);
803 
804     tcg_gen_xor_i64(flag, result, t0);
805     tcg_gen_xor_i64(tmp, t0, t1);
806     tcg_gen_andc_i64(flag, flag, tmp);
807     tcg_gen_extrh_i64_i32(cpu_VF, flag);
808 
809     tcg_gen_mov_i64(dest, result);
810 }
811 
812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
813 {
814     TCGv_i32 t0_32 = tcg_temp_new_i32();
815     TCGv_i32 t1_32 = tcg_temp_new_i32();
816     TCGv_i32 tmp = tcg_temp_new_i32();
817 
818     tcg_gen_movi_i32(tmp, 0);
819     tcg_gen_extrl_i64_i32(t0_32, t0);
820     tcg_gen_extrl_i64_i32(t1_32, t1);
821     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
822     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
823     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
824     tcg_gen_xor_i32(tmp, t0_32, t1_32);
825     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
826     tcg_gen_extu_i32_i64(dest, cpu_NF);
827 }
828 
829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
830 {
831     if (sf) {
832         gen_add64_CC(dest, t0, t1);
833     } else {
834         gen_add32_CC(dest, t0, t1);
835     }
836 }
837 
838 /* dest = T0 - T1; compute C, N, V and Z flags */
839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
840 {
841     /* 64 bit arithmetic */
842     TCGv_i64 result, flag, tmp;
843 
844     result = tcg_temp_new_i64();
845     flag = tcg_temp_new_i64();
846     tcg_gen_sub_i64(result, t0, t1);
847 
848     gen_set_NZ64(result);
849 
850     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
851     tcg_gen_extrl_i64_i32(cpu_CF, flag);
852 
853     tcg_gen_xor_i64(flag, result, t0);
854     tmp = tcg_temp_new_i64();
855     tcg_gen_xor_i64(tmp, t0, t1);
856     tcg_gen_and_i64(flag, flag, tmp);
857     tcg_gen_extrh_i64_i32(cpu_VF, flag);
858     tcg_gen_mov_i64(dest, result);
859 }
860 
861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
862 {
863     /* 32 bit arithmetic */
864     TCGv_i32 t0_32 = tcg_temp_new_i32();
865     TCGv_i32 t1_32 = tcg_temp_new_i32();
866     TCGv_i32 tmp;
867 
868     tcg_gen_extrl_i64_i32(t0_32, t0);
869     tcg_gen_extrl_i64_i32(t1_32, t1);
870     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
871     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
872     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
873     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
874     tmp = tcg_temp_new_i32();
875     tcg_gen_xor_i32(tmp, t0_32, t1_32);
876     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
877     tcg_gen_extu_i32_i64(dest, cpu_NF);
878 }
879 
880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
881 {
882     if (sf) {
883         gen_sub64_CC(dest, t0, t1);
884     } else {
885         gen_sub32_CC(dest, t0, t1);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; do not compute flags. */
890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     TCGv_i64 flag = tcg_temp_new_i64();
893     tcg_gen_extu_i32_i64(flag, cpu_CF);
894     tcg_gen_add_i64(dest, t0, t1);
895     tcg_gen_add_i64(dest, dest, flag);
896 
897     if (!sf) {
898         tcg_gen_ext32u_i64(dest, dest);
899     }
900 }
901 
902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
904 {
905     if (sf) {
906         TCGv_i64 result = tcg_temp_new_i64();
907         TCGv_i64 cf_64 = tcg_temp_new_i64();
908         TCGv_i64 vf_64 = tcg_temp_new_i64();
909         TCGv_i64 tmp = tcg_temp_new_i64();
910         TCGv_i64 zero = tcg_constant_i64(0);
911 
912         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
913         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
914         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
915         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
916         gen_set_NZ64(result);
917 
918         tcg_gen_xor_i64(vf_64, result, t0);
919         tcg_gen_xor_i64(tmp, t0, t1);
920         tcg_gen_andc_i64(vf_64, vf_64, tmp);
921         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
922 
923         tcg_gen_mov_i64(dest, result);
924     } else {
925         TCGv_i32 t0_32 = tcg_temp_new_i32();
926         TCGv_i32 t1_32 = tcg_temp_new_i32();
927         TCGv_i32 tmp = tcg_temp_new_i32();
928         TCGv_i32 zero = tcg_constant_i32(0);
929 
930         tcg_gen_extrl_i64_i32(t0_32, t0);
931         tcg_gen_extrl_i64_i32(t1_32, t1);
932         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
933         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
934 
935         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
936         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
937         tcg_gen_xor_i32(tmp, t0_32, t1_32);
938         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
939         tcg_gen_extu_i32_i64(dest, cpu_NF);
940     }
941 }
942 
943 /*
944  * Load/Store generators
945  */
946 
947 /*
948  * Store from GPR register to memory.
949  */
950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
951                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
952                              bool iss_valid,
953                              unsigned int iss_srt,
954                              bool iss_sf, bool iss_ar)
955 {
956     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
957 
958     if (iss_valid) {
959         uint32_t syn;
960 
961         syn = syn_data_abort_with_iss(0,
962                                       (memop & MO_SIZE),
963                                       false,
964                                       iss_srt,
965                                       iss_sf,
966                                       iss_ar,
967                                       0, 0, 0, 0, 0, false);
968         disas_set_insn_syndrome(s, syn);
969     }
970 }
971 
972 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
973                       TCGv_i64 tcg_addr, MemOp memop,
974                       bool iss_valid,
975                       unsigned int iss_srt,
976                       bool iss_sf, bool iss_ar)
977 {
978     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
979                      iss_valid, iss_srt, iss_sf, iss_ar);
980 }
981 
982 /*
983  * Load from memory to GPR register
984  */
985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
986                              MemOp memop, bool extend, int memidx,
987                              bool iss_valid, unsigned int iss_srt,
988                              bool iss_sf, bool iss_ar)
989 {
990     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
991 
992     if (extend && (memop & MO_SIGN)) {
993         g_assert((memop & MO_SIZE) <= MO_32);
994         tcg_gen_ext32u_i64(dest, dest);
995     }
996 
997     if (iss_valid) {
998         uint32_t syn;
999 
1000         syn = syn_data_abort_with_iss(0,
1001                                       (memop & MO_SIZE),
1002                                       (memop & MO_SIGN) != 0,
1003                                       iss_srt,
1004                                       iss_sf,
1005                                       iss_ar,
1006                                       0, 0, 0, 0, 0, false);
1007         disas_set_insn_syndrome(s, syn);
1008     }
1009 }
1010 
1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1012                       MemOp memop, bool extend,
1013                       bool iss_valid, unsigned int iss_srt,
1014                       bool iss_sf, bool iss_ar)
1015 {
1016     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1017                      iss_valid, iss_srt, iss_sf, iss_ar);
1018 }
1019 
1020 /*
1021  * Store from FP register to memory
1022  */
1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1024 {
1025     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1026     TCGv_i64 tmplo = tcg_temp_new_i64();
1027 
1028     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1029 
1030     if ((mop & MO_SIZE) < MO_128) {
1031         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1032     } else {
1033         TCGv_i64 tmphi = tcg_temp_new_i64();
1034         TCGv_i128 t16 = tcg_temp_new_i128();
1035 
1036         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1037         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1038 
1039         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1040     }
1041 }
1042 
1043 /*
1044  * Load from memory to FP register
1045  */
1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1047 {
1048     /* This always zero-extends and writes to a full 128 bit wide vector */
1049     TCGv_i64 tmplo = tcg_temp_new_i64();
1050     TCGv_i64 tmphi = NULL;
1051 
1052     if ((mop & MO_SIZE) < MO_128) {
1053         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1054     } else {
1055         TCGv_i128 t16 = tcg_temp_new_i128();
1056 
1057         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1058 
1059         tmphi = tcg_temp_new_i64();
1060         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1061     }
1062 
1063     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1064 
1065     if (tmphi) {
1066         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1067     }
1068     clear_vec_high(s, tmphi != NULL, destidx);
1069 }
1070 
1071 /*
1072  * Vector load/store helpers.
1073  *
1074  * The principal difference between this and a FP load is that we don't
1075  * zero extend as we are filling a partial chunk of the vector register.
1076  * These functions don't support 128 bit loads/stores, which would be
1077  * normal load/store operations.
1078  *
1079  * The _i32 versions are useful when operating on 32 bit quantities
1080  * (eg for floating point single or using Neon helper functions).
1081  */
1082 
1083 /* Get value of an element within a vector register */
1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1085                              int element, MemOp memop)
1086 {
1087     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1088     switch ((unsigned)memop) {
1089     case MO_8:
1090         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1091         break;
1092     case MO_16:
1093         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1094         break;
1095     case MO_32:
1096         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     case MO_8|MO_SIGN:
1099         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1100         break;
1101     case MO_16|MO_SIGN:
1102         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1103         break;
1104     case MO_32|MO_SIGN:
1105         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1106         break;
1107     case MO_64:
1108     case MO_64|MO_SIGN:
1109         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1110         break;
1111     default:
1112         g_assert_not_reached();
1113     }
1114 }
1115 
1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1117                                  int element, MemOp memop)
1118 {
1119     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1120     switch (memop) {
1121     case MO_8:
1122         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     case MO_16:
1125         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1126         break;
1127     case MO_8|MO_SIGN:
1128         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1129         break;
1130     case MO_16|MO_SIGN:
1131         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1132         break;
1133     case MO_32:
1134     case MO_32|MO_SIGN:
1135         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1136         break;
1137     default:
1138         g_assert_not_reached();
1139     }
1140 }
1141 
1142 /* Set value of an element within a vector register */
1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1144                               int element, MemOp memop)
1145 {
1146     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1147     switch (memop) {
1148     case MO_8:
1149         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1150         break;
1151     case MO_16:
1152         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1153         break;
1154     case MO_32:
1155         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1156         break;
1157     case MO_64:
1158         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1159         break;
1160     default:
1161         g_assert_not_reached();
1162     }
1163 }
1164 
1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1166                                   int destidx, int element, MemOp memop)
1167 {
1168     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1169     switch (memop) {
1170     case MO_8:
1171         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1172         break;
1173     case MO_16:
1174         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1175         break;
1176     case MO_32:
1177         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1178         break;
1179     default:
1180         g_assert_not_reached();
1181     }
1182 }
1183 
1184 /* Store from vector register to memory */
1185 static void do_vec_st(DisasContext *s, int srcidx, int element,
1186                       TCGv_i64 tcg_addr, MemOp mop)
1187 {
1188     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1189 
1190     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1191     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1192 }
1193 
1194 /* Load from memory to vector register */
1195 static void do_vec_ld(DisasContext *s, int destidx, int element,
1196                       TCGv_i64 tcg_addr, MemOp mop)
1197 {
1198     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1199 
1200     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1201     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1202 }
1203 
1204 /* Check that FP/Neon access is enabled. If it is, return
1205  * true. If not, emit code to generate an appropriate exception,
1206  * and return false; the caller should not emit any code for
1207  * the instruction. Note that this check must happen after all
1208  * unallocated-encoding checks (otherwise the syndrome information
1209  * for the resulting exception will be incorrect).
1210  */
1211 static bool fp_access_check_only(DisasContext *s)
1212 {
1213     if (s->fp_excp_el) {
1214         assert(!s->fp_access_checked);
1215         s->fp_access_checked = true;
1216 
1217         gen_exception_insn_el(s, 0, EXCP_UDEF,
1218                               syn_fp_access_trap(1, 0xe, false, 0),
1219                               s->fp_excp_el);
1220         return false;
1221     }
1222     s->fp_access_checked = true;
1223     return true;
1224 }
1225 
1226 static bool fp_access_check(DisasContext *s)
1227 {
1228     if (!fp_access_check_only(s)) {
1229         return false;
1230     }
1231     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1232         gen_exception_insn(s, 0, EXCP_UDEF,
1233                            syn_smetrap(SME_ET_Streaming, false));
1234         return false;
1235     }
1236     return true;
1237 }
1238 
1239 /*
1240  * Check that SVE access is enabled.  If it is, return true.
1241  * If not, emit code to generate an appropriate exception and return false.
1242  * This function corresponds to CheckSVEEnabled().
1243  */
1244 bool sve_access_check(DisasContext *s)
1245 {
1246     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1247         assert(dc_isar_feature(aa64_sme, s));
1248         if (!sme_sm_enabled_check(s)) {
1249             goto fail_exit;
1250         }
1251     } else if (s->sve_excp_el) {
1252         gen_exception_insn_el(s, 0, EXCP_UDEF,
1253                               syn_sve_access_trap(), s->sve_excp_el);
1254         goto fail_exit;
1255     }
1256     s->sve_access_checked = true;
1257     return fp_access_check(s);
1258 
1259  fail_exit:
1260     /* Assert that we only raise one exception per instruction. */
1261     assert(!s->sve_access_checked);
1262     s->sve_access_checked = true;
1263     return false;
1264 }
1265 
1266 /*
1267  * Check that SME access is enabled, raise an exception if not.
1268  * Note that this function corresponds to CheckSMEAccess and is
1269  * only used directly for cpregs.
1270  */
1271 static bool sme_access_check(DisasContext *s)
1272 {
1273     if (s->sme_excp_el) {
1274         gen_exception_insn_el(s, 0, EXCP_UDEF,
1275                               syn_smetrap(SME_ET_AccessTrap, false),
1276                               s->sme_excp_el);
1277         return false;
1278     }
1279     return true;
1280 }
1281 
1282 /* This function corresponds to CheckSMEEnabled. */
1283 bool sme_enabled_check(DisasContext *s)
1284 {
1285     /*
1286      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1287      * to be zero when fp_excp_el has priority.  This is because we need
1288      * sme_excp_el by itself for cpregs access checks.
1289      */
1290     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1291         s->fp_access_checked = true;
1292         return sme_access_check(s);
1293     }
1294     return fp_access_check_only(s);
1295 }
1296 
1297 /* Common subroutine for CheckSMEAnd*Enabled. */
1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1299 {
1300     if (!sme_enabled_check(s)) {
1301         return false;
1302     }
1303     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1304         gen_exception_insn(s, 0, EXCP_UDEF,
1305                            syn_smetrap(SME_ET_NotStreaming, false));
1306         return false;
1307     }
1308     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1309         gen_exception_insn(s, 0, EXCP_UDEF,
1310                            syn_smetrap(SME_ET_InactiveZA, false));
1311         return false;
1312     }
1313     return true;
1314 }
1315 
1316 /*
1317  * Expanders for AdvSIMD translation functions.
1318  */
1319 
1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1321                             gen_helper_gvec_2 *fn)
1322 {
1323     if (!a->q && a->esz == MO_64) {
1324         return false;
1325     }
1326     if (fp_access_check(s)) {
1327         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1328     }
1329     return true;
1330 }
1331 
1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1333                             gen_helper_gvec_3 *fn)
1334 {
1335     if (!a->q && a->esz == MO_64) {
1336         return false;
1337     }
1338     if (fp_access_check(s)) {
1339         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1340     }
1341     return true;
1342 }
1343 
1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1345 {
1346     if (!a->q && a->esz == MO_64) {
1347         return false;
1348     }
1349     if (fp_access_check(s)) {
1350         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1351     }
1352     return true;
1353 }
1354 
1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1356 {
1357     if (!a->q && a->esz == MO_64) {
1358         return false;
1359     }
1360     if (fp_access_check(s)) {
1361         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1362     }
1363     return true;
1364 }
1365 
1366 /*
1367  * This utility function is for doing register extension with an
1368  * optional shift. You will likely want to pass a temporary for the
1369  * destination register. See DecodeRegExtend() in the ARM ARM.
1370  */
1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1372                               int option, unsigned int shift)
1373 {
1374     int extsize = extract32(option, 0, 2);
1375     bool is_signed = extract32(option, 2, 1);
1376 
1377     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1378     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1379 }
1380 
1381 static inline void gen_check_sp_alignment(DisasContext *s)
1382 {
1383     /* The AArch64 architecture mandates that (if enabled via PSTATE
1384      * or SCTLR bits) there is a check that SP is 16-aligned on every
1385      * SP-relative load or store (with an exception generated if it is not).
1386      * In line with general QEMU practice regarding misaligned accesses,
1387      * we omit these checks for the sake of guest program performance.
1388      * This function is provided as a hook so we can more easily add these
1389      * checks in future (possibly as a "favour catching guest program bugs
1390      * over speed" user selectable option).
1391      */
1392 }
1393 
1394 /*
1395  * This provides a simple table based table lookup decoder. It is
1396  * intended to be used when the relevant bits for decode are too
1397  * awkwardly placed and switch/if based logic would be confusing and
1398  * deeply nested. Since it's a linear search through the table, tables
1399  * should be kept small.
1400  *
1401  * It returns the first handler where insn & mask == pattern, or
1402  * NULL if there is no match.
1403  * The table is terminated by an empty mask (i.e. 0)
1404  */
1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1406                                                uint32_t insn)
1407 {
1408     const AArch64DecodeTable *tptr = table;
1409 
1410     while (tptr->mask) {
1411         if ((insn & tptr->mask) == tptr->pattern) {
1412             return tptr->disas_fn;
1413         }
1414         tptr++;
1415     }
1416     return NULL;
1417 }
1418 
1419 /*
1420  * The instruction disassembly implemented here matches
1421  * the instruction encoding classifications in chapter C4
1422  * of the ARM Architecture Reference Manual (DDI0487B_a);
1423  * classification names and decode diagrams here should generally
1424  * match up with those in the manual.
1425  */
1426 
1427 static bool trans_B(DisasContext *s, arg_i *a)
1428 {
1429     reset_btype(s);
1430     gen_goto_tb(s, 0, a->imm);
1431     return true;
1432 }
1433 
1434 static bool trans_BL(DisasContext *s, arg_i *a)
1435 {
1436     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1437     reset_btype(s);
1438     gen_goto_tb(s, 0, a->imm);
1439     return true;
1440 }
1441 
1442 
1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1444 {
1445     DisasLabel match;
1446     TCGv_i64 tcg_cmp;
1447 
1448     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1449     reset_btype(s);
1450 
1451     match = gen_disas_label(s);
1452     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1453                         tcg_cmp, 0, match.label);
1454     gen_goto_tb(s, 0, 4);
1455     set_disas_label(s, match);
1456     gen_goto_tb(s, 1, a->imm);
1457     return true;
1458 }
1459 
1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1461 {
1462     DisasLabel match;
1463     TCGv_i64 tcg_cmp;
1464 
1465     tcg_cmp = tcg_temp_new_i64();
1466     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1467 
1468     reset_btype(s);
1469 
1470     match = gen_disas_label(s);
1471     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1472                         tcg_cmp, 0, match.label);
1473     gen_goto_tb(s, 0, 4);
1474     set_disas_label(s, match);
1475     gen_goto_tb(s, 1, a->imm);
1476     return true;
1477 }
1478 
1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1480 {
1481     /* BC.cond is only present with FEAT_HBC */
1482     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1483         return false;
1484     }
1485     reset_btype(s);
1486     if (a->cond < 0x0e) {
1487         /* genuinely conditional branches */
1488         DisasLabel match = gen_disas_label(s);
1489         arm_gen_test_cc(a->cond, match.label);
1490         gen_goto_tb(s, 0, 4);
1491         set_disas_label(s, match);
1492         gen_goto_tb(s, 1, a->imm);
1493     } else {
1494         /* 0xe and 0xf are both "always" conditions */
1495         gen_goto_tb(s, 0, a->imm);
1496     }
1497     return true;
1498 }
1499 
1500 static void set_btype_for_br(DisasContext *s, int rn)
1501 {
1502     if (dc_isar_feature(aa64_bti, s)) {
1503         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1504         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1505     }
1506 }
1507 
1508 static void set_btype_for_blr(DisasContext *s)
1509 {
1510     if (dc_isar_feature(aa64_bti, s)) {
1511         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1512         set_btype(s, 2);
1513     }
1514 }
1515 
1516 static bool trans_BR(DisasContext *s, arg_r *a)
1517 {
1518     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1519     set_btype_for_br(s, a->rn);
1520     s->base.is_jmp = DISAS_JUMP;
1521     return true;
1522 }
1523 
1524 static bool trans_BLR(DisasContext *s, arg_r *a)
1525 {
1526     TCGv_i64 dst = cpu_reg(s, a->rn);
1527     TCGv_i64 lr = cpu_reg(s, 30);
1528     if (dst == lr) {
1529         TCGv_i64 tmp = tcg_temp_new_i64();
1530         tcg_gen_mov_i64(tmp, dst);
1531         dst = tmp;
1532     }
1533     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1534     gen_a64_set_pc(s, dst);
1535     set_btype_for_blr(s);
1536     s->base.is_jmp = DISAS_JUMP;
1537     return true;
1538 }
1539 
1540 static bool trans_RET(DisasContext *s, arg_r *a)
1541 {
1542     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1543     s->base.is_jmp = DISAS_JUMP;
1544     return true;
1545 }
1546 
1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1548                                    TCGv_i64 modifier, bool use_key_a)
1549 {
1550     TCGv_i64 truedst;
1551     /*
1552      * Return the branch target for a BRAA/RETA/etc, which is either
1553      * just the destination dst, or that value with the pauth check
1554      * done and the code removed from the high bits.
1555      */
1556     if (!s->pauth_active) {
1557         return dst;
1558     }
1559 
1560     truedst = tcg_temp_new_i64();
1561     if (use_key_a) {
1562         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1563     } else {
1564         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1565     }
1566     return truedst;
1567 }
1568 
1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1570 {
1571     TCGv_i64 dst;
1572 
1573     if (!dc_isar_feature(aa64_pauth, s)) {
1574         return false;
1575     }
1576 
1577     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1578     gen_a64_set_pc(s, dst);
1579     set_btype_for_br(s, a->rn);
1580     s->base.is_jmp = DISAS_JUMP;
1581     return true;
1582 }
1583 
1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1585 {
1586     TCGv_i64 dst, lr;
1587 
1588     if (!dc_isar_feature(aa64_pauth, s)) {
1589         return false;
1590     }
1591 
1592     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1593     lr = cpu_reg(s, 30);
1594     if (dst == lr) {
1595         TCGv_i64 tmp = tcg_temp_new_i64();
1596         tcg_gen_mov_i64(tmp, dst);
1597         dst = tmp;
1598     }
1599     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1600     gen_a64_set_pc(s, dst);
1601     set_btype_for_blr(s);
1602     s->base.is_jmp = DISAS_JUMP;
1603     return true;
1604 }
1605 
1606 static bool trans_RETA(DisasContext *s, arg_reta *a)
1607 {
1608     TCGv_i64 dst;
1609 
1610     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1611     gen_a64_set_pc(s, dst);
1612     s->base.is_jmp = DISAS_JUMP;
1613     return true;
1614 }
1615 
1616 static bool trans_BRA(DisasContext *s, arg_bra *a)
1617 {
1618     TCGv_i64 dst;
1619 
1620     if (!dc_isar_feature(aa64_pauth, s)) {
1621         return false;
1622     }
1623     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1624     gen_a64_set_pc(s, dst);
1625     set_btype_for_br(s, a->rn);
1626     s->base.is_jmp = DISAS_JUMP;
1627     return true;
1628 }
1629 
1630 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1631 {
1632     TCGv_i64 dst, lr;
1633 
1634     if (!dc_isar_feature(aa64_pauth, s)) {
1635         return false;
1636     }
1637     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1638     lr = cpu_reg(s, 30);
1639     if (dst == lr) {
1640         TCGv_i64 tmp = tcg_temp_new_i64();
1641         tcg_gen_mov_i64(tmp, dst);
1642         dst = tmp;
1643     }
1644     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1645     gen_a64_set_pc(s, dst);
1646     set_btype_for_blr(s);
1647     s->base.is_jmp = DISAS_JUMP;
1648     return true;
1649 }
1650 
1651 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1652 {
1653     TCGv_i64 dst;
1654 
1655     if (s->current_el == 0) {
1656         return false;
1657     }
1658     if (s->trap_eret) {
1659         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1660         return true;
1661     }
1662     dst = tcg_temp_new_i64();
1663     tcg_gen_ld_i64(dst, tcg_env,
1664                    offsetof(CPUARMState, elr_el[s->current_el]));
1665 
1666     translator_io_start(&s->base);
1667 
1668     gen_helper_exception_return(tcg_env, dst);
1669     /* Must exit loop to check un-masked IRQs */
1670     s->base.is_jmp = DISAS_EXIT;
1671     return true;
1672 }
1673 
1674 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1675 {
1676     TCGv_i64 dst;
1677 
1678     if (!dc_isar_feature(aa64_pauth, s)) {
1679         return false;
1680     }
1681     if (s->current_el == 0) {
1682         return false;
1683     }
1684     /* The FGT trap takes precedence over an auth trap. */
1685     if (s->trap_eret) {
1686         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1687         return true;
1688     }
1689     dst = tcg_temp_new_i64();
1690     tcg_gen_ld_i64(dst, tcg_env,
1691                    offsetof(CPUARMState, elr_el[s->current_el]));
1692 
1693     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1694 
1695     translator_io_start(&s->base);
1696 
1697     gen_helper_exception_return(tcg_env, dst);
1698     /* Must exit loop to check un-masked IRQs */
1699     s->base.is_jmp = DISAS_EXIT;
1700     return true;
1701 }
1702 
1703 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1704 {
1705     return true;
1706 }
1707 
1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1709 {
1710     /*
1711      * When running in MTTCG we don't generate jumps to the yield and
1712      * WFE helpers as it won't affect the scheduling of other vCPUs.
1713      * If we wanted to more completely model WFE/SEV so we don't busy
1714      * spin unnecessarily we would need to do something more involved.
1715      */
1716     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1717         s->base.is_jmp = DISAS_YIELD;
1718     }
1719     return true;
1720 }
1721 
1722 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1723 {
1724     s->base.is_jmp = DISAS_WFI;
1725     return true;
1726 }
1727 
1728 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1729 {
1730     /*
1731      * When running in MTTCG we don't generate jumps to the yield and
1732      * WFE helpers as it won't affect the scheduling of other vCPUs.
1733      * If we wanted to more completely model WFE/SEV so we don't busy
1734      * spin unnecessarily we would need to do something more involved.
1735      */
1736     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1737         s->base.is_jmp = DISAS_WFE;
1738     }
1739     return true;
1740 }
1741 
1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1743 {
1744     if (s->pauth_active) {
1745         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1746     }
1747     return true;
1748 }
1749 
1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1751 {
1752     if (s->pauth_active) {
1753         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1754     }
1755     return true;
1756 }
1757 
1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1759 {
1760     if (s->pauth_active) {
1761         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1762     }
1763     return true;
1764 }
1765 
1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1767 {
1768     if (s->pauth_active) {
1769         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1770     }
1771     return true;
1772 }
1773 
1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1775 {
1776     if (s->pauth_active) {
1777         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1778     }
1779     return true;
1780 }
1781 
1782 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1783 {
1784     /* Without RAS, we must implement this as NOP. */
1785     if (dc_isar_feature(aa64_ras, s)) {
1786         /*
1787          * QEMU does not have a source of physical SErrors,
1788          * so we are only concerned with virtual SErrors.
1789          * The pseudocode in the ARM for this case is
1790          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1791          *      AArch64.vESBOperation();
1792          * Most of the condition can be evaluated at translation time.
1793          * Test for EL2 present, and defer test for SEL2 to runtime.
1794          */
1795         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1796             gen_helper_vesb(tcg_env);
1797         }
1798     }
1799     return true;
1800 }
1801 
1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1803 {
1804     if (s->pauth_active) {
1805         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1806     }
1807     return true;
1808 }
1809 
1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1811 {
1812     if (s->pauth_active) {
1813         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1814     }
1815     return true;
1816 }
1817 
1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1819 {
1820     if (s->pauth_active) {
1821         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1822     }
1823     return true;
1824 }
1825 
1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1827 {
1828     if (s->pauth_active) {
1829         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1830     }
1831     return true;
1832 }
1833 
1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1835 {
1836     if (s->pauth_active) {
1837         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1838     }
1839     return true;
1840 }
1841 
1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1843 {
1844     if (s->pauth_active) {
1845         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1846     }
1847     return true;
1848 }
1849 
1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1851 {
1852     if (s->pauth_active) {
1853         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1854     }
1855     return true;
1856 }
1857 
1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1859 {
1860     if (s->pauth_active) {
1861         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1862     }
1863     return true;
1864 }
1865 
1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1867 {
1868     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1869     return true;
1870 }
1871 
1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1873 {
1874     /* We handle DSB and DMB the same way */
1875     TCGBar bar;
1876 
1877     switch (a->types) {
1878     case 1: /* MBReqTypes_Reads */
1879         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1880         break;
1881     case 2: /* MBReqTypes_Writes */
1882         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1883         break;
1884     default: /* MBReqTypes_All */
1885         bar = TCG_BAR_SC | TCG_MO_ALL;
1886         break;
1887     }
1888     tcg_gen_mb(bar);
1889     return true;
1890 }
1891 
1892 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1893 {
1894     /*
1895      * We need to break the TB after this insn to execute
1896      * self-modifying code correctly and also to take
1897      * any pending interrupts immediately.
1898      */
1899     reset_btype(s);
1900     gen_goto_tb(s, 0, 4);
1901     return true;
1902 }
1903 
1904 static bool trans_SB(DisasContext *s, arg_SB *a)
1905 {
1906     if (!dc_isar_feature(aa64_sb, s)) {
1907         return false;
1908     }
1909     /*
1910      * TODO: There is no speculation barrier opcode for TCG;
1911      * MB and end the TB instead.
1912      */
1913     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1914     gen_goto_tb(s, 0, 4);
1915     return true;
1916 }
1917 
1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1919 {
1920     if (!dc_isar_feature(aa64_condm_4, s)) {
1921         return false;
1922     }
1923     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1924     return true;
1925 }
1926 
1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1928 {
1929     TCGv_i32 z;
1930 
1931     if (!dc_isar_feature(aa64_condm_5, s)) {
1932         return false;
1933     }
1934 
1935     z = tcg_temp_new_i32();
1936 
1937     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1938 
1939     /*
1940      * (!C & !Z) << 31
1941      * (!(C | Z)) << 31
1942      * ~((C | Z) << 31)
1943      * ~-(C | Z)
1944      * (C | Z) - 1
1945      */
1946     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1947     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1948 
1949     /* !(Z & C) */
1950     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1951     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1952 
1953     /* (!C & Z) << 31 -> -(Z & ~C) */
1954     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1955     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1956 
1957     /* C | Z */
1958     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1959 
1960     return true;
1961 }
1962 
1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1964 {
1965     if (!dc_isar_feature(aa64_condm_5, s)) {
1966         return false;
1967     }
1968 
1969     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1970     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1971 
1972     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1973     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1974 
1975     tcg_gen_movi_i32(cpu_NF, 0);
1976     tcg_gen_movi_i32(cpu_VF, 0);
1977 
1978     return true;
1979 }
1980 
1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1982 {
1983     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1984         return false;
1985     }
1986     if (a->imm & 1) {
1987         set_pstate_bits(PSTATE_UAO);
1988     } else {
1989         clear_pstate_bits(PSTATE_UAO);
1990     }
1991     gen_rebuild_hflags(s);
1992     s->base.is_jmp = DISAS_TOO_MANY;
1993     return true;
1994 }
1995 
1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1997 {
1998     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1999         return false;
2000     }
2001     if (a->imm & 1) {
2002         set_pstate_bits(PSTATE_PAN);
2003     } else {
2004         clear_pstate_bits(PSTATE_PAN);
2005     }
2006     gen_rebuild_hflags(s);
2007     s->base.is_jmp = DISAS_TOO_MANY;
2008     return true;
2009 }
2010 
2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2012 {
2013     if (s->current_el == 0) {
2014         return false;
2015     }
2016     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2017     s->base.is_jmp = DISAS_TOO_MANY;
2018     return true;
2019 }
2020 
2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2022 {
2023     if (!dc_isar_feature(aa64_ssbs, s)) {
2024         return false;
2025     }
2026     if (a->imm & 1) {
2027         set_pstate_bits(PSTATE_SSBS);
2028     } else {
2029         clear_pstate_bits(PSTATE_SSBS);
2030     }
2031     /* Don't need to rebuild hflags since SSBS is a nop */
2032     s->base.is_jmp = DISAS_TOO_MANY;
2033     return true;
2034 }
2035 
2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2037 {
2038     if (!dc_isar_feature(aa64_dit, s)) {
2039         return false;
2040     }
2041     if (a->imm & 1) {
2042         set_pstate_bits(PSTATE_DIT);
2043     } else {
2044         clear_pstate_bits(PSTATE_DIT);
2045     }
2046     /* There's no need to rebuild hflags because DIT is a nop */
2047     s->base.is_jmp = DISAS_TOO_MANY;
2048     return true;
2049 }
2050 
2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2052 {
2053     if (dc_isar_feature(aa64_mte, s)) {
2054         /* Full MTE is enabled -- set the TCO bit as directed. */
2055         if (a->imm & 1) {
2056             set_pstate_bits(PSTATE_TCO);
2057         } else {
2058             clear_pstate_bits(PSTATE_TCO);
2059         }
2060         gen_rebuild_hflags(s);
2061         /* Many factors, including TCO, go into MTE_ACTIVE. */
2062         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2063         return true;
2064     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2065         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2066         return true;
2067     } else {
2068         /* Insn not present */
2069         return false;
2070     }
2071 }
2072 
2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2074 {
2075     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2076     s->base.is_jmp = DISAS_TOO_MANY;
2077     return true;
2078 }
2079 
2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2081 {
2082     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2083     /* Exit the cpu loop to re-evaluate pending IRQs. */
2084     s->base.is_jmp = DISAS_UPDATE_EXIT;
2085     return true;
2086 }
2087 
2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2089 {
2090     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2091         return false;
2092     }
2093 
2094     if (a->imm == 0) {
2095         clear_pstate_bits(PSTATE_ALLINT);
2096     } else if (s->current_el > 1) {
2097         set_pstate_bits(PSTATE_ALLINT);
2098     } else {
2099         gen_helper_msr_set_allint_el1(tcg_env);
2100     }
2101 
2102     /* Exit the cpu loop to re-evaluate pending IRQs. */
2103     s->base.is_jmp = DISAS_UPDATE_EXIT;
2104     return true;
2105 }
2106 
2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2108 {
2109     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2110         return false;
2111     }
2112     if (sme_access_check(s)) {
2113         int old = s->pstate_sm | (s->pstate_za << 1);
2114         int new = a->imm * 3;
2115 
2116         if ((old ^ new) & a->mask) {
2117             /* At least one bit changes. */
2118             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2119                                 tcg_constant_i32(a->mask));
2120             s->base.is_jmp = DISAS_TOO_MANY;
2121         }
2122     }
2123     return true;
2124 }
2125 
2126 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2127 {
2128     TCGv_i32 tmp = tcg_temp_new_i32();
2129     TCGv_i32 nzcv = tcg_temp_new_i32();
2130 
2131     /* build bit 31, N */
2132     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2133     /* build bit 30, Z */
2134     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2135     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2136     /* build bit 29, C */
2137     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2138     /* build bit 28, V */
2139     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2140     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2141     /* generate result */
2142     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2143 }
2144 
2145 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2146 {
2147     TCGv_i32 nzcv = tcg_temp_new_i32();
2148 
2149     /* take NZCV from R[t] */
2150     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2151 
2152     /* bit 31, N */
2153     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2154     /* bit 30, Z */
2155     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2156     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2157     /* bit 29, C */
2158     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2159     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2160     /* bit 28, V */
2161     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2162     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2163 }
2164 
2165 static void gen_sysreg_undef(DisasContext *s, bool isread,
2166                              uint8_t op0, uint8_t op1, uint8_t op2,
2167                              uint8_t crn, uint8_t crm, uint8_t rt)
2168 {
2169     /*
2170      * Generate code to emit an UNDEF with correct syndrome
2171      * information for a failed system register access.
2172      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2173      * but if FEAT_IDST is implemented then read accesses to registers
2174      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2175      * syndrome.
2176      */
2177     uint32_t syndrome;
2178 
2179     if (isread && dc_isar_feature(aa64_ids, s) &&
2180         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2181         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2182     } else {
2183         syndrome = syn_uncategorized();
2184     }
2185     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2186 }
2187 
2188 /* MRS - move from system register
2189  * MSR (register) - move to system register
2190  * SYS
2191  * SYSL
2192  * These are all essentially the same insn in 'read' and 'write'
2193  * versions, with varying op0 fields.
2194  */
2195 static void handle_sys(DisasContext *s, bool isread,
2196                        unsigned int op0, unsigned int op1, unsigned int op2,
2197                        unsigned int crn, unsigned int crm, unsigned int rt)
2198 {
2199     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2200                                       crn, crm, op0, op1, op2);
2201     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2202     bool need_exit_tb = false;
2203     bool nv_trap_to_el2 = false;
2204     bool nv_redirect_reg = false;
2205     bool skip_fp_access_checks = false;
2206     bool nv2_mem_redirect = false;
2207     TCGv_ptr tcg_ri = NULL;
2208     TCGv_i64 tcg_rt;
2209     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2210 
2211     if (crn == 11 || crn == 15) {
2212         /*
2213          * Check for TIDCP trap, which must take precedence over
2214          * the UNDEF for "no such register" etc.
2215          */
2216         switch (s->current_el) {
2217         case 0:
2218             if (dc_isar_feature(aa64_tidcp1, s)) {
2219                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2220             }
2221             break;
2222         case 1:
2223             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2224             break;
2225         }
2226     }
2227 
2228     if (!ri) {
2229         /* Unknown register; this might be a guest error or a QEMU
2230          * unimplemented feature.
2231          */
2232         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2233                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2234                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2235         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2236         return;
2237     }
2238 
2239     if (s->nv2 && ri->nv2_redirect_offset) {
2240         /*
2241          * Some registers always redirect to memory; some only do so if
2242          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2243          * pairs which share an offset; see the table in R_CSRPQ).
2244          */
2245         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2246             nv2_mem_redirect = s->nv1;
2247         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2248             nv2_mem_redirect = !s->nv1;
2249         } else {
2250             nv2_mem_redirect = true;
2251         }
2252     }
2253 
2254     /* Check access permissions */
2255     if (!cp_access_ok(s->current_el, ri, isread)) {
2256         /*
2257          * FEAT_NV/NV2 handling does not do the usual FP access checks
2258          * for registers only accessible at EL2 (though it *does* do them
2259          * for registers accessible at EL1).
2260          */
2261         skip_fp_access_checks = true;
2262         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2263             /*
2264              * This is one of the few EL2 registers which should redirect
2265              * to the equivalent EL1 register. We do that after running
2266              * the EL2 register's accessfn.
2267              */
2268             nv_redirect_reg = true;
2269             assert(!nv2_mem_redirect);
2270         } else if (nv2_mem_redirect) {
2271             /*
2272              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2273              * UNDEF to EL1.
2274              */
2275         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2276             /*
2277              * This register / instruction exists and is an EL2 register, so
2278              * we must trap to EL2 if accessed in nested virtualization EL1
2279              * instead of UNDEFing. We'll do that after the usual access checks.
2280              * (This makes a difference only for a couple of registers like
2281              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2282              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2283              * an accessfn which does nothing when called from EL1, because
2284              * the trap-to-EL3 controls which would apply to that register
2285              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2286              */
2287             nv_trap_to_el2 = true;
2288         } else {
2289             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2290             return;
2291         }
2292     }
2293 
2294     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2295         /* Emit code to perform further access permissions checks at
2296          * runtime; this may result in an exception.
2297          */
2298         gen_a64_update_pc(s, 0);
2299         tcg_ri = tcg_temp_new_ptr();
2300         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2301                                        tcg_constant_i32(key),
2302                                        tcg_constant_i32(syndrome),
2303                                        tcg_constant_i32(isread));
2304     } else if (ri->type & ARM_CP_RAISES_EXC) {
2305         /*
2306          * The readfn or writefn might raise an exception;
2307          * synchronize the CPU state in case it does.
2308          */
2309         gen_a64_update_pc(s, 0);
2310     }
2311 
2312     if (!skip_fp_access_checks) {
2313         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2314             return;
2315         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2316             return;
2317         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2318             return;
2319         }
2320     }
2321 
2322     if (nv_trap_to_el2) {
2323         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2324         return;
2325     }
2326 
2327     if (nv_redirect_reg) {
2328         /*
2329          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2330          * Conveniently in all cases the encoding of the EL1 register is
2331          * identical to the EL2 register except that opc1 is 0.
2332          * Get the reginfo for the EL1 register to use for the actual access.
2333          * We don't use the EL1 register's access function, and
2334          * fine-grained-traps on EL1 also do not apply here.
2335          */
2336         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2337                                  crn, crm, op0, 0, op2);
2338         ri = get_arm_cp_reginfo(s->cp_regs, key);
2339         assert(ri);
2340         assert(cp_access_ok(s->current_el, ri, isread));
2341         /*
2342          * We might not have done an update_pc earlier, so check we don't
2343          * need it. We could support this in future if necessary.
2344          */
2345         assert(!(ri->type & ARM_CP_RAISES_EXC));
2346     }
2347 
2348     if (nv2_mem_redirect) {
2349         /*
2350          * This system register is being redirected into an EL2 memory access.
2351          * This means it is not an IO operation, doesn't change hflags,
2352          * and need not end the TB, because it has no side effects.
2353          *
2354          * The access is 64-bit single copy atomic, guaranteed aligned because
2355          * of the definition of VCNR_EL2. Its endianness depends on
2356          * SCTLR_EL2.EE, not on the data endianness of EL1.
2357          * It is done under either the EL2 translation regime or the EL2&0
2358          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2359          * PSTATE.PAN is 0.
2360          */
2361         TCGv_i64 ptr = tcg_temp_new_i64();
2362         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2363         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2364         int memidx = arm_to_core_mmu_idx(armmemidx);
2365         uint32_t syn;
2366 
2367         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2368 
2369         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2370         tcg_gen_addi_i64(ptr, ptr,
2371                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2372         tcg_rt = cpu_reg(s, rt);
2373 
2374         syn = syn_data_abort_vncr(0, !isread, 0);
2375         disas_set_insn_syndrome(s, syn);
2376         if (isread) {
2377             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2378         } else {
2379             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2380         }
2381         return;
2382     }
2383 
2384     /* Handle special cases first */
2385     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2386     case 0:
2387         break;
2388     case ARM_CP_NOP:
2389         return;
2390     case ARM_CP_NZCV:
2391         tcg_rt = cpu_reg(s, rt);
2392         if (isread) {
2393             gen_get_nzcv(tcg_rt);
2394         } else {
2395             gen_set_nzcv(tcg_rt);
2396         }
2397         return;
2398     case ARM_CP_CURRENTEL:
2399     {
2400         /*
2401          * Reads as current EL value from pstate, which is
2402          * guaranteed to be constant by the tb flags.
2403          * For nested virt we should report EL2.
2404          */
2405         int el = s->nv ? 2 : s->current_el;
2406         tcg_rt = cpu_reg(s, rt);
2407         tcg_gen_movi_i64(tcg_rt, el << 2);
2408         return;
2409     }
2410     case ARM_CP_DC_ZVA:
2411         /* Writes clear the aligned block of memory which rt points into. */
2412         if (s->mte_active[0]) {
2413             int desc = 0;
2414 
2415             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2416             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2417             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2418 
2419             tcg_rt = tcg_temp_new_i64();
2420             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2421                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2422         } else {
2423             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2424         }
2425         gen_helper_dc_zva(tcg_env, tcg_rt);
2426         return;
2427     case ARM_CP_DC_GVA:
2428         {
2429             TCGv_i64 clean_addr, tag;
2430 
2431             /*
2432              * DC_GVA, like DC_ZVA, requires that we supply the original
2433              * pointer for an invalid page.  Probe that address first.
2434              */
2435             tcg_rt = cpu_reg(s, rt);
2436             clean_addr = clean_data_tbi(s, tcg_rt);
2437             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2438 
2439             if (s->ata[0]) {
2440                 /* Extract the tag from the register to match STZGM.  */
2441                 tag = tcg_temp_new_i64();
2442                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2443                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2444             }
2445         }
2446         return;
2447     case ARM_CP_DC_GZVA:
2448         {
2449             TCGv_i64 clean_addr, tag;
2450 
2451             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2452             tcg_rt = cpu_reg(s, rt);
2453             clean_addr = clean_data_tbi(s, tcg_rt);
2454             gen_helper_dc_zva(tcg_env, clean_addr);
2455 
2456             if (s->ata[0]) {
2457                 /* Extract the tag from the register to match STZGM.  */
2458                 tag = tcg_temp_new_i64();
2459                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2460                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2461             }
2462         }
2463         return;
2464     default:
2465         g_assert_not_reached();
2466     }
2467 
2468     if (ri->type & ARM_CP_IO) {
2469         /* I/O operations must end the TB here (whether read or write) */
2470         need_exit_tb = translator_io_start(&s->base);
2471     }
2472 
2473     tcg_rt = cpu_reg(s, rt);
2474 
2475     if (isread) {
2476         if (ri->type & ARM_CP_CONST) {
2477             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2478         } else if (ri->readfn) {
2479             if (!tcg_ri) {
2480                 tcg_ri = gen_lookup_cp_reg(key);
2481             }
2482             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2483         } else {
2484             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2485         }
2486     } else {
2487         if (ri->type & ARM_CP_CONST) {
2488             /* If not forbidden by access permissions, treat as WI */
2489             return;
2490         } else if (ri->writefn) {
2491             if (!tcg_ri) {
2492                 tcg_ri = gen_lookup_cp_reg(key);
2493             }
2494             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2495         } else {
2496             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2497         }
2498     }
2499 
2500     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2501         /*
2502          * A write to any coprocessor register that ends a TB
2503          * must rebuild the hflags for the next TB.
