1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * Expanders for AdvSIMD translation functions. 1318 */ 1319 1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1321 gen_helper_gvec_2 *fn) 1322 { 1323 if (!a->q && a->esz == MO_64) { 1324 return false; 1325 } 1326 if (fp_access_check(s)) { 1327 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1328 } 1329 return true; 1330 } 1331 1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1333 gen_helper_gvec_3 *fn) 1334 { 1335 if (!a->q && a->esz == MO_64) { 1336 return false; 1337 } 1338 if (fp_access_check(s)) { 1339 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1340 } 1341 return true; 1342 } 1343 1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1345 { 1346 if (!a->q && a->esz == MO_64) { 1347 return false; 1348 } 1349 if (fp_access_check(s)) { 1350 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1351 } 1352 return true; 1353 } 1354 1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1356 { 1357 if (!a->q && a->esz == MO_64) { 1358 return false; 1359 } 1360 if (fp_access_check(s)) { 1361 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1362 } 1363 return true; 1364 } 1365 1366 /* 1367 * This utility function is for doing register extension with an 1368 * optional shift. You will likely want to pass a temporary for the 1369 * destination register. See DecodeRegExtend() in the ARM ARM. 1370 */ 1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1372 int option, unsigned int shift) 1373 { 1374 int extsize = extract32(option, 0, 2); 1375 bool is_signed = extract32(option, 2, 1); 1376 1377 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1378 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1379 } 1380 1381 static inline void gen_check_sp_alignment(DisasContext *s) 1382 { 1383 /* The AArch64 architecture mandates that (if enabled via PSTATE 1384 * or SCTLR bits) there is a check that SP is 16-aligned on every 1385 * SP-relative load or store (with an exception generated if it is not). 1386 * In line with general QEMU practice regarding misaligned accesses, 1387 * we omit these checks for the sake of guest program performance. 1388 * This function is provided as a hook so we can more easily add these 1389 * checks in future (possibly as a "favour catching guest program bugs 1390 * over speed" user selectable option). 1391 */ 1392 } 1393 1394 /* 1395 * This provides a simple table based table lookup decoder. It is 1396 * intended to be used when the relevant bits for decode are too 1397 * awkwardly placed and switch/if based logic would be confusing and 1398 * deeply nested. Since it's a linear search through the table, tables 1399 * should be kept small. 1400 * 1401 * It returns the first handler where insn & mask == pattern, or 1402 * NULL if there is no match. 1403 * The table is terminated by an empty mask (i.e. 0) 1404 */ 1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1406 uint32_t insn) 1407 { 1408 const AArch64DecodeTable *tptr = table; 1409 1410 while (tptr->mask) { 1411 if ((insn & tptr->mask) == tptr->pattern) { 1412 return tptr->disas_fn; 1413 } 1414 tptr++; 1415 } 1416 return NULL; 1417 } 1418 1419 /* 1420 * The instruction disassembly implemented here matches 1421 * the instruction encoding classifications in chapter C4 1422 * of the ARM Architecture Reference Manual (DDI0487B_a); 1423 * classification names and decode diagrams here should generally 1424 * match up with those in the manual. 1425 */ 1426 1427 static bool trans_B(DisasContext *s, arg_i *a) 1428 { 1429 reset_btype(s); 1430 gen_goto_tb(s, 0, a->imm); 1431 return true; 1432 } 1433 1434 static bool trans_BL(DisasContext *s, arg_i *a) 1435 { 1436 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1437 reset_btype(s); 1438 gen_goto_tb(s, 0, a->imm); 1439 return true; 1440 } 1441 1442 1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1444 { 1445 DisasLabel match; 1446 TCGv_i64 tcg_cmp; 1447 1448 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1449 reset_btype(s); 1450 1451 match = gen_disas_label(s); 1452 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1453 tcg_cmp, 0, match.label); 1454 gen_goto_tb(s, 0, 4); 1455 set_disas_label(s, match); 1456 gen_goto_tb(s, 1, a->imm); 1457 return true; 1458 } 1459 1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1461 { 1462 DisasLabel match; 1463 TCGv_i64 tcg_cmp; 1464 1465 tcg_cmp = tcg_temp_new_i64(); 1466 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1467 1468 reset_btype(s); 1469 1470 match = gen_disas_label(s); 1471 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1472 tcg_cmp, 0, match.label); 1473 gen_goto_tb(s, 0, 4); 1474 set_disas_label(s, match); 1475 gen_goto_tb(s, 1, a->imm); 1476 return true; 1477 } 1478 1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1480 { 1481 /* BC.cond is only present with FEAT_HBC */ 1482 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1483 return false; 1484 } 1485 reset_btype(s); 1486 if (a->cond < 0x0e) { 1487 /* genuinely conditional branches */ 1488 DisasLabel match = gen_disas_label(s); 1489 arm_gen_test_cc(a->cond, match.label); 1490 gen_goto_tb(s, 0, 4); 1491 set_disas_label(s, match); 1492 gen_goto_tb(s, 1, a->imm); 1493 } else { 1494 /* 0xe and 0xf are both "always" conditions */ 1495 gen_goto_tb(s, 0, a->imm); 1496 } 1497 return true; 1498 } 1499 1500 static void set_btype_for_br(DisasContext *s, int rn) 1501 { 1502 if (dc_isar_feature(aa64_bti, s)) { 1503 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1504 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1505 } 1506 } 1507 1508 static void set_btype_for_blr(DisasContext *s) 1509 { 1510 if (dc_isar_feature(aa64_bti, s)) { 1511 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1512 set_btype(s, 2); 1513 } 1514 } 1515 1516 static bool trans_BR(DisasContext *s, arg_r *a) 1517 { 1518 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1519 set_btype_for_br(s, a->rn); 1520 s->base.is_jmp = DISAS_JUMP; 1521 return true; 1522 } 1523 1524 static bool trans_BLR(DisasContext *s, arg_r *a) 1525 { 1526 TCGv_i64 dst = cpu_reg(s, a->rn); 1527 TCGv_i64 lr = cpu_reg(s, 30); 1528 if (dst == lr) { 1529 TCGv_i64 tmp = tcg_temp_new_i64(); 1530 tcg_gen_mov_i64(tmp, dst); 1531 dst = tmp; 1532 } 1533 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1534 gen_a64_set_pc(s, dst); 1535 set_btype_for_blr(s); 1536 s->base.is_jmp = DISAS_JUMP; 1537 return true; 1538 } 1539 1540 static bool trans_RET(DisasContext *s, arg_r *a) 1541 { 1542 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1543 s->base.is_jmp = DISAS_JUMP; 1544 return true; 1545 } 1546 1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1548 TCGv_i64 modifier, bool use_key_a) 1549 { 1550 TCGv_i64 truedst; 1551 /* 1552 * Return the branch target for a BRAA/RETA/etc, which is either 1553 * just the destination dst, or that value with the pauth check 1554 * done and the code removed from the high bits. 1555 */ 1556 if (!s->pauth_active) { 1557 return dst; 1558 } 1559 1560 truedst = tcg_temp_new_i64(); 1561 if (use_key_a) { 1562 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1563 } else { 1564 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1565 } 1566 return truedst; 1567 } 1568 1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1570 { 1571 TCGv_i64 dst; 1572 1573 if (!dc_isar_feature(aa64_pauth, s)) { 1574 return false; 1575 } 1576 1577 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1578 gen_a64_set_pc(s, dst); 1579 set_btype_for_br(s, a->rn); 1580 s->base.is_jmp = DISAS_JUMP; 1581 return true; 1582 } 1583 1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1585 { 1586 TCGv_i64 dst, lr; 1587 1588 if (!dc_isar_feature(aa64_pauth, s)) { 1589 return false; 1590 } 1591 1592 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1593 lr = cpu_reg(s, 30); 1594 if (dst == lr) { 1595 TCGv_i64 tmp = tcg_temp_new_i64(); 1596 tcg_gen_mov_i64(tmp, dst); 1597 dst = tmp; 1598 } 1599 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1600 gen_a64_set_pc(s, dst); 1601 set_btype_for_blr(s); 1602 s->base.is_jmp = DISAS_JUMP; 1603 return true; 1604 } 1605 1606 static bool trans_RETA(DisasContext *s, arg_reta *a) 1607 { 1608 TCGv_i64 dst; 1609 1610 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1611 gen_a64_set_pc(s, dst); 1612 s->base.is_jmp = DISAS_JUMP; 1613 return true; 1614 } 1615 1616 static bool trans_BRA(DisasContext *s, arg_bra *a) 1617 { 1618 TCGv_i64 dst; 1619 1620 if (!dc_isar_feature(aa64_pauth, s)) { 1621 return false; 1622 } 1623 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1624 gen_a64_set_pc(s, dst); 1625 set_btype_for_br(s, a->rn); 1626 s->base.is_jmp = DISAS_JUMP; 1627 return true; 1628 } 1629 1630 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1631 { 1632 TCGv_i64 dst, lr; 1633 1634 if (!dc_isar_feature(aa64_pauth, s)) { 1635 return false; 1636 } 1637 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1638 lr = cpu_reg(s, 30); 1639 if (dst == lr) { 1640 TCGv_i64 tmp = tcg_temp_new_i64(); 1641 tcg_gen_mov_i64(tmp, dst); 1642 dst = tmp; 1643 } 1644 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1645 gen_a64_set_pc(s, dst); 1646 set_btype_for_blr(s); 1647 s->base.is_jmp = DISAS_JUMP; 1648 return true; 1649 } 1650 1651 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1652 { 1653 TCGv_i64 dst; 1654 1655 if (s->current_el == 0) { 1656 return false; 1657 } 1658 if (s->trap_eret) { 1659 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1660 return true; 1661 } 1662 dst = tcg_temp_new_i64(); 1663 tcg_gen_ld_i64(dst, tcg_env, 1664 offsetof(CPUARMState, elr_el[s->current_el])); 1665 1666 translator_io_start(&s->base); 1667 1668 gen_helper_exception_return(tcg_env, dst); 1669 /* Must exit loop to check un-masked IRQs */ 1670 s->base.is_jmp = DISAS_EXIT; 1671 return true; 1672 } 1673 1674 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1675 { 1676 TCGv_i64 dst; 1677 1678 if (!dc_isar_feature(aa64_pauth, s)) { 1679 return false; 1680 } 1681 if (s->current_el == 0) { 1682 return false; 1683 } 1684 /* The FGT trap takes precedence over an auth trap. */ 1685 if (s->trap_eret) { 1686 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1687 return true; 1688 } 1689 dst = tcg_temp_new_i64(); 1690 tcg_gen_ld_i64(dst, tcg_env, 1691 offsetof(CPUARMState, elr_el[s->current_el])); 1692 1693 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1694 1695 translator_io_start(&s->base); 1696 1697 gen_helper_exception_return(tcg_env, dst); 1698 /* Must exit loop to check un-masked IRQs */ 1699 s->base.is_jmp = DISAS_EXIT; 1700 return true; 1701 } 1702 1703 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1704 { 1705 return true; 1706 } 1707 1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1709 { 1710 /* 1711 * When running in MTTCG we don't generate jumps to the yield and 1712 * WFE helpers as it won't affect the scheduling of other vCPUs. 1713 * If we wanted to more completely model WFE/SEV so we don't busy 1714 * spin unnecessarily we would need to do something more involved. 1715 */ 1716 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1717 s->base.is_jmp = DISAS_YIELD; 1718 } 1719 return true; 1720 } 1721 1722 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1723 { 1724 s->base.is_jmp = DISAS_WFI; 1725 return true; 1726 } 1727 1728 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1729 { 1730 /* 1731 * When running in MTTCG we don't generate jumps to the yield and 1732 * WFE helpers as it won't affect the scheduling of other vCPUs. 1733 * If we wanted to more completely model WFE/SEV so we don't busy 1734 * spin unnecessarily we would need to do something more involved. 1735 */ 1736 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1737 s->base.is_jmp = DISAS_WFE; 1738 } 1739 return true; 1740 } 1741 1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1743 { 1744 if (s->pauth_active) { 1745 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1746 } 1747 return true; 1748 } 1749 1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1751 { 1752 if (s->pauth_active) { 1753 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1754 } 1755 return true; 1756 } 1757 1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1759 { 1760 if (s->pauth_active) { 1761 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1762 } 1763 return true; 1764 } 1765 1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1767 { 1768 if (s->pauth_active) { 1769 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1770 } 1771 return true; 1772 } 1773 1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1775 { 1776 if (s->pauth_active) { 1777 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1778 } 1779 return true; 1780 } 1781 1782 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1783 { 1784 /* Without RAS, we must implement this as NOP. */ 1785 if (dc_isar_feature(aa64_ras, s)) { 1786 /* 1787 * QEMU does not have a source of physical SErrors, 1788 * so we are only concerned with virtual SErrors. 1789 * The pseudocode in the ARM for this case is 1790 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1791 * AArch64.vESBOperation(); 1792 * Most of the condition can be evaluated at translation time. 1793 * Test for EL2 present, and defer test for SEL2 to runtime. 1794 */ 1795 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1796 gen_helper_vesb(tcg_env); 1797 } 1798 } 1799 return true; 1800 } 1801 1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1803 { 1804 if (s->pauth_active) { 1805 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1806 } 1807 return true; 1808 } 1809 1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1811 { 1812 if (s->pauth_active) { 1813 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1814 } 1815 return true; 1816 } 1817 1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1819 { 1820 if (s->pauth_active) { 1821 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1822 } 1823 return true; 1824 } 1825 1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1827 { 1828 if (s->pauth_active) { 1829 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1830 } 1831 return true; 1832 } 1833 1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1835 { 1836 if (s->pauth_active) { 1837 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1838 } 1839 return true; 1840 } 1841 1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1843 { 1844 if (s->pauth_active) { 1845 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1846 } 1847 return true; 1848 } 1849 1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1851 { 1852 if (s->pauth_active) { 1853 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1854 } 1855 return true; 1856 } 1857 1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1859 { 1860 if (s->pauth_active) { 1861 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1862 } 1863 return true; 1864 } 1865 1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1867 { 1868 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1869 return true; 1870 } 1871 1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1873 { 1874 /* We handle DSB and DMB the same way */ 1875 TCGBar bar; 1876 1877 switch (a->types) { 1878 case 1: /* MBReqTypes_Reads */ 1879 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1880 break; 1881 case 2: /* MBReqTypes_Writes */ 1882 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1883 break; 1884 default: /* MBReqTypes_All */ 1885 bar = TCG_BAR_SC | TCG_MO_ALL; 1886 break; 1887 } 1888 tcg_gen_mb(bar); 1889 return true; 1890 } 1891 1892 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1893 { 1894 /* 1895 * We need to break the TB after this insn to execute 1896 * self-modifying code correctly and also to take 1897 * any pending interrupts immediately. 1898 */ 1899 reset_btype(s); 1900 gen_goto_tb(s, 0, 4); 1901 return true; 1902 } 1903 1904 static bool trans_SB(DisasContext *s, arg_SB *a) 1905 { 1906 if (!dc_isar_feature(aa64_sb, s)) { 1907 return false; 1908 } 1909 /* 1910 * TODO: There is no speculation barrier opcode for TCG; 1911 * MB and end the TB instead. 1912 */ 1913 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1914 gen_goto_tb(s, 0, 4); 1915 return true; 1916 } 1917 1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1919 { 1920 if (!dc_isar_feature(aa64_condm_4, s)) { 1921 return false; 1922 } 1923 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1924 return true; 1925 } 1926 1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1928 { 1929 TCGv_i32 z; 1930 1931 if (!dc_isar_feature(aa64_condm_5, s)) { 1932 return false; 1933 } 1934 1935 z = tcg_temp_new_i32(); 1936 1937 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1938 1939 /* 1940 * (!C & !Z) << 31 1941 * (!(C | Z)) << 31 1942 * ~((C | Z) << 31) 1943 * ~-(C | Z) 1944 * (C | Z) - 1 1945 */ 1946 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1947 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1948 1949 /* !(Z & C) */ 1950 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1951 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1952 1953 /* (!C & Z) << 31 -> -(Z & ~C) */ 1954 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1955 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1956 1957 /* C | Z */ 1958 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1959 1960 return true; 1961 } 1962 1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1964 { 1965 if (!dc_isar_feature(aa64_condm_5, s)) { 1966 return false; 1967 } 1968 1969 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1970 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1971 1972 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1973 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1974 1975 tcg_gen_movi_i32(cpu_NF, 0); 1976 tcg_gen_movi_i32(cpu_VF, 0); 1977 1978 return true; 1979 } 1980 1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1982 { 1983 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1984 return false; 1985 } 1986 if (a->imm & 1) { 1987 set_pstate_bits(PSTATE_UAO); 1988 } else { 1989 clear_pstate_bits(PSTATE_UAO); 1990 } 1991 gen_rebuild_hflags(s); 1992 s->base.is_jmp = DISAS_TOO_MANY; 1993 return true; 1994 } 1995 1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1997 { 1998 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1999 return false; 2000 } 2001 if (a->imm & 1) { 2002 set_pstate_bits(PSTATE_PAN); 2003 } else { 2004 clear_pstate_bits(PSTATE_PAN); 2005 } 2006 gen_rebuild_hflags(s); 2007 s->base.is_jmp = DISAS_TOO_MANY; 2008 return true; 2009 } 2010 2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2012 { 2013 if (s->current_el == 0) { 2014 return false; 2015 } 2016 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2017 s->base.is_jmp = DISAS_TOO_MANY; 2018 return true; 2019 } 2020 2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2022 { 2023 if (!dc_isar_feature(aa64_ssbs, s)) { 2024 return false; 2025 } 2026 if (a->imm & 1) { 2027 set_pstate_bits(PSTATE_SSBS); 2028 } else { 2029 clear_pstate_bits(PSTATE_SSBS); 2030 } 2031 /* Don't need to rebuild hflags since SSBS is a nop */ 2032 s->base.is_jmp = DISAS_TOO_MANY; 2033 return true; 2034 } 2035 2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2037 { 2038 if (!dc_isar_feature(aa64_dit, s)) { 2039 return false; 2040 } 2041 if (a->imm & 1) { 2042 set_pstate_bits(PSTATE_DIT); 2043 } else { 2044 clear_pstate_bits(PSTATE_DIT); 2045 } 2046 /* There's no need to rebuild hflags because DIT is a nop */ 2047 s->base.is_jmp = DISAS_TOO_MANY; 2048 return true; 2049 } 2050 2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2052 { 2053 if (dc_isar_feature(aa64_mte, s)) { 2054 /* Full MTE is enabled -- set the TCO bit as directed. */ 2055 if (a->imm & 1) { 2056 set_pstate_bits(PSTATE_TCO); 2057 } else { 2058 clear_pstate_bits(PSTATE_TCO); 2059 } 2060 gen_rebuild_hflags(s); 2061 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2062 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2063 return true; 2064 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2065 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2066 return true; 2067 } else { 2068 /* Insn not present */ 2069 return false; 2070 } 2071 } 2072 2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2074 { 2075 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2076 s->base.is_jmp = DISAS_TOO_MANY; 2077 return true; 2078 } 2079 2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2081 { 2082 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2083 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2084 s->base.is_jmp = DISAS_UPDATE_EXIT; 2085 return true; 2086 } 2087 2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2089 { 2090 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2091 return false; 2092 } 2093 2094 if (a->imm == 0) { 2095 clear_pstate_bits(PSTATE_ALLINT); 2096 } else if (s->current_el > 1) { 2097 set_pstate_bits(PSTATE_ALLINT); 2098 } else { 2099 gen_helper_msr_set_allint_el1(tcg_env); 2100 } 2101 2102 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2103 s->base.is_jmp = DISAS_UPDATE_EXIT; 2104 return true; 2105 } 2106 2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2108 { 2109 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2110 return false; 2111 } 2112 if (sme_access_check(s)) { 2113 int old = s->pstate_sm | (s->pstate_za << 1); 2114 int new = a->imm * 3; 2115 2116 if ((old ^ new) & a->mask) { 2117 /* At least one bit changes. */ 2118 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2119 tcg_constant_i32(a->mask)); 2120 s->base.is_jmp = DISAS_TOO_MANY; 2121 } 2122 } 2123 return true; 2124 } 2125 2126 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2127 { 2128 TCGv_i32 tmp = tcg_temp_new_i32(); 2129 TCGv_i32 nzcv = tcg_temp_new_i32(); 2130 2131 /* build bit 31, N */ 2132 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2133 /* build bit 30, Z */ 2134 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2135 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2136 /* build bit 29, C */ 2137 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2138 /* build bit 28, V */ 2139 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2140 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2141 /* generate result */ 2142 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2143 } 2144 2145 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2146 { 2147 TCGv_i32 nzcv = tcg_temp_new_i32(); 2148 2149 /* take NZCV from R[t] */ 2150 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2151 2152 /* bit 31, N */ 2153 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2154 /* bit 30, Z */ 2155 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2156 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2157 /* bit 29, C */ 2158 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2159 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2160 /* bit 28, V */ 2161 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2162 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2163 } 2164 2165 static void gen_sysreg_undef(DisasContext *s, bool isread, 2166 uint8_t op0, uint8_t op1, uint8_t op2, 2167 uint8_t crn, uint8_t crm, uint8_t rt) 2168 { 2169 /* 2170 * Generate code to emit an UNDEF with correct syndrome 2171 * information for a failed system register access. 2172 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2173 * but if FEAT_IDST is implemented then read accesses to registers 2174 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2175 * syndrome. 2176 */ 2177 uint32_t syndrome; 2178 2179 if (isread && dc_isar_feature(aa64_ids, s) && 2180 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2181 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2182 } else { 2183 syndrome = syn_uncategorized(); 2184 } 2185 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2186 } 2187 2188 /* MRS - move from system register 2189 * MSR (register) - move to system register 2190 * SYS 2191 * SYSL 2192 * These are all essentially the same insn in 'read' and 'write' 2193 * versions, with varying op0 fields. 2194 */ 2195 static void handle_sys(DisasContext *s, bool isread, 2196 unsigned int op0, unsigned int op1, unsigned int op2, 2197 unsigned int crn, unsigned int crm, unsigned int rt) 2198 { 2199 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2200 crn, crm, op0, op1, op2); 2201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2202 bool need_exit_tb = false; 2203 bool nv_trap_to_el2 = false; 2204 bool nv_redirect_reg = false; 2205 bool skip_fp_access_checks = false; 2206 bool nv2_mem_redirect = false; 2207 TCGv_ptr tcg_ri = NULL; 2208 TCGv_i64 tcg_rt; 2209 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2210 2211 if (crn == 11 || crn == 15) { 2212 /* 2213 * Check for TIDCP trap, which must take precedence over 2214 * the UNDEF for "no such register" etc. 2215 */ 2216 switch (s->current_el) { 2217 case 0: 2218 if (dc_isar_feature(aa64_tidcp1, s)) { 2219 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2220 } 2221 break; 2222 case 1: 2223 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2224 break; 2225 } 2226 } 2227 2228 if (!ri) { 2229 /* Unknown register; this might be a guest error or a QEMU 2230 * unimplemented feature. 2231 */ 2232 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2233 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2234 isread ? "read" : "write", op0, op1, crn, crm, op2); 2235 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2236 return; 2237 } 2238 2239 if (s->nv2 && ri->nv2_redirect_offset) { 2240 /* 2241 * Some registers always redirect to memory; some only do so if 2242 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2243 * pairs which share an offset; see the table in R_CSRPQ). 2244 */ 2245 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2246 nv2_mem_redirect = s->nv1; 2247 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2248 nv2_mem_redirect = !s->nv1; 2249 } else { 2250 nv2_mem_redirect = true; 2251 } 2252 } 2253 2254 /* Check access permissions */ 2255 if (!cp_access_ok(s->current_el, ri, isread)) { 2256 /* 2257 * FEAT_NV/NV2 handling does not do the usual FP access checks 2258 * for registers only accessible at EL2 (though it *does* do them 2259 * for registers accessible at EL1). 2260 */ 2261 skip_fp_access_checks = true; 2262 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2263 /* 2264 * This is one of the few EL2 registers which should redirect 2265 * to the equivalent EL1 register. We do that after running 2266 * the EL2 register's accessfn. 2267 */ 2268 nv_redirect_reg = true; 2269 assert(!nv2_mem_redirect); 2270 } else if (nv2_mem_redirect) { 2271 /* 2272 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2273 * UNDEF to EL1. 2274 */ 2275 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2276 /* 2277 * This register / instruction exists and is an EL2 register, so 2278 * we must trap to EL2 if accessed in nested virtualization EL1 2279 * instead of UNDEFing. We'll do that after the usual access checks. 2280 * (This makes a difference only for a couple of registers like 2281 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2282 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2283 * an accessfn which does nothing when called from EL1, because 2284 * the trap-to-EL3 controls which would apply to that register 2285 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2286 */ 2287 nv_trap_to_el2 = true; 2288 } else { 2289 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2290 return; 2291 } 2292 } 2293 2294 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2295 /* Emit code to perform further access permissions checks at 2296 * runtime; this may result in an exception. 2297 */ 2298 gen_a64_update_pc(s, 0); 2299 tcg_ri = tcg_temp_new_ptr(); 2300 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2301 tcg_constant_i32(key), 2302 tcg_constant_i32(syndrome), 2303 tcg_constant_i32(isread)); 2304 } else if (ri->type & ARM_CP_RAISES_EXC) { 2305 /* 2306 * The readfn or writefn might raise an exception; 2307 * synchronize the CPU state in case it does. 2308 */ 2309 gen_a64_update_pc(s, 0); 2310 } 2311 2312 if (!skip_fp_access_checks) { 2313 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2314 return; 2315 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2316 return; 2317 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2318 return; 2319 } 2320 } 2321 2322 if (nv_trap_to_el2) { 2323 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2324 return; 2325 } 2326 2327 if (nv_redirect_reg) { 2328 /* 2329 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2330 * Conveniently in all cases the encoding of the EL1 register is 2331 * identical to the EL2 register except that opc1 is 0. 2332 * Get the reginfo for the EL1 register to use for the actual access. 2333 * We don't use the EL1 register's access function, and 2334 * fine-grained-traps on EL1 also do not apply here. 2335 */ 2336 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2337 crn, crm, op0, 0, op2); 2338 ri = get_arm_cp_reginfo(s->cp_regs, key); 2339 assert(ri); 2340 assert(cp_access_ok(s->current_el, ri, isread)); 2341 /* 2342 * We might not have done an update_pc earlier, so check we don't 2343 * need it. We could support this in future if necessary. 2344 */ 2345 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2346 } 2347 2348 if (nv2_mem_redirect) { 2349 /* 2350 * This system register is being redirected into an EL2 memory access. 2351 * This means it is not an IO operation, doesn't change hflags, 2352 * and need not end the TB, because it has no side effects. 2353 * 2354 * The access is 64-bit single copy atomic, guaranteed aligned because 2355 * of the definition of VCNR_EL2. Its endianness depends on 2356 * SCTLR_EL2.EE, not on the data endianness of EL1. 2357 * It is done under either the EL2 translation regime or the EL2&0 2358 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2359 * PSTATE.PAN is 0. 2360 */ 2361 TCGv_i64 ptr = tcg_temp_new_i64(); 2362 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2363 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2364 int memidx = arm_to_core_mmu_idx(armmemidx); 2365 uint32_t syn; 2366 2367 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2368 2369 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2370 tcg_gen_addi_i64(ptr, ptr, 2371 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2372 tcg_rt = cpu_reg(s, rt); 2373 2374 syn = syn_data_abort_vncr(0, !isread, 0); 2375 disas_set_insn_syndrome(s, syn); 2376 if (isread) { 2377 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2378 } else { 2379 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2380 } 2381 return; 2382 } 2383 2384 /* Handle special cases first */ 2385 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2386 case 0: 2387 break; 2388 case ARM_CP_NOP: 2389 return; 2390 case ARM_CP_NZCV: 2391 tcg_rt = cpu_reg(s, rt); 2392 if (isread) { 2393 gen_get_nzcv(tcg_rt); 2394 } else { 2395 gen_set_nzcv(tcg_rt); 2396 } 2397 return; 2398 case ARM_CP_CURRENTEL: 2399 { 2400 /* 2401 * Reads as current EL value from pstate, which is 2402 * guaranteed to be constant by the tb flags. 2403 * For nested virt we should report EL2. 2404 */ 2405 int el = s->nv ? 2 : s->current_el; 2406 tcg_rt = cpu_reg(s, rt); 2407 tcg_gen_movi_i64(tcg_rt, el << 2); 2408 return; 2409 } 2410 case ARM_CP_DC_ZVA: 2411 /* Writes clear the aligned block of memory which rt points into. */ 2412 if (s->mte_active[0]) { 2413 int desc = 0; 2414 2415 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2416 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2417 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2418 2419 tcg_rt = tcg_temp_new_i64(); 2420 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2421 tcg_constant_i32(desc), cpu_reg(s, rt)); 2422 } else { 2423 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2424 } 2425 gen_helper_dc_zva(tcg_env, tcg_rt); 2426 return; 2427 case ARM_CP_DC_GVA: 2428 { 2429 TCGv_i64 clean_addr, tag; 2430 2431 /* 2432 * DC_GVA, like DC_ZVA, requires that we supply the original 2433 * pointer for an invalid page. Probe that address first. 2434 */ 2435 tcg_rt = cpu_reg(s, rt); 2436 clean_addr = clean_data_tbi(s, tcg_rt); 2437 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2438 2439 if (s->ata[0]) { 2440 /* Extract the tag from the register to match STZGM. */ 2441 tag = tcg_temp_new_i64(); 2442 tcg_gen_shri_i64(tag, tcg_rt, 56); 2443 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2444 } 2445 } 2446 return; 2447 case ARM_CP_DC_GZVA: 2448 { 2449 TCGv_i64 clean_addr, tag; 2450 2451 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2452 tcg_rt = cpu_reg(s, rt); 2453 clean_addr = clean_data_tbi(s, tcg_rt); 2454 gen_helper_dc_zva(tcg_env, clean_addr); 2455 2456 if (s->ata[0]) { 2457 /* Extract the tag from the register to match STZGM. */ 2458 tag = tcg_temp_new_i64(); 2459 tcg_gen_shri_i64(tag, tcg_rt, 56); 2460 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2461 } 2462 } 2463 return; 2464 default: 2465 g_assert_not_reached(); 2466 } 2467 2468 if (ri->type & ARM_CP_IO) { 2469 /* I/O operations must end the TB here (whether read or write) */ 2470 need_exit_tb = translator_io_start(&s->base); 2471 } 2472 2473 tcg_rt = cpu_reg(s, rt); 2474 2475 if (isread) { 2476 if (ri->type & ARM_CP_CONST) { 2477 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2478 } else if (ri->readfn) { 2479 if (!tcg_ri) { 2480 tcg_ri = gen_lookup_cp_reg(key); 2481 } 2482 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2483 } else { 2484 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2485 } 2486 } else { 2487 if (ri->type & ARM_CP_CONST) { 2488 /* If not forbidden by access permissions, treat as WI */ 2489 return; 2490 } else if (ri->writefn) { 2491 if (!tcg_ri) { 2492 tcg_ri = gen_lookup_cp_reg(key); 2493 } 2494 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2495 } else { 2496 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2497 } 2498 } 2499 2500 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2501 /* 2502 * A write to any coprocessor register that ends a TB 2503 * must rebuild the hflags for the next TB. 2504 */ 2505 gen_rebuild_hflags(s); 2506 /* 2507 * We default to ending the TB on a coprocessor register write, 2508 * but allow this to be suppressed by the register definition 2509 * (usually only necessary to work around guest bugs). 2510 */ 2511 need_exit_tb = true; 2512 } 2513 if (need_exit_tb) { 2514 s->base.is_jmp = DISAS_UPDATE_EXIT; 2515 } 2516 } 2517 2518 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2519 { 2520 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2521 return true; 2522 } 2523 2524 static bool trans_SVC(DisasContext *s, arg_i *a) 2525 { 2526 /* 2527 * For SVC, HVC and SMC we advance the single-step state 2528 * machine before taking the exception. This is architecturally 2529 * mandated, to ensure that single-stepping a system call 2530 * instruction works properly. 2531 */ 2532 uint32_t syndrome = syn_aa64_svc(a->imm); 2533 if (s->fgt_svc) { 2534 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2535 return true; 2536 } 2537 gen_ss_advance(s); 2538 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2539 return true; 2540 } 2541 2542 static bool trans_HVC(DisasContext *s, arg_i *a) 2543 { 2544 int target_el = s->current_el == 3 ? 3 : 2; 2545 2546 if (s->current_el == 0) { 2547 unallocated_encoding(s); 2548 return true; 2549 } 2550 /* 2551 * The pre HVC helper handles cases when HVC gets trapped 2552 * as an undefined insn by runtime configuration. 2553 */ 2554 gen_a64_update_pc(s, 0); 2555 gen_helper_pre_hvc(tcg_env); 2556 /* Architecture requires ss advance before we do the actual work */ 2557 gen_ss_advance(s); 2558 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2559 return true; 2560 } 2561 2562 static bool trans_SMC(DisasContext *s, arg_i *a) 2563 { 2564 if (s->current_el == 0) { 2565 unallocated_encoding(s); 2566 return true; 2567 } 2568 gen_a64_update_pc(s, 0); 2569 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2570 /* Architecture requires ss advance before we do the actual work */ 2571 gen_ss_advance(s); 2572 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2573 return true; 2574 } 2575 2576 static bool trans_BRK(DisasContext *s, arg_i *a) 2577 { 2578 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2579 return true; 2580 } 2581 2582 static bool trans_HLT(DisasContext *s, arg_i *a) 2583 { 2584 /* 2585 * HLT. This has two purposes. 2586 * Architecturally, it is an external halting debug instruction. 2587 * Since QEMU doesn't implement external debug, we treat this as 2588 * it is required for halting debug disabled: it will UNDEF. 2589 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2590 */ 2591 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2592 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2593 } else { 2594 unallocated_encoding(s); 2595 } 2596 return true; 2597 } 2598 2599 /* 2600 * Load/Store exclusive instructions are implemented by remembering 2601 * the value/address loaded, and seeing if these are the same 2602 * when the store is performed. This is not actually the architecturally 2603 * mandated semantics, but it works for typical guest code sequences 2604 * and avoids having to monitor regular stores. 2605 * 2606 * The store exclusive uses the atomic cmpxchg primitives to avoid 2607 * races in multi-threaded linux-user and when MTTCG softmmu is 2608 * enabled. 2609 */ 2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2611 int size, bool is_pair) 2612 { 2613 int idx = get_mem_index(s); 2614 TCGv_i64 dirty_addr, clean_addr; 2615 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2616 2617 s->is_ldex = true; 2618 dirty_addr = cpu_reg_sp(s, rn); 2619 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2620 2621 g_assert(size <= 3); 2622 if (is_pair) { 2623 g_assert(size >= 2); 2624 if (size == 2) { 2625 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2626 if (s->be_data == MO_LE) { 2627 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2628 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2629 } else { 2630 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2631 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2632 } 2633 } else { 2634 TCGv_i128 t16 = tcg_temp_new_i128(); 2635 2636 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2637 2638 if (s->be_data == MO_LE) { 2639 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2640 cpu_exclusive_high, t16); 2641 } else { 2642 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2643 cpu_exclusive_val, t16); 2644 } 2645 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2646 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2647 } 2648 } else { 2649 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2650 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2651 } 2652 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2653 } 2654 2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2656 int rn, int size, int is_pair) 2657 { 2658 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2659 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2660 * [addr] = {Rt}; 2661 * if (is_pair) { 2662 * [addr + datasize] = {Rt2}; 2663 * } 2664 * {Rd} = 0; 2665 * } else { 2666 * {Rd} = 1; 2667 * } 2668 * env->exclusive_addr = -1; 2669 */ 2670 TCGLabel *fail_label = gen_new_label(); 2671 TCGLabel *done_label = gen_new_label(); 2672 TCGv_i64 tmp, clean_addr; 2673 MemOp memop; 2674 2675 /* 2676 * FIXME: We are out of spec here. We have recorded only the address 2677 * from load_exclusive, not the entire range, and we assume that the 2678 * size of the access on both sides match. The architecture allows the 2679 * store to be smaller than the load, so long as the stored bytes are 2680 * within the range recorded by the load. 2681 */ 2682 2683 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2684 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2685 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2686 2687 /* 2688 * The write, and any associated faults, only happen if the virtual 2689 * and physical addresses pass the exclusive monitor check. These 2690 * faults are exceedingly unlikely, because normally the guest uses 2691 * the exact same address register for the load_exclusive, and we 2692 * would have recognized these faults there. 2693 * 2694 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2695 * unaligned 4-byte write within the range of an aligned 8-byte load. 2696 * With LSE2, the store would need to cross a 16-byte boundary when the 2697 * load did not, which would mean the store is outside the range 2698 * recorded for the monitor, which would have failed a corrected monitor 2699 * check above. For now, we assume no size change and retain the 2700 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2701 * 2702 * It is possible to trigger an MTE fault, by performing the load with 2703 * a virtual address with a valid tag and performing the store with the 2704 * same virtual address and a different invalid tag. 2705 */ 2706 memop = size + is_pair; 2707 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2708 memop |= MO_ALIGN; 2709 } 2710 memop = finalize_memop(s, memop); 2711 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2712 2713 tmp = tcg_temp_new_i64(); 2714 if (is_pair) { 2715 if (size == 2) { 2716 if (s->be_data == MO_LE) { 2717 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2718 } else { 2719 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2720 } 2721 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2722 cpu_exclusive_val, tmp, 2723 get_mem_index(s), memop); 2724 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2725 } else { 2726 TCGv_i128 t16 = tcg_temp_new_i128(); 2727 TCGv_i128 c16 = tcg_temp_new_i128(); 2728 TCGv_i64 a, b; 2729 2730 if (s->be_data == MO_LE) { 2731 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2732 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2733 cpu_exclusive_high); 2734 } else { 2735 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2736 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2737 cpu_exclusive_val); 2738 } 2739 2740 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2741 get_mem_index(s), memop); 2742 2743 a = tcg_temp_new_i64(); 2744 b = tcg_temp_new_i64(); 2745 if (s->be_data == MO_LE) { 2746 tcg_gen_extr_i128_i64(a, b, t16); 2747 } else { 2748 tcg_gen_extr_i128_i64(b, a, t16); 2749 } 2750 2751 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2752 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2753 tcg_gen_or_i64(tmp, a, b); 2754 2755 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2756 } 2757 } else { 2758 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2759 cpu_reg(s, rt), get_mem_index(s), memop); 2760 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2761 } 2762 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2763 tcg_gen_br(done_label); 2764 2765 gen_set_label(fail_label); 2766 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2767 gen_set_label(done_label); 2768 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2769 } 2770 2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2772 int rn, int size) 2773 { 2774 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2775 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2776 int memidx = get_mem_index(s); 2777 TCGv_i64 clean_addr; 2778 MemOp memop; 2779 2780 if (rn == 31) { 2781 gen_check_sp_alignment(s); 2782 } 2783 memop = check_atomic_align(s, rn, size); 2784 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2785 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2786 memidx, memop); 2787 } 2788 2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2790 int rn, int size) 2791 { 2792 TCGv_i64 s1 = cpu_reg(s, rs); 2793 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2794 TCGv_i64 t1 = cpu_reg(s, rt); 2795 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2796 TCGv_i64 clean_addr; 2797 int memidx = get_mem_index(s); 2798 MemOp memop; 2799 2800 if (rn == 31) { 2801 gen_check_sp_alignment(s); 2802 } 2803 2804 /* This is a single atomic access, despite the "pair". */ 2805 memop = check_atomic_align(s, rn, size + 1); 2806 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2807 2808 if (size == 2) { 2809 TCGv_i64 cmp = tcg_temp_new_i64(); 2810 TCGv_i64 val = tcg_temp_new_i64(); 2811 2812 if (s->be_data == MO_LE) { 2813 tcg_gen_concat32_i64(val, t1, t2); 2814 tcg_gen_concat32_i64(cmp, s1, s2); 2815 } else { 2816 tcg_gen_concat32_i64(val, t2, t1); 2817 tcg_gen_concat32_i64(cmp, s2, s1); 2818 } 2819 2820 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2821 2822 if (s->be_data == MO_LE) { 2823 tcg_gen_extr32_i64(s1, s2, cmp); 2824 } else { 2825 tcg_gen_extr32_i64(s2, s1, cmp); 2826 } 2827 } else { 2828 TCGv_i128 cmp = tcg_temp_new_i128(); 2829 TCGv_i128 val = tcg_temp_new_i128(); 2830 2831 if (s->be_data == MO_LE) { 2832 tcg_gen_concat_i64_i128(val, t1, t2); 2833 tcg_gen_concat_i64_i128(cmp, s1, s2); 2834 } else { 2835 tcg_gen_concat_i64_i128(val, t2, t1); 2836 tcg_gen_concat_i64_i128(cmp, s2, s1); 2837 } 2838 2839 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2840 2841 if (s->be_data == MO_LE) { 2842 tcg_gen_extr_i128_i64(s1, s2, cmp); 2843 } else { 2844 tcg_gen_extr_i128_i64(s2, s1, cmp); 2845 } 2846 } 2847 } 2848 2849 /* 2850 * Compute the ISS.SF bit for syndrome information if an exception 2851 * is taken on a load or store. This indicates whether the instruction 2852 * is accessing a 32-bit or 64-bit register. This logic is derived 2853 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2854 */ 2855 static bool ldst_iss_sf(int size, bool sign, bool ext) 2856 { 2857 2858 if (sign) { 2859 /* 2860 * Signed loads are 64 bit results if we are not going to 2861 * do a zero-extend from 32 to 64 after the load. 2862 * (For a store, sign and ext are always false.) 