xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 136cb9cc)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "translate.h"
22 #include "translate-a64.h"
23 #include "qemu/log.h"
24 #include "disas/disas.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(cpu_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
109  */
110 static int get_a64_user_mem_index(DisasContext *s)
111 {
112     /*
113      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
114      * which is the usual mmu_idx for this cpu state.
115      */
116     ARMMMUIdx useridx = s->mmu_idx;
117 
118     if (s->unpriv) {
119         /*
120          * We have pre-computed the condition for AccType_UNPRIV.
121          * Therefore we should never get here with a mmu_idx for
122          * which we do not know the corresponding user mmu_idx.
123          */
124         switch (useridx) {
125         case ARMMMUIdx_E10_1:
126         case ARMMMUIdx_E10_1_PAN:
127             useridx = ARMMMUIdx_E10_0;
128             break;
129         case ARMMMUIdx_E20_2:
130         case ARMMMUIdx_E20_2_PAN:
131             useridx = ARMMMUIdx_E20_0;
132             break;
133         default:
134             g_assert_not_reached();
135         }
136     }
137     return arm_to_core_mmu_idx(useridx);
138 }
139 
140 static void set_btype_raw(int val)
141 {
142     tcg_gen_st_i32(tcg_constant_i32(val), cpu_env,
143                    offsetof(CPUARMState, btype));
144 }
145 
146 static void set_btype(DisasContext *s, int val)
147 {
148     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
149     tcg_debug_assert(val >= 1 && val <= 3);
150     set_btype_raw(val);
151     s->btype = -1;
152 }
153 
154 static void reset_btype(DisasContext *s)
155 {
156     if (s->btype != 0) {
157         set_btype_raw(0);
158         s->btype = 0;
159     }
160 }
161 
162 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
163 {
164     assert(s->pc_save != -1);
165     if (tb_cflags(s->base.tb) & CF_PCREL) {
166         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
167     } else {
168         tcg_gen_movi_i64(dest, s->pc_curr + diff);
169     }
170 }
171 
172 void gen_a64_update_pc(DisasContext *s, target_long diff)
173 {
174     gen_pc_plus_diff(s, cpu_pc, diff);
175     s->pc_save = s->pc_curr + diff;
176 }
177 
178 /*
179  * Handle Top Byte Ignore (TBI) bits.
180  *
181  * If address tagging is enabled via the TCR TBI bits:
182  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
183  *    then the address is zero-extended, clearing bits [63:56]
184  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
185  *    and TBI1 controls addresses with bit 55 == 1.
186  *    If the appropriate TBI bit is set for the address then
187  *    the address is sign-extended from bit 55 into bits [63:56]
188  *
189  * Here We have concatenated TBI{1,0} into tbi.
190  */
191 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
192                                 TCGv_i64 src, int tbi)
193 {
194     if (tbi == 0) {
195         /* Load unmodified address */
196         tcg_gen_mov_i64(dst, src);
197     } else if (!regime_has_2_ranges(s->mmu_idx)) {
198         /* Force tag byte to all zero */
199         tcg_gen_extract_i64(dst, src, 0, 56);
200     } else {
201         /* Sign-extend from bit 55.  */
202         tcg_gen_sextract_i64(dst, src, 0, 56);
203 
204         switch (tbi) {
205         case 1:
206             /* tbi0 but !tbi1: only use the extension if positive */
207             tcg_gen_and_i64(dst, dst, src);
208             break;
209         case 2:
210             /* !tbi0 but tbi1: only use the extension if negative */
211             tcg_gen_or_i64(dst, dst, src);
212             break;
213         case 3:
214             /* tbi0 and tbi1: always use the extension */
215             break;
216         default:
217             g_assert_not_reached();
218         }
219     }
220 }
221 
222 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
223 {
224     /*
225      * If address tagging is enabled for instructions via the TCR TBI bits,
226      * then loading an address into the PC will clear out any tag.
227      */
228     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
229     s->pc_save = -1;
230 }
231 
232 /*
233  * Handle MTE and/or TBI.
234  *
235  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
236  * for the tag to be present in the FAR_ELx register.  But for user-only
237  * mode we do not have a TLB with which to implement this, so we must
238  * remove the top byte now.
239  *
240  * Always return a fresh temporary that we can increment independently
241  * of the write-back address.
242  */
243 
244 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
245 {
246     TCGv_i64 clean = tcg_temp_new_i64();
247 #ifdef CONFIG_USER_ONLY
248     gen_top_byte_ignore(s, clean, addr, s->tbid);
249 #else
250     tcg_gen_mov_i64(clean, addr);
251 #endif
252     return clean;
253 }
254 
255 /* Insert a zero tag into src, with the result at dst. */
256 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
257 {
258     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
259 }
260 
261 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
262                              MMUAccessType acc, int log2_size)
263 {
264     gen_helper_probe_access(cpu_env, ptr,
265                             tcg_constant_i32(acc),
266                             tcg_constant_i32(get_mem_index(s)),
267                             tcg_constant_i32(1 << log2_size));
268 }
269 
270 /*
271  * For MTE, check a single logical or atomic access.  This probes a single
272  * address, the exact one specified.  The size and alignment of the access
273  * is not relevant to MTE, per se, but watchpoints do require the size,
274  * and we want to recognize those before making any other changes to state.
275  */
276 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
277                                       bool is_write, bool tag_checked,
278                                       MemOp memop, bool is_unpriv,
279                                       int core_idx)
280 {
281     if (tag_checked && s->mte_active[is_unpriv]) {
282         TCGv_i64 ret;
283         int desc = 0;
284 
285         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
286         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
287         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
288         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
289         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
290         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
291 
292         ret = tcg_temp_new_i64();
293         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
294 
295         return ret;
296     }
297     return clean_data_tbi(s, addr);
298 }
299 
300 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
301                         bool tag_checked, MemOp memop)
302 {
303     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
304                                  false, get_mem_index(s));
305 }
306 
307 /*
308  * For MTE, check multiple logical sequential accesses.
309  */
310 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
311                         bool tag_checked, int total_size, MemOp single_mop)
312 {
313     if (tag_checked && s->mte_active[0]) {
314         TCGv_i64 ret;
315         int desc = 0;
316 
317         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
318         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
319         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
320         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
321         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
322         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
323 
324         ret = tcg_temp_new_i64();
325         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
326 
327         return ret;
328     }
329     return clean_data_tbi(s, addr);
330 }
331 
332 /*
333  * Generate the special alignment check that applies to AccType_ATOMIC
334  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
335  * naturally aligned, but it must not cross a 16-byte boundary.
336  * See AArch64.CheckAlignment().
337  */
338 static void check_lse2_align(DisasContext *s, int rn, int imm,
339                              bool is_write, MemOp mop)
340 {
341     TCGv_i32 tmp;
342     TCGv_i64 addr;
343     TCGLabel *over_label;
344     MMUAccessType type;
345     int mmu_idx;
346 
347     tmp = tcg_temp_new_i32();
348     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
349     tcg_gen_addi_i32(tmp, tmp, imm & 15);
350     tcg_gen_andi_i32(tmp, tmp, 15);
351     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
352 
353     over_label = gen_new_label();
354     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
355 
356     addr = tcg_temp_new_i64();
357     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
358 
359     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
360     mmu_idx = get_mem_index(s);
361     gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type),
362                                 tcg_constant_i32(mmu_idx));
363 
364     gen_set_label(over_label);
365 
366 }
367 
368 /* Handle the alignment check for AccType_ATOMIC instructions. */
369 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
370 {
371     MemOp size = mop & MO_SIZE;
372 
373     if (size == MO_8) {
374         return mop;
375     }
376 
377     /*
378      * If size == MO_128, this is a LDXP, and the operation is single-copy
379      * atomic for each doubleword, not the entire quadword; it still must
380      * be quadword aligned.
381      */
382     if (size == MO_128) {
383         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
384                                    MO_ATOM_IFALIGN_PAIR);
385     }
386     if (dc_isar_feature(aa64_lse2, s)) {
387         check_lse2_align(s, rn, 0, true, mop);
388     } else {
389         mop |= MO_ALIGN;
390     }
391     return finalize_memop(s, mop);
392 }
393 
394 /* Handle the alignment check for AccType_ORDERED instructions. */
395 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
396                                  bool is_write, MemOp mop)
397 {
398     MemOp size = mop & MO_SIZE;
399 
400     if (size == MO_8) {
401         return mop;
402     }
403     if (size == MO_128) {
404         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
405                                    MO_ATOM_IFALIGN_PAIR);
406     }
407     if (!dc_isar_feature(aa64_lse2, s)) {
408         mop |= MO_ALIGN;
409     } else if (!s->naa) {
410         check_lse2_align(s, rn, imm, is_write, mop);
411     }
412     return finalize_memop(s, mop);
413 }
414 
415 typedef struct DisasCompare64 {
416     TCGCond cond;
417     TCGv_i64 value;
418 } DisasCompare64;
419 
420 static void a64_test_cc(DisasCompare64 *c64, int cc)
421 {
422     DisasCompare c32;
423 
424     arm_test_cc(&c32, cc);
425 
426     /*
427      * Sign-extend the 32-bit value so that the GE/LT comparisons work
428      * properly.  The NE/EQ comparisons are also fine with this choice.
429       */
430     c64->cond = c32.cond;
431     c64->value = tcg_temp_new_i64();
432     tcg_gen_ext_i32_i64(c64->value, c32.value);
433 }
434 
435 static void gen_rebuild_hflags(DisasContext *s)
436 {
437     gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el));
438 }
439 
440 static void gen_exception_internal(int excp)
441 {
442     assert(excp_is_internal(excp));
443     gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp));
444 }
445 
446 static void gen_exception_internal_insn(DisasContext *s, int excp)
447 {
448     gen_a64_update_pc(s, 0);
449     gen_exception_internal(excp);
450     s->base.is_jmp = DISAS_NORETURN;
451 }
452 
453 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
454 {
455     gen_a64_update_pc(s, 0);
456     gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome));
457     s->base.is_jmp = DISAS_NORETURN;
458 }
459 
460 static void gen_step_complete_exception(DisasContext *s)
461 {
462     /* We just completed step of an insn. Move from Active-not-pending
463      * to Active-pending, and then also take the swstep exception.
464      * This corresponds to making the (IMPDEF) choice to prioritize
465      * swstep exceptions over asynchronous exceptions taken to an exception
466      * level where debug is disabled. This choice has the advantage that
467      * we do not need to maintain internal state corresponding to the
468      * ISV/EX syndrome bits between completion of the step and generation
469      * of the exception, and our syndrome information is always correct.
470      */
471     gen_ss_advance(s);
472     gen_swstep_exception(s, 1, s->is_ldex);
473     s->base.is_jmp = DISAS_NORETURN;
474 }
475 
476 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
477 {
478     if (s->ss_active) {
479         return false;
480     }
481     return translator_use_goto_tb(&s->base, dest);
482 }
483 
484 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
485 {
486     if (use_goto_tb(s, s->pc_curr + diff)) {
487         /*
488          * For pcrel, the pc must always be up-to-date on entry to
489          * the linked TB, so that it can use simple additions for all
490          * further adjustments.  For !pcrel, the linked TB is compiled
491          * to know its full virtual address, so we can delay the
492          * update to pc to the unlinked path.  A long chain of links
493          * can thus avoid many updates to the PC.
494          */
495         if (tb_cflags(s->base.tb) & CF_PCREL) {
496             gen_a64_update_pc(s, diff);
497             tcg_gen_goto_tb(n);
498         } else {
499             tcg_gen_goto_tb(n);
500             gen_a64_update_pc(s, diff);
501         }
502         tcg_gen_exit_tb(s->base.tb, n);
503         s->base.is_jmp = DISAS_NORETURN;
504     } else {
505         gen_a64_update_pc(s, diff);
506         if (s->ss_active) {
507             gen_step_complete_exception(s);
508         } else {
509             tcg_gen_lookup_and_goto_ptr();
510             s->base.is_jmp = DISAS_NORETURN;
511         }
512     }
513 }
514 
515 /*
516  * Register access functions
517  *
518  * These functions are used for directly accessing a register in where
519  * changes to the final register value are likely to be made. If you
520  * need to use a register for temporary calculation (e.g. index type
521  * operations) use the read_* form.
522  *
523  * B1.2.1 Register mappings
524  *
525  * In instruction register encoding 31 can refer to ZR (zero register) or
526  * the SP (stack pointer) depending on context. In QEMU's case we map SP
527  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
528  * This is the point of the _sp forms.
529  */
530 TCGv_i64 cpu_reg(DisasContext *s, int reg)
531 {
532     if (reg == 31) {
533         TCGv_i64 t = tcg_temp_new_i64();
534         tcg_gen_movi_i64(t, 0);
535         return t;
536     } else {
537         return cpu_X[reg];
538     }
539 }
540 
541 /* register access for when 31 == SP */
542 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
543 {
544     return cpu_X[reg];
545 }
546 
547 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
548  * representing the register contents. This TCGv is an auto-freed
549  * temporary so it need not be explicitly freed, and may be modified.
550  */
551 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
552 {
553     TCGv_i64 v = tcg_temp_new_i64();
554     if (reg != 31) {
555         if (sf) {
556             tcg_gen_mov_i64(v, cpu_X[reg]);
557         } else {
558             tcg_gen_ext32u_i64(v, cpu_X[reg]);
559         }
560     } else {
561         tcg_gen_movi_i64(v, 0);
562     }
563     return v;
564 }
565 
566 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
567 {
568     TCGv_i64 v = tcg_temp_new_i64();
569     if (sf) {
570         tcg_gen_mov_i64(v, cpu_X[reg]);
571     } else {
572         tcg_gen_ext32u_i64(v, cpu_X[reg]);
573     }
574     return v;
575 }
576 
577 /* Return the offset into CPUARMState of a slice (from
578  * the least significant end) of FP register Qn (ie
579  * Dn, Sn, Hn or Bn).
580  * (Note that this is not the same mapping as for A32; see cpu.h)
581  */
582 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
583 {
584     return vec_reg_offset(s, regno, 0, size);
585 }
586 
587 /* Offset of the high half of the 128 bit vector Qn */
588 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
589 {
590     return vec_reg_offset(s, regno, 1, MO_64);
591 }
592 
593 /* Convenience accessors for reading and writing single and double
594  * FP registers. Writing clears the upper parts of the associated
595  * 128 bit vector register, as required by the architecture.
596  * Note that unlike the GP register accessors, the values returned
597  * by the read functions must be manually freed.
598  */
599 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
600 {
601     TCGv_i64 v = tcg_temp_new_i64();
602 
603     tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
604     return v;
605 }
606 
607 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
608 {
609     TCGv_i32 v = tcg_temp_new_i32();
610 
611     tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
620     return v;
621 }
622 
623 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
624  * If SVE is not enabled, then there are only 128 bits in the vector.
625  */
626 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
627 {
628     unsigned ofs = fp_reg_offset(s, rd, MO_64);
629     unsigned vsz = vec_full_reg_size(s);
630 
631     /* Nop move, with side effect of clearing the tail. */
632     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
633 }
634 
635 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
636 {
637     unsigned ofs = fp_reg_offset(s, reg, MO_64);
638 
639     tcg_gen_st_i64(v, cpu_env, ofs);
640     clear_vec_high(s, false, reg);
641 }
642 
643 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
644 {
645     TCGv_i64 tmp = tcg_temp_new_i64();
646 
647     tcg_gen_extu_i32_i64(tmp, v);
648     write_fp_dreg(s, reg, tmp);
649 }
650 
651 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
652 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
653                          GVecGen2Fn *gvec_fn, int vece)
654 {
655     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
656             is_q ? 16 : 8, vec_full_reg_size(s));
657 }
658 
659 /* Expand a 2-operand + immediate AdvSIMD vector operation using
660  * an expander function.
661  */
662 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
663                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
664 {
665     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
666             imm, is_q ? 16 : 8, vec_full_reg_size(s));
667 }
668 
669 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
670 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
671                          GVecGen3Fn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          int rx, GVecGen4Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
683             is_q ? 16 : 8, vec_full_reg_size(s));
684 }
685 
686 /* Expand a 2-operand operation using an out-of-line helper.  */
687 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
688                              int rn, int data, gen_helper_gvec_2 *fn)
689 {
690     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
691                        vec_full_reg_offset(s, rn),
692                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
693 }
694 
695 /* Expand a 3-operand operation using an out-of-line helper.  */
696 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
697                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
698 {
699     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
700                        vec_full_reg_offset(s, rn),
701                        vec_full_reg_offset(s, rm),
702                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
703 }
704 
705 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
706  * an out-of-line helper.
707  */
708 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
709                               int rm, bool is_fp16, int data,
710                               gen_helper_gvec_3_ptr *fn)
711 {
712     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
713     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
714                        vec_full_reg_offset(s, rn),
715                        vec_full_reg_offset(s, rm), fpst,
716                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
717 }
718 
719 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
720 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
721                             int rm, gen_helper_gvec_3_ptr *fn)
722 {
723     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
724 
725     tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
726     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
727                        vec_full_reg_offset(s, rn),
728                        vec_full_reg_offset(s, rm), qc_ptr,
729                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
730 }
731 
732 /* Expand a 4-operand operation using an out-of-line helper.  */
733 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
734                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
735 {
736     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
737                        vec_full_reg_offset(s, rn),
738                        vec_full_reg_offset(s, rm),
739                        vec_full_reg_offset(s, ra),
740                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
741 }
742 
743 /*
744  * Expand a 4-operand + fpstatus pointer + simd data value operation using
745  * an out-of-line helper.
746  */
747 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
748                               int rm, int ra, bool is_fp16, int data,
749                               gen_helper_gvec_4_ptr *fn)
750 {
751     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
752     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
753                        vec_full_reg_offset(s, rn),
754                        vec_full_reg_offset(s, rm),
755                        vec_full_reg_offset(s, ra), fpst,
756                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
757 }
758 
759 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
760  * than the 32 bit equivalent.