2504          */
2505         gen_rebuild_hflags(s);
2506         /*
2507          * We default to ending the TB on a coprocessor register write,
2508          * but allow this to be suppressed by the register definition
2509          * (usually only necessary to work around guest bugs).
2510          */
2511         need_exit_tb = true;
2512     }
2513     if (need_exit_tb) {
2514         s->base.is_jmp = DISAS_UPDATE_EXIT;
2515     }
2516 }
2517 
2518 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2519 {
2520     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2521     return true;
2522 }
2523 
2524 static bool trans_SVC(DisasContext *s, arg_i *a)
2525 {
2526     /*
2527      * For SVC, HVC and SMC we advance the single-step state
2528      * machine before taking the exception. This is architecturally
2529      * mandated, to ensure that single-stepping a system call
2530      * instruction works properly.
2531      */
2532     uint32_t syndrome = syn_aa64_svc(a->imm);
2533     if (s->fgt_svc) {
2534         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2535         return true;
2536     }
2537     gen_ss_advance(s);
2538     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2539     return true;
2540 }
2541 
2542 static bool trans_HVC(DisasContext *s, arg_i *a)
2543 {
2544     int target_el = s->current_el == 3 ? 3 : 2;
2545 
2546     if (s->current_el == 0) {
2547         unallocated_encoding(s);
2548         return true;
2549     }
2550     /*
2551      * The pre HVC helper handles cases when HVC gets trapped
2552      * as an undefined insn by runtime configuration.
2553      */
2554     gen_a64_update_pc(s, 0);
2555     gen_helper_pre_hvc(tcg_env);
2556     /* Architecture requires ss advance before we do the actual work */
2557     gen_ss_advance(s);
2558     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2559     return true;
2560 }
2561 
2562 static bool trans_SMC(DisasContext *s, arg_i *a)
2563 {
2564     if (s->current_el == 0) {
2565         unallocated_encoding(s);
2566         return true;
2567     }
2568     gen_a64_update_pc(s, 0);
2569     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2570     /* Architecture requires ss advance before we do the actual work */
2571     gen_ss_advance(s);
2572     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2573     return true;
2574 }
2575 
2576 static bool trans_BRK(DisasContext *s, arg_i *a)
2577 {
2578     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2579     return true;
2580 }
2581 
2582 static bool trans_HLT(DisasContext *s, arg_i *a)
2583 {
2584     /*
2585      * HLT. This has two purposes.
2586      * Architecturally, it is an external halting debug instruction.
2587      * Since QEMU doesn't implement external debug, we treat this as
2588      * it is required for halting debug disabled: it will UNDEF.
2589      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2590      */
2591     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2592         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2593     } else {
2594         unallocated_encoding(s);
2595     }
2596     return true;
2597 }
2598 
2599 /*
2600  * Load/Store exclusive instructions are implemented by remembering
2601  * the value/address loaded, and seeing if these are the same
2602  * when the store is performed. This is not actually the architecturally
2603  * mandated semantics, but it works for typical guest code sequences
2604  * and avoids having to monitor regular stores.
2605  *
2606  * The store exclusive uses the atomic cmpxchg primitives to avoid
2607  * races in multi-threaded linux-user and when MTTCG softmmu is
2608  * enabled.
2609  */
2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2611                                int size, bool is_pair)
2612 {
2613     int idx = get_mem_index(s);
2614     TCGv_i64 dirty_addr, clean_addr;
2615     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2616 
2617     s->is_ldex = true;
2618     dirty_addr = cpu_reg_sp(s, rn);
2619     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2620 
2621     g_assert(size <= 3);
2622     if (is_pair) {
2623         g_assert(size >= 2);
2624         if (size == 2) {
2625             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2626             if (s->be_data == MO_LE) {
2627                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2628                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2629             } else {
2630                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2631                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2632             }
2633         } else {
2634             TCGv_i128 t16 = tcg_temp_new_i128();
2635 
2636             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2637 
2638             if (s->be_data == MO_LE) {
2639                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2640                                       cpu_exclusive_high, t16);
2641             } else {
2642                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2643                                       cpu_exclusive_val, t16);
2644             }
2645             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2646             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2647         }
2648     } else {
2649         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2650         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2651     }
2652     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2653 }
2654 
2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2656                                 int rn, int size, int is_pair)
2657 {
2658     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2659      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2660      *     [addr] = {Rt};
2661      *     if (is_pair) {
2662      *         [addr + datasize] = {Rt2};
2663      *     }
2664      *     {Rd} = 0;
2665      * } else {
2666      *     {Rd} = 1;
2667      * }
2668      * env->exclusive_addr = -1;
2669      */
2670     TCGLabel *fail_label = gen_new_label();
2671     TCGLabel *done_label = gen_new_label();
2672     TCGv_i64 tmp, clean_addr;
2673     MemOp memop;
2674 
2675     /*
2676      * FIXME: We are out of spec here.  We have recorded only the address
2677      * from load_exclusive, not the entire range, and we assume that the
2678      * size of the access on both sides match.  The architecture allows the
2679      * store to be smaller than the load, so long as the stored bytes are
2680      * within the range recorded by the load.
2681      */
2682 
2683     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2684     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2685     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2686 
2687     /*
2688      * The write, and any associated faults, only happen if the virtual
2689      * and physical addresses pass the exclusive monitor check.  These
2690      * faults are exceedingly unlikely, because normally the guest uses
2691      * the exact same address register for the load_exclusive, and we
2692      * would have recognized these faults there.
2693      *
2694      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2695      * unaligned 4-byte write within the range of an aligned 8-byte load.
2696      * With LSE2, the store would need to cross a 16-byte boundary when the
2697      * load did not, which would mean the store is outside the range
2698      * recorded for the monitor, which would have failed a corrected monitor
2699      * check above.  For now, we assume no size change and retain the
2700      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2701      *
2702      * It is possible to trigger an MTE fault, by performing the load with
2703      * a virtual address with a valid tag and performing the store with the
2704      * same virtual address and a different invalid tag.
2705      */
2706     memop = size + is_pair;
2707     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2708         memop |= MO_ALIGN;
2709     }
2710     memop = finalize_memop(s, memop);
2711     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2712 
2713     tmp = tcg_temp_new_i64();
2714     if (is_pair) {
2715         if (size == 2) {
2716             if (s->be_data == MO_LE) {
2717                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2718             } else {
2719                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2720             }
2721             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2722                                        cpu_exclusive_val, tmp,
2723                                        get_mem_index(s), memop);
2724             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2725         } else {
2726             TCGv_i128 t16 = tcg_temp_new_i128();
2727             TCGv_i128 c16 = tcg_temp_new_i128();
2728             TCGv_i64 a, b;
2729 
2730             if (s->be_data == MO_LE) {
2731                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2732                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2733                                         cpu_exclusive_high);
2734             } else {
2735                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2736                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2737                                         cpu_exclusive_val);
2738             }
2739 
2740             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2741                                         get_mem_index(s), memop);
2742 
2743             a = tcg_temp_new_i64();
2744             b = tcg_temp_new_i64();
2745             if (s->be_data == MO_LE) {
2746                 tcg_gen_extr_i128_i64(a, b, t16);
2747             } else {
2748                 tcg_gen_extr_i128_i64(b, a, t16);
2749             }
2750 
2751             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2752             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2753             tcg_gen_or_i64(tmp, a, b);
2754 
2755             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2756         }
2757     } else {
2758         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2759                                    cpu_reg(s, rt), get_mem_index(s), memop);
2760         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2761     }
2762     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2763     tcg_gen_br(done_label);
2764 
2765     gen_set_label(fail_label);
2766     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2767     gen_set_label(done_label);
2768     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2769 }
2770 
2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2772                                  int rn, int size)
2773 {
2774     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2775     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2776     int memidx = get_mem_index(s);
2777     TCGv_i64 clean_addr;
2778     MemOp memop;
2779 
2780     if (rn == 31) {
2781         gen_check_sp_alignment(s);
2782     }
2783     memop = check_atomic_align(s, rn, size);
2784     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2785     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2786                                memidx, memop);
2787 }
2788 
2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2790                                       int rn, int size)
2791 {
2792     TCGv_i64 s1 = cpu_reg(s, rs);
2793     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2794     TCGv_i64 t1 = cpu_reg(s, rt);
2795     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2796     TCGv_i64 clean_addr;
2797     int memidx = get_mem_index(s);
2798     MemOp memop;
2799 
2800     if (rn == 31) {
2801         gen_check_sp_alignment(s);
2802     }
2803 
2804     /* This is a single atomic access, despite the "pair". */
2805     memop = check_atomic_align(s, rn, size + 1);
2806     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2807 
2808     if (size == 2) {
2809         TCGv_i64 cmp = tcg_temp_new_i64();
2810         TCGv_i64 val = tcg_temp_new_i64();
2811 
2812         if (s->be_data == MO_LE) {
2813             tcg_gen_concat32_i64(val, t1, t2);
2814             tcg_gen_concat32_i64(cmp, s1, s2);
2815         } else {
2816             tcg_gen_concat32_i64(val, t2, t1);
2817             tcg_gen_concat32_i64(cmp, s2, s1);
2818         }
2819 
2820         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2821 
2822         if (s->be_data == MO_LE) {
2823             tcg_gen_extr32_i64(s1, s2, cmp);
2824         } else {
2825             tcg_gen_extr32_i64(s2, s1, cmp);
2826         }
2827     } else {
2828         TCGv_i128 cmp = tcg_temp_new_i128();
2829         TCGv_i128 val = tcg_temp_new_i128();
2830 
2831         if (s->be_data == MO_LE) {
2832             tcg_gen_concat_i64_i128(val, t1, t2);
2833             tcg_gen_concat_i64_i128(cmp, s1, s2);
2834         } else {
2835             tcg_gen_concat_i64_i128(val, t2, t1);
2836             tcg_gen_concat_i64_i128(cmp, s2, s1);
2837         }
2838 
2839         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2840 
2841         if (s->be_data == MO_LE) {
2842             tcg_gen_extr_i128_i64(s1, s2, cmp);
2843         } else {
2844             tcg_gen_extr_i128_i64(s2, s1, cmp);
2845         }
2846     }
2847 }
2848 
2849 /*
2850  * Compute the ISS.SF bit for syndrome information if an exception
2851  * is taken on a load or store. This indicates whether the instruction
2852  * is accessing a 32-bit or 64-bit register. This logic is derived
2853  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2854  */
2855 static bool ldst_iss_sf(int size, bool sign, bool ext)
2856 {
2857 
2858     if (sign) {
2859         /*
2860          * Signed loads are 64 bit results if we are not going to
2861          * do a zero-extend from 32 to 64 after the load.
2862          * (For a store, sign and ext are always false.)
2863          */
2864         return !ext;
2865     } else {
2866         /* Unsigned loads/stores work at the specified size */
2867         return size == MO_64;
2868     }
2869 }
2870 
2871 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2872 {
2873     if (a->rn == 31) {
2874         gen_check_sp_alignment(s);
2875     }
2876     if (a->lasr) {
2877         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2878     }
2879     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2880     return true;
2881 }
2882 
2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2884 {
2885     if (a->rn == 31) {
2886         gen_check_sp_alignment(s);
2887     }
2888     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2889     if (a->lasr) {
2890         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2891     }
2892     return true;
2893 }
2894 
2895 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2896 {
2897     TCGv_i64 clean_addr;
2898     MemOp memop;
2899     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2900 
2901     /*
2902      * StoreLORelease is the same as Store-Release for QEMU, but
2903      * needs the feature-test.
2904      */
2905     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2906         return false;
2907     }
2908     /* Generate ISS for non-exclusive accesses including LASR.  */
2909     if (a->rn == 31) {
2910         gen_check_sp_alignment(s);
2911     }
2912     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2913     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2914     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2915                                 true, a->rn != 31, memop);
2916     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2917               iss_sf, a->lasr);
2918     return true;
2919 }
2920 
2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2922 {
2923     TCGv_i64 clean_addr;
2924     MemOp memop;
2925     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2926 
2927     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2928     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2929         return false;
2930     }
2931     /* Generate ISS for non-exclusive accesses including LASR.  */
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2936     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2937                                 false, a->rn != 31, memop);
2938     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2939               a->rt, iss_sf, a->lasr);
2940     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2941     return true;
2942 }
2943 
2944 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2945 {
2946     if (a->rn == 31) {
2947         gen_check_sp_alignment(s);
2948     }
2949     if (a->lasr) {
2950         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2951     }
2952     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2953     return true;
2954 }
2955 
2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2957 {
2958     if (a->rn == 31) {
2959         gen_check_sp_alignment(s);
2960     }
2961     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2962     if (a->lasr) {
2963         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2964     }
2965     return true;
2966 }
2967 
2968 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2969 {
2970     if (!dc_isar_feature(aa64_atomics, s)) {
2971         return false;
2972     }
2973     if (((a->rt | a->rs) & 1) != 0) {
2974         return false;
2975     }
2976 
2977     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2978     return true;
2979 }
2980 
2981 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2982 {
2983     if (!dc_isar_feature(aa64_atomics, s)) {
2984         return false;
2985     }
2986     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2987     return true;
2988 }
2989 
2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
2991 {
2992     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
2993     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
2994     TCGv_i64 clean_addr = tcg_temp_new_i64();
2995     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
2996 
2997     gen_pc_plus_diff(s, clean_addr, a->imm);
2998     do_gpr_ld(s, tcg_rt, clean_addr, memop,
2999               false, true, a->rt, iss_sf, false);
3000     return true;
3001 }
3002 
3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3004 {
3005     /* Load register (literal), vector version */
3006     TCGv_i64 clean_addr;
3007     MemOp memop;
3008 
3009     if (!fp_access_check(s)) {
3010         return true;
3011     }
3012     memop = finalize_memop_asimd(s, a->sz);
3013     clean_addr = tcg_temp_new_i64();
3014     gen_pc_plus_diff(s, clean_addr, a->imm);
3015     do_fp_ld(s, a->rt, clean_addr, memop);
3016     return true;
3017 }
3018 
3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3020                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3021                                  uint64_t offset, bool is_store, MemOp mop)
3022 {
3023     if (a->rn == 31) {
3024         gen_check_sp_alignment(s);
3025     }
3026 
3027     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3028     if (!a->p) {
3029         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3030     }
3031 
3032     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3033                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3034 }
3035 
3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3037                                   TCGv_i64 dirty_addr, uint64_t offset)
3038 {
3039     if (a->w) {
3040         if (a->p) {
3041             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3042         }
3043         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3044     }
3045 }
3046 
3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3048 {
3049     uint64_t offset = a->imm << a->sz;
3050     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3051     MemOp mop = finalize_memop(s, a->sz);
3052 
3053     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3054     tcg_rt = cpu_reg(s, a->rt);
3055     tcg_rt2 = cpu_reg(s, a->rt2);
3056     /*
3057      * We built mop above for the single logical access -- rebuild it
3058      * now for the paired operation.
3059      *
3060      * With LSE2, non-sign-extending pairs are treated atomically if
3061      * aligned, and if unaligned one of the pair will be completely
3062      * within a 16-byte block and that element will be atomic.
3063      * Otherwise each element is separately atomic.
3064      * In all cases, issue one operation with the correct atomicity.
3065      */
3066     mop = a->sz + 1;
3067     if (s->align_mem) {
3068         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3069     }
3070     mop = finalize_memop_pair(s, mop);
3071     if (a->sz == 2) {
3072         TCGv_i64 tmp = tcg_temp_new_i64();
3073 
3074         if (s->be_data == MO_LE) {
3075             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3076         } else {
3077             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3078         }
3079         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3080     } else {
3081         TCGv_i128 tmp = tcg_temp_new_i128();
3082 
3083         if (s->be_data == MO_LE) {
3084             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3085         } else {
3086             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3087         }
3088         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3089     }
3090     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3091     return true;
3092 }
3093 
3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103 
3104     /*
3105      * We built mop above for the single logical access -- rebuild it
3106      * now for the paired operation.
3107      *
3108      * With LSE2, non-sign-extending pairs are treated atomically if
3109      * aligned, and if unaligned one of the pair will be completely
3110      * within a 16-byte block and that element will be atomic.
3111      * Otherwise each element is separately atomic.
3112      * In all cases, issue one operation with the correct atomicity.
3113      *
3114      * This treats sign-extending loads like zero-extending loads,
3115      * since that reuses the most code below.
3116      */
3117     mop = a->sz + 1;
3118     if (s->align_mem) {
3119         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3120     }
3121     mop = finalize_memop_pair(s, mop);
3122     if (a->sz == 2) {
3123         int o2 = s->be_data == MO_LE ? 32 : 0;
3124         int o1 = o2 ^ 32;
3125 
3126         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3127         if (a->sign) {
3128             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3129             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3130         } else {
3131             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3132             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3133         }
3134     } else {
3135         TCGv_i128 tmp = tcg_temp_new_i128();
3136 
3137         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3138         if (s->be_data == MO_LE) {
3139             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3140         } else {
3141             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3142         }
3143     }
3144     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3145     return true;
3146 }
3147 
3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3149 {
3150     uint64_t offset = a->imm << a->sz;
3151     TCGv_i64 clean_addr, dirty_addr;
3152     MemOp mop;
3153 
3154     if (!fp_access_check(s)) {
3155         return true;
3156     }
3157 
3158     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3159     mop = finalize_memop_asimd(s, a->sz);
3160     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3161     do_fp_st(s, a->rt, clean_addr, mop);
3162     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3163     do_fp_st(s, a->rt2, clean_addr, mop);
3164     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3165     return true;
3166 }
3167 
3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3169 {
3170     uint64_t offset = a->imm << a->sz;
3171     TCGv_i64 clean_addr, dirty_addr;
3172     MemOp mop;
3173 
3174     if (!fp_access_check(s)) {
3175         return true;
3176     }
3177 
3178     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3179     mop = finalize_memop_asimd(s, a->sz);
3180     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3181     do_fp_ld(s, a->rt, clean_addr, mop);
3182     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3183     do_fp_ld(s, a->rt2, clean_addr, mop);
3184     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3185     return true;
3186 }
3187 
3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3189 {
3190     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3191     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3192     MemOp mop;
3193     TCGv_i128 tmp;
3194 
3195     /* STGP only comes in one size. */
3196     tcg_debug_assert(a->sz == MO_64);
3197 
3198     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3199         return false;
3200     }
3201 
3202     if (a->rn == 31) {
3203         gen_check_sp_alignment(s);
3204     }
3205 
3206     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3207     if (!a->p) {
3208         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3209     }
3210 
3211     clean_addr = clean_data_tbi(s, dirty_addr);
3212     tcg_rt = cpu_reg(s, a->rt);
3213     tcg_rt2 = cpu_reg(s, a->rt2);
3214 
3215     /*
3216      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3217      * and one tag operation.  We implement it as one single aligned 16-byte
3218      * memory operation for convenience.  Note that the alignment ensures
3219      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3220      */
3221     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3222 
3223     tmp = tcg_temp_new_i128();
3224     if (s->be_data == MO_LE) {
3225         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3226     } else {
3227         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3228     }
3229     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3230 
3231     /* Perform the tag store, if tag access enabled. */
3232     if (s->ata[0]) {
3233         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3234             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3235         } else {
3236             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3237         }
3238     }
3239 
3240     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3241     return true;
3242 }
3243 
3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3245                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3246                                  uint64_t offset, bool is_store, MemOp mop)
3247 {
3248     int memidx;
3249 
3250     if (a->rn == 31) {
3251         gen_check_sp_alignment(s);
3252     }
3253 
3254     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3255     if (!a->p) {
3256         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3257     }
3258     memidx = get_a64_user_mem_index(s, a->unpriv);
3259     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3260                                         a->w || a->rn != 31,
3261                                         mop, a->unpriv, memidx);
3262 }
3263 
3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3265                                   TCGv_i64 dirty_addr, uint64_t offset)
3266 {
3267     if (a->w) {
3268         if (a->p) {
3269             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3270         }
3271         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3272     }
3273 }
3274 
3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3276 {
3277     bool iss_sf, iss_valid = !a->w;
3278     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3279     int memidx = get_a64_user_mem_index(s, a->unpriv);
3280     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3281 
3282     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3283 
3284     tcg_rt = cpu_reg(s, a->rt);
3285     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3286 
3287     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3288                      iss_valid, a->rt, iss_sf, false);
3289     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3290     return true;
3291 }
3292 
3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3294 {
3295     bool iss_sf, iss_valid = !a->w;
3296     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3297     int memidx = get_a64_user_mem_index(s, a->unpriv);
3298     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3299 
3300     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3301 
3302     tcg_rt = cpu_reg(s, a->rt);
3303     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3304 
3305     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3306                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3307     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3308     return true;
3309 }
3310 
3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3312 {
3313     TCGv_i64 clean_addr, dirty_addr;
3314     MemOp mop;
3315 
3316     if (!fp_access_check(s)) {
3317         return true;
3318     }
3319     mop = finalize_memop_asimd(s, a->sz);
3320     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3321     do_fp_st(s, a->rt, clean_addr, mop);
3322     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3323     return true;
3324 }
3325 
3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3327 {
3328     TCGv_i64 clean_addr, dirty_addr;
3329     MemOp mop;
3330 
3331     if (!fp_access_check(s)) {
3332         return true;
3333     }
3334     mop = finalize_memop_asimd(s, a->sz);
3335     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3336     do_fp_ld(s, a->rt, clean_addr, mop);
3337     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3338     return true;
3339 }
3340 
3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3342                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3343                              bool is_store, MemOp memop)
3344 {
3345     TCGv_i64 tcg_rm;
3346 
3347     if (a->rn == 31) {
3348         gen_check_sp_alignment(s);
3349     }
3350     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3351 
3352     tcg_rm = read_cpu_reg(s, a->rm, 1);
3353     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3354 
3355     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3356     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3357 }
3358 
3359 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3360 {
3361     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3362     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3363     MemOp memop;
3364 
3365     if (extract32(a->opt, 1, 1) == 0) {
3366         return false;
3367     }
3368 
3369     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3370     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3371     tcg_rt = cpu_reg(s, a->rt);
3372     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3373               a->ext, true, a->rt, iss_sf, false);
3374     return true;
3375 }
3376 
3377 static bool trans_STR(DisasContext *s, arg_ldst *a)
3378 {
3379     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3380     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3381     MemOp memop;
3382 
3383     if (extract32(a->opt, 1, 1) == 0) {
3384         return false;
3385     }
3386 
3387     memop = finalize_memop(s, a->sz);
3388     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3389     tcg_rt = cpu_reg(s, a->rt);
3390     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3391     return true;
3392 }
3393 
3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3395 {
3396     TCGv_i64 clean_addr, dirty_addr;
3397     MemOp memop;
3398 
3399     if (extract32(a->opt, 1, 1) == 0) {
3400         return false;
3401     }
3402 
3403     if (!fp_access_check(s)) {
3404         return true;
3405     }
3406 
3407     memop = finalize_memop_asimd(s, a->sz);
3408     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3409     do_fp_ld(s, a->rt, clean_addr, memop);
3410     return true;
3411 }
3412 
3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3414 {
3415     TCGv_i64 clean_addr, dirty_addr;
3416     MemOp memop;
3417 
3418     if (extract32(a->opt, 1, 1) == 0) {
3419         return false;
3420     }
3421 
3422     if (!fp_access_check(s)) {
3423         return true;
3424     }
3425 
3426     memop = finalize_memop_asimd(s, a->sz);
3427     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3428     do_fp_st(s, a->rt, clean_addr, memop);
3429     return true;
3430 }
3431 
3432 
3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3434                          int sign, bool invert)
3435 {
3436     MemOp mop = a->sz | sign;
3437     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3438 
3439     if (a->rn == 31) {
3440         gen_check_sp_alignment(s);
3441     }
3442     mop = check_atomic_align(s, a->rn, mop);
3443     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3444                                 a->rn != 31, mop);
3445     tcg_rs = read_cpu_reg(s, a->rs, true);
3446     tcg_rt = cpu_reg(s, a->rt);
3447     if (invert) {
3448         tcg_gen_not_i64(tcg_rs, tcg_rs);
3449     }
3450     /*
3451      * The tcg atomic primitives are all full barriers.  Therefore we
3452      * can ignore the Acquire and Release bits of this instruction.
3453      */
3454     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3455 
3456     if (mop & MO_SIGN) {
3457         switch (a->sz) {
3458         case MO_8:
3459             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3460             break;
3461         case MO_16:
3462             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3463             break;
3464         case MO_32:
3465             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3466             break;
3467         case MO_64:
3468             break;
3469         default:
3470             g_assert_not_reached();
3471         }
3472     }
3473     return true;
3474 }
3475 
3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3485 
3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3487 {
3488     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3489     TCGv_i64 clean_addr;
3490     MemOp mop;
3491 
3492     if (!dc_isar_feature(aa64_atomics, s) ||
3493         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3494         return false;
3495     }
3496     if (a->rn == 31) {
3497         gen_check_sp_alignment(s);
3498     }
3499     mop = check_atomic_align(s, a->rn, a->sz);
3500     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3501                                 a->rn != 31, mop);
3502     /*
3503      * LDAPR* are a special case because they are a simple load, not a
3504      * fetch-and-do-something op.
3505      * The architectural consistency requirements here are weaker than
3506      * full load-acquire (we only need "load-acquire processor consistent"),
3507      * but we choose to implement them as full LDAQ.
3508      */
3509     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3510               true, a->rt, iss_sf, true);
3511     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3512     return true;
3513 }
3514 
3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3516 {
3517     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3518     MemOp memop;
3519 
3520     /* Load with pointer authentication */
3521     if (!dc_isar_feature(aa64_pauth, s)) {
3522         return false;
3523     }
3524 
3525     if (a->rn == 31) {
3526         gen_check_sp_alignment(s);
3527     }
3528     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3529 
3530     if (s->pauth_active) {
3531         if (!a->m) {
3532             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3533                                       tcg_constant_i64(0));
3534         } else {
3535             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3536                                       tcg_constant_i64(0));
3537         }
3538     }
3539 
3540     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3541 
3542     memop = finalize_memop(s, MO_64);
3543 
3544     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3545     clean_addr = gen_mte_check1(s, dirty_addr, false,
3546                                 a->w || a->rn != 31, memop);
3547 
3548     tcg_rt = cpu_reg(s, a->rt);
3549     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3550               /* extend */ false, /* iss_valid */ !a->w,
3551               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3552 
3553     if (a->w) {
3554         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3555     }
3556     return true;
3557 }
3558 
3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3560 {
3561     TCGv_i64 clean_addr, dirty_addr;
3562     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3563     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3564 
3565     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3566         return false;
3567     }
3568 
3569     if (a->rn == 31) {
3570         gen_check_sp_alignment(s);
3571     }
3572 
3573     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3574     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3575     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3576     clean_addr = clean_data_tbi(s, dirty_addr);
3577 
3578     /*
3579      * Load-AcquirePC semantics; we implement as the slightly more
3580      * restrictive Load-Acquire.
3581      */
3582     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3583               a->rt, iss_sf, true);
3584     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3585     return true;
3586 }
3587 
3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3589 {
3590     TCGv_i64 clean_addr, dirty_addr;
3591     MemOp mop = a->sz;
3592     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3593 
3594     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3595         return false;
3596     }
3597 
3598     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3599 
3600     if (a->rn == 31) {
3601         gen_check_sp_alignment(s);
3602     }
3603 
3604     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3605     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3606     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3607     clean_addr = clean_data_tbi(s, dirty_addr);
3608 
3609     /* Store-Release semantics */
3610     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3611     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3612     return true;
3613 }
3614 
3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3616 {
3617     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3618     MemOp endian, align, mop;
3619 
3620     int total;    /* total bytes */
3621     int elements; /* elements per vector */
3622     int r;
3623     int size = a->sz;
3624 
3625     if (!a->p && a->rm != 0) {
3626         /* For non-postindexed accesses the Rm field must be 0 */
3627         return false;
3628     }
3629     if (size == 3 && !a->q && a->selem != 1) {
3630         return false;
3631     }
3632     if (!fp_access_check(s)) {
3633         return true;
3634     }
3635 
3636     if (a->rn == 31) {
3637         gen_check_sp_alignment(s);
3638     }
3639 
3640     /* For our purposes, bytes are always little-endian.  */
3641     endian = s->be_data;
3642     if (size == 0) {
3643         endian = MO_LE;
3644     }
3645 
3646     total = a->rpt * a->selem * (a->q ? 16 : 8);
3647     tcg_rn = cpu_reg_sp(s, a->rn);
3648 
3649     /*
3650      * Issue the MTE check vs the logical repeat count, before we
3651      * promote consecutive little-endian elements below.
3652      */
3653     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3654                                 finalize_memop_asimd(s, size));
3655 
3656     /*
3657      * Consecutive little-endian elements from a single register
3658      * can be promoted to a larger little-endian operation.
3659      */
3660     align = MO_ALIGN;
3661     if (a->selem == 1 && endian == MO_LE) {
3662         align = pow2_align(size);
3663         size = 3;
3664     }
3665     if (!s->align_mem) {
3666         align = 0;
3667     }
3668     mop = endian | size | align;
3669 
3670     elements = (a->q ? 16 : 8) >> size;
3671     tcg_ebytes = tcg_constant_i64(1 << size);
3672     for (r = 0; r < a->rpt; r++) {
3673         int e;
3674         for (e = 0; e < elements; e++) {
3675             int xs;
3676             for (xs = 0; xs < a->selem; xs++) {
3677                 int tt = (a->rt + r + xs) % 32;
3678                 do_vec_ld(s, tt, e, clean_addr, mop);
3679                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3680             }
3681         }
3682     }
3683 
3684     /*
3685      * For non-quad operations, setting a slice of the low 64 bits of
3686      * the register clears the high 64 bits (in the ARM ARM pseudocode
3687      * this is implicit in the fact that 'rval' is a 64 bit wide
3688      * variable).  For quad operations, we might still need to zero
3689      * the high bits of SVE.
3690      */
3691     for (r = 0; r < a->rpt * a->selem; r++) {
3692         int tt = (a->rt + r) % 32;
3693         clear_vec_high(s, a->q, tt);
3694     }
3695 
3696     if (a->p) {
3697         if (a->rm == 31) {
3698             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3699         } else {
3700             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3701         }
3702     }
3703     return true;
3704 }
3705 
3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3707 {
3708     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3709     MemOp endian, align, mop;
3710 
3711     int total;    /* total bytes */
3712     int elements; /* elements per vector */
3713     int r;
3714     int size = a->sz;
3715 
3716     if (!a->p && a->rm != 0) {
3717         /* For non-postindexed accesses the Rm field must be 0 */
3718         return false;
3719     }
3720     if (size == 3 && !a->q && a->selem != 1) {
3721         return false;
3722     }
3723     if (!fp_access_check(s)) {
3724         return true;
3725     }
3726 
3727     if (a->rn == 31) {
3728         gen_check_sp_alignment(s);
3729     }
3730 
3731     /* For our purposes, bytes are always little-endian.  */
3732     endian = s->be_data;
3733     if (size == 0) {
3734         endian = MO_LE;
3735     }
3736 
3737     total = a->rpt * a->selem * (a->q ? 16 : 8);
3738     tcg_rn = cpu_reg_sp(s, a->rn);
3739 
3740     /*
3741      * Issue the MTE check vs the logical repeat count, before we
3742      * promote consecutive little-endian elements below.
3743      */
3744     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3745                                 finalize_memop_asimd(s, size));
3746 
3747     /*
3748      * Consecutive little-endian elements from a single register
3749      * can be promoted to a larger little-endian operation.
3750      */
3751     align = MO_ALIGN;
3752     if (a->selem == 1 && endian == MO_LE) {
3753         align = pow2_align(size);
3754         size = 3;
3755     }
3756     if (!s->align_mem) {
3757         align = 0;
3758     }
3759     mop = endian | size | align;
3760 
3761     elements = (a->q ? 16 : 8) >> size;
3762     tcg_ebytes = tcg_constant_i64(1 << size);
3763     for (r = 0; r < a->rpt; r++) {
3764         int e;
3765         for (e = 0; e < elements; e++) {
3766             int xs;
3767             for (xs = 0; xs < a->selem; xs++) {
3768                 int tt = (a->rt + r + xs) % 32;
3769                 do_vec_st(s, tt, e, clean_addr, mop);
3770                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3771             }
3772         }
3773     }
3774 
3775     if (a->p) {
3776         if (a->rm == 31) {
3777             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3778         } else {
3779             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3780         }
3781     }
3782     return true;
3783 }
3784 
3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3786 {
3787     int xs, total, rt;
3788     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3789     MemOp mop;
3790 
3791     if (!a->p && a->rm != 0) {
3792         return false;
3793     }
3794     if (!fp_access_check(s)) {
3795         return true;
3796     }
3797 
3798     if (a->rn == 31) {
3799         gen_check_sp_alignment(s);
3800     }
3801 
3802     total = a->selem << a->scale;
3803     tcg_rn = cpu_reg_sp(s, a->rn);
3804 
3805     mop = finalize_memop_asimd(s, a->scale);
3806     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3807                                 total, mop);
3808 
3809     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3810     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3811         do_vec_st(s, rt, a->index, clean_addr, mop);
3812         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3813     }
3814 
3815     if (a->p) {
3816         if (a->rm == 31) {
3817             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3818         } else {
3819             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3820         }
3821     }
3822     return true;
3823 }
3824 
3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3826 {
3827     int xs, total, rt;
3828     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3829     MemOp mop;
3830 
3831     if (!a->p && a->rm != 0) {
3832         return false;
3833     }
3834     if (!fp_access_check(s)) {
3835         return true;
3836     }
3837 
3838     if (a->rn == 31) {
3839         gen_check_sp_alignment(s);
3840     }
3841 
3842     total = a->selem << a->scale;
3843     tcg_rn = cpu_reg_sp(s, a->rn);
3844 
3845     mop = finalize_memop_asimd(s, a->scale);
3846     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3847                                 total, mop);
3848 
3849     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3850     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3851         do_vec_ld(s, rt, a->index, clean_addr, mop);
3852         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3853     }
3854 
3855     if (a->p) {
3856         if (a->rm == 31) {
3857             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3858         } else {
3859             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3860         }
3861     }
3862     return true;
3863 }
3864 
3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3866 {
3867     int xs, total, rt;
3868     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3869     MemOp mop;
3870 
3871     if (!a->p && a->rm != 0) {
3872         return false;
3873     }
3874     if (!fp_access_check(s)) {
3875         return true;
3876     }
3877 
3878     if (a->rn == 31) {
3879         gen_check_sp_alignment(s);
3880     }
3881 
3882     total = a->selem << a->scale;
3883     tcg_rn = cpu_reg_sp(s, a->rn);
3884 
3885     mop = finalize_memop_asimd(s, a->scale);
3886     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3887                                 total, mop);
3888 
3889     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3890     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3891         /* Load and replicate to all elements */
3892         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3893 
3894         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3895         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3896                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3897         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3898     }
3899 
3900     if (a->p) {
3901         if (a->rm == 31) {
3902             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3903         } else {
3904             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3905         }
3906     }
3907     return true;
3908 }
3909 
3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3911 {
3912     TCGv_i64 addr, clean_addr, tcg_rt;
3913     int size = 4 << s->dcz_blocksize;
3914 
3915     if (!dc_isar_feature(aa64_mte, s)) {
3916         return false;
3917     }
3918     if (s->current_el == 0) {
3919         return false;
3920     }
3921 
3922     if (a->rn == 31) {
3923         gen_check_sp_alignment(s);
3924     }
3925 
3926     addr = read_cpu_reg_sp(s, a->rn, true);
3927     tcg_gen_addi_i64(addr, addr, a->imm);
3928     tcg_rt = cpu_reg(s, a->rt);
3929 
3930     if (s->ata[0]) {
3931         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3932     }
3933     /*
3934      * The non-tags portion of STZGM is mostly like DC_ZVA,
3935      * except the alignment happens before the access.
3936      */
3937     clean_addr = clean_data_tbi(s, addr);
3938     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3939     gen_helper_dc_zva(tcg_env, clean_addr);
3940     return true;
3941 }
3942 
3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3944 {
3945     TCGv_i64 addr, clean_addr, tcg_rt;
3946 
3947     if (!dc_isar_feature(aa64_mte, s)) {
3948         return false;
3949     }
3950     if (s->current_el == 0) {
3951         return false;
3952     }
3953 
3954     if (a->rn == 31) {
3955         gen_check_sp_alignment(s);
3956     }
3957 
3958     addr = read_cpu_reg_sp(s, a->rn, true);
3959     tcg_gen_addi_i64(addr, addr, a->imm);
3960     tcg_rt = cpu_reg(s, a->rt);
3961 
3962     if (s->ata[0]) {
3963         gen_helper_stgm(tcg_env, addr, tcg_rt);
3964     } else {
3965         MMUAccessType acc = MMU_DATA_STORE;
3966         int size = 4 << s->gm_blocksize;
3967 
3968         clean_addr = clean_data_tbi(s, addr);
3969         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3970         gen_probe_access(s, clean_addr, acc, size);
3971     }
3972     return true;
3973 }
3974 
3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3976 {
3977     TCGv_i64 addr, clean_addr, tcg_rt;
3978 
3979     if (!dc_isar_feature(aa64_mte, s)) {
3980         return false;
3981     }
3982     if (s->current_el == 0) {
3983         return false;
3984     }
3985 
3986     if (a->rn == 31) {
3987         gen_check_sp_alignment(s);
3988     }
3989 
3990     addr = read_cpu_reg_sp(s, a->rn, true);
3991     tcg_gen_addi_i64(addr, addr, a->imm);
3992     tcg_rt = cpu_reg(s, a->rt);
3993 
3994     if (s->ata[0]) {
3995         gen_helper_ldgm(tcg_rt, tcg_env, addr);
3996     } else {
3997         MMUAccessType acc = MMU_DATA_LOAD;
3998         int size = 4 << s->gm_blocksize;
3999 
4000         clean_addr = clean_data_tbi(s, addr);
4001         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4002         gen_probe_access(s, clean_addr, acc, size);
4003         /* The result tags are zeros.  */
4004         tcg_gen_movi_i64(tcg_rt, 0);
4005     }
4006     return true;
4007 }
4008 
4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4010 {
4011     TCGv_i64 addr, clean_addr, tcg_rt;
4012 
4013     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4014         return false;
4015     }
4016 
4017     if (a->rn == 31) {
4018         gen_check_sp_alignment(s);
4019     }
4020 
4021     addr = read_cpu_reg_sp(s, a->rn, true);
4022     if (!a->p) {
4023         /* pre-index or signed offset */
4024         tcg_gen_addi_i64(addr, addr, a->imm);
4025     }
4026 
4027     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4028     tcg_rt = cpu_reg(s, a->rt);
4029     if (s->ata[0]) {
4030         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4031     } else {
4032         /*
4033          * Tag access disabled: we must check for aborts on the load
4034          * load from [rn+offset], and then insert a 0 tag into rt.
4035          */
4036         clean_addr = clean_data_tbi(s, addr);
4037         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4038         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4039     }
4040 
4041     if (a->w) {
4042         /* pre-index or post-index */
4043         if (a->p) {
4044             /* post-index */
4045             tcg_gen_addi_i64(addr, addr, a->imm);
4046         }
4047         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4048     }
4049     return true;
4050 }
4051 
4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4053 {
4054     TCGv_i64 addr, tcg_rt;
4055 
4056     if (a->rn == 31) {
4057         gen_check_sp_alignment(s);
4058     }
4059 
4060     addr = read_cpu_reg_sp(s, a->rn, true);
4061     if (!a->p) {
4062         /* pre-index or signed offset */
4063         tcg_gen_addi_i64(addr, addr, a->imm);
4064     }
4065     tcg_rt = cpu_reg_sp(s, a->rt);
4066     if (!s->ata[0]) {
4067         /*
4068          * For STG and ST2G, we need to check alignment and probe memory.
4069          * TODO: For STZG and STZ2G, we could rely on the stores below,
4070          * at least for system mode; user-only won't enforce alignment.
4071          */
4072         if (is_pair) {
4073             gen_helper_st2g_stub(tcg_env, addr);
4074         } else {
4075             gen_helper_stg_stub(tcg_env, addr);
4076         }
4077     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4078         if (is_pair) {
4079             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4080         } else {
4081             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4082         }
4083     } else {
4084         if (is_pair) {
4085             gen_helper_st2g(tcg_env, addr, tcg_rt);
4086         } else {
4087             gen_helper_stg(tcg_env, addr, tcg_rt);
4088         }
4089     }
4090 
4091     if (is_zero) {
4092         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4093         TCGv_i64 zero64 = tcg_constant_i64(0);
4094         TCGv_i128 zero128 = tcg_temp_new_i128();
4095         int mem_index = get_mem_index(s);
4096         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4097 
4098         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4099 
4100         /* This is 1 or 2 atomic 16-byte operations. */
4101         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4102         if (is_pair) {
4103             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4104             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4105         }
4106     }
4107 
4108     if (a->w) {
4109         /* pre-index or post-index */
4110         if (a->p) {
4111             /* post-index */
4112             tcg_gen_addi_i64(addr, addr, a->imm);
4113         }
4114         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4115     }
4116     return true;
4117 }
4118 
4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4123 
4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4125 
4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4127                    bool is_setg, SetFn fn)
4128 {
4129     int memidx;
4130     uint32_t syndrome, desc = 0;
4131 
4132     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4133         return false;
4134     }
4135 
4136     /*
4137      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4138      * us to pull this check before the CheckMOPSEnabled() test
4139      * (which we do in the helper function)
4140      */
4141     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4142         a->rd == 31 || a->rn == 31) {
4143         return false;
4144     }
4145 
4146     memidx = get_a64_user_mem_index(s, a->unpriv);
4147 
4148     /*
4149      * We pass option_a == true, matching our implementation;
4150      * we pass wrong_option == false: helper function may set that bit.
4151      */
4152     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4153                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4154 
4155     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4156         /* We may need to do MTE tag checking, so assemble the descriptor */
4157         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4158         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4159         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4160         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4161     }
4162     /* The helper function always needs the memidx even with MTE disabled */
4163     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4164 
4165     /*
4166      * The helper needs the register numbers, but since they're in
4167      * the syndrome anyway, we let it extract them from there rather
4168      * than passing in an extra three integer arguments.
4169      */
4170     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4171     return true;
4172 }
4173 
4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4180 
4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4182 
4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4184 {
4185     int rmemidx, wmemidx;
4186     uint32_t syndrome, rdesc = 0, wdesc = 0;
4187     bool wunpriv = extract32(a->options, 0, 1);
4188     bool runpriv = extract32(a->options, 1, 1);
4189 
4190     /*
4191      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4192      * us to pull this check before the CheckMOPSEnabled() test
4193      * (which we do in the helper function)
4194      */
4195     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4196         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4197         return false;
4198     }
4199 
4200     rmemidx = get_a64_user_mem_index(s, runpriv);
4201     wmemidx = get_a64_user_mem_index(s, wunpriv);
4202 
4203     /*
4204      * We pass option_a == true, matching our implementation;
4205      * we pass wrong_option == false: helper function may set that bit.
4206      */
4207     syndrome = syn_mop(false, false, a->options, is_epilogue,
4208                        false, true, a->rd, a->rs, a->rn);
4209 
4210     /* If we need to do MTE tag checking, assemble the descriptors */
4211     if (s->mte_active[runpriv]) {
4212         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4213         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4214     }
4215     if (s->mte_active[wunpriv]) {
4216         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4217         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4218         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4219     }
4220     /* The helper function needs these parts of the descriptor regardless */
4221     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4222     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4223 
4224     /*
4225      * The helper needs the register numbers, but since they're in
4226      * the syndrome anyway, we let it extract them from there rather
4227      * than passing in an extra three integer arguments.