2863 */ 2864 return !ext; 2865 } else { 2866 /* Unsigned loads/stores work at the specified size */ 2867 return size == MO_64; 2868 } 2869 } 2870 2871 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2872 { 2873 if (a->rn == 31) { 2874 gen_check_sp_alignment(s); 2875 } 2876 if (a->lasr) { 2877 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2878 } 2879 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2880 return true; 2881 } 2882 2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2884 { 2885 if (a->rn == 31) { 2886 gen_check_sp_alignment(s); 2887 } 2888 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2889 if (a->lasr) { 2890 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2891 } 2892 return true; 2893 } 2894 2895 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2896 { 2897 TCGv_i64 clean_addr; 2898 MemOp memop; 2899 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2900 2901 /* 2902 * StoreLORelease is the same as Store-Release for QEMU, but 2903 * needs the feature-test. 2904 */ 2905 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2906 return false; 2907 } 2908 /* Generate ISS for non-exclusive accesses including LASR. */ 2909 if (a->rn == 31) { 2910 gen_check_sp_alignment(s); 2911 } 2912 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2913 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2914 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2915 true, a->rn != 31, memop); 2916 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2917 iss_sf, a->lasr); 2918 return true; 2919 } 2920 2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2922 { 2923 TCGv_i64 clean_addr; 2924 MemOp memop; 2925 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2926 2927 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2928 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2929 return false; 2930 } 2931 /* Generate ISS for non-exclusive accesses including LASR. */ 2932 if (a->rn == 31) { 2933 gen_check_sp_alignment(s); 2934 } 2935 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2936 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2937 false, a->rn != 31, memop); 2938 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2939 a->rt, iss_sf, a->lasr); 2940 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2941 return true; 2942 } 2943 2944 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2945 { 2946 if (a->rn == 31) { 2947 gen_check_sp_alignment(s); 2948 } 2949 if (a->lasr) { 2950 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2951 } 2952 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2953 return true; 2954 } 2955 2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2957 { 2958 if (a->rn == 31) { 2959 gen_check_sp_alignment(s); 2960 } 2961 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2962 if (a->lasr) { 2963 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2964 } 2965 return true; 2966 } 2967 2968 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2969 { 2970 if (!dc_isar_feature(aa64_atomics, s)) { 2971 return false; 2972 } 2973 if (((a->rt | a->rs) & 1) != 0) { 2974 return false; 2975 } 2976 2977 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2978 return true; 2979 } 2980 2981 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2982 { 2983 if (!dc_isar_feature(aa64_atomics, s)) { 2984 return false; 2985 } 2986 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2987 return true; 2988 } 2989 2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2991 { 2992 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2993 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2994 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2995 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2996 2997 gen_pc_plus_diff(s, clean_addr, a->imm); 2998 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2999 false, true, a->rt, iss_sf, false); 3000 return true; 3001 } 3002 3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3004 { 3005 /* Load register (literal), vector version */ 3006 TCGv_i64 clean_addr; 3007 MemOp memop; 3008 3009 if (!fp_access_check(s)) { 3010 return true; 3011 } 3012 memop = finalize_memop_asimd(s, a->sz); 3013 clean_addr = tcg_temp_new_i64(); 3014 gen_pc_plus_diff(s, clean_addr, a->imm); 3015 do_fp_ld(s, a->rt, clean_addr, memop); 3016 return true; 3017 } 3018 3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3020 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3021 uint64_t offset, bool is_store, MemOp mop) 3022 { 3023 if (a->rn == 31) { 3024 gen_check_sp_alignment(s); 3025 } 3026 3027 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3028 if (!a->p) { 3029 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3030 } 3031 3032 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3033 (a->w || a->rn != 31), 2 << a->sz, mop); 3034 } 3035 3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3037 TCGv_i64 dirty_addr, uint64_t offset) 3038 { 3039 if (a->w) { 3040 if (a->p) { 3041 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3042 } 3043 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3044 } 3045 } 3046 3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3048 { 3049 uint64_t offset = a->imm << a->sz; 3050 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3051 MemOp mop = finalize_memop(s, a->sz); 3052 3053 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3054 tcg_rt = cpu_reg(s, a->rt); 3055 tcg_rt2 = cpu_reg(s, a->rt2); 3056 /* 3057 * We built mop above for the single logical access -- rebuild it 3058 * now for the paired operation. 3059 * 3060 * With LSE2, non-sign-extending pairs are treated atomically if 3061 * aligned, and if unaligned one of the pair will be completely 3062 * within a 16-byte block and that element will be atomic. 3063 * Otherwise each element is separately atomic. 3064 * In all cases, issue one operation with the correct atomicity. 3065 */ 3066 mop = a->sz + 1; 3067 if (s->align_mem) { 3068 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3069 } 3070 mop = finalize_memop_pair(s, mop); 3071 if (a->sz == 2) { 3072 TCGv_i64 tmp = tcg_temp_new_i64(); 3073 3074 if (s->be_data == MO_LE) { 3075 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3076 } else { 3077 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3078 } 3079 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3080 } else { 3081 TCGv_i128 tmp = tcg_temp_new_i128(); 3082 3083 if (s->be_data == MO_LE) { 3084 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3085 } else { 3086 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3087 } 3088 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3089 } 3090 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3091 return true; 3092 } 3093 3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3095 { 3096 uint64_t offset = a->imm << a->sz; 3097 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3098 MemOp mop = finalize_memop(s, a->sz); 3099 3100 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3101 tcg_rt = cpu_reg(s, a->rt); 3102 tcg_rt2 = cpu_reg(s, a->rt2); 3103 3104 /* 3105 * We built mop above for the single logical access -- rebuild it 3106 * now for the paired operation. 3107 * 3108 * With LSE2, non-sign-extending pairs are treated atomically if 3109 * aligned, and if unaligned one of the pair will be completely 3110 * within a 16-byte block and that element will be atomic. 3111 * Otherwise each element is separately atomic. 3112 * In all cases, issue one operation with the correct atomicity. 3113 * 3114 * This treats sign-extending loads like zero-extending loads, 3115 * since that reuses the most code below. 3116 */ 3117 mop = a->sz + 1; 3118 if (s->align_mem) { 3119 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3120 } 3121 mop = finalize_memop_pair(s, mop); 3122 if (a->sz == 2) { 3123 int o2 = s->be_data == MO_LE ? 32 : 0; 3124 int o1 = o2 ^ 32; 3125 3126 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3127 if (a->sign) { 3128 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3129 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3130 } else { 3131 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3132 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3133 } 3134 } else { 3135 TCGv_i128 tmp = tcg_temp_new_i128(); 3136 3137 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3138 if (s->be_data == MO_LE) { 3139 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3140 } else { 3141 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3142 } 3143 } 3144 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3145 return true; 3146 } 3147 3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3149 { 3150 uint64_t offset = a->imm << a->sz; 3151 TCGv_i64 clean_addr, dirty_addr; 3152 MemOp mop; 3153 3154 if (!fp_access_check(s)) { 3155 return true; 3156 } 3157 3158 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3159 mop = finalize_memop_asimd(s, a->sz); 3160 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3161 do_fp_st(s, a->rt, clean_addr, mop); 3162 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3163 do_fp_st(s, a->rt2, clean_addr, mop); 3164 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3165 return true; 3166 } 3167 3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3169 { 3170 uint64_t offset = a->imm << a->sz; 3171 TCGv_i64 clean_addr, dirty_addr; 3172 MemOp mop; 3173 3174 if (!fp_access_check(s)) { 3175 return true; 3176 } 3177 3178 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3179 mop = finalize_memop_asimd(s, a->sz); 3180 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3181 do_fp_ld(s, a->rt, clean_addr, mop); 3182 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3183 do_fp_ld(s, a->rt2, clean_addr, mop); 3184 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3185 return true; 3186 } 3187 3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3189 { 3190 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3191 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3192 MemOp mop; 3193 TCGv_i128 tmp; 3194 3195 /* STGP only comes in one size. */ 3196 tcg_debug_assert(a->sz == MO_64); 3197 3198 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3199 return false; 3200 } 3201 3202 if (a->rn == 31) { 3203 gen_check_sp_alignment(s); 3204 } 3205 3206 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3207 if (!a->p) { 3208 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3209 } 3210 3211 clean_addr = clean_data_tbi(s, dirty_addr); 3212 tcg_rt = cpu_reg(s, a->rt); 3213 tcg_rt2 = cpu_reg(s, a->rt2); 3214 3215 /* 3216 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3217 * and one tag operation. We implement it as one single aligned 16-byte 3218 * memory operation for convenience. Note that the alignment ensures 3219 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3220 */ 3221 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3222 3223 tmp = tcg_temp_new_i128(); 3224 if (s->be_data == MO_LE) { 3225 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3226 } else { 3227 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3228 } 3229 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3230 3231 /* Perform the tag store, if tag access enabled. */ 3232 if (s->ata[0]) { 3233 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3234 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3235 } else { 3236 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3237 } 3238 } 3239 3240 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3241 return true; 3242 } 3243 3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3245 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3246 uint64_t offset, bool is_store, MemOp mop) 3247 { 3248 int memidx; 3249 3250 if (a->rn == 31) { 3251 gen_check_sp_alignment(s); 3252 } 3253 3254 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3255 if (!a->p) { 3256 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3257 } 3258 memidx = get_a64_user_mem_index(s, a->unpriv); 3259 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3260 a->w || a->rn != 31, 3261 mop, a->unpriv, memidx); 3262 } 3263 3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3265 TCGv_i64 dirty_addr, uint64_t offset) 3266 { 3267 if (a->w) { 3268 if (a->p) { 3269 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3270 } 3271 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3272 } 3273 } 3274 3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3276 { 3277 bool iss_sf, iss_valid = !a->w; 3278 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3279 int memidx = get_a64_user_mem_index(s, a->unpriv); 3280 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3281 3282 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3283 3284 tcg_rt = cpu_reg(s, a->rt); 3285 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3286 3287 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3288 iss_valid, a->rt, iss_sf, false); 3289 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3290 return true; 3291 } 3292 3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3294 { 3295 bool iss_sf, iss_valid = !a->w; 3296 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3297 int memidx = get_a64_user_mem_index(s, a->unpriv); 3298 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3299 3300 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3301 3302 tcg_rt = cpu_reg(s, a->rt); 3303 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3304 3305 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3306 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3307 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3308 return true; 3309 } 3310 3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3312 { 3313 TCGv_i64 clean_addr, dirty_addr; 3314 MemOp mop; 3315 3316 if (!fp_access_check(s)) { 3317 return true; 3318 } 3319 mop = finalize_memop_asimd(s, a->sz); 3320 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3321 do_fp_st(s, a->rt, clean_addr, mop); 3322 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3323 return true; 3324 } 3325 3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3327 { 3328 TCGv_i64 clean_addr, dirty_addr; 3329 MemOp mop; 3330 3331 if (!fp_access_check(s)) { 3332 return true; 3333 } 3334 mop = finalize_memop_asimd(s, a->sz); 3335 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3336 do_fp_ld(s, a->rt, clean_addr, mop); 3337 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3338 return true; 3339 } 3340 3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3342 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3343 bool is_store, MemOp memop) 3344 { 3345 TCGv_i64 tcg_rm; 3346 3347 if (a->rn == 31) { 3348 gen_check_sp_alignment(s); 3349 } 3350 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3351 3352 tcg_rm = read_cpu_reg(s, a->rm, 1); 3353 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3354 3355 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3356 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3357 } 3358 3359 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3360 { 3361 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3362 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3363 MemOp memop; 3364 3365 if (extract32(a->opt, 1, 1) == 0) { 3366 return false; 3367 } 3368 3369 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3370 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3371 tcg_rt = cpu_reg(s, a->rt); 3372 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3373 a->ext, true, a->rt, iss_sf, false); 3374 return true; 3375 } 3376 3377 static bool trans_STR(DisasContext *s, arg_ldst *a) 3378 { 3379 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3380 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3381 MemOp memop; 3382 3383 if (extract32(a->opt, 1, 1) == 0) { 3384 return false; 3385 } 3386 3387 memop = finalize_memop(s, a->sz); 3388 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3389 tcg_rt = cpu_reg(s, a->rt); 3390 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3391 return true; 3392 } 3393 3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3395 { 3396 TCGv_i64 clean_addr, dirty_addr; 3397 MemOp memop; 3398 3399 if (extract32(a->opt, 1, 1) == 0) { 3400 return false; 3401 } 3402 3403 if (!fp_access_check(s)) { 3404 return true; 3405 } 3406 3407 memop = finalize_memop_asimd(s, a->sz); 3408 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3409 do_fp_ld(s, a->rt, clean_addr, memop); 3410 return true; 3411 } 3412 3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3414 { 3415 TCGv_i64 clean_addr, dirty_addr; 3416 MemOp memop; 3417 3418 if (extract32(a->opt, 1, 1) == 0) { 3419 return false; 3420 } 3421 3422 if (!fp_access_check(s)) { 3423 return true; 3424 } 3425 3426 memop = finalize_memop_asimd(s, a->sz); 3427 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3428 do_fp_st(s, a->rt, clean_addr, memop); 3429 return true; 3430 } 3431 3432 3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3434 int sign, bool invert) 3435 { 3436 MemOp mop = a->sz | sign; 3437 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3438 3439 if (a->rn == 31) { 3440 gen_check_sp_alignment(s); 3441 } 3442 mop = check_atomic_align(s, a->rn, mop); 3443 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3444 a->rn != 31, mop); 3445 tcg_rs = read_cpu_reg(s, a->rs, true); 3446 tcg_rt = cpu_reg(s, a->rt); 3447 if (invert) { 3448 tcg_gen_not_i64(tcg_rs, tcg_rs); 3449 } 3450 /* 3451 * The tcg atomic primitives are all full barriers. Therefore we 3452 * can ignore the Acquire and Release bits of this instruction. 3453 */ 3454 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3455 3456 if (mop & MO_SIGN) { 3457 switch (a->sz) { 3458 case MO_8: 3459 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3460 break; 3461 case MO_16: 3462 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3463 break; 3464 case MO_32: 3465 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3466 break; 3467 case MO_64: 3468 break; 3469 default: 3470 g_assert_not_reached(); 3471 } 3472 } 3473 return true; 3474 } 3475 3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3485 3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3487 { 3488 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3489 TCGv_i64 clean_addr; 3490 MemOp mop; 3491 3492 if (!dc_isar_feature(aa64_atomics, s) || 3493 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3494 return false; 3495 } 3496 if (a->rn == 31) { 3497 gen_check_sp_alignment(s); 3498 } 3499 mop = check_atomic_align(s, a->rn, a->sz); 3500 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3501 a->rn != 31, mop); 3502 /* 3503 * LDAPR* are a special case because they are a simple load, not a 3504 * fetch-and-do-something op. 3505 * The architectural consistency requirements here are weaker than 3506 * full load-acquire (we only need "load-acquire processor consistent"), 3507 * but we choose to implement them as full LDAQ. 3508 */ 3509 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3510 true, a->rt, iss_sf, true); 3511 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3512 return true; 3513 } 3514 3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3516 { 3517 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3518 MemOp memop; 3519 3520 /* Load with pointer authentication */ 3521 if (!dc_isar_feature(aa64_pauth, s)) { 3522 return false; 3523 } 3524 3525 if (a->rn == 31) { 3526 gen_check_sp_alignment(s); 3527 } 3528 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3529 3530 if (s->pauth_active) { 3531 if (!a->m) { 3532 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3533 tcg_constant_i64(0)); 3534 } else { 3535 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3536 tcg_constant_i64(0)); 3537 } 3538 } 3539 3540 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3541 3542 memop = finalize_memop(s, MO_64); 3543 3544 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3545 clean_addr = gen_mte_check1(s, dirty_addr, false, 3546 a->w || a->rn != 31, memop); 3547 3548 tcg_rt = cpu_reg(s, a->rt); 3549 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3550 /* extend */ false, /* iss_valid */ !a->w, 3551 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3552 3553 if (a->w) { 3554 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3555 } 3556 return true; 3557 } 3558 3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3560 { 3561 TCGv_i64 clean_addr, dirty_addr; 3562 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3563 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3564 3565 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3566 return false; 3567 } 3568 3569 if (a->rn == 31) { 3570 gen_check_sp_alignment(s); 3571 } 3572 3573 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3574 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3575 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3576 clean_addr = clean_data_tbi(s, dirty_addr); 3577 3578 /* 3579 * Load-AcquirePC semantics; we implement as the slightly more 3580 * restrictive Load-Acquire. 3581 */ 3582 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3583 a->rt, iss_sf, true); 3584 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3585 return true; 3586 } 3587 3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3589 { 3590 TCGv_i64 clean_addr, dirty_addr; 3591 MemOp mop = a->sz; 3592 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3593 3594 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3595 return false; 3596 } 3597 3598 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3599 3600 if (a->rn == 31) { 3601 gen_check_sp_alignment(s); 3602 } 3603 3604 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3605 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3606 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3607 clean_addr = clean_data_tbi(s, dirty_addr); 3608 3609 /* Store-Release semantics */ 3610 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3611 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3612 return true; 3613 } 3614 3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3616 { 3617 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3618 MemOp endian, align, mop; 3619 3620 int total; /* total bytes */ 3621 int elements; /* elements per vector */ 3622 int r; 3623 int size = a->sz; 3624 3625 if (!a->p && a->rm != 0) { 3626 /* For non-postindexed accesses the Rm field must be 0 */ 3627 return false; 3628 } 3629 if (size == 3 && !a->q && a->selem != 1) { 3630 return false; 3631 } 3632 if (!fp_access_check(s)) { 3633 return true; 3634 } 3635 3636 if (a->rn == 31) { 3637 gen_check_sp_alignment(s); 3638 } 3639 3640 /* For our purposes, bytes are always little-endian. */ 3641 endian = s->be_data; 3642 if (size == 0) { 3643 endian = MO_LE; 3644 } 3645 3646 total = a->rpt * a->selem * (a->q ? 16 : 8); 3647 tcg_rn = cpu_reg_sp(s, a->rn); 3648 3649 /* 3650 * Issue the MTE check vs the logical repeat count, before we 3651 * promote consecutive little-endian elements below. 3652 */ 3653 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3654 finalize_memop_asimd(s, size)); 3655 3656 /* 3657 * Consecutive little-endian elements from a single register 3658 * can be promoted to a larger little-endian operation. 3659 */ 3660 align = MO_ALIGN; 3661 if (a->selem == 1 && endian == MO_LE) { 3662 align = pow2_align(size); 3663 size = 3; 3664 } 3665 if (!s->align_mem) { 3666 align = 0; 3667 } 3668 mop = endian | size | align; 3669 3670 elements = (a->q ? 16 : 8) >> size; 3671 tcg_ebytes = tcg_constant_i64(1 << size); 3672 for (r = 0; r < a->rpt; r++) { 3673 int e; 3674 for (e = 0; e < elements; e++) { 3675 int xs; 3676 for (xs = 0; xs < a->selem; xs++) { 3677 int tt = (a->rt + r + xs) % 32; 3678 do_vec_ld(s, tt, e, clean_addr, mop); 3679 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3680 } 3681 } 3682 } 3683 3684 /* 3685 * For non-quad operations, setting a slice of the low 64 bits of 3686 * the register clears the high 64 bits (in the ARM ARM pseudocode 3687 * this is implicit in the fact that 'rval' is a 64 bit wide 3688 * variable). For quad operations, we might still need to zero 3689 * the high bits of SVE. 3690 */ 3691 for (r = 0; r < a->rpt * a->selem; r++) { 3692 int tt = (a->rt + r) % 32; 3693 clear_vec_high(s, a->q, tt); 3694 } 3695 3696 if (a->p) { 3697 if (a->rm == 31) { 3698 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3699 } else { 3700 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3701 } 3702 } 3703 return true; 3704 } 3705 3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3707 { 3708 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3709 MemOp endian, align, mop; 3710 3711 int total; /* total bytes */ 3712 int elements; /* elements per vector */ 3713 int r; 3714 int size = a->sz; 3715 3716 if (!a->p && a->rm != 0) { 3717 /* For non-postindexed accesses the Rm field must be 0 */ 3718 return false; 3719 } 3720 if (size == 3 && !a->q && a->selem != 1) { 3721 return false; 3722 } 3723 if (!fp_access_check(s)) { 3724 return true; 3725 } 3726 3727 if (a->rn == 31) { 3728 gen_check_sp_alignment(s); 3729 } 3730 3731 /* For our purposes, bytes are always little-endian. */ 3732 endian = s->be_data; 3733 if (size == 0) { 3734 endian = MO_LE; 3735 } 3736 3737 total = a->rpt * a->selem * (a->q ? 16 : 8); 3738 tcg_rn = cpu_reg_sp(s, a->rn); 3739 3740 /* 3741 * Issue the MTE check vs the logical repeat count, before we 3742 * promote consecutive little-endian elements below. 3743 */ 3744 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3745 finalize_memop_asimd(s, size)); 3746 3747 /* 3748 * Consecutive little-endian elements from a single register 3749 * can be promoted to a larger little-endian operation. 3750 */ 3751 align = MO_ALIGN; 3752 if (a->selem == 1 && endian == MO_LE) { 3753 align = pow2_align(size); 3754 size = 3; 3755 } 3756 if (!s->align_mem) { 3757 align = 0; 3758 } 3759 mop = endian | size | align; 3760 3761 elements = (a->q ? 16 : 8) >> size; 3762 tcg_ebytes = tcg_constant_i64(1 << size); 3763 for (r = 0; r < a->rpt; r++) { 3764 int e; 3765 for (e = 0; e < elements; e++) { 3766 int xs; 3767 for (xs = 0; xs < a->selem; xs++) { 3768 int tt = (a->rt + r + xs) % 32; 3769 do_vec_st(s, tt, e, clean_addr, mop); 3770 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3771 } 3772 } 3773 } 3774 3775 if (a->p) { 3776 if (a->rm == 31) { 3777 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3778 } else { 3779 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3780 } 3781 } 3782 return true; 3783 } 3784 3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3786 { 3787 int xs, total, rt; 3788 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3789 MemOp mop; 3790 3791 if (!a->p && a->rm != 0) { 3792 return false; 3793 } 3794 if (!fp_access_check(s)) { 3795 return true; 3796 } 3797 3798 if (a->rn == 31) { 3799 gen_check_sp_alignment(s); 3800 } 3801 3802 total = a->selem << a->scale; 3803 tcg_rn = cpu_reg_sp(s, a->rn); 3804 3805 mop = finalize_memop_asimd(s, a->scale); 3806 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3807 total, mop); 3808 3809 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3810 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3811 do_vec_st(s, rt, a->index, clean_addr, mop); 3812 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3813 } 3814 3815 if (a->p) { 3816 if (a->rm == 31) { 3817 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3818 } else { 3819 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3820 } 3821 } 3822 return true; 3823 } 3824 3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3826 { 3827 int xs, total, rt; 3828 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3829 MemOp mop; 3830 3831 if (!a->p && a->rm != 0) { 3832 return false; 3833 } 3834 if (!fp_access_check(s)) { 3835 return true; 3836 } 3837 3838 if (a->rn == 31) { 3839 gen_check_sp_alignment(s); 3840 } 3841 3842 total = a->selem << a->scale; 3843 tcg_rn = cpu_reg_sp(s, a->rn); 3844 3845 mop = finalize_memop_asimd(s, a->scale); 3846 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3847 total, mop); 3848 3849 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3850 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3851 do_vec_ld(s, rt, a->index, clean_addr, mop); 3852 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3853 } 3854 3855 if (a->p) { 3856 if (a->rm == 31) { 3857 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3858 } else { 3859 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3860 } 3861 } 3862 return true; 3863 } 3864 3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3866 { 3867 int xs, total, rt; 3868 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3869 MemOp mop; 3870 3871 if (!a->p && a->rm != 0) { 3872 return false; 3873 } 3874 if (!fp_access_check(s)) { 3875 return true; 3876 } 3877 3878 if (a->rn == 31) { 3879 gen_check_sp_alignment(s); 3880 } 3881 3882 total = a->selem << a->scale; 3883 tcg_rn = cpu_reg_sp(s, a->rn); 3884 3885 mop = finalize_memop_asimd(s, a->scale); 3886 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3887 total, mop); 3888 3889 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3890 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3891 /* Load and replicate to all elements */ 3892 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3893 3894 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3895 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3896 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3897 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3898 } 3899 3900 if (a->p) { 3901 if (a->rm == 31) { 3902 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3903 } else { 3904 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3905 } 3906 } 3907 return true; 3908 } 3909 3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3911 { 3912 TCGv_i64 addr, clean_addr, tcg_rt; 3913 int size = 4 << s->dcz_blocksize; 3914 3915 if (!dc_isar_feature(aa64_mte, s)) { 3916 return false; 3917 } 3918 if (s->current_el == 0) { 3919 return false; 3920 } 3921 3922 if (a->rn == 31) { 3923 gen_check_sp_alignment(s); 3924 } 3925 3926 addr = read_cpu_reg_sp(s, a->rn, true); 3927 tcg_gen_addi_i64(addr, addr, a->imm); 3928 tcg_rt = cpu_reg(s, a->rt); 3929 3930 if (s->ata[0]) { 3931 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3932 } 3933 /* 3934 * The non-tags portion of STZGM is mostly like DC_ZVA, 3935 * except the alignment happens before the access. 3936 */ 3937 clean_addr = clean_data_tbi(s, addr); 3938 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3939 gen_helper_dc_zva(tcg_env, clean_addr); 3940 return true; 3941 } 3942 3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3944 { 3945 TCGv_i64 addr, clean_addr, tcg_rt; 3946 3947 if (!dc_isar_feature(aa64_mte, s)) { 3948 return false; 3949 } 3950 if (s->current_el == 0) { 3951 return false; 3952 } 3953 3954 if (a->rn == 31) { 3955 gen_check_sp_alignment(s); 3956 } 3957 3958 addr = read_cpu_reg_sp(s, a->rn, true); 3959 tcg_gen_addi_i64(addr, addr, a->imm); 3960 tcg_rt = cpu_reg(s, a->rt); 3961 3962 if (s->ata[0]) { 3963 gen_helper_stgm(tcg_env, addr, tcg_rt); 3964 } else { 3965 MMUAccessType acc = MMU_DATA_STORE; 3966 int size = 4 << s->gm_blocksize; 3967 3968 clean_addr = clean_data_tbi(s, addr); 3969 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3970 gen_probe_access(s, clean_addr, acc, size); 3971 } 3972 return true; 3973 } 3974 3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3976 { 3977 TCGv_i64 addr, clean_addr, tcg_rt; 3978 3979 if (!dc_isar_feature(aa64_mte, s)) { 3980 return false; 3981 } 3982 if (s->current_el == 0) { 3983 return false; 3984 } 3985 3986 if (a->rn == 31) { 3987 gen_check_sp_alignment(s); 3988 } 3989 3990 addr = read_cpu_reg_sp(s, a->rn, true); 3991 tcg_gen_addi_i64(addr, addr, a->imm); 3992 tcg_rt = cpu_reg(s, a->rt); 3993 3994 if (s->ata[0]) { 3995 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3996 } else { 3997 MMUAccessType acc = MMU_DATA_LOAD; 3998 int size = 4 << s->gm_blocksize; 3999 4000 clean_addr = clean_data_tbi(s, addr); 4001 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4002 gen_probe_access(s, clean_addr, acc, size); 4003 /* The result tags are zeros. */ 4004 tcg_gen_movi_i64(tcg_rt, 0); 4005 } 4006 return true; 4007 } 4008 4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4010 { 4011 TCGv_i64 addr, clean_addr, tcg_rt; 4012 4013 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4014 return false; 4015 } 4016 4017 if (a->rn == 31) { 4018 gen_check_sp_alignment(s); 4019 } 4020 4021 addr = read_cpu_reg_sp(s, a->rn, true); 4022 if (!a->p) { 4023 /* pre-index or signed offset */ 4024 tcg_gen_addi_i64(addr, addr, a->imm); 4025 } 4026 4027 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4028 tcg_rt = cpu_reg(s, a->rt); 4029 if (s->ata[0]) { 4030 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4031 } else { 4032 /* 4033 * Tag access disabled: we must check for aborts on the load 4034 * load from [rn+offset], and then insert a 0 tag into rt. 4035 */ 4036 clean_addr = clean_data_tbi(s, addr); 4037 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4038 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4039 } 4040 4041 if (a->w) { 4042 /* pre-index or post-index */ 4043 if (a->p) { 4044 /* post-index */ 4045 tcg_gen_addi_i64(addr, addr, a->imm); 4046 } 4047 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4048 } 4049 return true; 4050 } 4051 4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4053 { 4054 TCGv_i64 addr, tcg_rt; 4055 4056 if (a->rn == 31) { 4057 gen_check_sp_alignment(s); 4058 } 4059 4060 addr = read_cpu_reg_sp(s, a->rn, true); 4061 if (!a->p) { 4062 /* pre-index or signed offset */ 4063 tcg_gen_addi_i64(addr, addr, a->imm); 4064 } 4065 tcg_rt = cpu_reg_sp(s, a->rt); 4066 if (!s->ata[0]) { 4067 /* 4068 * For STG and ST2G, we need to check alignment and probe memory. 4069 * TODO: For STZG and STZ2G, we could rely on the stores below, 4070 * at least for system mode; user-only won't enforce alignment. 4071 */ 4072 if (is_pair) { 4073 gen_helper_st2g_stub(tcg_env, addr); 4074 } else { 4075 gen_helper_stg_stub(tcg_env, addr); 4076 } 4077 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4078 if (is_pair) { 4079 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4080 } else { 4081 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4082 } 4083 } else { 4084 if (is_pair) { 4085 gen_helper_st2g(tcg_env, addr, tcg_rt); 4086 } else { 4087 gen_helper_stg(tcg_env, addr, tcg_rt); 4088 } 4089 } 4090 4091 if (is_zero) { 4092 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4093 TCGv_i64 zero64 = tcg_constant_i64(0); 4094 TCGv_i128 zero128 = tcg_temp_new_i128(); 4095 int mem_index = get_mem_index(s); 4096 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4097 4098 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4099 4100 /* This is 1 or 2 atomic 16-byte operations. */ 4101 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4102 if (is_pair) { 4103 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4104 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4105 } 4106 } 4107 4108 if (a->w) { 4109 /* pre-index or post-index */ 4110 if (a->p) { 4111 /* post-index */ 4112 tcg_gen_addi_i64(addr, addr, a->imm); 4113 } 4114 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4115 } 4116 return true; 4117 } 4118 4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4123 4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4125 4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4127 bool is_setg, SetFn fn) 4128 { 4129 int memidx; 4130 uint32_t syndrome, desc = 0; 4131 4132 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4133 return false; 4134 } 4135 4136 /* 4137 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4138 * us to pull this check before the CheckMOPSEnabled() test 4139 * (which we do in the helper function) 4140 */ 4141 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4142 a->rd == 31 || a->rn == 31) { 4143 return false; 4144 } 4145 4146 memidx = get_a64_user_mem_index(s, a->unpriv); 4147 4148 /* 4149 * We pass option_a == true, matching our implementation; 4150 * we pass wrong_option == false: helper function may set that bit. 4151 */ 4152 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4153 is_epilogue, false, true, a->rd, a->rs, a->rn); 4154 4155 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4156 /* We may need to do MTE tag checking, so assemble the descriptor */ 4157 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4158 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4159 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4160 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4161 } 4162 /* The helper function always needs the memidx even with MTE disabled */ 4163 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4164 4165 /* 4166 * The helper needs the register numbers, but since they're in 4167 * the syndrome anyway, we let it extract them from there rather 4168 * than passing in an extra three integer arguments. 4169 */ 4170 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4171 return true; 4172 } 4173 4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4180 4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4182 4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4184 { 4185 int rmemidx, wmemidx; 4186 uint32_t syndrome, rdesc = 0, wdesc = 0; 4187 bool wunpriv = extract32(a->options, 0, 1); 4188 bool runpriv = extract32(a->options, 1, 1); 4189 4190 /* 4191 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4192 * us to pull this check before the CheckMOPSEnabled() test 4193 * (which we do in the helper function) 4194 */ 4195 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4196 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4197 return false; 4198 } 4199 4200 rmemidx = get_a64_user_mem_index(s, runpriv); 4201 wmemidx = get_a64_user_mem_index(s, wunpriv); 4202 4203 /* 4204 * We pass option_a == true, matching our implementation; 4205 * we pass wrong_option == false: helper function may set that bit. 4206 */ 4207 syndrome = syn_mop(false, false, a->options, is_epilogue, 4208 false, true, a->rd, a->rs, a->rn); 4209 4210 /* If we need to do MTE tag checking, assemble the descriptors */ 4211 if (s->mte_active[runpriv]) { 4212 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4213 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4214 } 4215 if (s->mte_active[wunpriv]) { 4216 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4217 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4218 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4219 } 4220 /* The helper function needs these parts of the descriptor regardless */ 4221 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4222 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4223 4224 /* 4225 * The helper needs the register numbers, but since they're in 4226 * the syndrome anyway, we let it extract them from there rather 4227 * than passing in an extra three integer arguments. 4228 */ 4229 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4230 tcg_constant_i32(rdesc)); 4231 return true; 4232 } 4233 4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4240 4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4242 4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4244 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4245 { 4246 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4247 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4248 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4249 4250 fn(tcg_rd, tcg_rn, tcg_imm); 4251 if (!a->sf) { 4252 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4253 } 4254 return true; 4255 } 4256 4257 /* 4258 * PC-rel. addressing 4259 */ 4260 4261 static bool trans_ADR(DisasContext *s, arg_ri *a) 4262 { 4263 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4264 return true; 4265 } 4266 4267 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4268 { 4269 int64_t offset = (int64_t)a->imm << 12; 4270 4271 /* The page offset is ok for CF_PCREL. */ 4272 offset -= s->pc_curr & 0xfff; 4273 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4274 return true; 4275 } 4276 4277 /* 4278 * Add/subtract (immediate) 4279 */ 4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4284 4285 /* 4286 * Add/subtract (immediate, with tags) 4287 */ 4288 4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4290 bool sub_op) 4291 { 4292 TCGv_i64 tcg_rn, tcg_rd; 4293 int imm; 4294 4295 imm = a->uimm6 << LOG2_TAG_GRANULE; 4296 if (sub_op) { 4297 imm = -imm; 4298 } 4299 4300 tcg_rn = cpu_reg_sp(s, a->rn); 4301 tcg_rd = cpu_reg_sp(s, a->rd); 4302 4303 if (s->ata[0]) { 4304 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4305 tcg_constant_i32(imm), 4306 tcg_constant_i32(a->uimm4)); 4307 } else { 4308 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4309 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4310 } 4311 return true; 4312 } 4313 4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4316 4317 /* The input should be a value in the bottom e bits (with higher 4318 * bits zero); returns that value replicated into every element 4319 * of size e in a 64 bit integer. 4320 */ 4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4322 { 4323 assert(e != 0); 4324 while (e < 64) { 4325 mask |= mask << e; 4326 e *= 2; 4327 } 4328 return mask; 4329 } 4330 4331 /* 4332 * Logical (immediate) 4333 */ 4334 4335 /* 4336 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4337 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4338 * value (ie should cause a guest UNDEF exception), and true if they are 4339 * valid, in which case the decoded bit pattern is written to result. 4340 */ 4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4342 unsigned int imms, unsigned int immr) 4343 { 4344 uint64_t mask; 4345 unsigned e, levels, s, r; 4346 int len; 4347 4348 assert(immn < 2 && imms < 64 && immr < 64); 4349 4350 /* The bit patterns we create here are 64 bit patterns which 4351 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4352 * 64 bits each. Each element contains the same value: a run 4353 * of between 1 and e-1 non-zero bits, rotated within the 4354 * element by between 0 and e-1 bits. 4355 * 4356 * The element size and run length are encoded into immn (1 bit) 4357 * and imms (6 bits) as follows: 4358 * 64 bit elements: immn = 1, imms = <length of run - 1> 4359 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4360 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4361 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4362 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4363 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4364 * Notice that immn = 0, imms = 11111x is the only combination 4365 * not covered by one of the above options; this is reserved. 4366 * Further, <length of run - 1> all-ones is a reserved pattern. 4367 * 4368 * In all cases the rotation is by immr % e (and immr is 6 bits). 4369 */ 4370 4371 /* First determine the element size */ 4372 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4373 if (len < 1) { 4374 /* This is the immn == 0, imms == 0x11111x case */ 4375 return false; 4376 } 4377 e = 1 << len; 4378 4379 levels = e - 1; 4380 s = imms & levels; 4381 r = immr & levels; 4382 4383 if (s == levels) { 4384 /* <length of run - 1> mustn't be all-ones. */ 4385 return false; 4386 } 4387 4388 /* Create the value of one element: s+1 set bits rotated 4389 * by r within the element (which is e bits wide)... 