761  */
762 static inline void gen_set_NZ64(TCGv_i64 result)
763 {
764     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
765     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
766 }
767 
768 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
769 static inline void gen_logic_CC(int sf, TCGv_i64 result)
770 {
771     if (sf) {
772         gen_set_NZ64(result);
773     } else {
774         tcg_gen_extrl_i64_i32(cpu_ZF, result);
775         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
776     }
777     tcg_gen_movi_i32(cpu_CF, 0);
778     tcg_gen_movi_i32(cpu_VF, 0);
779 }
780 
781 /* dest = T0 + T1; compute C, N, V and Z flags */
782 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
783 {
784     TCGv_i64 result, flag, tmp;
785     result = tcg_temp_new_i64();
786     flag = tcg_temp_new_i64();
787     tmp = tcg_temp_new_i64();
788 
789     tcg_gen_movi_i64(tmp, 0);
790     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
791 
792     tcg_gen_extrl_i64_i32(cpu_CF, flag);
793 
794     gen_set_NZ64(result);
795 
796     tcg_gen_xor_i64(flag, result, t0);
797     tcg_gen_xor_i64(tmp, t0, t1);
798     tcg_gen_andc_i64(flag, flag, tmp);
799     tcg_gen_extrh_i64_i32(cpu_VF, flag);
800 
801     tcg_gen_mov_i64(dest, result);
802 }
803 
804 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
805 {
806     TCGv_i32 t0_32 = tcg_temp_new_i32();
807     TCGv_i32 t1_32 = tcg_temp_new_i32();
808     TCGv_i32 tmp = tcg_temp_new_i32();
809 
810     tcg_gen_movi_i32(tmp, 0);
811     tcg_gen_extrl_i64_i32(t0_32, t0);
812     tcg_gen_extrl_i64_i32(t1_32, t1);
813     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
814     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
815     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
816     tcg_gen_xor_i32(tmp, t0_32, t1_32);
817     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
818     tcg_gen_extu_i32_i64(dest, cpu_NF);
819 }
820 
821 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
822 {
823     if (sf) {
824         gen_add64_CC(dest, t0, t1);
825     } else {
826         gen_add32_CC(dest, t0, t1);
827     }
828 }
829 
830 /* dest = T0 - T1; compute C, N, V and Z flags */
831 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
832 {
833     /* 64 bit arithmetic */
834     TCGv_i64 result, flag, tmp;
835 
836     result = tcg_temp_new_i64();
837     flag = tcg_temp_new_i64();
838     tcg_gen_sub_i64(result, t0, t1);
839 
840     gen_set_NZ64(result);
841 
842     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
843     tcg_gen_extrl_i64_i32(cpu_CF, flag);
844 
845     tcg_gen_xor_i64(flag, result, t0);
846     tmp = tcg_temp_new_i64();
847     tcg_gen_xor_i64(tmp, t0, t1);
848     tcg_gen_and_i64(flag, flag, tmp);
849     tcg_gen_extrh_i64_i32(cpu_VF, flag);
850     tcg_gen_mov_i64(dest, result);
851 }
852 
853 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
854 {
855     /* 32 bit arithmetic */
856     TCGv_i32 t0_32 = tcg_temp_new_i32();
857     TCGv_i32 t1_32 = tcg_temp_new_i32();
858     TCGv_i32 tmp;
859 
860     tcg_gen_extrl_i64_i32(t0_32, t0);
861     tcg_gen_extrl_i64_i32(t1_32, t1);
862     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
863     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
864     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
865     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
866     tmp = tcg_temp_new_i32();
867     tcg_gen_xor_i32(tmp, t0_32, t1_32);
868     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
869     tcg_gen_extu_i32_i64(dest, cpu_NF);
870 }
871 
872 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
873 {
874     if (sf) {
875         gen_sub64_CC(dest, t0, t1);
876     } else {
877         gen_sub32_CC(dest, t0, t1);
878     }
879 }
880 
881 /* dest = T0 + T1 + CF; do not compute flags. */
882 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
883 {
884     TCGv_i64 flag = tcg_temp_new_i64();
885     tcg_gen_extu_i32_i64(flag, cpu_CF);
886     tcg_gen_add_i64(dest, t0, t1);
887     tcg_gen_add_i64(dest, dest, flag);
888 
889     if (!sf) {
890         tcg_gen_ext32u_i64(dest, dest);
891     }
892 }
893 
894 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
895 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
896 {
897     if (sf) {
898         TCGv_i64 result = tcg_temp_new_i64();
899         TCGv_i64 cf_64 = tcg_temp_new_i64();
900         TCGv_i64 vf_64 = tcg_temp_new_i64();
901         TCGv_i64 tmp = tcg_temp_new_i64();
902         TCGv_i64 zero = tcg_constant_i64(0);
903 
904         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
905         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
906         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
907         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
908         gen_set_NZ64(result);
909 
910         tcg_gen_xor_i64(vf_64, result, t0);
911         tcg_gen_xor_i64(tmp, t0, t1);
912         tcg_gen_andc_i64(vf_64, vf_64, tmp);
913         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
914 
915         tcg_gen_mov_i64(dest, result);
916     } else {
917         TCGv_i32 t0_32 = tcg_temp_new_i32();
918         TCGv_i32 t1_32 = tcg_temp_new_i32();
919         TCGv_i32 tmp = tcg_temp_new_i32();
920         TCGv_i32 zero = tcg_constant_i32(0);
921 
922         tcg_gen_extrl_i64_i32(t0_32, t0);
923         tcg_gen_extrl_i64_i32(t1_32, t1);
924         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
925         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
926 
927         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
928         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
929         tcg_gen_xor_i32(tmp, t0_32, t1_32);
930         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
931         tcg_gen_extu_i32_i64(dest, cpu_NF);
932     }
933 }
934 
935 /*
936  * Load/Store generators
937  */
938 
939 /*
940  * Store from GPR register to memory.
941  */
942 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
943                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
944                              bool iss_valid,
945                              unsigned int iss_srt,
946                              bool iss_sf, bool iss_ar)
947 {
948     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
949 
950     if (iss_valid) {
951         uint32_t syn;
952 
953         syn = syn_data_abort_with_iss(0,
954                                       (memop & MO_SIZE),
955                                       false,
956                                       iss_srt,
957                                       iss_sf,
958                                       iss_ar,
959                                       0, 0, 0, 0, 0, false);
960         disas_set_insn_syndrome(s, syn);
961     }
962 }
963 
964 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
965                       TCGv_i64 tcg_addr, MemOp memop,
966                       bool iss_valid,
967                       unsigned int iss_srt,
968                       bool iss_sf, bool iss_ar)
969 {
970     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
971                      iss_valid, iss_srt, iss_sf, iss_ar);
972 }
973 
974 /*
975  * Load from memory to GPR register
976  */
977 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
978                              MemOp memop, bool extend, int memidx,
979                              bool iss_valid, unsigned int iss_srt,
980                              bool iss_sf, bool iss_ar)
981 {
982     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
983 
984     if (extend && (memop & MO_SIGN)) {
985         g_assert((memop & MO_SIZE) <= MO_32);
986         tcg_gen_ext32u_i64(dest, dest);
987     }
988 
989     if (iss_valid) {
990         uint32_t syn;
991 
992         syn = syn_data_abort_with_iss(0,
993                                       (memop & MO_SIZE),
994                                       (memop & MO_SIGN) != 0,
995                                       iss_srt,
996                                       iss_sf,
997                                       iss_ar,
998                                       0, 0, 0, 0, 0, false);
999         disas_set_insn_syndrome(s, syn);
1000     }
1001 }
1002 
1003 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1004                       MemOp memop, bool extend,
1005                       bool iss_valid, unsigned int iss_srt,
1006                       bool iss_sf, bool iss_ar)
1007 {
1008     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1009                      iss_valid, iss_srt, iss_sf, iss_ar);
1010 }
1011 
1012 /*
1013  * Store from FP register to memory
1014  */
1015 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1016 {
1017     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1018     TCGv_i64 tmplo = tcg_temp_new_i64();
1019 
1020     tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64));
1021 
1022     if ((mop & MO_SIZE) < MO_128) {
1023         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1024     } else {
1025         TCGv_i64 tmphi = tcg_temp_new_i64();
1026         TCGv_i128 t16 = tcg_temp_new_i128();
1027 
1028         tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx));
1029         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1030 
1031         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1032     }
1033 }
1034 
1035 /*
1036  * Load from memory to FP register
1037  */
1038 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1039 {
1040     /* This always zero-extends and writes to a full 128 bit wide vector */
1041     TCGv_i64 tmplo = tcg_temp_new_i64();
1042     TCGv_i64 tmphi = NULL;
1043 
1044     if ((mop & MO_SIZE) < MO_128) {
1045         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1046     } else {
1047         TCGv_i128 t16 = tcg_temp_new_i128();
1048 
1049         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1050 
1051         tmphi = tcg_temp_new_i64();
1052         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1053     }
1054 
1055     tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1056 
1057     if (tmphi) {
1058         tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1059     }
1060     clear_vec_high(s, tmphi != NULL, destidx);
1061 }
1062 
1063 /*
1064  * Vector load/store helpers.
1065  *
1066  * The principal difference between this and a FP load is that we don't
1067  * zero extend as we are filling a partial chunk of the vector register.
1068  * These functions don't support 128 bit loads/stores, which would be
1069  * normal load/store operations.
1070  *
1071  * The _i32 versions are useful when operating on 32 bit quantities
1072  * (eg for floating point single or using Neon helper functions).
1073  */
1074 
1075 /* Get value of an element within a vector register */
1076 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1077                              int element, MemOp memop)
1078 {
1079     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1080     switch ((unsigned)memop) {
1081     case MO_8:
1082         tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1083         break;
1084     case MO_16:
1085         tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1086         break;
1087     case MO_32:
1088         tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1089         break;
1090     case MO_8|MO_SIGN:
1091         tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1092         break;
1093     case MO_16|MO_SIGN:
1094         tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1095         break;
1096     case MO_32|MO_SIGN:
1097         tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1098         break;
1099     case MO_64:
1100     case MO_64|MO_SIGN:
1101         tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1102         break;
1103     default:
1104         g_assert_not_reached();
1105     }
1106 }
1107 
1108 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1109                                  int element, MemOp memop)
1110 {
1111     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1112     switch (memop) {
1113     case MO_8:
1114         tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1115         break;
1116     case MO_16:
1117         tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1118         break;
1119     case MO_8|MO_SIGN:
1120         tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1121         break;
1122     case MO_16|MO_SIGN:
1123         tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1124         break;
1125     case MO_32:
1126     case MO_32|MO_SIGN:
1127         tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1128         break;
1129     default:
1130         g_assert_not_reached();
1131     }
1132 }
1133 
1134 /* Set value of an element within a vector register */
1135 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1136                               int element, MemOp memop)
1137 {
1138     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1139     switch (memop) {
1140     case MO_8:
1141         tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1142         break;
1143     case MO_16:
1144         tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1145         break;
1146     case MO_32:
1147         tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1148         break;
1149     case MO_64:
1150         tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1151         break;
1152     default:
1153         g_assert_not_reached();
1154     }
1155 }
1156 
1157 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1158                                   int destidx, int element, MemOp memop)
1159 {
1160     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1161     switch (memop) {
1162     case MO_8:
1163         tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1164         break;
1165     case MO_16:
1166         tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1167         break;
1168     case MO_32:
1169         tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1170         break;
1171     default:
1172         g_assert_not_reached();
1173     }
1174 }
1175 
1176 /* Store from vector register to memory */
1177 static void do_vec_st(DisasContext *s, int srcidx, int element,
1178                       TCGv_i64 tcg_addr, MemOp mop)
1179 {
1180     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1181 
1182     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1183     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1184 }
1185 
1186 /* Load from memory to vector register */
1187 static void do_vec_ld(DisasContext *s, int destidx, int element,
1188                       TCGv_i64 tcg_addr, MemOp mop)
1189 {
1190     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1191 
1192     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1193     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1194 }
1195 
1196 /* Check that FP/Neon access is enabled. If it is, return
1197  * true. If not, emit code to generate an appropriate exception,
1198  * and return false; the caller should not emit any code for
1199  * the instruction. Note that this check must happen after all
1200  * unallocated-encoding checks (otherwise the syndrome information
1201  * for the resulting exception will be incorrect).
1202  */
1203 static bool fp_access_check_only(DisasContext *s)
1204 {
1205     if (s->fp_excp_el) {
1206         assert(!s->fp_access_checked);
1207         s->fp_access_checked = true;
1208 
1209         gen_exception_insn_el(s, 0, EXCP_UDEF,
1210                               syn_fp_access_trap(1, 0xe, false, 0),
1211                               s->fp_excp_el);
1212         return false;
1213     }
1214     s->fp_access_checked = true;
1215     return true;
1216 }
1217 
1218 static bool fp_access_check(DisasContext *s)
1219 {
1220     if (!fp_access_check_only(s)) {
1221         return false;
1222     }
1223     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1224         gen_exception_insn(s, 0, EXCP_UDEF,
1225                            syn_smetrap(SME_ET_Streaming, false));
1226         return false;
1227     }
1228     return true;
1229 }
1230 
1231 /*
1232  * Check that SVE access is enabled.  If it is, return true.
1233  * If not, emit code to generate an appropriate exception and return false.
1234  * This function corresponds to CheckSVEEnabled().
1235  */
1236 bool sve_access_check(DisasContext *s)
1237 {
1238     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1239         assert(dc_isar_feature(aa64_sme, s));
1240         if (!sme_sm_enabled_check(s)) {
1241             goto fail_exit;
1242         }
1243     } else if (s->sve_excp_el) {
1244         gen_exception_insn_el(s, 0, EXCP_UDEF,
1245                               syn_sve_access_trap(), s->sve_excp_el);
1246         goto fail_exit;
1247     }
1248     s->sve_access_checked = true;
1249     return fp_access_check(s);
1250 
1251  fail_exit:
1252     /* Assert that we only raise one exception per instruction. */
1253     assert(!s->sve_access_checked);
1254     s->sve_access_checked = true;
1255     return false;
1256 }
1257 
1258 /*
1259  * Check that SME access is enabled, raise an exception if not.
1260  * Note that this function corresponds to CheckSMEAccess and is
1261  * only used directly for cpregs.
1262  */
1263 static bool sme_access_check(DisasContext *s)
1264 {
1265     if (s->sme_excp_el) {
1266         gen_exception_insn_el(s, 0, EXCP_UDEF,
1267                               syn_smetrap(SME_ET_AccessTrap, false),
1268                               s->sme_excp_el);
1269         return false;
1270     }
1271     return true;
1272 }
1273 
1274 /* This function corresponds to CheckSMEEnabled. */
1275 bool sme_enabled_check(DisasContext *s)
1276 {
1277     /*
1278      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1279      * to be zero when fp_excp_el has priority.  This is because we need
1280      * sme_excp_el by itself for cpregs access checks.
1281      */
1282     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1283         s->fp_access_checked = true;
1284         return sme_access_check(s);
1285     }
1286     return fp_access_check_only(s);
1287 }
1288 
1289 /* Common subroutine for CheckSMEAnd*Enabled. */
1290 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1291 {
1292     if (!sme_enabled_check(s)) {
1293         return false;
1294     }
1295     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1296         gen_exception_insn(s, 0, EXCP_UDEF,
1297                            syn_smetrap(SME_ET_NotStreaming, false));
1298         return false;
1299     }
1300     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1301         gen_exception_insn(s, 0, EXCP_UDEF,
1302                            syn_smetrap(SME_ET_InactiveZA, false));
1303         return false;
1304     }
1305     return true;
1306 }
1307 
1308 /*
1309  * This utility function is for doing register extension with an
1310  * optional shift. You will likely want to pass a temporary for the
1311  * destination register. See DecodeRegExtend() in the ARM ARM.
1312  */
1313 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1314                               int option, unsigned int shift)
1315 {
1316     int extsize = extract32(option, 0, 2);
1317     bool is_signed = extract32(option, 2, 1);
1318 
1319     if (is_signed) {
1320         switch (extsize) {
1321         case 0:
1322             tcg_gen_ext8s_i64(tcg_out, tcg_in);
1323             break;
1324         case 1:
1325             tcg_gen_ext16s_i64(tcg_out, tcg_in);
1326             break;
1327         case 2:
1328             tcg_gen_ext32s_i64(tcg_out, tcg_in);
1329             break;
1330         case 3:
1331             tcg_gen_mov_i64(tcg_out, tcg_in);
1332             break;
1333         }
1334     } else {
1335         switch (extsize) {
1336         case 0:
1337             tcg_gen_ext8u_i64(tcg_out, tcg_in);
1338             break;
1339         case 1:
1340             tcg_gen_ext16u_i64(tcg_out, tcg_in);
1341             break;
1342         case 2:
1343             tcg_gen_ext32u_i64(tcg_out, tcg_in);
1344             break;
1345         case 3:
1346             tcg_gen_mov_i64(tcg_out, tcg_in);
1347             break;
1348         }
1349     }
1350 
1351     if (shift) {
1352         tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1353     }
1354 }
1355 
1356 static inline void gen_check_sp_alignment(DisasContext *s)
1357 {
1358     /* The AArch64 architecture mandates that (if enabled via PSTATE
1359      * or SCTLR bits) there is a check that SP is 16-aligned on every
1360      * SP-relative load or store (with an exception generated if it is not).
1361      * In line with general QEMU practice regarding misaligned accesses,
1362      * we omit these checks for the sake of guest program performance.
1363      * This function is provided as a hook so we can more easily add these
1364      * checks in future (possibly as a "favour catching guest program bugs
1365      * over speed" user selectable option).
1366      */
1367 }
1368 
1369 /*
1370  * This provides a simple table based table lookup decoder. It is
1371  * intended to be used when the relevant bits for decode are too
1372  * awkwardly placed and switch/if based logic would be confusing and
1373  * deeply nested. Since it's a linear search through the table, tables
1374  * should be kept small.
1375  *
1376  * It returns the first handler where insn & mask == pattern, or
1377  * NULL if there is no match.
1378  * The table is terminated by an empty mask (i.e. 0)
1379  */
1380 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1381                                                uint32_t insn)
1382 {
1383     const AArch64DecodeTable *tptr = table;
1384 
1385     while (tptr->mask) {
1386         if ((insn & tptr->mask) == tptr->pattern) {
1387             return tptr->disas_fn;
1388         }
1389         tptr++;
1390     }
1391     return NULL;
1392 }
1393 
1394 /*
1395  * The instruction disassembly implemented here matches
1396  * the instruction encoding classifications in chapter C4
1397  * of the ARM Architecture Reference Manual (DDI0487B_a);
1398  * classification names and decode diagrams here should generally
1399  * match up with those in the manual.