4228      */
4229     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4230        tcg_constant_i32(rdesc));
4231     return true;
4232 }
4233 
4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4240 
4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4242 
4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4244                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4245 {
4246     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4247     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4248     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4249 
4250     fn(tcg_rd, tcg_rn, tcg_imm);
4251     if (!a->sf) {
4252         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4253     }
4254     return true;
4255 }
4256 
4257 /*
4258  * PC-rel. addressing
4259  */
4260 
4261 static bool trans_ADR(DisasContext *s, arg_ri *a)
4262 {
4263     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4264     return true;
4265 }
4266 
4267 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4268 {
4269     int64_t offset = (int64_t)a->imm << 12;
4270 
4271     /* The page offset is ok for CF_PCREL. */
4272     offset -= s->pc_curr & 0xfff;
4273     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4274     return true;
4275 }
4276 
4277 /*
4278  * Add/subtract (immediate)
4279  */
4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4284 
4285 /*
4286  * Add/subtract (immediate, with tags)
4287  */
4288 
4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4290                                       bool sub_op)
4291 {
4292     TCGv_i64 tcg_rn, tcg_rd;
4293     int imm;
4294 
4295     imm = a->uimm6 << LOG2_TAG_GRANULE;
4296     if (sub_op) {
4297         imm = -imm;
4298     }
4299 
4300     tcg_rn = cpu_reg_sp(s, a->rn);
4301     tcg_rd = cpu_reg_sp(s, a->rd);
4302 
4303     if (s->ata[0]) {
4304         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4305                            tcg_constant_i32(imm),
4306                            tcg_constant_i32(a->uimm4));
4307     } else {
4308         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4309         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4310     }
4311     return true;
4312 }
4313 
4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4316 
4317 /* The input should be a value in the bottom e bits (with higher
4318  * bits zero); returns that value replicated into every element
4319  * of size e in a 64 bit integer.
4320  */
4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4322 {
4323     assert(e != 0);
4324     while (e < 64) {
4325         mask |= mask << e;
4326         e *= 2;
4327     }
4328     return mask;
4329 }
4330 
4331 /*
4332  * Logical (immediate)
4333  */
4334 
4335 /*
4336  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4337  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4338  * value (ie should cause a guest UNDEF exception), and true if they are
4339  * valid, in which case the decoded bit pattern is written to result.
4340  */
4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4342                             unsigned int imms, unsigned int immr)
4343 {
4344     uint64_t mask;
4345     unsigned e, levels, s, r;
4346     int len;
4347 
4348     assert(immn < 2 && imms < 64 && immr < 64);
4349 
4350     /* The bit patterns we create here are 64 bit patterns which
4351      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4352      * 64 bits each. Each element contains the same value: a run
4353      * of between 1 and e-1 non-zero bits, rotated within the
4354      * element by between 0 and e-1 bits.
4355      *
4356      * The element size and run length are encoded into immn (1 bit)
4357      * and imms (6 bits) as follows:
4358      * 64 bit elements: immn = 1, imms = <length of run - 1>
4359      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4360      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4361      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4362      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4363      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4364      * Notice that immn = 0, imms = 11111x is the only combination
4365      * not covered by one of the above options; this is reserved.
4366      * Further, <length of run - 1> all-ones is a reserved pattern.
4367      *
4368      * In all cases the rotation is by immr % e (and immr is 6 bits).
4369      */
4370 
4371     /* First determine the element size */
4372     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4373     if (len < 1) {
4374         /* This is the immn == 0, imms == 0x11111x case */
4375         return false;
4376     }
4377     e = 1 << len;
4378 
4379     levels = e - 1;
4380     s = imms & levels;
4381     r = immr & levels;
4382 
4383     if (s == levels) {
4384         /* <length of run - 1> mustn't be all-ones. */
4385         return false;
4386     }
4387 
4388     /* Create the value of one element: s+1 set bits rotated
4389      * by r within the element (which is e bits wide)...
4390      */
4391     mask = MAKE_64BIT_MASK(0, s + 1);
4392     if (r) {
4393         mask = (mask >> r) | (mask << (e - r));
4394         mask &= MAKE_64BIT_MASK(0, e);
4395     }
4396     /* ...then replicate the element over the whole 64 bit value */
4397     mask = bitfield_replicate(mask, e);
4398     *result = mask;
4399     return true;
4400 }
4401 
4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4403                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4404 {
4405     TCGv_i64 tcg_rd, tcg_rn;
4406     uint64_t imm;
4407 
4408     /* Some immediate field values are reserved. */
4409     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4410                                 extract32(a->dbm, 0, 6),
4411                                 extract32(a->dbm, 6, 6))) {
4412         return false;
4413     }
4414     if (!a->sf) {
4415         imm &= 0xffffffffull;
4416     }
4417 
4418     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4419     tcg_rn = cpu_reg(s, a->rn);
4420 
4421     fn(tcg_rd, tcg_rn, imm);
4422     if (set_cc) {
4423         gen_logic_CC(a->sf, tcg_rd);
4424     }
4425     if (!a->sf) {
4426         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4427     }
4428     return true;
4429 }
4430 
4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4435 
4436 /*
4437  * Move wide (immediate)
4438  */
4439 
4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4441 {
4442     int pos = a->hw << 4;
4443     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4444     return true;
4445 }
4446 
4447 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4448 {
4449     int pos = a->hw << 4;
4450     uint64_t imm = a->imm;
4451 
4452     imm = ~(imm << pos);
4453     if (!a->sf) {
4454         imm = (uint32_t)imm;
4455     }
4456     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4457     return true;
4458 }
4459 
4460 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4461 {
4462     int pos = a->hw << 4;
4463     TCGv_i64 tcg_rd, tcg_im;
4464 
4465     tcg_rd = cpu_reg(s, a->rd);
4466     tcg_im = tcg_constant_i64(a->imm);
4467     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4468     if (!a->sf) {
4469         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4470     }
4471     return true;
4472 }
4473 
4474 /*
4475  * Bitfield
4476  */
4477 
4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4479 {
4480     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4481     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4482     unsigned int bitsize = a->sf ? 64 : 32;
4483     unsigned int ri = a->immr;
4484     unsigned int si = a->imms;
4485     unsigned int pos, len;
4486 
4487     if (si >= ri) {
4488         /* Wd<s-r:0> = Wn<s:r> */
4489         len = (si - ri) + 1;
4490         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4491         if (!a->sf) {
4492             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4493         }
4494     } else {
4495         /* Wd<32+s-r,32-r> = Wn<s:0> */
4496         len = si + 1;
4497         pos = (bitsize - ri) & (bitsize - 1);
4498 
4499         if (len < ri) {
4500             /*
4501              * Sign extend the destination field from len to fill the
4502              * balance of the word.  Let the deposit below insert all
4503              * of those sign bits.
4504              */
4505             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4506             len = ri;
4507         }
4508 
4509         /*
4510          * We start with zero, and we haven't modified any bits outside
4511          * bitsize, therefore no final zero-extension is unneeded for !sf.
4512          */
4513         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4514     }
4515     return true;
4516 }
4517 
4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4519 {
4520     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4521     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4522     unsigned int bitsize = a->sf ? 64 : 32;
4523     unsigned int ri = a->immr;
4524     unsigned int si = a->imms;
4525     unsigned int pos, len;
4526 
4527     tcg_rd = cpu_reg(s, a->rd);
4528     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529 
4530     if (si >= ri) {
4531         /* Wd<s-r:0> = Wn<s:r> */
4532         len = (si - ri) + 1;
4533         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4534     } else {
4535         /* Wd<32+s-r,32-r> = Wn<s:0> */
4536         len = si + 1;
4537         pos = (bitsize - ri) & (bitsize - 1);
4538         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4539     }
4540     return true;
4541 }
4542 
4543 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4544 {
4545     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4546     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4547     unsigned int bitsize = a->sf ? 64 : 32;
4548     unsigned int ri = a->immr;
4549     unsigned int si = a->imms;
4550     unsigned int pos, len;
4551 
4552     tcg_rd = cpu_reg(s, a->rd);
4553     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4554 
4555     if (si >= ri) {
4556         /* Wd<s-r:0> = Wn<s:r> */
4557         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4558         len = (si - ri) + 1;
4559         pos = 0;
4560     } else {
4561         /* Wd<32+s-r,32-r> = Wn<s:0> */
4562         len = si + 1;
4563         pos = (bitsize - ri) & (bitsize - 1);
4564     }
4565 
4566     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4567     if (!a->sf) {
4568         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4569     }
4570     return true;
4571 }
4572 
4573 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4574 {
4575     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4576 
4577     tcg_rd = cpu_reg(s, a->rd);
4578 
4579     if (unlikely(a->imm == 0)) {
4580         /*
4581          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4582          * so an extract from bit 0 is a special case.
4583          */
4584         if (a->sf) {
4585             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4586         } else {
4587             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4588         }
4589     } else {
4590         tcg_rm = cpu_reg(s, a->rm);
4591         tcg_rn = cpu_reg(s, a->rn);
4592 
4593         if (a->sf) {
4594             /* Specialization to ROR happens in EXTRACT2.  */
4595             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4596         } else {
4597             TCGv_i32 t0 = tcg_temp_new_i32();
4598 
4599             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4600             if (a->rm == a->rn) {
4601                 tcg_gen_rotri_i32(t0, t0, a->imm);
4602             } else {
4603                 TCGv_i32 t1 = tcg_temp_new_i32();
4604                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4605                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4606             }
4607             tcg_gen_extu_i32_i64(tcg_rd, t0);
4608         }
4609     }
4610     return true;
4611 }
4612 
4613 /*
4614  * Cryptographic AES, SHA, SHA512
4615  */
4616 
4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4621 
4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4626 
4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4630 
4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4634 
4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4642 
4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4645 
4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4648 
4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4650 {
4651     if (!dc_isar_feature(aa64_sm3, s)) {
4652         return false;
4653     }
4654     if (fp_access_check(s)) {
4655         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4656         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4657         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4658         TCGv_i32 tcg_res = tcg_temp_new_i32();
4659         unsigned vsz, dofs;
4660 
4661         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4662         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4663         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4664 
4665         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4666         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4667         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4668         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4669 
4670         /* Clear the whole register first, then store bits [127:96]. */
4671         vsz = vec_full_reg_size(s);
4672         dofs = vec_full_reg_offset(s, a->rd);
4673         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4674         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4675     }
4676     return true;
4677 }
4678 
4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4680 {
4681     if (fp_access_check(s)) {
4682         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4683     }
4684     return true;
4685 }
4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4690 
4691 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4692 {
4693     if (!dc_isar_feature(aa64_sha3, s)) {
4694         return false;
4695     }
4696     if (fp_access_check(s)) {
4697         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4698                      vec_full_reg_offset(s, a->rn),
4699                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4700                      vec_full_reg_size(s));
4701     }
4702     return true;
4703 }
4704 
4705 /*
4706  * Advanced SIMD copy
4707  */
4708 
4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4710 {
4711     unsigned esz = ctz32(imm);
4712     if (esz <= MO_64) {
4713         *pesz = esz;
4714         *pidx = imm >> (esz + 1);
4715         return true;
4716     }
4717     return false;
4718 }
4719 
4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4721 {
4722     MemOp esz;
4723     unsigned idx;
4724 
4725     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4726         return false;
4727     }
4728     if (fp_access_check(s)) {
4729         /*
4730          * This instruction just extracts the specified element and
4731          * zero-extends it into the bottom of the destination register.
4732          */
4733         TCGv_i64 tmp = tcg_temp_new_i64();
4734         read_vec_element(s, tmp, a->rn, idx, esz);
4735         write_fp_dreg(s, a->rd, tmp);
4736     }
4737     return true;
4738 }
4739 
4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4741 {
4742     MemOp esz;
4743     unsigned idx;
4744 
4745     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4746         return false;
4747     }
4748     if (esz == MO_64 && !a->q) {
4749         return false;
4750     }
4751     if (fp_access_check(s)) {
4752         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4753                              vec_reg_offset(s, a->rn, idx, esz),
4754                              a->q ? 16 : 8, vec_full_reg_size(s));
4755     }
4756     return true;
4757 }
4758 
4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4760 {
4761     MemOp esz;
4762     unsigned idx;
4763 
4764     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4765         return false;
4766     }
4767     if (esz == MO_64 && !a->q) {
4768         return false;
4769     }
4770     if (fp_access_check(s)) {
4771         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4772                              a->q ? 16 : 8, vec_full_reg_size(s),
4773                              cpu_reg(s, a->rn));
4774     }
4775     return true;
4776 }
4777 
4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4779 {
4780     MemOp esz;
4781     unsigned idx;
4782 
4783     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4784         return false;
4785     }
4786     if (is_signed) {
4787         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4788             return false;
4789         }
4790     } else {
4791         if (esz == MO_64 ? !a->q : a->q) {
4792             return false;
4793         }
4794     }
4795     if (fp_access_check(s)) {
4796         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4797         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4798         if (is_signed && !a->q) {
4799             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4800         }
4801     }
4802     return true;
4803 }
4804 
4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4806 TRANS(UMOV, do_smov_umov, a, 0)
4807 
4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4809 {
4810     MemOp esz;
4811     unsigned idx;
4812 
4813     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4814         return false;
4815     }
4816     if (fp_access_check(s)) {
4817         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4818         clear_vec_high(s, true, a->rd);
4819     }
4820     return true;
4821 }
4822 
4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4824 {
4825     MemOp esz;
4826     unsigned didx, sidx;
4827 
4828     if (!decode_esz_idx(a->di, &esz, &didx)) {
4829         return false;
4830     }
4831     sidx = a->si >> esz;
4832     if (fp_access_check(s)) {
4833         TCGv_i64 tmp = tcg_temp_new_i64();
4834 
4835         read_vec_element(s, tmp, a->rn, sidx, esz);
4836         write_vec_element(s, tmp, a->rd, didx, esz);
4837 
4838         /* INS is considered a 128-bit write for SVE. */
4839         clear_vec_high(s, true, a->rd);
4840     }
4841     return true;
4842 }
4843 
4844 /*
4845  * Advanced SIMD three same
4846  */
4847 
4848 typedef struct FPScalar {
4849     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4850     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4851     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4852 } FPScalar;
4853 
4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4855 {
4856     switch (a->esz) {
4857     case MO_64:
4858         if (fp_access_check(s)) {
4859             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4860             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4861             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4862             write_fp_dreg(s, a->rd, t0);
4863         }
4864         break;
4865     case MO_32:
4866         if (fp_access_check(s)) {
4867             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4868             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4869             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4870             write_fp_sreg(s, a->rd, t0);
4871         }
4872         break;
4873     case MO_16:
4874         if (!dc_isar_feature(aa64_fp16, s)) {
4875             return false;
4876         }
4877         if (fp_access_check(s)) {
4878             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4879             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4880             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4881             write_fp_sreg(s, a->rd, t0);
4882         }
4883         break;
4884     default:
4885         return false;
4886     }
4887     return true;
4888 }
4889 
4890 static const FPScalar f_scalar_fadd = {
4891     gen_helper_vfp_addh,
4892     gen_helper_vfp_adds,
4893     gen_helper_vfp_addd,
4894 };
4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4896 
4897 static const FPScalar f_scalar_fsub = {
4898     gen_helper_vfp_subh,
4899     gen_helper_vfp_subs,
4900     gen_helper_vfp_subd,
4901 };
4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4903 
4904 static const FPScalar f_scalar_fdiv = {
4905     gen_helper_vfp_divh,
4906     gen_helper_vfp_divs,
4907     gen_helper_vfp_divd,
4908 };
4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4910 
4911 static const FPScalar f_scalar_fmul = {
4912     gen_helper_vfp_mulh,
4913     gen_helper_vfp_muls,
4914     gen_helper_vfp_muld,
4915 };
4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4917 
4918 static const FPScalar f_scalar_fmax = {
4919     gen_helper_advsimd_maxh,
4920     gen_helper_vfp_maxs,
4921     gen_helper_vfp_maxd,
4922 };
4923 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4924 
4925 static const FPScalar f_scalar_fmin = {
4926     gen_helper_advsimd_minh,
4927     gen_helper_vfp_mins,
4928     gen_helper_vfp_mind,
4929 };
4930 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4931 
4932 static const FPScalar f_scalar_fmaxnm = {
4933     gen_helper_advsimd_maxnumh,
4934     gen_helper_vfp_maxnums,
4935     gen_helper_vfp_maxnumd,
4936 };
4937 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4938 
4939 static const FPScalar f_scalar_fminnm = {
4940     gen_helper_advsimd_minnumh,
4941     gen_helper_vfp_minnums,
4942     gen_helper_vfp_minnumd,
4943 };
4944 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4945 
4946 static const FPScalar f_scalar_fmulx = {
4947     gen_helper_advsimd_mulxh,
4948     gen_helper_vfp_mulxs,
4949     gen_helper_vfp_mulxd,
4950 };
4951 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4952 
4953 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4954 {
4955     gen_helper_vfp_mulh(d, n, m, s);
4956     gen_vfp_negh(d, d);
4957 }
4958 
4959 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4960 {
4961     gen_helper_vfp_muls(d, n, m, s);
4962     gen_vfp_negs(d, d);
4963 }
4964 
4965 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
4966 {
4967     gen_helper_vfp_muld(d, n, m, s);
4968     gen_vfp_negd(d, d);
4969 }
4970 
4971 static const FPScalar f_scalar_fnmul = {
4972     gen_fnmul_h,
4973     gen_fnmul_s,
4974     gen_fnmul_d,
4975 };
4976 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
4977 
4978 static const FPScalar f_scalar_fcmeq = {
4979     gen_helper_advsimd_ceq_f16,
4980     gen_helper_neon_ceq_f32,
4981     gen_helper_neon_ceq_f64,
4982 };
4983 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
4984 
4985 static const FPScalar f_scalar_fcmge = {
4986     gen_helper_advsimd_cge_f16,
4987     gen_helper_neon_cge_f32,
4988     gen_helper_neon_cge_f64,
4989 };
4990 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
4991 
4992 static const FPScalar f_scalar_fcmgt = {
4993     gen_helper_advsimd_cgt_f16,
4994     gen_helper_neon_cgt_f32,
4995     gen_helper_neon_cgt_f64,
4996 };
4997 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
4998 
4999 static const FPScalar f_scalar_facge = {
5000     gen_helper_advsimd_acge_f16,
5001     gen_helper_neon_acge_f32,
5002     gen_helper_neon_acge_f64,
5003 };
5004 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5005 
5006 static const FPScalar f_scalar_facgt = {
5007     gen_helper_advsimd_acgt_f16,
5008     gen_helper_neon_acgt_f32,
5009     gen_helper_neon_acgt_f64,
5010 };
5011 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5012 
5013 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5014 {
5015     gen_helper_vfp_subh(d, n, m, s);
5016     gen_vfp_absh(d, d);
5017 }
5018 
5019 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5020 {
5021     gen_helper_vfp_subs(d, n, m, s);
5022     gen_vfp_abss(d, d);
5023 }
5024 
5025 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5026 {
5027     gen_helper_vfp_subd(d, n, m, s);
5028     gen_vfp_absd(d, d);
5029 }
5030 
5031 static const FPScalar f_scalar_fabd = {
5032     gen_fabd_h,
5033     gen_fabd_s,
5034     gen_fabd_d,
5035 };
5036 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5037 
5038 static const FPScalar f_scalar_frecps = {
5039     gen_helper_recpsf_f16,
5040     gen_helper_recpsf_f32,
5041     gen_helper_recpsf_f64,
5042 };
5043 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5044 
5045 static const FPScalar f_scalar_frsqrts = {
5046     gen_helper_rsqrtsf_f16,
5047     gen_helper_rsqrtsf_f32,
5048     gen_helper_rsqrtsf_f64,
5049 };
5050 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5051 
5052 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
5053                           gen_helper_gvec_3_ptr * const fns[3])
5054 {
5055     MemOp esz = a->esz;
5056 
5057     switch (esz) {
5058     case MO_64:
5059         if (!a->q) {
5060             return false;
5061         }
5062         break;
5063     case MO_32:
5064         break;
5065     case MO_16:
5066         if (!dc_isar_feature(aa64_fp16, s)) {
5067             return false;
5068         }
5069         break;
5070     default:
5071         return false;
5072     }
5073     if (fp_access_check(s)) {
5074         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5075                           esz == MO_16, 0, fns[esz - 1]);
5076     }
5077     return true;
5078 }
5079 
5080 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5081     gen_helper_gvec_fadd_h,
5082     gen_helper_gvec_fadd_s,
5083     gen_helper_gvec_fadd_d,
5084 };
5085 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
5086 
5087 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5088     gen_helper_gvec_fsub_h,
5089     gen_helper_gvec_fsub_s,
5090     gen_helper_gvec_fsub_d,
5091 };
5092 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
5093 
5094 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5095     gen_helper_gvec_fdiv_h,
5096     gen_helper_gvec_fdiv_s,
5097     gen_helper_gvec_fdiv_d,
5098 };
5099 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5100 
5101 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5102     gen_helper_gvec_fmul_h,
5103     gen_helper_gvec_fmul_s,
5104     gen_helper_gvec_fmul_d,
5105 };
5106 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5107 
5108 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5109     gen_helper_gvec_fmax_h,
5110     gen_helper_gvec_fmax_s,
5111     gen_helper_gvec_fmax_d,
5112 };
5113 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5114 
5115 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5116     gen_helper_gvec_fmin_h,
5117     gen_helper_gvec_fmin_s,
5118     gen_helper_gvec_fmin_d,
5119 };
5120 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5121 
5122 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5123     gen_helper_gvec_fmaxnum_h,
5124     gen_helper_gvec_fmaxnum_s,
5125     gen_helper_gvec_fmaxnum_d,
5126 };
5127 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5128 
5129 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5130     gen_helper_gvec_fminnum_h,
5131     gen_helper_gvec_fminnum_s,
5132     gen_helper_gvec_fminnum_d,
5133 };
5134 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5135 
5136 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5137     gen_helper_gvec_fmulx_h,
5138     gen_helper_gvec_fmulx_s,
5139     gen_helper_gvec_fmulx_d,
5140 };
5141 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5142 
5143 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5144     gen_helper_gvec_vfma_h,
5145     gen_helper_gvec_vfma_s,
5146     gen_helper_gvec_vfma_d,
5147 };
5148 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
5149 
5150 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5151     gen_helper_gvec_vfms_h,
5152     gen_helper_gvec_vfms_s,
5153     gen_helper_gvec_vfms_d,
5154 };
5155 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
5156 
5157 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5158     gen_helper_gvec_fceq_h,
5159     gen_helper_gvec_fceq_s,
5160     gen_helper_gvec_fceq_d,
5161 };
5162 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq)
5163 
5164 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5165     gen_helper_gvec_fcge_h,
5166     gen_helper_gvec_fcge_s,
5167     gen_helper_gvec_fcge_d,
5168 };
5169 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge)
5170 
5171 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5172     gen_helper_gvec_fcgt_h,
5173     gen_helper_gvec_fcgt_s,
5174     gen_helper_gvec_fcgt_d,
5175 };
5176 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt)
5177 
5178 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5179     gen_helper_gvec_facge_h,
5180     gen_helper_gvec_facge_s,
5181     gen_helper_gvec_facge_d,
5182 };
5183 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge)
5184 
5185 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5186     gen_helper_gvec_facgt_h,
5187     gen_helper_gvec_facgt_s,
5188     gen_helper_gvec_facgt_d,
5189 };
5190 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt)
5191 
5192 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5193     gen_helper_gvec_fabd_h,
5194     gen_helper_gvec_fabd_s,
5195     gen_helper_gvec_fabd_d,
5196 };
5197 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd)
5198 
5199 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5200     gen_helper_gvec_recps_h,
5201     gen_helper_gvec_recps_s,
5202     gen_helper_gvec_recps_d,
5203 };
5204 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps)
5205 
5206 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5207     gen_helper_gvec_rsqrts_h,
5208     gen_helper_gvec_rsqrts_s,
5209     gen_helper_gvec_rsqrts_d,
5210 };
5211 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts)
5212 
5213 /*
5214  * Advanced SIMD scalar/vector x indexed element
5215  */
5216 
5217 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5218 {
5219     switch (a->esz) {
5220     case MO_64:
5221         if (fp_access_check(s)) {
5222             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5223             TCGv_i64 t1 = tcg_temp_new_i64();
5224 
5225             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5226             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5227             write_fp_dreg(s, a->rd, t0);
5228         }
5229         break;
5230     case MO_32:
5231         if (fp_access_check(s)) {
5232             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5233             TCGv_i32 t1 = tcg_temp_new_i32();
5234 
5235             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5236             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5237             write_fp_sreg(s, a->rd, t0);
5238         }
5239         break;
5240     case MO_16:
5241         if (!dc_isar_feature(aa64_fp16, s)) {
5242             return false;
5243         }
5244         if (fp_access_check(s)) {
5245             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5246             TCGv_i32 t1 = tcg_temp_new_i32();
5247 
5248             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5249             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5250             write_fp_sreg(s, a->rd, t0);
5251         }
5252         break;
5253     default:
5254         g_assert_not_reached();
5255     }
5256     return true;
5257 }
5258 
5259 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5260 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5261 
5262 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5263 {
5264     switch (a->esz) {
5265     case MO_64:
5266         if (fp_access_check(s)) {
5267             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5268             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5269             TCGv_i64 t2 = tcg_temp_new_i64();
5270 
5271             read_vec_element(s, t2, a->rm, a->idx, MO_64);
5272             if (neg) {
5273                 gen_vfp_negd(t1, t1);
5274             }
5275             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5276             write_fp_dreg(s, a->rd, t0);
5277         }
5278         break;
5279     case MO_32:
5280         if (fp_access_check(s)) {
5281             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5282             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5283             TCGv_i32 t2 = tcg_temp_new_i32();
5284 
5285             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5286             if (neg) {
5287                 gen_vfp_negs(t1, t1);
5288             }
5289             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5290             write_fp_sreg(s, a->rd, t0);
5291         }
5292         break;
5293     case MO_16:
5294         if (!dc_isar_feature(aa64_fp16, s)) {
5295             return false;
5296         }
5297         if (fp_access_check(s)) {
5298             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5299             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5300             TCGv_i32 t2 = tcg_temp_new_i32();
5301 
5302             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5303             if (neg) {
5304                 gen_vfp_negh(t1, t1);
5305             }
5306             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5307                                        fpstatus_ptr(FPST_FPCR_F16));
5308             write_fp_sreg(s, a->rd, t0);
5309         }
5310         break;
5311     default:
5312         g_assert_not_reached();
5313     }
5314     return true;
5315 }
5316 
5317 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5318 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5319 
5320 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5321                               gen_helper_gvec_3_ptr * const fns[3])
5322 {
5323     MemOp esz = a->esz;
5324 
5325     switch (esz) {
5326     case MO_64:
5327         if (!a->q) {
5328             return false;
5329         }
5330         break;
5331     case MO_32:
5332         break;
5333     case MO_16:
5334         if (!dc_isar_feature(aa64_fp16, s)) {
5335             return false;
5336         }
5337         break;
5338     default:
5339         g_assert_not_reached();
5340     }
5341     if (fp_access_check(s)) {
5342         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5343                           esz == MO_16, a->idx, fns[esz - 1]);
5344     }
5345     return true;
5346 }
5347 
5348 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5349     gen_helper_gvec_fmul_idx_h,
5350     gen_helper_gvec_fmul_idx_s,
5351     gen_helper_gvec_fmul_idx_d,
5352 };
5353 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5354 
5355 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5356     gen_helper_gvec_fmulx_idx_h,
5357     gen_helper_gvec_fmulx_idx_s,
5358     gen_helper_gvec_fmulx_idx_d,
5359 };
5360 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5361 
5362 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5363 {
5364     static gen_helper_gvec_4_ptr * const fns[3] = {
5365         gen_helper_gvec_fmla_idx_h,
5366         gen_helper_gvec_fmla_idx_s,
5367         gen_helper_gvec_fmla_idx_d,
5368     };
5369     MemOp esz = a->esz;
5370 
5371     switch (esz) {
5372     case MO_64:
5373         if (!a->q) {
5374             return false;
5375         }
5376         break;
5377     case MO_32:
5378         break;
5379     case MO_16:
5380         if (!dc_isar_feature(aa64_fp16, s)) {
5381             return false;
5382         }
5383         break;
5384     default:
5385         g_assert_not_reached();
5386     }
5387     if (fp_access_check(s)) {
5388         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5389                           esz == MO_16, (a->idx << 1) | neg,
5390                           fns[esz - 1]);
5391     }
5392     return true;
5393 }
5394 
5395 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5396 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5397 
5398 
5399 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
5400  * Note that it is the caller's responsibility to ensure that the
5401  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
5402  * mandated semantics for out of range shifts.
5403  */
5404 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
5405                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
5406 {
5407     switch (shift_type) {
5408     case A64_SHIFT_TYPE_LSL:
5409         tcg_gen_shl_i64(dst, src, shift_amount);
5410         break;
5411     case A64_SHIFT_TYPE_LSR:
5412         tcg_gen_shr_i64(dst, src, shift_amount);
5413         break;
5414     case A64_SHIFT_TYPE_ASR:
5415         if (!sf) {
5416             tcg_gen_ext32s_i64(dst, src);
5417         }
5418         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
5419         break;
5420     case A64_SHIFT_TYPE_ROR:
5421         if (sf) {
5422             tcg_gen_rotr_i64(dst, src, shift_amount);
5423         } else {
5424             TCGv_i32 t0, t1;
5425             t0 = tcg_temp_new_i32();
5426             t1 = tcg_temp_new_i32();
5427             tcg_gen_extrl_i64_i32(t0, src);
5428             tcg_gen_extrl_i64_i32(t1, shift_amount);
5429             tcg_gen_rotr_i32(t0, t0, t1);
5430             tcg_gen_extu_i32_i64(dst, t0);
5431         }
5432         break;
5433     default:
5434         assert(FALSE); /* all shift types should be handled */
5435         break;
5436     }
5437 
5438     if (!sf) { /* zero extend final result */
5439         tcg_gen_ext32u_i64(dst, dst);
5440     }
5441 }
5442 
5443 /* Shift a TCGv src by immediate, put result in dst.
5444  * The shift amount must be in range (this should always be true as the
5445  * relevant instructions will UNDEF on bad shift immediates).
5446  */
5447 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
5448                           enum a64_shift_type shift_type, unsigned int shift_i)
5449 {
5450     assert(shift_i < (sf ? 64 : 32));
5451 
5452     if (shift_i == 0) {
5453         tcg_gen_mov_i64(dst, src);
5454     } else {
5455         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
5456     }
5457 }
5458 
5459 /* Logical (shifted register)
5460  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
5461  * +----+-----+-----------+-------+---+------+--------+------+------+
5462  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
5463  * +----+-----+-----------+-------+---+------+--------+------+------+
5464  */
5465 static void disas_logic_reg(DisasContext *s, uint32_t insn)
5466 {
5467     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
5468     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
5469 
5470     sf = extract32(insn, 31, 1);
5471     opc = extract32(insn, 29, 2);
5472     shift_type = extract32(insn, 22, 2);
5473     invert = extract32(insn, 21, 1);
5474     rm = extract32(insn, 16, 5);
5475     shift_amount = extract32(insn, 10, 6);
5476     rn = extract32(insn, 5, 5);
5477     rd = extract32(insn, 0, 5);
5478 
5479     if (!sf && (shift_amount & (1 << 5))) {
5480         unallocated_encoding(s);
5481         return;
5482     }
5483 
5484     tcg_rd = cpu_reg(s, rd);
5485 
5486     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
5487         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
5488          * register-register MOV and MVN, so it is worth special casing.
5489          */
5490         tcg_rm = cpu_reg(s, rm);
5491         if (invert) {
5492             tcg_gen_not_i64(tcg_rd, tcg_rm);
5493             if (!sf) {
5494                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5495             }
5496         } else {
5497             if (sf) {
5498                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
5499             } else {
5500                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
5501             }
5502         }
5503         return;
5504     }
5505 
5506     tcg_rm = read_cpu_reg(s, rm, sf);
5507 
5508     if (shift_amount) {
5509         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
5510     }
5511 
5512     tcg_rn = cpu_reg(s, rn);
5513 
5514     switch (opc | (invert << 2)) {
5515     case 0: /* AND */
5516     case 3: /* ANDS */
5517         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
5518         break;
5519     case 1: /* ORR */
5520         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
5521         break;
5522     case 2: /* EOR */
5523         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
5524         break;
5525     case 4: /* BIC */
5526     case 7: /* BICS */
5527         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
5528         break;
5529     case 5: /* ORN */
5530         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
5531         break;
5532     case 6: /* EON */
5533         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
5534         break;
5535     default:
5536         assert(FALSE);
5537         break;
5538     }
5539 
5540     if (!sf) {
5541         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5542     }
5543 
5544     if (opc == 3) {
5545         gen_logic_CC(sf, tcg_rd);
5546     }
5547 }
5548 
5549 /*
5550  * Add/subtract (extended register)
5551  *
5552  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
5553  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5554  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
5555  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5556  *
5557  *  sf: 0 -> 32bit, 1 -> 64bit
5558  *  op: 0 -> add  , 1 -> sub
5559  *   S: 1 -> set flags
5560  * opt: 00
5561  * option: extension type (see DecodeRegExtend)
5562  * imm3: optional shift to Rm
5563  *
5564  * Rd = Rn + LSL(extend(Rm), amount)
5565  */
5566 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
5567 {
5568     int rd = extract32(insn, 0, 5);
5569     int rn = extract32(insn, 5, 5);
5570     int imm3 = extract32(insn, 10, 3);
5571     int option = extract32(insn, 13, 3);
5572     int rm = extract32(insn, 16, 5);
5573     int opt = extract32(insn, 22, 2);
5574     bool setflags = extract32(insn, 29, 1);
5575     bool sub_op = extract32(insn, 30, 1);
5576     bool sf = extract32(insn, 31, 1);
5577 
5578     TCGv_i64 tcg_rm, tcg_rn; /* temps */
5579     TCGv_i64 tcg_rd;
5580     TCGv_i64 tcg_result;
5581 
5582     if (imm3 > 4 || opt != 0) {
5583         unallocated_encoding(s);
5584         return;
5585     }
5586 
5587     /* non-flag setting ops may use SP */
5588     if (!setflags) {
5589         tcg_rd = cpu_reg_sp(s, rd);
5590     } else {
5591         tcg_rd = cpu_reg(s, rd);
5592     }
5593     tcg_rn = read_cpu_reg_sp(s, rn, sf);
5594 
5595     tcg_rm = read_cpu_reg(s, rm, sf);
5596     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
5597 
5598     tcg_result = tcg_temp_new_i64();
5599 
5600     if (!setflags) {
5601         if (sub_op) {
5602             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5603         } else {
5604             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5605         }
5606     } else {
5607         if (sub_op) {
5608             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5609         } else {
5610             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5611         }
5612     }
5613 
5614     if (sf) {
5615         tcg_gen_mov_i64(tcg_rd, tcg_result);
5616     } else {
5617         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5618     }
5619 }
5620 
5621 /*
5622  * Add/subtract (shifted register)
5623  *
5624  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
5625  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5626  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
5627  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5628  *
5629  *    sf: 0 -> 32bit, 1 -> 64bit
5630  *    op: 0 -> add  , 1 -> sub
5631  *     S: 1 -> set flags
5632  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
5633  *  imm6: Shift amount to apply to Rm before the add/sub
5634  */
5635 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
5636 {
5637     int rd = extract32(insn, 0, 5);
5638     int rn = extract32(insn, 5, 5);
5639     int imm6 = extract32(insn, 10, 6);
5640     int rm = extract32(insn, 16, 5);
5641     int shift_type = extract32(insn, 22, 2);
5642     bool setflags = extract32(insn, 29, 1);
5643     bool sub_op = extract32(insn, 30, 1);
5644     bool sf = extract32(insn, 31, 1);
5645 
5646     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5647     TCGv_i64 tcg_rn, tcg_rm;
5648     TCGv_i64 tcg_result;
5649 
5650     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
5651         unallocated_encoding(s);
5652         return;
5653     }
5654 
5655     tcg_rn = read_cpu_reg(s, rn, sf);
5656     tcg_rm = read_cpu_reg(s, rm, sf);
5657 
5658     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
5659 
5660     tcg_result = tcg_temp_new_i64();
5661 
5662     if (!setflags) {
5663         if (sub_op) {
5664             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5665         } else {
5666             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5667         }
5668     } else {
5669         if (sub_op) {
5670             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5671         } else {
5672             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5673         }
5674     }
5675 
5676     if (sf) {
5677         tcg_gen_mov_i64(tcg_rd, tcg_result);
5678     } else {
5679         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5680     }
5681 }
5682 
5683 /* Data-processing (3 source)
5684  *
5685  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
5686  *  +--+------+-----------+------+------+----+------+------+------+
5687  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
5688  *  +--+------+-----------+------+------+----+------+------+------+
5689  */
5690 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
5691 {
5692     int rd = extract32(insn, 0, 5);
5693     int rn = extract32(insn, 5, 5);
5694     int ra = extract32(insn, 10, 5);
5695     int rm = extract32(insn, 16, 5);
5696     int op_id = (extract32(insn, 29, 3) << 4) |
5697         (extract32(insn, 21, 3) << 1) |
5698         extract32(insn, 15, 1);
5699     bool sf = extract32(insn, 31, 1);
5700     bool is_sub = extract32(op_id, 0, 1);
5701     bool is_high = extract32(op_id, 2, 1);
5702     bool is_signed = false;
5703     TCGv_i64 tcg_op1;
5704     TCGv_i64 tcg_op2;
5705     TCGv_i64 tcg_tmp;
5706 
5707     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
5708     switch (op_id) {
5709     case 0x42: /* SMADDL */
5710     case 0x43: /* SMSUBL */
5711     case 0x44: /* SMULH */
5712         is_signed = true;
5713         break;
5714     case 0x0: /* MADD (32bit) */
5715     case 0x1: /* MSUB (32bit) */
5716     case 0x40: /* MADD (64bit) */
5717     case 0x41: /* MSUB (64bit) */
5718     case 0x4a: /* UMADDL */
5719     case 0x4b: /* UMSUBL */
5720     case 0x4c: /* UMULH */
5721         break;
5722     default:
5723         unallocated_encoding(s);
5724         return;
5725     }
5726 
5727     if (is_high) {
5728         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5729         TCGv_i64 tcg_rd = cpu_reg(s, rd);
5730         TCGv_i64 tcg_rn = cpu_reg(s, rn);
5731         TCGv_i64 tcg_rm = cpu_reg(s, rm);
5732 
5733         if (is_signed) {
5734             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5735         } else {
5736             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5737         }
5738         return;
5739     }
5740 
5741     tcg_op1 = tcg_temp_new_i64();
5742     tcg_op2 = tcg_temp_new_i64();
5743     tcg_tmp = tcg_temp_new_i64();
5744 
5745     if (op_id < 0x42) {
5746         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5747         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5748     } else {
5749         if (is_signed) {
5750             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5751             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5752         } else {
5753             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5754             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5755         }
5756     }
5757 
5758     if (ra == 31 && !is_sub) {
5759         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5760         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5761     } else {
5762         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5763         if (is_sub) {
5764             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5765         } else {
5766             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5767         }
5768     }
5769 
5770     if (!sf) {
5771         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5772     }
5773 }
5774 
5775 /* Add/subtract (with carry)
5776  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
5777  * +--+--+--+------------------------+------+-------------+------+-----+
5778  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
5779  * +--+--+--+------------------------+------+-------------+------+-----+
5780  */
5781 
5782 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5783 {
5784     unsigned int sf, op, setflags, rm, rn, rd;
5785     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5786 
5787     sf = extract32(insn, 31, 1);
5788     op = extract32(insn, 30, 1);
5789     setflags = extract32(insn, 29, 1);
5790     rm = extract32(insn, 16, 5);
5791     rn = extract32(insn, 5, 5);
5792     rd = extract32(insn, 0, 5);
5793 
5794     tcg_rd = cpu_reg(s, rd);
5795     tcg_rn = cpu_reg(s, rn);
5796 
5797     if (op) {
5798         tcg_y = tcg_temp_new_i64();
5799         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5800     } else {
5801         tcg_y = cpu_reg(s, rm);
5802     }
5803 
5804     if (setflags) {
5805         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5806     } else {
5807         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5808     }
5809 }
5810 
5811 /*
5812  * Rotate right into flags
5813  *  31 30 29                21       15          10      5  4      0
5814  * +--+--+--+-----------------+--------+-----------+------+--+------+
5815  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
5816  * +--+--+--+-----------------+--------+-----------+------+--+------+
5817  */
5818 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5819 {
5820     int mask = extract32(insn, 0, 4);
5821     int o2 = extract32(insn, 4, 1);
5822     int rn = extract32(insn, 5, 5);
5823     int imm6 = extract32(insn, 15, 6);
5824     int sf_op_s = extract32(insn, 29, 3);
5825     TCGv_i64 tcg_rn;
5826     TCGv_i32 nzcv;
5827 
5828     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5829         unallocated_encoding(s);
5830         return;
5831     }
5832 
5833     tcg_rn = read_cpu_reg(s, rn, 1);
5834     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5835 
5836     nzcv = tcg_temp_new_i32();
5837     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5838 
5839     if (mask & 8) { /* N */
5840         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5841     }
5842     if (mask & 4) { /* Z */
5843         tcg_gen_not_i32(cpu_ZF, nzcv);
5844         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5845     }
5846     if (mask & 2) { /* C */
5847         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5848     }
5849     if (mask & 1) { /* V */
5850         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5851     }
5852 }
5853 
5854 /*
5855  * Evaluate into flags
5856  *  31 30 29                21        15   14        10      5  4      0
5857  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5858  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
5859  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5860  */
5861 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5862 {
5863     int o3_mask = extract32(insn, 0, 5);
5864     int rn = extract32(insn, 5, 5);
5865     int o2 = extract32(insn, 15, 6);
5866     int sz = extract32(insn, 14, 1);
5867     int sf_op_s = extract32(insn, 29, 3);
5868     TCGv_i32 tmp;
5869     int shift;
5870 
5871     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5872         !dc_isar_feature(aa64_condm_4, s)) {
5873         unallocated_encoding(s);
5874         return;
5875     }
5876     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
5877 
5878     tmp = tcg_temp_new_i32();
5879     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5880     tcg_gen_shli_i32(cpu_NF, tmp, shift);
5881     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5882     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5883     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5884 }
5885 
5886 /* Conditional compare (immediate / register)
5887  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
5888  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5889  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
5890  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5891  *        [1]                             y                [0]       [0]
5892  */
5893 static void disas_cc(DisasContext *s, uint32_t insn)
5894 {
5895     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5896     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5897     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5898     DisasCompare c;
5899 
5900     if (!extract32(insn, 29, 1)) {
5901         unallocated_encoding(s);
5902         return;
5903     }
5904     if (insn & (1 << 10 | 1 << 4)) {
5905         unallocated_encoding(s);
5906         return;
5907     }
5908     sf = extract32(insn, 31, 1);
5909     op = extract32(insn, 30, 1);
5910     is_imm = extract32(insn, 11, 1);
5911     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5912     cond = extract32(insn, 12, 4);
5913     rn = extract32(insn, 5, 5);
5914     nzcv = extract32(insn, 0, 4);
5915 
5916     /* Set T0 = !COND.  */
5917     tcg_t0 = tcg_temp_new_i32();
5918     arm_test_cc(&c, cond);
5919     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5920 
5921     /* Load the arguments for the new comparison.  */
5922     if (is_imm) {
5923         tcg_y = tcg_temp_new_i64();
5924         tcg_gen_movi_i64(tcg_y, y);
5925     } else {
5926         tcg_y = cpu_reg(s, y);
5927     }
5928     tcg_rn = cpu_reg(s, rn);
5929 
5930     /* Set the flags for the new comparison.  */
5931     tcg_tmp = tcg_temp_new_i64();
5932     if (op) {
5933         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5934     } else {
5935         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5936     }
5937 
5938     /* If COND was false, force the flags to #nzcv.  Compute two masks
5939      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5940      * For tcg hosts that support ANDC, we can make do with just T1.
5941      * In either case, allow the tcg optimizer to delete any unused mask.