4390 */ 4391 mask = MAKE_64BIT_MASK(0, s + 1); 4392 if (r) { 4393 mask = (mask >> r) | (mask << (e - r)); 4394 mask &= MAKE_64BIT_MASK(0, e); 4395 } 4396 /* ...then replicate the element over the whole 64 bit value */ 4397 mask = bitfield_replicate(mask, e); 4398 *result = mask; 4399 return true; 4400 } 4401 4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4403 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4404 { 4405 TCGv_i64 tcg_rd, tcg_rn; 4406 uint64_t imm; 4407 4408 /* Some immediate field values are reserved. */ 4409 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4410 extract32(a->dbm, 0, 6), 4411 extract32(a->dbm, 6, 6))) { 4412 return false; 4413 } 4414 if (!a->sf) { 4415 imm &= 0xffffffffull; 4416 } 4417 4418 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4419 tcg_rn = cpu_reg(s, a->rn); 4420 4421 fn(tcg_rd, tcg_rn, imm); 4422 if (set_cc) { 4423 gen_logic_CC(a->sf, tcg_rd); 4424 } 4425 if (!a->sf) { 4426 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4427 } 4428 return true; 4429 } 4430 4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4435 4436 /* 4437 * Move wide (immediate) 4438 */ 4439 4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4441 { 4442 int pos = a->hw << 4; 4443 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4444 return true; 4445 } 4446 4447 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4448 { 4449 int pos = a->hw << 4; 4450 uint64_t imm = a->imm; 4451 4452 imm = ~(imm << pos); 4453 if (!a->sf) { 4454 imm = (uint32_t)imm; 4455 } 4456 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4457 return true; 4458 } 4459 4460 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4461 { 4462 int pos = a->hw << 4; 4463 TCGv_i64 tcg_rd, tcg_im; 4464 4465 tcg_rd = cpu_reg(s, a->rd); 4466 tcg_im = tcg_constant_i64(a->imm); 4467 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4468 if (!a->sf) { 4469 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4470 } 4471 return true; 4472 } 4473 4474 /* 4475 * Bitfield 4476 */ 4477 4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4479 { 4480 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4481 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4482 unsigned int bitsize = a->sf ? 64 : 32; 4483 unsigned int ri = a->immr; 4484 unsigned int si = a->imms; 4485 unsigned int pos, len; 4486 4487 if (si >= ri) { 4488 /* Wd<s-r:0> = Wn<s:r> */ 4489 len = (si - ri) + 1; 4490 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4491 if (!a->sf) { 4492 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4493 } 4494 } else { 4495 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4496 len = si + 1; 4497 pos = (bitsize - ri) & (bitsize - 1); 4498 4499 if (len < ri) { 4500 /* 4501 * Sign extend the destination field from len to fill the 4502 * balance of the word. Let the deposit below insert all 4503 * of those sign bits. 4504 */ 4505 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4506 len = ri; 4507 } 4508 4509 /* 4510 * We start with zero, and we haven't modified any bits outside 4511 * bitsize, therefore no final zero-extension is unneeded for !sf. 4512 */ 4513 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4514 } 4515 return true; 4516 } 4517 4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4519 { 4520 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4521 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4522 unsigned int bitsize = a->sf ? 64 : 32; 4523 unsigned int ri = a->immr; 4524 unsigned int si = a->imms; 4525 unsigned int pos, len; 4526 4527 tcg_rd = cpu_reg(s, a->rd); 4528 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4529 4530 if (si >= ri) { 4531 /* Wd<s-r:0> = Wn<s:r> */ 4532 len = (si - ri) + 1; 4533 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4534 } else { 4535 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4536 len = si + 1; 4537 pos = (bitsize - ri) & (bitsize - 1); 4538 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4539 } 4540 return true; 4541 } 4542 4543 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4544 { 4545 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4546 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4547 unsigned int bitsize = a->sf ? 64 : 32; 4548 unsigned int ri = a->immr; 4549 unsigned int si = a->imms; 4550 unsigned int pos, len; 4551 4552 tcg_rd = cpu_reg(s, a->rd); 4553 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4554 4555 if (si >= ri) { 4556 /* Wd<s-r:0> = Wn<s:r> */ 4557 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4558 len = (si - ri) + 1; 4559 pos = 0; 4560 } else { 4561 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4562 len = si + 1; 4563 pos = (bitsize - ri) & (bitsize - 1); 4564 } 4565 4566 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4567 if (!a->sf) { 4568 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4569 } 4570 return true; 4571 } 4572 4573 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4574 { 4575 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4576 4577 tcg_rd = cpu_reg(s, a->rd); 4578 4579 if (unlikely(a->imm == 0)) { 4580 /* 4581 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4582 * so an extract from bit 0 is a special case. 4583 */ 4584 if (a->sf) { 4585 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4586 } else { 4587 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4588 } 4589 } else { 4590 tcg_rm = cpu_reg(s, a->rm); 4591 tcg_rn = cpu_reg(s, a->rn); 4592 4593 if (a->sf) { 4594 /* Specialization to ROR happens in EXTRACT2. */ 4595 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4596 } else { 4597 TCGv_i32 t0 = tcg_temp_new_i32(); 4598 4599 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4600 if (a->rm == a->rn) { 4601 tcg_gen_rotri_i32(t0, t0, a->imm); 4602 } else { 4603 TCGv_i32 t1 = tcg_temp_new_i32(); 4604 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4605 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4606 } 4607 tcg_gen_extu_i32_i64(tcg_rd, t0); 4608 } 4609 } 4610 return true; 4611 } 4612 4613 /* 4614 * Cryptographic AES, SHA, SHA512 4615 */ 4616 4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4621 4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4626 4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4630 4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4634 4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4642 4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4645 4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4648 4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4650 { 4651 if (!dc_isar_feature(aa64_sm3, s)) { 4652 return false; 4653 } 4654 if (fp_access_check(s)) { 4655 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4656 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4657 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4658 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4659 unsigned vsz, dofs; 4660 4661 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4662 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4663 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4664 4665 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4666 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4667 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4668 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4669 4670 /* Clear the whole register first, then store bits [127:96]. */ 4671 vsz = vec_full_reg_size(s); 4672 dofs = vec_full_reg_offset(s, a->rd); 4673 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4674 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4675 } 4676 return true; 4677 } 4678 4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4680 { 4681 if (fp_access_check(s)) { 4682 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4683 } 4684 return true; 4685 } 4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4690 4691 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4692 { 4693 if (!dc_isar_feature(aa64_sha3, s)) { 4694 return false; 4695 } 4696 if (fp_access_check(s)) { 4697 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4698 vec_full_reg_offset(s, a->rn), 4699 vec_full_reg_offset(s, a->rm), a->imm, 16, 4700 vec_full_reg_size(s)); 4701 } 4702 return true; 4703 } 4704 4705 /* 4706 * Advanced SIMD copy 4707 */ 4708 4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4710 { 4711 unsigned esz = ctz32(imm); 4712 if (esz <= MO_64) { 4713 *pesz = esz; 4714 *pidx = imm >> (esz + 1); 4715 return true; 4716 } 4717 return false; 4718 } 4719 4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4721 { 4722 MemOp esz; 4723 unsigned idx; 4724 4725 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4726 return false; 4727 } 4728 if (fp_access_check(s)) { 4729 /* 4730 * This instruction just extracts the specified element and 4731 * zero-extends it into the bottom of the destination register. 4732 */ 4733 TCGv_i64 tmp = tcg_temp_new_i64(); 4734 read_vec_element(s, tmp, a->rn, idx, esz); 4735 write_fp_dreg(s, a->rd, tmp); 4736 } 4737 return true; 4738 } 4739 4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4741 { 4742 MemOp esz; 4743 unsigned idx; 4744 4745 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4746 return false; 4747 } 4748 if (esz == MO_64 && !a->q) { 4749 return false; 4750 } 4751 if (fp_access_check(s)) { 4752 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4753 vec_reg_offset(s, a->rn, idx, esz), 4754 a->q ? 16 : 8, vec_full_reg_size(s)); 4755 } 4756 return true; 4757 } 4758 4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4760 { 4761 MemOp esz; 4762 unsigned idx; 4763 4764 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4765 return false; 4766 } 4767 if (esz == MO_64 && !a->q) { 4768 return false; 4769 } 4770 if (fp_access_check(s)) { 4771 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4772 a->q ? 16 : 8, vec_full_reg_size(s), 4773 cpu_reg(s, a->rn)); 4774 } 4775 return true; 4776 } 4777 4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4779 { 4780 MemOp esz; 4781 unsigned idx; 4782 4783 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4784 return false; 4785 } 4786 if (is_signed) { 4787 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4788 return false; 4789 } 4790 } else { 4791 if (esz == MO_64 ? !a->q : a->q) { 4792 return false; 4793 } 4794 } 4795 if (fp_access_check(s)) { 4796 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4797 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4798 if (is_signed && !a->q) { 4799 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4800 } 4801 } 4802 return true; 4803 } 4804 4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4806 TRANS(UMOV, do_smov_umov, a, 0) 4807 4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4809 { 4810 MemOp esz; 4811 unsigned idx; 4812 4813 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4814 return false; 4815 } 4816 if (fp_access_check(s)) { 4817 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4818 clear_vec_high(s, true, a->rd); 4819 } 4820 return true; 4821 } 4822 4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4824 { 4825 MemOp esz; 4826 unsigned didx, sidx; 4827 4828 if (!decode_esz_idx(a->di, &esz, &didx)) { 4829 return false; 4830 } 4831 sidx = a->si >> esz; 4832 if (fp_access_check(s)) { 4833 TCGv_i64 tmp = tcg_temp_new_i64(); 4834 4835 read_vec_element(s, tmp, a->rn, sidx, esz); 4836 write_vec_element(s, tmp, a->rd, didx, esz); 4837 4838 /* INS is considered a 128-bit write for SVE. */ 4839 clear_vec_high(s, true, a->rd); 4840 } 4841 return true; 4842 } 4843 4844 /* 4845 * Advanced SIMD three same 4846 */ 4847 4848 typedef struct FPScalar { 4849 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4850 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4851 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4852 } FPScalar; 4853 4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4855 { 4856 switch (a->esz) { 4857 case MO_64: 4858 if (fp_access_check(s)) { 4859 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4860 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4861 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4862 write_fp_dreg(s, a->rd, t0); 4863 } 4864 break; 4865 case MO_32: 4866 if (fp_access_check(s)) { 4867 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4868 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4869 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4870 write_fp_sreg(s, a->rd, t0); 4871 } 4872 break; 4873 case MO_16: 4874 if (!dc_isar_feature(aa64_fp16, s)) { 4875 return false; 4876 } 4877 if (fp_access_check(s)) { 4878 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4879 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4880 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4881 write_fp_sreg(s, a->rd, t0); 4882 } 4883 break; 4884 default: 4885 return false; 4886 } 4887 return true; 4888 } 4889 4890 static const FPScalar f_scalar_fadd = { 4891 gen_helper_vfp_addh, 4892 gen_helper_vfp_adds, 4893 gen_helper_vfp_addd, 4894 }; 4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4896 4897 static const FPScalar f_scalar_fsub = { 4898 gen_helper_vfp_subh, 4899 gen_helper_vfp_subs, 4900 gen_helper_vfp_subd, 4901 }; 4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4903 4904 static const FPScalar f_scalar_fdiv = { 4905 gen_helper_vfp_divh, 4906 gen_helper_vfp_divs, 4907 gen_helper_vfp_divd, 4908 }; 4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4910 4911 static const FPScalar f_scalar_fmul = { 4912 gen_helper_vfp_mulh, 4913 gen_helper_vfp_muls, 4914 gen_helper_vfp_muld, 4915 }; 4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4917 4918 static const FPScalar f_scalar_fmax = { 4919 gen_helper_advsimd_maxh, 4920 gen_helper_vfp_maxs, 4921 gen_helper_vfp_maxd, 4922 }; 4923 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) 4924 4925 static const FPScalar f_scalar_fmin = { 4926 gen_helper_advsimd_minh, 4927 gen_helper_vfp_mins, 4928 gen_helper_vfp_mind, 4929 }; 4930 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) 4931 4932 static const FPScalar f_scalar_fmaxnm = { 4933 gen_helper_advsimd_maxnumh, 4934 gen_helper_vfp_maxnums, 4935 gen_helper_vfp_maxnumd, 4936 }; 4937 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) 4938 4939 static const FPScalar f_scalar_fminnm = { 4940 gen_helper_advsimd_minnumh, 4941 gen_helper_vfp_minnums, 4942 gen_helper_vfp_minnumd, 4943 }; 4944 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) 4945 4946 static const FPScalar f_scalar_fmulx = { 4947 gen_helper_advsimd_mulxh, 4948 gen_helper_vfp_mulxs, 4949 gen_helper_vfp_mulxd, 4950 }; 4951 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 4952 4953 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4954 { 4955 gen_helper_vfp_mulh(d, n, m, s); 4956 gen_vfp_negh(d, d); 4957 } 4958 4959 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4960 { 4961 gen_helper_vfp_muls(d, n, m, s); 4962 gen_vfp_negs(d, d); 4963 } 4964 4965 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 4966 { 4967 gen_helper_vfp_muld(d, n, m, s); 4968 gen_vfp_negd(d, d); 4969 } 4970 4971 static const FPScalar f_scalar_fnmul = { 4972 gen_fnmul_h, 4973 gen_fnmul_s, 4974 gen_fnmul_d, 4975 }; 4976 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul) 4977 4978 static const FPScalar f_scalar_fcmeq = { 4979 gen_helper_advsimd_ceq_f16, 4980 gen_helper_neon_ceq_f32, 4981 gen_helper_neon_ceq_f64, 4982 }; 4983 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq) 4984 4985 static const FPScalar f_scalar_fcmge = { 4986 gen_helper_advsimd_cge_f16, 4987 gen_helper_neon_cge_f32, 4988 gen_helper_neon_cge_f64, 4989 }; 4990 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge) 4991 4992 static const FPScalar f_scalar_fcmgt = { 4993 gen_helper_advsimd_cgt_f16, 4994 gen_helper_neon_cgt_f32, 4995 gen_helper_neon_cgt_f64, 4996 }; 4997 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt) 4998 4999 static const FPScalar f_scalar_facge = { 5000 gen_helper_advsimd_acge_f16, 5001 gen_helper_neon_acge_f32, 5002 gen_helper_neon_acge_f64, 5003 }; 5004 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge) 5005 5006 static const FPScalar f_scalar_facgt = { 5007 gen_helper_advsimd_acgt_f16, 5008 gen_helper_neon_acgt_f32, 5009 gen_helper_neon_acgt_f64, 5010 }; 5011 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt) 5012 5013 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5014 { 5015 gen_helper_vfp_subh(d, n, m, s); 5016 gen_vfp_absh(d, d); 5017 } 5018 5019 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5020 { 5021 gen_helper_vfp_subs(d, n, m, s); 5022 gen_vfp_abss(d, d); 5023 } 5024 5025 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5026 { 5027 gen_helper_vfp_subd(d, n, m, s); 5028 gen_vfp_absd(d, d); 5029 } 5030 5031 static const FPScalar f_scalar_fabd = { 5032 gen_fabd_h, 5033 gen_fabd_s, 5034 gen_fabd_d, 5035 }; 5036 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd) 5037 5038 static const FPScalar f_scalar_frecps = { 5039 gen_helper_recpsf_f16, 5040 gen_helper_recpsf_f32, 5041 gen_helper_recpsf_f64, 5042 }; 5043 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps) 5044 5045 static const FPScalar f_scalar_frsqrts = { 5046 gen_helper_rsqrtsf_f16, 5047 gen_helper_rsqrtsf_f32, 5048 gen_helper_rsqrtsf_f64, 5049 }; 5050 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts) 5051 5052 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, 5053 gen_helper_gvec_3_ptr * const fns[3]) 5054 { 5055 MemOp esz = a->esz; 5056 5057 switch (esz) { 5058 case MO_64: 5059 if (!a->q) { 5060 return false; 5061 } 5062 break; 5063 case MO_32: 5064 break; 5065 case MO_16: 5066 if (!dc_isar_feature(aa64_fp16, s)) { 5067 return false; 5068 } 5069 break; 5070 default: 5071 return false; 5072 } 5073 if (fp_access_check(s)) { 5074 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5075 esz == MO_16, 0, fns[esz - 1]); 5076 } 5077 return true; 5078 } 5079 5080 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 5081 gen_helper_gvec_fadd_h, 5082 gen_helper_gvec_fadd_s, 5083 gen_helper_gvec_fadd_d, 5084 }; 5085 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd) 5086 5087 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 5088 gen_helper_gvec_fsub_h, 5089 gen_helper_gvec_fsub_s, 5090 gen_helper_gvec_fsub_d, 5091 }; 5092 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub) 5093 5094 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 5095 gen_helper_gvec_fdiv_h, 5096 gen_helper_gvec_fdiv_s, 5097 gen_helper_gvec_fdiv_d, 5098 }; 5099 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv) 5100 5101 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5102 gen_helper_gvec_fmul_h, 5103 gen_helper_gvec_fmul_s, 5104 gen_helper_gvec_fmul_d, 5105 }; 5106 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul) 5107 5108 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5109 gen_helper_gvec_fmax_h, 5110 gen_helper_gvec_fmax_s, 5111 gen_helper_gvec_fmax_d, 5112 }; 5113 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax) 5114 5115 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5116 gen_helper_gvec_fmin_h, 5117 gen_helper_gvec_fmin_s, 5118 gen_helper_gvec_fmin_d, 5119 }; 5120 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin) 5121 5122 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5123 gen_helper_gvec_fmaxnum_h, 5124 gen_helper_gvec_fmaxnum_s, 5125 gen_helper_gvec_fmaxnum_d, 5126 }; 5127 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm) 5128 5129 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5130 gen_helper_gvec_fminnum_h, 5131 gen_helper_gvec_fminnum_s, 5132 gen_helper_gvec_fminnum_d, 5133 }; 5134 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm) 5135 5136 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5137 gen_helper_gvec_fmulx_h, 5138 gen_helper_gvec_fmulx_s, 5139 gen_helper_gvec_fmulx_d, 5140 }; 5141 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx) 5142 5143 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = { 5144 gen_helper_gvec_vfma_h, 5145 gen_helper_gvec_vfma_s, 5146 gen_helper_gvec_vfma_d, 5147 }; 5148 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla) 5149 5150 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = { 5151 gen_helper_gvec_vfms_h, 5152 gen_helper_gvec_vfms_s, 5153 gen_helper_gvec_vfms_d, 5154 }; 5155 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls) 5156 5157 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = { 5158 gen_helper_gvec_fceq_h, 5159 gen_helper_gvec_fceq_s, 5160 gen_helper_gvec_fceq_d, 5161 }; 5162 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq) 5163 5164 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = { 5165 gen_helper_gvec_fcge_h, 5166 gen_helper_gvec_fcge_s, 5167 gen_helper_gvec_fcge_d, 5168 }; 5169 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge) 5170 5171 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = { 5172 gen_helper_gvec_fcgt_h, 5173 gen_helper_gvec_fcgt_s, 5174 gen_helper_gvec_fcgt_d, 5175 }; 5176 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt) 5177 5178 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = { 5179 gen_helper_gvec_facge_h, 5180 gen_helper_gvec_facge_s, 5181 gen_helper_gvec_facge_d, 5182 }; 5183 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge) 5184 5185 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = { 5186 gen_helper_gvec_facgt_h, 5187 gen_helper_gvec_facgt_s, 5188 gen_helper_gvec_facgt_d, 5189 }; 5190 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt) 5191 5192 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = { 5193 gen_helper_gvec_fabd_h, 5194 gen_helper_gvec_fabd_s, 5195 gen_helper_gvec_fabd_d, 5196 }; 5197 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd) 5198 5199 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = { 5200 gen_helper_gvec_recps_h, 5201 gen_helper_gvec_recps_s, 5202 gen_helper_gvec_recps_d, 5203 }; 5204 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps) 5205 5206 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = { 5207 gen_helper_gvec_rsqrts_h, 5208 gen_helper_gvec_rsqrts_s, 5209 gen_helper_gvec_rsqrts_d, 5210 }; 5211 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts) 5212 5213 /* 5214 * Advanced SIMD scalar/vector x indexed element 5215 */ 5216 5217 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 5218 { 5219 switch (a->esz) { 5220 case MO_64: 5221 if (fp_access_check(s)) { 5222 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5223 TCGv_i64 t1 = tcg_temp_new_i64(); 5224 5225 read_vec_element(s, t1, a->rm, a->idx, MO_64); 5226 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5227 write_fp_dreg(s, a->rd, t0); 5228 } 5229 break; 5230 case MO_32: 5231 if (fp_access_check(s)) { 5232 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5233 TCGv_i32 t1 = tcg_temp_new_i32(); 5234 5235 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 5236 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5237 write_fp_sreg(s, a->rd, t0); 5238 } 5239 break; 5240 case MO_16: 5241 if (!dc_isar_feature(aa64_fp16, s)) { 5242 return false; 5243 } 5244 if (fp_access_check(s)) { 5245 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5246 TCGv_i32 t1 = tcg_temp_new_i32(); 5247 5248 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 5249 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5250 write_fp_sreg(s, a->rd, t0); 5251 } 5252 break; 5253 default: 5254 g_assert_not_reached(); 5255 } 5256 return true; 5257 } 5258 5259 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 5260 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 5261 5262 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg) 5263 { 5264 switch (a->esz) { 5265 case MO_64: 5266 if (fp_access_check(s)) { 5267 TCGv_i64 t0 = read_fp_dreg(s, a->rd); 5268 TCGv_i64 t1 = read_fp_dreg(s, a->rn); 5269 TCGv_i64 t2 = tcg_temp_new_i64(); 5270 5271 read_vec_element(s, t2, a->rm, a->idx, MO_64); 5272 if (neg) { 5273 gen_vfp_negd(t1, t1); 5274 } 5275 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5276 write_fp_dreg(s, a->rd, t0); 5277 } 5278 break; 5279 case MO_32: 5280 if (fp_access_check(s)) { 5281 TCGv_i32 t0 = read_fp_sreg(s, a->rd); 5282 TCGv_i32 t1 = read_fp_sreg(s, a->rn); 5283 TCGv_i32 t2 = tcg_temp_new_i32(); 5284 5285 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32); 5286 if (neg) { 5287 gen_vfp_negs(t1, t1); 5288 } 5289 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5290 write_fp_sreg(s, a->rd, t0); 5291 } 5292 break; 5293 case MO_16: 5294 if (!dc_isar_feature(aa64_fp16, s)) { 5295 return false; 5296 } 5297 if (fp_access_check(s)) { 5298 TCGv_i32 t0 = read_fp_hreg(s, a->rd); 5299 TCGv_i32 t1 = read_fp_hreg(s, a->rn); 5300 TCGv_i32 t2 = tcg_temp_new_i32(); 5301 5302 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16); 5303 if (neg) { 5304 gen_vfp_negh(t1, t1); 5305 } 5306 gen_helper_advsimd_muladdh(t0, t1, t2, t0, 5307 fpstatus_ptr(FPST_FPCR_F16)); 5308 write_fp_sreg(s, a->rd, t0); 5309 } 5310 break; 5311 default: 5312 g_assert_not_reached(); 5313 } 5314 return true; 5315 } 5316 5317 TRANS(FMLA_si, do_fmla_scalar_idx, a, false) 5318 TRANS(FMLS_si, do_fmla_scalar_idx, a, true) 5319 5320 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5321 gen_helper_gvec_3_ptr * const fns[3]) 5322 { 5323 MemOp esz = a->esz; 5324 5325 switch (esz) { 5326 case MO_64: 5327 if (!a->q) { 5328 return false; 5329 } 5330 break; 5331 case MO_32: 5332 break; 5333 case MO_16: 5334 if (!dc_isar_feature(aa64_fp16, s)) { 5335 return false; 5336 } 5337 break; 5338 default: 5339 g_assert_not_reached(); 5340 } 5341 if (fp_access_check(s)) { 5342 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5343 esz == MO_16, a->idx, fns[esz - 1]); 5344 } 5345 return true; 5346 } 5347 5348 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 5349 gen_helper_gvec_fmul_idx_h, 5350 gen_helper_gvec_fmul_idx_s, 5351 gen_helper_gvec_fmul_idx_d, 5352 }; 5353 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 5354 5355 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 5356 gen_helper_gvec_fmulx_idx_h, 5357 gen_helper_gvec_fmulx_idx_s, 5358 gen_helper_gvec_fmulx_idx_d, 5359 }; 5360 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 5361 5362 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg) 5363 { 5364 static gen_helper_gvec_4_ptr * const fns[3] = { 5365 gen_helper_gvec_fmla_idx_h, 5366 gen_helper_gvec_fmla_idx_s, 5367 gen_helper_gvec_fmla_idx_d, 5368 }; 5369 MemOp esz = a->esz; 5370 5371 switch (esz) { 5372 case MO_64: 5373 if (!a->q) { 5374 return false; 5375 } 5376 break; 5377 case MO_32: 5378 break; 5379 case MO_16: 5380 if (!dc_isar_feature(aa64_fp16, s)) { 5381 return false; 5382 } 5383 break; 5384 default: 5385 g_assert_not_reached(); 5386 } 5387 if (fp_access_check(s)) { 5388 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 5389 esz == MO_16, (a->idx << 1) | neg, 5390 fns[esz - 1]); 5391 } 5392 return true; 5393 } 5394 5395 TRANS(FMLA_vi, do_fmla_vector_idx, a, false) 5396 TRANS(FMLS_vi, do_fmla_vector_idx, a, true) 5397 5398 5399 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 5400 * Note that it is the caller's responsibility to ensure that the 5401 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 5402 * mandated semantics for out of range shifts. 5403 */ 5404 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 5405 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 5406 { 5407 switch (shift_type) { 5408 case A64_SHIFT_TYPE_LSL: 5409 tcg_gen_shl_i64(dst, src, shift_amount); 5410 break; 5411 case A64_SHIFT_TYPE_LSR: 5412 tcg_gen_shr_i64(dst, src, shift_amount); 5413 break; 5414 case A64_SHIFT_TYPE_ASR: 5415 if (!sf) { 5416 tcg_gen_ext32s_i64(dst, src); 5417 } 5418 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 5419 break; 5420 case A64_SHIFT_TYPE_ROR: 5421 if (sf) { 5422 tcg_gen_rotr_i64(dst, src, shift_amount); 5423 } else { 5424 TCGv_i32 t0, t1; 5425 t0 = tcg_temp_new_i32(); 5426 t1 = tcg_temp_new_i32(); 5427 tcg_gen_extrl_i64_i32(t0, src); 5428 tcg_gen_extrl_i64_i32(t1, shift_amount); 5429 tcg_gen_rotr_i32(t0, t0, t1); 5430 tcg_gen_extu_i32_i64(dst, t0); 5431 } 5432 break; 5433 default: 5434 assert(FALSE); /* all shift types should be handled */ 5435 break; 5436 } 5437 5438 if (!sf) { /* zero extend final result */ 5439 tcg_gen_ext32u_i64(dst, dst); 5440 } 5441 } 5442 5443 /* Shift a TCGv src by immediate, put result in dst. 5444 * The shift amount must be in range (this should always be true as the 5445 * relevant instructions will UNDEF on bad shift immediates). 5446 */ 5447 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 5448 enum a64_shift_type shift_type, unsigned int shift_i) 5449 { 5450 assert(shift_i < (sf ? 64 : 32)); 5451 5452 if (shift_i == 0) { 5453 tcg_gen_mov_i64(dst, src); 5454 } else { 5455 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 5456 } 5457 } 5458 5459 /* Logical (shifted register) 5460 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5461 * +----+-----+-----------+-------+---+------+--------+------+------+ 5462 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 5463 * +----+-----+-----------+-------+---+------+--------+------+------+ 5464 */ 5465 static void disas_logic_reg(DisasContext *s, uint32_t insn) 5466 { 5467 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 5468 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 5469 5470 sf = extract32(insn, 31, 1); 5471 opc = extract32(insn, 29, 2); 5472 shift_type = extract32(insn, 22, 2); 5473 invert = extract32(insn, 21, 1); 5474 rm = extract32(insn, 16, 5); 5475 shift_amount = extract32(insn, 10, 6); 5476 rn = extract32(insn, 5, 5); 5477 rd = extract32(insn, 0, 5); 5478 5479 if (!sf && (shift_amount & (1 << 5))) { 5480 unallocated_encoding(s); 5481 return; 5482 } 5483 5484 tcg_rd = cpu_reg(s, rd); 5485 5486 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 5487 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 5488 * register-register MOV and MVN, so it is worth special casing. 5489 */ 5490 tcg_rm = cpu_reg(s, rm); 5491 if (invert) { 5492 tcg_gen_not_i64(tcg_rd, tcg_rm); 5493 if (!sf) { 5494 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5495 } 5496 } else { 5497 if (sf) { 5498 tcg_gen_mov_i64(tcg_rd, tcg_rm); 5499 } else { 5500 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 5501 } 5502 } 5503 return; 5504 } 5505 5506 tcg_rm = read_cpu_reg(s, rm, sf); 5507 5508 if (shift_amount) { 5509 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 5510 } 5511 5512 tcg_rn = cpu_reg(s, rn); 5513 5514 switch (opc | (invert << 2)) { 5515 case 0: /* AND */ 5516 case 3: /* ANDS */ 5517 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 5518 break; 5519 case 1: /* ORR */ 5520 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 5521 break; 5522 case 2: /* EOR */ 5523 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 5524 break; 5525 case 4: /* BIC */ 5526 case 7: /* BICS */ 5527 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 5528 break; 5529 case 5: /* ORN */ 5530 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 5531 break; 5532 case 6: /* EON */ 5533 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 5534 break; 5535 default: 5536 assert(FALSE); 5537 break; 5538 } 5539 5540 if (!sf) { 5541 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5542 } 5543 5544 if (opc == 3) { 5545 gen_logic_CC(sf, tcg_rd); 5546 } 5547 } 5548 5549 /* 5550 * Add/subtract (extended register) 5551 * 5552 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 5553 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5554 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 5555 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5556 * 5557 * sf: 0 -> 32bit, 1 -> 64bit 5558 * op: 0 -> add , 1 -> sub 5559 * S: 1 -> set flags 5560 * opt: 00 5561 * option: extension type (see DecodeRegExtend) 5562 * imm3: optional shift to Rm 5563 * 5564 * Rd = Rn + LSL(extend(Rm), amount) 5565 */ 5566 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 5567 { 5568 int rd = extract32(insn, 0, 5); 5569 int rn = extract32(insn, 5, 5); 5570 int imm3 = extract32(insn, 10, 3); 5571 int option = extract32(insn, 13, 3); 5572 int rm = extract32(insn, 16, 5); 5573 int opt = extract32(insn, 22, 2); 5574 bool setflags = extract32(insn, 29, 1); 5575 bool sub_op = extract32(insn, 30, 1); 5576 bool sf = extract32(insn, 31, 1); 5577 5578 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 5579 TCGv_i64 tcg_rd; 5580 TCGv_i64 tcg_result; 5581 5582 if (imm3 > 4 || opt != 0) { 5583 unallocated_encoding(s); 5584 return; 5585 } 5586 5587 /* non-flag setting ops may use SP */ 5588 if (!setflags) { 5589 tcg_rd = cpu_reg_sp(s, rd); 5590 } else { 5591 tcg_rd = cpu_reg(s, rd); 5592 } 5593 tcg_rn = read_cpu_reg_sp(s, rn, sf); 5594 5595 tcg_rm = read_cpu_reg(s, rm, sf); 5596 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 5597 5598 tcg_result = tcg_temp_new_i64(); 5599 5600 if (!setflags) { 5601 if (sub_op) { 5602 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5603 } else { 5604 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5605 } 5606 } else { 5607 if (sub_op) { 5608 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5609 } else { 5610 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5611 } 5612 } 5613 5614 if (sf) { 5615 tcg_gen_mov_i64(tcg_rd, tcg_result); 5616 } else { 5617 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5618 } 5619 } 5620 5621 /* 5622 * Add/subtract (shifted register) 5623 * 5624 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5625 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5626 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 5627 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5628 * 5629 * sf: 0 -> 32bit, 1 -> 64bit 5630 * op: 0 -> add , 1 -> sub 5631 * S: 1 -> set flags 5632 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 5633 * imm6: Shift amount to apply to Rm before the add/sub 5634 */ 5635 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 5636 { 5637 int rd = extract32(insn, 0, 5); 5638 int rn = extract32(insn, 5, 5); 5639 int imm6 = extract32(insn, 10, 6); 5640 int rm = extract32(insn, 16, 5); 5641 int shift_type = extract32(insn, 22, 2); 5642 bool setflags = extract32(insn, 29, 1); 5643 bool sub_op = extract32(insn, 30, 1); 5644 bool sf = extract32(insn, 31, 1); 5645 5646 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5647 TCGv_i64 tcg_rn, tcg_rm; 5648 TCGv_i64 tcg_result; 5649 5650 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 5651 unallocated_encoding(s); 5652 return; 5653 } 5654 5655 tcg_rn = read_cpu_reg(s, rn, sf); 5656 tcg_rm = read_cpu_reg(s, rm, sf); 5657 5658 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 5659 5660 tcg_result = tcg_temp_new_i64(); 5661 5662 if (!setflags) { 5663 if (sub_op) { 5664 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5665 } else { 5666 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5667 } 5668 } else { 5669 if (sub_op) { 5670 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5671 } else { 5672 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5673 } 5674 } 5675 5676 if (sf) { 5677 tcg_gen_mov_i64(tcg_rd, tcg_result); 5678 } else { 5679 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5680 } 5681 } 5682 5683 /* Data-processing (3 source) 5684 * 5685 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 5686 * +--+------+-----------+------+------+----+------+------+------+ 5687 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 5688 * +--+------+-----------+------+------+----+------+------+------+ 5689 */ 5690 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 5691 { 5692 int rd = extract32(insn, 0, 5); 5693 int rn = extract32(insn, 5, 5); 5694 int ra = extract32(insn, 10, 5); 5695 int rm = extract32(insn, 16, 5); 5696 int op_id = (extract32(insn, 29, 3) << 4) | 5697 (extract32(insn, 21, 3) << 1) | 5698 extract32(insn, 15, 1); 5699 bool sf = extract32(insn, 31, 1); 5700 bool is_sub = extract32(op_id, 0, 1); 5701 bool is_high = extract32(op_id, 2, 1); 5702 bool is_signed = false; 5703 TCGv_i64 tcg_op1; 5704 TCGv_i64 tcg_op2; 5705 TCGv_i64 tcg_tmp; 5706 5707 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5708 switch (op_id) { 5709 case 0x42: /* SMADDL */ 5710 case 0x43: /* SMSUBL */ 5711 case 0x44: /* SMULH */ 5712 is_signed = true; 5713 break; 5714 case 0x0: /* MADD (32bit) */ 5715 case 0x1: /* MSUB (32bit) */ 5716 case 0x40: /* MADD (64bit) */ 5717 case 0x41: /* MSUB (64bit) */ 5718 case 0x4a: /* UMADDL */ 5719 case 0x4b: /* UMSUBL */ 5720 case 0x4c: /* UMULH */ 5721 break; 5722 default: 5723 unallocated_encoding(s); 5724 return; 5725 } 5726 5727 if (is_high) { 5728 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5729 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5730 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5731 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5732 5733 if (is_signed) { 5734 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5735 } else { 5736 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5737 } 5738 return; 5739 } 5740 5741 tcg_op1 = tcg_temp_new_i64(); 5742 tcg_op2 = tcg_temp_new_i64(); 5743 tcg_tmp = tcg_temp_new_i64(); 5744 5745 if (op_id < 0x42) { 5746 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5747 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5748 } else { 5749 if (is_signed) { 5750 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5751 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5752 } else { 5753 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5754 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5755 } 5756 } 5757 5758 if (ra == 31 && !is_sub) { 5759 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5760 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5761 } else { 5762 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5763 if (is_sub) { 5764 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5765 } else { 5766 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5767 } 5768 } 5769 5770 if (!sf) { 5771 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5772 } 5773 } 5774 5775 /* Add/subtract (with carry) 5776 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5777 * +--+--+--+------------------------+------+-------------+------+-----+ 5778 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5779 * +--+--+--+------------------------+------+-------------+------+-----+ 5780 */ 5781 5782 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5783 { 5784 unsigned int sf, op, setflags, rm, rn, rd; 5785 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5786 5787 sf = extract32(insn, 31, 1); 5788 op = extract32(insn, 30, 1); 5789 setflags = extract32(insn, 29, 1); 5790 rm = extract32(insn, 16, 5); 5791 rn = extract32(insn, 5, 5); 5792 rd = extract32(insn, 0, 5); 5793 5794 tcg_rd = cpu_reg(s, rd); 5795 tcg_rn = cpu_reg(s, rn); 5796 5797 if (op) { 5798 tcg_y = tcg_temp_new_i64(); 5799 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5800 } else { 5801 tcg_y = cpu_reg(s, rm); 5802 } 5803 5804 if (setflags) { 5805 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5806 } else { 5807 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5808 } 5809 } 5810 5811 /* 5812 * Rotate right into flags 5813 * 31 30 29 21 15 10 5 4 0 5814 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5815 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5816 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5817 */ 5818 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5819 { 5820 int mask = extract32(insn, 0, 4); 5821 int o2 = extract32(insn, 4, 1); 5822 int rn = extract32(insn, 5, 5); 5823 int imm6 = extract32(insn, 15, 6); 5824 int sf_op_s = extract32(insn, 29, 3); 5825 TCGv_i64 tcg_rn; 5826 TCGv_i32 nzcv; 5827 5828 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5829 unallocated_encoding(s); 5830 return; 5831 } 5832 5833 tcg_rn = read_cpu_reg(s, rn, 1); 5834 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5835 5836 nzcv = tcg_temp_new_i32(); 5837 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5838 5839 if (mask & 8) { /* N */ 5840 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5841 } 5842 if (mask & 4) { /* Z */ 5843 tcg_gen_not_i32(cpu_ZF, nzcv); 5844 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5845 } 5846 if (mask & 2) { /* C */ 5847 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5848 } 5849 if (mask & 1) { /* V */ 5850 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5851 } 5852 } 5853 5854 /* 5855 * Evaluate into flags 5856 * 31 30 29 21 15 14 10 5 4 0 5857 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5858 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5859 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5860 */ 5861 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5862 { 5863 int o3_mask = extract32(insn, 0, 5); 5864 int rn = extract32(insn, 5, 5); 5865 int o2 = extract32(insn, 15, 6); 5866 int sz = extract32(insn, 14, 1); 5867 int sf_op_s = extract32(insn, 29, 3); 5868 TCGv_i32 tmp; 5869 int shift; 5870 5871 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5872 !dc_isar_feature(aa64_condm_4, s)) { 5873 unallocated_encoding(s); 5874 return; 5875 } 5876 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5877 5878 tmp = tcg_temp_new_i32(); 5879 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5880 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5881 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5882 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5883 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5884 } 5885 5886 /* Conditional compare (immediate / register) 5887 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5888 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5889 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5890 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5891 * [1] y [0] [0] 5892 */ 5893 static void disas_cc(DisasContext *s, uint32_t insn) 5894 { 5895 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5896 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5897 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5898 DisasCompare c; 5899 5900 if (!extract32(insn, 29, 1)) { 5901 unallocated_encoding(s); 5902 return; 5903 } 5904 if (insn & (1 << 10 | 1 << 4)) { 5905 unallocated_encoding(s); 5906 return; 5907 } 5908 sf = extract32(insn, 31, 1); 5909 op = extract32(insn, 30, 1); 5910 is_imm = extract32(insn, 11, 1); 5911 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5912 cond = extract32(insn, 12, 4); 5913 rn = extract32(insn, 5, 5); 5914 nzcv = extract32(insn, 0, 4); 5915 5916 /* Set T0 = !COND. */ 5917 tcg_t0 = tcg_temp_new_i32(); 5918 arm_test_cc(&c, cond); 5919 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5920 5921 /* Load the arguments for the new comparison. */ 5922 if (is_imm) { 5923 tcg_y = tcg_temp_new_i64(); 5924 tcg_gen_movi_i64(tcg_y, y); 5925 } else { 5926 tcg_y = cpu_reg(s, y); 5927 } 5928 tcg_rn = cpu_reg(s, rn); 5929 5930 /* Set the flags for the new comparison. */ 5931 tcg_tmp = tcg_temp_new_i64(); 5932 if (op) { 5933 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5934 } else { 5935 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5936 } 5937 5938 /* If COND was false, force the flags to #nzcv. Compute two masks 5939 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5940 * For tcg hosts that support ANDC, we can make do with just T1. 