1400  */
1401 
1402 static bool trans_B(DisasContext *s, arg_i *a)
1403 {
1404     reset_btype(s);
1405     gen_goto_tb(s, 0, a->imm);
1406     return true;
1407 }
1408 
1409 static bool trans_BL(DisasContext *s, arg_i *a)
1410 {
1411     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1412     reset_btype(s);
1413     gen_goto_tb(s, 0, a->imm);
1414     return true;
1415 }
1416 
1417 
1418 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1419 {
1420     DisasLabel match;
1421     TCGv_i64 tcg_cmp;
1422 
1423     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1424     reset_btype(s);
1425 
1426     match = gen_disas_label(s);
1427     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1428                         tcg_cmp, 0, match.label);
1429     gen_goto_tb(s, 0, 4);
1430     set_disas_label(s, match);
1431     gen_goto_tb(s, 1, a->imm);
1432     return true;
1433 }
1434 
1435 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1436 {
1437     DisasLabel match;
1438     TCGv_i64 tcg_cmp;
1439 
1440     tcg_cmp = tcg_temp_new_i64();
1441     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1442 
1443     reset_btype(s);
1444 
1445     match = gen_disas_label(s);
1446     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1447                         tcg_cmp, 0, match.label);
1448     gen_goto_tb(s, 0, 4);
1449     set_disas_label(s, match);
1450     gen_goto_tb(s, 1, a->imm);
1451     return true;
1452 }
1453 
1454 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1455 {
1456     reset_btype(s);
1457     if (a->cond < 0x0e) {
1458         /* genuinely conditional branches */
1459         DisasLabel match = gen_disas_label(s);
1460         arm_gen_test_cc(a->cond, match.label);
1461         gen_goto_tb(s, 0, 4);
1462         set_disas_label(s, match);
1463         gen_goto_tb(s, 1, a->imm);
1464     } else {
1465         /* 0xe and 0xf are both "always" conditions */
1466         gen_goto_tb(s, 0, a->imm);
1467     }
1468     return true;
1469 }
1470 
1471 static void set_btype_for_br(DisasContext *s, int rn)
1472 {
1473     if (dc_isar_feature(aa64_bti, s)) {
1474         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1475         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1476     }
1477 }
1478 
1479 static void set_btype_for_blr(DisasContext *s)
1480 {
1481     if (dc_isar_feature(aa64_bti, s)) {
1482         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1483         set_btype(s, 2);
1484     }
1485 }
1486 
1487 static bool trans_BR(DisasContext *s, arg_r *a)
1488 {
1489     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1490     set_btype_for_br(s, a->rn);
1491     s->base.is_jmp = DISAS_JUMP;
1492     return true;
1493 }
1494 
1495 static bool trans_BLR(DisasContext *s, arg_r *a)
1496 {
1497     TCGv_i64 dst = cpu_reg(s, a->rn);
1498     TCGv_i64 lr = cpu_reg(s, 30);
1499     if (dst == lr) {
1500         TCGv_i64 tmp = tcg_temp_new_i64();
1501         tcg_gen_mov_i64(tmp, dst);
1502         dst = tmp;
1503     }
1504     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1505     gen_a64_set_pc(s, dst);
1506     set_btype_for_blr(s);
1507     s->base.is_jmp = DISAS_JUMP;
1508     return true;
1509 }
1510 
1511 static bool trans_RET(DisasContext *s, arg_r *a)
1512 {
1513     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1514     s->base.is_jmp = DISAS_JUMP;
1515     return true;
1516 }
1517 
1518 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1519                                    TCGv_i64 modifier, bool use_key_a)
1520 {
1521     TCGv_i64 truedst;
1522     /*
1523      * Return the branch target for a BRAA/RETA/etc, which is either
1524      * just the destination dst, or that value with the pauth check
1525      * done and the code removed from the high bits.
1526      */
1527     if (!s->pauth_active) {
1528         return dst;
1529     }
1530 
1531     truedst = tcg_temp_new_i64();
1532     if (use_key_a) {
1533         gen_helper_autia(truedst, cpu_env, dst, modifier);
1534     } else {
1535         gen_helper_autib(truedst, cpu_env, dst, modifier);
1536     }
1537     return truedst;
1538 }
1539 
1540 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1541 {
1542     TCGv_i64 dst;
1543 
1544     if (!dc_isar_feature(aa64_pauth, s)) {
1545         return false;
1546     }
1547 
1548     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1549     gen_a64_set_pc(s, dst);
1550     set_btype_for_br(s, a->rn);
1551     s->base.is_jmp = DISAS_JUMP;
1552     return true;
1553 }
1554 
1555 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1556 {
1557     TCGv_i64 dst, lr;
1558 
1559     if (!dc_isar_feature(aa64_pauth, s)) {
1560         return false;
1561     }
1562 
1563     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1564     lr = cpu_reg(s, 30);
1565     if (dst == lr) {
1566         TCGv_i64 tmp = tcg_temp_new_i64();
1567         tcg_gen_mov_i64(tmp, dst);
1568         dst = tmp;
1569     }
1570     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1571     gen_a64_set_pc(s, dst);
1572     set_btype_for_blr(s);
1573     s->base.is_jmp = DISAS_JUMP;
1574     return true;
1575 }
1576 
1577 static bool trans_RETA(DisasContext *s, arg_reta *a)
1578 {
1579     TCGv_i64 dst;
1580 
1581     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1582     gen_a64_set_pc(s, dst);
1583     s->base.is_jmp = DISAS_JUMP;
1584     return true;
1585 }
1586 
1587 static bool trans_BRA(DisasContext *s, arg_bra *a)
1588 {
1589     TCGv_i64 dst;
1590 
1591     if (!dc_isar_feature(aa64_pauth, s)) {
1592         return false;
1593     }
1594     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1595     gen_a64_set_pc(s, dst);
1596     set_btype_for_br(s, a->rn);
1597     s->base.is_jmp = DISAS_JUMP;
1598     return true;
1599 }
1600 
1601 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1602 {
1603     TCGv_i64 dst, lr;
1604 
1605     if (!dc_isar_feature(aa64_pauth, s)) {
1606         return false;
1607     }
1608     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1609     lr = cpu_reg(s, 30);
1610     if (dst == lr) {
1611         TCGv_i64 tmp = tcg_temp_new_i64();
1612         tcg_gen_mov_i64(tmp, dst);
1613         dst = tmp;
1614     }
1615     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1616     gen_a64_set_pc(s, dst);
1617     set_btype_for_blr(s);
1618     s->base.is_jmp = DISAS_JUMP;
1619     return true;
1620 }
1621 
1622 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1623 {
1624     TCGv_i64 dst;
1625 
1626     if (s->current_el == 0) {
1627         return false;
1628     }
1629     if (s->fgt_eret) {
1630         gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2);
1631         return true;
1632     }
1633     dst = tcg_temp_new_i64();
1634     tcg_gen_ld_i64(dst, cpu_env,
1635                    offsetof(CPUARMState, elr_el[s->current_el]));
1636 
1637     translator_io_start(&s->base);
1638 
1639     gen_helper_exception_return(cpu_env, dst);
1640     /* Must exit loop to check un-masked IRQs */
1641     s->base.is_jmp = DISAS_EXIT;
1642     return true;
1643 }
1644 
1645 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1646 {
1647     TCGv_i64 dst;
1648 
1649     if (!dc_isar_feature(aa64_pauth, s)) {
1650         return false;
1651     }
1652     if (s->current_el == 0) {
1653         return false;
1654     }
1655     /* The FGT trap takes precedence over an auth trap. */
1656     if (s->fgt_eret) {
1657         gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2);
1658         return true;
1659     }
1660     dst = tcg_temp_new_i64();
1661     tcg_gen_ld_i64(dst, cpu_env,
1662                    offsetof(CPUARMState, elr_el[s->current_el]));
1663 
1664     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1665 
1666     translator_io_start(&s->base);
1667 
1668     gen_helper_exception_return(cpu_env, dst);
1669     /* Must exit loop to check un-masked IRQs */
1670     s->base.is_jmp = DISAS_EXIT;
1671     return true;
1672 }
1673 
1674 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1675 {
1676     return true;
1677 }
1678 
1679 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1680 {
1681     /*
1682      * When running in MTTCG we don't generate jumps to the yield and
1683      * WFE helpers as it won't affect the scheduling of other vCPUs.
1684      * If we wanted to more completely model WFE/SEV so we don't busy
1685      * spin unnecessarily we would need to do something more involved.
1686      */
1687     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1688         s->base.is_jmp = DISAS_YIELD;
1689     }
1690     return true;
1691 }
1692 
1693 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1694 {
1695     s->base.is_jmp = DISAS_WFI;
1696     return true;
1697 }
1698 
1699 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1700 {
1701     /*
1702      * When running in MTTCG we don't generate jumps to the yield and
1703      * WFE helpers as it won't affect the scheduling of other vCPUs.
1704      * If we wanted to more completely model WFE/SEV so we don't busy
1705      * spin unnecessarily we would need to do something more involved.
1706      */
1707     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1708         s->base.is_jmp = DISAS_WFE;
1709     }
1710     return true;
1711 }
1712 
1713 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1714 {
1715     if (s->pauth_active) {
1716         gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1717     }
1718     return true;
1719 }
1720 
1721 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1722 {
1723     if (s->pauth_active) {
1724         gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1725     }
1726     return true;
1727 }
1728 
1729 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1730 {
1731     if (s->pauth_active) {
1732         gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1733     }
1734     return true;
1735 }
1736 
1737 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1738 {
1739     if (s->pauth_active) {
1740         gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1741     }
1742     return true;
1743 }
1744 
1745 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1746 {
1747     if (s->pauth_active) {
1748         gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1749     }
1750     return true;
1751 }
1752 
1753 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1754 {
1755     /* Without RAS, we must implement this as NOP. */
1756     if (dc_isar_feature(aa64_ras, s)) {
1757         /*
1758          * QEMU does not have a source of physical SErrors,
1759          * so we are only concerned with virtual SErrors.
1760          * The pseudocode in the ARM for this case is
1761          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1762          *      AArch64.vESBOperation();
1763          * Most of the condition can be evaluated at translation time.
1764          * Test for EL2 present, and defer test for SEL2 to runtime.
1765          */
1766         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1767             gen_helper_vesb(cpu_env);
1768         }
1769     }
1770     return true;
1771 }
1772 
1773 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1774 {
1775     if (s->pauth_active) {
1776         gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0));
1777     }
1778     return true;
1779 }
1780 
1781 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1782 {
1783     if (s->pauth_active) {
1784         gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1785     }
1786     return true;
1787 }
1788 
1789 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1790 {
1791     if (s->pauth_active) {
1792         gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0));
1793     }
1794     return true;
1795 }
1796 
1797 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1798 {
1799     if (s->pauth_active) {
1800         gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1801     }
1802     return true;
1803 }
1804 
1805 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1806 {
1807     if (s->pauth_active) {
1808         gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0));
1809     }
1810     return true;
1811 }
1812 
1813 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1814 {
1815     if (s->pauth_active) {
1816         gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1817     }
1818     return true;
1819 }
1820 
1821 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1822 {
1823     if (s->pauth_active) {
1824         gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0));
1825     }
1826     return true;
1827 }
1828 
1829 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1830 {
1831     if (s->pauth_active) {
1832         gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1833     }
1834     return true;
1835 }
1836 
1837 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1838 {
1839     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1840     return true;
1841 }
1842 
1843 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1844 {
1845     /* We handle DSB and DMB the same way */
1846     TCGBar bar;
1847 
1848     switch (a->types) {
1849     case 1: /* MBReqTypes_Reads */
1850         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1851         break;
1852     case 2: /* MBReqTypes_Writes */
1853         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1854         break;
1855     default: /* MBReqTypes_All */
1856         bar = TCG_BAR_SC | TCG_MO_ALL;
1857         break;
1858     }
1859     tcg_gen_mb(bar);
1860     return true;
1861 }
1862 
1863 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1864 {
1865     /*
1866      * We need to break the TB after this insn to execute
1867      * self-modifying code correctly and also to take
1868      * any pending interrupts immediately.
1869      */
1870     reset_btype(s);
1871     gen_goto_tb(s, 0, 4);
1872     return true;
1873 }
1874 
1875 static bool trans_SB(DisasContext *s, arg_SB *a)
1876 {
1877     if (!dc_isar_feature(aa64_sb, s)) {
1878         return false;
1879     }
1880     /*
1881      * TODO: There is no speculation barrier opcode for TCG;
1882      * MB and end the TB instead.
1883      */
1884     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1885     gen_goto_tb(s, 0, 4);
1886     return true;
1887 }
1888 
1889 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1890 {
1891     if (!dc_isar_feature(aa64_condm_4, s)) {
1892         return false;
1893     }
1894     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1895     return true;
1896 }
1897 
1898 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1899 {
1900     TCGv_i32 z;
1901 
1902     if (!dc_isar_feature(aa64_condm_5, s)) {
1903         return false;
1904     }
1905 
1906     z = tcg_temp_new_i32();
1907 
1908     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1909 
1910     /*
1911      * (!C & !Z) << 31
1912      * (!(C | Z)) << 31
1913      * ~((C | Z) << 31)
1914      * ~-(C | Z)
1915      * (C | Z) - 1
1916      */
1917     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1918     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1919 
1920     /* !(Z & C) */
1921     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1922     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1923 
1924     /* (!C & Z) << 31 -> -(Z & ~C) */
1925     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1926     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1927 
1928     /* C | Z */
1929     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1930 
1931     return true;
1932 }
1933 
1934 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1935 {
1936     if (!dc_isar_feature(aa64_condm_5, s)) {
1937         return false;
1938     }
1939 
1940     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1941     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1942 
1943     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1944     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1945 
1946     tcg_gen_movi_i32(cpu_NF, 0);
1947     tcg_gen_movi_i32(cpu_VF, 0);
1948 
1949     return true;
1950 }
1951 
1952 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1953 {
1954     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1955         return false;
1956     }
1957     if (a->imm & 1) {
1958         set_pstate_bits(PSTATE_UAO);
1959     } else {
1960         clear_pstate_bits(PSTATE_UAO);
1961     }
1962     gen_rebuild_hflags(s);
1963     s->base.is_jmp = DISAS_TOO_MANY;
1964     return true;
1965 }
1966 
1967 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1968 {
1969     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1970         return false;
1971     }
1972     if (a->imm & 1) {
1973         set_pstate_bits(PSTATE_PAN);
1974     } else {
1975         clear_pstate_bits(PSTATE_PAN);
1976     }
1977     gen_rebuild_hflags(s);
1978     s->base.is_jmp = DISAS_TOO_MANY;
1979     return true;
1980 }
1981 
1982 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
1983 {
1984     if (s->current_el == 0) {
1985         return false;
1986     }
1987     gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(a->imm & PSTATE_SP));
1988     s->base.is_jmp = DISAS_TOO_MANY;
1989     return true;
1990 }
1991 
1992 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
1993 {
1994     if (!dc_isar_feature(aa64_ssbs, s)) {
1995         return false;
1996     }
1997     if (a->imm & 1) {
1998         set_pstate_bits(PSTATE_SSBS);
1999     } else {
2000         clear_pstate_bits(PSTATE_SSBS);
2001     }
2002     /* Don't need to rebuild hflags since SSBS is a nop */
2003     s->base.is_jmp = DISAS_TOO_MANY;
2004     return true;
2005 }
2006 
2007 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2008 {
2009     if (!dc_isar_feature(aa64_dit, s)) {
2010         return false;
2011     }
2012     if (a->imm & 1) {
2013         set_pstate_bits(PSTATE_DIT);
2014     } else {
2015         clear_pstate_bits(PSTATE_DIT);
2016     }
2017     /* There's no need to rebuild hflags because DIT is a nop */
2018     s->base.is_jmp = DISAS_TOO_MANY;
2019     return true;
2020 }
2021 
2022 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2023 {
2024     if (dc_isar_feature(aa64_mte, s)) {
2025         /* Full MTE is enabled -- set the TCO bit as directed. */
2026         if (a->imm & 1) {
2027             set_pstate_bits(PSTATE_TCO);
2028         } else {
2029             clear_pstate_bits(PSTATE_TCO);
2030         }
2031         gen_rebuild_hflags(s);
2032         /* Many factors, including TCO, go into MTE_ACTIVE. */
2033         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2034         return true;
2035     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2036         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2037         return true;
2038     } else {
2039         /* Insn not present */
2040         return false;
2041     }
2042 }
2043 
2044 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2045 {
2046     gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(a->imm));
2047     s->base.is_jmp = DISAS_TOO_MANY;
2048     return true;
2049 }
2050 
2051 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2052 {
2053     gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(a->imm));
2054     /* Exit the cpu loop to re-evaluate pending IRQs. */
2055     s->base.is_jmp = DISAS_UPDATE_EXIT;
2056     return true;
2057 }
2058 
2059 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2060 {
2061     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2062         return false;
2063     }
2064     if (sme_access_check(s)) {
2065         int old = s->pstate_sm | (s->pstate_za << 1);
2066         int new = a->imm * 3;
2067 
2068         if ((old ^ new) & a->mask) {
2069             /* At least one bit changes. */
2070             gen_helper_set_svcr(cpu_env, tcg_constant_i32(new),
2071                                 tcg_constant_i32(a->mask));
2072             s->base.is_jmp = DISAS_TOO_MANY;
2073         }
2074     }
2075     return true;
2076 }
2077 
2078 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2079 {
2080     TCGv_i32 tmp = tcg_temp_new_i32();
2081     TCGv_i32 nzcv = tcg_temp_new_i32();
2082 
2083     /* build bit 31, N */
2084     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2085     /* build bit 30, Z */
2086     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2087     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2088     /* build bit 29, C */
2089     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2090     /* build bit 28, V */
2091     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2092     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2093     /* generate result */
2094     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2095 }
2096 
2097 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2098 {
2099     TCGv_i32 nzcv = tcg_temp_new_i32();
2100 
2101     /* take NZCV from R[t] */
2102     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2103 
2104     /* bit 31, N */
2105     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2106     /* bit 30, Z */
2107     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2108     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2109     /* bit 29, C */
2110     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2111     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2112     /* bit 28, V */
2113     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2114     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2115 }
2116 
2117 static void gen_sysreg_undef(DisasContext *s, bool isread,
2118                              uint8_t op0, uint8_t op1, uint8_t op2,
2119                              uint8_t crn, uint8_t crm, uint8_t rt)
2120 {
2121     /*
2122      * Generate code to emit an UNDEF with correct syndrome
2123      * information for a failed system register access.