5942      */
5943     tcg_t1 = tcg_temp_new_i32();
5944     tcg_t2 = tcg_temp_new_i32();
5945     tcg_gen_neg_i32(tcg_t1, tcg_t0);
5946     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5947 
5948     if (nzcv & 8) { /* N */
5949         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5950     } else {
5951         if (TCG_TARGET_HAS_andc_i32) {
5952             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5953         } else {
5954             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5955         }
5956     }
5957     if (nzcv & 4) { /* Z */
5958         if (TCG_TARGET_HAS_andc_i32) {
5959             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5960         } else {
5961             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5962         }
5963     } else {
5964         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5965     }
5966     if (nzcv & 2) { /* C */
5967         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5968     } else {
5969         if (TCG_TARGET_HAS_andc_i32) {
5970             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5971         } else {
5972             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5973         }
5974     }
5975     if (nzcv & 1) { /* V */
5976         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5977     } else {
5978         if (TCG_TARGET_HAS_andc_i32) {
5979             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5980         } else {
5981             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5982         }
5983     }
5984 }
5985 
5986 /* Conditional select
5987  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
5988  * +----+----+---+-----------------+------+------+-----+------+------+
5989  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
5990  * +----+----+---+-----------------+------+------+-----+------+------+
5991  */
5992 static void disas_cond_select(DisasContext *s, uint32_t insn)
5993 {
5994     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5995     TCGv_i64 tcg_rd, zero;
5996     DisasCompare64 c;
5997 
5998     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5999         /* S == 1 or op2<1> == 1 */
6000         unallocated_encoding(s);
6001         return;
6002     }
6003     sf = extract32(insn, 31, 1);
6004     else_inv = extract32(insn, 30, 1);
6005     rm = extract32(insn, 16, 5);
6006     cond = extract32(insn, 12, 4);
6007     else_inc = extract32(insn, 10, 1);
6008     rn = extract32(insn, 5, 5);
6009     rd = extract32(insn, 0, 5);
6010 
6011     tcg_rd = cpu_reg(s, rd);
6012 
6013     a64_test_cc(&c, cond);
6014     zero = tcg_constant_i64(0);
6015 
6016     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
6017         /* CSET & CSETM.  */
6018         if (else_inv) {
6019             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
6020                                    tcg_rd, c.value, zero);
6021         } else {
6022             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
6023                                 tcg_rd, c.value, zero);
6024         }
6025     } else {
6026         TCGv_i64 t_true = cpu_reg(s, rn);
6027         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
6028         if (else_inv && else_inc) {
6029             tcg_gen_neg_i64(t_false, t_false);
6030         } else if (else_inv) {
6031             tcg_gen_not_i64(t_false, t_false);
6032         } else if (else_inc) {
6033             tcg_gen_addi_i64(t_false, t_false, 1);
6034         }
6035         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
6036     }
6037 
6038     if (!sf) {
6039         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6040     }
6041 }
6042 
6043 static void handle_clz(DisasContext *s, unsigned int sf,
6044                        unsigned int rn, unsigned int rd)
6045 {
6046     TCGv_i64 tcg_rd, tcg_rn;
6047     tcg_rd = cpu_reg(s, rd);
6048     tcg_rn = cpu_reg(s, rn);
6049 
6050     if (sf) {
6051         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
6052     } else {
6053         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6054         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6055         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
6056         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6057     }
6058 }
6059 
6060 static void handle_cls(DisasContext *s, unsigned int sf,
6061                        unsigned int rn, unsigned int rd)
6062 {
6063     TCGv_i64 tcg_rd, tcg_rn;
6064     tcg_rd = cpu_reg(s, rd);
6065     tcg_rn = cpu_reg(s, rn);
6066 
6067     if (sf) {
6068         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6069     } else {
6070         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6071         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6072         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6073         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6074     }
6075 }
6076 
6077 static void handle_rbit(DisasContext *s, unsigned int sf,
6078                         unsigned int rn, unsigned int rd)
6079 {
6080     TCGv_i64 tcg_rd, tcg_rn;
6081     tcg_rd = cpu_reg(s, rd);
6082     tcg_rn = cpu_reg(s, rn);
6083 
6084     if (sf) {
6085         gen_helper_rbit64(tcg_rd, tcg_rn);
6086     } else {
6087         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6088         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6089         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6090         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6091     }
6092 }
6093 
6094 /* REV with sf==1, opcode==3 ("REV64") */
6095 static void handle_rev64(DisasContext *s, unsigned int sf,
6096                          unsigned int rn, unsigned int rd)
6097 {
6098     if (!sf) {
6099         unallocated_encoding(s);
6100         return;
6101     }
6102     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6103 }
6104 
6105 /* REV with sf==0, opcode==2
6106  * REV32 (sf==1, opcode==2)
6107  */
6108 static void handle_rev32(DisasContext *s, unsigned int sf,
6109                          unsigned int rn, unsigned int rd)
6110 {
6111     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6112     TCGv_i64 tcg_rn = cpu_reg(s, rn);
6113 
6114     if (sf) {
6115         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6116         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6117     } else {
6118         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6119     }
6120 }
6121 
6122 /* REV16 (opcode==1) */
6123 static void handle_rev16(DisasContext *s, unsigned int sf,
6124                          unsigned int rn, unsigned int rd)
6125 {
6126     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6127     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6128     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6129     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6130 
6131     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6132     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6133     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6134     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6135     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6136 }
6137 
6138 /* Data-processing (1 source)
6139  *   31  30  29  28             21 20     16 15    10 9    5 4    0
6140  * +----+---+---+-----------------+---------+--------+------+------+
6141  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
6142  * +----+---+---+-----------------+---------+--------+------+------+
6143  */
6144 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6145 {
6146     unsigned int sf, opcode, opcode2, rn, rd;
6147     TCGv_i64 tcg_rd;
6148 
6149     if (extract32(insn, 29, 1)) {
6150         unallocated_encoding(s);
6151         return;
6152     }
6153 
6154     sf = extract32(insn, 31, 1);
6155     opcode = extract32(insn, 10, 6);
6156     opcode2 = extract32(insn, 16, 5);
6157     rn = extract32(insn, 5, 5);
6158     rd = extract32(insn, 0, 5);
6159 
6160 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6161 
6162     switch (MAP(sf, opcode2, opcode)) {
6163     case MAP(0, 0x00, 0x00): /* RBIT */
6164     case MAP(1, 0x00, 0x00):
6165         handle_rbit(s, sf, rn, rd);
6166         break;
6167     case MAP(0, 0x00, 0x01): /* REV16 */
6168     case MAP(1, 0x00, 0x01):
6169         handle_rev16(s, sf, rn, rd);
6170         break;
6171     case MAP(0, 0x00, 0x02): /* REV/REV32 */
6172     case MAP(1, 0x00, 0x02):
6173         handle_rev32(s, sf, rn, rd);
6174         break;
6175     case MAP(1, 0x00, 0x03): /* REV64 */
6176         handle_rev64(s, sf, rn, rd);
6177         break;
6178     case MAP(0, 0x00, 0x04): /* CLZ */
6179     case MAP(1, 0x00, 0x04):
6180         handle_clz(s, sf, rn, rd);
6181         break;
6182     case MAP(0, 0x00, 0x05): /* CLS */
6183     case MAP(1, 0x00, 0x05):
6184         handle_cls(s, sf, rn, rd);
6185         break;
6186     case MAP(1, 0x01, 0x00): /* PACIA */
6187         if (s->pauth_active) {
6188             tcg_rd = cpu_reg(s, rd);
6189             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6190         } else if (!dc_isar_feature(aa64_pauth, s)) {
6191             goto do_unallocated;
6192         }
6193         break;
6194     case MAP(1, 0x01, 0x01): /* PACIB */
6195         if (s->pauth_active) {
6196             tcg_rd = cpu_reg(s, rd);
6197             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6198         } else if (!dc_isar_feature(aa64_pauth, s)) {
6199             goto do_unallocated;
6200         }
6201         break;
6202     case MAP(1, 0x01, 0x02): /* PACDA */
6203         if (s->pauth_active) {
6204             tcg_rd = cpu_reg(s, rd);
6205             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6206         } else if (!dc_isar_feature(aa64_pauth, s)) {
6207             goto do_unallocated;
6208         }
6209         break;
6210     case MAP(1, 0x01, 0x03): /* PACDB */
6211         if (s->pauth_active) {
6212             tcg_rd = cpu_reg(s, rd);
6213             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6214         } else if (!dc_isar_feature(aa64_pauth, s)) {
6215             goto do_unallocated;
6216         }
6217         break;
6218     case MAP(1, 0x01, 0x04): /* AUTIA */
6219         if (s->pauth_active) {
6220             tcg_rd = cpu_reg(s, rd);
6221             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6222         } else if (!dc_isar_feature(aa64_pauth, s)) {
6223             goto do_unallocated;
6224         }
6225         break;
6226     case MAP(1, 0x01, 0x05): /* AUTIB */
6227         if (s->pauth_active) {
6228             tcg_rd = cpu_reg(s, rd);
6229             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6230         } else if (!dc_isar_feature(aa64_pauth, s)) {
6231             goto do_unallocated;
6232         }
6233         break;
6234     case MAP(1, 0x01, 0x06): /* AUTDA */
6235         if (s->pauth_active) {
6236             tcg_rd = cpu_reg(s, rd);
6237             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6238         } else if (!dc_isar_feature(aa64_pauth, s)) {
6239             goto do_unallocated;
6240         }
6241         break;
6242     case MAP(1, 0x01, 0x07): /* AUTDB */
6243         if (s->pauth_active) {
6244             tcg_rd = cpu_reg(s, rd);
6245             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6246         } else if (!dc_isar_feature(aa64_pauth, s)) {
6247             goto do_unallocated;
6248         }
6249         break;
6250     case MAP(1, 0x01, 0x08): /* PACIZA */
6251         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6252             goto do_unallocated;
6253         } else if (s->pauth_active) {
6254             tcg_rd = cpu_reg(s, rd);
6255             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6256         }
6257         break;
6258     case MAP(1, 0x01, 0x09): /* PACIZB */
6259         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6260             goto do_unallocated;
6261         } else if (s->pauth_active) {
6262             tcg_rd = cpu_reg(s, rd);
6263             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6264         }
6265         break;
6266     case MAP(1, 0x01, 0x0a): /* PACDZA */
6267         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6268             goto do_unallocated;
6269         } else if (s->pauth_active) {
6270             tcg_rd = cpu_reg(s, rd);
6271             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6272         }
6273         break;
6274     case MAP(1, 0x01, 0x0b): /* PACDZB */
6275         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6276             goto do_unallocated;
6277         } else if (s->pauth_active) {
6278             tcg_rd = cpu_reg(s, rd);
6279             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6280         }
6281         break;
6282     case MAP(1, 0x01, 0x0c): /* AUTIZA */
6283         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6284             goto do_unallocated;
6285         } else if (s->pauth_active) {
6286             tcg_rd = cpu_reg(s, rd);
6287             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6288         }
6289         break;
6290     case MAP(1, 0x01, 0x0d): /* AUTIZB */
6291         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6292             goto do_unallocated;
6293         } else if (s->pauth_active) {
6294             tcg_rd = cpu_reg(s, rd);
6295             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6296         }
6297         break;
6298     case MAP(1, 0x01, 0x0e): /* AUTDZA */
6299         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6300             goto do_unallocated;
6301         } else if (s->pauth_active) {
6302             tcg_rd = cpu_reg(s, rd);
6303             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6304         }
6305         break;
6306     case MAP(1, 0x01, 0x0f): /* AUTDZB */
6307         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6308             goto do_unallocated;
6309         } else if (s->pauth_active) {
6310             tcg_rd = cpu_reg(s, rd);
6311             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6312         }
6313         break;
6314     case MAP(1, 0x01, 0x10): /* XPACI */
6315         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6316             goto do_unallocated;
6317         } else if (s->pauth_active) {
6318             tcg_rd = cpu_reg(s, rd);
6319             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
6320         }
6321         break;
6322     case MAP(1, 0x01, 0x11): /* XPACD */
6323         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6324             goto do_unallocated;
6325         } else if (s->pauth_active) {
6326             tcg_rd = cpu_reg(s, rd);
6327             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
6328         }
6329         break;
6330     default:
6331     do_unallocated:
6332         unallocated_encoding(s);
6333         break;
6334     }
6335 
6336 #undef MAP
6337 }
6338 
6339 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
6340                        unsigned int rm, unsigned int rn, unsigned int rd)
6341 {
6342     TCGv_i64 tcg_n, tcg_m, tcg_rd;
6343     tcg_rd = cpu_reg(s, rd);
6344 
6345     if (!sf && is_signed) {
6346         tcg_n = tcg_temp_new_i64();
6347         tcg_m = tcg_temp_new_i64();
6348         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
6349         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
6350     } else {
6351         tcg_n = read_cpu_reg(s, rn, sf);
6352         tcg_m = read_cpu_reg(s, rm, sf);
6353     }
6354 
6355     if (is_signed) {
6356         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
6357     } else {
6358         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
6359     }
6360 
6361     if (!sf) { /* zero extend final result */
6362         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6363     }
6364 }
6365 
6366 /* LSLV, LSRV, ASRV, RORV */
6367 static void handle_shift_reg(DisasContext *s,
6368                              enum a64_shift_type shift_type, unsigned int sf,
6369                              unsigned int rm, unsigned int rn, unsigned int rd)
6370 {
6371     TCGv_i64 tcg_shift = tcg_temp_new_i64();
6372     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6373     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6374 
6375     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
6376     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
6377 }
6378 
6379 /* CRC32[BHWX], CRC32C[BHWX] */
6380 static void handle_crc32(DisasContext *s,
6381                          unsigned int sf, unsigned int sz, bool crc32c,
6382                          unsigned int rm, unsigned int rn, unsigned int rd)
6383 {
6384     TCGv_i64 tcg_acc, tcg_val;
6385     TCGv_i32 tcg_bytes;
6386 
6387     if (!dc_isar_feature(aa64_crc32, s)
6388         || (sf == 1 && sz != 3)
6389         || (sf == 0 && sz == 3)) {
6390         unallocated_encoding(s);
6391         return;
6392     }
6393 
6394     if (sz == 3) {
6395         tcg_val = cpu_reg(s, rm);
6396     } else {
6397         uint64_t mask;
6398         switch (sz) {
6399         case 0:
6400             mask = 0xFF;
6401             break;
6402         case 1:
6403             mask = 0xFFFF;
6404             break;
6405         case 2:
6406             mask = 0xFFFFFFFF;
6407             break;
6408         default:
6409             g_assert_not_reached();
6410         }
6411         tcg_val = tcg_temp_new_i64();
6412         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
6413     }
6414 
6415     tcg_acc = cpu_reg(s, rn);
6416     tcg_bytes = tcg_constant_i32(1 << sz);
6417 
6418     if (crc32c) {
6419         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6420     } else {
6421         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6422     }
6423 }
6424 
6425 /* Data-processing (2 source)
6426  *   31   30  29 28             21 20  16 15    10 9    5 4    0
6427  * +----+---+---+-----------------+------+--------+------+------+
6428  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
6429  * +----+---+---+-----------------+------+--------+------+------+
6430  */
6431 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
6432 {
6433     unsigned int sf, rm, opcode, rn, rd, setflag;
6434     sf = extract32(insn, 31, 1);
6435     setflag = extract32(insn, 29, 1);
6436     rm = extract32(insn, 16, 5);
6437     opcode = extract32(insn, 10, 6);
6438     rn = extract32(insn, 5, 5);
6439     rd = extract32(insn, 0, 5);
6440 
6441     if (setflag && opcode != 0) {
6442         unallocated_encoding(s);
6443         return;
6444     }
6445 
6446     switch (opcode) {
6447     case 0: /* SUBP(S) */
6448         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6449             goto do_unallocated;
6450         } else {
6451             TCGv_i64 tcg_n, tcg_m, tcg_d;
6452 
6453             tcg_n = read_cpu_reg_sp(s, rn, true);
6454             tcg_m = read_cpu_reg_sp(s, rm, true);
6455             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
6456             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
6457             tcg_d = cpu_reg(s, rd);
6458 
6459             if (setflag) {
6460                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
6461             } else {
6462                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
6463             }
6464         }
6465         break;
6466     case 2: /* UDIV */
6467         handle_div(s, false, sf, rm, rn, rd);
6468         break;
6469     case 3: /* SDIV */
6470         handle_div(s, true, sf, rm, rn, rd);
6471         break;
6472     case 4: /* IRG */
6473         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6474             goto do_unallocated;
6475         }
6476         if (s->ata[0]) {
6477             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
6478                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
6479         } else {
6480             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
6481                                              cpu_reg_sp(s, rn));
6482         }
6483         break;
6484     case 5: /* GMI */
6485         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6486             goto do_unallocated;
6487         } else {
6488             TCGv_i64 t = tcg_temp_new_i64();
6489 
6490             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
6491             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
6492             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
6493         }
6494         break;
6495     case 8: /* LSLV */
6496         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
6497         break;
6498     case 9: /* LSRV */
6499         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
6500         break;
6501     case 10: /* ASRV */
6502         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
6503         break;
6504     case 11: /* RORV */
6505         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
6506         break;
6507     case 12: /* PACGA */
6508         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
6509             goto do_unallocated;
6510         }
6511         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
6512                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
6513         break;
6514     case 16:
6515     case 17:
6516     case 18:
6517     case 19:
6518     case 20:
6519     case 21:
6520     case 22:
6521     case 23: /* CRC32 */
6522     {
6523         int sz = extract32(opcode, 0, 2);
6524         bool crc32c = extract32(opcode, 2, 1);
6525         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
6526         break;
6527     }
6528     default:
6529     do_unallocated:
6530         unallocated_encoding(s);
6531         break;
6532     }
6533 }
6534 
6535 /*
6536  * Data processing - register
6537  *  31  30 29  28      25    21  20  16      10         0
6538  * +--+---+--+---+-------+-----+-------+-------+---------+
6539  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
6540  * +--+---+--+---+-------+-----+-------+-------+---------+
6541  */
6542 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
6543 {
6544     int op0 = extract32(insn, 30, 1);
6545     int op1 = extract32(insn, 28, 1);
6546     int op2 = extract32(insn, 21, 4);
6547     int op3 = extract32(insn, 10, 6);
6548 
6549     if (!op1) {
6550         if (op2 & 8) {
6551             if (op2 & 1) {
6552                 /* Add/sub (extended register) */
6553                 disas_add_sub_ext_reg(s, insn);
6554             } else {
6555                 /* Add/sub (shifted register) */
6556                 disas_add_sub_reg(s, insn);
6557             }
6558         } else {
6559             /* Logical (shifted register) */
6560             disas_logic_reg(s, insn);
6561         }
6562         return;
6563     }
6564 
6565     switch (op2) {
6566     case 0x0:
6567         switch (op3) {
6568         case 0x00: /* Add/subtract (with carry) */
6569             disas_adc_sbc(s, insn);
6570             break;
6571 
6572         case 0x01: /* Rotate right into flags */
6573         case 0x21:
6574             disas_rotate_right_into_flags(s, insn);
6575             break;
6576 
6577         case 0x02: /* Evaluate into flags */
6578         case 0x12:
6579         case 0x22:
6580         case 0x32:
6581             disas_evaluate_into_flags(s, insn);
6582             break;
6583 
6584         default:
6585             goto do_unallocated;
6586         }
6587         break;
6588 
6589     case 0x2: /* Conditional compare */
6590         disas_cc(s, insn); /* both imm and reg forms */
6591         break;
6592 
6593     case 0x4: /* Conditional select */
6594         disas_cond_select(s, insn);
6595         break;
6596 
6597     case 0x6: /* Data-processing */
6598         if (op0) {    /* (1 source) */
6599             disas_data_proc_1src(s, insn);
6600         } else {      /* (2 source) */
6601             disas_data_proc_2src(s, insn);
6602         }
6603         break;
6604     case 0x8 ... 0xf: /* (3 source) */
6605         disas_data_proc_3src(s, insn);
6606         break;
6607 
6608     default:
6609     do_unallocated:
6610         unallocated_encoding(s);
6611         break;
6612     }
6613 }
6614 
6615 static void handle_fp_compare(DisasContext *s, int size,
6616                               unsigned int rn, unsigned int rm,
6617                               bool cmp_with_zero, bool signal_all_nans)
6618 {
6619     TCGv_i64 tcg_flags = tcg_temp_new_i64();
6620     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
6621 
6622     if (size == MO_64) {
6623         TCGv_i64 tcg_vn, tcg_vm;
6624 
6625         tcg_vn = read_fp_dreg(s, rn);
6626         if (cmp_with_zero) {
6627             tcg_vm = tcg_constant_i64(0);
6628         } else {
6629             tcg_vm = read_fp_dreg(s, rm);
6630         }
6631         if (signal_all_nans) {
6632             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6633         } else {
6634             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6635         }
6636     } else {
6637         TCGv_i32 tcg_vn = tcg_temp_new_i32();
6638         TCGv_i32 tcg_vm = tcg_temp_new_i32();
6639 
6640         read_vec_element_i32(s, tcg_vn, rn, 0, size);
6641         if (cmp_with_zero) {
6642             tcg_gen_movi_i32(tcg_vm, 0);
6643         } else {
6644             read_vec_element_i32(s, tcg_vm, rm, 0, size);
6645         }
6646 
6647         switch (size) {
6648         case MO_32:
6649             if (signal_all_nans) {
6650                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6651             } else {
6652                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6653             }
6654             break;
6655         case MO_16:
6656             if (signal_all_nans) {
6657                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6658             } else {
6659                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6660             }
6661             break;
6662         default:
6663             g_assert_not_reached();
6664         }
6665     }
6666 
6667     gen_set_nzcv(tcg_flags);
6668 }
6669 
6670 /* Floating point compare
6671  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
6672  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6673  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
6674  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6675  */
6676 static void disas_fp_compare(DisasContext *s, uint32_t insn)
6677 {
6678     unsigned int mos, type, rm, op, rn, opc, op2r;
6679     int size;
6680 
6681     mos = extract32(insn, 29, 3);
6682     type = extract32(insn, 22, 2);
6683     rm = extract32(insn, 16, 5);
6684     op = extract32(insn, 14, 2);
6685     rn = extract32(insn, 5, 5);
6686     opc = extract32(insn, 3, 2);
6687     op2r = extract32(insn, 0, 3);
6688 
6689     if (mos || op || op2r) {
6690         unallocated_encoding(s);
6691         return;
6692     }
6693 
6694     switch (type) {
6695     case 0:
6696         size = MO_32;
6697         break;
6698     case 1:
6699         size = MO_64;
6700         break;
6701     case 3:
6702         size = MO_16;
6703         if (dc_isar_feature(aa64_fp16, s)) {
6704             break;
6705         }
6706         /* fallthru */
6707     default:
6708         unallocated_encoding(s);
6709         return;
6710     }
6711 
6712     if (!fp_access_check(s)) {
6713         return;
6714     }
6715 
6716     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6717 }
6718 
6719 /* Floating point conditional compare
6720  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
6721  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6722  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
6723  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6724  */
6725 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6726 {
6727     unsigned int mos, type, rm, cond, rn, op, nzcv;
6728     TCGLabel *label_continue = NULL;
6729     int size;
6730 
6731     mos = extract32(insn, 29, 3);
6732     type = extract32(insn, 22, 2);
6733     rm = extract32(insn, 16, 5);
6734     cond = extract32(insn, 12, 4);
6735     rn = extract32(insn, 5, 5);
6736     op = extract32(insn, 4, 1);
6737     nzcv = extract32(insn, 0, 4);
6738 
6739     if (mos) {
6740         unallocated_encoding(s);
6741         return;
6742     }
6743 
6744     switch (type) {
6745     case 0:
6746         size = MO_32;
6747         break;
6748     case 1:
6749         size = MO_64;
6750         break;
6751     case 3:
6752         size = MO_16;
6753         if (dc_isar_feature(aa64_fp16, s)) {
6754             break;
6755         }
6756         /* fallthru */
6757     default:
6758         unallocated_encoding(s);
6759         return;
6760     }
6761 
6762     if (!fp_access_check(s)) {
6763         return;
6764     }
6765 
6766     if (cond < 0x0e) { /* not always */
6767         TCGLabel *label_match = gen_new_label();
6768         label_continue = gen_new_label();
6769         arm_gen_test_cc(cond, label_match);
6770         /* nomatch: */
6771         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6772         tcg_gen_br(label_continue);
6773         gen_set_label(label_match);
6774     }
6775 
6776     handle_fp_compare(s, size, rn, rm, false, op);
6777 
6778     if (cond < 0x0e) {
6779         gen_set_label(label_continue);
6780     }
6781 }
6782 
6783 /* Floating point conditional select
6784  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
6785  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6786  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
6787  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6788  */
6789 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6790 {
6791     unsigned int mos, type, rm, cond, rn, rd;
6792     TCGv_i64 t_true, t_false;
6793     DisasCompare64 c;
6794     MemOp sz;
6795 
6796     mos = extract32(insn, 29, 3);
6797     type = extract32(insn, 22, 2);
6798     rm = extract32(insn, 16, 5);
6799     cond = extract32(insn, 12, 4);
6800     rn = extract32(insn, 5, 5);
6801     rd = extract32(insn, 0, 5);
6802 
6803     if (mos) {
6804         unallocated_encoding(s);
6805         return;
6806     }
6807 
6808     switch (type) {
6809     case 0:
6810         sz = MO_32;
6811         break;
6812     case 1:
6813         sz = MO_64;
6814         break;
6815     case 3:
6816         sz = MO_16;
6817         if (dc_isar_feature(aa64_fp16, s)) {
6818             break;
6819         }
6820         /* fallthru */
6821     default:
6822         unallocated_encoding(s);
6823         return;
6824     }
6825 
6826     if (!fp_access_check(s)) {
6827         return;
6828     }
6829 
6830     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6831     t_true = tcg_temp_new_i64();
6832     t_false = tcg_temp_new_i64();
6833     read_vec_element(s, t_true, rn, 0, sz);
6834     read_vec_element(s, t_false, rm, 0, sz);
6835 
6836     a64_test_cc(&c, cond);
6837     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6838                         t_true, t_false);
6839 
6840     /* Note that sregs & hregs write back zeros to the high bits,
6841        and we've already done the zero-extension.  */
6842     write_fp_dreg(s, rd, t_true);
6843 }
6844 
6845 /* Floating-point data-processing (1 source) - half precision */
6846 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6847 {
6848     TCGv_ptr fpst = NULL;
6849     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6850     TCGv_i32 tcg_res = tcg_temp_new_i32();
6851 
6852     switch (opcode) {
6853     case 0x0: /* FMOV */
6854         tcg_gen_mov_i32(tcg_res, tcg_op);
6855         break;
6856     case 0x1: /* FABS */
6857         gen_vfp_absh(tcg_res, tcg_op);
6858         break;
6859     case 0x2: /* FNEG */
6860         gen_vfp_negh(tcg_res, tcg_op);
6861         break;
6862     case 0x3: /* FSQRT */
6863         fpst = fpstatus_ptr(FPST_FPCR_F16);
6864         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6865         break;
6866     case 0x8: /* FRINTN */
6867     case 0x9: /* FRINTP */
6868     case 0xa: /* FRINTM */
6869     case 0xb: /* FRINTZ */
6870     case 0xc: /* FRINTA */
6871     {
6872         TCGv_i32 tcg_rmode;
6873 
6874         fpst = fpstatus_ptr(FPST_FPCR_F16);
6875         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6876         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6877         gen_restore_rmode(tcg_rmode, fpst);
6878         break;
6879     }
6880     case 0xe: /* FRINTX */
6881         fpst = fpstatus_ptr(FPST_FPCR_F16);
6882         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6883         break;
6884     case 0xf: /* FRINTI */
6885         fpst = fpstatus_ptr(FPST_FPCR_F16);
6886         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6887         break;
6888     default:
6889         g_assert_not_reached();
6890     }
6891 
6892     write_fp_sreg(s, rd, tcg_res);
6893 }
6894 
6895 /* Floating-point data-processing (1 source) - single precision */
6896 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6897 {
6898     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6899     TCGv_i32 tcg_op, tcg_res;
6900     TCGv_ptr fpst;
6901     int rmode = -1;
6902 
6903     tcg_op = read_fp_sreg(s, rn);
6904     tcg_res = tcg_temp_new_i32();
6905 
6906     switch (opcode) {
6907     case 0x0: /* FMOV */
6908         tcg_gen_mov_i32(tcg_res, tcg_op);
6909         goto done;
6910     case 0x1: /* FABS */
6911         gen_vfp_abss(tcg_res, tcg_op);
6912         goto done;
6913     case 0x2: /* FNEG */
6914         gen_vfp_negs(tcg_res, tcg_op);
6915         goto done;
6916     case 0x3: /* FSQRT */
6917         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
6918         goto done;
6919     case 0x6: /* BFCVT */
6920         gen_fpst = gen_helper_bfcvt;
6921         break;
6922     case 0x8: /* FRINTN */
6923     case 0x9: /* FRINTP */
6924     case 0xa: /* FRINTM */
6925     case 0xb: /* FRINTZ */
6926     case 0xc: /* FRINTA */
6927         rmode = opcode & 7;
6928         gen_fpst = gen_helper_rints;
6929         break;
6930     case 0xe: /* FRINTX */
6931         gen_fpst = gen_helper_rints_exact;
6932         break;
6933     case 0xf: /* FRINTI */
6934         gen_fpst = gen_helper_rints;
6935         break;
6936     case 0x10: /* FRINT32Z */
6937         rmode = FPROUNDING_ZERO;
6938         gen_fpst = gen_helper_frint32_s;
6939         break;
6940     case 0x11: /* FRINT32X */
6941         gen_fpst = gen_helper_frint32_s;
6942         break;
6943     case 0x12: /* FRINT64Z */
6944         rmode = FPROUNDING_ZERO;
6945         gen_fpst = gen_helper_frint64_s;
6946         break;
6947     case 0x13: /* FRINT64X */
6948         gen_fpst = gen_helper_frint64_s;
6949         break;
6950     default:
6951         g_assert_not_reached();
6952     }
6953 
6954     fpst = fpstatus_ptr(FPST_FPCR);
6955     if (rmode >= 0) {
6956         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6957         gen_fpst(tcg_res, tcg_op, fpst);
6958         gen_restore_rmode(tcg_rmode, fpst);
6959     } else {
6960         gen_fpst(tcg_res, tcg_op, fpst);
6961     }
6962 
6963  done:
6964     write_fp_sreg(s, rd, tcg_res);
6965 }
6966 
6967 /* Floating-point data-processing (1 source) - double precision */
6968 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6969 {
6970     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6971     TCGv_i64 tcg_op, tcg_res;
6972     TCGv_ptr fpst;
6973     int rmode = -1;
6974 
6975     switch (opcode) {
6976     case 0x0: /* FMOV */
6977         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6978         return;
6979     }
6980 
6981     tcg_op = read_fp_dreg(s, rn);
6982     tcg_res = tcg_temp_new_i64();
6983 
6984     switch (opcode) {
6985     case 0x1: /* FABS */
6986         gen_vfp_absd(tcg_res, tcg_op);
6987         goto done;
6988     case 0x2: /* FNEG */
6989         gen_vfp_negd(tcg_res, tcg_op);
6990         goto done;
6991     case 0x3: /* FSQRT */
6992         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
6993         goto done;
6994     case 0x8: /* FRINTN */
6995     case 0x9: /* FRINTP */
6996     case 0xa: /* FRINTM */
6997     case 0xb: /* FRINTZ */
6998     case 0xc: /* FRINTA */
6999         rmode = opcode & 7;
7000         gen_fpst = gen_helper_rintd;
7001         break;
7002     case 0xe: /* FRINTX */
7003         gen_fpst = gen_helper_rintd_exact;
7004         break;
7005     case 0xf: /* FRINTI */
7006         gen_fpst = gen_helper_rintd;
7007         break;
7008     case 0x10: /* FRINT32Z */
7009         rmode = FPROUNDING_ZERO;
7010         gen_fpst = gen_helper_frint32_d;
7011         break;
7012     case 0x11: /* FRINT32X */
7013         gen_fpst = gen_helper_frint32_d;
7014         break;
7015     case 0x12: /* FRINT64Z */
7016         rmode = FPROUNDING_ZERO;
7017         gen_fpst = gen_helper_frint64_d;
7018         break;
7019     case 0x13: /* FRINT64X */
7020         gen_fpst = gen_helper_frint64_d;
7021         break;
7022     default:
7023         g_assert_not_reached();
7024     }
7025 
7026     fpst = fpstatus_ptr(FPST_FPCR);
7027     if (rmode >= 0) {
7028         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7029         gen_fpst(tcg_res, tcg_op, fpst);
7030         gen_restore_rmode(tcg_rmode, fpst);
7031     } else {
7032         gen_fpst(tcg_res, tcg_op, fpst);
7033     }
7034 
7035  done:
7036     write_fp_dreg(s, rd, tcg_res);
7037 }
7038 
7039 static void handle_fp_fcvt(DisasContext *s, int opcode,
7040                            int rd, int rn, int dtype, int ntype)
7041 {
7042     switch (ntype) {
7043     case 0x0:
7044     {
7045         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7046         if (dtype == 1) {
7047             /* Single to double */
7048             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7049             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
7050             write_fp_dreg(s, rd, tcg_rd);
7051         } else {
7052             /* Single to half */
7053             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7054             TCGv_i32 ahp = get_ahp_flag();
7055             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7056 
7057             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7058             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7059             write_fp_sreg(s, rd, tcg_rd);
7060         }
7061         break;
7062     }
7063     case 0x1:
7064     {
7065         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7066         TCGv_i32 tcg_rd = tcg_temp_new_i32();
7067         if (dtype == 0) {
7068             /* Double to single */
7069             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7070         } else {
7071             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7072             TCGv_i32 ahp = get_ahp_flag();
7073             /* Double to half */
7074             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7075             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7076         }
7077         write_fp_sreg(s, rd, tcg_rd);
7078         break;
7079     }
7080     case 0x3:
7081     {
7082         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7083         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7084         TCGv_i32 tcg_ahp = get_ahp_flag();
7085         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7086         if (dtype == 0) {
7087             /* Half to single */
7088             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7089             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7090             write_fp_sreg(s, rd, tcg_rd);
7091         } else {
7092             /* Half to double */
7093             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7094             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7095             write_fp_dreg(s, rd, tcg_rd);
7096         }
7097         break;
7098     }
7099     default:
7100         g_assert_not_reached();
7101     }
7102 }
7103 
7104 /* Floating point data-processing (1 source)
7105  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
7106  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7107  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
7108  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7109  */
7110 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7111 {
7112     int mos = extract32(insn, 29, 3);
7113     int type = extract32(insn, 22, 2);
7114     int opcode = extract32(insn, 15, 6);
7115     int rn = extract32(insn, 5, 5);
7116     int rd = extract32(insn, 0, 5);
7117 
7118     if (mos) {
7119         goto do_unallocated;
7120     }
7121 
7122     switch (opcode) {
7123     case 0x4: case 0x5: case 0x7:
7124     {
7125         /* FCVT between half, single and double precision */
7126         int dtype = extract32(opcode, 0, 2);
7127         if (type == 2 || dtype == type) {
7128             goto do_unallocated;
7129         }
7130         if (!fp_access_check(s)) {
7131             return;
7132         }
7133 
7134         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7135         break;
7136     }
7137 
7138     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7139         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7140             goto do_unallocated;
7141         }
7142         /* fall through */
7143     case 0x0 ... 0x3:
7144     case 0x8 ... 0xc:
7145     case 0xe ... 0xf:
7146         /* 32-to-32 and 64-to-64 ops */
7147         switch (type) {
7148         case 0:
7149             if (!fp_access_check(s)) {
7150                 return;
7151             }
7152             handle_fp_1src_single(s, opcode, rd, rn);
7153             break;
7154         case 1:
7155             if (!fp_access_check(s)) {
7156                 return;
7157             }
7158             handle_fp_1src_double(s, opcode, rd, rn);
7159             break;
7160         case 3:
7161             if (!dc_isar_feature(aa64_fp16, s)) {
7162                 goto do_unallocated;
7163             }
7164 
7165             if (!fp_access_check(s)) {
7166                 return;
7167             }
7168             handle_fp_1src_half(s, opcode, rd, rn);
7169             break;
7170         default:
7171             goto do_unallocated;
7172         }
7173         break;
7174 
7175     case 0x6:
7176         switch (type) {
7177         case 1: /* BFCVT */
7178             if (!dc_isar_feature(aa64_bf16, s)) {
7179                 goto do_unallocated;
7180             }
7181             if (!fp_access_check(s)) {
7182                 return;
7183             }
7184             handle_fp_1src_single(s, opcode, rd, rn);
7185             break;
7186         default:
7187             goto do_unallocated;
7188         }
7189         break;
7190 
7191     default:
7192     do_unallocated:
7193         unallocated_encoding(s);
7194         break;
7195     }
7196 }
7197 
7198 /* Floating-point data-processing (3 source) - single precision */
7199 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
7200                                   int rd, int rn, int rm, int ra)
7201 {
7202     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7203     TCGv_i32 tcg_res = tcg_temp_new_i32();
7204     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7205 
7206     tcg_op1 = read_fp_sreg(s, rn);
7207     tcg_op2 = read_fp_sreg(s, rm);
7208     tcg_op3 = read_fp_sreg(s, ra);
7209 
7210     /* These are fused multiply-add, and must be done as one
7211      * floating point operation with no rounding between the
7212      * multiplication and addition steps.
7213      * NB that doing the negations here as separate steps is
7214      * correct : an input NaN should come out with its sign bit
7215      * flipped if it is a negated-input.
7216      */
7217     if (o1 == true) {
7218         gen_vfp_negs(tcg_op3, tcg_op3);
7219     }
7220 
7221     if (o0 != o1) {
7222         gen_vfp_negs(tcg_op1, tcg_op1);
7223     }
7224 
7225     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7226 
7227     write_fp_sreg(s, rd, tcg_res);
7228 }
7229 
7230 /* Floating-point data-processing (3 source) - double precision */
7231 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
7232                                   int rd, int rn, int rm, int ra)
7233 {
7234     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
7235     TCGv_i64 tcg_res = tcg_temp_new_i64();
7236     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7237 
7238     tcg_op1 = read_fp_dreg(s, rn);
7239     tcg_op2 = read_fp_dreg(s, rm);
7240     tcg_op3 = read_fp_dreg(s, ra);
7241 
7242     /* These are fused multiply-add, and must be done as one
7243      * floating point operation with no rounding between the
7244      * multiplication and addition steps.
7245      * NB that doing the negations here as separate steps is
7246      * correct : an input NaN should come out with its sign bit
7247      * flipped if it is a negated-input.
7248      */
7249     if (o1 == true) {
7250         gen_vfp_negd(tcg_op3, tcg_op3);
7251     }
7252 
7253     if (o0 != o1) {
7254         gen_vfp_negd(tcg_op1, tcg_op1);
7255     }
7256 
7257     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7258 
7259     write_fp_dreg(s, rd, tcg_res);
7260 }
7261 
7262 /* Floating-point data-processing (3 source) - half precision */
7263 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
7264                                 int rd, int rn, int rm, int ra)
7265 {
7266     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7267     TCGv_i32 tcg_res = tcg_temp_new_i32();
7268     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
7269 
7270     tcg_op1 = read_fp_hreg(s, rn);
7271     tcg_op2 = read_fp_hreg(s, rm);
7272     tcg_op3 = read_fp_hreg(s, ra);
7273 
7274     /* These are fused multiply-add, and must be done as one
7275      * floating point operation with no rounding between the
7276      * multiplication and addition steps.
7277      * NB that doing the negations here as separate steps is
7278      * correct : an input NaN should come out with its sign bit
7279      * flipped if it is a negated-input.
7280      */
7281     if (o1 == true) {
7282         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
7283     }
7284 
7285     if (o0 != o1) {
7286         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
7287     }
7288 
7289     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7290 
7291     write_fp_sreg(s, rd, tcg_res);
7292 }
7293 
7294 /* Floating point data-processing (3 source)
7295  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
7296  * +---+---+---+-----------+------+----+------+----+------+------+------+
7297  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
7298  * +---+---+---+-----------+------+----+------+----+------+------+------+
7299  */
7300 static void disas_fp_3src(DisasContext *s, uint32_t insn)
7301 {
7302     int mos = extract32(insn, 29, 3);
7303     int type = extract32(insn, 22, 2);
7304     int rd = extract32(insn, 0, 5);
7305     int rn = extract32(insn, 5, 5);
7306     int ra = extract32(insn, 10, 5);
7307     int rm = extract32(insn, 16, 5);
7308     bool o0 = extract32(insn, 15, 1);
7309     bool o1 = extract32(insn, 21, 1);
7310 
7311     if (mos) {
7312         unallocated_encoding(s);
7313         return;
7314     }
7315 
7316     switch (type) {
7317     case 0:
7318         if (!fp_access_check(s)) {
7319             return;
7320         }
7321         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
7322         break;
7323     case 1:
7324         if (!fp_access_check(s)) {
7325             return;
7326         }
7327         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
7328         break;
7329     case 3:
7330         if (!dc_isar_feature(aa64_fp16, s)) {
7331             unallocated_encoding(s);
7332             return;
7333         }
7334         if (!fp_access_check(s)) {
7335             return;
7336         }
7337         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
7338         break;
7339     default:
7340         unallocated_encoding(s);
7341     }
7342 }
7343 
7344 /* Floating point immediate
7345  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7346  * +---+---+---+-----------+------+---+------------+-------+------+------+
7347  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7348  * +---+---+---+-----------+------+---+------------+-------+------+------+
7349  */
7350 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7351 {
7352     int rd = extract32(insn, 0, 5);
7353     int imm5 = extract32(insn, 5, 5);
7354     int imm8 = extract32(insn, 13, 8);
7355     int type = extract32(insn, 22, 2);
7356     int mos = extract32(insn, 29, 3);
7357     uint64_t imm;
7358     MemOp sz;
7359 
7360     if (mos || imm5) {
7361         unallocated_encoding(s);
7362         return;
7363     }
7364 
7365     switch (type) {
7366     case 0:
7367         sz = MO_32;
7368         break;
7369     case 1:
7370         sz = MO_64;
7371         break;
7372     case 3:
7373         sz = MO_16;
7374         if (dc_isar_feature(aa64_fp16, s)) {
7375             break;
7376         }
7377         /* fallthru */
7378     default:
7379         unallocated_encoding(s);
7380         return;
7381     }
7382 
7383     if (!fp_access_check(s)) {
7384         return;
7385     }
7386 
7387     imm = vfp_expand_imm(sz, imm8);
7388     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7389 }
7390 
7391 /* Handle floating point <=> fixed point conversions. Note that we can
7392  * also deal with fp <=> integer conversions as a special case (scale == 64)
7393  * OPTME: consider handling that special case specially or at least skipping
7394  * the call to scalbn in the helpers for zero shifts.
7395  */
7396 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7397                            bool itof, int rmode, int scale, int sf, int type)
7398 {
7399     bool is_signed = !(opcode & 1);
7400     TCGv_ptr tcg_fpstatus;
7401     TCGv_i32 tcg_shift, tcg_single;
7402     TCGv_i64 tcg_double;
7403 
7404     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7405 
7406     tcg_shift = tcg_constant_i32(64 - scale);
7407 
7408     if (itof) {
7409         TCGv_i64 tcg_int = cpu_reg(s, rn);
7410         if (!sf) {
7411             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7412 
7413             if (is_signed) {
7414                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7415             } else {
7416                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7417             }
7418 
7419             tcg_int = tcg_extend;
7420         }
7421 
7422         switch (type) {
7423         case 1: /* float64 */
7424             tcg_double = tcg_temp_new_i64();
7425             if (is_signed) {
7426                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7427                                      tcg_shift, tcg_fpstatus);
7428             } else {
7429                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7430                                      tcg_shift, tcg_fpstatus);
7431             }
7432             write_fp_dreg(s, rd, tcg_double);
7433             break;
7434 
7435         case 0: /* float32 */
7436             tcg_single = tcg_temp_new_i32();
7437             if (is_signed) {
7438                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7439                                      tcg_shift, tcg_fpstatus);
7440             } else {
7441                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7442                                      tcg_shift, tcg_fpstatus);
7443             }
7444             write_fp_sreg(s, rd, tcg_single);
7445             break;
7446 
7447         case 3: /* float16 */
7448             tcg_single = tcg_temp_new_i32();
7449             if (is_signed) {
7450                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7451                                      tcg_shift, tcg_fpstatus);
7452             } else {
7453                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7454                                      tcg_shift, tcg_fpstatus);
7455             }
7456             write_fp_sreg(s, rd, tcg_single);
7457             break;
7458 
7459         default:
7460             g_assert_not_reached();
7461         }
7462     } else {
7463         TCGv_i64 tcg_int = cpu_reg(s, rd);
7464         TCGv_i32 tcg_rmode;
7465 
7466         if (extract32(opcode, 2, 1)) {
7467             /* There are too many rounding modes to all fit into rmode,
7468              * so FCVTA[US] is a special case.