5941 * In either case, allow the tcg optimizer to delete any unused mask. 5942 */ 5943 tcg_t1 = tcg_temp_new_i32(); 5944 tcg_t2 = tcg_temp_new_i32(); 5945 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5946 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5947 5948 if (nzcv & 8) { /* N */ 5949 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5950 } else { 5951 if (TCG_TARGET_HAS_andc_i32) { 5952 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5953 } else { 5954 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5955 } 5956 } 5957 if (nzcv & 4) { /* Z */ 5958 if (TCG_TARGET_HAS_andc_i32) { 5959 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5960 } else { 5961 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5962 } 5963 } else { 5964 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5965 } 5966 if (nzcv & 2) { /* C */ 5967 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5968 } else { 5969 if (TCG_TARGET_HAS_andc_i32) { 5970 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5971 } else { 5972 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5973 } 5974 } 5975 if (nzcv & 1) { /* V */ 5976 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5977 } else { 5978 if (TCG_TARGET_HAS_andc_i32) { 5979 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5980 } else { 5981 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5982 } 5983 } 5984 } 5985 5986 /* Conditional select 5987 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5988 * +----+----+---+-----------------+------+------+-----+------+------+ 5989 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5990 * +----+----+---+-----------------+------+------+-----+------+------+ 5991 */ 5992 static void disas_cond_select(DisasContext *s, uint32_t insn) 5993 { 5994 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5995 TCGv_i64 tcg_rd, zero; 5996 DisasCompare64 c; 5997 5998 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5999 /* S == 1 or op2<1> == 1 */ 6000 unallocated_encoding(s); 6001 return; 6002 } 6003 sf = extract32(insn, 31, 1); 6004 else_inv = extract32(insn, 30, 1); 6005 rm = extract32(insn, 16, 5); 6006 cond = extract32(insn, 12, 4); 6007 else_inc = extract32(insn, 10, 1); 6008 rn = extract32(insn, 5, 5); 6009 rd = extract32(insn, 0, 5); 6010 6011 tcg_rd = cpu_reg(s, rd); 6012 6013 a64_test_cc(&c, cond); 6014 zero = tcg_constant_i64(0); 6015 6016 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 6017 /* CSET & CSETM. */ 6018 if (else_inv) { 6019 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 6020 tcg_rd, c.value, zero); 6021 } else { 6022 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 6023 tcg_rd, c.value, zero); 6024 } 6025 } else { 6026 TCGv_i64 t_true = cpu_reg(s, rn); 6027 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 6028 if (else_inv && else_inc) { 6029 tcg_gen_neg_i64(t_false, t_false); 6030 } else if (else_inv) { 6031 tcg_gen_not_i64(t_false, t_false); 6032 } else if (else_inc) { 6033 tcg_gen_addi_i64(t_false, t_false, 1); 6034 } 6035 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 6036 } 6037 6038 if (!sf) { 6039 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6040 } 6041 } 6042 6043 static void handle_clz(DisasContext *s, unsigned int sf, 6044 unsigned int rn, unsigned int rd) 6045 { 6046 TCGv_i64 tcg_rd, tcg_rn; 6047 tcg_rd = cpu_reg(s, rd); 6048 tcg_rn = cpu_reg(s, rn); 6049 6050 if (sf) { 6051 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 6052 } else { 6053 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6054 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6055 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 6056 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6057 } 6058 } 6059 6060 static void handle_cls(DisasContext *s, unsigned int sf, 6061 unsigned int rn, unsigned int rd) 6062 { 6063 TCGv_i64 tcg_rd, tcg_rn; 6064 tcg_rd = cpu_reg(s, rd); 6065 tcg_rn = cpu_reg(s, rn); 6066 6067 if (sf) { 6068 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 6069 } else { 6070 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6071 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6072 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 6073 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6074 } 6075 } 6076 6077 static void handle_rbit(DisasContext *s, unsigned int sf, 6078 unsigned int rn, unsigned int rd) 6079 { 6080 TCGv_i64 tcg_rd, tcg_rn; 6081 tcg_rd = cpu_reg(s, rd); 6082 tcg_rn = cpu_reg(s, rn); 6083 6084 if (sf) { 6085 gen_helper_rbit64(tcg_rd, tcg_rn); 6086 } else { 6087 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6088 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6089 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 6090 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6091 } 6092 } 6093 6094 /* REV with sf==1, opcode==3 ("REV64") */ 6095 static void handle_rev64(DisasContext *s, unsigned int sf, 6096 unsigned int rn, unsigned int rd) 6097 { 6098 if (!sf) { 6099 unallocated_encoding(s); 6100 return; 6101 } 6102 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 6103 } 6104 6105 /* REV with sf==0, opcode==2 6106 * REV32 (sf==1, opcode==2) 6107 */ 6108 static void handle_rev32(DisasContext *s, unsigned int sf, 6109 unsigned int rn, unsigned int rd) 6110 { 6111 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6112 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6113 6114 if (sf) { 6115 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 6116 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 6117 } else { 6118 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 6119 } 6120 } 6121 6122 /* REV16 (opcode==1) */ 6123 static void handle_rev16(DisasContext *s, unsigned int sf, 6124 unsigned int rn, unsigned int rd) 6125 { 6126 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6127 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 6128 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6129 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 6130 6131 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 6132 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 6133 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 6134 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 6135 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 6136 } 6137 6138 /* Data-processing (1 source) 6139 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6140 * +----+---+---+-----------------+---------+--------+------+------+ 6141 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 6142 * +----+---+---+-----------------+---------+--------+------+------+ 6143 */ 6144 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 6145 { 6146 unsigned int sf, opcode, opcode2, rn, rd; 6147 TCGv_i64 tcg_rd; 6148 6149 if (extract32(insn, 29, 1)) { 6150 unallocated_encoding(s); 6151 return; 6152 } 6153 6154 sf = extract32(insn, 31, 1); 6155 opcode = extract32(insn, 10, 6); 6156 opcode2 = extract32(insn, 16, 5); 6157 rn = extract32(insn, 5, 5); 6158 rd = extract32(insn, 0, 5); 6159 6160 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 6161 6162 switch (MAP(sf, opcode2, opcode)) { 6163 case MAP(0, 0x00, 0x00): /* RBIT */ 6164 case MAP(1, 0x00, 0x00): 6165 handle_rbit(s, sf, rn, rd); 6166 break; 6167 case MAP(0, 0x00, 0x01): /* REV16 */ 6168 case MAP(1, 0x00, 0x01): 6169 handle_rev16(s, sf, rn, rd); 6170 break; 6171 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 6172 case MAP(1, 0x00, 0x02): 6173 handle_rev32(s, sf, rn, rd); 6174 break; 6175 case MAP(1, 0x00, 0x03): /* REV64 */ 6176 handle_rev64(s, sf, rn, rd); 6177 break; 6178 case MAP(0, 0x00, 0x04): /* CLZ */ 6179 case MAP(1, 0x00, 0x04): 6180 handle_clz(s, sf, rn, rd); 6181 break; 6182 case MAP(0, 0x00, 0x05): /* CLS */ 6183 case MAP(1, 0x00, 0x05): 6184 handle_cls(s, sf, rn, rd); 6185 break; 6186 case MAP(1, 0x01, 0x00): /* PACIA */ 6187 if (s->pauth_active) { 6188 tcg_rd = cpu_reg(s, rd); 6189 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6190 } else if (!dc_isar_feature(aa64_pauth, s)) { 6191 goto do_unallocated; 6192 } 6193 break; 6194 case MAP(1, 0x01, 0x01): /* PACIB */ 6195 if (s->pauth_active) { 6196 tcg_rd = cpu_reg(s, rd); 6197 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6198 } else if (!dc_isar_feature(aa64_pauth, s)) { 6199 goto do_unallocated; 6200 } 6201 break; 6202 case MAP(1, 0x01, 0x02): /* PACDA */ 6203 if (s->pauth_active) { 6204 tcg_rd = cpu_reg(s, rd); 6205 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6206 } else if (!dc_isar_feature(aa64_pauth, s)) { 6207 goto do_unallocated; 6208 } 6209 break; 6210 case MAP(1, 0x01, 0x03): /* PACDB */ 6211 if (s->pauth_active) { 6212 tcg_rd = cpu_reg(s, rd); 6213 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6214 } else if (!dc_isar_feature(aa64_pauth, s)) { 6215 goto do_unallocated; 6216 } 6217 break; 6218 case MAP(1, 0x01, 0x04): /* AUTIA */ 6219 if (s->pauth_active) { 6220 tcg_rd = cpu_reg(s, rd); 6221 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6222 } else if (!dc_isar_feature(aa64_pauth, s)) { 6223 goto do_unallocated; 6224 } 6225 break; 6226 case MAP(1, 0x01, 0x05): /* AUTIB */ 6227 if (s->pauth_active) { 6228 tcg_rd = cpu_reg(s, rd); 6229 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6230 } else if (!dc_isar_feature(aa64_pauth, s)) { 6231 goto do_unallocated; 6232 } 6233 break; 6234 case MAP(1, 0x01, 0x06): /* AUTDA */ 6235 if (s->pauth_active) { 6236 tcg_rd = cpu_reg(s, rd); 6237 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6238 } else if (!dc_isar_feature(aa64_pauth, s)) { 6239 goto do_unallocated; 6240 } 6241 break; 6242 case MAP(1, 0x01, 0x07): /* AUTDB */ 6243 if (s->pauth_active) { 6244 tcg_rd = cpu_reg(s, rd); 6245 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6246 } else if (!dc_isar_feature(aa64_pauth, s)) { 6247 goto do_unallocated; 6248 } 6249 break; 6250 case MAP(1, 0x01, 0x08): /* PACIZA */ 6251 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6252 goto do_unallocated; 6253 } else if (s->pauth_active) { 6254 tcg_rd = cpu_reg(s, rd); 6255 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6256 } 6257 break; 6258 case MAP(1, 0x01, 0x09): /* PACIZB */ 6259 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6260 goto do_unallocated; 6261 } else if (s->pauth_active) { 6262 tcg_rd = cpu_reg(s, rd); 6263 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6264 } 6265 break; 6266 case MAP(1, 0x01, 0x0a): /* PACDZA */ 6267 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6268 goto do_unallocated; 6269 } else if (s->pauth_active) { 6270 tcg_rd = cpu_reg(s, rd); 6271 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6272 } 6273 break; 6274 case MAP(1, 0x01, 0x0b): /* PACDZB */ 6275 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6276 goto do_unallocated; 6277 } else if (s->pauth_active) { 6278 tcg_rd = cpu_reg(s, rd); 6279 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6280 } 6281 break; 6282 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 6283 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6284 goto do_unallocated; 6285 } else if (s->pauth_active) { 6286 tcg_rd = cpu_reg(s, rd); 6287 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6288 } 6289 break; 6290 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 6291 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6292 goto do_unallocated; 6293 } else if (s->pauth_active) { 6294 tcg_rd = cpu_reg(s, rd); 6295 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6296 } 6297 break; 6298 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 6299 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6300 goto do_unallocated; 6301 } else if (s->pauth_active) { 6302 tcg_rd = cpu_reg(s, rd); 6303 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6304 } 6305 break; 6306 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 6307 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6308 goto do_unallocated; 6309 } else if (s->pauth_active) { 6310 tcg_rd = cpu_reg(s, rd); 6311 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6312 } 6313 break; 6314 case MAP(1, 0x01, 0x10): /* XPACI */ 6315 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6316 goto do_unallocated; 6317 } else if (s->pauth_active) { 6318 tcg_rd = cpu_reg(s, rd); 6319 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 6320 } 6321 break; 6322 case MAP(1, 0x01, 0x11): /* XPACD */ 6323 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6324 goto do_unallocated; 6325 } else if (s->pauth_active) { 6326 tcg_rd = cpu_reg(s, rd); 6327 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 6328 } 6329 break; 6330 default: 6331 do_unallocated: 6332 unallocated_encoding(s); 6333 break; 6334 } 6335 6336 #undef MAP 6337 } 6338 6339 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 6340 unsigned int rm, unsigned int rn, unsigned int rd) 6341 { 6342 TCGv_i64 tcg_n, tcg_m, tcg_rd; 6343 tcg_rd = cpu_reg(s, rd); 6344 6345 if (!sf && is_signed) { 6346 tcg_n = tcg_temp_new_i64(); 6347 tcg_m = tcg_temp_new_i64(); 6348 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 6349 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 6350 } else { 6351 tcg_n = read_cpu_reg(s, rn, sf); 6352 tcg_m = read_cpu_reg(s, rm, sf); 6353 } 6354 6355 if (is_signed) { 6356 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 6357 } else { 6358 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 6359 } 6360 6361 if (!sf) { /* zero extend final result */ 6362 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6363 } 6364 } 6365 6366 /* LSLV, LSRV, ASRV, RORV */ 6367 static void handle_shift_reg(DisasContext *s, 6368 enum a64_shift_type shift_type, unsigned int sf, 6369 unsigned int rm, unsigned int rn, unsigned int rd) 6370 { 6371 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 6372 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6373 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6374 6375 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 6376 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 6377 } 6378 6379 /* CRC32[BHWX], CRC32C[BHWX] */ 6380 static void handle_crc32(DisasContext *s, 6381 unsigned int sf, unsigned int sz, bool crc32c, 6382 unsigned int rm, unsigned int rn, unsigned int rd) 6383 { 6384 TCGv_i64 tcg_acc, tcg_val; 6385 TCGv_i32 tcg_bytes; 6386 6387 if (!dc_isar_feature(aa64_crc32, s) 6388 || (sf == 1 && sz != 3) 6389 || (sf == 0 && sz == 3)) { 6390 unallocated_encoding(s); 6391 return; 6392 } 6393 6394 if (sz == 3) { 6395 tcg_val = cpu_reg(s, rm); 6396 } else { 6397 uint64_t mask; 6398 switch (sz) { 6399 case 0: 6400 mask = 0xFF; 6401 break; 6402 case 1: 6403 mask = 0xFFFF; 6404 break; 6405 case 2: 6406 mask = 0xFFFFFFFF; 6407 break; 6408 default: 6409 g_assert_not_reached(); 6410 } 6411 tcg_val = tcg_temp_new_i64(); 6412 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 6413 } 6414 6415 tcg_acc = cpu_reg(s, rn); 6416 tcg_bytes = tcg_constant_i32(1 << sz); 6417 6418 if (crc32c) { 6419 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6420 } else { 6421 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6422 } 6423 } 6424 6425 /* Data-processing (2 source) 6426 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6427 * +----+---+---+-----------------+------+--------+------+------+ 6428 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 6429 * +----+---+---+-----------------+------+--------+------+------+ 6430 */ 6431 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 6432 { 6433 unsigned int sf, rm, opcode, rn, rd, setflag; 6434 sf = extract32(insn, 31, 1); 6435 setflag = extract32(insn, 29, 1); 6436 rm = extract32(insn, 16, 5); 6437 opcode = extract32(insn, 10, 6); 6438 rn = extract32(insn, 5, 5); 6439 rd = extract32(insn, 0, 5); 6440 6441 if (setflag && opcode != 0) { 6442 unallocated_encoding(s); 6443 return; 6444 } 6445 6446 switch (opcode) { 6447 case 0: /* SUBP(S) */ 6448 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6449 goto do_unallocated; 6450 } else { 6451 TCGv_i64 tcg_n, tcg_m, tcg_d; 6452 6453 tcg_n = read_cpu_reg_sp(s, rn, true); 6454 tcg_m = read_cpu_reg_sp(s, rm, true); 6455 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 6456 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 6457 tcg_d = cpu_reg(s, rd); 6458 6459 if (setflag) { 6460 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 6461 } else { 6462 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 6463 } 6464 } 6465 break; 6466 case 2: /* UDIV */ 6467 handle_div(s, false, sf, rm, rn, rd); 6468 break; 6469 case 3: /* SDIV */ 6470 handle_div(s, true, sf, rm, rn, rd); 6471 break; 6472 case 4: /* IRG */ 6473 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6474 goto do_unallocated; 6475 } 6476 if (s->ata[0]) { 6477 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 6478 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 6479 } else { 6480 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 6481 cpu_reg_sp(s, rn)); 6482 } 6483 break; 6484 case 5: /* GMI */ 6485 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6486 goto do_unallocated; 6487 } else { 6488 TCGv_i64 t = tcg_temp_new_i64(); 6489 6490 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 6491 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 6492 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 6493 } 6494 break; 6495 case 8: /* LSLV */ 6496 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 6497 break; 6498 case 9: /* LSRV */ 6499 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 6500 break; 6501 case 10: /* ASRV */ 6502 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 6503 break; 6504 case 11: /* RORV */ 6505 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 6506 break; 6507 case 12: /* PACGA */ 6508 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 6509 goto do_unallocated; 6510 } 6511 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 6512 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 6513 break; 6514 case 16: 6515 case 17: 6516 case 18: 6517 case 19: 6518 case 20: 6519 case 21: 6520 case 22: 6521 case 23: /* CRC32 */ 6522 { 6523 int sz = extract32(opcode, 0, 2); 6524 bool crc32c = extract32(opcode, 2, 1); 6525 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 6526 break; 6527 } 6528 default: 6529 do_unallocated: 6530 unallocated_encoding(s); 6531 break; 6532 } 6533 } 6534 6535 /* 6536 * Data processing - register 6537 * 31 30 29 28 25 21 20 16 10 0 6538 * +--+---+--+---+-------+-----+-------+-------+---------+ 6539 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 6540 * +--+---+--+---+-------+-----+-------+-------+---------+ 6541 */ 6542 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 6543 { 6544 int op0 = extract32(insn, 30, 1); 6545 int op1 = extract32(insn, 28, 1); 6546 int op2 = extract32(insn, 21, 4); 6547 int op3 = extract32(insn, 10, 6); 6548 6549 if (!op1) { 6550 if (op2 & 8) { 6551 if (op2 & 1) { 6552 /* Add/sub (extended register) */ 6553 disas_add_sub_ext_reg(s, insn); 6554 } else { 6555 /* Add/sub (shifted register) */ 6556 disas_add_sub_reg(s, insn); 6557 } 6558 } else { 6559 /* Logical (shifted register) */ 6560 disas_logic_reg(s, insn); 6561 } 6562 return; 6563 } 6564 6565 switch (op2) { 6566 case 0x0: 6567 switch (op3) { 6568 case 0x00: /* Add/subtract (with carry) */ 6569 disas_adc_sbc(s, insn); 6570 break; 6571 6572 case 0x01: /* Rotate right into flags */ 6573 case 0x21: 6574 disas_rotate_right_into_flags(s, insn); 6575 break; 6576 6577 case 0x02: /* Evaluate into flags */ 6578 case 0x12: 6579 case 0x22: 6580 case 0x32: 6581 disas_evaluate_into_flags(s, insn); 6582 break; 6583 6584 default: 6585 goto do_unallocated; 6586 } 6587 break; 6588 6589 case 0x2: /* Conditional compare */ 6590 disas_cc(s, insn); /* both imm and reg forms */ 6591 break; 6592 6593 case 0x4: /* Conditional select */ 6594 disas_cond_select(s, insn); 6595 break; 6596 6597 case 0x6: /* Data-processing */ 6598 if (op0) { /* (1 source) */ 6599 disas_data_proc_1src(s, insn); 6600 } else { /* (2 source) */ 6601 disas_data_proc_2src(s, insn); 6602 } 6603 break; 6604 case 0x8 ... 0xf: /* (3 source) */ 6605 disas_data_proc_3src(s, insn); 6606 break; 6607 6608 default: 6609 do_unallocated: 6610 unallocated_encoding(s); 6611 break; 6612 } 6613 } 6614 6615 static void handle_fp_compare(DisasContext *s, int size, 6616 unsigned int rn, unsigned int rm, 6617 bool cmp_with_zero, bool signal_all_nans) 6618 { 6619 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 6620 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 6621 6622 if (size == MO_64) { 6623 TCGv_i64 tcg_vn, tcg_vm; 6624 6625 tcg_vn = read_fp_dreg(s, rn); 6626 if (cmp_with_zero) { 6627 tcg_vm = tcg_constant_i64(0); 6628 } else { 6629 tcg_vm = read_fp_dreg(s, rm); 6630 } 6631 if (signal_all_nans) { 6632 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6633 } else { 6634 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6635 } 6636 } else { 6637 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 6638 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 6639 6640 read_vec_element_i32(s, tcg_vn, rn, 0, size); 6641 if (cmp_with_zero) { 6642 tcg_gen_movi_i32(tcg_vm, 0); 6643 } else { 6644 read_vec_element_i32(s, tcg_vm, rm, 0, size); 6645 } 6646 6647 switch (size) { 6648 case MO_32: 6649 if (signal_all_nans) { 6650 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6651 } else { 6652 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6653 } 6654 break; 6655 case MO_16: 6656 if (signal_all_nans) { 6657 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6658 } else { 6659 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6660 } 6661 break; 6662 default: 6663 g_assert_not_reached(); 6664 } 6665 } 6666 6667 gen_set_nzcv(tcg_flags); 6668 } 6669 6670 /* Floating point compare 6671 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 6672 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6673 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 6674 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6675 */ 6676 static void disas_fp_compare(DisasContext *s, uint32_t insn) 6677 { 6678 unsigned int mos, type, rm, op, rn, opc, op2r; 6679 int size; 6680 6681 mos = extract32(insn, 29, 3); 6682 type = extract32(insn, 22, 2); 6683 rm = extract32(insn, 16, 5); 6684 op = extract32(insn, 14, 2); 6685 rn = extract32(insn, 5, 5); 6686 opc = extract32(insn, 3, 2); 6687 op2r = extract32(insn, 0, 3); 6688 6689 if (mos || op || op2r) { 6690 unallocated_encoding(s); 6691 return; 6692 } 6693 6694 switch (type) { 6695 case 0: 6696 size = MO_32; 6697 break; 6698 case 1: 6699 size = MO_64; 6700 break; 6701 case 3: 6702 size = MO_16; 6703 if (dc_isar_feature(aa64_fp16, s)) { 6704 break; 6705 } 6706 /* fallthru */ 6707 default: 6708 unallocated_encoding(s); 6709 return; 6710 } 6711 6712 if (!fp_access_check(s)) { 6713 return; 6714 } 6715 6716 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6717 } 6718 6719 /* Floating point conditional compare 6720 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6721 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6722 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6723 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6724 */ 6725 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6726 { 6727 unsigned int mos, type, rm, cond, rn, op, nzcv; 6728 TCGLabel *label_continue = NULL; 6729 int size; 6730 6731 mos = extract32(insn, 29, 3); 6732 type = extract32(insn, 22, 2); 6733 rm = extract32(insn, 16, 5); 6734 cond = extract32(insn, 12, 4); 6735 rn = extract32(insn, 5, 5); 6736 op = extract32(insn, 4, 1); 6737 nzcv = extract32(insn, 0, 4); 6738 6739 if (mos) { 6740 unallocated_encoding(s); 6741 return; 6742 } 6743 6744 switch (type) { 6745 case 0: 6746 size = MO_32; 6747 break; 6748 case 1: 6749 size = MO_64; 6750 break; 6751 case 3: 6752 size = MO_16; 6753 if (dc_isar_feature(aa64_fp16, s)) { 6754 break; 6755 } 6756 /* fallthru */ 6757 default: 6758 unallocated_encoding(s); 6759 return; 6760 } 6761 6762 if (!fp_access_check(s)) { 6763 return; 6764 } 6765 6766 if (cond < 0x0e) { /* not always */ 6767 TCGLabel *label_match = gen_new_label(); 6768 label_continue = gen_new_label(); 6769 arm_gen_test_cc(cond, label_match); 6770 /* nomatch: */ 6771 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6772 tcg_gen_br(label_continue); 6773 gen_set_label(label_match); 6774 } 6775 6776 handle_fp_compare(s, size, rn, rm, false, op); 6777 6778 if (cond < 0x0e) { 6779 gen_set_label(label_continue); 6780 } 6781 } 6782 6783 /* Floating point conditional select 6784 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6785 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6786 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6787 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6788 */ 6789 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6790 { 6791 unsigned int mos, type, rm, cond, rn, rd; 6792 TCGv_i64 t_true, t_false; 6793 DisasCompare64 c; 6794 MemOp sz; 6795 6796 mos = extract32(insn, 29, 3); 6797 type = extract32(insn, 22, 2); 6798 rm = extract32(insn, 16, 5); 6799 cond = extract32(insn, 12, 4); 6800 rn = extract32(insn, 5, 5); 6801 rd = extract32(insn, 0, 5); 6802 6803 if (mos) { 6804 unallocated_encoding(s); 6805 return; 6806 } 6807 6808 switch (type) { 6809 case 0: 6810 sz = MO_32; 6811 break; 6812 case 1: 6813 sz = MO_64; 6814 break; 6815 case 3: 6816 sz = MO_16; 6817 if (dc_isar_feature(aa64_fp16, s)) { 6818 break; 6819 } 6820 /* fallthru */ 6821 default: 6822 unallocated_encoding(s); 6823 return; 6824 } 6825 6826 if (!fp_access_check(s)) { 6827 return; 6828 } 6829 6830 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6831 t_true = tcg_temp_new_i64(); 6832 t_false = tcg_temp_new_i64(); 6833 read_vec_element(s, t_true, rn, 0, sz); 6834 read_vec_element(s, t_false, rm, 0, sz); 6835 6836 a64_test_cc(&c, cond); 6837 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6838 t_true, t_false); 6839 6840 /* Note that sregs & hregs write back zeros to the high bits, 6841 and we've already done the zero-extension. */ 6842 write_fp_dreg(s, rd, t_true); 6843 } 6844 6845 /* Floating-point data-processing (1 source) - half precision */ 6846 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6847 { 6848 TCGv_ptr fpst = NULL; 6849 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6850 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6851 6852 switch (opcode) { 6853 case 0x0: /* FMOV */ 6854 tcg_gen_mov_i32(tcg_res, tcg_op); 6855 break; 6856 case 0x1: /* FABS */ 6857 gen_vfp_absh(tcg_res, tcg_op); 6858 break; 6859 case 0x2: /* FNEG */ 6860 gen_vfp_negh(tcg_res, tcg_op); 6861 break; 6862 case 0x3: /* FSQRT */ 6863 fpst = fpstatus_ptr(FPST_FPCR_F16); 6864 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6865 break; 6866 case 0x8: /* FRINTN */ 6867 case 0x9: /* FRINTP */ 6868 case 0xa: /* FRINTM */ 6869 case 0xb: /* FRINTZ */ 6870 case 0xc: /* FRINTA */ 6871 { 6872 TCGv_i32 tcg_rmode; 6873 6874 fpst = fpstatus_ptr(FPST_FPCR_F16); 6875 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6876 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6877 gen_restore_rmode(tcg_rmode, fpst); 6878 break; 6879 } 6880 case 0xe: /* FRINTX */ 6881 fpst = fpstatus_ptr(FPST_FPCR_F16); 6882 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6883 break; 6884 case 0xf: /* FRINTI */ 6885 fpst = fpstatus_ptr(FPST_FPCR_F16); 6886 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6887 break; 6888 default: 6889 g_assert_not_reached(); 6890 } 6891 6892 write_fp_sreg(s, rd, tcg_res); 6893 } 6894 6895 /* Floating-point data-processing (1 source) - single precision */ 6896 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6897 { 6898 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6899 TCGv_i32 tcg_op, tcg_res; 6900 TCGv_ptr fpst; 6901 int rmode = -1; 6902 6903 tcg_op = read_fp_sreg(s, rn); 6904 tcg_res = tcg_temp_new_i32(); 6905 6906 switch (opcode) { 6907 case 0x0: /* FMOV */ 6908 tcg_gen_mov_i32(tcg_res, tcg_op); 6909 goto done; 6910 case 0x1: /* FABS */ 6911 gen_vfp_abss(tcg_res, tcg_op); 6912 goto done; 6913 case 0x2: /* FNEG */ 6914 gen_vfp_negs(tcg_res, tcg_op); 6915 goto done; 6916 case 0x3: /* FSQRT */ 6917 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 6918 goto done; 6919 case 0x6: /* BFCVT */ 6920 gen_fpst = gen_helper_bfcvt; 6921 break; 6922 case 0x8: /* FRINTN */ 6923 case 0x9: /* FRINTP */ 6924 case 0xa: /* FRINTM */ 6925 case 0xb: /* FRINTZ */ 6926 case 0xc: /* FRINTA */ 6927 rmode = opcode & 7; 6928 gen_fpst = gen_helper_rints; 6929 break; 6930 case 0xe: /* FRINTX */ 6931 gen_fpst = gen_helper_rints_exact; 6932 break; 6933 case 0xf: /* FRINTI */ 6934 gen_fpst = gen_helper_rints; 6935 break; 6936 case 0x10: /* FRINT32Z */ 6937 rmode = FPROUNDING_ZERO; 6938 gen_fpst = gen_helper_frint32_s; 6939 break; 6940 case 0x11: /* FRINT32X */ 6941 gen_fpst = gen_helper_frint32_s; 6942 break; 6943 case 0x12: /* FRINT64Z */ 6944 rmode = FPROUNDING_ZERO; 6945 gen_fpst = gen_helper_frint64_s; 6946 break; 6947 case 0x13: /* FRINT64X */ 6948 gen_fpst = gen_helper_frint64_s; 6949 break; 6950 default: 6951 g_assert_not_reached(); 6952 } 6953 6954 fpst = fpstatus_ptr(FPST_FPCR); 6955 if (rmode >= 0) { 6956 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6957 gen_fpst(tcg_res, tcg_op, fpst); 6958 gen_restore_rmode(tcg_rmode, fpst); 6959 } else { 6960 gen_fpst(tcg_res, tcg_op, fpst); 6961 } 6962 6963 done: 6964 write_fp_sreg(s, rd, tcg_res); 6965 } 6966 6967 /* Floating-point data-processing (1 source) - double precision */ 6968 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6969 { 6970 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6971 TCGv_i64 tcg_op, tcg_res; 6972 TCGv_ptr fpst; 6973 int rmode = -1; 6974 6975 switch (opcode) { 6976 case 0x0: /* FMOV */ 6977 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6978 return; 6979 } 6980 6981 tcg_op = read_fp_dreg(s, rn); 6982 tcg_res = tcg_temp_new_i64(); 6983 6984 switch (opcode) { 6985 case 0x1: /* FABS */ 6986 gen_vfp_absd(tcg_res, tcg_op); 6987 goto done; 6988 case 0x2: /* FNEG */ 6989 gen_vfp_negd(tcg_res, tcg_op); 6990 goto done; 6991 case 0x3: /* FSQRT */ 6992 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 6993 goto done; 6994 case 0x8: /* FRINTN */ 6995 case 0x9: /* FRINTP */ 6996 case 0xa: /* FRINTM */ 6997 case 0xb: /* FRINTZ */ 6998 case 0xc: /* FRINTA */ 6999 rmode = opcode & 7; 7000 gen_fpst = gen_helper_rintd; 7001 break; 7002 case 0xe: /* FRINTX */ 7003 gen_fpst = gen_helper_rintd_exact; 7004 break; 7005 case 0xf: /* FRINTI */ 7006 gen_fpst = gen_helper_rintd; 7007 break; 7008 case 0x10: /* FRINT32Z */ 7009 rmode = FPROUNDING_ZERO; 7010 gen_fpst = gen_helper_frint32_d; 7011 break; 7012 case 0x11: /* FRINT32X */ 7013 gen_fpst = gen_helper_frint32_d; 7014 break; 7015 case 0x12: /* FRINT64Z */ 7016 rmode = FPROUNDING_ZERO; 7017 gen_fpst = gen_helper_frint64_d; 7018 break; 7019 case 0x13: /* FRINT64X */ 7020 gen_fpst = gen_helper_frint64_d; 7021 break; 7022 default: 7023 g_assert_not_reached(); 7024 } 7025 7026 fpst = fpstatus_ptr(FPST_FPCR); 7027 if (rmode >= 0) { 7028 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7029 gen_fpst(tcg_res, tcg_op, fpst); 7030 gen_restore_rmode(tcg_rmode, fpst); 7031 } else { 7032 gen_fpst(tcg_res, tcg_op, fpst); 7033 } 7034 7035 done: 7036 write_fp_dreg(s, rd, tcg_res); 7037 } 7038 7039 static void handle_fp_fcvt(DisasContext *s, int opcode, 7040 int rd, int rn, int dtype, int ntype) 7041 { 7042 switch (ntype) { 7043 case 0x0: 7044 { 7045 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7046 if (dtype == 1) { 7047 /* Single to double */ 7048 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7049 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 7050 write_fp_dreg(s, rd, tcg_rd); 7051 } else { 7052 /* Single to half */ 7053 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7054 TCGv_i32 ahp = get_ahp_flag(); 7055 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7056 7057 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7058 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7059 write_fp_sreg(s, rd, tcg_rd); 7060 } 7061 break; 7062 } 7063 case 0x1: 7064 { 7065 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 7066 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7067 if (dtype == 0) { 7068 /* Double to single */ 7069 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 7070 } else { 7071 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7072 TCGv_i32 ahp = get_ahp_flag(); 7073 /* Double to half */ 7074 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7075 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7076 } 7077 write_fp_sreg(s, rd, tcg_rd); 7078 break; 7079 } 7080 case 0x3: 7081 { 7082 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7083 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 7084 TCGv_i32 tcg_ahp = get_ahp_flag(); 7085 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 7086 if (dtype == 0) { 7087 /* Half to single */ 7088 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7089 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7090 write_fp_sreg(s, rd, tcg_rd); 7091 } else { 7092 /* Half to double */ 7093 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7094 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7095 write_fp_dreg(s, rd, tcg_rd); 7096 } 7097 break; 7098 } 7099 default: 7100 g_assert_not_reached(); 7101 } 7102 } 7103 7104 /* Floating point data-processing (1 source) 7105 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 7106 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7107 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 7108 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7109 */ 7110 static void disas_fp_1src(DisasContext *s, uint32_t insn) 7111 { 7112 int mos = extract32(insn, 29, 3); 7113 int type = extract32(insn, 22, 2); 7114 int opcode = extract32(insn, 15, 6); 7115 int rn = extract32(insn, 5, 5); 7116 int rd = extract32(insn, 0, 5); 7117 7118 if (mos) { 7119 goto do_unallocated; 7120 } 7121 7122 switch (opcode) { 7123 case 0x4: case 0x5: case 0x7: 7124 { 7125 /* FCVT between half, single and double precision */ 7126 int dtype = extract32(opcode, 0, 2); 7127 if (type == 2 || dtype == type) { 7128 goto do_unallocated; 7129 } 7130 if (!fp_access_check(s)) { 7131 return; 7132 } 7133 7134 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 7135 break; 7136 } 7137 7138 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 7139 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 7140 goto do_unallocated; 7141 } 7142 /* fall through */ 7143 case 0x0 ... 0x3: 7144 case 0x8 ... 0xc: 7145 case 0xe ... 0xf: 7146 /* 32-to-32 and 64-to-64 ops */ 7147 switch (type) { 7148 case 0: 7149 if (!fp_access_check(s)) { 7150 return; 7151 } 7152 handle_fp_1src_single(s, opcode, rd, rn); 7153 break; 7154 case 1: 7155 if (!fp_access_check(s)) { 7156 return; 7157 } 7158 handle_fp_1src_double(s, opcode, rd, rn); 7159 break; 7160 case 3: 7161 if (!dc_isar_feature(aa64_fp16, s)) { 7162 goto do_unallocated; 7163 } 7164 7165 if (!fp_access_check(s)) { 7166 return; 7167 } 7168 handle_fp_1src_half(s, opcode, rd, rn); 7169 break; 7170 default: 7171 goto do_unallocated; 7172 } 7173 break; 7174 7175 case 0x6: 7176 switch (type) { 7177 case 1: /* BFCVT */ 7178 if (!dc_isar_feature(aa64_bf16, s)) { 7179 goto do_unallocated; 7180 } 7181 if (!fp_access_check(s)) { 7182 return; 7183 } 7184 handle_fp_1src_single(s, opcode, rd, rn); 7185 break; 7186 default: 7187 goto do_unallocated; 7188 } 7189 break; 7190 7191 default: 7192 do_unallocated: 7193 unallocated_encoding(s); 7194 break; 7195 } 7196 } 7197 7198 /* Floating-point data-processing (3 source) - single precision */ 7199 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 7200 int rd, int rn, int rm, int ra) 7201 { 7202 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7203 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7204 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7205 7206 tcg_op1 = read_fp_sreg(s, rn); 7207 tcg_op2 = read_fp_sreg(s, rm); 7208 tcg_op3 = read_fp_sreg(s, ra); 7209 7210 /* These are fused multiply-add, and must be done as one 7211 * floating point operation with no rounding between the 7212 * multiplication and addition steps. 7213 * NB that doing the negations here as separate steps is 7214 * correct : an input NaN should come out with its sign bit 7215 * flipped if it is a negated-input. 7216 */ 7217 if (o1 == true) { 7218 gen_vfp_negs(tcg_op3, tcg_op3); 7219 } 7220 7221 if (o0 != o1) { 7222 gen_vfp_negs(tcg_op1, tcg_op1); 7223 } 7224 7225 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7226 7227 write_fp_sreg(s, rd, tcg_res); 7228 } 7229 7230 /* Floating-point data-processing (3 source) - double precision */ 7231 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 7232 int rd, int rn, int rm, int ra) 7233 { 7234 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 7235 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7236 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7237 7238 tcg_op1 = read_fp_dreg(s, rn); 7239 tcg_op2 = read_fp_dreg(s, rm); 7240 tcg_op3 = read_fp_dreg(s, ra); 7241 7242 /* These are fused multiply-add, and must be done as one 7243 * floating point operation with no rounding between the 7244 * multiplication and addition steps. 7245 * NB that doing the negations here as separate steps is 7246 * correct : an input NaN should come out with its sign bit 7247 * flipped if it is a negated-input. 7248 */ 7249 if (o1 == true) { 7250 gen_vfp_negd(tcg_op3, tcg_op3); 7251 } 7252 7253 if (o0 != o1) { 7254 gen_vfp_negd(tcg_op1, tcg_op1); 7255 } 7256 7257 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7258 7259 write_fp_dreg(s, rd, tcg_res); 7260 } 7261 7262 /* Floating-point data-processing (3 source) - half precision */ 7263 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 7264 int rd, int rn, int rm, int ra) 7265 { 7266 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7267 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7268 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 7269 7270 tcg_op1 = read_fp_hreg(s, rn); 7271 tcg_op2 = read_fp_hreg(s, rm); 7272 tcg_op3 = read_fp_hreg(s, ra); 7273 7274 /* These are fused multiply-add, and must be done as one 7275 * floating point operation with no rounding between the 7276 * multiplication and addition steps. 7277 * NB that doing the negations here as separate steps is 7278 * correct : an input NaN should come out with its sign bit 7279 * flipped if it is a negated-input. 7280 */ 7281 if (o1 == true) { 7282 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 7283 } 7284 7285 if (o0 != o1) { 7286 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 7287 } 7288 7289 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7290 7291 write_fp_sreg(s, rd, tcg_res); 7292 } 7293 7294 /* Floating point data-processing (3 source) 7295 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 7296 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7297 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 7298 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7299 */ 7300 static void disas_fp_3src(DisasContext *s, uint32_t insn) 7301 { 7302 int mos = extract32(insn, 29, 3); 7303 int type = extract32(insn, 22, 2); 7304 int rd = extract32(insn, 0, 5); 7305 int rn = extract32(insn, 5, 5); 7306 int ra = extract32(insn, 10, 5); 7307 int rm = extract32(insn, 16, 5); 7308 bool o0 = extract32(insn, 15, 1); 7309 bool o1 = extract32(insn, 21, 1); 7310 7311 if (mos) { 7312 unallocated_encoding(s); 7313 return; 7314 } 7315 7316 switch (type) { 7317 case 0: 7318 if (!fp_access_check(s)) { 7319 return; 7320 } 7321 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 7322 break; 7323 case 1: 7324 if (!fp_access_check(s)) { 7325 return; 7326 } 7327 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 7328 break; 7329 case 3: 7330 if (!dc_isar_feature(aa64_fp16, s)) { 7331 unallocated_encoding(s); 7332 return; 7333 } 7334 if (!fp_access_check(s)) { 7335 return; 7336 } 7337 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 7338 break; 7339 default: 7340 unallocated_encoding(s); 7341 } 7342 } 7343 7344 /* Floating point immediate 7345 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 7346 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7347 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 7348 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7349 */ 7350 static void disas_fp_imm(DisasContext *s, uint32_t insn) 7351 { 7352 int rd = extract32(insn, 0, 5); 7353 int imm5 = extract32(insn, 5, 5); 7354 int imm8 = extract32(insn, 13, 8); 7355 int type = extract32(insn, 22, 2); 7356 int mos = extract32(insn, 29, 3); 7357 uint64_t imm; 7358 MemOp sz; 7359 7360 if (mos || imm5) { 7361 unallocated_encoding(s); 7362 return; 7363 } 7364 7365 switch (type) { 7366 case 0: 7367 sz = MO_32; 7368 break; 7369 case 1: 7370 sz = MO_64; 7371 break; 7372 case 3: 7373 sz = MO_16; 7374 if (dc_isar_feature(aa64_fp16, s)) { 7375 break; 7376 } 7377 /* fallthru */ 7378 default: 7379 unallocated_encoding(s); 7380 return; 7381 } 7382 7383 if (!fp_access_check(s)) { 7384 return; 7385 } 7386 7387 imm = vfp_expand_imm(sz, imm8); 7388 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 7389 } 7390 7391 /* Handle floating point <=> fixed point conversions. Note that we can 7392 * also deal with fp <=> integer conversions as a special case (scale == 64) 7393 * OPTME: consider handling that special case specially or at least skipping 7394 * the call to scalbn in the helpers for zero shifts. 7395 */ 7396 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 7397 bool itof, int rmode, int scale, int sf, int type) 7398 { 7399 bool is_signed = !(opcode & 1); 7400 TCGv_ptr tcg_fpstatus; 7401 TCGv_i32 tcg_shift, tcg_single; 7402 TCGv_i64 tcg_double; 7403 7404 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 7405 7406 tcg_shift = tcg_constant_i32(64 - scale); 7407 7408 if (itof) { 7409 TCGv_i64 tcg_int = cpu_reg(s, rn); 7410 if (!sf) { 7411 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 7412 7413 if (is_signed) { 7414 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 7415 } else { 7416 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 7417 } 7418 7419 tcg_int = tcg_extend; 7420 } 7421 7422 switch (type) { 7423 case 1: /* float64 */ 7424 tcg_double = tcg_temp_new_i64(); 7425 if (is_signed) { 7426 gen_helper_vfp_sqtod(tcg_double, tcg_int, 7427 tcg_shift, tcg_fpstatus); 7428 } else { 7429 gen_helper_vfp_uqtod(tcg_double, tcg_int, 7430 tcg_shift, tcg_fpstatus); 7431 } 7432 write_fp_dreg(s, rd, tcg_double); 7433 break; 7434 7435 case 0: /* float32 */ 7436 tcg_single = tcg_temp_new_i32(); 7437 if (is_signed) { 7438 gen_helper_vfp_sqtos(tcg_single, tcg_int, 7439 tcg_shift, tcg_fpstatus); 7440 } else { 7441 gen_helper_vfp_uqtos(tcg_single, tcg_int, 7442 tcg_shift, tcg_fpstatus); 7443 } 7444 write_fp_sreg(s, rd, tcg_single); 7445 break; 7446 7447 case 3: /* float16 */ 7448 tcg_single = tcg_temp_new_i32(); 7449 if (is_signed) { 7450 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 7451 tcg_shift, tcg_fpstatus); 7452 } else { 7453 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 7454 tcg_shift, tcg_fpstatus); 7455 } 7456 write_fp_sreg(s, rd, tcg_single); 7457 break; 7458 7459 default: 7460 g_assert_not_reached(); 7461 } 7462 } else { 7463 TCGv_i64 tcg_int = cpu_reg(s, rd); 7464 TCGv_i32 tcg_rmode; 7465 7466 if (extract32(opcode, 2, 1)) { 7467 /* There are too many rounding modes to all fit into rmode, 7468 * so FCVTA[US] is a special case. 7469 */ 7470 rmode = FPROUNDING_TIEAWAY; 7471 } 7472 7473 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 7474 7475 switch (type) { 7476 case 1: /* float64 */ 7477 tcg_double = read_fp_dreg(s, rn); 7478 if (is_signed) { 7479 if (!sf) { 7480 gen_helper_vfp_tosld(tcg_int, tcg_double, 7481 tcg_shift, tcg_fpstatus); 7482 } else { 7483 gen_helper_vfp_tosqd(tcg_int, tcg_double, 7484 tcg_shift, tcg_fpstatus); 7485 } 7486 } else { 7487 if (!sf) { 7488 gen_helper_vfp_tould(tcg_int, tcg_double, 7489 tcg_shift, tcg_fpstatus); 7490 } else { 7491 gen_helper_vfp_touqd(tcg_int, tcg_double, 7492 tcg_shift, tcg_fpstatus); 7493 } 7494 } 7495 if (!sf) { 7496 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7497 } 7498 break; 7499 7500 case 0: /* float32 */ 7501 tcg_single = read_fp_sreg(s, rn); 7502 if (sf) { 7503 if (is_signed) { 7504 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7505 tcg_shift, tcg_fpstatus); 7506 } else { 7507 gen_helper_vfp_touqs(tcg_int, tcg_single, 7508 tcg_shift, tcg_fpstatus); 7509 } 7510 } else { 7511 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7512 if (is_signed) { 7513 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7514 tcg_shift, tcg_fpstatus); 7515 } else { 7516 gen_helper_vfp_touls(tcg_dest, tcg_single, 7517 tcg_shift, tcg_fpstatus); 7518 } 7519 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7520 } 7521 break; 7522 7523 case 3: /* float16 */ 7524 tcg_single = read_fp_sreg(s, rn); 7525 if (sf) { 7526 if (is_signed) { 7527 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7528 tcg_shift, tcg_fpstatus); 7529 } else { 7530 gen_helper_vfp_touqh(tcg_int, tcg_single, 7531 tcg_shift, tcg_fpstatus); 7532 } 7533 } else { 7534 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7535 if (is_signed) { 7536 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7537 tcg_shift, tcg_fpstatus); 7538 } else { 7539 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7540 tcg_shift, tcg_fpstatus); 7541 } 7542 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7543 } 7544 break; 7545 7546 default: 7547 g_assert_not_reached(); 7548 } 7549 7550 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7551 } 7552 } 7553 7554 /* Floating point <-> fixed point conversions 7555 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7556 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7557 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7558 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7559 */ 7560 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7561 { 7562 int rd = extract32(insn, 0, 5); 7563 int rn = extract32(insn, 5, 5); 7564 int scale = extract32(insn, 10, 6); 7565 int opcode = extract32(insn, 16, 3); 7566 int rmode = extract32(insn, 19, 2); 7567 int type = extract32(insn, 22, 2); 7568 bool sbit = extract32(insn, 29, 1); 7569 bool sf = extract32(insn, 31, 1); 7570 bool itof; 7571 7572 if (sbit || (!sf && scale < 32)) { 7573 unallocated_encoding(s); 7574 return; 7575 } 7576 7577 switch (type) { 7578 case 0: /* float32 */ 7579 case 1: /* float64 */ 7580 break; 7581 case 3: /* float16 */ 7582 if (dc_isar_feature(aa64_fp16, s)) { 7583 break; 7584 } 7585 /* fallthru */ 7586 default: 7587 unallocated_encoding(s); 7588 return; 7589 } 7590 7591 switch ((rmode << 3) | opcode) { 7592 case 0x2: /* SCVTF */ 7593 case 0x3: /* UCVTF */ 7594 itof = true; 7595 break; 7596 case 0x18: /* FCVTZS */ 7597 case 0x19: /* FCVTZU */ 7598 itof = false; 7599 break; 7600 default: 7601 unallocated_encoding(s); 7602 return; 7603 } 7604 7605 if (!fp_access_check(s)) { 7606 return; 7607 } 7608 7609 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7610 } 7611 7612 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7613 { 7614 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7615 * without conversion. 