2124      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2125      * but if FEAT_IDST is implemented then read accesses to registers
2126      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2127      * syndrome.
2128      */
2129     uint32_t syndrome;
2130 
2131     if (isread && dc_isar_feature(aa64_ids, s) &&
2132         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2133         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2134     } else {
2135         syndrome = syn_uncategorized();
2136     }
2137     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2138 }
2139 
2140 /* MRS - move from system register
2141  * MSR (register) - move to system register
2142  * SYS
2143  * SYSL
2144  * These are all essentially the same insn in 'read' and 'write'
2145  * versions, with varying op0 fields.
2146  */
2147 static void handle_sys(DisasContext *s, bool isread,
2148                        unsigned int op0, unsigned int op1, unsigned int op2,
2149                        unsigned int crn, unsigned int crm, unsigned int rt)
2150 {
2151     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2152                                       crn, crm, op0, op1, op2);
2153     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2154     bool need_exit_tb = false;
2155     TCGv_ptr tcg_ri = NULL;
2156     TCGv_i64 tcg_rt;
2157 
2158     if (!ri) {
2159         /* Unknown register; this might be a guest error or a QEMU
2160          * unimplemented feature.
2161          */
2162         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2163                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2164                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2165         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2166         return;
2167     }
2168 
2169     /* Check access permissions */
2170     if (!cp_access_ok(s->current_el, ri, isread)) {
2171         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2172         return;
2173     }
2174 
2175     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2176         /* Emit code to perform further access permissions checks at
2177          * runtime; this may result in an exception.
2178          */
2179         uint32_t syndrome;
2180 
2181         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2182         gen_a64_update_pc(s, 0);
2183         tcg_ri = tcg_temp_new_ptr();
2184         gen_helper_access_check_cp_reg(tcg_ri, cpu_env,
2185                                        tcg_constant_i32(key),
2186                                        tcg_constant_i32(syndrome),
2187                                        tcg_constant_i32(isread));
2188     } else if (ri->type & ARM_CP_RAISES_EXC) {
2189         /*
2190          * The readfn or writefn might raise an exception;
2191          * synchronize the CPU state in case it does.
2192          */
2193         gen_a64_update_pc(s, 0);
2194     }
2195 
2196     /* Handle special cases first */
2197     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2198     case 0:
2199         break;
2200     case ARM_CP_NOP:
2201         return;
2202     case ARM_CP_NZCV:
2203         tcg_rt = cpu_reg(s, rt);
2204         if (isread) {
2205             gen_get_nzcv(tcg_rt);
2206         } else {
2207             gen_set_nzcv(tcg_rt);
2208         }
2209         return;
2210     case ARM_CP_CURRENTEL:
2211         /* Reads as current EL value from pstate, which is
2212          * guaranteed to be constant by the tb flags.
2213          */
2214         tcg_rt = cpu_reg(s, rt);
2215         tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
2216         return;
2217     case ARM_CP_DC_ZVA:
2218         /* Writes clear the aligned block of memory which rt points into. */
2219         if (s->mte_active[0]) {
2220             int desc = 0;
2221 
2222             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2223             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2224             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2225 
2226             tcg_rt = tcg_temp_new_i64();
2227             gen_helper_mte_check_zva(tcg_rt, cpu_env,
2228                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2229         } else {
2230             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2231         }
2232         gen_helper_dc_zva(cpu_env, tcg_rt);
2233         return;
2234     case ARM_CP_DC_GVA:
2235         {
2236             TCGv_i64 clean_addr, tag;
2237 
2238             /*
2239              * DC_GVA, like DC_ZVA, requires that we supply the original
2240              * pointer for an invalid page.  Probe that address first.
2241              */
2242             tcg_rt = cpu_reg(s, rt);
2243             clean_addr = clean_data_tbi(s, tcg_rt);
2244             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2245 
2246             if (s->ata) {
2247                 /* Extract the tag from the register to match STZGM.  */
2248                 tag = tcg_temp_new_i64();
2249                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2250                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2251             }
2252         }
2253         return;
2254     case ARM_CP_DC_GZVA:
2255         {
2256             TCGv_i64 clean_addr, tag;
2257 
2258             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2259             tcg_rt = cpu_reg(s, rt);
2260             clean_addr = clean_data_tbi(s, tcg_rt);
2261             gen_helper_dc_zva(cpu_env, clean_addr);
2262 
2263             if (s->ata) {
2264                 /* Extract the tag from the register to match STZGM.  */
2265                 tag = tcg_temp_new_i64();
2266                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2267                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2268             }
2269         }
2270         return;
2271     default:
2272         g_assert_not_reached();
2273     }
2274     if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2275         return;
2276     } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2277         return;
2278     } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2279         return;
2280     }
2281 
2282     if (ri->type & ARM_CP_IO) {
2283         /* I/O operations must end the TB here (whether read or write) */
2284         need_exit_tb = translator_io_start(&s->base);
2285     }
2286 
2287     tcg_rt = cpu_reg(s, rt);
2288 
2289     if (isread) {
2290         if (ri->type & ARM_CP_CONST) {
2291             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2292         } else if (ri->readfn) {
2293             if (!tcg_ri) {
2294                 tcg_ri = gen_lookup_cp_reg(key);
2295             }
2296             gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri);
2297         } else {
2298             tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
2299         }
2300     } else {
2301         if (ri->type & ARM_CP_CONST) {
2302             /* If not forbidden by access permissions, treat as WI */
2303             return;
2304         } else if (ri->writefn) {
2305             if (!tcg_ri) {
2306                 tcg_ri = gen_lookup_cp_reg(key);
2307             }
2308             gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt);
2309         } else {
2310             tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
2311         }
2312     }
2313 
2314     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2315         /*
2316          * A write to any coprocessor register that ends a TB
2317          * must rebuild the hflags for the next TB.
2318          */
2319         gen_rebuild_hflags(s);
2320         /*
2321          * We default to ending the TB on a coprocessor register write,
2322          * but allow this to be suppressed by the register definition
2323          * (usually only necessary to work around guest bugs).
2324          */
2325         need_exit_tb = true;
2326     }
2327     if (need_exit_tb) {
2328         s->base.is_jmp = DISAS_UPDATE_EXIT;
2329     }
2330 }
2331 
2332 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2333 {
2334     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2335     return true;
2336 }
2337 
2338 static bool trans_SVC(DisasContext *s, arg_i *a)
2339 {
2340     /*
2341      * For SVC, HVC and SMC we advance the single-step state
2342      * machine before taking the exception. This is architecturally
2343      * mandated, to ensure that single-stepping a system call
2344      * instruction works properly.
2345      */
2346     uint32_t syndrome = syn_aa64_svc(a->imm);
2347     if (s->fgt_svc) {
2348         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2349         return true;
2350     }
2351     gen_ss_advance(s);
2352     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2353     return true;
2354 }
2355 
2356 static bool trans_HVC(DisasContext *s, arg_i *a)
2357 {
2358     if (s->current_el == 0) {
2359         unallocated_encoding(s);
2360         return true;
2361     }
2362     /*
2363      * The pre HVC helper handles cases when HVC gets trapped
2364      * as an undefined insn by runtime configuration.
2365      */
2366     gen_a64_update_pc(s, 0);
2367     gen_helper_pre_hvc(cpu_env);
2368     /* Architecture requires ss advance before we do the actual work */
2369     gen_ss_advance(s);
2370     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), 2);
2371     return true;
2372 }
2373 
2374 static bool trans_SMC(DisasContext *s, arg_i *a)
2375 {
2376     if (s->current_el == 0) {
2377         unallocated_encoding(s);
2378         return true;
2379     }
2380     gen_a64_update_pc(s, 0);
2381     gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2382     /* Architecture requires ss advance before we do the actual work */
2383     gen_ss_advance(s);
2384     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2385     return true;
2386 }
2387 
2388 static bool trans_BRK(DisasContext *s, arg_i *a)
2389 {
2390     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2391     return true;
2392 }
2393 
2394 static bool trans_HLT(DisasContext *s, arg_i *a)
2395 {
2396     /*
2397      * HLT. This has two purposes.
2398      * Architecturally, it is an external halting debug instruction.
2399      * Since QEMU doesn't implement external debug, we treat this as
2400      * it is required for halting debug disabled: it will UNDEF.
2401      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2402      */
2403     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2404         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2405     } else {
2406         unallocated_encoding(s);
2407     }
2408     return true;
2409 }
2410 
2411 /*
2412  * Load/Store exclusive instructions are implemented by remembering
2413  * the value/address loaded, and seeing if these are the same
2414  * when the store is performed. This is not actually the architecturally
2415  * mandated semantics, but it works for typical guest code sequences
2416  * and avoids having to monitor regular stores.
2417  *
2418  * The store exclusive uses the atomic cmpxchg primitives to avoid
2419  * races in multi-threaded linux-user and when MTTCG softmmu is
2420  * enabled.
2421  */
2422 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2423                                int size, bool is_pair)
2424 {
2425     int idx = get_mem_index(s);
2426     TCGv_i64 dirty_addr, clean_addr;
2427     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2428 
2429     s->is_ldex = true;
2430     dirty_addr = cpu_reg_sp(s, rn);
2431     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2432 
2433     g_assert(size <= 3);
2434     if (is_pair) {
2435         g_assert(size >= 2);
2436         if (size == 2) {
2437             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2438             if (s->be_data == MO_LE) {
2439                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2440                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2441             } else {
2442                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2443                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2444             }
2445         } else {
2446             TCGv_i128 t16 = tcg_temp_new_i128();
2447 
2448             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2449 
2450             if (s->be_data == MO_LE) {
2451                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2452                                       cpu_exclusive_high, t16);
2453             } else {
2454                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2455                                       cpu_exclusive_val, t16);
2456             }
2457             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2458             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2459         }
2460     } else {
2461         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2462         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2463     }
2464     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2465 }
2466 
2467 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2468                                 int rn, int size, int is_pair)
2469 {
2470     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2471      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2472      *     [addr] = {Rt};
2473      *     if (is_pair) {
2474      *         [addr + datasize] = {Rt2};
2475      *     }
2476      *     {Rd} = 0;
2477      * } else {
2478      *     {Rd} = 1;
2479      * }
2480      * env->exclusive_addr = -1;
2481      */
2482     TCGLabel *fail_label = gen_new_label();
2483     TCGLabel *done_label = gen_new_label();
2484     TCGv_i64 tmp, clean_addr;
2485     MemOp memop;
2486 
2487     /*
2488      * FIXME: We are out of spec here.  We have recorded only the address
2489      * from load_exclusive, not the entire range, and we assume that the
2490      * size of the access on both sides match.  The architecture allows the
2491      * store to be smaller than the load, so long as the stored bytes are
2492      * within the range recorded by the load.
2493      */
2494 
2495     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2496     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2497     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2498 
2499     /*
2500      * The write, and any associated faults, only happen if the virtual
2501      * and physical addresses pass the exclusive monitor check.  These
2502      * faults are exceedingly unlikely, because normally the guest uses
2503      * the exact same address register for the load_exclusive, and we
2504      * would have recognized these faults there.
2505      *
2506      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2507      * unaligned 4-byte write within the range of an aligned 8-byte load.
2508      * With LSE2, the store would need to cross a 16-byte boundary when the
2509      * load did not, which would mean the store is outside the range
2510      * recorded for the monitor, which would have failed a corrected monitor
2511      * check above.  For now, we assume no size change and retain the
2512      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2513      *
2514      * It is possible to trigger an MTE fault, by performing the load with
2515      * a virtual address with a valid tag and performing the store with the
2516      * same virtual address and a different invalid tag.
2517      */
2518     memop = size + is_pair;
2519     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2520         memop |= MO_ALIGN;
2521     }
2522     memop = finalize_memop(s, memop);
2523     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2524 
2525     tmp = tcg_temp_new_i64();
2526     if (is_pair) {
2527         if (size == 2) {
2528             if (s->be_data == MO_LE) {
2529                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2530             } else {
2531                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2532             }
2533             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2534                                        cpu_exclusive_val, tmp,
2535                                        get_mem_index(s), memop);
2536             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2537         } else {
2538             TCGv_i128 t16 = tcg_temp_new_i128();
2539             TCGv_i128 c16 = tcg_temp_new_i128();
2540             TCGv_i64 a, b;
2541 
2542             if (s->be_data == MO_LE) {
2543                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2544                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2545                                         cpu_exclusive_high);
2546             } else {
2547                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2548                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2549                                         cpu_exclusive_val);
2550             }
2551 
2552             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2553                                         get_mem_index(s), memop);
2554 
2555             a = tcg_temp_new_i64();
2556             b = tcg_temp_new_i64();
2557             if (s->be_data == MO_LE) {
2558                 tcg_gen_extr_i128_i64(a, b, t16);
2559             } else {
2560                 tcg_gen_extr_i128_i64(b, a, t16);
2561             }
2562 
2563             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2564             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2565             tcg_gen_or_i64(tmp, a, b);
2566 
2567             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2568         }
2569     } else {
2570         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2571                                    cpu_reg(s, rt), get_mem_index(s), memop);
2572         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2573     }
2574     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2575     tcg_gen_br(done_label);
2576 
2577     gen_set_label(fail_label);
2578     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2579     gen_set_label(done_label);
2580     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2581 }
2582 
2583 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2584                                  int rn, int size)
2585 {
2586     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2587     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2588     int memidx = get_mem_index(s);
2589     TCGv_i64 clean_addr;
2590     MemOp memop;
2591 
2592     if (rn == 31) {
2593         gen_check_sp_alignment(s);
2594     }
2595     memop = check_atomic_align(s, rn, size);
2596     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2597     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2598                                memidx, memop);
2599 }
2600 
2601 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2602                                       int rn, int size)
2603 {
2604     TCGv_i64 s1 = cpu_reg(s, rs);
2605     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2606     TCGv_i64 t1 = cpu_reg(s, rt);
2607     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2608     TCGv_i64 clean_addr;
2609     int memidx = get_mem_index(s);
2610     MemOp memop;
2611 
2612     if (rn == 31) {
2613         gen_check_sp_alignment(s);
2614     }
2615 
2616     /* This is a single atomic access, despite the "pair". */
2617     memop = check_atomic_align(s, rn, size + 1);
2618     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2619 
2620     if (size == 2) {
2621         TCGv_i64 cmp = tcg_temp_new_i64();
2622         TCGv_i64 val = tcg_temp_new_i64();
2623 
2624         if (s->be_data == MO_LE) {
2625             tcg_gen_concat32_i64(val, t1, t2);
2626             tcg_gen_concat32_i64(cmp, s1, s2);
2627         } else {
2628             tcg_gen_concat32_i64(val, t2, t1);
2629             tcg_gen_concat32_i64(cmp, s2, s1);
2630         }
2631 
2632         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2633 
2634         if (s->be_data == MO_LE) {
2635             tcg_gen_extr32_i64(s1, s2, cmp);
2636         } else {
2637             tcg_gen_extr32_i64(s2, s1, cmp);
2638         }
2639     } else {
2640         TCGv_i128 cmp = tcg_temp_new_i128();
2641         TCGv_i128 val = tcg_temp_new_i128();
2642 
2643         if (s->be_data == MO_LE) {
2644             tcg_gen_concat_i64_i128(val, t1, t2);
2645             tcg_gen_concat_i64_i128(cmp, s1, s2);
2646         } else {
2647             tcg_gen_concat_i64_i128(val, t2, t1);
2648             tcg_gen_concat_i64_i128(cmp, s2, s1);
2649         }
2650 
2651         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2652 
2653         if (s->be_data == MO_LE) {
2654             tcg_gen_extr_i128_i64(s1, s2, cmp);
2655         } else {
2656             tcg_gen_extr_i128_i64(s2, s1, cmp);
2657         }
2658     }
2659 }
2660 
2661 /*
2662  * Compute the ISS.SF bit for syndrome information if an exception
2663  * is taken on a load or store. This indicates whether the instruction
2664  * is accessing a 32-bit or 64-bit register. This logic is derived
2665  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2666  */
2667 static bool ldst_iss_sf(int size, bool sign, bool ext)
2668 {
2669 
2670     if (sign) {
2671         /*
2672          * Signed loads are 64 bit results if we are not going to
2673          * do a zero-extend from 32 to 64 after the load.
2674          * (For a store, sign and ext are always false.)
2675          */
2676         return !ext;
2677     } else {
2678         /* Unsigned loads/stores work at the specified size */
2679         return size == MO_64;
2680     }
2681 }
2682 
2683 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2684 {
2685     if (a->rn == 31) {
2686         gen_check_sp_alignment(s);
2687     }
2688     if (a->lasr) {
2689         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2690     }
2691     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2692     return true;
2693 }
2694 
2695 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2696 {
2697     if (a->rn == 31) {
2698         gen_check_sp_alignment(s);
2699     }
2700     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2701     if (a->lasr) {
2702         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2703     }
2704     return true;
2705 }
2706 
2707 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2708 {
2709     TCGv_i64 clean_addr;
2710     MemOp memop;
2711     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2712 
2713     /*
2714      * StoreLORelease is the same as Store-Release for QEMU, but
2715      * needs the feature-test.