7469              */
7470             rmode = FPROUNDING_TIEAWAY;
7471         }
7472 
7473         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
7474 
7475         switch (type) {
7476         case 1: /* float64 */
7477             tcg_double = read_fp_dreg(s, rn);
7478             if (is_signed) {
7479                 if (!sf) {
7480                     gen_helper_vfp_tosld(tcg_int, tcg_double,
7481                                          tcg_shift, tcg_fpstatus);
7482                 } else {
7483                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
7484                                          tcg_shift, tcg_fpstatus);
7485                 }
7486             } else {
7487                 if (!sf) {
7488                     gen_helper_vfp_tould(tcg_int, tcg_double,
7489                                          tcg_shift, tcg_fpstatus);
7490                 } else {
7491                     gen_helper_vfp_touqd(tcg_int, tcg_double,
7492                                          tcg_shift, tcg_fpstatus);
7493                 }
7494             }
7495             if (!sf) {
7496                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7497             }
7498             break;
7499 
7500         case 0: /* float32 */
7501             tcg_single = read_fp_sreg(s, rn);
7502             if (sf) {
7503                 if (is_signed) {
7504                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
7505                                          tcg_shift, tcg_fpstatus);
7506                 } else {
7507                     gen_helper_vfp_touqs(tcg_int, tcg_single,
7508                                          tcg_shift, tcg_fpstatus);
7509                 }
7510             } else {
7511                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7512                 if (is_signed) {
7513                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
7514                                          tcg_shift, tcg_fpstatus);
7515                 } else {
7516                     gen_helper_vfp_touls(tcg_dest, tcg_single,
7517                                          tcg_shift, tcg_fpstatus);
7518                 }
7519                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7520             }
7521             break;
7522 
7523         case 3: /* float16 */
7524             tcg_single = read_fp_sreg(s, rn);
7525             if (sf) {
7526                 if (is_signed) {
7527                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
7528                                          tcg_shift, tcg_fpstatus);
7529                 } else {
7530                     gen_helper_vfp_touqh(tcg_int, tcg_single,
7531                                          tcg_shift, tcg_fpstatus);
7532                 }
7533             } else {
7534                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7535                 if (is_signed) {
7536                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
7537                                          tcg_shift, tcg_fpstatus);
7538                 } else {
7539                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
7540                                          tcg_shift, tcg_fpstatus);
7541                 }
7542                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7543             }
7544             break;
7545 
7546         default:
7547             g_assert_not_reached();
7548         }
7549 
7550         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
7551     }
7552 }
7553 
7554 /* Floating point <-> fixed point conversions
7555  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
7556  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7557  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
7558  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7559  */
7560 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7561 {
7562     int rd = extract32(insn, 0, 5);
7563     int rn = extract32(insn, 5, 5);
7564     int scale = extract32(insn, 10, 6);
7565     int opcode = extract32(insn, 16, 3);
7566     int rmode = extract32(insn, 19, 2);
7567     int type = extract32(insn, 22, 2);
7568     bool sbit = extract32(insn, 29, 1);
7569     bool sf = extract32(insn, 31, 1);
7570     bool itof;
7571 
7572     if (sbit || (!sf && scale < 32)) {
7573         unallocated_encoding(s);
7574         return;
7575     }
7576 
7577     switch (type) {
7578     case 0: /* float32 */
7579     case 1: /* float64 */
7580         break;
7581     case 3: /* float16 */
7582         if (dc_isar_feature(aa64_fp16, s)) {
7583             break;
7584         }
7585         /* fallthru */
7586     default:
7587         unallocated_encoding(s);
7588         return;
7589     }
7590 
7591     switch ((rmode << 3) | opcode) {
7592     case 0x2: /* SCVTF */
7593     case 0x3: /* UCVTF */
7594         itof = true;
7595         break;
7596     case 0x18: /* FCVTZS */
7597     case 0x19: /* FCVTZU */
7598         itof = false;
7599         break;
7600     default:
7601         unallocated_encoding(s);
7602         return;
7603     }
7604 
7605     if (!fp_access_check(s)) {
7606         return;
7607     }
7608 
7609     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7610 }
7611 
7612 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7613 {
7614     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7615      * without conversion.
7616      */
7617 
7618     if (itof) {
7619         TCGv_i64 tcg_rn = cpu_reg(s, rn);
7620         TCGv_i64 tmp;
7621 
7622         switch (type) {
7623         case 0:
7624             /* 32 bit */
7625             tmp = tcg_temp_new_i64();
7626             tcg_gen_ext32u_i64(tmp, tcg_rn);
7627             write_fp_dreg(s, rd, tmp);
7628             break;
7629         case 1:
7630             /* 64 bit */
7631             write_fp_dreg(s, rd, tcg_rn);
7632             break;
7633         case 2:
7634             /* 64 bit to top half. */
7635             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
7636             clear_vec_high(s, true, rd);
7637             break;
7638         case 3:
7639             /* 16 bit */
7640             tmp = tcg_temp_new_i64();
7641             tcg_gen_ext16u_i64(tmp, tcg_rn);
7642             write_fp_dreg(s, rd, tmp);
7643             break;
7644         default:
7645             g_assert_not_reached();
7646         }
7647     } else {
7648         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7649 
7650         switch (type) {
7651         case 0:
7652             /* 32 bit */
7653             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
7654             break;
7655         case 1:
7656             /* 64 bit */
7657             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
7658             break;
7659         case 2:
7660             /* 64 bits from top half */
7661             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
7662             break;
7663         case 3:
7664             /* 16 bit */
7665             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
7666             break;
7667         default:
7668             g_assert_not_reached();
7669         }
7670     }
7671 }
7672 
7673 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7674 {
7675     TCGv_i64 t = read_fp_dreg(s, rn);
7676     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7677 
7678     gen_helper_fjcvtzs(t, t, fpstatus);
7679 
7680     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7681     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7682     tcg_gen_movi_i32(cpu_CF, 0);
7683     tcg_gen_movi_i32(cpu_NF, 0);
7684     tcg_gen_movi_i32(cpu_VF, 0);
7685 }
7686 
7687 /* Floating point <-> integer conversions
7688  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7689  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7690  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7691  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7692  */
7693 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7694 {
7695     int rd = extract32(insn, 0, 5);
7696     int rn = extract32(insn, 5, 5);
7697     int opcode = extract32(insn, 16, 3);
7698     int rmode = extract32(insn, 19, 2);
7699     int type = extract32(insn, 22, 2);
7700     bool sbit = extract32(insn, 29, 1);
7701     bool sf = extract32(insn, 31, 1);
7702     bool itof = false;
7703 
7704     if (sbit) {
7705         goto do_unallocated;
7706     }
7707 
7708     switch (opcode) {
7709     case 2: /* SCVTF */
7710     case 3: /* UCVTF */
7711         itof = true;
7712         /* fallthru */
7713     case 4: /* FCVTAS */
7714     case 5: /* FCVTAU */
7715         if (rmode != 0) {
7716             goto do_unallocated;
7717         }
7718         /* fallthru */
7719     case 0: /* FCVT[NPMZ]S */
7720     case 1: /* FCVT[NPMZ]U */
7721         switch (type) {
7722         case 0: /* float32 */
7723         case 1: /* float64 */
7724             break;
7725         case 3: /* float16 */
7726             if (!dc_isar_feature(aa64_fp16, s)) {
7727                 goto do_unallocated;
7728             }
7729             break;
7730         default:
7731             goto do_unallocated;
7732         }
7733         if (!fp_access_check(s)) {
7734             return;
7735         }
7736         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7737         break;
7738 
7739     default:
7740         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7741         case 0b01100110: /* FMOV half <-> 32-bit int */
7742         case 0b01100111:
7743         case 0b11100110: /* FMOV half <-> 64-bit int */
7744         case 0b11100111:
7745             if (!dc_isar_feature(aa64_fp16, s)) {
7746                 goto do_unallocated;
7747             }
7748             /* fallthru */
7749         case 0b00000110: /* FMOV 32-bit */
7750         case 0b00000111:
7751         case 0b10100110: /* FMOV 64-bit */
7752         case 0b10100111:
7753         case 0b11001110: /* FMOV top half of 128-bit */
7754         case 0b11001111:
7755             if (!fp_access_check(s)) {
7756                 return;
7757             }
7758             itof = opcode & 1;
7759             handle_fmov(s, rd, rn, type, itof);
7760             break;
7761 
7762         case 0b00111110: /* FJCVTZS */
7763             if (!dc_isar_feature(aa64_jscvt, s)) {
7764                 goto do_unallocated;
7765             } else if (fp_access_check(s)) {
7766                 handle_fjcvtzs(s, rd, rn);
7767             }
7768             break;
7769 
7770         default:
7771         do_unallocated:
7772             unallocated_encoding(s);
7773             return;
7774         }
7775         break;
7776     }
7777 }
7778 
7779 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7780  *   31  30  29 28     25 24                          0
7781  * +---+---+---+---------+-----------------------------+
7782  * |   | 0 |   | 1 1 1 1 |                             |
7783  * +---+---+---+---------+-----------------------------+
7784  */
7785 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7786 {
7787     if (extract32(insn, 24, 1)) {
7788         /* Floating point data-processing (3 source) */
7789         disas_fp_3src(s, insn);
7790     } else if (extract32(insn, 21, 1) == 0) {
7791         /* Floating point to fixed point conversions */
7792         disas_fp_fixed_conv(s, insn);
7793     } else {
7794         switch (extract32(insn, 10, 2)) {
7795         case 1:
7796             /* Floating point conditional compare */
7797             disas_fp_ccomp(s, insn);
7798             break;
7799         case 2:
7800             /* Floating point data-processing (2 source) */
7801             unallocated_encoding(s); /* in decodetree */
7802             break;
7803         case 3:
7804             /* Floating point conditional select */
7805             disas_fp_csel(s, insn);
7806             break;
7807         case 0:
7808             switch (ctz32(extract32(insn, 12, 4))) {
7809             case 0: /* [15:12] == xxx1 */
7810                 /* Floating point immediate */
7811                 disas_fp_imm(s, insn);
7812                 break;
7813             case 1: /* [15:12] == xx10 */
7814                 /* Floating point compare */
7815                 disas_fp_compare(s, insn);
7816                 break;
7817             case 2: /* [15:12] == x100 */
7818                 /* Floating point data-processing (1 source) */
7819                 disas_fp_1src(s, insn);
7820                 break;
7821             case 3: /* [15:12] == 1000 */
7822                 unallocated_encoding(s);
7823                 break;
7824             default: /* [15:12] == 0000 */
7825                 /* Floating point <-> integer conversions */
7826                 disas_fp_int_conv(s, insn);
7827                 break;
7828             }
7829             break;
7830         }
7831     }
7832 }
7833 
7834 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7835                      int pos)
7836 {
7837     /* Extract 64 bits from the middle of two concatenated 64 bit
7838      * vector register slices left:right. The extracted bits start
7839      * at 'pos' bits into the right (least significant) side.
7840      * We return the result in tcg_right, and guarantee not to
7841      * trash tcg_left.
7842      */
7843     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7844     assert(pos > 0 && pos < 64);
7845 
7846     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7847     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7848     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7849 }
7850 
7851 /* EXT
7852  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7853  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7854  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7855  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7856  */
7857 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7858 {
7859     int is_q = extract32(insn, 30, 1);
7860     int op2 = extract32(insn, 22, 2);
7861     int imm4 = extract32(insn, 11, 4);
7862     int rm = extract32(insn, 16, 5);
7863     int rn = extract32(insn, 5, 5);
7864     int rd = extract32(insn, 0, 5);
7865     int pos = imm4 << 3;
7866     TCGv_i64 tcg_resl, tcg_resh;
7867 
7868     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7869         unallocated_encoding(s);
7870         return;
7871     }
7872 
7873     if (!fp_access_check(s)) {
7874         return;
7875     }
7876 
7877     tcg_resh = tcg_temp_new_i64();
7878     tcg_resl = tcg_temp_new_i64();
7879 
7880     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7881      * either extracting 128 bits from a 128:128 concatenation, or
7882      * extracting 64 bits from a 64:64 concatenation.
7883      */
7884     if (!is_q) {
7885         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7886         if (pos != 0) {
7887             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7888             do_ext64(s, tcg_resh, tcg_resl, pos);
7889         }
7890     } else {
7891         TCGv_i64 tcg_hh;
7892         typedef struct {
7893             int reg;
7894             int elt;
7895         } EltPosns;
7896         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7897         EltPosns *elt = eltposns;
7898 
7899         if (pos >= 64) {
7900             elt++;
7901             pos -= 64;
7902         }
7903 
7904         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7905         elt++;
7906         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7907         elt++;
7908         if (pos != 0) {
7909             do_ext64(s, tcg_resh, tcg_resl, pos);
7910             tcg_hh = tcg_temp_new_i64();
7911             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7912             do_ext64(s, tcg_hh, tcg_resh, pos);
7913         }
7914     }
7915 
7916     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7917     if (is_q) {
7918         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7919     }
7920     clear_vec_high(s, is_q, rd);
7921 }
7922 
7923 /* TBL/TBX
7924  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7925  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7926  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7927  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7928  */
7929 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7930 {
7931     int op2 = extract32(insn, 22, 2);
7932     int is_q = extract32(insn, 30, 1);
7933     int rm = extract32(insn, 16, 5);
7934     int rn = extract32(insn, 5, 5);
7935     int rd = extract32(insn, 0, 5);
7936     int is_tbx = extract32(insn, 12, 1);
7937     int len = (extract32(insn, 13, 2) + 1) * 16;
7938 
7939     if (op2 != 0) {
7940         unallocated_encoding(s);
7941         return;
7942     }
7943 
7944     if (!fp_access_check(s)) {
7945         return;
7946     }
7947 
7948     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7949                        vec_full_reg_offset(s, rm), tcg_env,
7950                        is_q ? 16 : 8, vec_full_reg_size(s),
7951                        (len << 6) | (is_tbx << 5) | rn,
7952                        gen_helper_simd_tblx);
7953 }
7954 
7955 /* ZIP/UZP/TRN
7956  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7957  * +---+---+-------------+------+---+------+---+------------------+------+
7958  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7959  * +---+---+-------------+------+---+------+---+------------------+------+
7960  */
7961 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7962 {
7963     int rd = extract32(insn, 0, 5);
7964     int rn = extract32(insn, 5, 5);
7965     int rm = extract32(insn, 16, 5);
7966     int size = extract32(insn, 22, 2);
7967     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7968      * bit 2 indicates 1 vs 2 variant of the insn.
7969      */
7970     int opcode = extract32(insn, 12, 2);
7971     bool part = extract32(insn, 14, 1);
7972     bool is_q = extract32(insn, 30, 1);
7973     int esize = 8 << size;
7974     int i;
7975     int datasize = is_q ? 128 : 64;
7976     int elements = datasize / esize;
7977     TCGv_i64 tcg_res[2], tcg_ele;
7978 
7979     if (opcode == 0 || (size == 3 && !is_q)) {
7980         unallocated_encoding(s);
7981         return;
7982     }
7983 
7984     if (!fp_access_check(s)) {
7985         return;
7986     }
7987 
7988     tcg_res[0] = tcg_temp_new_i64();
7989     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7990     tcg_ele = tcg_temp_new_i64();
7991 
7992     for (i = 0; i < elements; i++) {
7993         int o, w;
7994 
7995         switch (opcode) {
7996         case 1: /* UZP1/2 */
7997         {
7998             int midpoint = elements / 2;
7999             if (i < midpoint) {
8000                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
8001             } else {
8002                 read_vec_element(s, tcg_ele, rm,
8003                                  2 * (i - midpoint) + part, size);
8004             }
8005             break;
8006         }
8007         case 2: /* TRN1/2 */
8008             if (i & 1) {
8009                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
8010             } else {
8011                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
8012             }
8013             break;
8014         case 3: /* ZIP1/2 */
8015         {
8016             int base = part * elements / 2;
8017             if (i & 1) {
8018                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
8019             } else {
8020                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
8021             }
8022             break;
8023         }
8024         default:
8025             g_assert_not_reached();
8026         }
8027 
8028         w = (i * esize) / 64;
8029         o = (i * esize) % 64;
8030         if (o == 0) {
8031             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
8032         } else {
8033             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
8034             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
8035         }
8036     }
8037 
8038     for (i = 0; i <= is_q; ++i) {
8039         write_vec_element(s, tcg_res[i], rd, i, MO_64);
8040     }
8041     clear_vec_high(s, is_q, rd);
8042 }
8043 
8044 /*
8045  * do_reduction_op helper
8046  *
8047  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8048  * important for correct NaN propagation that we do these
8049  * operations in exactly the order specified by the pseudocode.
8050  *
8051  * This is a recursive function, TCG temps should be freed by the
8052  * calling function once it is done with the values.
8053  */
8054 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
8055                                 int esize, int size, int vmap, TCGv_ptr fpst)
8056 {
8057     if (esize == size) {
8058         int element;
8059         MemOp msize = esize == 16 ? MO_16 : MO_32;
8060         TCGv_i32 tcg_elem;
8061 
8062         /* We should have one register left here */
8063         assert(ctpop8(vmap) == 1);
8064         element = ctz32(vmap);
8065         assert(element < 8);
8066 
8067         tcg_elem = tcg_temp_new_i32();
8068         read_vec_element_i32(s, tcg_elem, rn, element, msize);
8069         return tcg_elem;
8070     } else {
8071         int bits = size / 2;
8072         int shift = ctpop8(vmap) / 2;
8073         int vmap_lo = (vmap >> shift) & vmap;
8074         int vmap_hi = (vmap & ~vmap_lo);
8075         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8076 
8077         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8078         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8079         tcg_res = tcg_temp_new_i32();
8080 
8081         switch (fpopcode) {
8082         case 0x0c: /* fmaxnmv half-precision */
8083             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8084             break;
8085         case 0x0f: /* fmaxv half-precision */
8086             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8087             break;
8088         case 0x1c: /* fminnmv half-precision */
8089             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8090             break;
8091         case 0x1f: /* fminv half-precision */
8092             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8093             break;
8094         case 0x2c: /* fmaxnmv */
8095             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8096             break;
8097         case 0x2f: /* fmaxv */
8098             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8099             break;
8100         case 0x3c: /* fminnmv */
8101             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8102             break;
8103         case 0x3f: /* fminv */
8104             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8105             break;
8106         default:
8107             g_assert_not_reached();
8108         }
8109         return tcg_res;
8110     }
8111 }
8112 
8113 /* AdvSIMD across lanes
8114  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8115  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8116  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8117  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8118  */
8119 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8120 {
8121     int rd = extract32(insn, 0, 5);
8122     int rn = extract32(insn, 5, 5);
8123     int size = extract32(insn, 22, 2);
8124     int opcode = extract32(insn, 12, 5);
8125     bool is_q = extract32(insn, 30, 1);
8126     bool is_u = extract32(insn, 29, 1);
8127     bool is_fp = false;
8128     bool is_min = false;
8129     int esize;
8130     int elements;
8131     int i;
8132     TCGv_i64 tcg_res, tcg_elt;
8133 
8134     switch (opcode) {
8135     case 0x1b: /* ADDV */
8136         if (is_u) {
8137             unallocated_encoding(s);
8138             return;
8139         }
8140         /* fall through */
8141     case 0x3: /* SADDLV, UADDLV */
8142     case 0xa: /* SMAXV, UMAXV */
8143     case 0x1a: /* SMINV, UMINV */
8144         if (size == 3 || (size == 2 && !is_q)) {
8145             unallocated_encoding(s);
8146             return;
8147         }
8148         break;
8149     case 0xc: /* FMAXNMV, FMINNMV */
8150     case 0xf: /* FMAXV, FMINV */
8151         /* Bit 1 of size field encodes min vs max and the actual size
8152          * depends on the encoding of the U bit. If not set (and FP16
8153          * enabled) then we do half-precision float instead of single
8154          * precision.
8155          */
8156         is_min = extract32(size, 1, 1);
8157         is_fp = true;
8158         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8159             size = 1;
8160         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8161             unallocated_encoding(s);
8162             return;
8163         } else {
8164             size = 2;
8165         }
8166         break;
8167     default:
8168         unallocated_encoding(s);
8169         return;
8170     }
8171 
8172     if (!fp_access_check(s)) {
8173         return;
8174     }
8175 
8176     esize = 8 << size;
8177     elements = (is_q ? 128 : 64) / esize;
8178 
8179     tcg_res = tcg_temp_new_i64();
8180     tcg_elt = tcg_temp_new_i64();
8181 
8182     /* These instructions operate across all lanes of a vector
8183      * to produce a single result. We can guarantee that a 64
8184      * bit intermediate is sufficient:
8185      *  + for [US]ADDLV the maximum element size is 32 bits, and
8186      *    the result type is 64 bits
8187      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8188      *    same as the element size, which is 32 bits at most
8189      * For the integer operations we can choose to work at 64
8190      * or 32 bits and truncate at the end; for simplicity
8191      * we use 64 bits always. The floating point
8192      * ops do require 32 bit intermediates, though.
8193      */
8194     if (!is_fp) {
8195         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8196 
8197         for (i = 1; i < elements; i++) {
8198             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8199 
8200             switch (opcode) {
8201             case 0x03: /* SADDLV / UADDLV */
8202             case 0x1b: /* ADDV */
8203                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8204                 break;
8205             case 0x0a: /* SMAXV / UMAXV */
8206                 if (is_u) {
8207                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8208                 } else {
8209                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8210                 }
8211                 break;
8212             case 0x1a: /* SMINV / UMINV */
8213                 if (is_u) {
8214                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8215                 } else {
8216                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8217                 }
8218                 break;
8219             default:
8220                 g_assert_not_reached();
8221             }
8222 
8223         }
8224     } else {
8225         /* Floating point vector reduction ops which work across 32
8226          * bit (single) or 16 bit (half-precision) intermediates.
8227          * Note that correct NaN propagation requires that we do these
8228          * operations in exactly the order specified by the pseudocode.
8229          */
8230         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8231         int fpopcode = opcode | is_min << 4 | is_u << 5;
8232         int vmap = (1 << elements) - 1;
8233         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8234                                              (is_q ? 128 : 64), vmap, fpst);
8235         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8236     }
8237 
8238     /* Now truncate the result to the width required for the final output */
8239     if (opcode == 0x03) {
8240         /* SADDLV, UADDLV: result is 2*esize */
8241         size++;
8242     }
8243 
8244     switch (size) {
8245     case 0:
8246         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8247         break;
8248     case 1:
8249         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8250         break;
8251     case 2:
8252         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8253         break;
8254     case 3:
8255         break;
8256     default:
8257         g_assert_not_reached();
8258     }
8259 
8260     write_fp_dreg(s, rd, tcg_res);
8261 }
8262 
8263 /* AdvSIMD modified immediate
8264  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8265  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8266  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8267  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8268  *
8269  * There are a number of operations that can be carried out here:
8270  *   MOVI - move (shifted) imm into register
8271  *   MVNI - move inverted (shifted) imm into register
8272  *   ORR  - bitwise OR of (shifted) imm with register
8273  *   BIC  - bitwise clear of (shifted) imm with register
8274  * With ARMv8.2 we also have:
8275  *   FMOV half-precision
8276  */
8277 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8278 {
8279     int rd = extract32(insn, 0, 5);
8280     int cmode = extract32(insn, 12, 4);
8281     int o2 = extract32(insn, 11, 1);
8282     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8283     bool is_neg = extract32(insn, 29, 1);
8284     bool is_q = extract32(insn, 30, 1);
8285     uint64_t imm = 0;
8286 
8287     if (o2) {
8288         if (cmode != 0xf || is_neg) {
8289             unallocated_encoding(s);
8290             return;
8291         }
8292         /* FMOV (vector, immediate) - half-precision */
8293         if (!dc_isar_feature(aa64_fp16, s)) {
8294             unallocated_encoding(s);
8295             return;
8296         }
8297         imm = vfp_expand_imm(MO_16, abcdefgh);
8298         /* now duplicate across the lanes */
8299         imm = dup_const(MO_16, imm);
8300     } else {
8301         if (cmode == 0xf && is_neg && !is_q) {
8302             unallocated_encoding(s);
8303             return;
8304         }
8305         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8306     }
8307 
8308     if (!fp_access_check(s)) {
8309         return;
8310     }
8311 
8312     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8313         /* MOVI or MVNI, with MVNI negation handled above.  */
8314         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8315                              vec_full_reg_size(s), imm);
8316     } else {
8317         /* ORR or BIC, with BIC negation to AND handled above.  */
8318         if (is_neg) {
8319             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8320         } else {
8321             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8322         }
8323     }
8324 }
8325 
8326 /* AdvSIMD scalar pairwise
8327  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8328  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8329  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8330  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8331  */
8332 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8333 {
8334     int u = extract32(insn, 29, 1);
8335     int size = extract32(insn, 22, 2);
8336     int opcode = extract32(insn, 12, 5);
8337     int rn = extract32(insn, 5, 5);
8338     int rd = extract32(insn, 0, 5);
8339     TCGv_ptr fpst;
8340 
8341     /* For some ops (the FP ones), size[1] is part of the encoding.
8342      * For ADDP strictly it is not but size[1] is always 1 for valid
8343      * encodings.
8344      */
8345     opcode |= (extract32(size, 1, 1) << 5);
8346 
8347     switch (opcode) {
8348     case 0x3b: /* ADDP */
8349         if (u || size != 3) {
8350             unallocated_encoding(s);
8351             return;
8352         }
8353         if (!fp_access_check(s)) {
8354             return;
8355         }
8356 
8357         fpst = NULL;
8358         break;
8359     case 0xc: /* FMAXNMP */
8360     case 0xd: /* FADDP */
8361     case 0xf: /* FMAXP */
8362     case 0x2c: /* FMINNMP */
8363     case 0x2f: /* FMINP */
8364         /* FP op, size[0] is 32 or 64 bit*/
8365         if (!u) {
8366             if ((size & 1) || !dc_isar_feature(aa64_fp16, s)) {
8367                 unallocated_encoding(s);
8368                 return;
8369             } else {
8370                 size = MO_16;
8371             }
8372         } else {
8373             size = extract32(size, 0, 1) ? MO_64 : MO_32;
8374         }
8375 
8376         if (!fp_access_check(s)) {
8377             return;
8378         }
8379 
8380         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8381         break;
8382     default:
8383         unallocated_encoding(s);
8384         return;
8385     }
8386 
8387     if (size == MO_64) {
8388         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8389         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8390         TCGv_i64 tcg_res = tcg_temp_new_i64();
8391 
8392         read_vec_element(s, tcg_op1, rn, 0, MO_64);
8393         read_vec_element(s, tcg_op2, rn, 1, MO_64);
8394 
8395         switch (opcode) {
8396         case 0x3b: /* ADDP */
8397             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8398             break;
8399         case 0xc: /* FMAXNMP */
8400             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8401             break;
8402         case 0xd: /* FADDP */
8403             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8404             break;
8405         case 0xf: /* FMAXP */
8406             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8407             break;
8408         case 0x2c: /* FMINNMP */
8409             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8410             break;
8411         case 0x2f: /* FMINP */
8412             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8413             break;
8414         default:
8415             g_assert_not_reached();
8416         }
8417 
8418         write_fp_dreg(s, rd, tcg_res);
8419     } else {
8420         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8421         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8422         TCGv_i32 tcg_res = tcg_temp_new_i32();
8423 
8424         read_vec_element_i32(s, tcg_op1, rn, 0, size);
8425         read_vec_element_i32(s, tcg_op2, rn, 1, size);
8426 
8427         if (size == MO_16) {
8428             switch (opcode) {
8429             case 0xc: /* FMAXNMP */
8430                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8431                 break;
8432             case 0xd: /* FADDP */
8433                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8434                 break;
8435             case 0xf: /* FMAXP */
8436                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8437                 break;
8438             case 0x2c: /* FMINNMP */
8439                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8440                 break;
8441             case 0x2f: /* FMINP */
8442                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8443                 break;
8444             default:
8445                 g_assert_not_reached();
8446             }
8447         } else {
8448             switch (opcode) {
8449             case 0xc: /* FMAXNMP */
8450                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8451                 break;
8452             case 0xd: /* FADDP */
8453                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8454                 break;
8455             case 0xf: /* FMAXP */
8456                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8457                 break;
8458             case 0x2c: /* FMINNMP */
8459                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8460                 break;
8461             case 0x2f: /* FMINP */
8462                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8463                 break;
8464             default:
8465                 g_assert_not_reached();
8466             }
8467         }
8468 
8469         write_fp_sreg(s, rd, tcg_res);
8470     }
8471 }
8472 
8473 /*
8474  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8475  *
8476  * This code is handles the common shifting code and is used by both
8477  * the vector and scalar code.
8478  */
8479 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8480                                     TCGv_i64 tcg_rnd, bool accumulate,
8481                                     bool is_u, int size, int shift)
8482 {
8483     bool extended_result = false;
8484     bool round = tcg_rnd != NULL;
8485     int ext_lshift = 0;
8486     TCGv_i64 tcg_src_hi;
8487 
8488     if (round && size == 3) {
8489         extended_result = true;
8490         ext_lshift = 64 - shift;
8491         tcg_src_hi = tcg_temp_new_i64();
8492     } else if (shift == 64) {
8493         if (!accumulate && is_u) {
8494             /* result is zero */
8495             tcg_gen_movi_i64(tcg_res, 0);
8496             return;
8497         }
8498     }
8499 
8500     /* Deal with the rounding step */
8501     if (round) {
8502         if (extended_result) {
8503             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8504             if (!is_u) {
8505                 /* take care of sign extending tcg_res */
8506                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8507                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8508                                  tcg_src, tcg_src_hi,
8509                                  tcg_rnd, tcg_zero);
8510             } else {
8511                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8512                                  tcg_src, tcg_zero,
8513                                  tcg_rnd, tcg_zero);
8514             }
8515         } else {
8516             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8517         }
8518     }
8519 
8520     /* Now do the shift right */
8521     if (round && extended_result) {
8522         /* extended case, >64 bit precision required */
8523         if (ext_lshift == 0) {
8524             /* special case, only high bits matter */
8525             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8526         } else {
8527             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8528             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8529             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8530         }
8531     } else {
8532         if (is_u) {
8533             if (shift == 64) {
8534                 /* essentially shifting in 64 zeros */
8535                 tcg_gen_movi_i64(tcg_src, 0);
8536             } else {
8537                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8538             }
8539         } else {
8540             if (shift == 64) {
8541                 /* effectively extending the sign-bit */
8542                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8543             } else {
8544                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8545             }
8546         }
8547     }
8548 
8549     if (accumulate) {
8550         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8551     } else {
8552         tcg_gen_mov_i64(tcg_res, tcg_src);
8553     }
8554 }
8555 
8556 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8557 static void handle_scalar_simd_shri(DisasContext *s,
8558                                     bool is_u, int immh, int immb,
8559                                     int opcode, int rn, int rd)
8560 {
8561     const int size = 3;
8562     int immhb = immh << 3 | immb;
8563     int shift = 2 * (8 << size) - immhb;
8564     bool accumulate = false;
8565     bool round = false;
8566     bool insert = false;
8567     TCGv_i64 tcg_rn;
8568     TCGv_i64 tcg_rd;
8569     TCGv_i64 tcg_round;
8570 
8571     if (!extract32(immh, 3, 1)) {
8572         unallocated_encoding(s);
8573         return;
8574     }
8575 
8576     if (!fp_access_check(s)) {
8577         return;
8578     }
8579 
8580     switch (opcode) {
8581     case 0x02: /* SSRA / USRA (accumulate) */
8582         accumulate = true;
8583         break;
8584     case 0x04: /* SRSHR / URSHR (rounding) */
8585         round = true;
8586         break;
8587     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8588         accumulate = round = true;
8589         break;
8590     case 0x08: /* SRI */
8591         insert = true;
8592         break;
8593     }
8594 
8595     if (round) {
8596         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8597     } else {
8598         tcg_round = NULL;
8599     }
8600 
8601     tcg_rn = read_fp_dreg(s, rn);
8602     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8603 
8604     if (insert) {
8605         /* shift count same as element size is valid but does nothing;
8606          * special case to avoid potential shift by 64.
8607          */
8608         int esize = 8 << size;
8609         if (shift != esize) {
8610             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8611             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8612         }
8613     } else {
8614         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8615                                 accumulate, is_u, size, shift);
8616     }
8617 
8618     write_fp_dreg(s, rd, tcg_rd);
8619 }
8620 
8621 /* SHL/SLI - Scalar shift left */
8622 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8623                                     int immh, int immb, int opcode,
8624                                     int rn, int rd)
8625 {
8626     int size = 32 - clz32(immh) - 1;
8627     int immhb = immh << 3 | immb;
8628     int shift = immhb - (8 << size);
8629     TCGv_i64 tcg_rn;
8630     TCGv_i64 tcg_rd;
8631 
8632     if (!extract32(immh, 3, 1)) {
8633         unallocated_encoding(s);
8634         return;
8635     }
8636 
8637     if (!fp_access_check(s)) {
8638         return;
8639     }
8640 
8641     tcg_rn = read_fp_dreg(s, rn);
8642     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8643 
8644     if (insert) {
8645         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8646     } else {
8647         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8648     }
8649 
8650     write_fp_dreg(s, rd, tcg_rd);
8651 }
8652 
8653 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8654  * (signed/unsigned) narrowing */
8655 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8656                                    bool is_u_shift, bool is_u_narrow,
8657                                    int immh, int immb, int opcode,
8658                                    int rn, int rd)
8659 {
8660     int immhb = immh << 3 | immb;
8661     int size = 32 - clz32(immh) - 1;
8662     int esize = 8 << size;
8663     int shift = (2 * esize) - immhb;
8664     int elements = is_scalar ? 1 : (64 / esize);
8665     bool round = extract32(opcode, 0, 1);
8666     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8667     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8668     TCGv_i32 tcg_rd_narrowed;
8669     TCGv_i64 tcg_final;
8670 
8671     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8672         { gen_helper_neon_narrow_sat_s8,
8673           gen_helper_neon_unarrow_sat8 },
8674         { gen_helper_neon_narrow_sat_s16,
8675           gen_helper_neon_unarrow_sat16 },
8676         { gen_helper_neon_narrow_sat_s32,
8677           gen_helper_neon_unarrow_sat32 },
8678         { NULL, NULL },
8679     };
8680     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8681         gen_helper_neon_narrow_sat_u8,
8682         gen_helper_neon_narrow_sat_u16,
8683         gen_helper_neon_narrow_sat_u32,
8684         NULL
8685     };
8686     NeonGenNarrowEnvFn *narrowfn;
8687 
8688     int i;
8689 
8690     assert(size < 4);
8691 
8692     if (extract32(immh, 3, 1)) {
8693         unallocated_encoding(s);
8694         return;
8695     }
8696 
8697     if (!fp_access_check(s)) {
8698         return;
8699     }
8700 
8701     if (is_u_shift) {
8702         narrowfn = unsigned_narrow_fns[size];
8703     } else {
8704         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8705     }
8706 
8707     tcg_rn = tcg_temp_new_i64();
8708     tcg_rd = tcg_temp_new_i64();
8709     tcg_rd_narrowed = tcg_temp_new_i32();
8710     tcg_final = tcg_temp_new_i64();
8711 
8712     if (round) {
8713         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8714     } else {
8715         tcg_round = NULL;
8716     }
8717 
8718     for (i = 0; i < elements; i++) {
8719         read_vec_element(s, tcg_rn, rn, i, ldop);
8720         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8721                                 false, is_u_shift, size+1, shift);
8722         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8723         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8724         if (i == 0) {
8725             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
8726         } else {
8727             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8728         }
8729     }
8730 
8731     if (!is_q) {
8732         write_vec_element(s, tcg_final, rd, 0, MO_64);
8733     } else {
8734         write_vec_element(s, tcg_final, rd, 1, MO_64);
8735     }
8736     clear_vec_high(s, is_q, rd);
8737 }
8738 
8739 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8740 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8741                              bool src_unsigned, bool dst_unsigned,
8742                              int immh, int immb, int rn, int rd)
8743 {
8744     int immhb = immh << 3 | immb;
8745     int size = 32 - clz32(immh) - 1;
8746     int shift = immhb - (8 << size);
8747     int pass;
8748 
8749     assert(immh != 0);
8750     assert(!(scalar && is_q));
8751 
8752     if (!scalar) {
8753         if (!is_q && extract32(immh, 3, 1)) {
8754             unallocated_encoding(s);
8755             return;
8756         }
8757 
8758         /* Since we use the variable-shift helpers we must
8759          * replicate the shift count into each element of
8760          * the tcg_shift value.
8761          */
8762         switch (size) {
8763         case 0:
8764             shift |= shift << 8;
8765             /* fall through */
8766         case 1:
8767             shift |= shift << 16;
8768             break;
8769         case 2:
8770         case 3:
8771             break;
8772         default:
8773             g_assert_not_reached();
8774         }
8775     }
8776 
8777     if (!fp_access_check(s)) {
8778         return;
8779     }
8780 
8781     if (size == 3) {
8782         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8783         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8784             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8785             { NULL, gen_helper_neon_qshl_u64 },
8786         };
8787         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8788         int maxpass = is_q ? 2 : 1;
8789 
8790         for (pass = 0; pass < maxpass; pass++) {
8791             TCGv_i64 tcg_op = tcg_temp_new_i64();
8792 
8793             read_vec_element(s, tcg_op, rn, pass, MO_64);
8794             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8795             write_vec_element(s, tcg_op, rd, pass, MO_64);
8796         }
8797         clear_vec_high(s, is_q, rd);
8798     } else {
8799         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8800         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8801             {
8802                 { gen_helper_neon_qshl_s8,
8803                   gen_helper_neon_qshl_s16,
8804                   gen_helper_neon_qshl_s32 },
8805                 { gen_helper_neon_qshlu_s8,
8806                   gen_helper_neon_qshlu_s16,
8807                   gen_helper_neon_qshlu_s32 }
8808             }, {
8809                 { NULL, NULL, NULL },
8810                 { gen_helper_neon_qshl_u8,
8811                   gen_helper_neon_qshl_u16,
8812                   gen_helper_neon_qshl_u32 }
8813             }
8814         };
8815         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8816         MemOp memop = scalar ? size : MO_32;
8817         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8818 
8819         for (pass = 0; pass < maxpass; pass++) {
8820             TCGv_i32 tcg_op = tcg_temp_new_i32();
8821 
8822             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8823             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8824             if (scalar) {
8825                 switch (size) {
8826                 case 0:
8827                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8828                     break;
8829                 case 1:
8830                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8831                     break;
8832                 case 2:
8833                     break;
8834                 default:
8835                     g_assert_not_reached();
8836                 }
8837                 write_fp_sreg(s, rd, tcg_op);
8838             } else {
8839                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8840             }
8841         }
8842 
8843         if (!scalar) {
8844             clear_vec_high(s, is_q, rd);
8845         }
8846     }
8847 }
8848 
8849 /* Common vector code for handling integer to FP conversion */
8850 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8851                                    int elements, int is_signed,
8852                                    int fracbits, int size)
8853 {
8854     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8855     TCGv_i32 tcg_shift = NULL;
8856 
8857     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8858     int pass;
8859 
8860     if (fracbits || size == MO_64) {
8861         tcg_shift = tcg_constant_i32(fracbits);
8862     }
8863 
8864     if (size == MO_64) {
8865         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8866         TCGv_i64 tcg_double = tcg_temp_new_i64();
8867 
8868         for (pass = 0; pass < elements; pass++) {
8869             read_vec_element(s, tcg_int64, rn, pass, mop);
8870 
8871             if (is_signed) {
8872                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8873                                      tcg_shift, tcg_fpst);
8874             } else {
8875                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8876                                      tcg_shift, tcg_fpst);
8877             }
8878             if (elements == 1) {
8879                 write_fp_dreg(s, rd, tcg_double);
8880             } else {
8881                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8882             }
8883         }
8884     } else {
8885         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8886         TCGv_i32 tcg_float = tcg_temp_new_i32();
8887 
8888         for (pass = 0; pass < elements; pass++) {
8889             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8890 
8891             switch (size) {
8892             case MO_32:
8893                 if (fracbits) {
8894                     if (is_signed) {
8895                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8896                                              tcg_shift, tcg_fpst);
8897                     } else {
8898                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8899                                              tcg_shift, tcg_fpst);
8900                     }
8901                 } else {
8902                     if (is_signed) {
8903                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8904                     } else {
8905                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8906                     }
8907                 }
8908                 break;
8909             case MO_16:
8910                 if (fracbits) {
8911                     if (is_signed) {
8912                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8913                                              tcg_shift, tcg_fpst);
8914                     } else {
8915                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8916                                              tcg_shift, tcg_fpst);
8917                     }
8918                 } else {
8919                     if (is_signed) {
8920                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8921                     } else {
8922                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8923                     }
8924                 }
8925                 break;
8926             default:
8927                 g_assert_not_reached();
8928             }
8929 
8930             if (elements == 1) {
8931                 write_fp_sreg(s, rd, tcg_float);
8932             } else {
8933                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8934             }
8935         }
8936     }
8937 
8938     clear_vec_high(s, elements << size == 16, rd);
8939 }
8940 
8941 /* UCVTF/SCVTF - Integer to FP conversion */
8942 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8943                                          bool is_q, bool is_u,
8944                                          int immh, int immb, int opcode,
8945                                          int rn, int rd)
8946 {
8947     int size, elements, fracbits;
8948     int immhb = immh << 3 | immb;
8949 
8950     if (immh & 8) {
8951         size = MO_64;
8952         if (!is_scalar && !is_q) {
8953             unallocated_encoding(s);
8954             return;
8955         }
8956     } else if (immh & 4) {
8957         size = MO_32;
8958     } else if (immh & 2) {
8959         size = MO_16;
8960         if (!dc_isar_feature(aa64_fp16, s)) {
8961             unallocated_encoding(s);
8962             return;
8963         }
8964     } else {
8965         /* immh == 0 would be a failure of the decode logic */
8966         g_assert(immh == 1);
8967         unallocated_encoding(s);
8968         return;
8969     }
8970 
8971     if (is_scalar) {
8972         elements = 1;
8973     } else {
8974         elements = (8 << is_q) >> size;
8975     }
8976     fracbits = (16 << size) - immhb;
8977 
8978     if (!fp_access_check(s)) {
8979         return;
8980     }
8981 
8982     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8983 }
8984 
8985 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8986 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8987                                          bool is_q, bool is_u,
8988                                          int immh, int immb, int rn, int rd)
8989 {
8990     int immhb = immh << 3 | immb;
8991     int pass, size, fracbits;
8992     TCGv_ptr tcg_fpstatus;
8993     TCGv_i32 tcg_rmode, tcg_shift;
8994 
8995     if (immh & 0x8) {
8996         size = MO_64;
8997         if (!is_scalar && !is_q) {
8998             unallocated_encoding(s);
8999             return;
9000         }
9001     } else if (immh & 0x4) {
9002         size = MO_32;
9003     } else if (immh & 0x2) {
9004         size = MO_16;
9005         if (!dc_isar_feature(aa64_fp16, s)) {
9006             unallocated_encoding(s);
9007             return;
9008         }
9009     } else {
9010         /* Should have split out AdvSIMD modified immediate earlier.  */
9011         assert(immh == 1);
9012         unallocated_encoding(s);
9013         return;
9014     }
9015 
9016     if (!fp_access_check(s)) {
9017         return;
9018     }
9019 
9020     assert(!(is_scalar && is_q));
9021 
9022     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9023     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9024     fracbits = (16 << size) - immhb;
9025     tcg_shift = tcg_constant_i32(fracbits);
9026 
9027     if (size == MO_64) {
9028         int maxpass = is_scalar ? 1 : 2;
9029 
9030         for (pass = 0; pass < maxpass; pass++) {
9031             TCGv_i64 tcg_op = tcg_temp_new_i64();
9032 
9033             read_vec_element(s, tcg_op, rn, pass, MO_64);
9034             if (is_u) {
9035                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9036             } else {
9037                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9038             }
9039             write_vec_element(s, tcg_op, rd, pass, MO_64);
9040         }
9041         clear_vec_high(s, is_q, rd);
9042     } else {
9043         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9044         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9045 
9046         switch (size) {
9047         case MO_16:
9048             if (is_u) {
9049                 fn = gen_helper_vfp_touhh;
9050             } else {
9051                 fn = gen_helper_vfp_toshh;
9052             }
9053             break;
9054         case MO_32:
9055             if (is_u) {
9056                 fn = gen_helper_vfp_touls;
9057             } else {
9058                 fn = gen_helper_vfp_tosls;
9059             }
9060             break;
9061         default:
9062             g_assert_not_reached();
9063         }
9064 
9065         for (pass = 0; pass < maxpass; pass++) {
9066             TCGv_i32 tcg_op = tcg_temp_new_i32();
9067 
9068             read_vec_element_i32(s, tcg_op, rn, pass, size);
9069             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9070             if (is_scalar) {
9071                 if (size == MO_16 && !is_u) {
9072                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9073                 }
9074                 write_fp_sreg(s, rd, tcg_op);
9075             } else {
9076                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9077             }
9078         }
9079         if (!is_scalar) {
9080             clear_vec_high(s, is_q, rd);
9081         }
9082     }
9083 
9084     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9085 }
9086 
9087 /* AdvSIMD scalar shift by immediate
9088  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9089  * +-----+---+-------------+------+------+--------+---+------+------+
9090  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9091  * +-----+---+-------------+------+------+--------+---+------+------+
9092  *
9093  * This is the scalar version so it works on a fixed sized registers
9094  */
9095 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9096 {
9097     int rd = extract32(insn, 0, 5);
9098     int rn = extract32(insn, 5, 5);
9099     int opcode = extract32(insn, 11, 5);
9100     int immb = extract32(insn, 16, 3);
9101     int immh = extract32(insn, 19, 4);
9102     bool is_u = extract32(insn, 29, 1);
9103 
9104     if (immh == 0) {
9105         unallocated_encoding(s);
9106         return;
9107     }
9108 
9109     switch (opcode) {
9110     case 0x08: /* SRI */
9111         if (!is_u) {
9112             unallocated_encoding(s);
9113             return;
9114         }
9115         /* fall through */
9116     case 0x00: /* SSHR / USHR */
9117     case 0x02: /* SSRA / USRA */
9118     case 0x04: /* SRSHR / URSHR */
9119     case 0x06: /* SRSRA / URSRA */
9120         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9121         break;
9122     case 0x0a: /* SHL / SLI */
9123         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9124         break;
9125     case 0x1c: /* SCVTF, UCVTF */
9126         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9127                                      opcode, rn, rd);
9128         break;
9129     case 0x10: /* SQSHRUN, SQSHRUN2 */
9130     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9131         if (!is_u) {
9132             unallocated_encoding(s);
9133             return;
9134         }
9135         handle_vec_simd_sqshrn(s, true, false, false, true,
9136                                immh, immb, opcode, rn, rd);
9137         break;
9138     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9139     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9140         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9141                                immh, immb, opcode, rn, rd);
9142         break;
9143     case 0xc: /* SQSHLU */
9144         if (!is_u) {
9145             unallocated_encoding(s);
9146             return;
9147         }
9148         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9149         break;
9150     case 0xe: /* SQSHL, UQSHL */
9151         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9152         break;
9153     case 0x1f: /* FCVTZS, FCVTZU */
9154         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9155         break;
9156     default:
9157         unallocated_encoding(s);
9158         break;
9159     }
9160 }
9161 
9162 /* AdvSIMD scalar three different
9163  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9164  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9165  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9166  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9167  */
9168 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9169 {
9170     bool is_u = extract32(insn, 29, 1);
9171     int size = extract32(insn, 22, 2);
9172     int opcode = extract32(insn, 12, 4);
9173     int rm = extract32(insn, 16, 5);
9174     int rn = extract32(insn, 5, 5);
9175     int rd = extract32(insn, 0, 5);
9176 
9177     if (is_u) {
9178         unallocated_encoding(s);
9179         return;
9180     }
9181 
9182     switch (opcode) {
9183     case 0x9: /* SQDMLAL, SQDMLAL2 */
9184     case 0xb: /* SQDMLSL, SQDMLSL2 */
9185     case 0xd: /* SQDMULL, SQDMULL2 */
9186         if (size == 0 || size == 3) {
9187             unallocated_encoding(s);
9188             return;
9189         }
9190         break;
9191     default:
9192         unallocated_encoding(s);
9193         return;
9194     }
9195 
9196     if (!fp_access_check(s)) {
9197         return;
9198     }
9199 
9200     if (size == 2) {
9201         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9202         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9203         TCGv_i64 tcg_res = tcg_temp_new_i64();
9204 
9205         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9206         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9207 
9208         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9209         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9210 
9211         switch (opcode) {
9212         case 0xd: /* SQDMULL, SQDMULL2 */
9213             break;
9214         case 0xb: /* SQDMLSL, SQDMLSL2 */
9215             tcg_gen_neg_i64(tcg_res, tcg_res);
9216             /* fall through */
9217         case 0x9: /* SQDMLAL, SQDMLAL2 */
9218             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9219             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9220                                               tcg_res, tcg_op1);
9221             break;
9222         default:
9223             g_assert_not_reached();
9224         }
9225 
9226         write_fp_dreg(s, rd, tcg_res);
9227     } else {
9228         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9229         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9230         TCGv_i64 tcg_res = tcg_temp_new_i64();
9231 
9232         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9233         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9234 
9235         switch (opcode) {
9236         case 0xd: /* SQDMULL, SQDMULL2 */
9237             break;
9238         case 0xb: /* SQDMLSL, SQDMLSL2 */
9239             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9240             /* fall through */
9241         case 0x9: /* SQDMLAL, SQDMLAL2 */
9242         {
9243             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9244             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9245             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9246                                               tcg_res, tcg_op3);
9247             break;
9248         }
9249         default:
9250             g_assert_not_reached();
9251         }
9252 
9253         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9254         write_fp_dreg(s, rd, tcg_res);
9255     }
9256 }
9257 
9258 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9259                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9260 {
9261     /* Handle 64x64->64 opcodes which are shared between the scalar
9262      * and vector 3-same groups. We cover every opcode where size == 3
9263      * is valid in either the three-reg-same (integer, not pairwise)
9264      * or scalar-three-reg-same groups.