7616 */ 7617 7618 if (itof) { 7619 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7620 TCGv_i64 tmp; 7621 7622 switch (type) { 7623 case 0: 7624 /* 32 bit */ 7625 tmp = tcg_temp_new_i64(); 7626 tcg_gen_ext32u_i64(tmp, tcg_rn); 7627 write_fp_dreg(s, rd, tmp); 7628 break; 7629 case 1: 7630 /* 64 bit */ 7631 write_fp_dreg(s, rd, tcg_rn); 7632 break; 7633 case 2: 7634 /* 64 bit to top half. */ 7635 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 7636 clear_vec_high(s, true, rd); 7637 break; 7638 case 3: 7639 /* 16 bit */ 7640 tmp = tcg_temp_new_i64(); 7641 tcg_gen_ext16u_i64(tmp, tcg_rn); 7642 write_fp_dreg(s, rd, tmp); 7643 break; 7644 default: 7645 g_assert_not_reached(); 7646 } 7647 } else { 7648 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7649 7650 switch (type) { 7651 case 0: 7652 /* 32 bit */ 7653 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 7654 break; 7655 case 1: 7656 /* 64 bit */ 7657 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 7658 break; 7659 case 2: 7660 /* 64 bits from top half */ 7661 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7662 break; 7663 case 3: 7664 /* 16 bit */ 7665 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7666 break; 7667 default: 7668 g_assert_not_reached(); 7669 } 7670 } 7671 } 7672 7673 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7674 { 7675 TCGv_i64 t = read_fp_dreg(s, rn); 7676 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7677 7678 gen_helper_fjcvtzs(t, t, fpstatus); 7679 7680 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7681 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7682 tcg_gen_movi_i32(cpu_CF, 0); 7683 tcg_gen_movi_i32(cpu_NF, 0); 7684 tcg_gen_movi_i32(cpu_VF, 0); 7685 } 7686 7687 /* Floating point <-> integer conversions 7688 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7689 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7690 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7691 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7692 */ 7693 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7694 { 7695 int rd = extract32(insn, 0, 5); 7696 int rn = extract32(insn, 5, 5); 7697 int opcode = extract32(insn, 16, 3); 7698 int rmode = extract32(insn, 19, 2); 7699 int type = extract32(insn, 22, 2); 7700 bool sbit = extract32(insn, 29, 1); 7701 bool sf = extract32(insn, 31, 1); 7702 bool itof = false; 7703 7704 if (sbit) { 7705 goto do_unallocated; 7706 } 7707 7708 switch (opcode) { 7709 case 2: /* SCVTF */ 7710 case 3: /* UCVTF */ 7711 itof = true; 7712 /* fallthru */ 7713 case 4: /* FCVTAS */ 7714 case 5: /* FCVTAU */ 7715 if (rmode != 0) { 7716 goto do_unallocated; 7717 } 7718 /* fallthru */ 7719 case 0: /* FCVT[NPMZ]S */ 7720 case 1: /* FCVT[NPMZ]U */ 7721 switch (type) { 7722 case 0: /* float32 */ 7723 case 1: /* float64 */ 7724 break; 7725 case 3: /* float16 */ 7726 if (!dc_isar_feature(aa64_fp16, s)) { 7727 goto do_unallocated; 7728 } 7729 break; 7730 default: 7731 goto do_unallocated; 7732 } 7733 if (!fp_access_check(s)) { 7734 return; 7735 } 7736 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7737 break; 7738 7739 default: 7740 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7741 case 0b01100110: /* FMOV half <-> 32-bit int */ 7742 case 0b01100111: 7743 case 0b11100110: /* FMOV half <-> 64-bit int */ 7744 case 0b11100111: 7745 if (!dc_isar_feature(aa64_fp16, s)) { 7746 goto do_unallocated; 7747 } 7748 /* fallthru */ 7749 case 0b00000110: /* FMOV 32-bit */ 7750 case 0b00000111: 7751 case 0b10100110: /* FMOV 64-bit */ 7752 case 0b10100111: 7753 case 0b11001110: /* FMOV top half of 128-bit */ 7754 case 0b11001111: 7755 if (!fp_access_check(s)) { 7756 return; 7757 } 7758 itof = opcode & 1; 7759 handle_fmov(s, rd, rn, type, itof); 7760 break; 7761 7762 case 0b00111110: /* FJCVTZS */ 7763 if (!dc_isar_feature(aa64_jscvt, s)) { 7764 goto do_unallocated; 7765 } else if (fp_access_check(s)) { 7766 handle_fjcvtzs(s, rd, rn); 7767 } 7768 break; 7769 7770 default: 7771 do_unallocated: 7772 unallocated_encoding(s); 7773 return; 7774 } 7775 break; 7776 } 7777 } 7778 7779 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7780 * 31 30 29 28 25 24 0 7781 * +---+---+---+---------+-----------------------------+ 7782 * | | 0 | | 1 1 1 1 | | 7783 * +---+---+---+---------+-----------------------------+ 7784 */ 7785 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7786 { 7787 if (extract32(insn, 24, 1)) { 7788 /* Floating point data-processing (3 source) */ 7789 disas_fp_3src(s, insn); 7790 } else if (extract32(insn, 21, 1) == 0) { 7791 /* Floating point to fixed point conversions */ 7792 disas_fp_fixed_conv(s, insn); 7793 } else { 7794 switch (extract32(insn, 10, 2)) { 7795 case 1: 7796 /* Floating point conditional compare */ 7797 disas_fp_ccomp(s, insn); 7798 break; 7799 case 2: 7800 /* Floating point data-processing (2 source) */ 7801 unallocated_encoding(s); /* in decodetree */ 7802 break; 7803 case 3: 7804 /* Floating point conditional select */ 7805 disas_fp_csel(s, insn); 7806 break; 7807 case 0: 7808 switch (ctz32(extract32(insn, 12, 4))) { 7809 case 0: /* [15:12] == xxx1 */ 7810 /* Floating point immediate */ 7811 disas_fp_imm(s, insn); 7812 break; 7813 case 1: /* [15:12] == xx10 */ 7814 /* Floating point compare */ 7815 disas_fp_compare(s, insn); 7816 break; 7817 case 2: /* [15:12] == x100 */ 7818 /* Floating point data-processing (1 source) */ 7819 disas_fp_1src(s, insn); 7820 break; 7821 case 3: /* [15:12] == 1000 */ 7822 unallocated_encoding(s); 7823 break; 7824 default: /* [15:12] == 0000 */ 7825 /* Floating point <-> integer conversions */ 7826 disas_fp_int_conv(s, insn); 7827 break; 7828 } 7829 break; 7830 } 7831 } 7832 } 7833 7834 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7835 int pos) 7836 { 7837 /* Extract 64 bits from the middle of two concatenated 64 bit 7838 * vector register slices left:right. The extracted bits start 7839 * at 'pos' bits into the right (least significant) side. 7840 * We return the result in tcg_right, and guarantee not to 7841 * trash tcg_left. 7842 */ 7843 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7844 assert(pos > 0 && pos < 64); 7845 7846 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7847 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7848 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7849 } 7850 7851 /* EXT 7852 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7853 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7854 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7855 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7856 */ 7857 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7858 { 7859 int is_q = extract32(insn, 30, 1); 7860 int op2 = extract32(insn, 22, 2); 7861 int imm4 = extract32(insn, 11, 4); 7862 int rm = extract32(insn, 16, 5); 7863 int rn = extract32(insn, 5, 5); 7864 int rd = extract32(insn, 0, 5); 7865 int pos = imm4 << 3; 7866 TCGv_i64 tcg_resl, tcg_resh; 7867 7868 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7869 unallocated_encoding(s); 7870 return; 7871 } 7872 7873 if (!fp_access_check(s)) { 7874 return; 7875 } 7876 7877 tcg_resh = tcg_temp_new_i64(); 7878 tcg_resl = tcg_temp_new_i64(); 7879 7880 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7881 * either extracting 128 bits from a 128:128 concatenation, or 7882 * extracting 64 bits from a 64:64 concatenation. 7883 */ 7884 if (!is_q) { 7885 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7886 if (pos != 0) { 7887 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7888 do_ext64(s, tcg_resh, tcg_resl, pos); 7889 } 7890 } else { 7891 TCGv_i64 tcg_hh; 7892 typedef struct { 7893 int reg; 7894 int elt; 7895 } EltPosns; 7896 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7897 EltPosns *elt = eltposns; 7898 7899 if (pos >= 64) { 7900 elt++; 7901 pos -= 64; 7902 } 7903 7904 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7905 elt++; 7906 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7907 elt++; 7908 if (pos != 0) { 7909 do_ext64(s, tcg_resh, tcg_resl, pos); 7910 tcg_hh = tcg_temp_new_i64(); 7911 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7912 do_ext64(s, tcg_hh, tcg_resh, pos); 7913 } 7914 } 7915 7916 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7917 if (is_q) { 7918 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7919 } 7920 clear_vec_high(s, is_q, rd); 7921 } 7922 7923 /* TBL/TBX 7924 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7925 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7926 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7927 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7928 */ 7929 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7930 { 7931 int op2 = extract32(insn, 22, 2); 7932 int is_q = extract32(insn, 30, 1); 7933 int rm = extract32(insn, 16, 5); 7934 int rn = extract32(insn, 5, 5); 7935 int rd = extract32(insn, 0, 5); 7936 int is_tbx = extract32(insn, 12, 1); 7937 int len = (extract32(insn, 13, 2) + 1) * 16; 7938 7939 if (op2 != 0) { 7940 unallocated_encoding(s); 7941 return; 7942 } 7943 7944 if (!fp_access_check(s)) { 7945 return; 7946 } 7947 7948 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7949 vec_full_reg_offset(s, rm), tcg_env, 7950 is_q ? 16 : 8, vec_full_reg_size(s), 7951 (len << 6) | (is_tbx << 5) | rn, 7952 gen_helper_simd_tblx); 7953 } 7954 7955 /* ZIP/UZP/TRN 7956 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7957 * +---+---+-------------+------+---+------+---+------------------+------+ 7958 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7959 * +---+---+-------------+------+---+------+---+------------------+------+ 7960 */ 7961 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7962 { 7963 int rd = extract32(insn, 0, 5); 7964 int rn = extract32(insn, 5, 5); 7965 int rm = extract32(insn, 16, 5); 7966 int size = extract32(insn, 22, 2); 7967 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7968 * bit 2 indicates 1 vs 2 variant of the insn. 7969 */ 7970 int opcode = extract32(insn, 12, 2); 7971 bool part = extract32(insn, 14, 1); 7972 bool is_q = extract32(insn, 30, 1); 7973 int esize = 8 << size; 7974 int i; 7975 int datasize = is_q ? 128 : 64; 7976 int elements = datasize / esize; 7977 TCGv_i64 tcg_res[2], tcg_ele; 7978 7979 if (opcode == 0 || (size == 3 && !is_q)) { 7980 unallocated_encoding(s); 7981 return; 7982 } 7983 7984 if (!fp_access_check(s)) { 7985 return; 7986 } 7987 7988 tcg_res[0] = tcg_temp_new_i64(); 7989 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7990 tcg_ele = tcg_temp_new_i64(); 7991 7992 for (i = 0; i < elements; i++) { 7993 int o, w; 7994 7995 switch (opcode) { 7996 case 1: /* UZP1/2 */ 7997 { 7998 int midpoint = elements / 2; 7999 if (i < midpoint) { 8000 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 8001 } else { 8002 read_vec_element(s, tcg_ele, rm, 8003 2 * (i - midpoint) + part, size); 8004 } 8005 break; 8006 } 8007 case 2: /* TRN1/2 */ 8008 if (i & 1) { 8009 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 8010 } else { 8011 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 8012 } 8013 break; 8014 case 3: /* ZIP1/2 */ 8015 { 8016 int base = part * elements / 2; 8017 if (i & 1) { 8018 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 8019 } else { 8020 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 8021 } 8022 break; 8023 } 8024 default: 8025 g_assert_not_reached(); 8026 } 8027 8028 w = (i * esize) / 64; 8029 o = (i * esize) % 64; 8030 if (o == 0) { 8031 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 8032 } else { 8033 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 8034 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 8035 } 8036 } 8037 8038 for (i = 0; i <= is_q; ++i) { 8039 write_vec_element(s, tcg_res[i], rd, i, MO_64); 8040 } 8041 clear_vec_high(s, is_q, rd); 8042 } 8043 8044 /* 8045 * do_reduction_op helper 8046 * 8047 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 8048 * important for correct NaN propagation that we do these 8049 * operations in exactly the order specified by the pseudocode. 8050 * 8051 * This is a recursive function, TCG temps should be freed by the 8052 * calling function once it is done with the values. 8053 */ 8054 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 8055 int esize, int size, int vmap, TCGv_ptr fpst) 8056 { 8057 if (esize == size) { 8058 int element; 8059 MemOp msize = esize == 16 ? MO_16 : MO_32; 8060 TCGv_i32 tcg_elem; 8061 8062 /* We should have one register left here */ 8063 assert(ctpop8(vmap) == 1); 8064 element = ctz32(vmap); 8065 assert(element < 8); 8066 8067 tcg_elem = tcg_temp_new_i32(); 8068 read_vec_element_i32(s, tcg_elem, rn, element, msize); 8069 return tcg_elem; 8070 } else { 8071 int bits = size / 2; 8072 int shift = ctpop8(vmap) / 2; 8073 int vmap_lo = (vmap >> shift) & vmap; 8074 int vmap_hi = (vmap & ~vmap_lo); 8075 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 8076 8077 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 8078 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 8079 tcg_res = tcg_temp_new_i32(); 8080 8081 switch (fpopcode) { 8082 case 0x0c: /* fmaxnmv half-precision */ 8083 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8084 break; 8085 case 0x0f: /* fmaxv half-precision */ 8086 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 8087 break; 8088 case 0x1c: /* fminnmv half-precision */ 8089 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8090 break; 8091 case 0x1f: /* fminv half-precision */ 8092 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 8093 break; 8094 case 0x2c: /* fmaxnmv */ 8095 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 8096 break; 8097 case 0x2f: /* fmaxv */ 8098 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 8099 break; 8100 case 0x3c: /* fminnmv */ 8101 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 8102 break; 8103 case 0x3f: /* fminv */ 8104 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 8105 break; 8106 default: 8107 g_assert_not_reached(); 8108 } 8109 return tcg_res; 8110 } 8111 } 8112 8113 /* AdvSIMD across lanes 8114 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8115 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8116 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8117 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8118 */ 8119 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 8120 { 8121 int rd = extract32(insn, 0, 5); 8122 int rn = extract32(insn, 5, 5); 8123 int size = extract32(insn, 22, 2); 8124 int opcode = extract32(insn, 12, 5); 8125 bool is_q = extract32(insn, 30, 1); 8126 bool is_u = extract32(insn, 29, 1); 8127 bool is_fp = false; 8128 bool is_min = false; 8129 int esize; 8130 int elements; 8131 int i; 8132 TCGv_i64 tcg_res, tcg_elt; 8133 8134 switch (opcode) { 8135 case 0x1b: /* ADDV */ 8136 if (is_u) { 8137 unallocated_encoding(s); 8138 return; 8139 } 8140 /* fall through */ 8141 case 0x3: /* SADDLV, UADDLV */ 8142 case 0xa: /* SMAXV, UMAXV */ 8143 case 0x1a: /* SMINV, UMINV */ 8144 if (size == 3 || (size == 2 && !is_q)) { 8145 unallocated_encoding(s); 8146 return; 8147 } 8148 break; 8149 case 0xc: /* FMAXNMV, FMINNMV */ 8150 case 0xf: /* FMAXV, FMINV */ 8151 /* Bit 1 of size field encodes min vs max and the actual size 8152 * depends on the encoding of the U bit. If not set (and FP16 8153 * enabled) then we do half-precision float instead of single 8154 * precision. 8155 */ 8156 is_min = extract32(size, 1, 1); 8157 is_fp = true; 8158 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 8159 size = 1; 8160 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 8161 unallocated_encoding(s); 8162 return; 8163 } else { 8164 size = 2; 8165 } 8166 break; 8167 default: 8168 unallocated_encoding(s); 8169 return; 8170 } 8171 8172 if (!fp_access_check(s)) { 8173 return; 8174 } 8175 8176 esize = 8 << size; 8177 elements = (is_q ? 128 : 64) / esize; 8178 8179 tcg_res = tcg_temp_new_i64(); 8180 tcg_elt = tcg_temp_new_i64(); 8181 8182 /* These instructions operate across all lanes of a vector 8183 * to produce a single result. We can guarantee that a 64 8184 * bit intermediate is sufficient: 8185 * + for [US]ADDLV the maximum element size is 32 bits, and 8186 * the result type is 64 bits 8187 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 8188 * same as the element size, which is 32 bits at most 8189 * For the integer operations we can choose to work at 64 8190 * or 32 bits and truncate at the end; for simplicity 8191 * we use 64 bits always. The floating point 8192 * ops do require 32 bit intermediates, though. 8193 */ 8194 if (!is_fp) { 8195 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 8196 8197 for (i = 1; i < elements; i++) { 8198 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 8199 8200 switch (opcode) { 8201 case 0x03: /* SADDLV / UADDLV */ 8202 case 0x1b: /* ADDV */ 8203 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 8204 break; 8205 case 0x0a: /* SMAXV / UMAXV */ 8206 if (is_u) { 8207 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 8208 } else { 8209 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 8210 } 8211 break; 8212 case 0x1a: /* SMINV / UMINV */ 8213 if (is_u) { 8214 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 8215 } else { 8216 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 8217 } 8218 break; 8219 default: 8220 g_assert_not_reached(); 8221 } 8222 8223 } 8224 } else { 8225 /* Floating point vector reduction ops which work across 32 8226 * bit (single) or 16 bit (half-precision) intermediates. 8227 * Note that correct NaN propagation requires that we do these 8228 * operations in exactly the order specified by the pseudocode. 8229 */ 8230 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8231 int fpopcode = opcode | is_min << 4 | is_u << 5; 8232 int vmap = (1 << elements) - 1; 8233 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 8234 (is_q ? 128 : 64), vmap, fpst); 8235 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 8236 } 8237 8238 /* Now truncate the result to the width required for the final output */ 8239 if (opcode == 0x03) { 8240 /* SADDLV, UADDLV: result is 2*esize */ 8241 size++; 8242 } 8243 8244 switch (size) { 8245 case 0: 8246 tcg_gen_ext8u_i64(tcg_res, tcg_res); 8247 break; 8248 case 1: 8249 tcg_gen_ext16u_i64(tcg_res, tcg_res); 8250 break; 8251 case 2: 8252 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8253 break; 8254 case 3: 8255 break; 8256 default: 8257 g_assert_not_reached(); 8258 } 8259 8260 write_fp_dreg(s, rd, tcg_res); 8261 } 8262 8263 /* AdvSIMD modified immediate 8264 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8265 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8266 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8267 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8268 * 8269 * There are a number of operations that can be carried out here: 8270 * MOVI - move (shifted) imm into register 8271 * MVNI - move inverted (shifted) imm into register 8272 * ORR - bitwise OR of (shifted) imm with register 8273 * BIC - bitwise clear of (shifted) imm with register 8274 * With ARMv8.2 we also have: 8275 * FMOV half-precision 8276 */ 8277 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8278 { 8279 int rd = extract32(insn, 0, 5); 8280 int cmode = extract32(insn, 12, 4); 8281 int o2 = extract32(insn, 11, 1); 8282 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8283 bool is_neg = extract32(insn, 29, 1); 8284 bool is_q = extract32(insn, 30, 1); 8285 uint64_t imm = 0; 8286 8287 if (o2) { 8288 if (cmode != 0xf || is_neg) { 8289 unallocated_encoding(s); 8290 return; 8291 } 8292 /* FMOV (vector, immediate) - half-precision */ 8293 if (!dc_isar_feature(aa64_fp16, s)) { 8294 unallocated_encoding(s); 8295 return; 8296 } 8297 imm = vfp_expand_imm(MO_16, abcdefgh); 8298 /* now duplicate across the lanes */ 8299 imm = dup_const(MO_16, imm); 8300 } else { 8301 if (cmode == 0xf && is_neg && !is_q) { 8302 unallocated_encoding(s); 8303 return; 8304 } 8305 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8306 } 8307 8308 if (!fp_access_check(s)) { 8309 return; 8310 } 8311 8312 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8313 /* MOVI or MVNI, with MVNI negation handled above. */ 8314 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8315 vec_full_reg_size(s), imm); 8316 } else { 8317 /* ORR or BIC, with BIC negation to AND handled above. */ 8318 if (is_neg) { 8319 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8320 } else { 8321 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8322 } 8323 } 8324 } 8325 8326 /* AdvSIMD scalar pairwise 8327 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8328 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8329 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8330 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8331 */ 8332 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8333 { 8334 int u = extract32(insn, 29, 1); 8335 int size = extract32(insn, 22, 2); 8336 int opcode = extract32(insn, 12, 5); 8337 int rn = extract32(insn, 5, 5); 8338 int rd = extract32(insn, 0, 5); 8339 TCGv_ptr fpst; 8340 8341 /* For some ops (the FP ones), size[1] is part of the encoding. 8342 * For ADDP strictly it is not but size[1] is always 1 for valid 8343 * encodings. 8344 */ 8345 opcode |= (extract32(size, 1, 1) << 5); 8346 8347 switch (opcode) { 8348 case 0x3b: /* ADDP */ 8349 if (u || size != 3) { 8350 unallocated_encoding(s); 8351 return; 8352 } 8353 if (!fp_access_check(s)) { 8354 return; 8355 } 8356 8357 fpst = NULL; 8358 break; 8359 case 0xc: /* FMAXNMP */ 8360 case 0xd: /* FADDP */ 8361 case 0xf: /* FMAXP */ 8362 case 0x2c: /* FMINNMP */ 8363 case 0x2f: /* FMINP */ 8364 /* FP op, size[0] is 32 or 64 bit*/ 8365 if (!u) { 8366 if ((size & 1) || !dc_isar_feature(aa64_fp16, s)) { 8367 unallocated_encoding(s); 8368 return; 8369 } else { 8370 size = MO_16; 8371 } 8372 } else { 8373 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8374 } 8375 8376 if (!fp_access_check(s)) { 8377 return; 8378 } 8379 8380 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8381 break; 8382 default: 8383 unallocated_encoding(s); 8384 return; 8385 } 8386 8387 if (size == MO_64) { 8388 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8389 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8390 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8391 8392 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8393 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8394 8395 switch (opcode) { 8396 case 0x3b: /* ADDP */ 8397 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8398 break; 8399 case 0xc: /* FMAXNMP */ 8400 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8401 break; 8402 case 0xd: /* FADDP */ 8403 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8404 break; 8405 case 0xf: /* FMAXP */ 8406 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8407 break; 8408 case 0x2c: /* FMINNMP */ 8409 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8410 break; 8411 case 0x2f: /* FMINP */ 8412 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8413 break; 8414 default: 8415 g_assert_not_reached(); 8416 } 8417 8418 write_fp_dreg(s, rd, tcg_res); 8419 } else { 8420 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8421 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8422 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8423 8424 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8425 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8426 8427 if (size == MO_16) { 8428 switch (opcode) { 8429 case 0xc: /* FMAXNMP */ 8430 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8431 break; 8432 case 0xd: /* FADDP */ 8433 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8434 break; 8435 case 0xf: /* FMAXP */ 8436 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8437 break; 8438 case 0x2c: /* FMINNMP */ 8439 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8440 break; 8441 case 0x2f: /* FMINP */ 8442 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8443 break; 8444 default: 8445 g_assert_not_reached(); 8446 } 8447 } else { 8448 switch (opcode) { 8449 case 0xc: /* FMAXNMP */ 8450 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8451 break; 8452 case 0xd: /* FADDP */ 8453 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8454 break; 8455 case 0xf: /* FMAXP */ 8456 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8457 break; 8458 case 0x2c: /* FMINNMP */ 8459 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8460 break; 8461 case 0x2f: /* FMINP */ 8462 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8463 break; 8464 default: 8465 g_assert_not_reached(); 8466 } 8467 } 8468 8469 write_fp_sreg(s, rd, tcg_res); 8470 } 8471 } 8472 8473 /* 8474 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8475 * 8476 * This code is handles the common shifting code and is used by both 8477 * the vector and scalar code. 8478 */ 8479 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8480 TCGv_i64 tcg_rnd, bool accumulate, 8481 bool is_u, int size, int shift) 8482 { 8483 bool extended_result = false; 8484 bool round = tcg_rnd != NULL; 8485 int ext_lshift = 0; 8486 TCGv_i64 tcg_src_hi; 8487 8488 if (round && size == 3) { 8489 extended_result = true; 8490 ext_lshift = 64 - shift; 8491 tcg_src_hi = tcg_temp_new_i64(); 8492 } else if (shift == 64) { 8493 if (!accumulate && is_u) { 8494 /* result is zero */ 8495 tcg_gen_movi_i64(tcg_res, 0); 8496 return; 8497 } 8498 } 8499 8500 /* Deal with the rounding step */ 8501 if (round) { 8502 if (extended_result) { 8503 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8504 if (!is_u) { 8505 /* take care of sign extending tcg_res */ 8506 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8507 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8508 tcg_src, tcg_src_hi, 8509 tcg_rnd, tcg_zero); 8510 } else { 8511 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8512 tcg_src, tcg_zero, 8513 tcg_rnd, tcg_zero); 8514 } 8515 } else { 8516 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8517 } 8518 } 8519 8520 /* Now do the shift right */ 8521 if (round && extended_result) { 8522 /* extended case, >64 bit precision required */ 8523 if (ext_lshift == 0) { 8524 /* special case, only high bits matter */ 8525 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8526 } else { 8527 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8528 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8529 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8530 } 8531 } else { 8532 if (is_u) { 8533 if (shift == 64) { 8534 /* essentially shifting in 64 zeros */ 8535 tcg_gen_movi_i64(tcg_src, 0); 8536 } else { 8537 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8538 } 8539 } else { 8540 if (shift == 64) { 8541 /* effectively extending the sign-bit */ 8542 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8543 } else { 8544 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8545 } 8546 } 8547 } 8548 8549 if (accumulate) { 8550 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8551 } else { 8552 tcg_gen_mov_i64(tcg_res, tcg_src); 8553 } 8554 } 8555 8556 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8557 static void handle_scalar_simd_shri(DisasContext *s, 8558 bool is_u, int immh, int immb, 8559 int opcode, int rn, int rd) 8560 { 8561 const int size = 3; 8562 int immhb = immh << 3 | immb; 8563 int shift = 2 * (8 << size) - immhb; 8564 bool accumulate = false; 8565 bool round = false; 8566 bool insert = false; 8567 TCGv_i64 tcg_rn; 8568 TCGv_i64 tcg_rd; 8569 TCGv_i64 tcg_round; 8570 8571 if (!extract32(immh, 3, 1)) { 8572 unallocated_encoding(s); 8573 return; 8574 } 8575 8576 if (!fp_access_check(s)) { 8577 return; 8578 } 8579 8580 switch (opcode) { 8581 case 0x02: /* SSRA / USRA (accumulate) */ 8582 accumulate = true; 8583 break; 8584 case 0x04: /* SRSHR / URSHR (rounding) */ 8585 round = true; 8586 break; 8587 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8588 accumulate = round = true; 8589 break; 8590 case 0x08: /* SRI */ 8591 insert = true; 8592 break; 8593 } 8594 8595 if (round) { 8596 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8597 } else { 8598 tcg_round = NULL; 8599 } 8600 8601 tcg_rn = read_fp_dreg(s, rn); 8602 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8603 8604 if (insert) { 8605 /* shift count same as element size is valid but does nothing; 8606 * special case to avoid potential shift by 64. 8607 */ 8608 int esize = 8 << size; 8609 if (shift != esize) { 8610 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8611 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8612 } 8613 } else { 8614 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8615 accumulate, is_u, size, shift); 8616 } 8617 8618 write_fp_dreg(s, rd, tcg_rd); 8619 } 8620 8621 /* SHL/SLI - Scalar shift left */ 8622 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8623 int immh, int immb, int opcode, 8624 int rn, int rd) 8625 { 8626 int size = 32 - clz32(immh) - 1; 8627 int immhb = immh << 3 | immb; 8628 int shift = immhb - (8 << size); 8629 TCGv_i64 tcg_rn; 8630 TCGv_i64 tcg_rd; 8631 8632 if (!extract32(immh, 3, 1)) { 8633 unallocated_encoding(s); 8634 return; 8635 } 8636 8637 if (!fp_access_check(s)) { 8638 return; 8639 } 8640 8641 tcg_rn = read_fp_dreg(s, rn); 8642 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8643 8644 if (insert) { 8645 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8646 } else { 8647 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8648 } 8649 8650 write_fp_dreg(s, rd, tcg_rd); 8651 } 8652 8653 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8654 * (signed/unsigned) narrowing */ 8655 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8656 bool is_u_shift, bool is_u_narrow, 8657 int immh, int immb, int opcode, 8658 int rn, int rd) 8659 { 8660 int immhb = immh << 3 | immb; 8661 int size = 32 - clz32(immh) - 1; 8662 int esize = 8 << size; 8663 int shift = (2 * esize) - immhb; 8664 int elements = is_scalar ? 1 : (64 / esize); 8665 bool round = extract32(opcode, 0, 1); 8666 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8667 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8668 TCGv_i32 tcg_rd_narrowed; 8669 TCGv_i64 tcg_final; 8670 8671 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8672 { gen_helper_neon_narrow_sat_s8, 8673 gen_helper_neon_unarrow_sat8 }, 8674 { gen_helper_neon_narrow_sat_s16, 8675 gen_helper_neon_unarrow_sat16 }, 8676 { gen_helper_neon_narrow_sat_s32, 8677 gen_helper_neon_unarrow_sat32 }, 8678 { NULL, NULL }, 8679 }; 8680 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8681 gen_helper_neon_narrow_sat_u8, 8682 gen_helper_neon_narrow_sat_u16, 8683 gen_helper_neon_narrow_sat_u32, 8684 NULL 8685 }; 8686 NeonGenNarrowEnvFn *narrowfn; 8687 8688 int i; 8689 8690 assert(size < 4); 8691 8692 if (extract32(immh, 3, 1)) { 8693 unallocated_encoding(s); 8694 return; 8695 } 8696 8697 if (!fp_access_check(s)) { 8698 return; 8699 } 8700 8701 if (is_u_shift) { 8702 narrowfn = unsigned_narrow_fns[size]; 8703 } else { 8704 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8705 } 8706 8707 tcg_rn = tcg_temp_new_i64(); 8708 tcg_rd = tcg_temp_new_i64(); 8709 tcg_rd_narrowed = tcg_temp_new_i32(); 8710 tcg_final = tcg_temp_new_i64(); 8711 8712 if (round) { 8713 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8714 } else { 8715 tcg_round = NULL; 8716 } 8717 8718 for (i = 0; i < elements; i++) { 8719 read_vec_element(s, tcg_rn, rn, i, ldop); 8720 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8721 false, is_u_shift, size+1, shift); 8722 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8723 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8724 if (i == 0) { 8725 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8726 } else { 8727 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8728 } 8729 } 8730 8731 if (!is_q) { 8732 write_vec_element(s, tcg_final, rd, 0, MO_64); 8733 } else { 8734 write_vec_element(s, tcg_final, rd, 1, MO_64); 8735 } 8736 clear_vec_high(s, is_q, rd); 8737 } 8738 8739 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8740 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8741 bool src_unsigned, bool dst_unsigned, 8742 int immh, int immb, int rn, int rd) 8743 { 8744 int immhb = immh << 3 | immb; 8745 int size = 32 - clz32(immh) - 1; 8746 int shift = immhb - (8 << size); 8747 int pass; 8748 8749 assert(immh != 0); 8750 assert(!(scalar && is_q)); 8751 8752 if (!scalar) { 8753 if (!is_q && extract32(immh, 3, 1)) { 8754 unallocated_encoding(s); 8755 return; 8756 } 8757 8758 /* Since we use the variable-shift helpers we must 8759 * replicate the shift count into each element of 8760 * the tcg_shift value. 8761 */ 8762 switch (size) { 8763 case 0: 8764 shift |= shift << 8; 8765 /* fall through */ 8766 case 1: 8767 shift |= shift << 16; 8768 break; 8769 case 2: 8770 case 3: 8771 break; 8772 default: 8773 g_assert_not_reached(); 8774 } 8775 } 8776 8777 if (!fp_access_check(s)) { 8778 return; 8779 } 8780 8781 if (size == 3) { 8782 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8783 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8784 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8785 { NULL, gen_helper_neon_qshl_u64 }, 8786 }; 8787 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8788 int maxpass = is_q ? 2 : 1; 8789 8790 for (pass = 0; pass < maxpass; pass++) { 8791 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8792 8793 read_vec_element(s, tcg_op, rn, pass, MO_64); 8794 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8795 write_vec_element(s, tcg_op, rd, pass, MO_64); 8796 } 8797 clear_vec_high(s, is_q, rd); 8798 } else { 8799 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8800 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8801 { 8802 { gen_helper_neon_qshl_s8, 8803 gen_helper_neon_qshl_s16, 8804 gen_helper_neon_qshl_s32 }, 8805 { gen_helper_neon_qshlu_s8, 8806 gen_helper_neon_qshlu_s16, 8807 gen_helper_neon_qshlu_s32 } 8808 }, { 8809 { NULL, NULL, NULL }, 8810 { gen_helper_neon_qshl_u8, 8811 gen_helper_neon_qshl_u16, 8812 gen_helper_neon_qshl_u32 } 8813 } 8814 }; 8815 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8816 MemOp memop = scalar ? size : MO_32; 8817 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8818 8819 for (pass = 0; pass < maxpass; pass++) { 8820 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8821 8822 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8823 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8824 if (scalar) { 8825 switch (size) { 8826 case 0: 8827 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8828 break; 8829 case 1: 8830 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8831 break; 8832 case 2: 8833 break; 8834 default: 8835 g_assert_not_reached(); 8836 } 8837 write_fp_sreg(s, rd, tcg_op); 8838 } else { 8839 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8840 } 8841 } 8842 8843 if (!scalar) { 8844 clear_vec_high(s, is_q, rd); 8845 } 8846 } 8847 } 8848 8849 /* Common vector code for handling integer to FP conversion */ 8850 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8851 int elements, int is_signed, 8852 int fracbits, int size) 8853 { 8854 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8855 TCGv_i32 tcg_shift = NULL; 8856 8857 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8858 int pass; 8859 8860 if (fracbits || size == MO_64) { 8861 tcg_shift = tcg_constant_i32(fracbits); 8862 } 8863 8864 if (size == MO_64) { 8865 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8866 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8867 8868 for (pass = 0; pass < elements; pass++) { 8869 read_vec_element(s, tcg_int64, rn, pass, mop); 8870 8871 if (is_signed) { 8872 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8873 tcg_shift, tcg_fpst); 8874 } else { 8875 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8876 tcg_shift, tcg_fpst); 8877 } 8878 if (elements == 1) { 8879 write_fp_dreg(s, rd, tcg_double); 8880 } else { 8881 write_vec_element(s, tcg_double, rd, pass, MO_64); 8882 } 8883 } 8884 } else { 8885 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8886 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8887 8888 for (pass = 0; pass < elements; pass++) { 8889 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8890 8891 switch (size) { 8892 case MO_32: 8893 if (fracbits) { 8894 if (is_signed) { 8895 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8896 tcg_shift, tcg_fpst); 8897 } else { 8898 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8899 tcg_shift, tcg_fpst); 8900 } 8901 } else { 8902 if (is_signed) { 8903 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8904 } else { 8905 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8906 } 8907 } 8908 break; 8909 case MO_16: 8910 if (fracbits) { 8911 if (is_signed) { 8912 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8913 tcg_shift, tcg_fpst); 8914 } else { 8915 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8916 tcg_shift, tcg_fpst); 8917 } 8918 } else { 8919 if (is_signed) { 8920 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8921 } else { 8922 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8923 } 8924 } 8925 break; 8926 default: 8927 g_assert_not_reached(); 8928 } 8929 8930 if (elements == 1) { 8931 write_fp_sreg(s, rd, tcg_float); 8932 } else { 8933 write_vec_element_i32(s, tcg_float, rd, pass, size); 8934 } 8935 } 8936 } 8937 8938 clear_vec_high(s, elements << size == 16, rd); 8939 } 8940 8941 /* UCVTF/SCVTF - Integer to FP conversion */ 8942 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8943 bool is_q, bool is_u, 8944 int immh, int immb, int opcode, 8945 int rn, int rd) 8946 { 8947 int size, elements, fracbits; 8948 int immhb = immh << 3 | immb; 8949 8950 if (immh & 8) { 8951 size = MO_64; 8952 if (!is_scalar && !is_q) { 8953 unallocated_encoding(s); 8954 return; 8955 } 8956 } else if (immh & 4) { 8957 size = MO_32; 8958 } else if (immh & 2) { 8959 size = MO_16; 8960 if (!dc_isar_feature(aa64_fp16, s)) { 8961 unallocated_encoding(s); 8962 return; 8963 } 8964 } else { 8965 /* immh == 0 would be a failure of the decode logic */ 8966 g_assert(immh == 1); 8967 unallocated_encoding(s); 8968 return; 8969 } 8970 8971 if (is_scalar) { 8972 elements = 1; 8973 } else { 8974 elements = (8 << is_q) >> size; 8975 } 8976 fracbits = (16 << size) - immhb; 8977 8978 if (!fp_access_check(s)) { 8979 return; 8980 } 8981 8982 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8983 } 8984 8985 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8986 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8987 bool is_q, bool is_u, 8988 int immh, int immb, int rn, int rd) 8989 { 8990 int immhb = immh << 3 | immb; 8991 int pass, size, fracbits; 8992 TCGv_ptr tcg_fpstatus; 8993 TCGv_i32 tcg_rmode, tcg_shift; 8994 8995 if (immh & 0x8) { 8996 size = MO_64; 8997 if (!is_scalar && !is_q) { 8998 unallocated_encoding(s); 8999 return; 9000 } 9001 } else if (immh & 0x4) { 9002 size = MO_32; 9003 } else if (immh & 0x2) { 9004 size = MO_16; 9005 if (!dc_isar_feature(aa64_fp16, s)) { 9006 unallocated_encoding(s); 9007 return; 9008 } 9009 } else { 9010 /* Should have split out AdvSIMD modified immediate earlier. */ 9011 assert(immh == 1); 9012 unallocated_encoding(s); 9013 return; 9014 } 9015 9016 if (!fp_access_check(s)) { 9017 return; 9018 } 9019 9020 assert(!(is_scalar && is_q)); 9021 9022 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9023 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 9024 fracbits = (16 << size) - immhb; 9025 tcg_shift = tcg_constant_i32(fracbits); 9026 9027 if (size == MO_64) { 9028 int maxpass = is_scalar ? 1 : 2; 9029 9030 for (pass = 0; pass < maxpass; pass++) { 9031 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9032 9033 read_vec_element(s, tcg_op, rn, pass, MO_64); 9034 if (is_u) { 9035 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9036 } else { 9037 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9038 } 9039 write_vec_element(s, tcg_op, rd, pass, MO_64); 9040 } 9041 clear_vec_high(s, is_q, rd); 9042 } else { 9043 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 9044 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 9045 9046 switch (size) { 9047 case MO_16: 9048 if (is_u) { 9049 fn = gen_helper_vfp_touhh; 9050 } else { 9051 fn = gen_helper_vfp_toshh; 9052 } 9053 break; 9054 case MO_32: 9055 if (is_u) { 9056 fn = gen_helper_vfp_touls; 9057 } else { 9058 fn = gen_helper_vfp_tosls; 9059 } 9060 break; 9061 default: 9062 g_assert_not_reached(); 9063 } 9064 9065 for (pass = 0; pass < maxpass; pass++) { 9066 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9067 9068 read_vec_element_i32(s, tcg_op, rn, pass, size); 9069 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9070 if (is_scalar) { 9071 if (size == MO_16 && !is_u) { 9072 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9073 } 9074 write_fp_sreg(s, rd, tcg_op); 9075 } else { 9076 write_vec_element_i32(s, tcg_op, rd, pass, size); 9077 } 9078 } 9079 if (!is_scalar) { 9080 clear_vec_high(s, is_q, rd); 9081 } 9082 } 9083 9084 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9085 } 9086 9087 /* AdvSIMD scalar shift by immediate 9088 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 9089 * +-----+---+-------------+------+------+--------+---+------+------+ 9090 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 9091 * +-----+---+-------------+------+------+--------+---+------+------+ 9092 * 9093 * This is the scalar version so it works on a fixed sized registers 9094 */ 9095 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 9096 { 9097 int rd = extract32(insn, 0, 5); 9098 int rn = extract32(insn, 5, 5); 9099 int opcode = extract32(insn, 11, 5); 9100 int immb = extract32(insn, 16, 3); 9101 int immh = extract32(insn, 19, 4); 9102 bool is_u = extract32(insn, 29, 1); 9103 9104 if (immh == 0) { 9105 unallocated_encoding(s); 9106 return; 9107 } 9108 9109 switch (opcode) { 9110 case 0x08: /* SRI */ 9111 if (!is_u) { 9112 unallocated_encoding(s); 9113 return; 9114 } 9115 /* fall through */ 9116 case 0x00: /* SSHR / USHR */ 9117 case 0x02: /* SSRA / USRA */ 9118 case 0x04: /* SRSHR / URSHR */ 9119 case 0x06: /* SRSRA / URSRA */ 9120 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 9121 break; 9122 case 0x0a: /* SHL / SLI */ 9123 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 9124 break; 9125 case 0x1c: /* SCVTF, UCVTF */ 9126 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 9127 opcode, rn, rd); 9128 break; 9129 case 0x10: /* SQSHRUN, SQSHRUN2 */ 9130 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 9131 if (!is_u) { 9132 unallocated_encoding(s); 9133 return; 9134 } 9135 handle_vec_simd_sqshrn(s, true, false, false, true, 9136 immh, immb, opcode, rn, rd); 9137 break; 9138 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 9139 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 9140 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 9141 immh, immb, opcode, rn, rd); 9142 break; 9143 case 0xc: /* SQSHLU */ 9144 if (!is_u) { 9145 unallocated_encoding(s); 9146 return; 9147 } 9148 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 9149 break; 9150 case 0xe: /* SQSHL, UQSHL */ 9151 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 9152 break; 9153 case 0x1f: /* FCVTZS, FCVTZU */ 9154 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 9155 break; 9156 default: 9157 unallocated_encoding(s); 9158 break; 9159 } 9160 } 9161 9162 /* AdvSIMD scalar three different 9163 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 9164 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9165 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 9166 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9167 */ 9168 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 9169 { 9170 bool is_u = extract32(insn, 29, 1); 9171 int size = extract32(insn, 22, 2); 9172 int opcode = extract32(insn, 12, 4); 9173 int rm = extract32(insn, 16, 5); 9174 int rn = extract32(insn, 5, 5); 9175 int rd = extract32(insn, 0, 5); 9176 9177 if (is_u) { 9178 unallocated_encoding(s); 9179 return; 9180 } 9181 9182 switch (opcode) { 9183 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9184 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9185 case 0xd: /* SQDMULL, SQDMULL2 */ 9186 if (size == 0 || size == 3) { 9187 unallocated_encoding(s); 9188 return; 9189 } 9190 break; 9191 default: 9192 unallocated_encoding(s); 9193 return; 9194 } 9195 9196 if (!fp_access_check(s)) { 9197 return; 9198 } 9199 9200 if (size == 2) { 9201 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9202 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9203 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9204 9205 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 9206 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 9207 9208 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 9209 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 9210 9211 switch (opcode) { 9212 case 0xd: /* SQDMULL, SQDMULL2 */ 9213 break; 9214 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9215 tcg_gen_neg_i64(tcg_res, tcg_res); 9216 /* fall through */ 9217 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9218 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9219 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 9220 tcg_res, tcg_op1); 9221 break; 9222 default: 9223 g_assert_not_reached(); 9224 } 9225 9226 write_fp_dreg(s, rd, tcg_res); 9227 } else { 9228 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9229 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9230 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9231 9232 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9233 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 9234 9235 switch (opcode) { 9236 case 0xd: /* SQDMULL, SQDMULL2 */ 9237 break; 9238 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9239 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9240 /* fall through */ 9241 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9242 { 9243 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9244 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9245 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 9246 tcg_res, tcg_op3); 9247 break; 9248 } 9249 default: 9250 g_assert_not_reached(); 9251 } 9252 9253 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9254 write_fp_dreg(s, rd, tcg_res); 9255 } 9256 } 9257 9258 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9259 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9260 { 9261 /* Handle 64x64->64 opcodes which are shared between the scalar 9262 * and vector 3-same groups. We cover every opcode where size == 3 9263 * is valid in either the three-reg-same (integer, not pairwise) 9264 * or scalar-three-reg-same groups. 