2716      */
2717     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2718         return false;
2719     }
2720     /* Generate ISS for non-exclusive accesses including LASR.  */
2721     if (a->rn == 31) {
2722         gen_check_sp_alignment(s);
2723     }
2724     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2725     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2726     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2727                                 true, a->rn != 31, memop);
2728     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2729               iss_sf, a->lasr);
2730     return true;
2731 }
2732 
2733 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2734 {
2735     TCGv_i64 clean_addr;
2736     MemOp memop;
2737     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2738 
2739     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2740     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2741         return false;
2742     }
2743     /* Generate ISS for non-exclusive accesses including LASR.  */
2744     if (a->rn == 31) {
2745         gen_check_sp_alignment(s);
2746     }
2747     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2748     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2749                                 false, a->rn != 31, memop);
2750     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2751               a->rt, iss_sf, a->lasr);
2752     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2753     return true;
2754 }
2755 
2756 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2757 {
2758     if (a->rn == 31) {
2759         gen_check_sp_alignment(s);
2760     }
2761     if (a->lasr) {
2762         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2763     }
2764     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2765     return true;
2766 }
2767 
2768 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2769 {
2770     if (a->rn == 31) {
2771         gen_check_sp_alignment(s);
2772     }
2773     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2774     if (a->lasr) {
2775         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2776     }
2777     return true;
2778 }
2779 
2780 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2781 {
2782     if (!dc_isar_feature(aa64_atomics, s)) {
2783         return false;
2784     }
2785     if (((a->rt | a->rs) & 1) != 0) {
2786         return false;
2787     }
2788 
2789     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2790     return true;
2791 }
2792 
2793 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2794 {
2795     if (!dc_isar_feature(aa64_atomics, s)) {
2796         return false;
2797     }
2798     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2799     return true;
2800 }
2801 
2802 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
2803 {
2804     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
2805     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
2806     TCGv_i64 clean_addr = tcg_temp_new_i64();
2807     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
2808 
2809     gen_pc_plus_diff(s, clean_addr, a->imm);
2810     do_gpr_ld(s, tcg_rt, clean_addr, memop,
2811               false, true, a->rt, iss_sf, false);
2812     return true;
2813 }
2814 
2815 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
2816 {
2817     /* Load register (literal), vector version */
2818     TCGv_i64 clean_addr;
2819     MemOp memop;
2820 
2821     if (!fp_access_check(s)) {
2822         return true;
2823     }
2824     memop = finalize_memop_asimd(s, a->sz);
2825     clean_addr = tcg_temp_new_i64();
2826     gen_pc_plus_diff(s, clean_addr, a->imm);
2827     do_fp_ld(s, a->rt, clean_addr, memop);
2828     return true;
2829 }
2830 
2831 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
2832                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
2833                                  uint64_t offset, bool is_store, MemOp mop)
2834 {
2835     if (a->rn == 31) {
2836         gen_check_sp_alignment(s);
2837     }
2838 
2839     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
2840     if (!a->p) {
2841         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
2842     }
2843 
2844     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
2845                                  (a->w || a->rn != 31), 2 << a->sz, mop);
2846 }
2847 
2848 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
2849                                   TCGv_i64 dirty_addr, uint64_t offset)
2850 {
2851     if (a->w) {
2852         if (a->p) {
2853             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2854         }
2855         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
2856     }
2857 }
2858 
2859 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
2860 {
2861     uint64_t offset = a->imm << a->sz;
2862     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
2863     MemOp mop = finalize_memop(s, a->sz);
2864 
2865     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
2866     tcg_rt = cpu_reg(s, a->rt);
2867     tcg_rt2 = cpu_reg(s, a->rt2);
2868     /*
2869      * We built mop above for the single logical access -- rebuild it
2870      * now for the paired operation.
2871      *
2872      * With LSE2, non-sign-extending pairs are treated atomically if
2873      * aligned, and if unaligned one of the pair will be completely
2874      * within a 16-byte block and that element will be atomic.
2875      * Otherwise each element is separately atomic.
2876      * In all cases, issue one operation with the correct atomicity.
2877      */
2878     mop = a->sz + 1;
2879     if (s->align_mem) {
2880         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
2881     }
2882     mop = finalize_memop_pair(s, mop);
2883     if (a->sz == 2) {
2884         TCGv_i64 tmp = tcg_temp_new_i64();
2885 
2886         if (s->be_data == MO_LE) {
2887             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
2888         } else {
2889             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
2890         }
2891         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
2892     } else {
2893         TCGv_i128 tmp = tcg_temp_new_i128();
2894 
2895         if (s->be_data == MO_LE) {
2896             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
2897         } else {
2898             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
2899         }
2900         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
2901     }
2902     op_addr_ldstpair_post(s, a, dirty_addr, offset);
2903     return true;
2904 }
2905 
2906 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
2907 {
2908     uint64_t offset = a->imm << a->sz;
2909     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
2910     MemOp mop = finalize_memop(s, a->sz);
2911 
2912     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
2913     tcg_rt = cpu_reg(s, a->rt);
2914     tcg_rt2 = cpu_reg(s, a->rt2);
2915 
2916     /*
2917      * We built mop above for the single logical access -- rebuild it
2918      * now for the paired operation.
2919      *
2920      * With LSE2, non-sign-extending pairs are treated atomically if
2921      * aligned, and if unaligned one of the pair will be completely
2922      * within a 16-byte block and that element will be atomic.
2923      * Otherwise each element is separately atomic.
2924      * In all cases, issue one operation with the correct atomicity.
2925      *
2926      * This treats sign-extending loads like zero-extending loads,
2927      * since that reuses the most code below.
2928      */
2929     mop = a->sz + 1;
2930     if (s->align_mem) {
2931         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
2932     }
2933     mop = finalize_memop_pair(s, mop);
2934     if (a->sz == 2) {
2935         int o2 = s->be_data == MO_LE ? 32 : 0;
2936         int o1 = o2 ^ 32;
2937 
2938         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
2939         if (a->sign) {
2940             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
2941             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
2942         } else {
2943             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
2944             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
2945         }
2946     } else {
2947         TCGv_i128 tmp = tcg_temp_new_i128();
2948 
2949         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
2950         if (s->be_data == MO_LE) {
2951             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
2952         } else {
2953             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
2954         }
2955     }
2956     op_addr_ldstpair_post(s, a, dirty_addr, offset);
2957     return true;
2958 }
2959 
2960 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
2961 {
2962     uint64_t offset = a->imm << a->sz;
2963     TCGv_i64 clean_addr, dirty_addr;
2964     MemOp mop;
2965 
2966     if (!fp_access_check(s)) {
2967         return true;
2968     }
2969 
2970     /* LSE2 does not merge FP pairs; leave these as separate operations. */
2971     mop = finalize_memop_asimd(s, a->sz);
2972     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
2973     do_fp_st(s, a->rt, clean_addr, mop);
2974     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
2975     do_fp_st(s, a->rt2, clean_addr, mop);
2976     op_addr_ldstpair_post(s, a, dirty_addr, offset);
2977     return true;
2978 }
2979 
2980 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
2981 {
2982     uint64_t offset = a->imm << a->sz;
2983     TCGv_i64 clean_addr, dirty_addr;
2984     MemOp mop;
2985 
2986     if (!fp_access_check(s)) {
2987         return true;
2988     }
2989 
2990     /* LSE2 does not merge FP pairs; leave these as separate operations. */
2991     mop = finalize_memop_asimd(s, a->sz);
2992     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
2993     do_fp_ld(s, a->rt, clean_addr, mop);
2994     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
2995     do_fp_ld(s, a->rt2, clean_addr, mop);
2996     op_addr_ldstpair_post(s, a, dirty_addr, offset);
2997     return true;
2998 }
2999 
3000 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3001 {
3002     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3003     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3004     MemOp mop;
3005     TCGv_i128 tmp;
3006 
3007     /* STGP only comes in one size. */
3008     tcg_debug_assert(a->sz == MO_64);
3009 
3010     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3011         return false;
3012     }
3013 
3014     if (a->rn == 31) {
3015         gen_check_sp_alignment(s);
3016     }
3017 
3018     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3019     if (!a->p) {
3020         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3021     }
3022 
3023     if (!s->ata) {
3024         /*
3025          * TODO: We could rely on the stores below, at least for
3026          * system mode, if we arrange to add MO_ALIGN_16.
3027          */
3028         gen_helper_stg_stub(cpu_env, dirty_addr);
3029     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3030         gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
3031     } else {
3032         gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
3033     }
3034 
3035     mop = finalize_memop(s, MO_64);
3036     clean_addr = gen_mte_checkN(s, dirty_addr, true, false, 2 << MO_64, mop);
3037 
3038     tcg_rt = cpu_reg(s, a->rt);
3039     tcg_rt2 = cpu_reg(s, a->rt2);
3040 
3041     /*
3042      * STGP is defined as two 8-byte memory operations and one tag operation.
3043      * We implement it as one single 16-byte memory operation for convenience.
3044      * Rebuild mop as for STP.
3045      * TODO: The atomicity with LSE2 is stronger than required.
3046      * Need a form of MO_ATOM_WITHIN16_PAIR that never requires
3047      * 16-byte atomicity.
3048      */
3049     mop = MO_128;
3050     if (s->align_mem) {
3051         mop |= MO_ALIGN_8;
3052     }
3053     mop = finalize_memop_pair(s, mop);
3054 
3055     tmp = tcg_temp_new_i128();
3056     if (s->be_data == MO_LE) {
3057         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3058     } else {
3059         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3060     }
3061     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3062 
3063     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3064     return true;
3065 }
3066 
3067 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3068                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3069                                  uint64_t offset, bool is_store, MemOp mop)
3070 {
3071     int memidx;
3072 
3073     if (a->rn == 31) {
3074         gen_check_sp_alignment(s);
3075     }
3076 
3077     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3078     if (!a->p) {
3079         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3080     }
3081     memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3082     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3083                                         a->w || a->rn != 31,
3084                                         mop, a->unpriv, memidx);
3085 }
3086 
3087 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3088                                   TCGv_i64 dirty_addr, uint64_t offset)
3089 {
3090     if (a->w) {
3091         if (a->p) {
3092             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3093         }
3094         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3095     }
3096 }
3097 
3098 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3099 {
3100     bool iss_sf, iss_valid = !a->w;
3101     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3102     int memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3103     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3104 
3105     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3106 
3107     tcg_rt = cpu_reg(s, a->rt);
3108     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3109 
3110     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3111                      iss_valid, a->rt, iss_sf, false);
3112     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3113     return true;
3114 }
3115 
3116 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3117 {
3118     bool iss_sf, iss_valid = !a->w;
3119     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3120     int memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3121     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3122 
3123     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3124 
3125     tcg_rt = cpu_reg(s, a->rt);
3126     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3127 
3128     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3129                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3130     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3131     return true;
3132 }
3133 
3134 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3135 {
3136     TCGv_i64 clean_addr, dirty_addr;
3137     MemOp mop;
3138 
3139     if (!fp_access_check(s)) {
3140         return true;
3141     }
3142     mop = finalize_memop_asimd(s, a->sz);
3143     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3144     do_fp_st(s, a->rt, clean_addr, mop);
3145     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3146     return true;
3147 }
3148 
3149 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3150 {
3151     TCGv_i64 clean_addr, dirty_addr;
3152     MemOp mop;
3153 
3154     if (!fp_access_check(s)) {
3155         return true;
3156     }
3157     mop = finalize_memop_asimd(s, a->sz);
3158     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3159     do_fp_ld(s, a->rt, clean_addr, mop);
3160     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3161     return true;
3162 }
3163 
3164 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3165                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3166                              bool is_store, MemOp memop)
3167 {
3168     TCGv_i64 tcg_rm;
3169 
3170     if (a->rn == 31) {
3171         gen_check_sp_alignment(s);
3172     }
3173     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3174 
3175     tcg_rm = read_cpu_reg(s, a->rm, 1);
3176     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3177 
3178     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3179     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3180 }
3181 
3182 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3183 {
3184     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3185     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3186     MemOp memop;
3187 
3188     if (extract32(a->opt, 1, 1) == 0) {
3189         return false;
3190     }
3191 
3192     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3193     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3194     tcg_rt = cpu_reg(s, a->rt);
3195     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3196               a->ext, true, a->rt, iss_sf, false);
3197     return true;
3198 }
3199 
3200 static bool trans_STR(DisasContext *s, arg_ldst *a)
3201 {
3202     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3203     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3204     MemOp memop;
3205 
3206     if (extract32(a->opt, 1, 1) == 0) {
3207         return false;
3208     }
3209 
3210     memop = finalize_memop(s, a->sz);
3211     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3212     tcg_rt = cpu_reg(s, a->rt);
3213     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3214     return true;
3215 }
3216 
3217 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3218 {
3219     TCGv_i64 clean_addr, dirty_addr;
3220     MemOp memop;
3221 
3222     if (extract32(a->opt, 1, 1) == 0) {
3223         return false;
3224     }
3225 
3226     if (!fp_access_check(s)) {
3227         return true;
3228     }
3229 
3230     memop = finalize_memop_asimd(s, a->sz);
3231     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3232     do_fp_ld(s, a->rt, clean_addr, memop);
3233     return true;
3234 }
3235 
3236 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3237 {
3238     TCGv_i64 clean_addr, dirty_addr;
3239     MemOp memop;
3240 
3241     if (extract32(a->opt, 1, 1) == 0) {
3242         return false;
3243     }
3244 
3245     if (!fp_access_check(s)) {
3246         return true;
3247     }
3248 
3249     memop = finalize_memop_asimd(s, a->sz);
3250     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3251     do_fp_st(s, a->rt, clean_addr, memop);
3252     return true;
3253 }
3254 
3255 
3256 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3257                          int sign, bool invert)
3258 {
3259     MemOp mop = a->sz | sign;
3260     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3261 
3262     if (a->rn == 31) {
3263         gen_check_sp_alignment(s);
3264     }
3265     mop = check_atomic_align(s, a->rn, mop);
3266     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3267                                 a->rn != 31, mop);
3268     tcg_rs = read_cpu_reg(s, a->rs, true);
3269     tcg_rt = cpu_reg(s, a->rt);
3270     if (invert) {
3271         tcg_gen_not_i64(tcg_rs, tcg_rs);
3272     }
3273     /*
3274      * The tcg atomic primitives are all full barriers.  Therefore we
3275      * can ignore the Acquire and Release bits of this instruction.
3276      */
3277     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3278 
3279     if (mop & MO_SIGN) {
3280         switch (a->sz) {
3281         case MO_8:
3282             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3283             break;
3284         case MO_16:
3285             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3286             break;
3287         case MO_32:
3288             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3289             break;
3290         case MO_64:
3291             break;
3292         default:
3293             g_assert_not_reached();
3294         }
3295     }
3296     return true;
3297 }
3298 
3299 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3300 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3301 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3302 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3303 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3304 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3305 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3306 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3307 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3308 
3309 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3310 {
3311     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3312     TCGv_i64 clean_addr;
3313     MemOp mop;
3314 
3315     if (!dc_isar_feature(aa64_atomics, s) ||
3316         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3317         return false;
3318     }
3319     if (a->rn == 31) {
3320         gen_check_sp_alignment(s);
3321     }
3322     mop = check_atomic_align(s, a->rn, a->sz);
3323     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3324                                 a->rn != 31, mop);
3325     /*
3326      * LDAPR* are a special case because they are a simple load, not a
3327      * fetch-and-do-something op.
3328      * The architectural consistency requirements here are weaker than
3329      * full load-acquire (we only need "load-acquire processor consistent"),
3330      * but we choose to implement them as full LDAQ.
3331      */
3332     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3333               true, a->rt, iss_sf, true);
3334     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3335     return true;
3336 }
3337 
3338 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3339 {
3340     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3341     MemOp memop;
3342 
3343     /* Load with pointer authentication */
3344     if (!dc_isar_feature(aa64_pauth, s)) {
3345         return false;
3346     }
3347 
3348     if (a->rn == 31) {
3349         gen_check_sp_alignment(s);
3350     }
3351     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3352 
3353     if (s->pauth_active) {
3354         if (!a->m) {
3355             gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3356                              tcg_constant_i64(0));
3357         } else {
3358             gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3359                              tcg_constant_i64(0));
3360         }
3361     }
3362 
3363     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3364 
3365     memop = finalize_memop(s, MO_64);
3366 
3367     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3368     clean_addr = gen_mte_check1(s, dirty_addr, false,
3369                                 a->w || a->rn != 31, memop);
3370 
3371     tcg_rt = cpu_reg(s, a->rt);
3372     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3373               /* extend */ false, /* iss_valid */ !a->w,
3374               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3375 
3376     if (a->w) {
3377         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3378     }
3379     return true;
3380 }
3381 
3382 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3383 {
3384     TCGv_i64 clean_addr, dirty_addr;
3385     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3386     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3387 
3388     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3389         return false;
3390     }
3391 
3392     if (a->rn == 31) {
3393         gen_check_sp_alignment(s);
3394     }
3395 
3396     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3397     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3398     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3399     clean_addr = clean_data_tbi(s, dirty_addr);
3400 
3401     /*
3402      * Load-AcquirePC semantics; we implement as the slightly more
3403      * restrictive Load-Acquire.
3404      */
3405     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3406               a->rt, iss_sf, true);
3407     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3408     return true;
3409 }
3410 
3411 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3412 {
3413     TCGv_i64 clean_addr, dirty_addr;
3414     MemOp mop = a->sz;
3415     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3416 
3417     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3418         return false;
3419     }
3420 
3421     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3422 
3423     if (a->rn == 31) {
3424         gen_check_sp_alignment(s);
3425     }
3426 
3427     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3428     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3429     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3430     clean_addr = clean_data_tbi(s, dirty_addr);
3431 
3432     /* Store-Release semantics */
3433     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3434     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3435     return true;
3436 }
3437 
3438 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3439 {
3440     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3441     MemOp endian, align, mop;
3442 
3443     int total;    /* total bytes */
3444     int elements; /* elements per vector */
3445     int r;
3446     int size = a->sz;
3447 
3448     if (!a->p && a->rm != 0) {
3449         /* For non-postindexed accesses the Rm field must be 0 */
3450         return false;
3451     }
3452     if (size == 3 && !a->q && a->selem != 1) {
3453         return false;
3454     }
3455     if (!fp_access_check(s)) {
3456         return true;
3457     }
3458 
3459     if (a->rn == 31) {
3460         gen_check_sp_alignment(s);
3461     }
3462 
3463     /* For our purposes, bytes are always little-endian.  */
3464     endian = s->be_data;
3465     if (size == 0) {
3466         endian = MO_LE;
3467     }
3468 
3469     total = a->rpt * a->selem * (a->q ? 16 : 8);
3470     tcg_rn = cpu_reg_sp(s, a->rn);
3471 
3472     /*
3473      * Issue the MTE check vs the logical repeat count, before we
3474      * promote consecutive little-endian elements below.
3475      */
3476     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3477                                 finalize_memop_asimd(s, size));
3478 
3479     /*
3480      * Consecutive little-endian elements from a single register
3481      * can be promoted to a larger little-endian operation.