9265      */
9266     TCGCond cond;
9267 
9268     switch (opcode) {
9269     case 0x1: /* SQADD */
9270         if (u) {
9271             gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9272         } else {
9273             gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9274         }
9275         break;
9276     case 0x5: /* SQSUB */
9277         if (u) {
9278             gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9279         } else {
9280             gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9281         }
9282         break;
9283     case 0x6: /* CMGT, CMHI */
9284         cond = u ? TCG_COND_GTU : TCG_COND_GT;
9285     do_cmop:
9286         /* 64 bit integer comparison, result = test ? -1 : 0. */
9287         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9288         break;
9289     case 0x7: /* CMGE, CMHS */
9290         cond = u ? TCG_COND_GEU : TCG_COND_GE;
9291         goto do_cmop;
9292     case 0x11: /* CMTST, CMEQ */
9293         if (u) {
9294             cond = TCG_COND_EQ;
9295             goto do_cmop;
9296         }
9297         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9298         break;
9299     case 0x8: /* SSHL, USHL */
9300         if (u) {
9301             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9302         } else {
9303             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9304         }
9305         break;
9306     case 0x9: /* SQSHL, UQSHL */
9307         if (u) {
9308             gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9309         } else {
9310             gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9311         }
9312         break;
9313     case 0xa: /* SRSHL, URSHL */
9314         if (u) {
9315             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9316         } else {
9317             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9318         }
9319         break;
9320     case 0xb: /* SQRSHL, UQRSHL */
9321         if (u) {
9322             gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9323         } else {
9324             gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9325         }
9326         break;
9327     case 0x10: /* ADD, SUB */
9328         if (u) {
9329             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9330         } else {
9331             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9332         }
9333         break;
9334     default:
9335         g_assert_not_reached();
9336     }
9337 }
9338 
9339 /* AdvSIMD scalar three same
9340  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9341  * +-----+---+-----------+------+---+------+--------+---+------+------+
9342  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9343  * +-----+---+-----------+------+---+------+--------+---+------+------+
9344  */
9345 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9346 {
9347     int rd = extract32(insn, 0, 5);
9348     int rn = extract32(insn, 5, 5);
9349     int opcode = extract32(insn, 11, 5);
9350     int rm = extract32(insn, 16, 5);
9351     int size = extract32(insn, 22, 2);
9352     bool u = extract32(insn, 29, 1);
9353     TCGv_i64 tcg_rd;
9354 
9355     switch (opcode) {
9356     case 0x1: /* SQADD, UQADD */
9357     case 0x5: /* SQSUB, UQSUB */
9358     case 0x9: /* SQSHL, UQSHL */
9359     case 0xb: /* SQRSHL, UQRSHL */
9360         break;
9361     case 0x8: /* SSHL, USHL */
9362     case 0xa: /* SRSHL, URSHL */
9363     case 0x6: /* CMGT, CMHI */
9364     case 0x7: /* CMGE, CMHS */
9365     case 0x11: /* CMTST, CMEQ */
9366     case 0x10: /* ADD, SUB (vector) */
9367         if (size != 3) {
9368             unallocated_encoding(s);
9369             return;
9370         }
9371         break;
9372     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9373         if (size != 1 && size != 2) {
9374             unallocated_encoding(s);
9375             return;
9376         }
9377         break;
9378     default:
9379         unallocated_encoding(s);
9380         return;
9381     }
9382 
9383     if (!fp_access_check(s)) {
9384         return;
9385     }
9386 
9387     tcg_rd = tcg_temp_new_i64();
9388 
9389     if (size == 3) {
9390         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9391         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9392 
9393         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9394     } else {
9395         /* Do a single operation on the lowest element in the vector.
9396          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9397          * no side effects for all these operations.
9398          * OPTME: special-purpose helpers would avoid doing some
9399          * unnecessary work in the helper for the 8 and 16 bit cases.
9400          */
9401         NeonGenTwoOpEnvFn *genenvfn;
9402         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9403         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9404         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9405 
9406         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9407         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9408 
9409         switch (opcode) {
9410         case 0x1: /* SQADD, UQADD */
9411         {
9412             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9413                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9414                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9415                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9416             };
9417             genenvfn = fns[size][u];
9418             break;
9419         }
9420         case 0x5: /* SQSUB, UQSUB */
9421         {
9422             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9423                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9424                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9425                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9426             };
9427             genenvfn = fns[size][u];
9428             break;
9429         }
9430         case 0x9: /* SQSHL, UQSHL */
9431         {
9432             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9433                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9434                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9435                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9436             };
9437             genenvfn = fns[size][u];
9438             break;
9439         }
9440         case 0xb: /* SQRSHL, UQRSHL */
9441         {
9442             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9443                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9444                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9445                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9446             };
9447             genenvfn = fns[size][u];
9448             break;
9449         }
9450         case 0x16: /* SQDMULH, SQRDMULH */
9451         {
9452             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9453                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9454                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9455             };
9456             assert(size == 1 || size == 2);
9457             genenvfn = fns[size - 1][u];
9458             break;
9459         }
9460         default:
9461             g_assert_not_reached();
9462         }
9463 
9464         genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
9465         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9466     }
9467 
9468     write_fp_dreg(s, rd, tcg_rd);
9469 }
9470 
9471 /* AdvSIMD scalar three same extra
9472  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9473  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9474  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9475  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9476  */
9477 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9478                                                    uint32_t insn)
9479 {
9480     int rd = extract32(insn, 0, 5);
9481     int rn = extract32(insn, 5, 5);
9482     int opcode = extract32(insn, 11, 4);
9483     int rm = extract32(insn, 16, 5);
9484     int size = extract32(insn, 22, 2);
9485     bool u = extract32(insn, 29, 1);
9486     TCGv_i32 ele1, ele2, ele3;
9487     TCGv_i64 res;
9488     bool feature;
9489 
9490     switch (u * 16 + opcode) {
9491     case 0x10: /* SQRDMLAH (vector) */
9492     case 0x11: /* SQRDMLSH (vector) */
9493         if (size != 1 && size != 2) {
9494             unallocated_encoding(s);
9495             return;
9496         }
9497         feature = dc_isar_feature(aa64_rdm, s);
9498         break;
9499     default:
9500         unallocated_encoding(s);
9501         return;
9502     }
9503     if (!feature) {
9504         unallocated_encoding(s);
9505         return;
9506     }
9507     if (!fp_access_check(s)) {
9508         return;
9509     }
9510 
9511     /* Do a single operation on the lowest element in the vector.
9512      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9513      * with no side effects for all these operations.
9514      * OPTME: special-purpose helpers would avoid doing some
9515      * unnecessary work in the helper for the 16 bit cases.
9516      */
9517     ele1 = tcg_temp_new_i32();
9518     ele2 = tcg_temp_new_i32();
9519     ele3 = tcg_temp_new_i32();
9520 
9521     read_vec_element_i32(s, ele1, rn, 0, size);
9522     read_vec_element_i32(s, ele2, rm, 0, size);
9523     read_vec_element_i32(s, ele3, rd, 0, size);
9524 
9525     switch (opcode) {
9526     case 0x0: /* SQRDMLAH */
9527         if (size == 1) {
9528             gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9529         } else {
9530             gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9531         }
9532         break;
9533     case 0x1: /* SQRDMLSH */
9534         if (size == 1) {
9535             gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9536         } else {
9537             gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9538         }
9539         break;
9540     default:
9541         g_assert_not_reached();
9542     }
9543 
9544     res = tcg_temp_new_i64();
9545     tcg_gen_extu_i32_i64(res, ele3);
9546     write_fp_dreg(s, rd, res);
9547 }
9548 
9549 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9550                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9551                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9552 {
9553     /* Handle 64->64 opcodes which are shared between the scalar and
9554      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9555      * is valid in either group and also the double-precision fp ops.
9556      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9557      * requires them.
9558      */
9559     TCGCond cond;
9560 
9561     switch (opcode) {
9562     case 0x4: /* CLS, CLZ */
9563         if (u) {
9564             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9565         } else {
9566             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9567         }
9568         break;
9569     case 0x5: /* NOT */
9570         /* This opcode is shared with CNT and RBIT but we have earlier
9571          * enforced that size == 3 if and only if this is the NOT insn.
9572          */
9573         tcg_gen_not_i64(tcg_rd, tcg_rn);
9574         break;
9575     case 0x7: /* SQABS, SQNEG */
9576         if (u) {
9577             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9578         } else {
9579             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9580         }
9581         break;
9582     case 0xa: /* CMLT */
9583         cond = TCG_COND_LT;
9584     do_cmop:
9585         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9586         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9587         break;
9588     case 0x8: /* CMGT, CMGE */
9589         cond = u ? TCG_COND_GE : TCG_COND_GT;
9590         goto do_cmop;
9591     case 0x9: /* CMEQ, CMLE */
9592         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9593         goto do_cmop;
9594     case 0xb: /* ABS, NEG */
9595         if (u) {
9596             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9597         } else {
9598             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9599         }
9600         break;
9601     case 0x2f: /* FABS */
9602         gen_vfp_absd(tcg_rd, tcg_rn);
9603         break;
9604     case 0x6f: /* FNEG */
9605         gen_vfp_negd(tcg_rd, tcg_rn);
9606         break;
9607     case 0x7f: /* FSQRT */
9608         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9609         break;
9610     case 0x1a: /* FCVTNS */
9611     case 0x1b: /* FCVTMS */
9612     case 0x1c: /* FCVTAS */
9613     case 0x3a: /* FCVTPS */
9614     case 0x3b: /* FCVTZS */
9615         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9616         break;
9617     case 0x5a: /* FCVTNU */
9618     case 0x5b: /* FCVTMU */
9619     case 0x5c: /* FCVTAU */
9620     case 0x7a: /* FCVTPU */
9621     case 0x7b: /* FCVTZU */
9622         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9623         break;
9624     case 0x18: /* FRINTN */
9625     case 0x19: /* FRINTM */
9626     case 0x38: /* FRINTP */
9627     case 0x39: /* FRINTZ */
9628     case 0x58: /* FRINTA */
9629     case 0x79: /* FRINTI */
9630         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9631         break;
9632     case 0x59: /* FRINTX */
9633         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9634         break;
9635     case 0x1e: /* FRINT32Z */
9636     case 0x5e: /* FRINT32X */
9637         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9638         break;
9639     case 0x1f: /* FRINT64Z */
9640     case 0x5f: /* FRINT64X */
9641         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9642         break;
9643     default:
9644         g_assert_not_reached();
9645     }
9646 }
9647 
9648 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9649                                    bool is_scalar, bool is_u, bool is_q,
9650                                    int size, int rn, int rd)
9651 {
9652     bool is_double = (size == MO_64);
9653     TCGv_ptr fpst;
9654 
9655     if (!fp_access_check(s)) {
9656         return;
9657     }
9658 
9659     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9660 
9661     if (is_double) {
9662         TCGv_i64 tcg_op = tcg_temp_new_i64();
9663         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9664         TCGv_i64 tcg_res = tcg_temp_new_i64();
9665         NeonGenTwoDoubleOpFn *genfn;
9666         bool swap = false;
9667         int pass;
9668 
9669         switch (opcode) {
9670         case 0x2e: /* FCMLT (zero) */
9671             swap = true;
9672             /* fallthrough */
9673         case 0x2c: /* FCMGT (zero) */
9674             genfn = gen_helper_neon_cgt_f64;
9675             break;
9676         case 0x2d: /* FCMEQ (zero) */
9677             genfn = gen_helper_neon_ceq_f64;
9678             break;
9679         case 0x6d: /* FCMLE (zero) */
9680             swap = true;
9681             /* fall through */
9682         case 0x6c: /* FCMGE (zero) */
9683             genfn = gen_helper_neon_cge_f64;
9684             break;
9685         default:
9686             g_assert_not_reached();
9687         }
9688 
9689         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9690             read_vec_element(s, tcg_op, rn, pass, MO_64);
9691             if (swap) {
9692                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9693             } else {
9694                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9695             }
9696             write_vec_element(s, tcg_res, rd, pass, MO_64);
9697         }
9698 
9699         clear_vec_high(s, !is_scalar, rd);
9700     } else {
9701         TCGv_i32 tcg_op = tcg_temp_new_i32();
9702         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9703         TCGv_i32 tcg_res = tcg_temp_new_i32();
9704         NeonGenTwoSingleOpFn *genfn;
9705         bool swap = false;
9706         int pass, maxpasses;
9707 
9708         if (size == MO_16) {
9709             switch (opcode) {
9710             case 0x2e: /* FCMLT (zero) */
9711                 swap = true;
9712                 /* fall through */
9713             case 0x2c: /* FCMGT (zero) */
9714                 genfn = gen_helper_advsimd_cgt_f16;
9715                 break;
9716             case 0x2d: /* FCMEQ (zero) */
9717                 genfn = gen_helper_advsimd_ceq_f16;
9718                 break;
9719             case 0x6d: /* FCMLE (zero) */
9720                 swap = true;
9721                 /* fall through */
9722             case 0x6c: /* FCMGE (zero) */
9723                 genfn = gen_helper_advsimd_cge_f16;
9724                 break;
9725             default:
9726                 g_assert_not_reached();
9727             }
9728         } else {
9729             switch (opcode) {
9730             case 0x2e: /* FCMLT (zero) */
9731                 swap = true;
9732                 /* fall through */
9733             case 0x2c: /* FCMGT (zero) */
9734                 genfn = gen_helper_neon_cgt_f32;
9735                 break;
9736             case 0x2d: /* FCMEQ (zero) */
9737                 genfn = gen_helper_neon_ceq_f32;
9738                 break;
9739             case 0x6d: /* FCMLE (zero) */
9740                 swap = true;
9741                 /* fall through */
9742             case 0x6c: /* FCMGE (zero) */
9743                 genfn = gen_helper_neon_cge_f32;
9744                 break;
9745             default:
9746                 g_assert_not_reached();
9747             }
9748         }
9749 
9750         if (is_scalar) {
9751             maxpasses = 1;
9752         } else {
9753             int vector_size = 8 << is_q;
9754             maxpasses = vector_size >> size;
9755         }
9756 
9757         for (pass = 0; pass < maxpasses; pass++) {
9758             read_vec_element_i32(s, tcg_op, rn, pass, size);
9759             if (swap) {
9760                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9761             } else {
9762                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9763             }
9764             if (is_scalar) {
9765                 write_fp_sreg(s, rd, tcg_res);
9766             } else {
9767                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9768             }
9769         }
9770 
9771         if (!is_scalar) {
9772             clear_vec_high(s, is_q, rd);
9773         }
9774     }
9775 }
9776 
9777 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9778                                     bool is_scalar, bool is_u, bool is_q,
9779                                     int size, int rn, int rd)
9780 {
9781     bool is_double = (size == 3);
9782     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9783 
9784     if (is_double) {
9785         TCGv_i64 tcg_op = tcg_temp_new_i64();
9786         TCGv_i64 tcg_res = tcg_temp_new_i64();
9787         int pass;
9788 
9789         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9790             read_vec_element(s, tcg_op, rn, pass, MO_64);
9791             switch (opcode) {
9792             case 0x3d: /* FRECPE */
9793                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9794                 break;
9795             case 0x3f: /* FRECPX */
9796                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9797                 break;
9798             case 0x7d: /* FRSQRTE */
9799                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9800                 break;
9801             default:
9802                 g_assert_not_reached();
9803             }
9804             write_vec_element(s, tcg_res, rd, pass, MO_64);
9805         }
9806         clear_vec_high(s, !is_scalar, rd);
9807     } else {
9808         TCGv_i32 tcg_op = tcg_temp_new_i32();
9809         TCGv_i32 tcg_res = tcg_temp_new_i32();
9810         int pass, maxpasses;
9811 
9812         if (is_scalar) {
9813             maxpasses = 1;
9814         } else {
9815             maxpasses = is_q ? 4 : 2;
9816         }
9817 
9818         for (pass = 0; pass < maxpasses; pass++) {
9819             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9820 
9821             switch (opcode) {
9822             case 0x3c: /* URECPE */
9823                 gen_helper_recpe_u32(tcg_res, tcg_op);
9824                 break;
9825             case 0x3d: /* FRECPE */
9826                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9827                 break;
9828             case 0x3f: /* FRECPX */
9829                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9830                 break;
9831             case 0x7d: /* FRSQRTE */
9832                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9833                 break;
9834             default:
9835                 g_assert_not_reached();
9836             }
9837 
9838             if (is_scalar) {
9839                 write_fp_sreg(s, rd, tcg_res);
9840             } else {
9841                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9842             }
9843         }
9844         if (!is_scalar) {
9845             clear_vec_high(s, is_q, rd);
9846         }
9847     }
9848 }
9849 
9850 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9851                                 int opcode, bool u, bool is_q,
9852                                 int size, int rn, int rd)
9853 {
9854     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9855      * in the source becomes a size element in the destination).
9856      */
9857     int pass;
9858     TCGv_i32 tcg_res[2];
9859     int destelt = is_q ? 2 : 0;
9860     int passes = scalar ? 1 : 2;
9861 
9862     if (scalar) {
9863         tcg_res[1] = tcg_constant_i32(0);
9864     }
9865 
9866     for (pass = 0; pass < passes; pass++) {
9867         TCGv_i64 tcg_op = tcg_temp_new_i64();
9868         NeonGenNarrowFn *genfn = NULL;
9869         NeonGenNarrowEnvFn *genenvfn = NULL;
9870 
9871         if (scalar) {
9872             read_vec_element(s, tcg_op, rn, pass, size + 1);
9873         } else {
9874             read_vec_element(s, tcg_op, rn, pass, MO_64);
9875         }
9876         tcg_res[pass] = tcg_temp_new_i32();
9877 
9878         switch (opcode) {
9879         case 0x12: /* XTN, SQXTUN */
9880         {
9881             static NeonGenNarrowFn * const xtnfns[3] = {
9882                 gen_helper_neon_narrow_u8,
9883                 gen_helper_neon_narrow_u16,
9884                 tcg_gen_extrl_i64_i32,
9885             };
9886             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9887                 gen_helper_neon_unarrow_sat8,
9888                 gen_helper_neon_unarrow_sat16,
9889                 gen_helper_neon_unarrow_sat32,
9890             };
9891             if (u) {
9892                 genenvfn = sqxtunfns[size];
9893             } else {
9894                 genfn = xtnfns[size];
9895             }
9896             break;
9897         }
9898         case 0x14: /* SQXTN, UQXTN */
9899         {
9900             static NeonGenNarrowEnvFn * const fns[3][2] = {
9901                 { gen_helper_neon_narrow_sat_s8,
9902                   gen_helper_neon_narrow_sat_u8 },
9903                 { gen_helper_neon_narrow_sat_s16,
9904                   gen_helper_neon_narrow_sat_u16 },
9905                 { gen_helper_neon_narrow_sat_s32,
9906                   gen_helper_neon_narrow_sat_u32 },
9907             };
9908             genenvfn = fns[size][u];
9909             break;
9910         }
9911         case 0x16: /* FCVTN, FCVTN2 */
9912             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9913             if (size == 2) {
9914                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
9915             } else {
9916                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9917                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9918                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9919                 TCGv_i32 ahp = get_ahp_flag();
9920 
9921                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9922                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9923                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9924                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9925             }
9926             break;
9927         case 0x36: /* BFCVTN, BFCVTN2 */
9928             {
9929                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9930                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9931             }
9932             break;
9933         case 0x56:  /* FCVTXN, FCVTXN2 */
9934             /* 64 bit to 32 bit float conversion
9935              * with von Neumann rounding (round to odd)
9936              */
9937             assert(size == 2);
9938             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
9939             break;
9940         default:
9941             g_assert_not_reached();
9942         }
9943 
9944         if (genfn) {
9945             genfn(tcg_res[pass], tcg_op);
9946         } else if (genenvfn) {
9947             genenvfn(tcg_res[pass], tcg_env, tcg_op);
9948         }
9949     }
9950 
9951     for (pass = 0; pass < 2; pass++) {
9952         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9953     }
9954     clear_vec_high(s, is_q, rd);
9955 }
9956 
9957 /* Remaining saturating accumulating ops */
9958 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9959                                 bool is_q, int size, int rn, int rd)
9960 {
9961     bool is_double = (size == 3);
9962 
9963     if (is_double) {
9964         TCGv_i64 tcg_rn = tcg_temp_new_i64();
9965         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9966         int pass;
9967 
9968         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9969             read_vec_element(s, tcg_rn, rn, pass, MO_64);
9970             read_vec_element(s, tcg_rd, rd, pass, MO_64);
9971 
9972             if (is_u) { /* USQADD */
9973                 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9974             } else { /* SUQADD */
9975                 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9976             }
9977             write_vec_element(s, tcg_rd, rd, pass, MO_64);
9978         }
9979         clear_vec_high(s, !is_scalar, rd);
9980     } else {
9981         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9982         TCGv_i32 tcg_rd = tcg_temp_new_i32();
9983         int pass, maxpasses;
9984 
9985         if (is_scalar) {
9986             maxpasses = 1;
9987         } else {
9988             maxpasses = is_q ? 4 : 2;
9989         }
9990 
9991         for (pass = 0; pass < maxpasses; pass++) {
9992             if (is_scalar) {
9993                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9994                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9995             } else {
9996                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9997                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9998             }
9999 
10000             if (is_u) { /* USQADD */
10001                 switch (size) {
10002                 case 0:
10003                     gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10004                     break;
10005                 case 1:
10006                     gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10007                     break;
10008                 case 2:
10009                     gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10010                     break;
10011                 default:
10012                     g_assert_not_reached();
10013                 }
10014             } else { /* SUQADD */
10015                 switch (size) {
10016                 case 0:
10017                     gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10018                     break;
10019                 case 1:
10020                     gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10021                     break;
10022                 case 2:
10023                     gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10024                     break;
10025                 default:
10026                     g_assert_not_reached();
10027                 }
10028             }
10029 
10030             if (is_scalar) {
10031                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10032             }
10033             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10034         }
10035         clear_vec_high(s, is_q, rd);
10036     }
10037 }
10038 
10039 /* AdvSIMD scalar two reg misc
10040  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10041  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10042  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10043  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10044  */
10045 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10046 {
10047     int rd = extract32(insn, 0, 5);
10048     int rn = extract32(insn, 5, 5);
10049     int opcode = extract32(insn, 12, 5);
10050     int size = extract32(insn, 22, 2);
10051     bool u = extract32(insn, 29, 1);
10052     bool is_fcvt = false;
10053     int rmode;
10054     TCGv_i32 tcg_rmode;
10055     TCGv_ptr tcg_fpstatus;
10056 
10057     switch (opcode) {
10058     case 0x3: /* USQADD / SUQADD*/
10059         if (!fp_access_check(s)) {
10060             return;
10061         }
10062         handle_2misc_satacc(s, true, u, false, size, rn, rd);
10063         return;
10064     case 0x7: /* SQABS / SQNEG */
10065         break;
10066     case 0xa: /* CMLT */
10067         if (u) {
10068             unallocated_encoding(s);
10069             return;
10070         }
10071         /* fall through */
10072     case 0x8: /* CMGT, CMGE */
10073     case 0x9: /* CMEQ, CMLE */
10074     case 0xb: /* ABS, NEG */
10075         if (size != 3) {
10076             unallocated_encoding(s);
10077             return;
10078         }
10079         break;
10080     case 0x12: /* SQXTUN */
10081         if (!u) {
10082             unallocated_encoding(s);
10083             return;
10084         }
10085         /* fall through */
10086     case 0x14: /* SQXTN, UQXTN */
10087         if (size == 3) {
10088             unallocated_encoding(s);
10089             return;
10090         }
10091         if (!fp_access_check(s)) {
10092             return;
10093         }
10094         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10095         return;
10096     case 0xc ... 0xf:
10097     case 0x16 ... 0x1d:
10098     case 0x1f:
10099         /* Floating point: U, size[1] and opcode indicate operation;
10100          * size[0] indicates single or double precision.
10101          */
10102         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10103         size = extract32(size, 0, 1) ? 3 : 2;
10104         switch (opcode) {
10105         case 0x2c: /* FCMGT (zero) */
10106         case 0x2d: /* FCMEQ (zero) */
10107         case 0x2e: /* FCMLT (zero) */
10108         case 0x6c: /* FCMGE (zero) */
10109         case 0x6d: /* FCMLE (zero) */
10110             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10111             return;
10112         case 0x1d: /* SCVTF */
10113         case 0x5d: /* UCVTF */
10114         {
10115             bool is_signed = (opcode == 0x1d);
10116             if (!fp_access_check(s)) {
10117                 return;
10118             }
10119             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10120             return;
10121         }
10122         case 0x3d: /* FRECPE */
10123         case 0x3f: /* FRECPX */
10124         case 0x7d: /* FRSQRTE */
10125             if (!fp_access_check(s)) {
10126                 return;
10127             }
10128             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10129             return;
10130         case 0x1a: /* FCVTNS */
10131         case 0x1b: /* FCVTMS */
10132         case 0x3a: /* FCVTPS */
10133         case 0x3b: /* FCVTZS */
10134         case 0x5a: /* FCVTNU */
10135         case 0x5b: /* FCVTMU */
10136         case 0x7a: /* FCVTPU */
10137         case 0x7b: /* FCVTZU */
10138             is_fcvt = true;
10139             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10140             break;
10141         case 0x1c: /* FCVTAS */
10142         case 0x5c: /* FCVTAU */
10143             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10144             is_fcvt = true;
10145             rmode = FPROUNDING_TIEAWAY;
10146             break;
10147         case 0x56: /* FCVTXN, FCVTXN2 */
10148             if (size == 2) {
10149                 unallocated_encoding(s);
10150                 return;
10151             }
10152             if (!fp_access_check(s)) {
10153                 return;
10154             }
10155             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10156             return;
10157         default:
10158             unallocated_encoding(s);
10159             return;
10160         }
10161         break;
10162     default:
10163         unallocated_encoding(s);
10164         return;
10165     }
10166 
10167     if (!fp_access_check(s)) {
10168         return;
10169     }
10170 
10171     if (is_fcvt) {
10172         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10173         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10174     } else {
10175         tcg_fpstatus = NULL;
10176         tcg_rmode = NULL;
10177     }
10178 
10179     if (size == 3) {
10180         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10181         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10182 
10183         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10184         write_fp_dreg(s, rd, tcg_rd);
10185     } else {
10186         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10187         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10188 
10189         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10190 
10191         switch (opcode) {
10192         case 0x7: /* SQABS, SQNEG */
10193         {
10194             NeonGenOneOpEnvFn *genfn;
10195             static NeonGenOneOpEnvFn * const fns[3][2] = {
10196                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10197                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10198                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10199             };
10200             genfn = fns[size][u];
10201             genfn(tcg_rd, tcg_env, tcg_rn);
10202             break;
10203         }
10204         case 0x1a: /* FCVTNS */
10205         case 0x1b: /* FCVTMS */
10206         case 0x1c: /* FCVTAS */
10207         case 0x3a: /* FCVTPS */
10208         case 0x3b: /* FCVTZS */
10209             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10210                                  tcg_fpstatus);
10211             break;
10212         case 0x5a: /* FCVTNU */
10213         case 0x5b: /* FCVTMU */
10214         case 0x5c: /* FCVTAU */
10215         case 0x7a: /* FCVTPU */
10216         case 0x7b: /* FCVTZU */
10217             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10218                                  tcg_fpstatus);
10219             break;
10220         default:
10221             g_assert_not_reached();
10222         }
10223 
10224         write_fp_sreg(s, rd, tcg_rd);
10225     }
10226 
10227     if (is_fcvt) {
10228         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10229     }
10230 }
10231 
10232 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10233 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10234                                  int immh, int immb, int opcode, int rn, int rd)
10235 {
10236     int size = 32 - clz32(immh) - 1;
10237     int immhb = immh << 3 | immb;
10238     int shift = 2 * (8 << size) - immhb;
10239     GVecGen2iFn *gvec_fn;
10240 
10241     if (extract32(immh, 3, 1) && !is_q) {
10242         unallocated_encoding(s);
10243         return;
10244     }
10245     tcg_debug_assert(size <= 3);
10246 
10247     if (!fp_access_check(s)) {
10248         return;
10249     }
10250 
10251     switch (opcode) {
10252     case 0x02: /* SSRA / USRA (accumulate) */
10253         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10254         break;
10255 
10256     case 0x08: /* SRI */
10257         gvec_fn = gen_gvec_sri;
10258         break;
10259 
10260     case 0x00: /* SSHR / USHR */
10261         if (is_u) {
10262             if (shift == 8 << size) {
10263                 /* Shift count the same size as element size produces zero.  */
10264                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10265                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10266                 return;
10267             }
10268             gvec_fn = tcg_gen_gvec_shri;
10269         } else {
10270             /* Shift count the same size as element size produces all sign.  */
10271             if (shift == 8 << size) {
10272                 shift -= 1;
10273             }
10274             gvec_fn = tcg_gen_gvec_sari;
10275         }
10276         break;
10277 
10278     case 0x04: /* SRSHR / URSHR (rounding) */
10279         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10280         break;
10281 
10282     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10283         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10284         break;
10285 
10286     default:
10287         g_assert_not_reached();
10288     }
10289 
10290     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10291 }
10292 
10293 /* SHL/SLI - Vector shift left */
10294 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10295                                  int immh, int immb, int opcode, int rn, int rd)
10296 {
10297     int size = 32 - clz32(immh) - 1;
10298     int immhb = immh << 3 | immb;
10299     int shift = immhb - (8 << size);
10300 
10301     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10302     assert(size >= 0 && size <= 3);
10303 
10304     if (extract32(immh, 3, 1) && !is_q) {
10305         unallocated_encoding(s);
10306         return;
10307     }
10308 
10309     if (!fp_access_check(s)) {
10310         return;
10311     }
10312 
10313     if (insert) {
10314         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10315     } else {
10316         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10317     }
10318 }
10319 
10320 /* USHLL/SHLL - Vector shift left with widening */
10321 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10322                                  int immh, int immb, int opcode, int rn, int rd)
10323 {
10324     int size = 32 - clz32(immh) - 1;
10325     int immhb = immh << 3 | immb;
10326     int shift = immhb - (8 << size);
10327     int dsize = 64;
10328     int esize = 8 << size;
10329     int elements = dsize/esize;
10330     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10331     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10332     int i;
10333 
10334     if (size >= 3) {
10335         unallocated_encoding(s);
10336         return;
10337     }
10338 
10339     if (!fp_access_check(s)) {
10340         return;
10341     }
10342 
10343     /* For the LL variants the store is larger than the load,
10344      * so if rd == rn we would overwrite parts of our input.
10345      * So load everything right now and use shifts in the main loop.
10346      */
10347     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10348 
10349     for (i = 0; i < elements; i++) {
10350         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10351         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10352         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10353         write_vec_element(s, tcg_rd, rd, i, size + 1);
10354     }
10355 }
10356 
10357 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10358 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10359                                  int immh, int immb, int opcode, int rn, int rd)
10360 {
10361     int immhb = immh << 3 | immb;
10362     int size = 32 - clz32(immh) - 1;
10363     int dsize = 64;
10364     int esize = 8 << size;
10365     int elements = dsize/esize;
10366     int shift = (2 * esize) - immhb;
10367     bool round = extract32(opcode, 0, 1);
10368     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10369     TCGv_i64 tcg_round;
10370     int i;
10371 
10372     if (extract32(immh, 3, 1)) {
10373         unallocated_encoding(s);
10374         return;
10375     }
10376 
10377     if (!fp_access_check(s)) {
10378         return;
10379     }
10380 
10381     tcg_rn = tcg_temp_new_i64();
10382     tcg_rd = tcg_temp_new_i64();
10383     tcg_final = tcg_temp_new_i64();
10384     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10385 
10386     if (round) {
10387         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10388     } else {
10389         tcg_round = NULL;
10390     }
10391 
10392     for (i = 0; i < elements; i++) {
10393         read_vec_element(s, tcg_rn, rn, i, size+1);
10394         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10395                                 false, true, size+1, shift);
10396 
10397         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10398     }
10399 
10400     if (!is_q) {
10401         write_vec_element(s, tcg_final, rd, 0, MO_64);
10402     } else {
10403         write_vec_element(s, tcg_final, rd, 1, MO_64);
10404     }
10405 
10406     clear_vec_high(s, is_q, rd);
10407 }
10408 
10409 
10410 /* AdvSIMD shift by immediate
10411  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10412  * +---+---+---+-------------+------+------+--------+---+------+------+
10413  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10414  * +---+---+---+-------------+------+------+--------+---+------+------+
10415  */
10416 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10417 {
10418     int rd = extract32(insn, 0, 5);
10419     int rn = extract32(insn, 5, 5);
10420     int opcode = extract32(insn, 11, 5);
10421     int immb = extract32(insn, 16, 3);
10422     int immh = extract32(insn, 19, 4);
10423     bool is_u = extract32(insn, 29, 1);
10424     bool is_q = extract32(insn, 30, 1);
10425 
10426     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10427     assert(immh != 0);
10428 
10429     switch (opcode) {
10430     case 0x08: /* SRI */
10431         if (!is_u) {
10432             unallocated_encoding(s);
10433             return;
10434         }
10435         /* fall through */
10436     case 0x00: /* SSHR / USHR */
10437     case 0x02: /* SSRA / USRA (accumulate) */
10438     case 0x04: /* SRSHR / URSHR (rounding) */
10439     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10440         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10441         break;
10442     case 0x0a: /* SHL / SLI */
10443         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10444         break;
10445     case 0x10: /* SHRN */
10446     case 0x11: /* RSHRN / SQRSHRUN */
10447         if (is_u) {
10448             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10449                                    opcode, rn, rd);
10450         } else {
10451             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10452         }
10453         break;
10454     case 0x12: /* SQSHRN / UQSHRN */
10455     case 0x13: /* SQRSHRN / UQRSHRN */
10456         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10457                                opcode, rn, rd);
10458         break;
10459     case 0x14: /* SSHLL / USHLL */
10460         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10461         break;
10462     case 0x1c: /* SCVTF / UCVTF */
10463         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10464                                      opcode, rn, rd);
10465         break;
10466     case 0xc: /* SQSHLU */
10467         if (!is_u) {
10468             unallocated_encoding(s);
10469             return;
10470         }
10471         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10472         break;
10473     case 0xe: /* SQSHL, UQSHL */
10474         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10475         break;
10476     case 0x1f: /* FCVTZS/ FCVTZU */
10477         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10478         return;
10479     default:
10480         unallocated_encoding(s);
10481         return;
10482     }
10483 }
10484 
10485 /* Generate code to do a "long" addition or subtraction, ie one done in
10486  * TCGv_i64 on vector lanes twice the width specified by size.
10487  */
10488 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10489                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10490 {
10491     static NeonGenTwo64OpFn * const fns[3][2] = {
10492         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10493         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10494         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10495     };
10496     NeonGenTwo64OpFn *genfn;
10497     assert(size < 3);
10498 
10499     genfn = fns[size][is_sub];
10500     genfn(tcg_res, tcg_op1, tcg_op2);
10501 }
10502 
10503 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10504                                 int opcode, int rd, int rn, int rm)
10505 {
10506     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10507     TCGv_i64 tcg_res[2];
10508     int pass, accop;
10509 
10510     tcg_res[0] = tcg_temp_new_i64();
10511     tcg_res[1] = tcg_temp_new_i64();
10512 
10513     /* Does this op do an adding accumulate, a subtracting accumulate,
10514      * or no accumulate at all?
10515      */
10516     switch (opcode) {
10517     case 5:
10518     case 8:
10519     case 9:
10520         accop = 1;
10521         break;
10522     case 10:
10523     case 11:
10524         accop = -1;
10525         break;
10526     default:
10527         accop = 0;
10528         break;
10529     }
10530 
10531     if (accop != 0) {
10532         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10533         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10534     }
10535 
10536     /* size == 2 means two 32x32->64 operations; this is worth special
10537      * casing because we can generally handle it inline.
10538      */
10539     if (size == 2) {
10540         for (pass = 0; pass < 2; pass++) {
10541             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10542             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10543             TCGv_i64 tcg_passres;
10544             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10545 
10546             int elt = pass + is_q * 2;
10547 
10548             read_vec_element(s, tcg_op1, rn, elt, memop);
10549             read_vec_element(s, tcg_op2, rm, elt, memop);
10550 
10551             if (accop == 0) {
10552                 tcg_passres = tcg_res[pass];
10553             } else {
10554                 tcg_passres = tcg_temp_new_i64();
10555             }
10556 
10557             switch (opcode) {
10558             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10559                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10560                 break;
10561             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10562                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10563                 break;
10564             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10565             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10566             {
10567                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10568                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10569 
10570                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10571                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10572                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10573                                     tcg_passres,
10574                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10575                 break;
10576             }
10577             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10578             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10579             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10580                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10581                 break;
10582             case 9: /* SQDMLAL, SQDMLAL2 */
10583             case 11: /* SQDMLSL, SQDMLSL2 */
10584             case 13: /* SQDMULL, SQDMULL2 */
10585                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10586                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10587                                                   tcg_passres, tcg_passres);
10588                 break;
10589             default:
10590                 g_assert_not_reached();
10591             }
10592 
10593             if (opcode == 9 || opcode == 11) {
10594                 /* saturating accumulate ops */
10595                 if (accop < 0) {
10596                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10597                 }
10598                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10599                                                   tcg_res[pass], tcg_passres);
10600             } else if (accop > 0) {
10601                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10602             } else if (accop < 0) {
10603                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10604             }
10605         }
10606     } else {
10607         /* size 0 or 1, generally helper functions */
10608         for (pass = 0; pass < 2; pass++) {
10609             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10610             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10611             TCGv_i64 tcg_passres;
10612             int elt = pass + is_q * 2;
10613 
10614             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10615             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10616 
10617             if (accop == 0) {
10618                 tcg_passres = tcg_res[pass];
10619             } else {
10620                 tcg_passres = tcg_temp_new_i64();
10621             }
10622 
10623             switch (opcode) {
10624             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10625             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10626             {
10627                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10628                 static NeonGenWidenFn * const widenfns[2][2] = {
10629                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10630                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10631                 };
10632                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10633 
10634                 widenfn(tcg_op2_64, tcg_op2);
10635                 widenfn(tcg_passres, tcg_op1);
10636                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10637                               tcg_passres, tcg_op2_64);
10638                 break;
10639             }
10640             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10641             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10642                 if (size == 0) {
10643                     if (is_u) {
10644                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10645                     } else {
10646                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10647                     }
10648                 } else {
10649                     if (is_u) {
10650                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10651                     } else {
10652                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10653                     }
10654                 }
10655                 break;
10656             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10657             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10658             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10659                 if (size == 0) {
10660                     if (is_u) {
10661                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10662                     } else {
10663                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10664                     }
10665                 } else {
10666                     if (is_u) {
10667                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10668                     } else {
10669                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10670                     }
10671                 }
10672                 break;
10673             case 9: /* SQDMLAL, SQDMLAL2 */
10674             case 11: /* SQDMLSL, SQDMLSL2 */
10675             case 13: /* SQDMULL, SQDMULL2 */
10676                 assert(size == 1);
10677                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10678                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10679                                                   tcg_passres, tcg_passres);
10680                 break;
10681             default:
10682                 g_assert_not_reached();
10683             }
10684 
10685             if (accop != 0) {
10686                 if (opcode == 9 || opcode == 11) {
10687                     /* saturating accumulate ops */
10688                     if (accop < 0) {
10689                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10690                     }
10691                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10692                                                       tcg_res[pass],
10693                                                       tcg_passres);
10694                 } else {
10695                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10696                                   tcg_res[pass], tcg_passres);
10697                 }
10698             }
10699         }
10700     }
10701 
10702     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10703     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10704 }
10705 
10706 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10707                             int opcode, int rd, int rn, int rm)
10708 {
10709     TCGv_i64 tcg_res[2];
10710     int part = is_q ? 2 : 0;
10711     int pass;
10712 
10713     for (pass = 0; pass < 2; pass++) {
10714         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10715         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10716         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10717         static NeonGenWidenFn * const widenfns[3][2] = {
10718             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10719             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10720             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10721         };
10722         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10723 
10724         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10725         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10726         widenfn(tcg_op2_wide, tcg_op2);
10727         tcg_res[pass] = tcg_temp_new_i64();
10728         gen_neon_addl(size, (opcode == 3),
10729                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10730     }
10731 
10732     for (pass = 0; pass < 2; pass++) {
10733         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10734     }
10735 }
10736 
10737 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10738 {
10739     tcg_gen_addi_i64(in, in, 1U << 31);
10740     tcg_gen_extrh_i64_i32(res, in);
10741 }
10742 
10743 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10744                                  int opcode, int rd, int rn, int rm)
10745 {
10746     TCGv_i32 tcg_res[2];
10747     int part = is_q ? 2 : 0;
10748     int pass;
10749 
10750     for (pass = 0; pass < 2; pass++) {
10751         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10752         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10753         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10754         static NeonGenNarrowFn * const narrowfns[3][2] = {
10755             { gen_helper_neon_narrow_high_u8,
10756               gen_helper_neon_narrow_round_high_u8 },
10757             { gen_helper_neon_narrow_high_u16,
10758               gen_helper_neon_narrow_round_high_u16 },
10759             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10760         };
10761         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10762 
10763         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10764         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10765 
10766         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10767 
10768         tcg_res[pass] = tcg_temp_new_i32();
10769         gennarrow(tcg_res[pass], tcg_wideres);
10770     }
10771 
10772     for (pass = 0; pass < 2; pass++) {
10773         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10774     }
10775     clear_vec_high(s, is_q, rd);
10776 }
10777 
10778 /* AdvSIMD three different
10779  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10780  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10781  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10782  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10783  */
10784 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10785 {
10786     /* Instructions in this group fall into three basic classes
10787      * (in each case with the operation working on each element in
10788      * the input vectors):
10789      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10790      *     128 bit input)
10791      * (2) wide 64 x 128 -> 128
10792      * (3) narrowing 128 x 128 -> 64
10793      * Here we do initial decode, catch unallocated cases and
10794      * dispatch to separate functions for each class.