9265 */ 9266 TCGCond cond; 9267 9268 switch (opcode) { 9269 case 0x1: /* SQADD */ 9270 if (u) { 9271 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9272 } else { 9273 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9274 } 9275 break; 9276 case 0x5: /* SQSUB */ 9277 if (u) { 9278 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9279 } else { 9280 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9281 } 9282 break; 9283 case 0x6: /* CMGT, CMHI */ 9284 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9285 do_cmop: 9286 /* 64 bit integer comparison, result = test ? -1 : 0. */ 9287 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9288 break; 9289 case 0x7: /* CMGE, CMHS */ 9290 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9291 goto do_cmop; 9292 case 0x11: /* CMTST, CMEQ */ 9293 if (u) { 9294 cond = TCG_COND_EQ; 9295 goto do_cmop; 9296 } 9297 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9298 break; 9299 case 0x8: /* SSHL, USHL */ 9300 if (u) { 9301 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9302 } else { 9303 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9304 } 9305 break; 9306 case 0x9: /* SQSHL, UQSHL */ 9307 if (u) { 9308 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9309 } else { 9310 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9311 } 9312 break; 9313 case 0xa: /* SRSHL, URSHL */ 9314 if (u) { 9315 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9316 } else { 9317 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9318 } 9319 break; 9320 case 0xb: /* SQRSHL, UQRSHL */ 9321 if (u) { 9322 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9323 } else { 9324 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9325 } 9326 break; 9327 case 0x10: /* ADD, SUB */ 9328 if (u) { 9329 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9330 } else { 9331 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9332 } 9333 break; 9334 default: 9335 g_assert_not_reached(); 9336 } 9337 } 9338 9339 /* AdvSIMD scalar three same 9340 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9341 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9342 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9343 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9344 */ 9345 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9346 { 9347 int rd = extract32(insn, 0, 5); 9348 int rn = extract32(insn, 5, 5); 9349 int opcode = extract32(insn, 11, 5); 9350 int rm = extract32(insn, 16, 5); 9351 int size = extract32(insn, 22, 2); 9352 bool u = extract32(insn, 29, 1); 9353 TCGv_i64 tcg_rd; 9354 9355 switch (opcode) { 9356 case 0x1: /* SQADD, UQADD */ 9357 case 0x5: /* SQSUB, UQSUB */ 9358 case 0x9: /* SQSHL, UQSHL */ 9359 case 0xb: /* SQRSHL, UQRSHL */ 9360 break; 9361 case 0x8: /* SSHL, USHL */ 9362 case 0xa: /* SRSHL, URSHL */ 9363 case 0x6: /* CMGT, CMHI */ 9364 case 0x7: /* CMGE, CMHS */ 9365 case 0x11: /* CMTST, CMEQ */ 9366 case 0x10: /* ADD, SUB (vector) */ 9367 if (size != 3) { 9368 unallocated_encoding(s); 9369 return; 9370 } 9371 break; 9372 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9373 if (size != 1 && size != 2) { 9374 unallocated_encoding(s); 9375 return; 9376 } 9377 break; 9378 default: 9379 unallocated_encoding(s); 9380 return; 9381 } 9382 9383 if (!fp_access_check(s)) { 9384 return; 9385 } 9386 9387 tcg_rd = tcg_temp_new_i64(); 9388 9389 if (size == 3) { 9390 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9391 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9392 9393 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9394 } else { 9395 /* Do a single operation on the lowest element in the vector. 9396 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9397 * no side effects for all these operations. 9398 * OPTME: special-purpose helpers would avoid doing some 9399 * unnecessary work in the helper for the 8 and 16 bit cases. 9400 */ 9401 NeonGenTwoOpEnvFn *genenvfn; 9402 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9403 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9404 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9405 9406 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9407 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9408 9409 switch (opcode) { 9410 case 0x1: /* SQADD, UQADD */ 9411 { 9412 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9413 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9414 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9415 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9416 }; 9417 genenvfn = fns[size][u]; 9418 break; 9419 } 9420 case 0x5: /* SQSUB, UQSUB */ 9421 { 9422 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9423 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9424 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9425 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9426 }; 9427 genenvfn = fns[size][u]; 9428 break; 9429 } 9430 case 0x9: /* SQSHL, UQSHL */ 9431 { 9432 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9433 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9434 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9435 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9436 }; 9437 genenvfn = fns[size][u]; 9438 break; 9439 } 9440 case 0xb: /* SQRSHL, UQRSHL */ 9441 { 9442 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9443 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9444 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9445 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9446 }; 9447 genenvfn = fns[size][u]; 9448 break; 9449 } 9450 case 0x16: /* SQDMULH, SQRDMULH */ 9451 { 9452 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9453 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9454 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9455 }; 9456 assert(size == 1 || size == 2); 9457 genenvfn = fns[size - 1][u]; 9458 break; 9459 } 9460 default: 9461 g_assert_not_reached(); 9462 } 9463 9464 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9465 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9466 } 9467 9468 write_fp_dreg(s, rd, tcg_rd); 9469 } 9470 9471 /* AdvSIMD scalar three same extra 9472 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9473 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9474 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9475 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9476 */ 9477 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9478 uint32_t insn) 9479 { 9480 int rd = extract32(insn, 0, 5); 9481 int rn = extract32(insn, 5, 5); 9482 int opcode = extract32(insn, 11, 4); 9483 int rm = extract32(insn, 16, 5); 9484 int size = extract32(insn, 22, 2); 9485 bool u = extract32(insn, 29, 1); 9486 TCGv_i32 ele1, ele2, ele3; 9487 TCGv_i64 res; 9488 bool feature; 9489 9490 switch (u * 16 + opcode) { 9491 case 0x10: /* SQRDMLAH (vector) */ 9492 case 0x11: /* SQRDMLSH (vector) */ 9493 if (size != 1 && size != 2) { 9494 unallocated_encoding(s); 9495 return; 9496 } 9497 feature = dc_isar_feature(aa64_rdm, s); 9498 break; 9499 default: 9500 unallocated_encoding(s); 9501 return; 9502 } 9503 if (!feature) { 9504 unallocated_encoding(s); 9505 return; 9506 } 9507 if (!fp_access_check(s)) { 9508 return; 9509 } 9510 9511 /* Do a single operation on the lowest element in the vector. 9512 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9513 * with no side effects for all these operations. 9514 * OPTME: special-purpose helpers would avoid doing some 9515 * unnecessary work in the helper for the 16 bit cases. 9516 */ 9517 ele1 = tcg_temp_new_i32(); 9518 ele2 = tcg_temp_new_i32(); 9519 ele3 = tcg_temp_new_i32(); 9520 9521 read_vec_element_i32(s, ele1, rn, 0, size); 9522 read_vec_element_i32(s, ele2, rm, 0, size); 9523 read_vec_element_i32(s, ele3, rd, 0, size); 9524 9525 switch (opcode) { 9526 case 0x0: /* SQRDMLAH */ 9527 if (size == 1) { 9528 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9529 } else { 9530 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9531 } 9532 break; 9533 case 0x1: /* SQRDMLSH */ 9534 if (size == 1) { 9535 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9536 } else { 9537 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9538 } 9539 break; 9540 default: 9541 g_assert_not_reached(); 9542 } 9543 9544 res = tcg_temp_new_i64(); 9545 tcg_gen_extu_i32_i64(res, ele3); 9546 write_fp_dreg(s, rd, res); 9547 } 9548 9549 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9550 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9551 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9552 { 9553 /* Handle 64->64 opcodes which are shared between the scalar and 9554 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9555 * is valid in either group and also the double-precision fp ops. 9556 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9557 * requires them. 9558 */ 9559 TCGCond cond; 9560 9561 switch (opcode) { 9562 case 0x4: /* CLS, CLZ */ 9563 if (u) { 9564 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9565 } else { 9566 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9567 } 9568 break; 9569 case 0x5: /* NOT */ 9570 /* This opcode is shared with CNT and RBIT but we have earlier 9571 * enforced that size == 3 if and only if this is the NOT insn. 9572 */ 9573 tcg_gen_not_i64(tcg_rd, tcg_rn); 9574 break; 9575 case 0x7: /* SQABS, SQNEG */ 9576 if (u) { 9577 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9578 } else { 9579 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9580 } 9581 break; 9582 case 0xa: /* CMLT */ 9583 cond = TCG_COND_LT; 9584 do_cmop: 9585 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9586 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9587 break; 9588 case 0x8: /* CMGT, CMGE */ 9589 cond = u ? TCG_COND_GE : TCG_COND_GT; 9590 goto do_cmop; 9591 case 0x9: /* CMEQ, CMLE */ 9592 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9593 goto do_cmop; 9594 case 0xb: /* ABS, NEG */ 9595 if (u) { 9596 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9597 } else { 9598 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9599 } 9600 break; 9601 case 0x2f: /* FABS */ 9602 gen_vfp_absd(tcg_rd, tcg_rn); 9603 break; 9604 case 0x6f: /* FNEG */ 9605 gen_vfp_negd(tcg_rd, tcg_rn); 9606 break; 9607 case 0x7f: /* FSQRT */ 9608 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9609 break; 9610 case 0x1a: /* FCVTNS */ 9611 case 0x1b: /* FCVTMS */ 9612 case 0x1c: /* FCVTAS */ 9613 case 0x3a: /* FCVTPS */ 9614 case 0x3b: /* FCVTZS */ 9615 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9616 break; 9617 case 0x5a: /* FCVTNU */ 9618 case 0x5b: /* FCVTMU */ 9619 case 0x5c: /* FCVTAU */ 9620 case 0x7a: /* FCVTPU */ 9621 case 0x7b: /* FCVTZU */ 9622 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9623 break; 9624 case 0x18: /* FRINTN */ 9625 case 0x19: /* FRINTM */ 9626 case 0x38: /* FRINTP */ 9627 case 0x39: /* FRINTZ */ 9628 case 0x58: /* FRINTA */ 9629 case 0x79: /* FRINTI */ 9630 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9631 break; 9632 case 0x59: /* FRINTX */ 9633 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9634 break; 9635 case 0x1e: /* FRINT32Z */ 9636 case 0x5e: /* FRINT32X */ 9637 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9638 break; 9639 case 0x1f: /* FRINT64Z */ 9640 case 0x5f: /* FRINT64X */ 9641 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9642 break; 9643 default: 9644 g_assert_not_reached(); 9645 } 9646 } 9647 9648 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9649 bool is_scalar, bool is_u, bool is_q, 9650 int size, int rn, int rd) 9651 { 9652 bool is_double = (size == MO_64); 9653 TCGv_ptr fpst; 9654 9655 if (!fp_access_check(s)) { 9656 return; 9657 } 9658 9659 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9660 9661 if (is_double) { 9662 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9663 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9664 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9665 NeonGenTwoDoubleOpFn *genfn; 9666 bool swap = false; 9667 int pass; 9668 9669 switch (opcode) { 9670 case 0x2e: /* FCMLT (zero) */ 9671 swap = true; 9672 /* fallthrough */ 9673 case 0x2c: /* FCMGT (zero) */ 9674 genfn = gen_helper_neon_cgt_f64; 9675 break; 9676 case 0x2d: /* FCMEQ (zero) */ 9677 genfn = gen_helper_neon_ceq_f64; 9678 break; 9679 case 0x6d: /* FCMLE (zero) */ 9680 swap = true; 9681 /* fall through */ 9682 case 0x6c: /* FCMGE (zero) */ 9683 genfn = gen_helper_neon_cge_f64; 9684 break; 9685 default: 9686 g_assert_not_reached(); 9687 } 9688 9689 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9690 read_vec_element(s, tcg_op, rn, pass, MO_64); 9691 if (swap) { 9692 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9693 } else { 9694 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9695 } 9696 write_vec_element(s, tcg_res, rd, pass, MO_64); 9697 } 9698 9699 clear_vec_high(s, !is_scalar, rd); 9700 } else { 9701 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9702 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9703 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9704 NeonGenTwoSingleOpFn *genfn; 9705 bool swap = false; 9706 int pass, maxpasses; 9707 9708 if (size == MO_16) { 9709 switch (opcode) { 9710 case 0x2e: /* FCMLT (zero) */ 9711 swap = true; 9712 /* fall through */ 9713 case 0x2c: /* FCMGT (zero) */ 9714 genfn = gen_helper_advsimd_cgt_f16; 9715 break; 9716 case 0x2d: /* FCMEQ (zero) */ 9717 genfn = gen_helper_advsimd_ceq_f16; 9718 break; 9719 case 0x6d: /* FCMLE (zero) */ 9720 swap = true; 9721 /* fall through */ 9722 case 0x6c: /* FCMGE (zero) */ 9723 genfn = gen_helper_advsimd_cge_f16; 9724 break; 9725 default: 9726 g_assert_not_reached(); 9727 } 9728 } else { 9729 switch (opcode) { 9730 case 0x2e: /* FCMLT (zero) */ 9731 swap = true; 9732 /* fall through */ 9733 case 0x2c: /* FCMGT (zero) */ 9734 genfn = gen_helper_neon_cgt_f32; 9735 break; 9736 case 0x2d: /* FCMEQ (zero) */ 9737 genfn = gen_helper_neon_ceq_f32; 9738 break; 9739 case 0x6d: /* FCMLE (zero) */ 9740 swap = true; 9741 /* fall through */ 9742 case 0x6c: /* FCMGE (zero) */ 9743 genfn = gen_helper_neon_cge_f32; 9744 break; 9745 default: 9746 g_assert_not_reached(); 9747 } 9748 } 9749 9750 if (is_scalar) { 9751 maxpasses = 1; 9752 } else { 9753 int vector_size = 8 << is_q; 9754 maxpasses = vector_size >> size; 9755 } 9756 9757 for (pass = 0; pass < maxpasses; pass++) { 9758 read_vec_element_i32(s, tcg_op, rn, pass, size); 9759 if (swap) { 9760 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9761 } else { 9762 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9763 } 9764 if (is_scalar) { 9765 write_fp_sreg(s, rd, tcg_res); 9766 } else { 9767 write_vec_element_i32(s, tcg_res, rd, pass, size); 9768 } 9769 } 9770 9771 if (!is_scalar) { 9772 clear_vec_high(s, is_q, rd); 9773 } 9774 } 9775 } 9776 9777 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9778 bool is_scalar, bool is_u, bool is_q, 9779 int size, int rn, int rd) 9780 { 9781 bool is_double = (size == 3); 9782 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9783 9784 if (is_double) { 9785 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9786 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9787 int pass; 9788 9789 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9790 read_vec_element(s, tcg_op, rn, pass, MO_64); 9791 switch (opcode) { 9792 case 0x3d: /* FRECPE */ 9793 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9794 break; 9795 case 0x3f: /* FRECPX */ 9796 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9797 break; 9798 case 0x7d: /* FRSQRTE */ 9799 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9800 break; 9801 default: 9802 g_assert_not_reached(); 9803 } 9804 write_vec_element(s, tcg_res, rd, pass, MO_64); 9805 } 9806 clear_vec_high(s, !is_scalar, rd); 9807 } else { 9808 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9809 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9810 int pass, maxpasses; 9811 9812 if (is_scalar) { 9813 maxpasses = 1; 9814 } else { 9815 maxpasses = is_q ? 4 : 2; 9816 } 9817 9818 for (pass = 0; pass < maxpasses; pass++) { 9819 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9820 9821 switch (opcode) { 9822 case 0x3c: /* URECPE */ 9823 gen_helper_recpe_u32(tcg_res, tcg_op); 9824 break; 9825 case 0x3d: /* FRECPE */ 9826 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9827 break; 9828 case 0x3f: /* FRECPX */ 9829 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9830 break; 9831 case 0x7d: /* FRSQRTE */ 9832 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9833 break; 9834 default: 9835 g_assert_not_reached(); 9836 } 9837 9838 if (is_scalar) { 9839 write_fp_sreg(s, rd, tcg_res); 9840 } else { 9841 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9842 } 9843 } 9844 if (!is_scalar) { 9845 clear_vec_high(s, is_q, rd); 9846 } 9847 } 9848 } 9849 9850 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9851 int opcode, bool u, bool is_q, 9852 int size, int rn, int rd) 9853 { 9854 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9855 * in the source becomes a size element in the destination). 9856 */ 9857 int pass; 9858 TCGv_i32 tcg_res[2]; 9859 int destelt = is_q ? 2 : 0; 9860 int passes = scalar ? 1 : 2; 9861 9862 if (scalar) { 9863 tcg_res[1] = tcg_constant_i32(0); 9864 } 9865 9866 for (pass = 0; pass < passes; pass++) { 9867 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9868 NeonGenNarrowFn *genfn = NULL; 9869 NeonGenNarrowEnvFn *genenvfn = NULL; 9870 9871 if (scalar) { 9872 read_vec_element(s, tcg_op, rn, pass, size + 1); 9873 } else { 9874 read_vec_element(s, tcg_op, rn, pass, MO_64); 9875 } 9876 tcg_res[pass] = tcg_temp_new_i32(); 9877 9878 switch (opcode) { 9879 case 0x12: /* XTN, SQXTUN */ 9880 { 9881 static NeonGenNarrowFn * const xtnfns[3] = { 9882 gen_helper_neon_narrow_u8, 9883 gen_helper_neon_narrow_u16, 9884 tcg_gen_extrl_i64_i32, 9885 }; 9886 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9887 gen_helper_neon_unarrow_sat8, 9888 gen_helper_neon_unarrow_sat16, 9889 gen_helper_neon_unarrow_sat32, 9890 }; 9891 if (u) { 9892 genenvfn = sqxtunfns[size]; 9893 } else { 9894 genfn = xtnfns[size]; 9895 } 9896 break; 9897 } 9898 case 0x14: /* SQXTN, UQXTN */ 9899 { 9900 static NeonGenNarrowEnvFn * const fns[3][2] = { 9901 { gen_helper_neon_narrow_sat_s8, 9902 gen_helper_neon_narrow_sat_u8 }, 9903 { gen_helper_neon_narrow_sat_s16, 9904 gen_helper_neon_narrow_sat_u16 }, 9905 { gen_helper_neon_narrow_sat_s32, 9906 gen_helper_neon_narrow_sat_u32 }, 9907 }; 9908 genenvfn = fns[size][u]; 9909 break; 9910 } 9911 case 0x16: /* FCVTN, FCVTN2 */ 9912 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9913 if (size == 2) { 9914 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9915 } else { 9916 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9917 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9918 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9919 TCGv_i32 ahp = get_ahp_flag(); 9920 9921 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9922 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9923 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9924 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9925 } 9926 break; 9927 case 0x36: /* BFCVTN, BFCVTN2 */ 9928 { 9929 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9930 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9931 } 9932 break; 9933 case 0x56: /* FCVTXN, FCVTXN2 */ 9934 /* 64 bit to 32 bit float conversion 9935 * with von Neumann rounding (round to odd) 9936 */ 9937 assert(size == 2); 9938 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9939 break; 9940 default: 9941 g_assert_not_reached(); 9942 } 9943 9944 if (genfn) { 9945 genfn(tcg_res[pass], tcg_op); 9946 } else if (genenvfn) { 9947 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9948 } 9949 } 9950 9951 for (pass = 0; pass < 2; pass++) { 9952 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9953 } 9954 clear_vec_high(s, is_q, rd); 9955 } 9956 9957 /* Remaining saturating accumulating ops */ 9958 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9959 bool is_q, int size, int rn, int rd) 9960 { 9961 bool is_double = (size == 3); 9962 9963 if (is_double) { 9964 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9965 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9966 int pass; 9967 9968 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9969 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9970 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9971 9972 if (is_u) { /* USQADD */ 9973 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9974 } else { /* SUQADD */ 9975 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9976 } 9977 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9978 } 9979 clear_vec_high(s, !is_scalar, rd); 9980 } else { 9981 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9982 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9983 int pass, maxpasses; 9984 9985 if (is_scalar) { 9986 maxpasses = 1; 9987 } else { 9988 maxpasses = is_q ? 4 : 2; 9989 } 9990 9991 for (pass = 0; pass < maxpasses; pass++) { 9992 if (is_scalar) { 9993 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9994 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9995 } else { 9996 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9997 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9998 } 9999 10000 if (is_u) { /* USQADD */ 10001 switch (size) { 10002 case 0: 10003 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10004 break; 10005 case 1: 10006 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10007 break; 10008 case 2: 10009 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10010 break; 10011 default: 10012 g_assert_not_reached(); 10013 } 10014 } else { /* SUQADD */ 10015 switch (size) { 10016 case 0: 10017 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10018 break; 10019 case 1: 10020 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10021 break; 10022 case 2: 10023 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10024 break; 10025 default: 10026 g_assert_not_reached(); 10027 } 10028 } 10029 10030 if (is_scalar) { 10031 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10032 } 10033 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10034 } 10035 clear_vec_high(s, is_q, rd); 10036 } 10037 } 10038 10039 /* AdvSIMD scalar two reg misc 10040 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10041 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10042 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10043 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10044 */ 10045 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10046 { 10047 int rd = extract32(insn, 0, 5); 10048 int rn = extract32(insn, 5, 5); 10049 int opcode = extract32(insn, 12, 5); 10050 int size = extract32(insn, 22, 2); 10051 bool u = extract32(insn, 29, 1); 10052 bool is_fcvt = false; 10053 int rmode; 10054 TCGv_i32 tcg_rmode; 10055 TCGv_ptr tcg_fpstatus; 10056 10057 switch (opcode) { 10058 case 0x3: /* USQADD / SUQADD*/ 10059 if (!fp_access_check(s)) { 10060 return; 10061 } 10062 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10063 return; 10064 case 0x7: /* SQABS / SQNEG */ 10065 break; 10066 case 0xa: /* CMLT */ 10067 if (u) { 10068 unallocated_encoding(s); 10069 return; 10070 } 10071 /* fall through */ 10072 case 0x8: /* CMGT, CMGE */ 10073 case 0x9: /* CMEQ, CMLE */ 10074 case 0xb: /* ABS, NEG */ 10075 if (size != 3) { 10076 unallocated_encoding(s); 10077 return; 10078 } 10079 break; 10080 case 0x12: /* SQXTUN */ 10081 if (!u) { 10082 unallocated_encoding(s); 10083 return; 10084 } 10085 /* fall through */ 10086 case 0x14: /* SQXTN, UQXTN */ 10087 if (size == 3) { 10088 unallocated_encoding(s); 10089 return; 10090 } 10091 if (!fp_access_check(s)) { 10092 return; 10093 } 10094 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10095 return; 10096 case 0xc ... 0xf: 10097 case 0x16 ... 0x1d: 10098 case 0x1f: 10099 /* Floating point: U, size[1] and opcode indicate operation; 10100 * size[0] indicates single or double precision. 10101 */ 10102 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10103 size = extract32(size, 0, 1) ? 3 : 2; 10104 switch (opcode) { 10105 case 0x2c: /* FCMGT (zero) */ 10106 case 0x2d: /* FCMEQ (zero) */ 10107 case 0x2e: /* FCMLT (zero) */ 10108 case 0x6c: /* FCMGE (zero) */ 10109 case 0x6d: /* FCMLE (zero) */ 10110 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10111 return; 10112 case 0x1d: /* SCVTF */ 10113 case 0x5d: /* UCVTF */ 10114 { 10115 bool is_signed = (opcode == 0x1d); 10116 if (!fp_access_check(s)) { 10117 return; 10118 } 10119 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10120 return; 10121 } 10122 case 0x3d: /* FRECPE */ 10123 case 0x3f: /* FRECPX */ 10124 case 0x7d: /* FRSQRTE */ 10125 if (!fp_access_check(s)) { 10126 return; 10127 } 10128 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10129 return; 10130 case 0x1a: /* FCVTNS */ 10131 case 0x1b: /* FCVTMS */ 10132 case 0x3a: /* FCVTPS */ 10133 case 0x3b: /* FCVTZS */ 10134 case 0x5a: /* FCVTNU */ 10135 case 0x5b: /* FCVTMU */ 10136 case 0x7a: /* FCVTPU */ 10137 case 0x7b: /* FCVTZU */ 10138 is_fcvt = true; 10139 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10140 break; 10141 case 0x1c: /* FCVTAS */ 10142 case 0x5c: /* FCVTAU */ 10143 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10144 is_fcvt = true; 10145 rmode = FPROUNDING_TIEAWAY; 10146 break; 10147 case 0x56: /* FCVTXN, FCVTXN2 */ 10148 if (size == 2) { 10149 unallocated_encoding(s); 10150 return; 10151 } 10152 if (!fp_access_check(s)) { 10153 return; 10154 } 10155 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10156 return; 10157 default: 10158 unallocated_encoding(s); 10159 return; 10160 } 10161 break; 10162 default: 10163 unallocated_encoding(s); 10164 return; 10165 } 10166 10167 if (!fp_access_check(s)) { 10168 return; 10169 } 10170 10171 if (is_fcvt) { 10172 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10173 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10174 } else { 10175 tcg_fpstatus = NULL; 10176 tcg_rmode = NULL; 10177 } 10178 10179 if (size == 3) { 10180 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10181 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10182 10183 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10184 write_fp_dreg(s, rd, tcg_rd); 10185 } else { 10186 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10187 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10188 10189 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10190 10191 switch (opcode) { 10192 case 0x7: /* SQABS, SQNEG */ 10193 { 10194 NeonGenOneOpEnvFn *genfn; 10195 static NeonGenOneOpEnvFn * const fns[3][2] = { 10196 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10197 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10198 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10199 }; 10200 genfn = fns[size][u]; 10201 genfn(tcg_rd, tcg_env, tcg_rn); 10202 break; 10203 } 10204 case 0x1a: /* FCVTNS */ 10205 case 0x1b: /* FCVTMS */ 10206 case 0x1c: /* FCVTAS */ 10207 case 0x3a: /* FCVTPS */ 10208 case 0x3b: /* FCVTZS */ 10209 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10210 tcg_fpstatus); 10211 break; 10212 case 0x5a: /* FCVTNU */ 10213 case 0x5b: /* FCVTMU */ 10214 case 0x5c: /* FCVTAU */ 10215 case 0x7a: /* FCVTPU */ 10216 case 0x7b: /* FCVTZU */ 10217 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10218 tcg_fpstatus); 10219 break; 10220 default: 10221 g_assert_not_reached(); 10222 } 10223 10224 write_fp_sreg(s, rd, tcg_rd); 10225 } 10226 10227 if (is_fcvt) { 10228 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10229 } 10230 } 10231 10232 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10233 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10234 int immh, int immb, int opcode, int rn, int rd) 10235 { 10236 int size = 32 - clz32(immh) - 1; 10237 int immhb = immh << 3 | immb; 10238 int shift = 2 * (8 << size) - immhb; 10239 GVecGen2iFn *gvec_fn; 10240 10241 if (extract32(immh, 3, 1) && !is_q) { 10242 unallocated_encoding(s); 10243 return; 10244 } 10245 tcg_debug_assert(size <= 3); 10246 10247 if (!fp_access_check(s)) { 10248 return; 10249 } 10250 10251 switch (opcode) { 10252 case 0x02: /* SSRA / USRA (accumulate) */ 10253 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10254 break; 10255 10256 case 0x08: /* SRI */ 10257 gvec_fn = gen_gvec_sri; 10258 break; 10259 10260 case 0x00: /* SSHR / USHR */ 10261 if (is_u) { 10262 if (shift == 8 << size) { 10263 /* Shift count the same size as element size produces zero. */ 10264 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10265 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10266 return; 10267 } 10268 gvec_fn = tcg_gen_gvec_shri; 10269 } else { 10270 /* Shift count the same size as element size produces all sign. */ 10271 if (shift == 8 << size) { 10272 shift -= 1; 10273 } 10274 gvec_fn = tcg_gen_gvec_sari; 10275 } 10276 break; 10277 10278 case 0x04: /* SRSHR / URSHR (rounding) */ 10279 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10280 break; 10281 10282 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10283 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10284 break; 10285 10286 default: 10287 g_assert_not_reached(); 10288 } 10289 10290 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10291 } 10292 10293 /* SHL/SLI - Vector shift left */ 10294 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10295 int immh, int immb, int opcode, int rn, int rd) 10296 { 10297 int size = 32 - clz32(immh) - 1; 10298 int immhb = immh << 3 | immb; 10299 int shift = immhb - (8 << size); 10300 10301 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10302 assert(size >= 0 && size <= 3); 10303 10304 if (extract32(immh, 3, 1) && !is_q) { 10305 unallocated_encoding(s); 10306 return; 10307 } 10308 10309 if (!fp_access_check(s)) { 10310 return; 10311 } 10312 10313 if (insert) { 10314 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10315 } else { 10316 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10317 } 10318 } 10319 10320 /* USHLL/SHLL - Vector shift left with widening */ 10321 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10322 int immh, int immb, int opcode, int rn, int rd) 10323 { 10324 int size = 32 - clz32(immh) - 1; 10325 int immhb = immh << 3 | immb; 10326 int shift = immhb - (8 << size); 10327 int dsize = 64; 10328 int esize = 8 << size; 10329 int elements = dsize/esize; 10330 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10331 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10332 int i; 10333 10334 if (size >= 3) { 10335 unallocated_encoding(s); 10336 return; 10337 } 10338 10339 if (!fp_access_check(s)) { 10340 return; 10341 } 10342 10343 /* For the LL variants the store is larger than the load, 10344 * so if rd == rn we would overwrite parts of our input. 10345 * So load everything right now and use shifts in the main loop. 10346 */ 10347 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10348 10349 for (i = 0; i < elements; i++) { 10350 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10351 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10352 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10353 write_vec_element(s, tcg_rd, rd, i, size + 1); 10354 } 10355 } 10356 10357 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10358 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10359 int immh, int immb, int opcode, int rn, int rd) 10360 { 10361 int immhb = immh << 3 | immb; 10362 int size = 32 - clz32(immh) - 1; 10363 int dsize = 64; 10364 int esize = 8 << size; 10365 int elements = dsize/esize; 10366 int shift = (2 * esize) - immhb; 10367 bool round = extract32(opcode, 0, 1); 10368 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10369 TCGv_i64 tcg_round; 10370 int i; 10371 10372 if (extract32(immh, 3, 1)) { 10373 unallocated_encoding(s); 10374 return; 10375 } 10376 10377 if (!fp_access_check(s)) { 10378 return; 10379 } 10380 10381 tcg_rn = tcg_temp_new_i64(); 10382 tcg_rd = tcg_temp_new_i64(); 10383 tcg_final = tcg_temp_new_i64(); 10384 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10385 10386 if (round) { 10387 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10388 } else { 10389 tcg_round = NULL; 10390 } 10391 10392 for (i = 0; i < elements; i++) { 10393 read_vec_element(s, tcg_rn, rn, i, size+1); 10394 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10395 false, true, size+1, shift); 10396 10397 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10398 } 10399 10400 if (!is_q) { 10401 write_vec_element(s, tcg_final, rd, 0, MO_64); 10402 } else { 10403 write_vec_element(s, tcg_final, rd, 1, MO_64); 10404 } 10405 10406 clear_vec_high(s, is_q, rd); 10407 } 10408 10409 10410 /* AdvSIMD shift by immediate 10411 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10412 * +---+---+---+-------------+------+------+--------+---+------+------+ 10413 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10414 * +---+---+---+-------------+------+------+--------+---+------+------+ 10415 */ 10416 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10417 { 10418 int rd = extract32(insn, 0, 5); 10419 int rn = extract32(insn, 5, 5); 10420 int opcode = extract32(insn, 11, 5); 10421 int immb = extract32(insn, 16, 3); 10422 int immh = extract32(insn, 19, 4); 10423 bool is_u = extract32(insn, 29, 1); 10424 bool is_q = extract32(insn, 30, 1); 10425 10426 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10427 assert(immh != 0); 10428 10429 switch (opcode) { 10430 case 0x08: /* SRI */ 10431 if (!is_u) { 10432 unallocated_encoding(s); 10433 return; 10434 } 10435 /* fall through */ 10436 case 0x00: /* SSHR / USHR */ 10437 case 0x02: /* SSRA / USRA (accumulate) */ 10438 case 0x04: /* SRSHR / URSHR (rounding) */ 10439 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10440 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10441 break; 10442 case 0x0a: /* SHL / SLI */ 10443 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10444 break; 10445 case 0x10: /* SHRN */ 10446 case 0x11: /* RSHRN / SQRSHRUN */ 10447 if (is_u) { 10448 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10449 opcode, rn, rd); 10450 } else { 10451 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10452 } 10453 break; 10454 case 0x12: /* SQSHRN / UQSHRN */ 10455 case 0x13: /* SQRSHRN / UQRSHRN */ 10456 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10457 opcode, rn, rd); 10458 break; 10459 case 0x14: /* SSHLL / USHLL */ 10460 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10461 break; 10462 case 0x1c: /* SCVTF / UCVTF */ 10463 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10464 opcode, rn, rd); 10465 break; 10466 case 0xc: /* SQSHLU */ 10467 if (!is_u) { 10468 unallocated_encoding(s); 10469 return; 10470 } 10471 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10472 break; 10473 case 0xe: /* SQSHL, UQSHL */ 10474 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10475 break; 10476 case 0x1f: /* FCVTZS/ FCVTZU */ 10477 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10478 return; 10479 default: 10480 unallocated_encoding(s); 10481 return; 10482 } 10483 } 10484 10485 /* Generate code to do a "long" addition or subtraction, ie one done in 10486 * TCGv_i64 on vector lanes twice the width specified by size. 10487 */ 10488 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10489 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10490 { 10491 static NeonGenTwo64OpFn * const fns[3][2] = { 10492 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10493 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10494 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10495 }; 10496 NeonGenTwo64OpFn *genfn; 10497 assert(size < 3); 10498 10499 genfn = fns[size][is_sub]; 10500 genfn(tcg_res, tcg_op1, tcg_op2); 10501 } 10502 10503 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10504 int opcode, int rd, int rn, int rm) 10505 { 10506 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10507 TCGv_i64 tcg_res[2]; 10508 int pass, accop; 10509 10510 tcg_res[0] = tcg_temp_new_i64(); 10511 tcg_res[1] = tcg_temp_new_i64(); 10512 10513 /* Does this op do an adding accumulate, a subtracting accumulate, 10514 * or no accumulate at all? 10515 */ 10516 switch (opcode) { 10517 case 5: 10518 case 8: 10519 case 9: 10520 accop = 1; 10521 break; 10522 case 10: 10523 case 11: 10524 accop = -1; 10525 break; 10526 default: 10527 accop = 0; 10528 break; 10529 } 10530 10531 if (accop != 0) { 10532 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10533 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10534 } 10535 10536 /* size == 2 means two 32x32->64 operations; this is worth special 10537 * casing because we can generally handle it inline. 10538 */ 10539 if (size == 2) { 10540 for (pass = 0; pass < 2; pass++) { 10541 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10542 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10543 TCGv_i64 tcg_passres; 10544 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10545 10546 int elt = pass + is_q * 2; 10547 10548 read_vec_element(s, tcg_op1, rn, elt, memop); 10549 read_vec_element(s, tcg_op2, rm, elt, memop); 10550 10551 if (accop == 0) { 10552 tcg_passres = tcg_res[pass]; 10553 } else { 10554 tcg_passres = tcg_temp_new_i64(); 10555 } 10556 10557 switch (opcode) { 10558 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10559 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10560 break; 10561 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10562 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10563 break; 10564 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10565 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10566 { 10567 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10568 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10569 10570 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10571 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10572 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10573 tcg_passres, 10574 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10575 break; 10576 } 10577 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10578 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10579 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10580 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10581 break; 10582 case 9: /* SQDMLAL, SQDMLAL2 */ 10583 case 11: /* SQDMLSL, SQDMLSL2 */ 10584 case 13: /* SQDMULL, SQDMULL2 */ 10585 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10586 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10587 tcg_passres, tcg_passres); 10588 break; 10589 default: 10590 g_assert_not_reached(); 10591 } 10592 10593 if (opcode == 9 || opcode == 11) { 10594 /* saturating accumulate ops */ 10595 if (accop < 0) { 10596 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10597 } 10598 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10599 tcg_res[pass], tcg_passres); 10600 } else if (accop > 0) { 10601 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10602 } else if (accop < 0) { 10603 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10604 } 10605 } 10606 } else { 10607 /* size 0 or 1, generally helper functions */ 10608 for (pass = 0; pass < 2; pass++) { 10609 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10610 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10611 TCGv_i64 tcg_passres; 10612 int elt = pass + is_q * 2; 10613 10614 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10615 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10616 10617 if (accop == 0) { 10618 tcg_passres = tcg_res[pass]; 10619 } else { 10620 tcg_passres = tcg_temp_new_i64(); 10621 } 10622 10623 switch (opcode) { 10624 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10625 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10626 { 10627 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10628 static NeonGenWidenFn * const widenfns[2][2] = { 10629 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10630 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10631 }; 10632 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10633 10634 widenfn(tcg_op2_64, tcg_op2); 10635 widenfn(tcg_passres, tcg_op1); 10636 gen_neon_addl(size, (opcode == 2), tcg_passres, 10637 tcg_passres, tcg_op2_64); 10638 break; 10639 } 10640 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10641 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10642 if (size == 0) { 10643 if (is_u) { 10644 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10645 } else { 10646 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10647 } 10648 } else { 10649 if (is_u) { 10650 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10651 } else { 10652 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10653 } 10654 } 10655 break; 10656 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10657 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10658 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10659 if (size == 0) { 10660 if (is_u) { 10661 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10662 } else { 10663 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10664 } 10665 } else { 10666 if (is_u) { 10667 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10668 } else { 10669 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10670 } 10671 } 10672 break; 10673 case 9: /* SQDMLAL, SQDMLAL2 */ 10674 case 11: /* SQDMLSL, SQDMLSL2 */ 10675 case 13: /* SQDMULL, SQDMULL2 */ 10676 assert(size == 1); 10677 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10678 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10679 tcg_passres, tcg_passres); 10680 break; 10681 default: 10682 g_assert_not_reached(); 10683 } 10684 10685 if (accop != 0) { 10686 if (opcode == 9 || opcode == 11) { 10687 /* saturating accumulate ops */ 10688 if (accop < 0) { 10689 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10690 } 10691 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10692 tcg_res[pass], 10693 tcg_passres); 10694 } else { 10695 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10696 tcg_res[pass], tcg_passres); 10697 } 10698 } 10699 } 10700 } 10701 10702 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10703 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10704 } 10705 10706 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10707 int opcode, int rd, int rn, int rm) 10708 { 10709 TCGv_i64 tcg_res[2]; 10710 int part = is_q ? 2 : 0; 10711 int pass; 10712 10713 for (pass = 0; pass < 2; pass++) { 10714 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10715 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10716 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10717 static NeonGenWidenFn * const widenfns[3][2] = { 10718 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10719 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10720 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10721 }; 10722 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10723 10724 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10725 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10726 widenfn(tcg_op2_wide, tcg_op2); 10727 tcg_res[pass] = tcg_temp_new_i64(); 10728 gen_neon_addl(size, (opcode == 3), 10729 tcg_res[pass], tcg_op1, tcg_op2_wide); 10730 } 10731 10732 for (pass = 0; pass < 2; pass++) { 10733 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10734 } 10735 } 10736 10737 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10738 { 10739 tcg_gen_addi_i64(in, in, 1U << 31); 10740 tcg_gen_extrh_i64_i32(res, in); 10741 } 10742 10743 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10744 int opcode, int rd, int rn, int rm) 10745 { 10746 TCGv_i32 tcg_res[2]; 10747 int part = is_q ? 