3482      */
3483     align = MO_ALIGN;
3484     if (a->selem == 1 && endian == MO_LE) {
3485         align = pow2_align(size);
3486         size = 3;
3487     }
3488     if (!s->align_mem) {
3489         align = 0;
3490     }
3491     mop = endian | size | align;
3492 
3493     elements = (a->q ? 16 : 8) >> size;
3494     tcg_ebytes = tcg_constant_i64(1 << size);
3495     for (r = 0; r < a->rpt; r++) {
3496         int e;
3497         for (e = 0; e < elements; e++) {
3498             int xs;
3499             for (xs = 0; xs < a->selem; xs++) {
3500                 int tt = (a->rt + r + xs) % 32;
3501                 do_vec_ld(s, tt, e, clean_addr, mop);
3502                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3503             }
3504         }
3505     }
3506 
3507     /*
3508      * For non-quad operations, setting a slice of the low 64 bits of
3509      * the register clears the high 64 bits (in the ARM ARM pseudocode
3510      * this is implicit in the fact that 'rval' is a 64 bit wide
3511      * variable).  For quad operations, we might still need to zero
3512      * the high bits of SVE.
3513      */
3514     for (r = 0; r < a->rpt * a->selem; r++) {
3515         int tt = (a->rt + r) % 32;
3516         clear_vec_high(s, a->q, tt);
3517     }
3518 
3519     if (a->p) {
3520         if (a->rm == 31) {
3521             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3522         } else {
3523             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3524         }
3525     }
3526     return true;
3527 }
3528 
3529 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3530 {
3531     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3532     MemOp endian, align, mop;
3533 
3534     int total;    /* total bytes */
3535     int elements; /* elements per vector */
3536     int r;
3537     int size = a->sz;
3538 
3539     if (!a->p && a->rm != 0) {
3540         /* For non-postindexed accesses the Rm field must be 0 */
3541         return false;
3542     }
3543     if (size == 3 && !a->q && a->selem != 1) {
3544         return false;
3545     }
3546     if (!fp_access_check(s)) {
3547         return true;
3548     }
3549 
3550     if (a->rn == 31) {
3551         gen_check_sp_alignment(s);
3552     }
3553 
3554     /* For our purposes, bytes are always little-endian.  */
3555     endian = s->be_data;
3556     if (size == 0) {
3557         endian = MO_LE;
3558     }
3559 
3560     total = a->rpt * a->selem * (a->q ? 16 : 8);
3561     tcg_rn = cpu_reg_sp(s, a->rn);
3562 
3563     /*
3564      * Issue the MTE check vs the logical repeat count, before we
3565      * promote consecutive little-endian elements below.
3566      */
3567     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3568                                 finalize_memop_asimd(s, size));
3569 
3570     /*
3571      * Consecutive little-endian elements from a single register
3572      * can be promoted to a larger little-endian operation.
3573      */
3574     align = MO_ALIGN;
3575     if (a->selem == 1 && endian == MO_LE) {
3576         align = pow2_align(size);
3577         size = 3;
3578     }
3579     if (!s->align_mem) {
3580         align = 0;
3581     }
3582     mop = endian | size | align;
3583 
3584     elements = (a->q ? 16 : 8) >> size;
3585     tcg_ebytes = tcg_constant_i64(1 << size);
3586     for (r = 0; r < a->rpt; r++) {
3587         int e;
3588         for (e = 0; e < elements; e++) {
3589             int xs;
3590             for (xs = 0; xs < a->selem; xs++) {
3591                 int tt = (a->rt + r + xs) % 32;
3592                 do_vec_st(s, tt, e, clean_addr, mop);
3593                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3594             }
3595         }
3596     }
3597 
3598     if (a->p) {
3599         if (a->rm == 31) {
3600             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3601         } else {
3602             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3603         }
3604     }
3605     return true;
3606 }
3607 
3608 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3609 {
3610     int xs, total, rt;
3611     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3612     MemOp mop;
3613 
3614     if (!a->p && a->rm != 0) {
3615         return false;
3616     }
3617     if (!fp_access_check(s)) {
3618         return true;
3619     }
3620 
3621     if (a->rn == 31) {
3622         gen_check_sp_alignment(s);
3623     }
3624 
3625     total = a->selem << a->scale;
3626     tcg_rn = cpu_reg_sp(s, a->rn);
3627 
3628     mop = finalize_memop_asimd(s, a->scale);
3629     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3630                                 total, mop);
3631 
3632     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3633     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3634         do_vec_st(s, rt, a->index, clean_addr, mop);
3635         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3636     }
3637 
3638     if (a->p) {
3639         if (a->rm == 31) {
3640             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3641         } else {
3642             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3643         }
3644     }
3645     return true;
3646 }
3647 
3648 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3649 {
3650     int xs, total, rt;
3651     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3652     MemOp mop;
3653 
3654     if (!a->p && a->rm != 0) {
3655         return false;
3656     }
3657     if (!fp_access_check(s)) {
3658         return true;
3659     }
3660 
3661     if (a->rn == 31) {
3662         gen_check_sp_alignment(s);
3663     }
3664 
3665     total = a->selem << a->scale;
3666     tcg_rn = cpu_reg_sp(s, a->rn);
3667 
3668     mop = finalize_memop_asimd(s, a->scale);
3669     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3670                                 total, mop);
3671 
3672     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3673     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3674         do_vec_ld(s, rt, a->index, clean_addr, mop);
3675         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3676     }
3677 
3678     if (a->p) {
3679         if (a->rm == 31) {
3680             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3681         } else {
3682             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3683         }
3684     }
3685     return true;
3686 }
3687 
3688 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3689 {
3690     int xs, total, rt;
3691     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3692     MemOp mop;
3693 
3694     if (!a->p && a->rm != 0) {
3695         return false;
3696     }
3697     if (!fp_access_check(s)) {
3698         return true;
3699     }
3700 
3701     if (a->rn == 31) {
3702         gen_check_sp_alignment(s);
3703     }
3704 
3705     total = a->selem << a->scale;
3706     tcg_rn = cpu_reg_sp(s, a->rn);
3707 
3708     mop = finalize_memop_asimd(s, a->scale);
3709     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3710                                 total, mop);
3711 
3712     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3713     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3714         /* Load and replicate to all elements */
3715         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3716 
3717         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3718         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3719                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3720         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3721     }
3722 
3723     if (a->p) {
3724         if (a->rm == 31) {
3725             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3726         } else {
3727             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3728         }
3729     }
3730     return true;
3731 }
3732 
3733 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3734 {
3735     TCGv_i64 addr, clean_addr, tcg_rt;
3736     int size = 4 << s->dcz_blocksize;
3737 
3738     if (!dc_isar_feature(aa64_mte, s)) {
3739         return false;
3740     }
3741     if (s->current_el == 0) {
3742         return false;
3743     }
3744 
3745     if (a->rn == 31) {
3746         gen_check_sp_alignment(s);
3747     }
3748 
3749     addr = read_cpu_reg_sp(s, a->rn, true);
3750     tcg_gen_addi_i64(addr, addr, a->imm);
3751     tcg_rt = cpu_reg(s, a->rt);
3752 
3753     if (s->ata) {
3754         gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
3755     }
3756     /*
3757      * The non-tags portion of STZGM is mostly like DC_ZVA,
3758      * except the alignment happens before the access.
3759      */
3760     clean_addr = clean_data_tbi(s, addr);
3761     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3762     gen_helper_dc_zva(cpu_env, clean_addr);
3763     return true;
3764 }
3765 
3766 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3767 {
3768     TCGv_i64 addr, clean_addr, tcg_rt;
3769 
3770     if (!dc_isar_feature(aa64_mte, s)) {
3771         return false;
3772     }
3773     if (s->current_el == 0) {
3774         return false;
3775     }
3776 
3777     if (a->rn == 31) {
3778         gen_check_sp_alignment(s);
3779     }
3780 
3781     addr = read_cpu_reg_sp(s, a->rn, true);
3782     tcg_gen_addi_i64(addr, addr, a->imm);
3783     tcg_rt = cpu_reg(s, a->rt);
3784 
3785     if (s->ata) {
3786         gen_helper_stgm(cpu_env, addr, tcg_rt);
3787     } else {
3788         MMUAccessType acc = MMU_DATA_STORE;
3789         int size = 4 << GMID_EL1_BS;
3790 
3791         clean_addr = clean_data_tbi(s, addr);
3792         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3793         gen_probe_access(s, clean_addr, acc, size);
3794     }
3795     return true;
3796 }
3797 
3798 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3799 {
3800     TCGv_i64 addr, clean_addr, tcg_rt;
3801 
3802     if (!dc_isar_feature(aa64_mte, s)) {
3803         return false;
3804     }
3805     if (s->current_el == 0) {
3806         return false;
3807     }
3808 
3809     if (a->rn == 31) {
3810         gen_check_sp_alignment(s);
3811     }
3812 
3813     addr = read_cpu_reg_sp(s, a->rn, true);
3814     tcg_gen_addi_i64(addr, addr, a->imm);
3815     tcg_rt = cpu_reg(s, a->rt);
3816 
3817     if (s->ata) {
3818         gen_helper_ldgm(tcg_rt, cpu_env, addr);
3819     } else {
3820         MMUAccessType acc = MMU_DATA_LOAD;
3821         int size = 4 << GMID_EL1_BS;
3822 
3823         clean_addr = clean_data_tbi(s, addr);
3824         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3825         gen_probe_access(s, clean_addr, acc, size);
3826         /* The result tags are zeros.  */
3827         tcg_gen_movi_i64(tcg_rt, 0);
3828     }
3829     return true;
3830 }
3831 
3832 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
3833 {
3834     TCGv_i64 addr, clean_addr, tcg_rt;
3835 
3836     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3837         return false;
3838     }
3839 
3840     if (a->rn == 31) {
3841         gen_check_sp_alignment(s);
3842     }
3843 
3844     addr = read_cpu_reg_sp(s, a->rn, true);
3845     if (!a->p) {
3846         /* pre-index or signed offset */
3847         tcg_gen_addi_i64(addr, addr, a->imm);
3848     }
3849 
3850     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
3851     tcg_rt = cpu_reg(s, a->rt);
3852     if (s->ata) {
3853         gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
3854     } else {
3855         /*
3856          * Tag access disabled: we must check for aborts on the load
3857          * load from [rn+offset], and then insert a 0 tag into rt.
3858          */
3859         clean_addr = clean_data_tbi(s, addr);
3860         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
3861         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
3862     }
3863 
3864     if (a->w) {
3865         /* pre-index or post-index */
3866         if (a->p) {
3867             /* post-index */
3868             tcg_gen_addi_i64(addr, addr, a->imm);
3869         }
3870         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
3871     }
3872     return true;
3873 }
3874 
3875 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
3876 {
3877     TCGv_i64 addr, tcg_rt;
3878 
3879     if (a->rn == 31) {
3880         gen_check_sp_alignment(s);
3881     }
3882 
3883     addr = read_cpu_reg_sp(s, a->rn, true);
3884     if (!a->p) {
3885         /* pre-index or signed offset */
3886         tcg_gen_addi_i64(addr, addr, a->imm);
3887     }
3888     tcg_rt = cpu_reg_sp(s, a->rt);
3889     if (!s->ata) {
3890         /*
3891          * For STG and ST2G, we need to check alignment and probe memory.
3892          * TODO: For STZG and STZ2G, we could rely on the stores below,
3893          * at least for system mode; user-only won't enforce alignment.
3894          */
3895         if (is_pair) {
3896             gen_helper_st2g_stub(cpu_env, addr);
3897         } else {
3898             gen_helper_stg_stub(cpu_env, addr);
3899         }
3900     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3901         if (is_pair) {
3902             gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
3903         } else {
3904             gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
3905         }
3906     } else {
3907         if (is_pair) {
3908             gen_helper_st2g(cpu_env, addr, tcg_rt);
3909         } else {
3910             gen_helper_stg(cpu_env, addr, tcg_rt);
3911         }
3912     }
3913 
3914     if (is_zero) {
3915         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
3916         TCGv_i64 zero64 = tcg_constant_i64(0);
3917         TCGv_i128 zero128 = tcg_temp_new_i128();
3918         int mem_index = get_mem_index(s);
3919         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
3920 
3921         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
3922 
3923         /* This is 1 or 2 atomic 16-byte operations. */
3924         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
3925         if (is_pair) {
3926             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
3927             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
3928         }
3929     }
3930 
3931     if (a->w) {
3932         /* pre-index or post-index */
3933         if (a->p) {
3934             /* post-index */
3935             tcg_gen_addi_i64(addr, addr, a->imm);
3936         }
3937         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
3938     }
3939     return true;
3940 }
3941 
3942 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
3943 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
3944 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
3945 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
3946 
3947 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
3948 
3949 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
3950                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
3951 {
3952     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
3953     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
3954     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
3955 
3956     fn(tcg_rd, tcg_rn, tcg_imm);
3957     if (!a->sf) {
3958         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3959     }
3960     return true;
3961 }
3962 
3963 /*
3964  * PC-rel. addressing
3965  */
3966 
3967 static bool trans_ADR(DisasContext *s, arg_ri *a)
3968 {
3969     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
3970     return true;
3971 }
3972 
3973 static bool trans_ADRP(DisasContext *s, arg_ri *a)
3974 {
3975     int64_t offset = (int64_t)a->imm << 12;
3976 
3977     /* The page offset is ok for CF_PCREL. */
3978     offset -= s->pc_curr & 0xfff;
3979     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
3980     return true;
3981 }
3982 
3983 /*
3984  * Add/subtract (immediate)
3985  */
3986 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
3987 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
3988 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
3989 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
3990 
3991 /*
3992  * Add/subtract (immediate, with tags)
3993  */
3994 
3995 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
3996                                       bool sub_op)
3997 {
3998     TCGv_i64 tcg_rn, tcg_rd;
3999     int imm;
4000 
4001     imm = a->uimm6 << LOG2_TAG_GRANULE;
4002     if (sub_op) {
4003         imm = -imm;
4004     }
4005 
4006     tcg_rn = cpu_reg_sp(s, a->rn);
4007     tcg_rd = cpu_reg_sp(s, a->rd);
4008 
4009     if (s->ata) {
4010         gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn,
4011                            tcg_constant_i32(imm),
4012                            tcg_constant_i32(a->uimm4));
4013     } else {
4014         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4015         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4016     }
4017     return true;
4018 }
4019 
4020 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4021 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4022 
4023 /* The input should be a value in the bottom e bits (with higher
4024  * bits zero); returns that value replicated into every element
4025  * of size e in a 64 bit integer.
4026  */
4027 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4028 {
4029     assert(e != 0);
4030     while (e < 64) {
4031         mask |= mask << e;
4032         e *= 2;
4033     }
4034     return mask;
4035 }
4036 
4037 /*
4038  * Logical (immediate)
4039  */
4040 
4041 /*
4042  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4043  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4044  * value (ie should cause a guest UNDEF exception), and true if they are
4045  * valid, in which case the decoded bit pattern is written to result.
4046  */
4047 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4048                             unsigned int imms, unsigned int immr)
4049 {
4050     uint64_t mask;
4051     unsigned e, levels, s, r;
4052     int len;
4053 
4054     assert(immn < 2 && imms < 64 && immr < 64);
4055 
4056     /* The bit patterns we create here are 64 bit patterns which
4057      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4058      * 64 bits each. Each element contains the same value: a run
4059      * of between 1 and e-1 non-zero bits, rotated within the
4060      * element by between 0 and e-1 bits.
4061      *
4062      * The element size and run length are encoded into immn (1 bit)
4063      * and imms (6 bits) as follows:
4064      * 64 bit elements: immn = 1, imms = <length of run - 1>
4065      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4066      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4067      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4068      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4069      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4070      * Notice that immn = 0, imms = 11111x is the only combination
4071      * not covered by one of the above options; this is reserved.
4072      * Further, <length of run - 1> all-ones is a reserved pattern.
4073      *
4074      * In all cases the rotation is by immr % e (and immr is 6 bits).
4075      */
4076 
4077     /* First determine the element size */
4078     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4079     if (len < 1) {
4080         /* This is the immn == 0, imms == 0x11111x case */
4081         return false;
4082     }
4083     e = 1 << len;
4084 
4085     levels = e - 1;
4086     s = imms & levels;
4087     r = immr & levels;
4088 
4089     if (s == levels) {
4090         /* <length of run - 1> mustn't be all-ones. */
4091         return false;
4092     }
4093 
4094     /* Create the value of one element: s+1 set bits rotated
4095      * by r within the element (which is e bits wide)...
4096      */
4097     mask = MAKE_64BIT_MASK(0, s + 1);
4098     if (r) {
4099         mask = (mask >> r) | (mask << (e - r));
4100         mask &= MAKE_64BIT_MASK(0, e);
4101     }
4102     /* ...then replicate the element over the whole 64 bit value */
4103     mask = bitfield_replicate(mask, e);
4104     *result = mask;
4105     return true;
4106 }
4107 
4108 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4109                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4110 {
4111     TCGv_i64 tcg_rd, tcg_rn;
4112     uint64_t imm;
4113 
4114     /* Some immediate field values are reserved. */
4115     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4116                                 extract32(a->dbm, 0, 6),
4117                                 extract32(a->dbm, 6, 6))) {
4118         return false;
4119     }
4120     if (!a->sf) {
4121         imm &= 0xffffffffull;
4122     }
4123 
4124     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4125     tcg_rn = cpu_reg(s, a->rn);
4126 
4127     fn(tcg_rd, tcg_rn, imm);
4128     if (set_cc) {
4129         gen_logic_CC(a->sf, tcg_rd);
4130     }
4131     if (!a->sf) {
4132         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4133     }
4134     return true;
4135 }
4136 
4137 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4138 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4139 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4140 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4141 
4142 /*
4143  * Move wide (immediate)
4144  */
4145 
4146 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4147 {
4148     int pos = a->hw << 4;
4149     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4150     return true;
4151 }
4152 
4153 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4154 {
4155     int pos = a->hw << 4;
4156     uint64_t imm = a->imm;
4157 
4158     imm = ~(imm << pos);
4159     if (!a->sf) {
4160         imm = (uint32_t)imm;
4161     }
4162     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4163     return true;
4164 }
4165 
4166 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4167 {
4168     int pos = a->hw << 4;
4169     TCGv_i64 tcg_rd, tcg_im;
4170 
4171     tcg_rd = cpu_reg(s, a->rd);
4172     tcg_im = tcg_constant_i64(a->imm);
4173     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4174     if (!a->sf) {
4175         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4176     }
4177     return true;
4178 }
4179 
4180 /*
4181  * Bitfield
4182  */
4183 
4184 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4185 {
4186     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4187     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4188     unsigned int bitsize = a->sf ? 64 : 32;
4189     unsigned int ri = a->immr;
4190     unsigned int si = a->imms;
4191     unsigned int pos, len;
4192 
4193     if (si >= ri) {
4194         /* Wd<s-r:0> = Wn<s:r> */
4195         len = (si - ri) + 1;
4196         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4197         if (!a->sf) {
4198             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4199         }
4200     } else {
4201         /* Wd<32+s-r,32-r> = Wn<s:0> */
4202         len = si + 1;
4203         pos = (bitsize - ri) & (bitsize - 1);
4204 
4205         if (len < ri) {
4206             /*
4207              * Sign extend the destination field from len to fill the
4208              * balance of the word.  Let the deposit below insert all
4209              * of those sign bits.