10795      */
10796     int is_q = extract32(insn, 30, 1);
10797     int is_u = extract32(insn, 29, 1);
10798     int size = extract32(insn, 22, 2);
10799     int opcode = extract32(insn, 12, 4);
10800     int rm = extract32(insn, 16, 5);
10801     int rn = extract32(insn, 5, 5);
10802     int rd = extract32(insn, 0, 5);
10803 
10804     switch (opcode) {
10805     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10806     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10807         /* 64 x 128 -> 128 */
10808         if (size == 3) {
10809             unallocated_encoding(s);
10810             return;
10811         }
10812         if (!fp_access_check(s)) {
10813             return;
10814         }
10815         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10816         break;
10817     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10818     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10819         /* 128 x 128 -> 64 */
10820         if (size == 3) {
10821             unallocated_encoding(s);
10822             return;
10823         }
10824         if (!fp_access_check(s)) {
10825             return;
10826         }
10827         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10828         break;
10829     case 14: /* PMULL, PMULL2 */
10830         if (is_u) {
10831             unallocated_encoding(s);
10832             return;
10833         }
10834         switch (size) {
10835         case 0: /* PMULL.P8 */
10836             if (!fp_access_check(s)) {
10837                 return;
10838             }
10839             /* The Q field specifies lo/hi half input for this insn.  */
10840             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10841                              gen_helper_neon_pmull_h);
10842             break;
10843 
10844         case 3: /* PMULL.P64 */
10845             if (!dc_isar_feature(aa64_pmull, s)) {
10846                 unallocated_encoding(s);
10847                 return;
10848             }
10849             if (!fp_access_check(s)) {
10850                 return;
10851             }
10852             /* The Q field specifies lo/hi half input for this insn.  */
10853             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10854                              gen_helper_gvec_pmull_q);
10855             break;
10856 
10857         default:
10858             unallocated_encoding(s);
10859             break;
10860         }
10861         return;
10862     case 9: /* SQDMLAL, SQDMLAL2 */
10863     case 11: /* SQDMLSL, SQDMLSL2 */
10864     case 13: /* SQDMULL, SQDMULL2 */
10865         if (is_u || size == 0) {
10866             unallocated_encoding(s);
10867             return;
10868         }
10869         /* fall through */
10870     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10871     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10872     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10873     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10874     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10875     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10876     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10877         /* 64 x 64 -> 128 */
10878         if (size == 3) {
10879             unallocated_encoding(s);
10880             return;
10881         }
10882         if (!fp_access_check(s)) {
10883             return;
10884         }
10885 
10886         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10887         break;
10888     default:
10889         /* opcode 15 not allocated */
10890         unallocated_encoding(s);
10891         break;
10892     }
10893 }
10894 
10895 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10896 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10897 {
10898     int rd = extract32(insn, 0, 5);
10899     int rn = extract32(insn, 5, 5);
10900     int rm = extract32(insn, 16, 5);
10901     int size = extract32(insn, 22, 2);
10902     bool is_u = extract32(insn, 29, 1);
10903     bool is_q = extract32(insn, 30, 1);
10904 
10905     if (!fp_access_check(s)) {
10906         return;
10907     }
10908 
10909     switch (size + 4 * is_u) {
10910     case 0: /* AND */
10911         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10912         return;
10913     case 1: /* BIC */
10914         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10915         return;
10916     case 2: /* ORR */
10917         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10918         return;
10919     case 3: /* ORN */
10920         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10921         return;
10922     case 4: /* EOR */
10923         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10924         return;
10925 
10926     case 5: /* BSL bitwise select */
10927         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10928         return;
10929     case 6: /* BIT, bitwise insert if true */
10930         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10931         return;
10932     case 7: /* BIF, bitwise insert if false */
10933         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10934         return;
10935 
10936     default:
10937         g_assert_not_reached();
10938     }
10939 }
10940 
10941 /* Pairwise op subgroup of C3.6.16.
10942  *
10943  * This is called directly for float pairwise
10944  * operations where the opcode and size are calculated differently.
10945  */
10946 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10947                                    int size, int rn, int rm, int rd)
10948 {
10949     TCGv_ptr fpst;
10950     int pass;
10951 
10952     /* Floating point operations need fpst */
10953     if (opcode >= 0x58) {
10954         fpst = fpstatus_ptr(FPST_FPCR);
10955     } else {
10956         fpst = NULL;
10957     }
10958 
10959     if (!fp_access_check(s)) {
10960         return;
10961     }
10962 
10963     /* These operations work on the concatenated rm:rn, with each pair of
10964      * adjacent elements being operated on to produce an element in the result.
10965      */
10966     if (size == 3) {
10967         TCGv_i64 tcg_res[2];
10968 
10969         for (pass = 0; pass < 2; pass++) {
10970             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10971             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10972             int passreg = (pass == 0) ? rn : rm;
10973 
10974             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10975             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10976             tcg_res[pass] = tcg_temp_new_i64();
10977 
10978             switch (opcode) {
10979             case 0x17: /* ADDP */
10980                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10981                 break;
10982             case 0x58: /* FMAXNMP */
10983                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10984                 break;
10985             case 0x5a: /* FADDP */
10986                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10987                 break;
10988             case 0x5e: /* FMAXP */
10989                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10990                 break;
10991             case 0x78: /* FMINNMP */
10992                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10993                 break;
10994             case 0x7e: /* FMINP */
10995                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10996                 break;
10997             default:
10998                 g_assert_not_reached();
10999             }
11000         }
11001 
11002         for (pass = 0; pass < 2; pass++) {
11003             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11004         }
11005     } else {
11006         int maxpass = is_q ? 4 : 2;
11007         TCGv_i32 tcg_res[4];
11008 
11009         for (pass = 0; pass < maxpass; pass++) {
11010             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11011             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11012             NeonGenTwoOpFn *genfn = NULL;
11013             int passreg = pass < (maxpass / 2) ? rn : rm;
11014             int passelt = (is_q && (pass & 1)) ? 2 : 0;
11015 
11016             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11017             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11018             tcg_res[pass] = tcg_temp_new_i32();
11019 
11020             switch (opcode) {
11021             case 0x17: /* ADDP */
11022             {
11023                 static NeonGenTwoOpFn * const fns[3] = {
11024                     gen_helper_neon_padd_u8,
11025                     gen_helper_neon_padd_u16,
11026                     tcg_gen_add_i32,
11027                 };
11028                 genfn = fns[size];
11029                 break;
11030             }
11031             case 0x14: /* SMAXP, UMAXP */
11032             {
11033                 static NeonGenTwoOpFn * const fns[3][2] = {
11034                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11035                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11036                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11037                 };
11038                 genfn = fns[size][u];
11039                 break;
11040             }
11041             case 0x15: /* SMINP, UMINP */
11042             {
11043                 static NeonGenTwoOpFn * const fns[3][2] = {
11044                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11045                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11046                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11047                 };
11048                 genfn = fns[size][u];
11049                 break;
11050             }
11051             /* The FP operations are all on single floats (32 bit) */
11052             case 0x58: /* FMAXNMP */
11053                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11054                 break;
11055             case 0x5a: /* FADDP */
11056                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11057                 break;
11058             case 0x5e: /* FMAXP */
11059                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11060                 break;
11061             case 0x78: /* FMINNMP */
11062                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11063                 break;
11064             case 0x7e: /* FMINP */
11065                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11066                 break;
11067             default:
11068                 g_assert_not_reached();
11069             }
11070 
11071             /* FP ops called directly, otherwise call now */
11072             if (genfn) {
11073                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11074             }
11075         }
11076 
11077         for (pass = 0; pass < maxpass; pass++) {
11078             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11079         }
11080         clear_vec_high(s, is_q, rd);
11081     }
11082 }
11083 
11084 /* Floating point op subgroup of C3.6.16. */
11085 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11086 {
11087     /* For floating point ops, the U, size[1] and opcode bits
11088      * together indicate the operation. size[0] indicates single
11089      * or double.
11090      */
11091     int fpopcode = extract32(insn, 11, 5)
11092         | (extract32(insn, 23, 1) << 5)
11093         | (extract32(insn, 29, 1) << 6);
11094     int is_q = extract32(insn, 30, 1);
11095     int size = extract32(insn, 22, 1);
11096     int rm = extract32(insn, 16, 5);
11097     int rn = extract32(insn, 5, 5);
11098     int rd = extract32(insn, 0, 5);
11099 
11100     if (size == 1 && !is_q) {
11101         unallocated_encoding(s);
11102         return;
11103     }
11104 
11105     switch (fpopcode) {
11106     case 0x58: /* FMAXNMP */
11107     case 0x5a: /* FADDP */
11108     case 0x5e: /* FMAXP */
11109     case 0x78: /* FMINNMP */
11110     case 0x7e: /* FMINP */
11111         if (size && !is_q) {
11112             unallocated_encoding(s);
11113             return;
11114         }
11115         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11116                                rn, rm, rd);
11117         return;
11118 
11119     case 0x1d: /* FMLAL  */
11120     case 0x3d: /* FMLSL  */
11121     case 0x59: /* FMLAL2 */
11122     case 0x79: /* FMLSL2 */
11123         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11124             unallocated_encoding(s);
11125             return;
11126         }
11127         if (fp_access_check(s)) {
11128             int is_s = extract32(insn, 23, 1);
11129             int is_2 = extract32(insn, 29, 1);
11130             int data = (is_2 << 1) | is_s;
11131             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11132                                vec_full_reg_offset(s, rn),
11133                                vec_full_reg_offset(s, rm), tcg_env,
11134                                is_q ? 16 : 8, vec_full_reg_size(s),
11135                                data, gen_helper_gvec_fmlal_a64);
11136         }
11137         return;
11138 
11139     default:
11140     case 0x18: /* FMAXNM */
11141     case 0x19: /* FMLA */
11142     case 0x1a: /* FADD */
11143     case 0x1b: /* FMULX */
11144     case 0x1c: /* FCMEQ */
11145     case 0x1e: /* FMAX */
11146     case 0x1f: /* FRECPS */
11147     case 0x38: /* FMINNM */
11148     case 0x39: /* FMLS */
11149     case 0x3a: /* FSUB */
11150     case 0x3e: /* FMIN */
11151     case 0x3f: /* FRSQRTS */
11152     case 0x5b: /* FMUL */
11153     case 0x5c: /* FCMGE */
11154     case 0x5d: /* FACGE */
11155     case 0x5f: /* FDIV */
11156     case 0x7a: /* FABD */
11157     case 0x7d: /* FACGT */
11158     case 0x7c: /* FCMGT */
11159         unallocated_encoding(s);
11160         return;
11161     }
11162 }
11163 
11164 /* Integer op subgroup of C3.6.16. */
11165 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11166 {
11167     int is_q = extract32(insn, 30, 1);
11168     int u = extract32(insn, 29, 1);
11169     int size = extract32(insn, 22, 2);
11170     int opcode = extract32(insn, 11, 5);
11171     int rm = extract32(insn, 16, 5);
11172     int rn = extract32(insn, 5, 5);
11173     int rd = extract32(insn, 0, 5);
11174     int pass;
11175     TCGCond cond;
11176 
11177     switch (opcode) {
11178     case 0x13: /* MUL, PMUL */
11179         if (u && size != 0) {
11180             unallocated_encoding(s);
11181             return;
11182         }
11183         /* fall through */
11184     case 0x0: /* SHADD, UHADD */
11185     case 0x2: /* SRHADD, URHADD */
11186     case 0x4: /* SHSUB, UHSUB */
11187     case 0xc: /* SMAX, UMAX */
11188     case 0xd: /* SMIN, UMIN */
11189     case 0xe: /* SABD, UABD */
11190     case 0xf: /* SABA, UABA */
11191     case 0x12: /* MLA, MLS */
11192         if (size == 3) {
11193             unallocated_encoding(s);
11194             return;
11195         }
11196         break;
11197     case 0x16: /* SQDMULH, SQRDMULH */
11198         if (size == 0 || size == 3) {
11199             unallocated_encoding(s);
11200             return;
11201         }
11202         break;
11203     default:
11204         if (size == 3 && !is_q) {
11205             unallocated_encoding(s);
11206             return;
11207         }
11208         break;
11209     }
11210 
11211     if (!fp_access_check(s)) {
11212         return;
11213     }
11214 
11215     switch (opcode) {
11216     case 0x01: /* SQADD, UQADD */
11217         if (u) {
11218             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11219         } else {
11220             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11221         }
11222         return;
11223     case 0x05: /* SQSUB, UQSUB */
11224         if (u) {
11225             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11226         } else {
11227             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11228         }
11229         return;
11230     case 0x08: /* SSHL, USHL */
11231         if (u) {
11232             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11233         } else {
11234             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11235         }
11236         return;
11237     case 0x0c: /* SMAX, UMAX */
11238         if (u) {
11239             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11240         } else {
11241             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11242         }
11243         return;
11244     case 0x0d: /* SMIN, UMIN */
11245         if (u) {
11246             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11247         } else {
11248             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11249         }
11250         return;
11251     case 0xe: /* SABD, UABD */
11252         if (u) {
11253             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11254         } else {
11255             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11256         }
11257         return;
11258     case 0xf: /* SABA, UABA */
11259         if (u) {
11260             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11261         } else {
11262             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11263         }
11264         return;
11265     case 0x10: /* ADD, SUB */
11266         if (u) {
11267             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11268         } else {
11269             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11270         }
11271         return;
11272     case 0x13: /* MUL, PMUL */
11273         if (!u) { /* MUL */
11274             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11275         } else {  /* PMUL */
11276             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11277         }
11278         return;
11279     case 0x12: /* MLA, MLS */
11280         if (u) {
11281             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11282         } else {
11283             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11284         }
11285         return;
11286     case 0x16: /* SQDMULH, SQRDMULH */
11287         {
11288             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11289                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11290                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11291             };
11292             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11293         }
11294         return;
11295     case 0x11:
11296         if (!u) { /* CMTST */
11297             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11298             return;
11299         }
11300         /* else CMEQ */
11301         cond = TCG_COND_EQ;
11302         goto do_gvec_cmp;
11303     case 0x06: /* CMGT, CMHI */
11304         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11305         goto do_gvec_cmp;
11306     case 0x07: /* CMGE, CMHS */
11307         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11308     do_gvec_cmp:
11309         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11310                          vec_full_reg_offset(s, rn),
11311                          vec_full_reg_offset(s, rm),
11312                          is_q ? 16 : 8, vec_full_reg_size(s));
11313         return;
11314     }
11315 
11316     if (size == 3) {
11317         assert(is_q);
11318         for (pass = 0; pass < 2; pass++) {
11319             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11320             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11321             TCGv_i64 tcg_res = tcg_temp_new_i64();
11322 
11323             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11324             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11325 
11326             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11327 
11328             write_vec_element(s, tcg_res, rd, pass, MO_64);
11329         }
11330     } else {
11331         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11332             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11333             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11334             TCGv_i32 tcg_res = tcg_temp_new_i32();
11335             NeonGenTwoOpFn *genfn = NULL;
11336             NeonGenTwoOpEnvFn *genenvfn = NULL;
11337 
11338             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11339             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11340 
11341             switch (opcode) {
11342             case 0x0: /* SHADD, UHADD */
11343             {
11344                 static NeonGenTwoOpFn * const fns[3][2] = {
11345                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11346                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11347                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11348                 };
11349                 genfn = fns[size][u];
11350                 break;
11351             }
11352             case 0x2: /* SRHADD, URHADD */
11353             {
11354                 static NeonGenTwoOpFn * const fns[3][2] = {
11355                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11356                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11357                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11358                 };
11359                 genfn = fns[size][u];
11360                 break;
11361             }
11362             case 0x4: /* SHSUB, UHSUB */
11363             {
11364                 static NeonGenTwoOpFn * const fns[3][2] = {
11365                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11366                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11367                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11368                 };
11369                 genfn = fns[size][u];
11370                 break;
11371             }
11372             case 0x9: /* SQSHL, UQSHL */
11373             {
11374                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11375                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11376                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11377                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11378                 };
11379                 genenvfn = fns[size][u];
11380                 break;
11381             }
11382             case 0xa: /* SRSHL, URSHL */
11383             {
11384                 static NeonGenTwoOpFn * const fns[3][2] = {
11385                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11386                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11387                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11388                 };
11389                 genfn = fns[size][u];
11390                 break;
11391             }
11392             case 0xb: /* SQRSHL, UQRSHL */
11393             {
11394                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11395                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11396                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11397                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11398                 };
11399                 genenvfn = fns[size][u];
11400                 break;
11401             }
11402             default:
11403                 g_assert_not_reached();
11404             }
11405 
11406             if (genenvfn) {
11407                 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
11408             } else {
11409                 genfn(tcg_res, tcg_op1, tcg_op2);
11410             }
11411 
11412             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11413         }
11414     }
11415     clear_vec_high(s, is_q, rd);
11416 }
11417 
11418 /* AdvSIMD three same
11419  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11420  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11421  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11422  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11423  */
11424 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11425 {
11426     int opcode = extract32(insn, 11, 5);
11427 
11428     switch (opcode) {
11429     case 0x3: /* logic ops */
11430         disas_simd_3same_logic(s, insn);
11431         break;
11432     case 0x17: /* ADDP */
11433     case 0x14: /* SMAXP, UMAXP */
11434     case 0x15: /* SMINP, UMINP */
11435     {
11436         /* Pairwise operations */
11437         int is_q = extract32(insn, 30, 1);
11438         int u = extract32(insn, 29, 1);
11439         int size = extract32(insn, 22, 2);
11440         int rm = extract32(insn, 16, 5);
11441         int rn = extract32(insn, 5, 5);
11442         int rd = extract32(insn, 0, 5);
11443         if (opcode == 0x17) {
11444             if (u || (size == 3 && !is_q)) {
11445                 unallocated_encoding(s);
11446                 return;
11447             }
11448         } else {
11449             if (size == 3) {
11450                 unallocated_encoding(s);
11451                 return;
11452             }
11453         }
11454         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11455         break;
11456     }
11457     case 0x18 ... 0x31:
11458         /* floating point ops, sz[1] and U are part of opcode */
11459         disas_simd_3same_float(s, insn);
11460         break;
11461     default:
11462         disas_simd_3same_int(s, insn);
11463         break;
11464     }
11465 }
11466 
11467 /*
11468  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11469  *
11470  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11471  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11472  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11473  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11474  *
11475  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11476  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11477  *
11478  */
11479 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11480 {
11481     int opcode = extract32(insn, 11, 3);
11482     int u = extract32(insn, 29, 1);
11483     int a = extract32(insn, 23, 1);
11484     int is_q = extract32(insn, 30, 1);
11485     int rm = extract32(insn, 16, 5);
11486     int rn = extract32(insn, 5, 5);
11487     int rd = extract32(insn, 0, 5);
11488     /*
11489      * For these floating point ops, the U, a and opcode bits
11490      * together indicate the operation.
11491      */
11492     int fpopcode = opcode | (a << 3) | (u << 4);
11493     bool pairwise;
11494     TCGv_ptr fpst;
11495     int pass;
11496 
11497     switch (fpopcode) {
11498     case 0x10: /* FMAXNMP */
11499     case 0x12: /* FADDP */
11500     case 0x16: /* FMAXP */
11501     case 0x18: /* FMINNMP */
11502     case 0x1e: /* FMINP */
11503         pairwise = true;
11504         break;
11505     default:
11506     case 0x0: /* FMAXNM */
11507     case 0x1: /* FMLA */
11508     case 0x2: /* FADD */
11509     case 0x3: /* FMULX */
11510     case 0x4: /* FCMEQ */
11511     case 0x6: /* FMAX */
11512     case 0x7: /* FRECPS */
11513     case 0x8: /* FMINNM */
11514     case 0x9: /* FMLS */
11515     case 0xa: /* FSUB */
11516     case 0xe: /* FMIN */
11517     case 0xf: /* FRSQRTS */
11518     case 0x13: /* FMUL */
11519     case 0x14: /* FCMGE */
11520     case 0x15: /* FACGE */
11521     case 0x17: /* FDIV */
11522     case 0x1a: /* FABD */
11523     case 0x1c: /* FCMGT */
11524     case 0x1d: /* FACGT */
11525         unallocated_encoding(s);
11526         return;
11527     }
11528 
11529     if (!dc_isar_feature(aa64_fp16, s)) {
11530         unallocated_encoding(s);
11531         return;
11532     }
11533 
11534     if (!fp_access_check(s)) {
11535         return;
11536     }
11537 
11538     fpst = fpstatus_ptr(FPST_FPCR_F16);
11539 
11540     if (pairwise) {
11541         int maxpass = is_q ? 8 : 4;
11542         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11543         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11544         TCGv_i32 tcg_res[8];
11545 
11546         for (pass = 0; pass < maxpass; pass++) {
11547             int passreg = pass < (maxpass / 2) ? rn : rm;
11548             int passelt = (pass << 1) & (maxpass - 1);
11549 
11550             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11551             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11552             tcg_res[pass] = tcg_temp_new_i32();
11553 
11554             switch (fpopcode) {
11555             case 0x10: /* FMAXNMP */
11556                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11557                                            fpst);
11558                 break;
11559             case 0x12: /* FADDP */
11560                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11561                 break;
11562             case 0x16: /* FMAXP */
11563                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11564                 break;
11565             case 0x18: /* FMINNMP */
11566                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11567                                            fpst);
11568                 break;
11569             case 0x1e: /* FMINP */
11570                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11571                 break;
11572             default:
11573                 g_assert_not_reached();
11574             }
11575         }
11576 
11577         for (pass = 0; pass < maxpass; pass++) {
11578             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11579         }
11580     } else {
11581         g_assert_not_reached();
11582     }
11583 
11584     clear_vec_high(s, is_q, rd);
11585 }
11586 
11587 /* AdvSIMD three same extra
11588  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11589  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11590  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11591  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11592  */
11593 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11594 {
11595     int rd = extract32(insn, 0, 5);
11596     int rn = extract32(insn, 5, 5);
11597     int opcode = extract32(insn, 11, 4);
11598     int rm = extract32(insn, 16, 5);
11599     int size = extract32(insn, 22, 2);
11600     bool u = extract32(insn, 29, 1);
11601     bool is_q = extract32(insn, 30, 1);
11602     bool feature;
11603     int rot;
11604 
11605     switch (u * 16 + opcode) {
11606     case 0x10: /* SQRDMLAH (vector) */
11607     case 0x11: /* SQRDMLSH (vector) */
11608         if (size != 1 && size != 2) {
11609             unallocated_encoding(s);
11610             return;
11611         }
11612         feature = dc_isar_feature(aa64_rdm, s);
11613         break;
11614     case 0x02: /* SDOT (vector) */
11615     case 0x12: /* UDOT (vector) */
11616         if (size != MO_32) {
11617             unallocated_encoding(s);
11618             return;
11619         }
11620         feature = dc_isar_feature(aa64_dp, s);
11621         break;
11622     case 0x03: /* USDOT */
11623         if (size != MO_32) {
11624             unallocated_encoding(s);
11625             return;
11626         }
11627         feature = dc_isar_feature(aa64_i8mm, s);
11628         break;
11629     case 0x04: /* SMMLA */
11630     case 0x14: /* UMMLA */
11631     case 0x05: /* USMMLA */
11632         if (!is_q || size != MO_32) {
11633             unallocated_encoding(s);
11634             return;
11635         }
11636         feature = dc_isar_feature(aa64_i8mm, s);
11637         break;
11638     case 0x18: /* FCMLA, #0 */
11639     case 0x19: /* FCMLA, #90 */
11640     case 0x1a: /* FCMLA, #180 */
11641     case 0x1b: /* FCMLA, #270 */
11642     case 0x1c: /* FCADD, #90 */
11643     case 0x1e: /* FCADD, #270 */
11644         if (size == 0
11645             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11646             || (size == 3 && !is_q)) {
11647             unallocated_encoding(s);
11648             return;
11649         }
11650         feature = dc_isar_feature(aa64_fcma, s);
11651         break;
11652     case 0x1d: /* BFMMLA */
11653         if (size != MO_16 || !is_q) {
11654             unallocated_encoding(s);
11655             return;
11656         }
11657         feature = dc_isar_feature(aa64_bf16, s);
11658         break;
11659     case 0x1f:
11660         switch (size) {
11661         case 1: /* BFDOT */
11662         case 3: /* BFMLAL{B,T} */
11663             feature = dc_isar_feature(aa64_bf16, s);
11664             break;
11665         default:
11666             unallocated_encoding(s);
11667             return;
11668         }
11669         break;
11670     default:
11671         unallocated_encoding(s);
11672         return;
11673     }
11674     if (!feature) {
11675         unallocated_encoding(s);
11676         return;
11677     }
11678     if (!fp_access_check(s)) {
11679         return;
11680     }
11681 
11682     switch (opcode) {
11683     case 0x0: /* SQRDMLAH (vector) */
11684         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11685         return;
11686 
11687     case 0x1: /* SQRDMLSH (vector) */
11688         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11689         return;
11690 
11691     case 0x2: /* SDOT / UDOT */
11692         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11693                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11694         return;
11695 
11696     case 0x3: /* USDOT */
11697         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11698         return;
11699 
11700     case 0x04: /* SMMLA, UMMLA */
11701         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11702                          u ? gen_helper_gvec_ummla_b
11703                          : gen_helper_gvec_smmla_b);
11704         return;
11705     case 0x05: /* USMMLA */
11706         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11707         return;
11708 
11709     case 0x8: /* FCMLA, #0 */
11710     case 0x9: /* FCMLA, #90 */
11711     case 0xa: /* FCMLA, #180 */
11712     case 0xb: /* FCMLA, #270 */
11713         rot = extract32(opcode, 0, 2);
11714         switch (size) {
11715         case 1:
11716             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11717                               gen_helper_gvec_fcmlah);
11718             break;
11719         case 2:
11720             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11721                               gen_helper_gvec_fcmlas);
11722             break;
11723         case 3:
11724             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11725                               gen_helper_gvec_fcmlad);
11726             break;
11727         default:
11728             g_assert_not_reached();
11729         }
11730         return;
11731 
11732     case 0xc: /* FCADD, #90 */
11733     case 0xe: /* FCADD, #270 */
11734         rot = extract32(opcode, 1, 1);
11735         switch (size) {
11736         case 1:
11737             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11738                               gen_helper_gvec_fcaddh);
11739             break;
11740         case 2:
11741             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11742                               gen_helper_gvec_fcadds);
11743             break;
11744         case 3:
11745             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11746                               gen_helper_gvec_fcaddd);
11747             break;
11748         default:
11749             g_assert_not_reached();
11750         }
11751         return;
11752 
11753     case 0xd: /* BFMMLA */
11754         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11755         return;
11756     case 0xf:
11757         switch (size) {
11758         case 1: /* BFDOT */
11759             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11760             break;
11761         case 3: /* BFMLAL{B,T} */
11762             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11763                               gen_helper_gvec_bfmlal);
11764             break;
11765         default:
11766             g_assert_not_reached();
11767         }
11768         return;
11769 
11770     default:
11771         g_assert_not_reached();
11772     }
11773 }
11774 
11775 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11776                                   int size, int rn, int rd)
11777 {
11778     /* Handle 2-reg-misc ops which are widening (so each size element
11779      * in the source becomes a 2*size element in the destination.
11780      * The only instruction like this is FCVTL.
11781      */
11782     int pass;
11783 
11784     if (size == 3) {
11785         /* 32 -> 64 bit fp conversion */
11786         TCGv_i64 tcg_res[2];
11787         int srcelt = is_q ? 2 : 0;
11788 
11789         for (pass = 0; pass < 2; pass++) {
11790             TCGv_i32 tcg_op = tcg_temp_new_i32();
11791             tcg_res[pass] = tcg_temp_new_i64();
11792 
11793             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11794             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11795         }
11796         for (pass = 0; pass < 2; pass++) {
11797             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11798         }
11799     } else {
11800         /* 16 -> 32 bit fp conversion */
11801         int srcelt = is_q ? 4 : 0;
11802         TCGv_i32 tcg_res[4];
11803         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11804         TCGv_i32 ahp = get_ahp_flag();
11805 
11806         for (pass = 0; pass < 4; pass++) {
11807             tcg_res[pass] = tcg_temp_new_i32();
11808 
11809             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11810             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11811                                            fpst, ahp);
11812         }
11813         for (pass = 0; pass < 4; pass++) {
11814             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11815         }
11816     }
11817 }
11818 
11819 static void handle_rev(DisasContext *s, int opcode, bool u,
11820                        bool is_q, int size, int rn, int rd)
11821 {
11822     int op = (opcode << 1) | u;
11823     int opsz = op + size;
11824     int grp_size = 3 - opsz;
11825     int dsize = is_q ? 128 : 64;
11826     int i;
11827 
11828     if (opsz >= 3) {
11829         unallocated_encoding(s);
11830         return;
11831     }
11832 
11833     if (!fp_access_check(s)) {
11834         return;
11835     }
11836 
11837     if (size == 0) {
11838         /* Special case bytes, use bswap op on each group of elements */
11839         int groups = dsize / (8 << grp_size);
11840 
11841         for (i = 0; i < groups; i++) {
11842             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11843 
11844             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11845             switch (grp_size) {
11846             case MO_16:
11847                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11848                 break;
11849             case MO_32:
11850                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11851                 break;
11852             case MO_64:
11853                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11854                 break;
11855             default:
11856                 g_assert_not_reached();
11857             }
11858             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11859         }
11860         clear_vec_high(s, is_q, rd);
11861     } else {
11862         int revmask = (1 << grp_size) - 1;
11863         int esize = 8 << size;
11864         int elements = dsize / esize;
11865         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11866         TCGv_i64 tcg_rd[2];
11867 
11868         for (i = 0; i < 2; i++) {
11869             tcg_rd[i] = tcg_temp_new_i64();
11870             tcg_gen_movi_i64(tcg_rd[i], 0);
11871         }
11872 
11873         for (i = 0; i < elements; i++) {
11874             int e_rev = (i & 0xf) ^ revmask;
11875             int w = (e_rev * esize) / 64;
11876             int o = (e_rev * esize) % 64;
11877 
11878             read_vec_element(s, tcg_rn, rn, i, size);
11879             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11880         }
11881 
11882         for (i = 0; i < 2; i++) {
11883             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11884         }
11885         clear_vec_high(s, true, rd);
11886     }
11887 }
11888 
11889 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11890                                   bool is_q, int size, int rn, int rd)
11891 {
11892     /* Implement the pairwise operations from 2-misc:
11893      * SADDLP, UADDLP, SADALP, UADALP.
11894      * These all add pairs of elements in the input to produce a
11895      * double-width result element in the output (possibly accumulating).
11896      */
11897     bool accum = (opcode == 0x6);
11898     int maxpass = is_q ? 2 : 1;
11899     int pass;
11900     TCGv_i64 tcg_res[2];
11901 
11902     if (size == 2) {
11903         /* 32 + 32 -> 64 op */
11904         MemOp memop = size + (u ? 0 : MO_SIGN);
11905 
11906         for (pass = 0; pass < maxpass; pass++) {
11907             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11908             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11909 
11910             tcg_res[pass] = tcg_temp_new_i64();
11911 
11912             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11913             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11914             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11915             if (accum) {
11916                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11917                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11918             }
11919         }
11920     } else {
11921         for (pass = 0; pass < maxpass; pass++) {
11922             TCGv_i64 tcg_op = tcg_temp_new_i64();
11923             NeonGenOne64OpFn *genfn;
11924             static NeonGenOne64OpFn * const fns[2][2] = {
11925                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11926                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11927             };
11928 
11929             genfn = fns[size][u];
11930 
11931             tcg_res[pass] = tcg_temp_new_i64();
11932 
11933             read_vec_element(s, tcg_op, rn, pass, MO_64);
11934             genfn(tcg_res[pass], tcg_op);
11935 
11936             if (accum) {
11937                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11938                 if (size == 0) {
11939                     gen_helper_neon_addl_u16(tcg_res[pass],
11940                                              tcg_res[pass], tcg_op);
11941                 } else {
11942                     gen_helper_neon_addl_u32(tcg_res[pass],
11943                                              tcg_res[pass], tcg_op);
11944                 }
11945             }
11946         }
11947     }
11948     if (!is_q) {
11949         tcg_res[1] = tcg_constant_i64(0);
11950     }
11951     for (pass = 0; pass < 2; pass++) {
11952         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11953     }
11954 }
11955 
11956 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11957 {
11958     /* Implement SHLL and SHLL2 */
11959     int pass;
11960     int part = is_q ? 2 : 0;
11961     TCGv_i64 tcg_res[2];
11962 
11963     for (pass = 0; pass < 2; pass++) {
11964         static NeonGenWidenFn * const widenfns[3] = {
11965             gen_helper_neon_widen_u8,
11966             gen_helper_neon_widen_u16,
11967             tcg_gen_extu_i32_i64,
11968         };
11969         NeonGenWidenFn *widenfn = widenfns[size];
11970         TCGv_i32 tcg_op = tcg_temp_new_i32();
11971 
11972         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11973         tcg_res[pass] = tcg_temp_new_i64();
11974         widenfn(tcg_res[pass], tcg_op);
11975         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11976     }
11977 
11978     for (pass = 0; pass < 2; pass++) {
11979         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11980     }
11981 }
11982 
11983 /* AdvSIMD two reg misc
11984  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11985  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11986  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11987  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11988  */
11989 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11990 {
11991     int size = extract32(insn, 22, 2);
11992     int opcode = extract32(insn, 12, 5);
11993     bool u = extract32(insn, 29, 1);
11994     bool is_q = extract32(insn, 30, 1);
11995     int rn = extract32(insn, 5, 5);
11996     int rd = extract32(insn, 0, 5);
11997     bool need_fpstatus = false;
11998     int rmode = -1;
11999     TCGv_i32 tcg_rmode;
12000     TCGv_ptr tcg_fpstatus;
12001 
12002     switch (opcode) {
12003     case 0x0: /* REV64, REV32 */
12004     case 0x1: /* REV16 */
12005         handle_rev(s, opcode, u, is_q, size, rn, rd);
12006         return;
12007     case 0x5: /* CNT, NOT, RBIT */
12008         if (u && size == 0) {
12009             /* NOT */
12010             break;
12011         } else if (u && size == 1) {
12012             /* RBIT */
12013             break;
12014         } else if (!u && size == 0) {
12015             /* CNT */
12016             break;
12017         }
12018         unallocated_encoding(s);
12019         return;
12020     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12021     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12022         if (size == 3) {
12023             unallocated_encoding(s);
12024             return;
12025         }
12026         if (!fp_access_check(s)) {
12027             return;
12028         }
12029 
12030         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12031         return;
12032     case 0x4: /* CLS, CLZ */
12033         if (size == 3) {
12034             unallocated_encoding(s);
12035             return;
12036         }
12037         break;
12038     case 0x2: /* SADDLP, UADDLP */
12039     case 0x6: /* SADALP, UADALP */
12040         if (size == 3) {
12041             unallocated_encoding(s);
12042             return;
12043         }
12044         if (!fp_access_check(s)) {
12045             return;
12046         }
12047         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12048         return;
12049     case 0x13: /* SHLL, SHLL2 */
12050         if (u == 0 || size == 3) {
12051             unallocated_encoding(s);
12052             return;
12053         }
12054         if (!fp_access_check(s)) {
12055             return;
12056         }
12057         handle_shll(s, is_q, size, rn, rd);
12058         return;
12059     case 0xa: /* CMLT */
12060         if (u == 1) {
12061             unallocated_encoding(s);
12062             return;
12063         }
12064         /* fall through */
12065     case 0x8: /* CMGT, CMGE */
12066     case 0x9: /* CMEQ, CMLE */
12067     case 0xb: /* ABS, NEG */
12068         if (size == 3 && !is_q) {
12069             unallocated_encoding(s);
12070             return;
12071         }
12072         break;
12073     case 0x3: /* SUQADD, USQADD */
12074         if (size == 3 && !is_q) {
12075             unallocated_encoding(s);
12076             return;
12077         }
12078         if (!fp_access_check(s)) {
12079             return;
12080         }
12081         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12082         return;
12083     case 0x7: /* SQABS, SQNEG */
12084         if (size == 3 && !is_q) {
12085             unallocated_encoding(s);
12086             return;
12087         }
12088         break;
12089     case 0xc ... 0xf:
12090     case 0x16 ... 0x1f:
12091     {
12092         /* Floating point: U, size[1] and opcode indicate operation;
12093          * size[0] indicates single or double precision.
12094          */
12095         int is_double = extract32(size, 0, 1);
12096         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12097         size = is_double ? 3 : 2;
12098         switch (opcode) {
12099         case 0x2f: /* FABS */
12100         case 0x6f: /* FNEG */
12101             if (size == 3 && !is_q) {
12102                 unallocated_encoding(s);
12103                 return;
12104             }
12105             break;
12106         case 0x1d: /* SCVTF */
12107         case 0x5d: /* UCVTF */
12108         {
12109             bool is_signed = (opcode == 0x1d) ? true : false;
12110             int elements = is_double ? 2 : is_q ? 4 : 2;
12111             if (is_double && !is_q) {
12112                 unallocated_encoding(s);
12113                 return;
12114             }
12115             if (!fp_access_check(s)) {
12116                 return;
12117             }
12118             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12119             return;
12120         }
12121         case 0x2c: /* FCMGT (zero) */
12122         case 0x2d: /* FCMEQ (zero) */
12123         case 0x2e: /* FCMLT (zero) */
12124         case 0x6c: /* FCMGE (zero) */
12125         case 0x6d: /* FCMLE (zero) */
12126             if (size == 3 && !is_q) {
12127                 unallocated_encoding(s);
12128                 return;
12129             }
12130             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12131             return;
12132         case 0x7f: /* FSQRT */
12133             if (size == 3 && !is_q) {
12134                 unallocated_encoding(s);
12135                 return;
12136             }
12137             break;
12138         case 0x1a: /* FCVTNS */
12139         case 0x1b: /* FCVTMS */
12140         case 0x3a: /* FCVTPS */
12141         case 0x3b: /* FCVTZS */
12142         case 0x5a: /* FCVTNU */
12143         case 0x5b: /* FCVTMU */
12144         case 0x7a: /* FCVTPU */
12145         case 0x7b: /* FCVTZU */
12146             need_fpstatus = true;
12147             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12148             if (size == 3 && !is_q) {
12149                 unallocated_encoding(s);
12150                 return;
12151             }
12152             break;
12153         case 0x5c: /* FCVTAU */
12154         case 0x1c: /* FCVTAS */
12155             need_fpstatus = true;
12156             rmode = FPROUNDING_TIEAWAY;
12157             if (size == 3 && !is_q) {
12158                 unallocated_encoding(s);
12159                 return;
12160             }
12161             break;
12162         case 0x3c: /* URECPE */
12163             if (size == 3) {
12164                 unallocated_encoding(s);
12165                 return;
12166             }
12167             /* fall through */
12168         case 0x3d: /* FRECPE */
12169         case 0x7d: /* FRSQRTE */
12170             if (size == 3 && !is_q) {
12171                 unallocated_encoding(s);
12172                 return;
12173             }
12174             if (!fp_access_check(s)) {
12175                 return;
12176             }
12177             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12178             return;
12179         case 0x56: /* FCVTXN, FCVTXN2 */
12180             if (size == 2) {
12181                 unallocated_encoding(s);
12182                 return;
12183             }
12184             /* fall through */
12185         case 0x16: /* FCVTN, FCVTN2 */
12186             /* handle_2misc_narrow does a 2*size -> size operation, but these
12187              * instructions encode the source size rather than dest size.
12188              */
12189             if (!fp_access_check(s)) {
12190                 return;
12191             }
12192             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12193             return;
12194         case 0x36: /* BFCVTN, BFCVTN2 */
12195             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12196                 unallocated_encoding(s);
12197                 return;
12198             }
12199             if (!fp_access_check(s)) {
12200                 return;
12201             }
12202             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12203             return;
12204         case 0x17: /* FCVTL, FCVTL2 */
12205             if (!fp_access_check(s)) {
12206                 return;
12207             }
12208             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12209             return;
12210         case 0x18: /* FRINTN */
12211         case 0x19: /* FRINTM */
12212         case 0x38: /* FRINTP */
12213         case 0x39: /* FRINTZ */
12214             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12215             /* fall through */
12216         case 0x59: /* FRINTX */
12217         case 0x79: /* FRINTI */
12218             need_fpstatus = true;
12219             if (size == 3 && !is_q) {
12220                 unallocated_encoding(s);
12221                 return;
12222             }
12223             break;
12224         case 0x58: /* FRINTA */
12225             rmode = FPROUNDING_TIEAWAY;
12226             need_fpstatus = true;
12227             if (size == 3 && !is_q) {
12228                 unallocated_encoding(s);
12229                 return;
12230             }
12231             break;
12232         case 0x7c: /* URSQRTE */
12233             if (size == 3) {
12234                 unallocated_encoding(s);
12235                 return;
12236             }
12237             break;
12238         case 0x1e: /* FRINT32Z */
12239         case 0x1f: /* FRINT64Z */
12240             rmode = FPROUNDING_ZERO;
12241             /* fall through */
12242         case 0x5e: /* FRINT32X */
12243         case 0x5f: /* FRINT64X */
12244             need_fpstatus = true;
12245             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12246                 unallocated_encoding(s);
12247                 return;
12248             }
12249             break;
12250         default:
12251             unallocated_encoding(s);
12252             return;
12253         }
12254         break;
12255     }
12256     default:
12257         unallocated_encoding(s);
12258         return;
12259     }
12260 
12261     if (!fp_access_check(s)) {
12262         return;
12263     }
12264 
12265     if (need_fpstatus || rmode >= 0) {
12266         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12267     } else {
12268         tcg_fpstatus = NULL;
12269     }
12270     if (rmode >= 0) {
12271         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12272     } else {
12273         tcg_rmode = NULL;
12274     }
12275 
12276     switch (opcode) {
12277     case 0x5:
12278         if (u && size == 0) { /* NOT */
12279             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12280             return;
12281         }
12282         break;
12283     case 0x8: /* CMGT, CMGE */
12284         if (u) {
12285             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12286         } else {
12287             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12288         }
12289         return;
12290     case 0x9: /* CMEQ, CMLE */
12291         if (u) {
12292             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12293         } else {
12294             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12295         }
12296         return;
12297     case 0xa: /* CMLT */
12298         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12299         return;
12300     case 0xb:
12301         if (u) { /* ABS, NEG */
12302             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12303         } else {
12304             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12305         }
12306         return;
12307     }
12308 
12309     if (size == 3) {
12310         /* All 64-bit element operations can be shared with scalar 2misc */
12311         int pass;
12312 
12313         /* Coverity claims (size == 3 && !is_q) has been eliminated
12314          * from all paths leading to here.