2 : 0; 10748 int pass; 10749 10750 for (pass = 0; pass < 2; pass++) { 10751 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10752 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10753 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10754 static NeonGenNarrowFn * const narrowfns[3][2] = { 10755 { gen_helper_neon_narrow_high_u8, 10756 gen_helper_neon_narrow_round_high_u8 }, 10757 { gen_helper_neon_narrow_high_u16, 10758 gen_helper_neon_narrow_round_high_u16 }, 10759 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10760 }; 10761 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10762 10763 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10764 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10765 10766 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10767 10768 tcg_res[pass] = tcg_temp_new_i32(); 10769 gennarrow(tcg_res[pass], tcg_wideres); 10770 } 10771 10772 for (pass = 0; pass < 2; pass++) { 10773 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10774 } 10775 clear_vec_high(s, is_q, rd); 10776 } 10777 10778 /* AdvSIMD three different 10779 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10780 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10781 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10782 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10783 */ 10784 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10785 { 10786 /* Instructions in this group fall into three basic classes 10787 * (in each case with the operation working on each element in 10788 * the input vectors): 10789 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10790 * 128 bit input) 10791 * (2) wide 64 x 128 -> 128 10792 * (3) narrowing 128 x 128 -> 64 10793 * Here we do initial decode, catch unallocated cases and 10794 * dispatch to separate functions for each class. 10795 */ 10796 int is_q = extract32(insn, 30, 1); 10797 int is_u = extract32(insn, 29, 1); 10798 int size = extract32(insn, 22, 2); 10799 int opcode = extract32(insn, 12, 4); 10800 int rm = extract32(insn, 16, 5); 10801 int rn = extract32(insn, 5, 5); 10802 int rd = extract32(insn, 0, 5); 10803 10804 switch (opcode) { 10805 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10806 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10807 /* 64 x 128 -> 128 */ 10808 if (size == 3) { 10809 unallocated_encoding(s); 10810 return; 10811 } 10812 if (!fp_access_check(s)) { 10813 return; 10814 } 10815 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10816 break; 10817 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10818 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10819 /* 128 x 128 -> 64 */ 10820 if (size == 3) { 10821 unallocated_encoding(s); 10822 return; 10823 } 10824 if (!fp_access_check(s)) { 10825 return; 10826 } 10827 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10828 break; 10829 case 14: /* PMULL, PMULL2 */ 10830 if (is_u) { 10831 unallocated_encoding(s); 10832 return; 10833 } 10834 switch (size) { 10835 case 0: /* PMULL.P8 */ 10836 if (!fp_access_check(s)) { 10837 return; 10838 } 10839 /* The Q field specifies lo/hi half input for this insn. */ 10840 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10841 gen_helper_neon_pmull_h); 10842 break; 10843 10844 case 3: /* PMULL.P64 */ 10845 if (!dc_isar_feature(aa64_pmull, s)) { 10846 unallocated_encoding(s); 10847 return; 10848 } 10849 if (!fp_access_check(s)) { 10850 return; 10851 } 10852 /* The Q field specifies lo/hi half input for this insn. */ 10853 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10854 gen_helper_gvec_pmull_q); 10855 break; 10856 10857 default: 10858 unallocated_encoding(s); 10859 break; 10860 } 10861 return; 10862 case 9: /* SQDMLAL, SQDMLAL2 */ 10863 case 11: /* SQDMLSL, SQDMLSL2 */ 10864 case 13: /* SQDMULL, SQDMULL2 */ 10865 if (is_u || size == 0) { 10866 unallocated_encoding(s); 10867 return; 10868 } 10869 /* fall through */ 10870 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10871 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10872 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10873 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10874 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10875 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10876 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10877 /* 64 x 64 -> 128 */ 10878 if (size == 3) { 10879 unallocated_encoding(s); 10880 return; 10881 } 10882 if (!fp_access_check(s)) { 10883 return; 10884 } 10885 10886 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10887 break; 10888 default: 10889 /* opcode 15 not allocated */ 10890 unallocated_encoding(s); 10891 break; 10892 } 10893 } 10894 10895 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10896 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10897 { 10898 int rd = extract32(insn, 0, 5); 10899 int rn = extract32(insn, 5, 5); 10900 int rm = extract32(insn, 16, 5); 10901 int size = extract32(insn, 22, 2); 10902 bool is_u = extract32(insn, 29, 1); 10903 bool is_q = extract32(insn, 30, 1); 10904 10905 if (!fp_access_check(s)) { 10906 return; 10907 } 10908 10909 switch (size + 4 * is_u) { 10910 case 0: /* AND */ 10911 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10912 return; 10913 case 1: /* BIC */ 10914 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10915 return; 10916 case 2: /* ORR */ 10917 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10918 return; 10919 case 3: /* ORN */ 10920 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10921 return; 10922 case 4: /* EOR */ 10923 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10924 return; 10925 10926 case 5: /* BSL bitwise select */ 10927 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10928 return; 10929 case 6: /* BIT, bitwise insert if true */ 10930 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10931 return; 10932 case 7: /* BIF, bitwise insert if false */ 10933 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10934 return; 10935 10936 default: 10937 g_assert_not_reached(); 10938 } 10939 } 10940 10941 /* Pairwise op subgroup of C3.6.16. 10942 * 10943 * This is called directly for float pairwise 10944 * operations where the opcode and size are calculated differently. 10945 */ 10946 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10947 int size, int rn, int rm, int rd) 10948 { 10949 TCGv_ptr fpst; 10950 int pass; 10951 10952 /* Floating point operations need fpst */ 10953 if (opcode >= 0x58) { 10954 fpst = fpstatus_ptr(FPST_FPCR); 10955 } else { 10956 fpst = NULL; 10957 } 10958 10959 if (!fp_access_check(s)) { 10960 return; 10961 } 10962 10963 /* These operations work on the concatenated rm:rn, with each pair of 10964 * adjacent elements being operated on to produce an element in the result. 10965 */ 10966 if (size == 3) { 10967 TCGv_i64 tcg_res[2]; 10968 10969 for (pass = 0; pass < 2; pass++) { 10970 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10971 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10972 int passreg = (pass == 0) ? rn : rm; 10973 10974 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10975 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10976 tcg_res[pass] = tcg_temp_new_i64(); 10977 10978 switch (opcode) { 10979 case 0x17: /* ADDP */ 10980 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10981 break; 10982 case 0x58: /* FMAXNMP */ 10983 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10984 break; 10985 case 0x5a: /* FADDP */ 10986 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10987 break; 10988 case 0x5e: /* FMAXP */ 10989 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10990 break; 10991 case 0x78: /* FMINNMP */ 10992 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10993 break; 10994 case 0x7e: /* FMINP */ 10995 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10996 break; 10997 default: 10998 g_assert_not_reached(); 10999 } 11000 } 11001 11002 for (pass = 0; pass < 2; pass++) { 11003 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11004 } 11005 } else { 11006 int maxpass = is_q ? 4 : 2; 11007 TCGv_i32 tcg_res[4]; 11008 11009 for (pass = 0; pass < maxpass; pass++) { 11010 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11011 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11012 NeonGenTwoOpFn *genfn = NULL; 11013 int passreg = pass < (maxpass / 2) ? rn : rm; 11014 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11015 11016 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11017 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11018 tcg_res[pass] = tcg_temp_new_i32(); 11019 11020 switch (opcode) { 11021 case 0x17: /* ADDP */ 11022 { 11023 static NeonGenTwoOpFn * const fns[3] = { 11024 gen_helper_neon_padd_u8, 11025 gen_helper_neon_padd_u16, 11026 tcg_gen_add_i32, 11027 }; 11028 genfn = fns[size]; 11029 break; 11030 } 11031 case 0x14: /* SMAXP, UMAXP */ 11032 { 11033 static NeonGenTwoOpFn * const fns[3][2] = { 11034 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11035 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11036 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11037 }; 11038 genfn = fns[size][u]; 11039 break; 11040 } 11041 case 0x15: /* SMINP, UMINP */ 11042 { 11043 static NeonGenTwoOpFn * const fns[3][2] = { 11044 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11045 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11046 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11047 }; 11048 genfn = fns[size][u]; 11049 break; 11050 } 11051 /* The FP operations are all on single floats (32 bit) */ 11052 case 0x58: /* FMAXNMP */ 11053 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11054 break; 11055 case 0x5a: /* FADDP */ 11056 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11057 break; 11058 case 0x5e: /* FMAXP */ 11059 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11060 break; 11061 case 0x78: /* FMINNMP */ 11062 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11063 break; 11064 case 0x7e: /* FMINP */ 11065 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11066 break; 11067 default: 11068 g_assert_not_reached(); 11069 } 11070 11071 /* FP ops called directly, otherwise call now */ 11072 if (genfn) { 11073 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11074 } 11075 } 11076 11077 for (pass = 0; pass < maxpass; pass++) { 11078 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11079 } 11080 clear_vec_high(s, is_q, rd); 11081 } 11082 } 11083 11084 /* Floating point op subgroup of C3.6.16. */ 11085 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11086 { 11087 /* For floating point ops, the U, size[1] and opcode bits 11088 * together indicate the operation. size[0] indicates single 11089 * or double. 11090 */ 11091 int fpopcode = extract32(insn, 11, 5) 11092 | (extract32(insn, 23, 1) << 5) 11093 | (extract32(insn, 29, 1) << 6); 11094 int is_q = extract32(insn, 30, 1); 11095 int size = extract32(insn, 22, 1); 11096 int rm = extract32(insn, 16, 5); 11097 int rn = extract32(insn, 5, 5); 11098 int rd = extract32(insn, 0, 5); 11099 11100 if (size == 1 && !is_q) { 11101 unallocated_encoding(s); 11102 return; 11103 } 11104 11105 switch (fpopcode) { 11106 case 0x58: /* FMAXNMP */ 11107 case 0x5a: /* FADDP */ 11108 case 0x5e: /* FMAXP */ 11109 case 0x78: /* FMINNMP */ 11110 case 0x7e: /* FMINP */ 11111 if (size && !is_q) { 11112 unallocated_encoding(s); 11113 return; 11114 } 11115 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11116 rn, rm, rd); 11117 return; 11118 11119 case 0x1d: /* FMLAL */ 11120 case 0x3d: /* FMLSL */ 11121 case 0x59: /* FMLAL2 */ 11122 case 0x79: /* FMLSL2 */ 11123 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11124 unallocated_encoding(s); 11125 return; 11126 } 11127 if (fp_access_check(s)) { 11128 int is_s = extract32(insn, 23, 1); 11129 int is_2 = extract32(insn, 29, 1); 11130 int data = (is_2 << 1) | is_s; 11131 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11132 vec_full_reg_offset(s, rn), 11133 vec_full_reg_offset(s, rm), tcg_env, 11134 is_q ? 16 : 8, vec_full_reg_size(s), 11135 data, gen_helper_gvec_fmlal_a64); 11136 } 11137 return; 11138 11139 default: 11140 case 0x18: /* FMAXNM */ 11141 case 0x19: /* FMLA */ 11142 case 0x1a: /* FADD */ 11143 case 0x1b: /* FMULX */ 11144 case 0x1c: /* FCMEQ */ 11145 case 0x1e: /* FMAX */ 11146 case 0x1f: /* FRECPS */ 11147 case 0x38: /* FMINNM */ 11148 case 0x39: /* FMLS */ 11149 case 0x3a: /* FSUB */ 11150 case 0x3e: /* FMIN */ 11151 case 0x3f: /* FRSQRTS */ 11152 case 0x5b: /* FMUL */ 11153 case 0x5c: /* FCMGE */ 11154 case 0x5d: /* FACGE */ 11155 case 0x5f: /* FDIV */ 11156 case 0x7a: /* FABD */ 11157 case 0x7d: /* FACGT */ 11158 case 0x7c: /* FCMGT */ 11159 unallocated_encoding(s); 11160 return; 11161 } 11162 } 11163 11164 /* Integer op subgroup of C3.6.16. */ 11165 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11166 { 11167 int is_q = extract32(insn, 30, 1); 11168 int u = extract32(insn, 29, 1); 11169 int size = extract32(insn, 22, 2); 11170 int opcode = extract32(insn, 11, 5); 11171 int rm = extract32(insn, 16, 5); 11172 int rn = extract32(insn, 5, 5); 11173 int rd = extract32(insn, 0, 5); 11174 int pass; 11175 TCGCond cond; 11176 11177 switch (opcode) { 11178 case 0x13: /* MUL, PMUL */ 11179 if (u && size != 0) { 11180 unallocated_encoding(s); 11181 return; 11182 } 11183 /* fall through */ 11184 case 0x0: /* SHADD, UHADD */ 11185 case 0x2: /* SRHADD, URHADD */ 11186 case 0x4: /* SHSUB, UHSUB */ 11187 case 0xc: /* SMAX, UMAX */ 11188 case 0xd: /* SMIN, UMIN */ 11189 case 0xe: /* SABD, UABD */ 11190 case 0xf: /* SABA, UABA */ 11191 case 0x12: /* MLA, MLS */ 11192 if (size == 3) { 11193 unallocated_encoding(s); 11194 return; 11195 } 11196 break; 11197 case 0x16: /* SQDMULH, SQRDMULH */ 11198 if (size == 0 || size == 3) { 11199 unallocated_encoding(s); 11200 return; 11201 } 11202 break; 11203 default: 11204 if (size == 3 && !is_q) { 11205 unallocated_encoding(s); 11206 return; 11207 } 11208 break; 11209 } 11210 11211 if (!fp_access_check(s)) { 11212 return; 11213 } 11214 11215 switch (opcode) { 11216 case 0x01: /* SQADD, UQADD */ 11217 if (u) { 11218 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11219 } else { 11220 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11221 } 11222 return; 11223 case 0x05: /* SQSUB, UQSUB */ 11224 if (u) { 11225 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11226 } else { 11227 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11228 } 11229 return; 11230 case 0x08: /* SSHL, USHL */ 11231 if (u) { 11232 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11233 } else { 11234 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11235 } 11236 return; 11237 case 0x0c: /* SMAX, UMAX */ 11238 if (u) { 11239 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11240 } else { 11241 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11242 } 11243 return; 11244 case 0x0d: /* SMIN, UMIN */ 11245 if (u) { 11246 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11247 } else { 11248 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11249 } 11250 return; 11251 case 0xe: /* SABD, UABD */ 11252 if (u) { 11253 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11254 } else { 11255 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11256 } 11257 return; 11258 case 0xf: /* SABA, UABA */ 11259 if (u) { 11260 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11261 } else { 11262 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11263 } 11264 return; 11265 case 0x10: /* ADD, SUB */ 11266 if (u) { 11267 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11268 } else { 11269 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11270 } 11271 return; 11272 case 0x13: /* MUL, PMUL */ 11273 if (!u) { /* MUL */ 11274 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11275 } else { /* PMUL */ 11276 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11277 } 11278 return; 11279 case 0x12: /* MLA, MLS */ 11280 if (u) { 11281 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11282 } else { 11283 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11284 } 11285 return; 11286 case 0x16: /* SQDMULH, SQRDMULH */ 11287 { 11288 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11289 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11290 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11291 }; 11292 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11293 } 11294 return; 11295 case 0x11: 11296 if (!u) { /* CMTST */ 11297 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11298 return; 11299 } 11300 /* else CMEQ */ 11301 cond = TCG_COND_EQ; 11302 goto do_gvec_cmp; 11303 case 0x06: /* CMGT, CMHI */ 11304 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11305 goto do_gvec_cmp; 11306 case 0x07: /* CMGE, CMHS */ 11307 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11308 do_gvec_cmp: 11309 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11310 vec_full_reg_offset(s, rn), 11311 vec_full_reg_offset(s, rm), 11312 is_q ? 16 : 8, vec_full_reg_size(s)); 11313 return; 11314 } 11315 11316 if (size == 3) { 11317 assert(is_q); 11318 for (pass = 0; pass < 2; pass++) { 11319 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11320 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11321 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11322 11323 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11324 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11325 11326 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11327 11328 write_vec_element(s, tcg_res, rd, pass, MO_64); 11329 } 11330 } else { 11331 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11332 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11333 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11334 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11335 NeonGenTwoOpFn *genfn = NULL; 11336 NeonGenTwoOpEnvFn *genenvfn = NULL; 11337 11338 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11339 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11340 11341 switch (opcode) { 11342 case 0x0: /* SHADD, UHADD */ 11343 { 11344 static NeonGenTwoOpFn * const fns[3][2] = { 11345 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11346 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11347 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11348 }; 11349 genfn = fns[size][u]; 11350 break; 11351 } 11352 case 0x2: /* SRHADD, URHADD */ 11353 { 11354 static NeonGenTwoOpFn * const fns[3][2] = { 11355 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11356 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11357 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11358 }; 11359 genfn = fns[size][u]; 11360 break; 11361 } 11362 case 0x4: /* SHSUB, UHSUB */ 11363 { 11364 static NeonGenTwoOpFn * const fns[3][2] = { 11365 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11366 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11367 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11368 }; 11369 genfn = fns[size][u]; 11370 break; 11371 } 11372 case 0x9: /* SQSHL, UQSHL */ 11373 { 11374 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11375 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11376 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11377 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11378 }; 11379 genenvfn = fns[size][u]; 11380 break; 11381 } 11382 case 0xa: /* SRSHL, URSHL */ 11383 { 11384 static NeonGenTwoOpFn * const fns[3][2] = { 11385 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11386 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11387 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11388 }; 11389 genfn = fns[size][u]; 11390 break; 11391 } 11392 case 0xb: /* SQRSHL, UQRSHL */ 11393 { 11394 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11395 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11396 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11397 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11398 }; 11399 genenvfn = fns[size][u]; 11400 break; 11401 } 11402 default: 11403 g_assert_not_reached(); 11404 } 11405 11406 if (genenvfn) { 11407 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11408 } else { 11409 genfn(tcg_res, tcg_op1, tcg_op2); 11410 } 11411 11412 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11413 } 11414 } 11415 clear_vec_high(s, is_q, rd); 11416 } 11417 11418 /* AdvSIMD three same 11419 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11420 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11421 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11422 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11423 */ 11424 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11425 { 11426 int opcode = extract32(insn, 11, 5); 11427 11428 switch (opcode) { 11429 case 0x3: /* logic ops */ 11430 disas_simd_3same_logic(s, insn); 11431 break; 11432 case 0x17: /* ADDP */ 11433 case 0x14: /* SMAXP, UMAXP */ 11434 case 0x15: /* SMINP, UMINP */ 11435 { 11436 /* Pairwise operations */ 11437 int is_q = extract32(insn, 30, 1); 11438 int u = extract32(insn, 29, 1); 11439 int size = extract32(insn, 22, 2); 11440 int rm = extract32(insn, 16, 5); 11441 int rn = extract32(insn, 5, 5); 11442 int rd = extract32(insn, 0, 5); 11443 if (opcode == 0x17) { 11444 if (u || (size == 3 && !is_q)) { 11445 unallocated_encoding(s); 11446 return; 11447 } 11448 } else { 11449 if (size == 3) { 11450 unallocated_encoding(s); 11451 return; 11452 } 11453 } 11454 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11455 break; 11456 } 11457 case 0x18 ... 0x31: 11458 /* floating point ops, sz[1] and U are part of opcode */ 11459 disas_simd_3same_float(s, insn); 11460 break; 11461 default: 11462 disas_simd_3same_int(s, insn); 11463 break; 11464 } 11465 } 11466 11467 /* 11468 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11469 * 11470 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11471 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11472 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11473 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11474 * 11475 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11476 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11477 * 11478 */ 11479 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11480 { 11481 int opcode = extract32(insn, 11, 3); 11482 int u = extract32(insn, 29, 1); 11483 int a = extract32(insn, 23, 1); 11484 int is_q = extract32(insn, 30, 1); 11485 int rm = extract32(insn, 16, 5); 11486 int rn = extract32(insn, 5, 5); 11487 int rd = extract32(insn, 0, 5); 11488 /* 11489 * For these floating point ops, the U, a and opcode bits 11490 * together indicate the operation. 11491 */ 11492 int fpopcode = opcode | (a << 3) | (u << 4); 11493 bool pairwise; 11494 TCGv_ptr fpst; 11495 int pass; 11496 11497 switch (fpopcode) { 11498 case 0x10: /* FMAXNMP */ 11499 case 0x12: /* FADDP */ 11500 case 0x16: /* FMAXP */ 11501 case 0x18: /* FMINNMP */ 11502 case 0x1e: /* FMINP */ 11503 pairwise = true; 11504 break; 11505 default: 11506 case 0x0: /* FMAXNM */ 11507 case 0x1: /* FMLA */ 11508 case 0x2: /* FADD */ 11509 case 0x3: /* FMULX */ 11510 case 0x4: /* FCMEQ */ 11511 case 0x6: /* FMAX */ 11512 case 0x7: /* FRECPS */ 11513 case 0x8: /* FMINNM */ 11514 case 0x9: /* FMLS */ 11515 case 0xa: /* FSUB */ 11516 case 0xe: /* FMIN */ 11517 case 0xf: /* FRSQRTS */ 11518 case 0x13: /* FMUL */ 11519 case 0x14: /* FCMGE */ 11520 case 0x15: /* FACGE */ 11521 case 0x17: /* FDIV */ 11522 case 0x1a: /* FABD */ 11523 case 0x1c: /* FCMGT */ 11524 case 0x1d: /* FACGT */ 11525 unallocated_encoding(s); 11526 return; 11527 } 11528 11529 if (!dc_isar_feature(aa64_fp16, s)) { 11530 unallocated_encoding(s); 11531 return; 11532 } 11533 11534 if (!fp_access_check(s)) { 11535 return; 11536 } 11537 11538 fpst = fpstatus_ptr(FPST_FPCR_F16); 11539 11540 if (pairwise) { 11541 int maxpass = is_q ? 8 : 4; 11542 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11543 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11544 TCGv_i32 tcg_res[8]; 11545 11546 for (pass = 0; pass < maxpass; pass++) { 11547 int passreg = pass < (maxpass / 2) ? rn : rm; 11548 int passelt = (pass << 1) & (maxpass - 1); 11549 11550 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11551 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11552 tcg_res[pass] = tcg_temp_new_i32(); 11553 11554 switch (fpopcode) { 11555 case 0x10: /* FMAXNMP */ 11556 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11557 fpst); 11558 break; 11559 case 0x12: /* FADDP */ 11560 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11561 break; 11562 case 0x16: /* FMAXP */ 11563 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11564 break; 11565 case 0x18: /* FMINNMP */ 11566 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11567 fpst); 11568 break; 11569 case 0x1e: /* FMINP */ 11570 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11571 break; 11572 default: 11573 g_assert_not_reached(); 11574 } 11575 } 11576 11577 for (pass = 0; pass < maxpass; pass++) { 11578 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11579 } 11580 } else { 11581 g_assert_not_reached(); 11582 } 11583 11584 clear_vec_high(s, is_q, rd); 11585 } 11586 11587 /* AdvSIMD three same extra 11588 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11589 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11590 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11591 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11592 */ 11593 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11594 { 11595 int rd = extract32(insn, 0, 5); 11596 int rn = extract32(insn, 5, 5); 11597 int opcode = extract32(insn, 11, 4); 11598 int rm = extract32(insn, 16, 5); 11599 int size = extract32(insn, 22, 2); 11600 bool u = extract32(insn, 29, 1); 11601 bool is_q = extract32(insn, 30, 1); 11602 bool feature; 11603 int rot; 11604 11605 switch (u * 16 + opcode) { 11606 case 0x10: /* SQRDMLAH (vector) */ 11607 case 0x11: /* SQRDMLSH (vector) */ 11608 if (size != 1 && size != 2) { 11609 unallocated_encoding(s); 11610 return; 11611 } 11612 feature = dc_isar_feature(aa64_rdm, s); 11613 break; 11614 case 0x02: /* SDOT (vector) */ 11615 case 0x12: /* UDOT (vector) */ 11616 if (size != MO_32) { 11617 unallocated_encoding(s); 11618 return; 11619 } 11620 feature = dc_isar_feature(aa64_dp, s); 11621 break; 11622 case 0x03: /* USDOT */ 11623 if (size != MO_32) { 11624 unallocated_encoding(s); 11625 return; 11626 } 11627 feature = dc_isar_feature(aa64_i8mm, s); 11628 break; 11629 case 0x04: /* SMMLA */ 11630 case 0x14: /* UMMLA */ 11631 case 0x05: /* USMMLA */ 11632 if (!is_q || size != MO_32) { 11633 unallocated_encoding(s); 11634 return; 11635 } 11636 feature = dc_isar_feature(aa64_i8mm, s); 11637 break; 11638 case 0x18: /* FCMLA, #0 */ 11639 case 0x19: /* FCMLA, #90 */ 11640 case 0x1a: /* FCMLA, #180 */ 11641 case 0x1b: /* FCMLA, #270 */ 11642 case 0x1c: /* FCADD, #90 */ 11643 case 0x1e: /* FCADD, #270 */ 11644 if (size == 0 11645 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11646 || (size == 3 && !is_q)) { 11647 unallocated_encoding(s); 11648 return; 11649 } 11650 feature = dc_isar_feature(aa64_fcma, s); 11651 break; 11652 case 0x1d: /* BFMMLA */ 11653 if (size != MO_16 || !is_q) { 11654 unallocated_encoding(s); 11655 return; 11656 } 11657 feature = dc_isar_feature(aa64_bf16, s); 11658 break; 11659 case 0x1f: 11660 switch (size) { 11661 case 1: /* BFDOT */ 11662 case 3: /* BFMLAL{B,T} */ 11663 feature = dc_isar_feature(aa64_bf16, s); 11664 break; 11665 default: 11666 unallocated_encoding(s); 11667 return; 11668 } 11669 break; 11670 default: 11671 unallocated_encoding(s); 11672 return; 11673 } 11674 if (!feature) { 11675 unallocated_encoding(s); 11676 return; 11677 } 11678 if (!fp_access_check(s)) { 11679 return; 11680 } 11681 11682 switch (opcode) { 11683 case 0x0: /* SQRDMLAH (vector) */ 11684 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11685 return; 11686 11687 case 0x1: /* SQRDMLSH (vector) */ 11688 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11689 return; 11690 11691 case 0x2: /* SDOT / UDOT */ 11692 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11693 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11694 return; 11695 11696 case 0x3: /* USDOT */ 11697 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11698 return; 11699 11700 case 0x04: /* SMMLA, UMMLA */ 11701 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11702 u ? gen_helper_gvec_ummla_b 11703 : gen_helper_gvec_smmla_b); 11704 return; 11705 case 0x05: /* USMMLA */ 11706 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11707 return; 11708 11709 case 0x8: /* FCMLA, #0 */ 11710 case 0x9: /* FCMLA, #90 */ 11711 case 0xa: /* FCMLA, #180 */ 11712 case 0xb: /* FCMLA, #270 */ 11713 rot = extract32(opcode, 0, 2); 11714 switch (size) { 11715 case 1: 11716 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11717 gen_helper_gvec_fcmlah); 11718 break; 11719 case 2: 11720 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11721 gen_helper_gvec_fcmlas); 11722 break; 11723 case 3: 11724 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11725 gen_helper_gvec_fcmlad); 11726 break; 11727 default: 11728 g_assert_not_reached(); 11729 } 11730 return; 11731 11732 case 0xc: /* FCADD, #90 */ 11733 case 0xe: /* FCADD, #270 */ 11734 rot = extract32(opcode, 1, 1); 11735 switch (size) { 11736 case 1: 11737 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11738 gen_helper_gvec_fcaddh); 11739 break; 11740 case 2: 11741 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11742 gen_helper_gvec_fcadds); 11743 break; 11744 case 3: 11745 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11746 gen_helper_gvec_fcaddd); 11747 break; 11748 default: 11749 g_assert_not_reached(); 11750 } 11751 return; 11752 11753 case 0xd: /* BFMMLA */ 11754 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11755 return; 11756 case 0xf: 11757 switch (size) { 11758 case 1: /* BFDOT */ 11759 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11760 break; 11761 case 3: /* BFMLAL{B,T} */ 11762 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11763 gen_helper_gvec_bfmlal); 11764 break; 11765 default: 11766 g_assert_not_reached(); 11767 } 11768 return; 11769 11770 default: 11771 g_assert_not_reached(); 11772 } 11773 } 11774 11775 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11776 int size, int rn, int rd) 11777 { 11778 /* Handle 2-reg-misc ops which are widening (so each size element 11779 * in the source becomes a 2*size element in the destination. 11780 * The only instruction like this is FCVTL. 11781 */ 11782 int pass; 11783 11784 if (size == 3) { 11785 /* 32 -> 64 bit fp conversion */ 11786 TCGv_i64 tcg_res[2]; 11787 int srcelt = is_q ? 2 : 0; 11788 11789 for (pass = 0; pass < 2; pass++) { 11790 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11791 tcg_res[pass] = tcg_temp_new_i64(); 11792 11793 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11794 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11795 } 11796 for (pass = 0; pass < 2; pass++) { 11797 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11798 } 11799 } else { 11800 /* 16 -> 32 bit fp conversion */ 11801 int srcelt = is_q ? 4 : 0; 11802 TCGv_i32 tcg_res[4]; 11803 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11804 TCGv_i32 ahp = get_ahp_flag(); 11805 11806 for (pass = 0; pass < 4; pass++) { 11807 tcg_res[pass] = tcg_temp_new_i32(); 11808 11809 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11810 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11811 fpst, ahp); 11812 } 11813 for (pass = 0; pass < 4; pass++) { 11814 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11815 } 11816 } 11817 } 11818 11819 static void handle_rev(DisasContext *s, int opcode, bool u, 11820 bool is_q, int size, int rn, int rd) 11821 { 11822 int op = (opcode << 1) | u; 11823 int opsz = op + size; 11824 int grp_size = 3 - opsz; 11825 int dsize = is_q ? 128 : 64; 11826 int i; 11827 11828 if (opsz >= 3) { 11829 unallocated_encoding(s); 11830 return; 11831 } 11832 11833 if (!fp_access_check(s)) { 11834 return; 11835 } 11836 11837 if (size == 0) { 11838 /* Special case bytes, use bswap op on each group of elements */ 11839 int groups = dsize / (8 << grp_size); 11840 11841 for (i = 0; i < groups; i++) { 11842 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11843 11844 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11845 switch (grp_size) { 11846 case MO_16: 11847 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11848 break; 11849 case MO_32: 11850 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11851 break; 11852 case MO_64: 11853 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11854 break; 11855 default: 11856 g_assert_not_reached(); 11857 } 11858 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11859 } 11860 clear_vec_high(s, is_q, rd); 11861 } else { 11862 int revmask = (1 << grp_size) - 1; 11863 int esize = 8 << size; 11864 int elements = dsize / esize; 11865 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11866 TCGv_i64 tcg_rd[2]; 11867 11868 for (i = 0; i < 2; i++) { 11869 tcg_rd[i] = tcg_temp_new_i64(); 11870 tcg_gen_movi_i64(tcg_rd[i], 0); 11871 } 11872 11873 for (i = 0; i < elements; i++) { 11874 int e_rev = (i & 0xf) ^ revmask; 11875 int w = (e_rev * esize) / 64; 11876 int o = (e_rev * esize) % 64; 11877 11878 read_vec_element(s, tcg_rn, rn, i, size); 11879 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11880 } 11881 11882 for (i = 0; i < 2; i++) { 11883 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11884 } 11885 clear_vec_high(s, true, rd); 11886 } 11887 } 11888 11889 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11890 bool is_q, int size, int rn, int rd) 11891 { 11892 /* Implement the pairwise operations from 2-misc: 11893 * SADDLP, UADDLP, SADALP, UADALP. 11894 * These all add pairs of elements in the input to produce a 11895 * double-width result element in the output (possibly accumulating). 11896 */ 11897 bool accum = (opcode == 0x6); 11898 int maxpass = is_q ? 2 : 1; 11899 int pass; 11900 TCGv_i64 tcg_res[2]; 11901 11902 if (size == 2) { 11903 /* 32 + 32 -> 64 op */ 11904 MemOp memop = size + (u ? 0 : MO_SIGN); 11905 11906 for (pass = 0; pass < maxpass; pass++) { 11907 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11908 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11909 11910 tcg_res[pass] = tcg_temp_new_i64(); 11911 11912 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11913 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11914 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11915 if (accum) { 11916 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11917 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11918 } 11919 } 11920 } else { 11921 for (pass = 0; pass < maxpass; pass++) { 11922 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11923 NeonGenOne64OpFn *genfn; 11924 static NeonGenOne64OpFn * const fns[2][2] = { 11925 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11926 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11927 }; 11928 11929 genfn = fns[size][u]; 11930 11931 tcg_res[pass] = tcg_temp_new_i64(); 11932 11933 read_vec_element(s, tcg_op, rn, pass, MO_64); 11934 genfn(tcg_res[pass], tcg_op); 11935 11936 if (accum) { 11937 read_vec_element(s, tcg_op, rd, pass, MO_64); 11938 if (size == 0) { 11939 gen_helper_neon_addl_u16(tcg_res[pass], 11940 tcg_res[pass], tcg_op); 11941 } else { 11942 gen_helper_neon_addl_u32(tcg_res[pass], 11943 tcg_res[pass], tcg_op); 11944 } 11945 } 11946 } 11947 } 11948 if (!is_q) { 11949 tcg_res[1] = tcg_constant_i64(0); 11950 } 11951 for (pass = 0; pass < 2; pass++) { 11952 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11953 } 11954 } 11955 11956 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11957 { 11958 /* Implement SHLL and SHLL2 */ 11959 int pass; 11960 int part = is_q ? 2 : 0; 11961 TCGv_i64 tcg_res[2]; 11962 11963 for (pass = 0; pass < 2; pass++) { 11964 static NeonGenWidenFn * const widenfns[3] = { 11965 gen_helper_neon_widen_u8, 11966 gen_helper_neon_widen_u16, 11967 tcg_gen_extu_i32_i64, 11968 }; 11969 NeonGenWidenFn *widenfn = widenfns[size]; 11970 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11971 11972 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11973 tcg_res[pass] = tcg_temp_new_i64(); 11974 widenfn(tcg_res[pass], tcg_op); 11975 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11976 } 11977 11978 for (pass = 0; pass < 2; pass++) { 11979 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11980 } 11981 } 11982 11983 /* AdvSIMD two reg misc 11984 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11985 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11986 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11987 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11988 */ 11989 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11990 { 11991 int size = extract32(insn, 22, 2); 11992 int opcode = extract32(insn, 12, 5); 11993 bool u = extract32(insn, 29, 1); 11994 bool is_q = extract32(insn, 30, 1); 11995 int rn = extract32(insn, 5, 5); 11996 int rd = extract32(insn, 0, 5); 11997 bool need_fpstatus = false; 11998 int rmode = -1; 11999 TCGv_i32 tcg_rmode; 12000 TCGv_ptr tcg_fpstatus; 12001 12002 switch (opcode) { 12003 case 0x0: /* REV64, REV32 */ 12004 case 0x1: /* REV16 */ 12005 handle_rev(s, opcode, u, is_q, size, rn, rd); 12006 return; 12007 case 0x5: /* CNT, NOT, RBIT */ 12008 if (u && size == 0) { 12009 /* NOT */ 12010 break; 12011 } else if (u && size == 1) { 12012 /* RBIT */ 12013 break; 12014 } else if (!u && size == 0) { 12015 /* CNT */ 12016 break; 12017 } 12018 unallocated_encoding(s); 12019 return; 12020 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12021 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12022 if (size == 3) { 12023 unallocated_encoding(s); 12024 return; 12025 } 12026 if (!fp_access_check(s)) { 12027 return; 12028 } 12029 12030 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12031 return; 12032 case 0x4: /* CLS, CLZ */ 12033 if (size == 3) { 12034 unallocated_encoding(s); 12035 return; 12036 } 12037 break; 12038 case 0x2: /* SADDLP, UADDLP */ 12039 case 0x6: /* SADALP, UADALP */ 12040 if (size == 3) { 12041 unallocated_encoding(s); 12042 return; 12043 } 12044 if (!fp_access_check(s)) { 12045 return; 12046 } 12047 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12048 return; 12049 case 0x13: /* SHLL, SHLL2 */ 12050 if (u == 0 || size == 3) { 12051 unallocated_encoding(s); 12052 return; 12053 } 12054 if (!fp_access_check(s)) { 12055 return; 12056 } 12057 handle_shll(s, is_q, size, rn, rd); 12058 return; 12059 case 0xa: /* CMLT */ 12060 if (u == 1) { 12061 unallocated_encoding(s); 12062 return; 12063 } 12064 /* fall through */ 12065 case 0x8: /* CMGT, CMGE */ 12066 case 0x9: /* CMEQ, CMLE */ 12067 case 0xb: /* ABS, NEG */ 12068 if (size == 3 && !is_q) { 12069 unallocated_encoding(s); 12070 return; 12071 } 12072 break; 12073 case 0x3: /* SUQADD, USQADD */ 12074 if (size == 3 && !is_q) { 12075 unallocated_encoding(s); 12076 return; 12077 } 12078 if (!fp_access_check(s)) { 12079 return; 12080 } 12081 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12082 return; 12083 case 0x7: /* SQABS, SQNEG */ 12084 if (size == 3 && !is_q) { 12085 unallocated_encoding(s); 12086 return; 12087 } 12088 break; 12089 case 0xc ... 0xf: 12090 case 0x16 ... 0x1f: 12091 { 12092 /* Floating point: U, size[1] and opcode indicate operation; 12093 * size[0] indicates single or double precision. 12094 */ 12095 int is_double = extract32(size, 0, 1); 12096 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12097 size = is_double ? 3 : 2; 12098 switch (opcode) { 12099 case 0x2f: /* FABS */ 12100 case 0x6f: /* FNEG */ 12101 if (size == 3 && !is_q) { 12102 unallocated_encoding(s); 12103 return; 12104 } 12105 break; 12106 case 0x1d: /* SCVTF */ 12107 case 0x5d: /* UCVTF */ 12108 { 12109 bool is_signed = (opcode == 0x1d) ? true : false; 12110 int elements = is_double ? 2 : is_q ? 4 : 2; 12111 if (is_double && !is_q) { 12112 unallocated_encoding(s); 12113 return; 12114 } 12115 if (!fp_access_check(s)) { 12116 return; 12117 } 12118 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12119 return; 12120 } 12121 case 0x2c: /* FCMGT (zero) */ 12122 case 0x2d: /* FCMEQ (zero) */ 12123 case 0x2e: /* FCMLT (zero) */ 12124 case 0x6c: /* FCMGE (zero) */ 12125 case 0x6d: /* FCMLE (zero) */ 12126 if (size == 3 && !is_q) { 12127 unallocated_encoding(s); 12128 return; 12129 } 12130 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12131 return; 12132 case 0x7f: /* FSQRT */ 12133 if (size == 3 && !is_q) { 12134 unallocated_encoding(s); 12135 return; 12136 } 12137 break; 12138 case 0x1a: /* FCVTNS */ 12139 case 0x1b: /* FCVTMS */ 12140 case 0x3a: /* FCVTPS */ 12141 case 0x3b: /* FCVTZS */ 12142 case 0x5a: /* FCVTNU */ 12143 case 0x5b: /* FCVTMU */ 12144 case 0x7a: /* FCVTPU */ 12145 case 0x7b: /* FCVTZU */ 12146 need_fpstatus = true; 12147 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12148 if (size == 3 && !is_q) { 12149 unallocated_encoding(s); 12150 return; 12151 } 12152 break; 12153 case 0x5c: /* FCVTAU */ 12154 case 0x1c: /* FCVTAS */ 12155 need_fpstatus = true; 12156 rmode = FPROUNDING_TIEAWAY; 12157 if (size == 3 && !is_q) { 12158 unallocated_encoding(s); 12159 return; 12160 } 12161 break; 12162 case 0x3c: /* URECPE */ 12163 if (size == 3) { 12164 unallocated_encoding(s); 12165 return; 12166 } 12167 /* fall through */ 12168 case 0x3d: /* FRECPE */ 12169 case 0x7d: /* FRSQRTE */ 12170 if (size == 3 && !is_q) { 12171 unallocated_encoding(s); 12172 return; 12173 } 12174 if (!fp_access_check(s)) { 12175 return; 12176 } 12177 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12178 return; 12179 case 0x56: /* FCVTXN, FCVTXN2 */ 12180 if (size == 2) { 12181 unallocated_encoding(s); 12182 return; 12183 } 12184 /* fall through */ 12185 case 0x16: /* FCVTN, FCVTN2 */ 12186 /* handle_2misc_narrow does a 2*size -> size operation, but these 12187 * instructions encode the source size rather than dest size. 12188 */ 12189 if (!fp_access_check(s)) { 12190 return; 12191 } 12192 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12193 return; 12194 case 0x36: /* BFCVTN, BFCVTN2 */ 12195 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12196 unallocated_encoding(s); 12197 return; 12198 } 12199 if (!fp_access_check(s)) { 12200 return; 12201 } 12202 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12203 return; 12204 case 0x17: /* FCVTL, FCVTL2 */ 12205 if (!fp_access_check(s)) { 12206 return; 12207 } 12208 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12209 return; 12210 case 0x18: /* FRINTN */ 12211 case 0x19: /* FRINTM */ 12212 case 0x38: /* FRINTP */ 12213 case 0x39: /* FRINTZ */ 12214 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12215 /* fall through */ 12216 case 0x59: /* FRINTX */ 12217 case 0x79: /* FRINTI */ 12218 need_fpstatus = true; 12219 if (size == 3 && !is_q) { 12220 unallocated_encoding(s); 12221 return; 12222 } 12223 break; 12224 case 0x58: /* FRINTA */ 12225 rmode = FPROUNDING_TIEAWAY; 12226 need_fpstatus = true; 12227 if (size == 3 && !is_q) { 12228 unallocated_encoding(s); 12229 return; 12230 } 12231 break; 12232 case 0x7c: /* URSQRTE */ 12233 if (size == 3) { 12234 unallocated_encoding(s); 12235 return; 12236 } 12237 break; 12238 case 0x1e: /* FRINT32Z */ 12239 case 0x1f: /* FRINT64Z */ 12240 rmode = FPROUNDING_ZERO; 12241 /* fall through */ 12242 case 0x5e: /* FRINT32X */ 12243 case 0x5f: /* FRINT64X */ 12244 need_fpstatus = true; 12245 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12246 unallocated_encoding(s); 12247 return; 12248 } 12249 break; 12250 default: 12251 unallocated_encoding(s); 12252 return; 12253 } 12254 break; 12255 } 12256 default: 12257 unallocated_encoding(s); 12258 return; 12259 } 12260 12261 if (!fp_access_check(s)) { 12262 return; 12263 } 12264 12265 if (need_fpstatus || rmode >= 0) { 12266 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12267 } else { 12268 tcg_fpstatus = NULL; 12269 } 12270 if (rmode >= 0) { 12271 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12272 } else { 12273 tcg_rmode = NULL; 12274 } 12275 12276 switch (opcode) { 12277 case 0x5: 12278 if (u && size == 0) { /* NOT */ 12279 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12280 return; 12281 } 12282 break; 12283 case 0x8: /* CMGT, CMGE */ 12284 if (u) { 12285 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12286 } else { 12287 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12288 } 12289 return; 12290 case 0x9: /* CMEQ, CMLE */ 12291 if (u) { 12292 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12293 } else { 12294 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12295 } 12296 return; 12297 case 0xa: /* CMLT */ 12298 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12299 return; 12300 case 0xb: 12301 if (u) { /* ABS, NEG */ 12302 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12303 } else { 12304 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12305 } 12306 return; 12307 } 12308 12309 if (size == 3) { 12310 /* All 64-bit element operations can be shared with scalar 2misc */ 12311 int pass; 12312 12313 /* Coverity claims (size == 3 && !is_q) has been eliminated 12314 * from all paths leading to here. 12315 */ 12316 tcg_debug_assert(is_q); 12317 for (pass = 0; pass < 2; pass++) { 12318 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12319 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12320 12321 read_vec_element(s, tcg_op, rn, pass, MO_64); 12322 12323 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12324 tcg_rmode, tcg_fpstatus); 12325 12326 write_vec_element(s, tcg_res, rd, pass, MO_64); 12327 } 12328 } else { 12329 int pass; 12330 12331 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12332 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12333 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12334 12335 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12336 12337 if (size == 2) { 12338 /* Special cases for 32 bit elements */ 12339 switch (opcode) { 12340 case 0x4: /* CLS */ 12341 if (u) { 12342 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12343 } else { 12344 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12345 } 12346 break; 12347 case 0x7: /* SQABS, SQNEG */ 12348 if (u) { 12349 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12350 } else { 12351 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12352 } 12353 break; 12354 case 0x2f: /* FABS */ 12355 gen_vfp_abss(tcg_res, tcg_op); 12356 break; 12357 case 0x6f: /* FNEG */ 12358 gen_vfp_negs(tcg_res, tcg_op); 12359 break; 12360 case 0x7f: /* FSQRT */ 12361 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12362 break; 12363 case 0x1a: /* FCVTNS */ 12364 case 0x1b: /* FCVTMS */ 12365 case 0x1c: /* FCVTAS */ 12366 case 0x3a: /* FCVTPS */ 12367 case 0x3b: /* FCVTZS */ 12368 gen_helper_vfp_tosls(tcg_res, tcg_op, 12369 tcg_constant_i32(0), tcg_fpstatus); 12370 break; 12371 case 0x5a: /* FCVTNU */ 12372 case 0x5b: /* FCVTMU */ 12373 case 0x5c: /* FCVTAU */ 12374 case 0x7a: /* FCVTPU */ 12375 case 0x7b: /* FCVTZU */ 12376 gen_helper_vfp_touls(tcg_res, tcg_op, 12377 tcg_constant_i32(0), tcg_fpstatus); 12378 break; 12379 case 0x18: /* FRINTN */ 12380 case 0x19: /* FRINTM */ 12381 case 0x38: /* FRINTP */ 12382 case 0x39: /* FRINTZ */ 12383 case 0x58: /* FRINTA */ 12384 case 0x79: /* FRINTI */ 12385 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12386 break; 12387 case 0x59: /* FRINTX */ 12388 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12389 break; 12390 case 0x7c: /* URSQRTE */ 12391 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12392 break; 12393 case 0x1e: /* FRINT32Z */ 12394 case 0x5e: /* FRINT32X */ 12395 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12396 break; 12397 case 0x1f: /* FRINT64Z */ 12398 case 0x5f: /* FRINT64X */ 12399 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12400 break; 12401 default: 12402 g_assert_not_reached(); 12403 } 12404 } else { 12405 /* Use helpers for 8 and 16 bit elements */ 12406 switch (opcode) { 12407 case 0x5: /* CNT, RBIT */ 12408 /* For these two insns size is part of the opcode specifier 12409 * (handled earlier); they always operate on byte elements. 