4210              */
4211             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4212             len = ri;
4213         }
4214 
4215         /*
4216          * We start with zero, and we haven't modified any bits outside
4217          * bitsize, therefore no final zero-extension is unneeded for !sf.
4218          */
4219         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4220     }
4221     return true;
4222 }
4223 
4224 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4225 {
4226     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4227     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4228     unsigned int bitsize = a->sf ? 64 : 32;
4229     unsigned int ri = a->immr;
4230     unsigned int si = a->imms;
4231     unsigned int pos, len;
4232 
4233     tcg_rd = cpu_reg(s, a->rd);
4234     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4235 
4236     if (si >= ri) {
4237         /* Wd<s-r:0> = Wn<s:r> */
4238         len = (si - ri) + 1;
4239         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4240     } else {
4241         /* Wd<32+s-r,32-r> = Wn<s:0> */
4242         len = si + 1;
4243         pos = (bitsize - ri) & (bitsize - 1);
4244         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4245     }
4246     return true;
4247 }
4248 
4249 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4250 {
4251     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4252     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4253     unsigned int bitsize = a->sf ? 64 : 32;
4254     unsigned int ri = a->immr;
4255     unsigned int si = a->imms;
4256     unsigned int pos, len;
4257 
4258     tcg_rd = cpu_reg(s, a->rd);
4259     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4260 
4261     if (si >= ri) {
4262         /* Wd<s-r:0> = Wn<s:r> */
4263         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4264         len = (si - ri) + 1;
4265         pos = 0;
4266     } else {
4267         /* Wd<32+s-r,32-r> = Wn<s:0> */
4268         len = si + 1;
4269         pos = (bitsize - ri) & (bitsize - 1);
4270     }
4271 
4272     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4273     if (!a->sf) {
4274         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4275     }
4276     return true;
4277 }
4278 
4279 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4280 {
4281     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4282 
4283     tcg_rd = cpu_reg(s, a->rd);
4284 
4285     if (unlikely(a->imm == 0)) {
4286         /*
4287          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4288          * so an extract from bit 0 is a special case.
4289          */
4290         if (a->sf) {
4291             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4292         } else {
4293             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4294         }
4295     } else {
4296         tcg_rm = cpu_reg(s, a->rm);
4297         tcg_rn = cpu_reg(s, a->rn);
4298 
4299         if (a->sf) {
4300             /* Specialization to ROR happens in EXTRACT2.  */
4301             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4302         } else {
4303             TCGv_i32 t0 = tcg_temp_new_i32();
4304 
4305             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4306             if (a->rm == a->rn) {
4307                 tcg_gen_rotri_i32(t0, t0, a->imm);
4308             } else {
4309                 TCGv_i32 t1 = tcg_temp_new_i32();
4310                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4311                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4312             }
4313             tcg_gen_extu_i32_i64(tcg_rd, t0);
4314         }
4315     }
4316     return true;
4317 }
4318 
4319 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4320  * Note that it is the caller's responsibility to ensure that the
4321  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4322  * mandated semantics for out of range shifts.
4323  */
4324 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4325                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4326 {
4327     switch (shift_type) {
4328     case A64_SHIFT_TYPE_LSL:
4329         tcg_gen_shl_i64(dst, src, shift_amount);
4330         break;
4331     case A64_SHIFT_TYPE_LSR:
4332         tcg_gen_shr_i64(dst, src, shift_amount);
4333         break;
4334     case A64_SHIFT_TYPE_ASR:
4335         if (!sf) {
4336             tcg_gen_ext32s_i64(dst, src);
4337         }
4338         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4339         break;
4340     case A64_SHIFT_TYPE_ROR:
4341         if (sf) {
4342             tcg_gen_rotr_i64(dst, src, shift_amount);
4343         } else {
4344             TCGv_i32 t0, t1;
4345             t0 = tcg_temp_new_i32();
4346             t1 = tcg_temp_new_i32();
4347             tcg_gen_extrl_i64_i32(t0, src);
4348             tcg_gen_extrl_i64_i32(t1, shift_amount);
4349             tcg_gen_rotr_i32(t0, t0, t1);
4350             tcg_gen_extu_i32_i64(dst, t0);
4351         }
4352         break;
4353     default:
4354         assert(FALSE); /* all shift types should be handled */
4355         break;
4356     }
4357 
4358     if (!sf) { /* zero extend final result */
4359         tcg_gen_ext32u_i64(dst, dst);
4360     }
4361 }
4362 
4363 /* Shift a TCGv src by immediate, put result in dst.
4364  * The shift amount must be in range (this should always be true as the
4365  * relevant instructions will UNDEF on bad shift immediates).
4366  */
4367 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4368                           enum a64_shift_type shift_type, unsigned int shift_i)
4369 {
4370     assert(shift_i < (sf ? 64 : 32));
4371 
4372     if (shift_i == 0) {
4373         tcg_gen_mov_i64(dst, src);
4374     } else {
4375         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4376     }
4377 }
4378 
4379 /* Logical (shifted register)
4380  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
4381  * +----+-----+-----------+-------+---+------+--------+------+------+
4382  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
4383  * +----+-----+-----------+-------+---+------+--------+------+------+
4384  */
4385 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4386 {
4387     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4388     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4389 
4390     sf = extract32(insn, 31, 1);
4391     opc = extract32(insn, 29, 2);
4392     shift_type = extract32(insn, 22, 2);
4393     invert = extract32(insn, 21, 1);
4394     rm = extract32(insn, 16, 5);
4395     shift_amount = extract32(insn, 10, 6);
4396     rn = extract32(insn, 5, 5);
4397     rd = extract32(insn, 0, 5);
4398 
4399     if (!sf && (shift_amount & (1 << 5))) {
4400         unallocated_encoding(s);
4401         return;
4402     }
4403 
4404     tcg_rd = cpu_reg(s, rd);
4405 
4406     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4407         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4408          * register-register MOV and MVN, so it is worth special casing.
4409          */
4410         tcg_rm = cpu_reg(s, rm);
4411         if (invert) {
4412             tcg_gen_not_i64(tcg_rd, tcg_rm);
4413             if (!sf) {
4414                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4415             }
4416         } else {
4417             if (sf) {
4418                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4419             } else {
4420                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4421             }
4422         }
4423         return;
4424     }
4425 
4426     tcg_rm = read_cpu_reg(s, rm, sf);
4427 
4428     if (shift_amount) {
4429         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4430     }
4431 
4432     tcg_rn = cpu_reg(s, rn);
4433 
4434     switch (opc | (invert << 2)) {
4435     case 0: /* AND */
4436     case 3: /* ANDS */
4437         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4438         break;
4439     case 1: /* ORR */
4440         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4441         break;
4442     case 2: /* EOR */
4443         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4444         break;
4445     case 4: /* BIC */
4446     case 7: /* BICS */
4447         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4448         break;
4449     case 5: /* ORN */
4450         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4451         break;
4452     case 6: /* EON */
4453         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4454         break;
4455     default:
4456         assert(FALSE);
4457         break;
4458     }
4459 
4460     if (!sf) {
4461         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4462     }
4463 
4464     if (opc == 3) {
4465         gen_logic_CC(sf, tcg_rd);
4466     }
4467 }
4468 
4469 /*
4470  * Add/subtract (extended register)
4471  *
4472  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
4473  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4474  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
4475  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4476  *
4477  *  sf: 0 -> 32bit, 1 -> 64bit
4478  *  op: 0 -> add  , 1 -> sub
4479  *   S: 1 -> set flags
4480  * opt: 00
4481  * option: extension type (see DecodeRegExtend)
4482  * imm3: optional shift to Rm
4483  *
4484  * Rd = Rn + LSL(extend(Rm), amount)
4485  */
4486 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4487 {
4488     int rd = extract32(insn, 0, 5);
4489     int rn = extract32(insn, 5, 5);
4490     int imm3 = extract32(insn, 10, 3);
4491     int option = extract32(insn, 13, 3);
4492     int rm = extract32(insn, 16, 5);
4493     int opt = extract32(insn, 22, 2);
4494     bool setflags = extract32(insn, 29, 1);
4495     bool sub_op = extract32(insn, 30, 1);
4496     bool sf = extract32(insn, 31, 1);
4497 
4498     TCGv_i64 tcg_rm, tcg_rn; /* temps */
4499     TCGv_i64 tcg_rd;
4500     TCGv_i64 tcg_result;
4501 
4502     if (imm3 > 4 || opt != 0) {
4503         unallocated_encoding(s);
4504         return;
4505     }
4506 
4507     /* non-flag setting ops may use SP */
4508     if (!setflags) {
4509         tcg_rd = cpu_reg_sp(s, rd);
4510     } else {
4511         tcg_rd = cpu_reg(s, rd);
4512     }
4513     tcg_rn = read_cpu_reg_sp(s, rn, sf);
4514 
4515     tcg_rm = read_cpu_reg(s, rm, sf);
4516     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4517 
4518     tcg_result = tcg_temp_new_i64();
4519 
4520     if (!setflags) {
4521         if (sub_op) {
4522             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4523         } else {
4524             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4525         }
4526     } else {
4527         if (sub_op) {
4528             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4529         } else {
4530             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4531         }
4532     }
4533 
4534     if (sf) {
4535         tcg_gen_mov_i64(tcg_rd, tcg_result);
4536     } else {
4537         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4538     }
4539 }
4540 
4541 /*
4542  * Add/subtract (shifted register)
4543  *
4544  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
4545  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4546  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
4547  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4548  *
4549  *    sf: 0 -> 32bit, 1 -> 64bit
4550  *    op: 0 -> add  , 1 -> sub
4551  *     S: 1 -> set flags
4552  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4553  *  imm6: Shift amount to apply to Rm before the add/sub
4554  */
4555 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4556 {
4557     int rd = extract32(insn, 0, 5);
4558     int rn = extract32(insn, 5, 5);
4559     int imm6 = extract32(insn, 10, 6);
4560     int rm = extract32(insn, 16, 5);
4561     int shift_type = extract32(insn, 22, 2);
4562     bool setflags = extract32(insn, 29, 1);
4563     bool sub_op = extract32(insn, 30, 1);
4564     bool sf = extract32(insn, 31, 1);
4565 
4566     TCGv_i64 tcg_rd = cpu_reg(s, rd);
4567     TCGv_i64 tcg_rn, tcg_rm;
4568     TCGv_i64 tcg_result;
4569 
4570     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4571         unallocated_encoding(s);
4572         return;
4573     }
4574 
4575     tcg_rn = read_cpu_reg(s, rn, sf);
4576     tcg_rm = read_cpu_reg(s, rm, sf);
4577 
4578     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4579 
4580     tcg_result = tcg_temp_new_i64();
4581 
4582     if (!setflags) {
4583         if (sub_op) {
4584             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4585         } else {
4586             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4587         }
4588     } else {
4589         if (sub_op) {
4590             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4591         } else {
4592             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4593         }
4594     }
4595 
4596     if (sf) {
4597         tcg_gen_mov_i64(tcg_rd, tcg_result);
4598     } else {
4599         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4600     }
4601 }
4602 
4603 /* Data-processing (3 source)
4604  *
4605  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
4606  *  +--+------+-----------+------+------+----+------+------+------+
4607  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
4608  *  +--+------+-----------+------+------+----+------+------+------+
4609  */
4610 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4611 {
4612     int rd = extract32(insn, 0, 5);
4613     int rn = extract32(insn, 5, 5);
4614     int ra = extract32(insn, 10, 5);
4615     int rm = extract32(insn, 16, 5);
4616     int op_id = (extract32(insn, 29, 3) << 4) |
4617         (extract32(insn, 21, 3) << 1) |
4618         extract32(insn, 15, 1);
4619     bool sf = extract32(insn, 31, 1);
4620     bool is_sub = extract32(op_id, 0, 1);
4621     bool is_high = extract32(op_id, 2, 1);
4622     bool is_signed = false;
4623     TCGv_i64 tcg_op1;
4624     TCGv_i64 tcg_op2;
4625     TCGv_i64 tcg_tmp;
4626 
4627     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4628     switch (op_id) {
4629     case 0x42: /* SMADDL */
4630     case 0x43: /* SMSUBL */
4631     case 0x44: /* SMULH */
4632         is_signed = true;
4633         break;
4634     case 0x0: /* MADD (32bit) */
4635     case 0x1: /* MSUB (32bit) */
4636     case 0x40: /* MADD (64bit) */
4637     case 0x41: /* MSUB (64bit) */
4638     case 0x4a: /* UMADDL */
4639     case 0x4b: /* UMSUBL */
4640     case 0x4c: /* UMULH */
4641         break;
4642     default:
4643         unallocated_encoding(s);
4644         return;
4645     }
4646 
4647     if (is_high) {
4648         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4649         TCGv_i64 tcg_rd = cpu_reg(s, rd);
4650         TCGv_i64 tcg_rn = cpu_reg(s, rn);
4651         TCGv_i64 tcg_rm = cpu_reg(s, rm);
4652 
4653         if (is_signed) {
4654             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4655         } else {
4656             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4657         }
4658         return;
4659     }
4660 
4661     tcg_op1 = tcg_temp_new_i64();
4662     tcg_op2 = tcg_temp_new_i64();
4663     tcg_tmp = tcg_temp_new_i64();
4664 
4665     if (op_id < 0x42) {
4666         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4667         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4668     } else {
4669         if (is_signed) {
4670             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4671             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4672         } else {
4673             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4674             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4675         }
4676     }
4677 
4678     if (ra == 31 && !is_sub) {
4679         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4680         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4681     } else {
4682         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4683         if (is_sub) {
4684             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4685         } else {
4686             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4687         }
4688     }
4689 
4690     if (!sf) {
4691         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4692     }
4693 }
4694 
4695 /* Add/subtract (with carry)
4696  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
4697  * +--+--+--+------------------------+------+-------------+------+-----+
4698  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
4699  * +--+--+--+------------------------+------+-------------+------+-----+
4700  */
4701 
4702 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4703 {
4704     unsigned int sf, op, setflags, rm, rn, rd;
4705     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4706 
4707     sf = extract32(insn, 31, 1);
4708     op = extract32(insn, 30, 1);
4709     setflags = extract32(insn, 29, 1);
4710     rm = extract32(insn, 16, 5);
4711     rn = extract32(insn, 5, 5);
4712     rd = extract32(insn, 0, 5);
4713 
4714     tcg_rd = cpu_reg(s, rd);
4715     tcg_rn = cpu_reg(s, rn);
4716 
4717     if (op) {
4718         tcg_y = tcg_temp_new_i64();
4719         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4720     } else {
4721         tcg_y = cpu_reg(s, rm);
4722     }
4723 
4724     if (setflags) {
4725         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4726     } else {
4727         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4728     }
4729 }
4730 
4731 /*
4732  * Rotate right into flags
4733  *  31 30 29                21       15          10      5  4      0
4734  * +--+--+--+-----------------+--------+-----------+------+--+------+
4735  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
4736  * +--+--+--+-----------------+--------+-----------+------+--+------+
4737  */
4738 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
4739 {
4740     int mask = extract32(insn, 0, 4);
4741     int o2 = extract32(insn, 4, 1);
4742     int rn = extract32(insn, 5, 5);
4743     int imm6 = extract32(insn, 15, 6);
4744     int sf_op_s = extract32(insn, 29, 3);
4745     TCGv_i64 tcg_rn;
4746     TCGv_i32 nzcv;
4747 
4748     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
4749         unallocated_encoding(s);
4750         return;
4751     }
4752 
4753     tcg_rn = read_cpu_reg(s, rn, 1);
4754     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
4755 
4756     nzcv = tcg_temp_new_i32();
4757     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
4758 
4759     if (mask & 8) { /* N */
4760         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
4761     }
4762     if (mask & 4) { /* Z */
4763         tcg_gen_not_i32(cpu_ZF, nzcv);
4764         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
4765     }
4766     if (mask & 2) { /* C */
4767         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
4768     }
4769     if (mask & 1) { /* V */
4770         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
4771     }
4772 }
4773 
4774 /*
4775  * Evaluate into flags
4776  *  31 30 29                21        15   14        10      5  4      0
4777  * +--+--+--+-----------------+---------+----+---------+------+--+------+
4778  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
4779  * +--+--+--+-----------------+---------+----+---------+------+--+------+
4780  */
4781 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
4782 {
4783     int o3_mask = extract32(insn, 0, 5);
4784     int rn = extract32(insn, 5, 5);
4785     int o2 = extract32(insn, 15, 6);
4786     int sz = extract32(insn, 14, 1);
4787     int sf_op_s = extract32(insn, 29, 3);
4788     TCGv_i32 tmp;
4789     int shift;
4790 
4791     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
4792         !dc_isar_feature(aa64_condm_4, s)) {
4793         unallocated_encoding(s);
4794         return;
4795     }
4796     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
4797 
4798     tmp = tcg_temp_new_i32();
4799     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
4800     tcg_gen_shli_i32(cpu_NF, tmp, shift);
4801     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
4802     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
4803     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
4804 }
4805 
4806 /* Conditional compare (immediate / register)
4807  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
4808  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4809  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
4810  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4811  *        [1]                             y                [0]       [0]
4812  */
4813 static void disas_cc(DisasContext *s, uint32_t insn)
4814 {
4815     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4816     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4817     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4818     DisasCompare c;
4819 
4820     if (!extract32(insn, 29, 1)) {
4821         unallocated_encoding(s);
4822         return;
4823     }
4824     if (insn & (1 << 10 | 1 << 4)) {
4825         unallocated_encoding(s);
4826         return;
4827     }
4828     sf = extract32(insn, 31, 1);
4829     op = extract32(insn, 30, 1);
4830     is_imm = extract32(insn, 11, 1);
4831     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
4832     cond = extract32(insn, 12, 4);
4833     rn = extract32(insn, 5, 5);
4834     nzcv = extract32(insn, 0, 4);
4835 
4836     /* Set T0 = !COND.  */
4837     tcg_t0 = tcg_temp_new_i32();
4838     arm_test_cc(&c, cond);
4839     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
4840 
4841     /* Load the arguments for the new comparison.  */
4842     if (is_imm) {
4843         tcg_y = tcg_temp_new_i64();
4844         tcg_gen_movi_i64(tcg_y, y);
4845     } else {
4846         tcg_y = cpu_reg(s, y);
4847     }
4848     tcg_rn = cpu_reg(s, rn);
4849 
4850     /* Set the flags for the new comparison.  */
4851     tcg_tmp = tcg_temp_new_i64();
4852     if (op) {
4853         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4854     } else {
4855         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4856     }
4857 
4858     /* If COND was false, force the flags to #nzcv.  Compute two masks
4859      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4860      * For tcg hosts that support ANDC, we can make do with just T1.