12315          */
12316         tcg_debug_assert(is_q);
12317         for (pass = 0; pass < 2; pass++) {
12318             TCGv_i64 tcg_op = tcg_temp_new_i64();
12319             TCGv_i64 tcg_res = tcg_temp_new_i64();
12320 
12321             read_vec_element(s, tcg_op, rn, pass, MO_64);
12322 
12323             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12324                             tcg_rmode, tcg_fpstatus);
12325 
12326             write_vec_element(s, tcg_res, rd, pass, MO_64);
12327         }
12328     } else {
12329         int pass;
12330 
12331         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12332             TCGv_i32 tcg_op = tcg_temp_new_i32();
12333             TCGv_i32 tcg_res = tcg_temp_new_i32();
12334 
12335             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12336 
12337             if (size == 2) {
12338                 /* Special cases for 32 bit elements */
12339                 switch (opcode) {
12340                 case 0x4: /* CLS */
12341                     if (u) {
12342                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12343                     } else {
12344                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12345                     }
12346                     break;
12347                 case 0x7: /* SQABS, SQNEG */
12348                     if (u) {
12349                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
12350                     } else {
12351                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
12352                     }
12353                     break;
12354                 case 0x2f: /* FABS */
12355                     gen_vfp_abss(tcg_res, tcg_op);
12356                     break;
12357                 case 0x6f: /* FNEG */
12358                     gen_vfp_negs(tcg_res, tcg_op);
12359                     break;
12360                 case 0x7f: /* FSQRT */
12361                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
12362                     break;
12363                 case 0x1a: /* FCVTNS */
12364                 case 0x1b: /* FCVTMS */
12365                 case 0x1c: /* FCVTAS */
12366                 case 0x3a: /* FCVTPS */
12367                 case 0x3b: /* FCVTZS */
12368                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12369                                          tcg_constant_i32(0), tcg_fpstatus);
12370                     break;
12371                 case 0x5a: /* FCVTNU */
12372                 case 0x5b: /* FCVTMU */
12373                 case 0x5c: /* FCVTAU */
12374                 case 0x7a: /* FCVTPU */
12375                 case 0x7b: /* FCVTZU */
12376                     gen_helper_vfp_touls(tcg_res, tcg_op,
12377                                          tcg_constant_i32(0), tcg_fpstatus);
12378                     break;
12379                 case 0x18: /* FRINTN */
12380                 case 0x19: /* FRINTM */
12381                 case 0x38: /* FRINTP */
12382                 case 0x39: /* FRINTZ */
12383                 case 0x58: /* FRINTA */
12384                 case 0x79: /* FRINTI */
12385                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12386                     break;
12387                 case 0x59: /* FRINTX */
12388                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12389                     break;
12390                 case 0x7c: /* URSQRTE */
12391                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12392                     break;
12393                 case 0x1e: /* FRINT32Z */
12394                 case 0x5e: /* FRINT32X */
12395                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12396                     break;
12397                 case 0x1f: /* FRINT64Z */
12398                 case 0x5f: /* FRINT64X */
12399                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12400                     break;
12401                 default:
12402                     g_assert_not_reached();
12403                 }
12404             } else {
12405                 /* Use helpers for 8 and 16 bit elements */
12406                 switch (opcode) {
12407                 case 0x5: /* CNT, RBIT */
12408                     /* For these two insns size is part of the opcode specifier
12409                      * (handled earlier); they always operate on byte elements.
12410                      */
12411                     if (u) {
12412                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12413                     } else {
12414                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12415                     }
12416                     break;
12417                 case 0x7: /* SQABS, SQNEG */
12418                 {
12419                     NeonGenOneOpEnvFn *genfn;
12420                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12421                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12422                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12423                     };
12424                     genfn = fns[size][u];
12425                     genfn(tcg_res, tcg_env, tcg_op);
12426                     break;
12427                 }
12428                 case 0x4: /* CLS, CLZ */
12429                     if (u) {
12430                         if (size == 0) {
12431                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12432                         } else {
12433                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12434                         }
12435                     } else {
12436                         if (size == 0) {
12437                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12438                         } else {
12439                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12440                         }
12441                     }
12442                     break;
12443                 default:
12444                     g_assert_not_reached();
12445                 }
12446             }
12447 
12448             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12449         }
12450     }
12451     clear_vec_high(s, is_q, rd);
12452 
12453     if (tcg_rmode) {
12454         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12455     }
12456 }
12457 
12458 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12459  *
12460  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12461  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12462  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12463  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12464  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12465  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12466  *
12467  * This actually covers two groups where scalar access is governed by
12468  * bit 28. A bunch of the instructions (float to integral) only exist
12469  * in the vector form and are un-allocated for the scalar decode. Also
12470  * in the scalar decode Q is always 1.
12471  */
12472 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12473 {
12474     int fpop, opcode, a, u;
12475     int rn, rd;
12476     bool is_q;
12477     bool is_scalar;
12478     bool only_in_vector = false;
12479 
12480     int pass;
12481     TCGv_i32 tcg_rmode = NULL;
12482     TCGv_ptr tcg_fpstatus = NULL;
12483     bool need_fpst = true;
12484     int rmode = -1;
12485 
12486     if (!dc_isar_feature(aa64_fp16, s)) {
12487         unallocated_encoding(s);
12488         return;
12489     }
12490 
12491     rd = extract32(insn, 0, 5);
12492     rn = extract32(insn, 5, 5);
12493 
12494     a = extract32(insn, 23, 1);
12495     u = extract32(insn, 29, 1);
12496     is_scalar = extract32(insn, 28, 1);
12497     is_q = extract32(insn, 30, 1);
12498 
12499     opcode = extract32(insn, 12, 5);
12500     fpop = deposit32(opcode, 5, 1, a);
12501     fpop = deposit32(fpop, 6, 1, u);
12502 
12503     switch (fpop) {
12504     case 0x1d: /* SCVTF */
12505     case 0x5d: /* UCVTF */
12506     {
12507         int elements;
12508 
12509         if (is_scalar) {
12510             elements = 1;
12511         } else {
12512             elements = (is_q ? 8 : 4);
12513         }
12514 
12515         if (!fp_access_check(s)) {
12516             return;
12517         }
12518         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12519         return;
12520     }
12521     break;
12522     case 0x2c: /* FCMGT (zero) */
12523     case 0x2d: /* FCMEQ (zero) */
12524     case 0x2e: /* FCMLT (zero) */
12525     case 0x6c: /* FCMGE (zero) */
12526     case 0x6d: /* FCMLE (zero) */
12527         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12528         return;
12529     case 0x3d: /* FRECPE */
12530     case 0x3f: /* FRECPX */
12531         break;
12532     case 0x18: /* FRINTN */
12533         only_in_vector = true;
12534         rmode = FPROUNDING_TIEEVEN;
12535         break;
12536     case 0x19: /* FRINTM */
12537         only_in_vector = true;
12538         rmode = FPROUNDING_NEGINF;
12539         break;
12540     case 0x38: /* FRINTP */
12541         only_in_vector = true;
12542         rmode = FPROUNDING_POSINF;
12543         break;
12544     case 0x39: /* FRINTZ */
12545         only_in_vector = true;
12546         rmode = FPROUNDING_ZERO;
12547         break;
12548     case 0x58: /* FRINTA */
12549         only_in_vector = true;
12550         rmode = FPROUNDING_TIEAWAY;
12551         break;
12552     case 0x59: /* FRINTX */
12553     case 0x79: /* FRINTI */
12554         only_in_vector = true;
12555         /* current rounding mode */
12556         break;
12557     case 0x1a: /* FCVTNS */
12558         rmode = FPROUNDING_TIEEVEN;
12559         break;
12560     case 0x1b: /* FCVTMS */
12561         rmode = FPROUNDING_NEGINF;
12562         break;
12563     case 0x1c: /* FCVTAS */
12564         rmode = FPROUNDING_TIEAWAY;
12565         break;
12566     case 0x3a: /* FCVTPS */
12567         rmode = FPROUNDING_POSINF;
12568         break;
12569     case 0x3b: /* FCVTZS */
12570         rmode = FPROUNDING_ZERO;
12571         break;
12572     case 0x5a: /* FCVTNU */
12573         rmode = FPROUNDING_TIEEVEN;
12574         break;
12575     case 0x5b: /* FCVTMU */
12576         rmode = FPROUNDING_NEGINF;
12577         break;
12578     case 0x5c: /* FCVTAU */
12579         rmode = FPROUNDING_TIEAWAY;
12580         break;
12581     case 0x7a: /* FCVTPU */
12582         rmode = FPROUNDING_POSINF;
12583         break;
12584     case 0x7b: /* FCVTZU */
12585         rmode = FPROUNDING_ZERO;
12586         break;
12587     case 0x2f: /* FABS */
12588     case 0x6f: /* FNEG */
12589         need_fpst = false;
12590         break;
12591     case 0x7d: /* FRSQRTE */
12592     case 0x7f: /* FSQRT (vector) */
12593         break;
12594     default:
12595         unallocated_encoding(s);
12596         return;
12597     }
12598 
12599 
12600     /* Check additional constraints for the scalar encoding */
12601     if (is_scalar) {
12602         if (!is_q) {
12603             unallocated_encoding(s);
12604             return;
12605         }
12606         /* FRINTxx is only in the vector form */
12607         if (only_in_vector) {
12608             unallocated_encoding(s);
12609             return;
12610         }
12611     }
12612 
12613     if (!fp_access_check(s)) {
12614         return;
12615     }
12616 
12617     if (rmode >= 0 || need_fpst) {
12618         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12619     }
12620 
12621     if (rmode >= 0) {
12622         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12623     }
12624 
12625     if (is_scalar) {
12626         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12627         TCGv_i32 tcg_res = tcg_temp_new_i32();
12628 
12629         switch (fpop) {
12630         case 0x1a: /* FCVTNS */
12631         case 0x1b: /* FCVTMS */
12632         case 0x1c: /* FCVTAS */
12633         case 0x3a: /* FCVTPS */
12634         case 0x3b: /* FCVTZS */
12635             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12636             break;
12637         case 0x3d: /* FRECPE */
12638             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12639             break;
12640         case 0x3f: /* FRECPX */
12641             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12642             break;
12643         case 0x5a: /* FCVTNU */
12644         case 0x5b: /* FCVTMU */
12645         case 0x5c: /* FCVTAU */
12646         case 0x7a: /* FCVTPU */
12647         case 0x7b: /* FCVTZU */
12648             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12649             break;
12650         case 0x6f: /* FNEG */
12651             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12652             break;
12653         case 0x7d: /* FRSQRTE */
12654             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12655             break;
12656         default:
12657             g_assert_not_reached();
12658         }
12659 
12660         /* limit any sign extension going on */
12661         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12662         write_fp_sreg(s, rd, tcg_res);
12663     } else {
12664         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12665             TCGv_i32 tcg_op = tcg_temp_new_i32();
12666             TCGv_i32 tcg_res = tcg_temp_new_i32();
12667 
12668             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12669 
12670             switch (fpop) {
12671             case 0x1a: /* FCVTNS */
12672             case 0x1b: /* FCVTMS */
12673             case 0x1c: /* FCVTAS */
12674             case 0x3a: /* FCVTPS */
12675             case 0x3b: /* FCVTZS */
12676                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12677                 break;
12678             case 0x3d: /* FRECPE */
12679                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12680                 break;
12681             case 0x5a: /* FCVTNU */
12682             case 0x5b: /* FCVTMU */
12683             case 0x5c: /* FCVTAU */
12684             case 0x7a: /* FCVTPU */
12685             case 0x7b: /* FCVTZU */
12686                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12687                 break;
12688             case 0x18: /* FRINTN */
12689             case 0x19: /* FRINTM */
12690             case 0x38: /* FRINTP */
12691             case 0x39: /* FRINTZ */
12692             case 0x58: /* FRINTA */
12693             case 0x79: /* FRINTI */
12694                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12695                 break;
12696             case 0x59: /* FRINTX */
12697                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12698                 break;
12699             case 0x2f: /* FABS */
12700                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12701                 break;
12702             case 0x6f: /* FNEG */
12703                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12704                 break;
12705             case 0x7d: /* FRSQRTE */
12706                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12707                 break;
12708             case 0x7f: /* FSQRT */
12709                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12710                 break;
12711             default:
12712                 g_assert_not_reached();
12713             }
12714 
12715             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12716         }
12717 
12718         clear_vec_high(s, is_q, rd);
12719     }
12720 
12721     if (tcg_rmode) {
12722         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12723     }
12724 }
12725 
12726 /* AdvSIMD scalar x indexed element
12727  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12728  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12729  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12730  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12731  * AdvSIMD vector x indexed element
12732  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12733  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12734  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12735  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12736  */
12737 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12738 {
12739     /* This encoding has two kinds of instruction:
12740      *  normal, where we perform elt x idxelt => elt for each
12741      *     element in the vector
12742      *  long, where we perform elt x idxelt and generate a result of
12743      *     double the width of the input element
12744      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12745      */
12746     bool is_scalar = extract32(insn, 28, 1);
12747     bool is_q = extract32(insn, 30, 1);
12748     bool u = extract32(insn, 29, 1);
12749     int size = extract32(insn, 22, 2);
12750     int l = extract32(insn, 21, 1);
12751     int m = extract32(insn, 20, 1);
12752     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12753     int rm = extract32(insn, 16, 4);
12754     int opcode = extract32(insn, 12, 4);
12755     int h = extract32(insn, 11, 1);
12756     int rn = extract32(insn, 5, 5);
12757     int rd = extract32(insn, 0, 5);
12758     bool is_long = false;
12759     int is_fp = 0;
12760     bool is_fp16 = false;
12761     int index;
12762     TCGv_ptr fpst;
12763 
12764     switch (16 * u + opcode) {
12765     case 0x08: /* MUL */
12766     case 0x10: /* MLA */
12767     case 0x14: /* MLS */
12768         if (is_scalar) {
12769             unallocated_encoding(s);
12770             return;
12771         }
12772         break;
12773     case 0x02: /* SMLAL, SMLAL2 */
12774     case 0x12: /* UMLAL, UMLAL2 */
12775     case 0x06: /* SMLSL, SMLSL2 */
12776     case 0x16: /* UMLSL, UMLSL2 */
12777     case 0x0a: /* SMULL, SMULL2 */
12778     case 0x1a: /* UMULL, UMULL2 */
12779         if (is_scalar) {
12780             unallocated_encoding(s);
12781             return;
12782         }
12783         is_long = true;
12784         break;
12785     case 0x03: /* SQDMLAL, SQDMLAL2 */
12786     case 0x07: /* SQDMLSL, SQDMLSL2 */
12787     case 0x0b: /* SQDMULL, SQDMULL2 */
12788         is_long = true;
12789         break;
12790     case 0x0c: /* SQDMULH */
12791     case 0x0d: /* SQRDMULH */
12792         break;
12793     case 0x1d: /* SQRDMLAH */
12794     case 0x1f: /* SQRDMLSH */
12795         if (!dc_isar_feature(aa64_rdm, s)) {
12796             unallocated_encoding(s);
12797             return;
12798         }
12799         break;
12800     case 0x0e: /* SDOT */
12801     case 0x1e: /* UDOT */
12802         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12803             unallocated_encoding(s);
12804             return;
12805         }
12806         break;
12807     case 0x0f:
12808         switch (size) {
12809         case 0: /* SUDOT */
12810         case 2: /* USDOT */
12811             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12812                 unallocated_encoding(s);
12813                 return;
12814             }
12815             size = MO_32;
12816             break;
12817         case 1: /* BFDOT */
12818             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12819                 unallocated_encoding(s);
12820                 return;
12821             }
12822             size = MO_32;
12823             break;
12824         case 3: /* BFMLAL{B,T} */
12825             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12826                 unallocated_encoding(s);
12827                 return;
12828             }
12829             /* can't set is_fp without other incorrect size checks */
12830             size = MO_16;
12831             break;
12832         default:
12833             unallocated_encoding(s);
12834             return;
12835         }
12836         break;
12837     case 0x11: /* FCMLA #0 */
12838     case 0x13: /* FCMLA #90 */
12839     case 0x15: /* FCMLA #180 */
12840     case 0x17: /* FCMLA #270 */
12841         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12842             unallocated_encoding(s);
12843             return;
12844         }
12845         is_fp = 2;
12846         break;
12847     case 0x00: /* FMLAL */
12848     case 0x04: /* FMLSL */
12849     case 0x18: /* FMLAL2 */
12850     case 0x1c: /* FMLSL2 */
12851         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12852             unallocated_encoding(s);
12853             return;
12854         }
12855         size = MO_16;
12856         /* is_fp, but we pass tcg_env not fp_status.  */
12857         break;
12858     default:
12859     case 0x01: /* FMLA */
12860     case 0x05: /* FMLS */
12861     case 0x09: /* FMUL */
12862     case 0x19: /* FMULX */
12863         unallocated_encoding(s);
12864         return;
12865     }
12866 
12867     switch (is_fp) {
12868     case 1: /* normal fp */
12869         unallocated_encoding(s); /* in decodetree */
12870         return;
12871 
12872     case 2: /* complex fp */
12873         /* Each indexable element is a complex pair.  */
12874         size += 1;
12875         switch (size) {
12876         case MO_32:
12877             if (h && !is_q) {
12878                 unallocated_encoding(s);
12879                 return;
12880             }
12881             is_fp16 = true;
12882             break;
12883         case MO_64:
12884             break;
12885         default:
12886             unallocated_encoding(s);
12887             return;
12888         }
12889         break;
12890 
12891     default: /* integer */
12892         switch (size) {
12893         case MO_8:
12894         case MO_64:
12895             unallocated_encoding(s);
12896             return;
12897         }
12898         break;
12899     }
12900     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12901         unallocated_encoding(s);
12902         return;
12903     }
12904 
12905     /* Given MemOp size, adjust register and indexing.  */
12906     switch (size) {
12907     case MO_16:
12908         index = h << 2 | l << 1 | m;
12909         break;
12910     case MO_32:
12911         index = h << 1 | l;
12912         rm |= m << 4;
12913         break;
12914     case MO_64:
12915         if (l || !is_q) {
12916             unallocated_encoding(s);
12917             return;
12918         }
12919         index = h;
12920         rm |= m << 4;
12921         break;
12922     default:
12923         g_assert_not_reached();
12924     }
12925 
12926     if (!fp_access_check(s)) {
12927         return;
12928     }
12929 
12930     if (is_fp) {
12931         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12932     } else {
12933         fpst = NULL;
12934     }
12935 
12936     switch (16 * u + opcode) {
12937     case 0x0e: /* SDOT */
12938     case 0x1e: /* UDOT */
12939         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12940                          u ? gen_helper_gvec_udot_idx_b
12941                          : gen_helper_gvec_sdot_idx_b);
12942         return;
12943     case 0x0f:
12944         switch (extract32(insn, 22, 2)) {
12945         case 0: /* SUDOT */
12946             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12947                              gen_helper_gvec_sudot_idx_b);
12948             return;
12949         case 1: /* BFDOT */
12950             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12951                              gen_helper_gvec_bfdot_idx);
12952             return;
12953         case 2: /* USDOT */
12954             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12955                              gen_helper_gvec_usdot_idx_b);
12956             return;
12957         case 3: /* BFMLAL{B,T} */
12958             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12959                               gen_helper_gvec_bfmlal_idx);
12960             return;
12961         }
12962         g_assert_not_reached();
12963     case 0x11: /* FCMLA #0 */
12964     case 0x13: /* FCMLA #90 */
12965     case 0x15: /* FCMLA #180 */
12966     case 0x17: /* FCMLA #270 */
12967         {
12968             int rot = extract32(insn, 13, 2);
12969             int data = (index << 2) | rot;
12970             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12971                                vec_full_reg_offset(s, rn),
12972                                vec_full_reg_offset(s, rm),
12973                                vec_full_reg_offset(s, rd), fpst,
12974                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12975                                size == MO_64
12976                                ? gen_helper_gvec_fcmlas_idx
12977                                : gen_helper_gvec_fcmlah_idx);
12978         }
12979         return;
12980 
12981     case 0x00: /* FMLAL */
12982     case 0x04: /* FMLSL */
12983     case 0x18: /* FMLAL2 */
12984     case 0x1c: /* FMLSL2 */
12985         {
12986             int is_s = extract32(opcode, 2, 1);
12987             int is_2 = u;
12988             int data = (index << 2) | (is_2 << 1) | is_s;
12989             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12990                                vec_full_reg_offset(s, rn),
12991                                vec_full_reg_offset(s, rm), tcg_env,
12992                                is_q ? 16 : 8, vec_full_reg_size(s),
12993                                data, gen_helper_gvec_fmlal_idx_a64);
12994         }
12995         return;
12996 
12997     case 0x08: /* MUL */
12998         if (!is_long && !is_scalar) {
12999             static gen_helper_gvec_3 * const fns[3] = {
13000                 gen_helper_gvec_mul_idx_h,
13001                 gen_helper_gvec_mul_idx_s,
13002                 gen_helper_gvec_mul_idx_d,
13003             };
13004             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13005                                vec_full_reg_offset(s, rn),
13006                                vec_full_reg_offset(s, rm),
13007                                is_q ? 16 : 8, vec_full_reg_size(s),
13008                                index, fns[size - 1]);
13009             return;
13010         }
13011         break;
13012 
13013     case 0x10: /* MLA */
13014         if (!is_long && !is_scalar) {
13015             static gen_helper_gvec_4 * const fns[3] = {
13016                 gen_helper_gvec_mla_idx_h,
13017                 gen_helper_gvec_mla_idx_s,
13018                 gen_helper_gvec_mla_idx_d,
13019             };
13020             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13021                                vec_full_reg_offset(s, rn),
13022                                vec_full_reg_offset(s, rm),
13023                                vec_full_reg_offset(s, rd),
13024                                is_q ? 16 : 8, vec_full_reg_size(s),
13025                                index, fns[size - 1]);
13026             return;
13027         }
13028         break;
13029 
13030     case 0x14: /* MLS */
13031         if (!is_long && !is_scalar) {
13032             static gen_helper_gvec_4 * const fns[3] = {
13033                 gen_helper_gvec_mls_idx_h,
13034                 gen_helper_gvec_mls_idx_s,
13035                 gen_helper_gvec_mls_idx_d,
13036             };
13037             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13038                                vec_full_reg_offset(s, rn),
13039                                vec_full_reg_offset(s, rm),
13040                                vec_full_reg_offset(s, rd),
13041                                is_q ? 16 : 8, vec_full_reg_size(s),
13042                                index, fns[size - 1]);
13043             return;
13044         }
13045         break;
13046     }
13047 
13048     if (size == 3) {
13049         g_assert_not_reached();
13050     } else if (!is_long) {
13051         /* 32 bit floating point, or 16 or 32 bit integer.
13052          * For the 16 bit scalar case we use the usual Neon helpers and
13053          * rely on the fact that 0 op 0 == 0 with no side effects.
13054          */
13055         TCGv_i32 tcg_idx = tcg_temp_new_i32();
13056         int pass, maxpasses;
13057 
13058         if (is_scalar) {
13059             maxpasses = 1;
13060         } else {
13061             maxpasses = is_q ? 4 : 2;
13062         }
13063 
13064         read_vec_element_i32(s, tcg_idx, rm, index, size);
13065 
13066         if (size == 1 && !is_scalar) {
13067             /* The simplest way to handle the 16x16 indexed ops is to duplicate
13068              * the index into both halves of the 32 bit tcg_idx and then use
13069              * the usual Neon helpers.
13070              */
13071             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13072         }
13073 
13074         for (pass = 0; pass < maxpasses; pass++) {
13075             TCGv_i32 tcg_op = tcg_temp_new_i32();
13076             TCGv_i32 tcg_res = tcg_temp_new_i32();
13077 
13078             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13079 
13080             switch (16 * u + opcode) {
13081             case 0x08: /* MUL */
13082             case 0x10: /* MLA */
13083             case 0x14: /* MLS */
13084             {
13085                 static NeonGenTwoOpFn * const fns[2][2] = {
13086                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13087                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13088                 };
13089                 NeonGenTwoOpFn *genfn;
13090                 bool is_sub = opcode == 0x4;
13091 
13092                 if (size == 1) {
13093                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13094                 } else {
13095                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13096                 }
13097                 if (opcode == 0x8) {
13098                     break;
13099                 }
13100                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13101                 genfn = fns[size - 1][is_sub];
13102                 genfn(tcg_res, tcg_op, tcg_res);
13103                 break;
13104             }
13105             case 0x0c: /* SQDMULH */
13106                 if (size == 1) {
13107                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
13108                                                tcg_op, tcg_idx);
13109                 } else {
13110                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
13111                                                tcg_op, tcg_idx);
13112                 }
13113                 break;
13114             case 0x0d: /* SQRDMULH */
13115                 if (size == 1) {
13116                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
13117                                                 tcg_op, tcg_idx);
13118                 } else {
13119                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
13120                                                 tcg_op, tcg_idx);
13121                 }
13122                 break;
13123             case 0x1d: /* SQRDMLAH */
13124                 read_vec_element_i32(s, tcg_res, rd, pass,
13125                                      is_scalar ? size : MO_32);
13126                 if (size == 1) {
13127                     gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
13128                                                 tcg_op, tcg_idx, tcg_res);
13129                 } else {
13130                     gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
13131                                                 tcg_op, tcg_idx, tcg_res);
13132                 }
13133                 break;
13134             case 0x1f: /* SQRDMLSH */
13135                 read_vec_element_i32(s, tcg_res, rd, pass,
13136                                      is_scalar ? size : MO_32);
13137                 if (size == 1) {
13138                     gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
13139                                                 tcg_op, tcg_idx, tcg_res);
13140                 } else {
13141                     gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
13142                                                 tcg_op, tcg_idx, tcg_res);
13143                 }
13144                 break;
13145             default:
13146             case 0x01: /* FMLA */
13147             case 0x05: /* FMLS */
13148             case 0x09: /* FMUL */
13149             case 0x19: /* FMULX */
13150                 g_assert_not_reached();
13151             }
13152 
13153             if (is_scalar) {
13154                 write_fp_sreg(s, rd, tcg_res);
13155             } else {
13156                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13157             }
13158         }
13159 
13160         clear_vec_high(s, is_q, rd);
13161     } else {
13162         /* long ops: 16x16->32 or 32x32->64 */
13163         TCGv_i64 tcg_res[2];
13164         int pass;
13165         bool satop = extract32(opcode, 0, 1);
13166         MemOp memop = MO_32;
13167 
13168         if (satop || !u) {
13169             memop |= MO_SIGN;
13170         }
13171 
13172         if (size == 2) {
13173             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13174 
13175             read_vec_element(s, tcg_idx, rm, index, memop);
13176 
13177             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13178                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13179                 TCGv_i64 tcg_passres;
13180                 int passelt;
13181 
13182                 if (is_scalar) {
13183                     passelt = 0;
13184                 } else {
13185                     passelt = pass + (is_q * 2);
13186                 }
13187 
13188                 read_vec_element(s, tcg_op, rn, passelt, memop);
13189 
13190                 tcg_res[pass] = tcg_temp_new_i64();
13191 
13192                 if (opcode == 0xa || opcode == 0xb) {
13193                     /* Non-accumulating ops */
13194                     tcg_passres = tcg_res[pass];
13195                 } else {
13196                     tcg_passres = tcg_temp_new_i64();
13197                 }
13198 
13199                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13200 
13201                 if (satop) {
13202                     /* saturating, doubling */
13203                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
13204                                                       tcg_passres, tcg_passres);
13205                 }
13206 
13207                 if (opcode == 0xa || opcode == 0xb) {
13208                     continue;
13209                 }
13210 
13211                 /* Accumulating op: handle accumulate step */
13212                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13213 
13214                 switch (opcode) {
13215                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13216                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13217                     break;
13218                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13219                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13220                     break;
13221                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13222                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13223                     /* fall through */
13224                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13225                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
13226                                                       tcg_res[pass],
13227                                                       tcg_passres);
13228                     break;
13229                 default:
13230                     g_assert_not_reached();
13231                 }
13232             }
13233 
13234             clear_vec_high(s, !is_scalar, rd);
13235         } else {
13236             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13237 
13238             assert(size == 1);
13239             read_vec_element_i32(s, tcg_idx, rm, index, size);
13240 
13241             if (!is_scalar) {
13242                 /* The simplest way to handle the 16x16 indexed ops is to
13243                  * duplicate the index into both halves of the 32 bit tcg_idx
13244                  * and then use the usual Neon helpers.
13245                  */
13246                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13247             }
13248 
13249             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13250                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13251                 TCGv_i64 tcg_passres;
13252 
13253                 if (is_scalar) {
13254                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13255                 } else {
13256                     read_vec_element_i32(s, tcg_op, rn,
13257                                          pass + (is_q * 2), MO_32);
13258                 }
13259 
13260                 tcg_res[pass] = tcg_temp_new_i64();
13261 
13262                 if (opcode == 0xa || opcode == 0xb) {
13263                     /* Non-accumulating ops */
13264                     tcg_passres = tcg_res[pass];
13265                 } else {
13266                     tcg_passres = tcg_temp_new_i64();
13267                 }
13268 
13269                 if (memop & MO_SIGN) {
13270                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13271                 } else {
13272                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13273                 }
13274                 if (satop) {
13275                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
13276                                                       tcg_passres, tcg_passres);
13277                 }
13278 
13279                 if (opcode == 0xa || opcode == 0xb) {
13280                     continue;
13281                 }
13282 
13283                 /* Accumulating op: handle accumulate step */
13284                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13285 
13286                 switch (opcode) {
13287                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13288                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13289                                              tcg_passres);
13290                     break;
13291                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13292                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13293                                              tcg_passres);
13294                     break;
13295                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13296                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13297                     /* fall through */
13298                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13299                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
13300                                                       tcg_res[pass],
13301                                                       tcg_passres);
13302                     break;
13303                 default:
13304                     g_assert_not_reached();
13305                 }
13306             }
13307 
13308             if (is_scalar) {
13309                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13310             }
13311         }
13312 
13313         if (is_scalar) {
13314             tcg_res[1] = tcg_constant_i64(0);
13315         }
13316 
13317         for (pass = 0; pass < 2; pass++) {
13318             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13319         }
13320     }
13321 }
13322 
13323 /* C3.6 Data processing - SIMD, inc Crypto
13324  *
13325  * As the decode gets a little complex we are using a table based
13326  * approach for this part of the decode.
13327  */
13328 static const AArch64DecodeTable data_proc_simd[] = {
13329     /* pattern  ,  mask     ,  fn                        */
13330     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13331     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13332     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13333     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13334     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13335     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13336     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13337     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13338     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13339     { 0x0e000000, 0xbf208c00, disas_simd_tb },
13340     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13341     { 0x2e000000, 0xbf208400, disas_simd_ext },
13342     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13343     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13344     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13345     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13346     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13347     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13348     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13349     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13350     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13351     { 0x00000000, 0x00000000, NULL }
13352 };
13353 
13354 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13355 {
13356     /* Note that this is called with all non-FP cases from
13357      * table C3-6 so it must UNDEF for entries not specifically
13358      * allocated to instructions in that table.
13359      */
13360     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13361     if (fn) {
13362         fn(s, insn);
13363     } else {
13364         unallocated_encoding(s);
13365     }
13366 }
13367 
13368 /* C3.6 Data processing - SIMD and floating point */
13369 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13370 {
13371     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13372         disas_data_proc_fp(s, insn);
13373     } else {
13374         /* SIMD, including crypto */
13375         disas_data_proc_simd(s, insn);
13376     }
13377 }
13378 
13379 static bool trans_OK(DisasContext *s, arg_OK *a)
13380 {
13381     return true;
13382 }
13383 
13384 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13385 {
13386     s->is_nonstreaming = true;
13387     return true;
13388 }
13389 
13390 /**
13391  * is_guarded_page:
13392  * @env: The cpu environment
13393  * @s: The DisasContext
13394  *
13395  * Return true if the page is guarded.
13396  */
13397 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13398 {
13399     uint64_t addr = s->base.pc_first;
13400 #ifdef CONFIG_USER_ONLY
13401     return page_get_flags(addr) & PAGE_BTI;
13402 #else
13403     CPUTLBEntryFull *full;
13404     void *host;
13405     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13406     int flags;
13407 
13408     /*
13409      * We test this immediately after reading an insn, which means
13410      * that the TLB entry must be present and valid, and thus this
13411      * access will never raise an exception.
13412      */
13413     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13414                               false, &host, &full, 0);
13415     assert(!(flags & TLB_INVALID_MASK));
13416 
13417     return full->extra.arm.guarded;
13418 #endif
13419 }
13420 
13421 /**
13422  * btype_destination_ok:
13423  * @insn: The instruction at the branch destination
13424  * @bt: SCTLR_ELx.BT
13425  * @btype: PSTATE.BTYPE, and is non-zero
13426  *
13427  * On a guarded page, there are a limited number of insns
13428  * that may be present at the branch target:
13429  *   - branch target identifiers,
13430  *   - paciasp, pacibsp,
13431  *   - BRK insn
13432  *   - HLT insn
13433  * Anything else causes a Branch Target Exception.
13434  *
13435  * Return true if the branch is compatible, false to raise BTITRAP.
13436  */
13437 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13438 {
13439     if ((insn & 0xfffff01fu) == 0xd503201fu) {
13440         /* HINT space */
13441         switch (extract32(insn, 5, 7)) {
13442         case 0b011001: /* PACIASP */
13443         case 0b011011: /* PACIBSP */
13444             /*
13445              * If SCTLR_ELx.BT, then PACI*SP are not compatible
13446              * with btype == 3.  Otherwise all btype are ok.
13447              */
13448             return !bt || btype != 3;
13449         case 0b100000: /* BTI */
13450             /* Not compatible with any btype.  */
13451             return false;
13452         case 0b100010: /* BTI c */
13453             /* Not compatible with btype == 3 */
13454             return btype != 3;
13455         case 0b100100: /* BTI j */
13456             /* Not compatible with btype == 2 */
13457             return btype != 2;
13458         case 0b100110: /* BTI jc */
13459             /* Compatible with any btype.  */
13460             return true;
13461         }
13462     } else {
13463         switch (insn & 0xffe0001fu) {
13464         case 0xd4200000u: /* BRK */
13465         case 0xd4400000u: /* HLT */
13466             /* Give priority to the breakpoint exception.  */
13467             return true;
13468         }
13469     }
13470     return false;
13471 }
13472 
13473 /* C3.1 A64 instruction index by encoding */
13474 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
13475 {
13476     switch (extract32(insn, 25, 4)) {
13477     case 0x5:
13478     case 0xd:      /* Data processing - register */
13479         disas_data_proc_reg(s, insn);
13480         break;
13481     case 0x7:
13482     case 0xf:      /* Data processing - SIMD and floating point */
13483         disas_data_proc_simd_fp(s, insn);
13484         break;
13485     default:
13486         unallocated_encoding(s);
13487         break;
13488     }
13489 }
13490 
13491 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13492                                           CPUState *cpu)
13493 {
13494     DisasContext *dc = container_of(dcbase, DisasContext, base);
13495     CPUARMState *env = cpu_env(cpu);
13496     ARMCPU *arm_cpu = env_archcpu(env);
13497     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
13498     int bound, core_mmu_idx;
13499 
13500     dc->isar = &arm_cpu->isar;
13501     dc->condjmp = 0;
13502     dc->pc_save = dc->base.pc_first;
13503     dc->aarch64 = true;
13504     dc->thumb = false;
13505     dc->sctlr_b = 0;
13506     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
13507     dc->condexec_mask = 0;
13508     dc->condexec_cond = 0;
13509     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
13510     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
13511     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
13512     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
13513     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
13514     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13515 #if !defined(CONFIG_USER_ONLY)
13516     dc->user = (dc->current_el == 0);
13517 #endif
13518     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
13519     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
13520     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
13521     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
13522     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
13523     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
13524     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
13525     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
13526     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
13527     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
13528     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
13529     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
13530     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
13531     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
13532     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
13533     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
13534     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
13535     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
13536     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
13537     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
13538     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
13539     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
13540     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
13541     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
13542     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
13543     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
13544     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
13545     dc->vec_len = 0;
13546     dc->vec_stride = 0;
13547     dc->cp_regs = arm_cpu->cp_regs;
13548     dc->features = env->features;
13549     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
13550     dc->gm_blocksize = arm_cpu->gm_blocksize;
13551 
13552 #ifdef CONFIG_USER_ONLY
13553     /* In sve_probe_page, we assume TBI is enabled. */
13554     tcg_debug_assert(dc->tbid & 1);
13555 #endif
13556 
13557     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
13558 
13559     /* Single step state. The code-generation logic here is:
13560      *  SS_ACTIVE == 0:
13561      *   generate code with no special handling for single-stepping (except
13562      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13563      *   this happens anyway because those changes are all system register or
13564      *   PSTATE writes).
13565      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13566      *   emit code for one insn
13567      *   emit code to clear PSTATE.SS
13568      *   emit code to generate software step exception for completed step
13569      *   end TB (as usual for having generated an exception)
13570      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13571      *   emit code to generate a software step exception
13572      *   end the TB
13573      */
13574     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
13575     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
13576     dc->is_ldex = false;
13577 
13578     /* Bound the number of insns to execute to those left on the page.  */
13579     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13580 
13581     /* If architectural single step active, limit to 1.  */
13582     if (dc->ss_active) {
13583         bound = 1;
13584     }
13585     dc->base.max_insns = MIN(dc->base.max_insns, bound);
13586 }
13587 
13588 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13589 {
13590 }
13591 
13592 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13593 {
13594     DisasContext *dc = container_of(dcbase, DisasContext, base);
13595     target_ulong pc_arg = dc->base.pc_next;
13596 
13597     if (tb_cflags(dcbase->tb) & CF_PCREL) {
13598         pc_arg &= ~TARGET_PAGE_MASK;
13599     }
13600     tcg_gen_insn_start(pc_arg, 0, 0);
13601     dc->insn_start_updated = false;
13602 }
13603 
13604 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13605 {
13606     DisasContext *s = container_of(dcbase, DisasContext, base);
13607     CPUARMState *env = cpu_env(cpu);
13608     uint64_t pc = s->base.pc_next;
13609     uint32_t insn;
13610 
13611     /* Singlestep exceptions have the highest priority. */
13612     if (s->ss_active && !s->pstate_ss) {
13613         /* Singlestep state is Active-pending.
13614          * If we're in this state at the start of a TB then either
13615          *  a) we just took an exception to an EL which is being debugged
13616          *     and this is the first insn in the exception handler
13617          *  b) debug exceptions were masked and we just unmasked them
13618          *     without changing EL (eg by clearing PSTATE.D)
13619          * In either case we're going to take a swstep exception in the
13620          * "did not step an insn" case, and so the syndrome ISV and EX
13621          * bits should be zero.
13622          */
13623         assert(s->base.num_insns == 1);
13624         gen_swstep_exception(s, 0, 0);
13625         s->base.is_jmp = DISAS_NORETURN;
13626         s->base.pc_next = pc + 4;
13627         return;
13628     }
13629 
13630     if (pc & 3) {
13631         /*
13632          * PC alignment fault.  This has priority over the instruction abort
13633          * that we would receive from a translation fault via arm_ldl_code.
13634          * This should only be possible after an indirect branch, at the
13635          * start of the TB.
13636          */
13637         assert(s->base.num_insns == 1);
13638         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
13639         s->base.is_jmp = DISAS_NORETURN;
13640         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
13641         return;
13642     }
13643 
13644     s->pc_curr = pc;
13645     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
13646     s->insn = insn;
13647     s->base.pc_next = pc + 4;
13648 
13649     s->fp_access_checked = false;
13650     s->sve_access_checked = false;
13651 
13652     if (s->pstate_il) {
13653         /*
13654          * Illegal execution state. This has priority over BTI
13655          * exceptions, but comes after instruction abort exceptions.
13656          */
13657         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
13658         return;
13659     }
13660 
13661     if (dc_isar_feature(aa64_bti, s)) {
13662         if (s->base.num_insns == 1) {
13663             /*
13664              * At the first insn of the TB, compute s->guarded_page.
13665              * We delayed computing this until successfully reading
13666              * the first insn of the TB, above.  This (mostly) ensures
13667              * that the softmmu tlb entry has been populated, and the
13668              * page table GP bit is available.
13669              *
13670              * Note that we need to compute this even if btype == 0,
13671              * because this value is used for BR instructions later
13672              * where ENV is not available.
13673              */
13674             s->guarded_page = is_guarded_page(env, s);
13675 
13676             /* First insn can have btype set to non-zero.  */
13677             tcg_debug_assert(s->btype >= 0);
13678 
13679             /*
13680              * Note that the Branch Target Exception has fairly high
13681              * priority -- below debugging exceptions but above most
13682              * everything else.  This allows us to handle this now
13683              * instead of waiting until the insn is otherwise decoded.
13684              */
13685             if (s->btype != 0
13686                 && s->guarded_page
13687                 && !btype_destination_ok(insn, s->bt, s->btype)) {
13688                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
13689                 return;
13690             }
13691         } else {
13692             /* Not the first insn: btype must be 0.  */
13693             tcg_debug_assert(s->btype == 0);
13694         }
13695     }
13696 
13697     s->is_nonstreaming = false;
13698     if (s->sme_trap_nonstreaming) {
13699         disas_sme_fa64(s, insn);
13700     }
13701 
13702     if (!disas_a64(s, insn) &&
13703         !disas_sme(s, insn) &&
13704         !disas_sve(s, insn)) {
13705         disas_a64_legacy(s, insn);
13706     }
13707 
13708     /*
13709      * After execution of most insns, btype is reset to 0.
13710      * Note that we set btype == -1 when the insn sets btype.
13711      */
13712     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
13713         reset_btype(s);
13714     }
13715 }
13716 
13717 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
13718 {
13719     DisasContext *dc = container_of(dcbase, DisasContext, base);
13720 
13721     if (unlikely(dc->ss_active)) {
13722         /* Note that this means single stepping WFI doesn't halt the CPU.
13723          * For conditional branch insns this is harmless unreachable code as
13724          * gen_goto_tb() has already handled emitting the debug exception
13725          * (and thus a tb-jump is not possible when singlestepping).
13726          */
13727         switch (dc->base.is_jmp) {
13728         default:
13729             gen_a64_update_pc(dc, 4);
13730             /* fall through */
13731         case DISAS_EXIT:
13732         case DISAS_JUMP:
13733             gen_step_complete_exception(dc);
13734             break;
13735         case DISAS_NORETURN:
13736             break;
13737         }
13738     } else {
13739         switch (dc->base.is_jmp) {
13740         case DISAS_NEXT:
13741         case DISAS_TOO_MANY:
13742             gen_goto_tb(dc, 1, 4);
13743             break;
13744         default:
13745         case DISAS_UPDATE_EXIT:
13746             gen_a64_update_pc(dc, 4);
13747             /* fall through */
13748         case DISAS_EXIT:
13749             tcg_gen_exit_tb(NULL, 0);
13750             break;
13751         case DISAS_UPDATE_NOCHAIN:
13752             gen_a64_update_pc(dc, 4);
13753             /* fall through */
13754         case DISAS_JUMP:
13755             tcg_gen_lookup_and_goto_ptr();
13756             break;
13757         case DISAS_NORETURN:
13758         case DISAS_SWI:
13759             break;
13760         case DISAS_WFE:
13761             gen_a64_update_pc(dc, 4);
13762             gen_helper_wfe(tcg_env);
13763             break;
13764         case DISAS_YIELD:
13765             gen_a64_update_pc(dc, 4);
13766             gen_helper_yield(tcg_env);
13767             break;
13768         case DISAS_WFI:
13769             /*
13770              * This is a special case because we don't want to just halt
13771              * the CPU if trying to debug across a WFI.
13772              */
13773             gen_a64_update_pc(dc, 4);
13774             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
13775             /*
13776              * The helper doesn't necessarily throw an exception, but we
13777              * must go back to the main loop to check for interrupts anyway.
13778              */
13779             tcg_gen_exit_tb(NULL, 0);
13780             break;
13781         }
13782     }
13783 }
13784 
13785 const TranslatorOps aarch64_translator_ops = {
13786     .init_disas_context = aarch64_tr_init_disas_context,
13787     .tb_start           = aarch64_tr_tb_start,
13788     .insn_start         = aarch64_tr_insn_start,
13789     .translate_insn     = aarch64_tr_translate_insn,
13790     .tb_stop            = aarch64_tr_tb_stop,
13791 };
13792