12410 */ 12411 if (u) { 12412 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12413 } else { 12414 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12415 } 12416 break; 12417 case 0x7: /* SQABS, SQNEG */ 12418 { 12419 NeonGenOneOpEnvFn *genfn; 12420 static NeonGenOneOpEnvFn * const fns[2][2] = { 12421 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12422 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12423 }; 12424 genfn = fns[size][u]; 12425 genfn(tcg_res, tcg_env, tcg_op); 12426 break; 12427 } 12428 case 0x4: /* CLS, CLZ */ 12429 if (u) { 12430 if (size == 0) { 12431 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12432 } else { 12433 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12434 } 12435 } else { 12436 if (size == 0) { 12437 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12438 } else { 12439 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12440 } 12441 } 12442 break; 12443 default: 12444 g_assert_not_reached(); 12445 } 12446 } 12447 12448 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12449 } 12450 } 12451 clear_vec_high(s, is_q, rd); 12452 12453 if (tcg_rmode) { 12454 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12455 } 12456 } 12457 12458 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12459 * 12460 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12461 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12462 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12463 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12464 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12465 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12466 * 12467 * This actually covers two groups where scalar access is governed by 12468 * bit 28. A bunch of the instructions (float to integral) only exist 12469 * in the vector form and are un-allocated for the scalar decode. Also 12470 * in the scalar decode Q is always 1. 12471 */ 12472 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12473 { 12474 int fpop, opcode, a, u; 12475 int rn, rd; 12476 bool is_q; 12477 bool is_scalar; 12478 bool only_in_vector = false; 12479 12480 int pass; 12481 TCGv_i32 tcg_rmode = NULL; 12482 TCGv_ptr tcg_fpstatus = NULL; 12483 bool need_fpst = true; 12484 int rmode = -1; 12485 12486 if (!dc_isar_feature(aa64_fp16, s)) { 12487 unallocated_encoding(s); 12488 return; 12489 } 12490 12491 rd = extract32(insn, 0, 5); 12492 rn = extract32(insn, 5, 5); 12493 12494 a = extract32(insn, 23, 1); 12495 u = extract32(insn, 29, 1); 12496 is_scalar = extract32(insn, 28, 1); 12497 is_q = extract32(insn, 30, 1); 12498 12499 opcode = extract32(insn, 12, 5); 12500 fpop = deposit32(opcode, 5, 1, a); 12501 fpop = deposit32(fpop, 6, 1, u); 12502 12503 switch (fpop) { 12504 case 0x1d: /* SCVTF */ 12505 case 0x5d: /* UCVTF */ 12506 { 12507 int elements; 12508 12509 if (is_scalar) { 12510 elements = 1; 12511 } else { 12512 elements = (is_q ? 8 : 4); 12513 } 12514 12515 if (!fp_access_check(s)) { 12516 return; 12517 } 12518 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12519 return; 12520 } 12521 break; 12522 case 0x2c: /* FCMGT (zero) */ 12523 case 0x2d: /* FCMEQ (zero) */ 12524 case 0x2e: /* FCMLT (zero) */ 12525 case 0x6c: /* FCMGE (zero) */ 12526 case 0x6d: /* FCMLE (zero) */ 12527 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12528 return; 12529 case 0x3d: /* FRECPE */ 12530 case 0x3f: /* FRECPX */ 12531 break; 12532 case 0x18: /* FRINTN */ 12533 only_in_vector = true; 12534 rmode = FPROUNDING_TIEEVEN; 12535 break; 12536 case 0x19: /* FRINTM */ 12537 only_in_vector = true; 12538 rmode = FPROUNDING_NEGINF; 12539 break; 12540 case 0x38: /* FRINTP */ 12541 only_in_vector = true; 12542 rmode = FPROUNDING_POSINF; 12543 break; 12544 case 0x39: /* FRINTZ */ 12545 only_in_vector = true; 12546 rmode = FPROUNDING_ZERO; 12547 break; 12548 case 0x58: /* FRINTA */ 12549 only_in_vector = true; 12550 rmode = FPROUNDING_TIEAWAY; 12551 break; 12552 case 0x59: /* FRINTX */ 12553 case 0x79: /* FRINTI */ 12554 only_in_vector = true; 12555 /* current rounding mode */ 12556 break; 12557 case 0x1a: /* FCVTNS */ 12558 rmode = FPROUNDING_TIEEVEN; 12559 break; 12560 case 0x1b: /* FCVTMS */ 12561 rmode = FPROUNDING_NEGINF; 12562 break; 12563 case 0x1c: /* FCVTAS */ 12564 rmode = FPROUNDING_TIEAWAY; 12565 break; 12566 case 0x3a: /* FCVTPS */ 12567 rmode = FPROUNDING_POSINF; 12568 break; 12569 case 0x3b: /* FCVTZS */ 12570 rmode = FPROUNDING_ZERO; 12571 break; 12572 case 0x5a: /* FCVTNU */ 12573 rmode = FPROUNDING_TIEEVEN; 12574 break; 12575 case 0x5b: /* FCVTMU */ 12576 rmode = FPROUNDING_NEGINF; 12577 break; 12578 case 0x5c: /* FCVTAU */ 12579 rmode = FPROUNDING_TIEAWAY; 12580 break; 12581 case 0x7a: /* FCVTPU */ 12582 rmode = FPROUNDING_POSINF; 12583 break; 12584 case 0x7b: /* FCVTZU */ 12585 rmode = FPROUNDING_ZERO; 12586 break; 12587 case 0x2f: /* FABS */ 12588 case 0x6f: /* FNEG */ 12589 need_fpst = false; 12590 break; 12591 case 0x7d: /* FRSQRTE */ 12592 case 0x7f: /* FSQRT (vector) */ 12593 break; 12594 default: 12595 unallocated_encoding(s); 12596 return; 12597 } 12598 12599 12600 /* Check additional constraints for the scalar encoding */ 12601 if (is_scalar) { 12602 if (!is_q) { 12603 unallocated_encoding(s); 12604 return; 12605 } 12606 /* FRINTxx is only in the vector form */ 12607 if (only_in_vector) { 12608 unallocated_encoding(s); 12609 return; 12610 } 12611 } 12612 12613 if (!fp_access_check(s)) { 12614 return; 12615 } 12616 12617 if (rmode >= 0 || need_fpst) { 12618 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12619 } 12620 12621 if (rmode >= 0) { 12622 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12623 } 12624 12625 if (is_scalar) { 12626 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12627 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12628 12629 switch (fpop) { 12630 case 0x1a: /* FCVTNS */ 12631 case 0x1b: /* FCVTMS */ 12632 case 0x1c: /* FCVTAS */ 12633 case 0x3a: /* FCVTPS */ 12634 case 0x3b: /* FCVTZS */ 12635 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12636 break; 12637 case 0x3d: /* FRECPE */ 12638 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12639 break; 12640 case 0x3f: /* FRECPX */ 12641 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12642 break; 12643 case 0x5a: /* FCVTNU */ 12644 case 0x5b: /* FCVTMU */ 12645 case 0x5c: /* FCVTAU */ 12646 case 0x7a: /* FCVTPU */ 12647 case 0x7b: /* FCVTZU */ 12648 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12649 break; 12650 case 0x6f: /* FNEG */ 12651 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12652 break; 12653 case 0x7d: /* FRSQRTE */ 12654 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12655 break; 12656 default: 12657 g_assert_not_reached(); 12658 } 12659 12660 /* limit any sign extension going on */ 12661 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12662 write_fp_sreg(s, rd, tcg_res); 12663 } else { 12664 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12665 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12666 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12667 12668 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12669 12670 switch (fpop) { 12671 case 0x1a: /* FCVTNS */ 12672 case 0x1b: /* FCVTMS */ 12673 case 0x1c: /* FCVTAS */ 12674 case 0x3a: /* FCVTPS */ 12675 case 0x3b: /* FCVTZS */ 12676 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12677 break; 12678 case 0x3d: /* FRECPE */ 12679 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12680 break; 12681 case 0x5a: /* FCVTNU */ 12682 case 0x5b: /* FCVTMU */ 12683 case 0x5c: /* FCVTAU */ 12684 case 0x7a: /* FCVTPU */ 12685 case 0x7b: /* FCVTZU */ 12686 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12687 break; 12688 case 0x18: /* FRINTN */ 12689 case 0x19: /* FRINTM */ 12690 case 0x38: /* FRINTP */ 12691 case 0x39: /* FRINTZ */ 12692 case 0x58: /* FRINTA */ 12693 case 0x79: /* FRINTI */ 12694 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12695 break; 12696 case 0x59: /* FRINTX */ 12697 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12698 break; 12699 case 0x2f: /* FABS */ 12700 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12701 break; 12702 case 0x6f: /* FNEG */ 12703 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12704 break; 12705 case 0x7d: /* FRSQRTE */ 12706 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12707 break; 12708 case 0x7f: /* FSQRT */ 12709 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12710 break; 12711 default: 12712 g_assert_not_reached(); 12713 } 12714 12715 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12716 } 12717 12718 clear_vec_high(s, is_q, rd); 12719 } 12720 12721 if (tcg_rmode) { 12722 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12723 } 12724 } 12725 12726 /* AdvSIMD scalar x indexed element 12727 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12728 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12729 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12730 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12731 * AdvSIMD vector x indexed element 12732 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12733 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12734 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12735 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12736 */ 12737 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12738 { 12739 /* This encoding has two kinds of instruction: 12740 * normal, where we perform elt x idxelt => elt for each 12741 * element in the vector 12742 * long, where we perform elt x idxelt and generate a result of 12743 * double the width of the input element 12744 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12745 */ 12746 bool is_scalar = extract32(insn, 28, 1); 12747 bool is_q = extract32(insn, 30, 1); 12748 bool u = extract32(insn, 29, 1); 12749 int size = extract32(insn, 22, 2); 12750 int l = extract32(insn, 21, 1); 12751 int m = extract32(insn, 20, 1); 12752 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12753 int rm = extract32(insn, 16, 4); 12754 int opcode = extract32(insn, 12, 4); 12755 int h = extract32(insn, 11, 1); 12756 int rn = extract32(insn, 5, 5); 12757 int rd = extract32(insn, 0, 5); 12758 bool is_long = false; 12759 int is_fp = 0; 12760 bool is_fp16 = false; 12761 int index; 12762 TCGv_ptr fpst; 12763 12764 switch (16 * u + opcode) { 12765 case 0x08: /* MUL */ 12766 case 0x10: /* MLA */ 12767 case 0x14: /* MLS */ 12768 if (is_scalar) { 12769 unallocated_encoding(s); 12770 return; 12771 } 12772 break; 12773 case 0x02: /* SMLAL, SMLAL2 */ 12774 case 0x12: /* UMLAL, UMLAL2 */ 12775 case 0x06: /* SMLSL, SMLSL2 */ 12776 case 0x16: /* UMLSL, UMLSL2 */ 12777 case 0x0a: /* SMULL, SMULL2 */ 12778 case 0x1a: /* UMULL, UMULL2 */ 12779 if (is_scalar) { 12780 unallocated_encoding(s); 12781 return; 12782 } 12783 is_long = true; 12784 break; 12785 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12786 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12787 case 0x0b: /* SQDMULL, SQDMULL2 */ 12788 is_long = true; 12789 break; 12790 case 0x0c: /* SQDMULH */ 12791 case 0x0d: /* SQRDMULH */ 12792 break; 12793 case 0x1d: /* SQRDMLAH */ 12794 case 0x1f: /* SQRDMLSH */ 12795 if (!dc_isar_feature(aa64_rdm, s)) { 12796 unallocated_encoding(s); 12797 return; 12798 } 12799 break; 12800 case 0x0e: /* SDOT */ 12801 case 0x1e: /* UDOT */ 12802 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12803 unallocated_encoding(s); 12804 return; 12805 } 12806 break; 12807 case 0x0f: 12808 switch (size) { 12809 case 0: /* SUDOT */ 12810 case 2: /* USDOT */ 12811 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12812 unallocated_encoding(s); 12813 return; 12814 } 12815 size = MO_32; 12816 break; 12817 case 1: /* BFDOT */ 12818 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12819 unallocated_encoding(s); 12820 return; 12821 } 12822 size = MO_32; 12823 break; 12824 case 3: /* BFMLAL{B,T} */ 12825 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12826 unallocated_encoding(s); 12827 return; 12828 } 12829 /* can't set is_fp without other incorrect size checks */ 12830 size = MO_16; 12831 break; 12832 default: 12833 unallocated_encoding(s); 12834 return; 12835 } 12836 break; 12837 case 0x11: /* FCMLA #0 */ 12838 case 0x13: /* FCMLA #90 */ 12839 case 0x15: /* FCMLA #180 */ 12840 case 0x17: /* FCMLA #270 */ 12841 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12842 unallocated_encoding(s); 12843 return; 12844 } 12845 is_fp = 2; 12846 break; 12847 case 0x00: /* FMLAL */ 12848 case 0x04: /* FMLSL */ 12849 case 0x18: /* FMLAL2 */ 12850 case 0x1c: /* FMLSL2 */ 12851 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12852 unallocated_encoding(s); 12853 return; 12854 } 12855 size = MO_16; 12856 /* is_fp, but we pass tcg_env not fp_status. */ 12857 break; 12858 default: 12859 case 0x01: /* FMLA */ 12860 case 0x05: /* FMLS */ 12861 case 0x09: /* FMUL */ 12862 case 0x19: /* FMULX */ 12863 unallocated_encoding(s); 12864 return; 12865 } 12866 12867 switch (is_fp) { 12868 case 1: /* normal fp */ 12869 unallocated_encoding(s); /* in decodetree */ 12870 return; 12871 12872 case 2: /* complex fp */ 12873 /* Each indexable element is a complex pair. */ 12874 size += 1; 12875 switch (size) { 12876 case MO_32: 12877 if (h && !is_q) { 12878 unallocated_encoding(s); 12879 return; 12880 } 12881 is_fp16 = true; 12882 break; 12883 case MO_64: 12884 break; 12885 default: 12886 unallocated_encoding(s); 12887 return; 12888 } 12889 break; 12890 12891 default: /* integer */ 12892 switch (size) { 12893 case MO_8: 12894 case MO_64: 12895 unallocated_encoding(s); 12896 return; 12897 } 12898 break; 12899 } 12900 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12901 unallocated_encoding(s); 12902 return; 12903 } 12904 12905 /* Given MemOp size, adjust register and indexing. */ 12906 switch (size) { 12907 case MO_16: 12908 index = h << 2 | l << 1 | m; 12909 break; 12910 case MO_32: 12911 index = h << 1 | l; 12912 rm |= m << 4; 12913 break; 12914 case MO_64: 12915 if (l || !is_q) { 12916 unallocated_encoding(s); 12917 return; 12918 } 12919 index = h; 12920 rm |= m << 4; 12921 break; 12922 default: 12923 g_assert_not_reached(); 12924 } 12925 12926 if (!fp_access_check(s)) { 12927 return; 12928 } 12929 12930 if (is_fp) { 12931 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12932 } else { 12933 fpst = NULL; 12934 } 12935 12936 switch (16 * u + opcode) { 12937 case 0x0e: /* SDOT */ 12938 case 0x1e: /* UDOT */ 12939 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12940 u ? gen_helper_gvec_udot_idx_b 12941 : gen_helper_gvec_sdot_idx_b); 12942 return; 12943 case 0x0f: 12944 switch (extract32(insn, 22, 2)) { 12945 case 0: /* SUDOT */ 12946 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12947 gen_helper_gvec_sudot_idx_b); 12948 return; 12949 case 1: /* BFDOT */ 12950 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12951 gen_helper_gvec_bfdot_idx); 12952 return; 12953 case 2: /* USDOT */ 12954 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12955 gen_helper_gvec_usdot_idx_b); 12956 return; 12957 case 3: /* BFMLAL{B,T} */ 12958 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12959 gen_helper_gvec_bfmlal_idx); 12960 return; 12961 } 12962 g_assert_not_reached(); 12963 case 0x11: /* FCMLA #0 */ 12964 case 0x13: /* FCMLA #90 */ 12965 case 0x15: /* FCMLA #180 */ 12966 case 0x17: /* FCMLA #270 */ 12967 { 12968 int rot = extract32(insn, 13, 2); 12969 int data = (index << 2) | rot; 12970 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12971 vec_full_reg_offset(s, rn), 12972 vec_full_reg_offset(s, rm), 12973 vec_full_reg_offset(s, rd), fpst, 12974 is_q ? 16 : 8, vec_full_reg_size(s), data, 12975 size == MO_64 12976 ? gen_helper_gvec_fcmlas_idx 12977 : gen_helper_gvec_fcmlah_idx); 12978 } 12979 return; 12980 12981 case 0x00: /* FMLAL */ 12982 case 0x04: /* FMLSL */ 12983 case 0x18: /* FMLAL2 */ 12984 case 0x1c: /* FMLSL2 */ 12985 { 12986 int is_s = extract32(opcode, 2, 1); 12987 int is_2 = u; 12988 int data = (index << 2) | (is_2 << 1) | is_s; 12989 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12990 vec_full_reg_offset(s, rn), 12991 vec_full_reg_offset(s, rm), tcg_env, 12992 is_q ? 16 : 8, vec_full_reg_size(s), 12993 data, gen_helper_gvec_fmlal_idx_a64); 12994 } 12995 return; 12996 12997 case 0x08: /* MUL */ 12998 if (!is_long && !is_scalar) { 12999 static gen_helper_gvec_3 * const fns[3] = { 13000 gen_helper_gvec_mul_idx_h, 13001 gen_helper_gvec_mul_idx_s, 13002 gen_helper_gvec_mul_idx_d, 13003 }; 13004 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13005 vec_full_reg_offset(s, rn), 13006 vec_full_reg_offset(s, rm), 13007 is_q ? 16 : 8, vec_full_reg_size(s), 13008 index, fns[size - 1]); 13009 return; 13010 } 13011 break; 13012 13013 case 0x10: /* MLA */ 13014 if (!is_long && !is_scalar) { 13015 static gen_helper_gvec_4 * const fns[3] = { 13016 gen_helper_gvec_mla_idx_h, 13017 gen_helper_gvec_mla_idx_s, 13018 gen_helper_gvec_mla_idx_d, 13019 }; 13020 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13021 vec_full_reg_offset(s, rn), 13022 vec_full_reg_offset(s, rm), 13023 vec_full_reg_offset(s, rd), 13024 is_q ? 16 : 8, vec_full_reg_size(s), 13025 index, fns[size - 1]); 13026 return; 13027 } 13028 break; 13029 13030 case 0x14: /* MLS */ 13031 if (!is_long && !is_scalar) { 13032 static gen_helper_gvec_4 * const fns[3] = { 13033 gen_helper_gvec_mls_idx_h, 13034 gen_helper_gvec_mls_idx_s, 13035 gen_helper_gvec_mls_idx_d, 13036 }; 13037 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13038 vec_full_reg_offset(s, rn), 13039 vec_full_reg_offset(s, rm), 13040 vec_full_reg_offset(s, rd), 13041 is_q ? 16 : 8, vec_full_reg_size(s), 13042 index, fns[size - 1]); 13043 return; 13044 } 13045 break; 13046 } 13047 13048 if (size == 3) { 13049 g_assert_not_reached(); 13050 } else if (!is_long) { 13051 /* 32 bit floating point, or 16 or 32 bit integer. 13052 * For the 16 bit scalar case we use the usual Neon helpers and 13053 * rely on the fact that 0 op 0 == 0 with no side effects. 13054 */ 13055 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13056 int pass, maxpasses; 13057 13058 if (is_scalar) { 13059 maxpasses = 1; 13060 } else { 13061 maxpasses = is_q ? 4 : 2; 13062 } 13063 13064 read_vec_element_i32(s, tcg_idx, rm, index, size); 13065 13066 if (size == 1 && !is_scalar) { 13067 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13068 * the index into both halves of the 32 bit tcg_idx and then use 13069 * the usual Neon helpers. 13070 */ 13071 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13072 } 13073 13074 for (pass = 0; pass < maxpasses; pass++) { 13075 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13076 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13077 13078 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13079 13080 switch (16 * u + opcode) { 13081 case 0x08: /* MUL */ 13082 case 0x10: /* MLA */ 13083 case 0x14: /* MLS */ 13084 { 13085 static NeonGenTwoOpFn * const fns[2][2] = { 13086 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13087 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13088 }; 13089 NeonGenTwoOpFn *genfn; 13090 bool is_sub = opcode == 0x4; 13091 13092 if (size == 1) { 13093 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13094 } else { 13095 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13096 } 13097 if (opcode == 0x8) { 13098 break; 13099 } 13100 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13101 genfn = fns[size - 1][is_sub]; 13102 genfn(tcg_res, tcg_op, tcg_res); 13103 break; 13104 } 13105 case 0x0c: /* SQDMULH */ 13106 if (size == 1) { 13107 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13108 tcg_op, tcg_idx); 13109 } else { 13110 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13111 tcg_op, tcg_idx); 13112 } 13113 break; 13114 case 0x0d: /* SQRDMULH */ 13115 if (size == 1) { 13116 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13117 tcg_op, tcg_idx); 13118 } else { 13119 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13120 tcg_op, tcg_idx); 13121 } 13122 break; 13123 case 0x1d: /* SQRDMLAH */ 13124 read_vec_element_i32(s, tcg_res, rd, pass, 13125 is_scalar ? size : MO_32); 13126 if (size == 1) { 13127 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13128 tcg_op, tcg_idx, tcg_res); 13129 } else { 13130 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13131 tcg_op, tcg_idx, tcg_res); 13132 } 13133 break; 13134 case 0x1f: /* SQRDMLSH */ 13135 read_vec_element_i32(s, tcg_res, rd, pass, 13136 is_scalar ? size : MO_32); 13137 if (size == 1) { 13138 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13139 tcg_op, tcg_idx, tcg_res); 13140 } else { 13141 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13142 tcg_op, tcg_idx, tcg_res); 13143 } 13144 break; 13145 default: 13146 case 0x01: /* FMLA */ 13147 case 0x05: /* FMLS */ 13148 case 0x09: /* FMUL */ 13149 case 0x19: /* FMULX */ 13150 g_assert_not_reached(); 13151 } 13152 13153 if (is_scalar) { 13154 write_fp_sreg(s, rd, tcg_res); 13155 } else { 13156 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13157 } 13158 } 13159 13160 clear_vec_high(s, is_q, rd); 13161 } else { 13162 /* long ops: 16x16->32 or 32x32->64 */ 13163 TCGv_i64 tcg_res[2]; 13164 int pass; 13165 bool satop = extract32(opcode, 0, 1); 13166 MemOp memop = MO_32; 13167 13168 if (satop || !u) { 13169 memop |= MO_SIGN; 13170 } 13171 13172 if (size == 2) { 13173 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13174 13175 read_vec_element(s, tcg_idx, rm, index, memop); 13176 13177 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13178 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13179 TCGv_i64 tcg_passres; 13180 int passelt; 13181 13182 if (is_scalar) { 13183 passelt = 0; 13184 } else { 13185 passelt = pass + (is_q * 2); 13186 } 13187 13188 read_vec_element(s, tcg_op, rn, passelt, memop); 13189 13190 tcg_res[pass] = tcg_temp_new_i64(); 13191 13192 if (opcode == 0xa || opcode == 0xb) { 13193 /* Non-accumulating ops */ 13194 tcg_passres = tcg_res[pass]; 13195 } else { 13196 tcg_passres = tcg_temp_new_i64(); 13197 } 13198 13199 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13200 13201 if (satop) { 13202 /* saturating, doubling */ 13203 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13204 tcg_passres, tcg_passres); 13205 } 13206 13207 if (opcode == 0xa || opcode == 0xb) { 13208 continue; 13209 } 13210 13211 /* Accumulating op: handle accumulate step */ 13212 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13213 13214 switch (opcode) { 13215 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13216 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13217 break; 13218 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13219 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13220 break; 13221 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13222 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13223 /* fall through */ 13224 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13225 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13226 tcg_res[pass], 13227 tcg_passres); 13228 break; 13229 default: 13230 g_assert_not_reached(); 13231 } 13232 } 13233 13234 clear_vec_high(s, !is_scalar, rd); 13235 } else { 13236 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13237 13238 assert(size == 1); 13239 read_vec_element_i32(s, tcg_idx, rm, index, size); 13240 13241 if (!is_scalar) { 13242 /* The simplest way to handle the 16x16 indexed ops is to 13243 * duplicate the index into both halves of the 32 bit tcg_idx 13244 * and then use the usual Neon helpers. 13245 */ 13246 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13247 } 13248 13249 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13250 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13251 TCGv_i64 tcg_passres; 13252 13253 if (is_scalar) { 13254 read_vec_element_i32(s, tcg_op, rn, pass, size); 13255 } else { 13256 read_vec_element_i32(s, tcg_op, rn, 13257 pass + (is_q * 2), MO_32); 13258 } 13259 13260 tcg_res[pass] = tcg_temp_new_i64(); 13261 13262 if (opcode == 0xa || opcode == 0xb) { 13263 /* Non-accumulating ops */ 13264 tcg_passres = tcg_res[pass]; 13265 } else { 13266 tcg_passres = tcg_temp_new_i64(); 13267 } 13268 13269 if (memop & MO_SIGN) { 13270 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13271 } else { 13272 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13273 } 13274 if (satop) { 13275 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13276 tcg_passres, tcg_passres); 13277 } 13278 13279 if (opcode == 0xa || opcode == 0xb) { 13280 continue; 13281 } 13282 13283 /* Accumulating op: handle accumulate step */ 13284 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13285 13286 switch (opcode) { 13287 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13288 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13289 tcg_passres); 13290 break; 13291 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13292 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13293 tcg_passres); 13294 break; 13295 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13296 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13297 /* fall through */ 13298 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13299 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13300 tcg_res[pass], 13301 tcg_passres); 13302 break; 13303 default: 13304 g_assert_not_reached(); 13305 } 13306 } 13307 13308 if (is_scalar) { 13309 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13310 } 13311 } 13312 13313 if (is_scalar) { 13314 tcg_res[1] = tcg_constant_i64(0); 13315 } 13316 13317 for (pass = 0; pass < 2; pass++) { 13318 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13319 } 13320 } 13321 } 13322 13323 /* C3.6 Data processing - SIMD, inc Crypto 13324 * 13325 * As the decode gets a little complex we are using a table based 13326 * approach for this part of the decode. 13327 */ 13328 static const AArch64DecodeTable data_proc_simd[] = { 13329 /* pattern , mask , fn */ 13330 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13331 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13332 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13333 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13334 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13335 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13336 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13337 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13338 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13339 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13340 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13341 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13342 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13343 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13344 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13345 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13346 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13347 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13348 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13349 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13350 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13351 { 0x00000000, 0x00000000, NULL } 13352 }; 13353 13354 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13355 { 13356 /* Note that this is called with all non-FP cases from 13357 * table C3-6 so it must UNDEF for entries not specifically 13358 * allocated to instructions in that table. 13359 */ 13360 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13361 if (fn) { 13362 fn(s, insn); 13363 } else { 13364 unallocated_encoding(s); 13365 } 13366 } 13367 13368 /* C3.6 Data processing - SIMD and floating point */ 13369 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13370 { 13371 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13372 disas_data_proc_fp(s, insn); 13373 } else { 13374 /* SIMD, including crypto */ 13375 disas_data_proc_simd(s, insn); 13376 } 13377 } 13378 13379 static bool trans_OK(DisasContext *s, arg_OK *a) 13380 { 13381 return true; 13382 } 13383 13384 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13385 { 13386 s->is_nonstreaming = true; 13387 return true; 13388 } 13389 13390 /** 13391 * is_guarded_page: 13392 * @env: The cpu environment 13393 * @s: The DisasContext 13394 * 13395 * Return true if the page is guarded. 13396 */ 13397 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13398 { 13399 uint64_t addr = s->base.pc_first; 13400 #ifdef CONFIG_USER_ONLY 13401 return page_get_flags(addr) & PAGE_BTI; 13402 #else 13403 CPUTLBEntryFull *full; 13404 void *host; 13405 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13406 int flags; 13407 13408 /* 13409 * We test this immediately after reading an insn, which means 13410 * that the TLB entry must be present and valid, and thus this 13411 * access will never raise an exception. 13412 */ 13413 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13414 false, &host, &full, 0); 13415 assert(!(flags & TLB_INVALID_MASK)); 13416 13417 return full->extra.arm.guarded; 13418 #endif 13419 } 13420 13421 /** 13422 * btype_destination_ok: 13423 * @insn: The instruction at the branch destination 13424 * @bt: SCTLR_ELx.BT 13425 * @btype: PSTATE.BTYPE, and is non-zero 13426 * 13427 * On a guarded page, there are a limited number of insns 13428 * that may be present at the branch target: 13429 * - branch target identifiers, 13430 * - paciasp, pacibsp, 13431 * - BRK insn 13432 * - HLT insn 13433 * Anything else causes a Branch Target Exception. 13434 * 13435 * Return true if the branch is compatible, false to raise BTITRAP. 13436 */ 13437 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13438 { 13439 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13440 /* HINT space */ 13441 switch (extract32(insn, 5, 7)) { 13442 case 0b011001: /* PACIASP */ 13443 case 0b011011: /* PACIBSP */ 13444 /* 13445 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13446 * with btype == 3. Otherwise all btype are ok. 13447 */ 13448 return !bt || btype != 3; 13449 case 0b100000: /* BTI */ 13450 /* Not compatible with any btype. */ 13451 return false; 13452 case 0b100010: /* BTI c */ 13453 /* Not compatible with btype == 3 */ 13454 return btype != 3; 13455 case 0b100100: /* BTI j */ 13456 /* Not compatible with btype == 2 */ 13457 return btype != 2; 13458 case 0b100110: /* BTI jc */ 13459 /* Compatible with any btype. */ 13460 return true; 13461 } 13462 } else { 13463 switch (insn & 0xffe0001fu) { 13464 case 0xd4200000u: /* BRK */ 13465 case 0xd4400000u: /* HLT */ 13466 /* Give priority to the breakpoint exception. */ 13467 return true; 13468 } 13469 } 13470 return false; 13471 } 13472 13473 /* C3.1 A64 instruction index by encoding */ 13474 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13475 { 13476 switch (extract32(insn, 25, 4)) { 13477 case 0x5: 13478 case 0xd: /* Data processing - register */ 13479 disas_data_proc_reg(s, insn); 13480 break; 13481 case 0x7: 13482 case 0xf: /* Data processing - SIMD and floating point */ 13483 disas_data_proc_simd_fp(s, insn); 13484 break; 13485 default: 13486 unallocated_encoding(s); 13487 break; 13488 } 13489 } 13490 13491 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13492 CPUState *cpu) 13493 { 13494 DisasContext *dc = container_of(dcbase, DisasContext, base); 13495 CPUARMState *env = cpu_env(cpu); 13496 ARMCPU *arm_cpu = env_archcpu(env); 13497 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13498 int bound, core_mmu_idx; 13499 13500 dc->isar = &arm_cpu->isar; 13501 dc->condjmp = 0; 13502 dc->pc_save = dc->base.pc_first; 13503 dc->aarch64 = true; 13504 dc->thumb = false; 13505 dc->sctlr_b = 0; 13506 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13507 dc->condexec_mask = 0; 13508 dc->condexec_cond = 0; 13509 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13510 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13511 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13512 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13513 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13514 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13515 #if !defined(CONFIG_USER_ONLY) 13516 dc->user = (dc->current_el == 0); 13517 #endif 13518 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13519 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13520 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13521 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13522 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13523 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 13524 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13525 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13526 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13527 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13528 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13529 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13530 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13531 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13532 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 13533 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 13534 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13535 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13536 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13537 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13538 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13539 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13540 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 13541 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 13542 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 13543 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 13544 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 13545 dc->vec_len = 0; 13546 dc->vec_stride = 0; 13547 dc->cp_regs = arm_cpu->cp_regs; 13548 dc->features = env->features; 13549 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13550 dc->gm_blocksize = arm_cpu->gm_blocksize; 13551 13552 #ifdef CONFIG_USER_ONLY 13553 /* In sve_probe_page, we assume TBI is enabled. */ 13554 tcg_debug_assert(dc->tbid & 1); 13555 #endif 13556 13557 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13558 13559 /* Single step state. The code-generation logic here is: 13560 * SS_ACTIVE == 0: 13561 * generate code with no special handling for single-stepping (except 13562 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13563 * this happens anyway because those changes are all system register or 13564 * PSTATE writes). 13565 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13566 * emit code for one insn 13567 * emit code to clear PSTATE.SS 13568 * emit code to generate software step exception for completed step 13569 * end TB (as usual for having generated an exception) 13570 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13571 * emit code to generate a software step exception 13572 * end the TB 13573 */ 13574 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13575 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13576 dc->is_ldex = false; 13577 13578 /* Bound the number of insns to execute to those left on the page. */ 13579 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13580 13581 /* If architectural single step active, limit to 1. */ 13582 if (dc->ss_active) { 13583 bound = 1; 13584 } 13585 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13586 } 13587 13588 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13589 { 13590 } 13591 13592 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13593 { 13594 DisasContext *dc = container_of(dcbase, DisasContext, base); 13595 target_ulong pc_arg = dc->base.pc_next; 13596 13597 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13598 pc_arg &= ~TARGET_PAGE_MASK; 13599 } 13600 tcg_gen_insn_start(pc_arg, 0, 0); 13601 dc->insn_start_updated = false; 13602 } 13603 13604 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13605 { 13606 DisasContext *s = container_of(dcbase, DisasContext, base); 13607 CPUARMState *env = cpu_env(cpu); 13608 uint64_t pc = s->base.pc_next; 13609 uint32_t insn; 13610 13611 /* Singlestep exceptions have the highest priority. */ 13612 if (s->ss_active && !s->pstate_ss) { 13613 /* Singlestep state is Active-pending. 13614 * If we're in this state at the start of a TB then either 13615 * a) we just took an exception to an EL which is being debugged 13616 * and this is the first insn in the exception handler 13617 * b) debug exceptions were masked and we just unmasked them 13618 * without changing EL (eg by clearing PSTATE.D) 13619 * In either case we're going to take a swstep exception in the 13620 * "did not step an insn" case, and so the syndrome ISV and EX 13621 * bits should be zero. 13622 */ 13623 assert(s->base.num_insns == 1); 13624 gen_swstep_exception(s, 0, 0); 13625 s->base.is_jmp = DISAS_NORETURN; 13626 s->base.pc_next = pc + 4; 13627 return; 13628 } 13629 13630 if (pc & 3) { 13631 /* 13632 * PC alignment fault. This has priority over the instruction abort 13633 * that we would receive from a translation fault via arm_ldl_code. 13634 * This should only be possible after an indirect branch, at the 13635 * start of the TB. 13636 */ 13637 assert(s->base.num_insns == 1); 13638 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 13639 s->base.is_jmp = DISAS_NORETURN; 13640 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13641 return; 13642 } 13643 13644 s->pc_curr = pc; 13645 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13646 s->insn = insn; 13647 s->base.pc_next = pc + 4; 13648 13649 s->fp_access_checked = false; 13650 s->sve_access_checked = false; 13651 13652 if (s->pstate_il) { 13653 /* 13654 * Illegal execution state. This has priority over BTI 13655 * exceptions, but comes after instruction abort exceptions. 13656 */ 13657 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 13658 return; 13659 } 13660 13661 if (dc_isar_feature(aa64_bti, s)) { 13662 if (s->base.num_insns == 1) { 13663 /* 13664 * At the first insn of the TB, compute s->guarded_page. 13665 * We delayed computing this until successfully reading 13666 * the first insn of the TB, above. This (mostly) ensures 13667 * that the softmmu tlb entry has been populated, and the 13668 * page table GP bit is available. 13669 * 13670 * Note that we need to compute this even if btype == 0, 13671 * because this value is used for BR instructions later 13672 * where ENV is not available. 13673 */ 13674 s->guarded_page = is_guarded_page(env, s); 13675 13676 /* First insn can have btype set to non-zero. */ 13677 tcg_debug_assert(s->btype >= 0); 13678 13679 /* 13680 * Note that the Branch Target Exception has fairly high 13681 * priority -- below debugging exceptions but above most 13682 * everything else. This allows us to handle this now 13683 * instead of waiting until the insn is otherwise decoded. 13684 */ 13685 if (s->btype != 0 13686 && s->guarded_page 13687 && !btype_destination_ok(insn, s->bt, s->btype)) { 13688 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 13689 return; 13690 } 13691 } else { 13692 /* Not the first insn: btype must be 0. */ 13693 tcg_debug_assert(s->btype == 0); 13694 } 13695 } 13696 13697 s->is_nonstreaming = false; 13698 if (s->sme_trap_nonstreaming) { 13699 disas_sme_fa64(s, insn); 13700 } 13701 13702 if (!disas_a64(s, insn) && 13703 !disas_sme(s, insn) && 13704 !disas_sve(s, insn)) { 13705 disas_a64_legacy(s, insn); 13706 } 13707 13708 /* 13709 * After execution of most insns, btype is reset to 0. 13710 * Note that we set btype == -1 when the insn sets btype. 13711 */ 13712 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 13713 reset_btype(s); 13714 } 13715 } 13716 13717 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 13718 { 13719 DisasContext *dc = container_of(dcbase, DisasContext, base); 13720 13721 if (unlikely(dc->ss_active)) { 13722 /* Note that this means single stepping WFI doesn't halt the CPU. 13723 * For conditional branch insns this is harmless unreachable code as 13724 * gen_goto_tb() has already handled emitting the debug exception 13725 * (and thus a tb-jump is not possible when singlestepping). 13726 */ 13727 switch (dc->base.is_jmp) { 13728 default: 13729 gen_a64_update_pc(dc, 4); 13730 /* fall through */ 13731 case DISAS_EXIT: 13732 case DISAS_JUMP: 13733 gen_step_complete_exception(dc); 13734 break; 13735 case DISAS_NORETURN: 13736 break; 13737 } 13738 } else { 13739 switch (dc->base.is_jmp) { 13740 case DISAS_NEXT: 13741 case DISAS_TOO_MANY: 13742 gen_goto_tb(dc, 1, 4); 13743 break; 13744 default: 13745 case DISAS_UPDATE_EXIT: 13746 gen_a64_update_pc(dc, 4); 13747 /* fall through */ 13748 case DISAS_EXIT: 13749 tcg_gen_exit_tb(NULL, 0); 13750 break; 13751 case DISAS_UPDATE_NOCHAIN: 13752 gen_a64_update_pc(dc, 4); 13753 /* fall through */ 13754 case DISAS_JUMP: 13755 tcg_gen_lookup_and_goto_ptr(); 13756 break; 13757 case DISAS_NORETURN: 13758 case DISAS_SWI: 13759 break; 13760 case DISAS_WFE: 13761 gen_a64_update_pc(dc, 4); 13762 gen_helper_wfe(tcg_env); 13763 break; 13764 case DISAS_YIELD: 13765 gen_a64_update_pc(dc, 4); 13766 gen_helper_yield(tcg_env); 13767 break; 13768 case DISAS_WFI: 13769 /* 13770 * This is a special case because we don't want to just halt 13771 * the CPU if trying to debug across a WFI. 13772 */ 13773 gen_a64_update_pc(dc, 4); 13774 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 13775 /* 13776 * The helper doesn't necessarily throw an exception, but we 13777 * must go back to the main loop to check for interrupts anyway. 13778 */ 13779 tcg_gen_exit_tb(NULL, 0); 13780 break; 13781 } 13782 } 13783 } 13784 13785 const TranslatorOps aarch64_translator_ops = { 13786 .init_disas_context = aarch64_tr_init_disas_context, 13787 .tb_start = aarch64_tr_tb_start, 13788 .insn_start = aarch64_tr_insn_start, 13789 .translate_insn = aarch64_tr_translate_insn, 13790 .tb_stop = aarch64_tr_tb_stop, 13791 }; 13792