4861      * In either case, allow the tcg optimizer to delete any unused mask.
4862      */
4863     tcg_t1 = tcg_temp_new_i32();
4864     tcg_t2 = tcg_temp_new_i32();
4865     tcg_gen_neg_i32(tcg_t1, tcg_t0);
4866     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4867 
4868     if (nzcv & 8) { /* N */
4869         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4870     } else {
4871         if (TCG_TARGET_HAS_andc_i32) {
4872             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4873         } else {
4874             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4875         }
4876     }
4877     if (nzcv & 4) { /* Z */
4878         if (TCG_TARGET_HAS_andc_i32) {
4879             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4880         } else {
4881             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4882         }
4883     } else {
4884         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4885     }
4886     if (nzcv & 2) { /* C */
4887         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4888     } else {
4889         if (TCG_TARGET_HAS_andc_i32) {
4890             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4891         } else {
4892             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4893         }
4894     }
4895     if (nzcv & 1) { /* V */
4896         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4897     } else {
4898         if (TCG_TARGET_HAS_andc_i32) {
4899             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
4900         } else {
4901             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
4902         }
4903     }
4904 }
4905 
4906 /* Conditional select
4907  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
4908  * +----+----+---+-----------------+------+------+-----+------+------+
4909  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
4910  * +----+----+---+-----------------+------+------+-----+------+------+
4911  */
4912 static void disas_cond_select(DisasContext *s, uint32_t insn)
4913 {
4914     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
4915     TCGv_i64 tcg_rd, zero;
4916     DisasCompare64 c;
4917 
4918     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
4919         /* S == 1 or op2<1> == 1 */
4920         unallocated_encoding(s);
4921         return;
4922     }
4923     sf = extract32(insn, 31, 1);
4924     else_inv = extract32(insn, 30, 1);
4925     rm = extract32(insn, 16, 5);
4926     cond = extract32(insn, 12, 4);
4927     else_inc = extract32(insn, 10, 1);
4928     rn = extract32(insn, 5, 5);
4929     rd = extract32(insn, 0, 5);
4930 
4931     tcg_rd = cpu_reg(s, rd);
4932 
4933     a64_test_cc(&c, cond);
4934     zero = tcg_constant_i64(0);
4935 
4936     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
4937         /* CSET & CSETM.  */
4938         tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
4939         if (else_inv) {
4940             tcg_gen_neg_i64(tcg_rd, tcg_rd);
4941         }
4942     } else {
4943         TCGv_i64 t_true = cpu_reg(s, rn);
4944         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
4945         if (else_inv && else_inc) {
4946             tcg_gen_neg_i64(t_false, t_false);
4947         } else if (else_inv) {
4948             tcg_gen_not_i64(t_false, t_false);
4949         } else if (else_inc) {
4950             tcg_gen_addi_i64(t_false, t_false, 1);
4951         }
4952         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
4953     }
4954 
4955     if (!sf) {
4956         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4957     }
4958 }
4959 
4960 static void handle_clz(DisasContext *s, unsigned int sf,
4961                        unsigned int rn, unsigned int rd)
4962 {
4963     TCGv_i64 tcg_rd, tcg_rn;
4964     tcg_rd = cpu_reg(s, rd);
4965     tcg_rn = cpu_reg(s, rn);
4966 
4967     if (sf) {
4968         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
4969     } else {
4970         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4971         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4972         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
4973         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4974     }
4975 }
4976 
4977 static void handle_cls(DisasContext *s, unsigned int sf,
4978                        unsigned int rn, unsigned int rd)
4979 {
4980     TCGv_i64 tcg_rd, tcg_rn;
4981     tcg_rd = cpu_reg(s, rd);
4982     tcg_rn = cpu_reg(s, rn);
4983 
4984     if (sf) {
4985         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4986     } else {
4987         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4988         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4989         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4990         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4991     }
4992 }
4993 
4994 static void handle_rbit(DisasContext *s, unsigned int sf,
4995                         unsigned int rn, unsigned int rd)
4996 {
4997     TCGv_i64 tcg_rd, tcg_rn;
4998     tcg_rd = cpu_reg(s, rd);
4999     tcg_rn = cpu_reg(s, rn);
5000 
5001     if (sf) {
5002         gen_helper_rbit64(tcg_rd, tcg_rn);
5003     } else {
5004         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5005         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5006         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5007         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5008     }
5009 }
5010 
5011 /* REV with sf==1, opcode==3 ("REV64") */
5012 static void handle_rev64(DisasContext *s, unsigned int sf,
5013                          unsigned int rn, unsigned int rd)
5014 {
5015     if (!sf) {
5016         unallocated_encoding(s);
5017         return;
5018     }
5019     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5020 }
5021 
5022 /* REV with sf==0, opcode==2
5023  * REV32 (sf==1, opcode==2)
5024  */
5025 static void handle_rev32(DisasContext *s, unsigned int sf,
5026                          unsigned int rn, unsigned int rd)
5027 {
5028     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5029     TCGv_i64 tcg_rn = cpu_reg(s, rn);
5030 
5031     if (sf) {
5032         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5033         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5034     } else {
5035         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5036     }
5037 }
5038 
5039 /* REV16 (opcode==1) */
5040 static void handle_rev16(DisasContext *s, unsigned int sf,
5041                          unsigned int rn, unsigned int rd)
5042 {
5043     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5044     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5045     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5046     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5047 
5048     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5049     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5050     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5051     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5052     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5053 }
5054 
5055 /* Data-processing (1 source)
5056  *   31  30  29  28             21 20     16 15    10 9    5 4    0
5057  * +----+---+---+-----------------+---------+--------+------+------+
5058  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
5059  * +----+---+---+-----------------+---------+--------+------+------+
5060  */
5061 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5062 {
5063     unsigned int sf, opcode, opcode2, rn, rd;
5064     TCGv_i64 tcg_rd;
5065 
5066     if (extract32(insn, 29, 1)) {
5067         unallocated_encoding(s);
5068         return;
5069     }
5070 
5071     sf = extract32(insn, 31, 1);
5072     opcode = extract32(insn, 10, 6);
5073     opcode2 = extract32(insn, 16, 5);
5074     rn = extract32(insn, 5, 5);
5075     rd = extract32(insn, 0, 5);
5076 
5077 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5078 
5079     switch (MAP(sf, opcode2, opcode)) {
5080     case MAP(0, 0x00, 0x00): /* RBIT */
5081     case MAP(1, 0x00, 0x00):
5082         handle_rbit(s, sf, rn, rd);
5083         break;
5084     case MAP(0, 0x00, 0x01): /* REV16 */
5085     case MAP(1, 0x00, 0x01):
5086         handle_rev16(s, sf, rn, rd);
5087         break;
5088     case MAP(0, 0x00, 0x02): /* REV/REV32 */
5089     case MAP(1, 0x00, 0x02):
5090         handle_rev32(s, sf, rn, rd);
5091         break;
5092     case MAP(1, 0x00, 0x03): /* REV64 */
5093         handle_rev64(s, sf, rn, rd);
5094         break;
5095     case MAP(0, 0x00, 0x04): /* CLZ */
5096     case MAP(1, 0x00, 0x04):
5097         handle_clz(s, sf, rn, rd);
5098         break;
5099     case MAP(0, 0x00, 0x05): /* CLS */
5100     case MAP(1, 0x00, 0x05):
5101         handle_cls(s, sf, rn, rd);
5102         break;
5103     case MAP(1, 0x01, 0x00): /* PACIA */
5104         if (s->pauth_active) {
5105             tcg_rd = cpu_reg(s, rd);
5106             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5107         } else if (!dc_isar_feature(aa64_pauth, s)) {
5108             goto do_unallocated;
5109         }
5110         break;
5111     case MAP(1, 0x01, 0x01): /* PACIB */
5112         if (s->pauth_active) {
5113             tcg_rd = cpu_reg(s, rd);
5114             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5115         } else if (!dc_isar_feature(aa64_pauth, s)) {
5116             goto do_unallocated;
5117         }
5118         break;
5119     case MAP(1, 0x01, 0x02): /* PACDA */
5120         if (s->pauth_active) {
5121             tcg_rd = cpu_reg(s, rd);
5122             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5123         } else if (!dc_isar_feature(aa64_pauth, s)) {
5124             goto do_unallocated;
5125         }
5126         break;
5127     case MAP(1, 0x01, 0x03): /* PACDB */
5128         if (s->pauth_active) {
5129             tcg_rd = cpu_reg(s, rd);
5130             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5131         } else if (!dc_isar_feature(aa64_pauth, s)) {
5132             goto do_unallocated;
5133         }
5134         break;
5135     case MAP(1, 0x01, 0x04): /* AUTIA */
5136         if (s->pauth_active) {
5137             tcg_rd = cpu_reg(s, rd);
5138             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5139         } else if (!dc_isar_feature(aa64_pauth, s)) {
5140             goto do_unallocated;
5141         }
5142         break;
5143     case MAP(1, 0x01, 0x05): /* AUTIB */
5144         if (s->pauth_active) {
5145             tcg_rd = cpu_reg(s, rd);
5146             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5147         } else if (!dc_isar_feature(aa64_pauth, s)) {
5148             goto do_unallocated;
5149         }
5150         break;
5151     case MAP(1, 0x01, 0x06): /* AUTDA */
5152         if (s->pauth_active) {
5153             tcg_rd = cpu_reg(s, rd);
5154             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5155         } else if (!dc_isar_feature(aa64_pauth, s)) {
5156             goto do_unallocated;
5157         }
5158         break;
5159     case MAP(1, 0x01, 0x07): /* AUTDB */
5160         if (s->pauth_active) {
5161             tcg_rd = cpu_reg(s, rd);
5162             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5163         } else if (!dc_isar_feature(aa64_pauth, s)) {
5164             goto do_unallocated;
5165         }
5166         break;
5167     case MAP(1, 0x01, 0x08): /* PACIZA */
5168         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5169             goto do_unallocated;
5170         } else if (s->pauth_active) {
5171             tcg_rd = cpu_reg(s, rd);
5172             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5173         }
5174         break;
5175     case MAP(1, 0x01, 0x09): /* PACIZB */
5176         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5177             goto do_unallocated;
5178         } else if (s->pauth_active) {
5179             tcg_rd = cpu_reg(s, rd);
5180             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5181         }
5182         break;
5183     case MAP(1, 0x01, 0x0a): /* PACDZA */
5184         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5185             goto do_unallocated;
5186         } else if (s->pauth_active) {
5187             tcg_rd = cpu_reg(s, rd);
5188             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5189         }
5190         break;
5191     case MAP(1, 0x01, 0x0b): /* PACDZB */
5192         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5193             goto do_unallocated;
5194         } else if (s->pauth_active) {
5195             tcg_rd = cpu_reg(s, rd);
5196             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5197         }
5198         break;
5199     case MAP(1, 0x01, 0x0c): /* AUTIZA */
5200         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5201             goto do_unallocated;
5202         } else if (s->pauth_active) {
5203             tcg_rd = cpu_reg(s, rd);
5204             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5205         }
5206         break;
5207     case MAP(1, 0x01, 0x0d): /* AUTIZB */
5208         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5209             goto do_unallocated;
5210         } else if (s->pauth_active) {
5211             tcg_rd = cpu_reg(s, rd);
5212             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5213         }
5214         break;
5215     case MAP(1, 0x01, 0x0e): /* AUTDZA */
5216         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5217             goto do_unallocated;
5218         } else if (s->pauth_active) {
5219             tcg_rd = cpu_reg(s, rd);
5220             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5221         }
5222         break;
5223     case MAP(1, 0x01, 0x0f): /* AUTDZB */
5224         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5225             goto do_unallocated;
5226         } else if (s->pauth_active) {
5227             tcg_rd = cpu_reg(s, rd);
5228             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5229         }
5230         break;
5231     case MAP(1, 0x01, 0x10): /* XPACI */
5232         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5233             goto do_unallocated;
5234         } else if (s->pauth_active) {
5235             tcg_rd = cpu_reg(s, rd);
5236             gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5237         }
5238         break;
5239     case MAP(1, 0x01, 0x11): /* XPACD */
5240         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5241             goto do_unallocated;
5242         } else if (s->pauth_active) {
5243             tcg_rd = cpu_reg(s, rd);
5244             gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5245         }
5246         break;
5247     default:
5248     do_unallocated:
5249         unallocated_encoding(s);
5250         break;
5251     }
5252 
5253 #undef MAP
5254 }
5255 
5256 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5257                        unsigned int rm, unsigned int rn, unsigned int rd)
5258 {
5259     TCGv_i64 tcg_n, tcg_m, tcg_rd;
5260     tcg_rd = cpu_reg(s, rd);
5261 
5262     if (!sf && is_signed) {
5263         tcg_n = tcg_temp_new_i64();
5264         tcg_m = tcg_temp_new_i64();
5265         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5266         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5267     } else {
5268         tcg_n = read_cpu_reg(s, rn, sf);
5269         tcg_m = read_cpu_reg(s, rm, sf);
5270     }
5271 
5272     if (is_signed) {
5273         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5274     } else {
5275         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5276     }
5277 
5278     if (!sf) { /* zero extend final result */
5279         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5280     }
5281 }
5282 
5283 /* LSLV, LSRV, ASRV, RORV */
5284 static void handle_shift_reg(DisasContext *s,
5285                              enum a64_shift_type shift_type, unsigned int sf,
5286                              unsigned int rm, unsigned int rn, unsigned int rd)
5287 {
5288     TCGv_i64 tcg_shift = tcg_temp_new_i64();
5289     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5290     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5291 
5292     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5293     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5294 }
5295 
5296 /* CRC32[BHWX], CRC32C[BHWX] */
5297 static void handle_crc32(DisasContext *s,
5298                          unsigned int sf, unsigned int sz, bool crc32c,
5299                          unsigned int rm, unsigned int rn, unsigned int rd)
5300 {
5301     TCGv_i64 tcg_acc, tcg_val;
5302     TCGv_i32 tcg_bytes;
5303 
5304     if (!dc_isar_feature(aa64_crc32, s)
5305         || (sf == 1 && sz != 3)
5306         || (sf == 0 && sz == 3)) {
5307         unallocated_encoding(s);
5308         return;
5309     }
5310 
5311     if (sz == 3) {
5312         tcg_val = cpu_reg(s, rm);
5313     } else {
5314         uint64_t mask;
5315         switch (sz) {
5316         case 0:
5317             mask = 0xFF;
5318             break;
5319         case 1:
5320             mask = 0xFFFF;
5321             break;
5322         case 2:
5323             mask = 0xFFFFFFFF;
5324             break;
5325         default:
5326             g_assert_not_reached();
5327         }
5328         tcg_val = tcg_temp_new_i64();
5329         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5330     }
5331 
5332     tcg_acc = cpu_reg(s, rn);
5333     tcg_bytes = tcg_constant_i32(1 << sz);
5334 
5335     if (crc32c) {
5336         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5337     } else {
5338         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5339     }
5340 }
5341 
5342 /* Data-processing (2 source)
5343  *   31   30  29 28             21 20  16 15    10 9    5 4    0
5344  * +----+---+---+-----------------+------+--------+------+------+
5345  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
5346  * +----+---+---+-----------------+------+--------+------+------+
5347  */
5348 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5349 {
5350     unsigned int sf, rm, opcode, rn, rd, setflag;
5351     sf = extract32(insn, 31, 1);
5352     setflag = extract32(insn, 29, 1);
5353     rm = extract32(insn, 16, 5);
5354     opcode = extract32(insn, 10, 6);
5355     rn = extract32(insn, 5, 5);
5356     rd = extract32(insn, 0, 5);
5357 
5358     if (setflag && opcode != 0) {
5359         unallocated_encoding(s);
5360         return;
5361     }
5362 
5363     switch (opcode) {
5364     case 0: /* SUBP(S) */
5365         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5366             goto do_unallocated;
5367         } else {
5368             TCGv_i64 tcg_n, tcg_m, tcg_d;
5369 
5370             tcg_n = read_cpu_reg_sp(s, rn, true);
5371             tcg_m = read_cpu_reg_sp(s, rm, true);
5372             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5373             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5374             tcg_d = cpu_reg(s, rd);
5375 
5376             if (setflag) {
5377                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5378             } else {
5379                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5380             }
5381         }
5382         break;
5383     case 2: /* UDIV */
5384         handle_div(s, false, sf, rm, rn, rd);
5385         break;
5386     case 3: /* SDIV */
5387         handle_div(s, true, sf, rm, rn, rd);
5388         break;
5389     case 4: /* IRG */
5390         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5391             goto do_unallocated;
5392         }
5393         if (s->ata) {
5394             gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5395                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
5396         } else {
5397             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5398                                              cpu_reg_sp(s, rn));
5399         }
5400         break;
5401     case 5: /* GMI */
5402         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5403             goto do_unallocated;
5404         } else {
5405             TCGv_i64 t = tcg_temp_new_i64();
5406 
5407             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5408             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5409             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5410         }
5411         break;
5412     case 8: /* LSLV */
5413         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5414         break;
5415     case 9: /* LSRV */
5416         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5417         break;
5418     case 10: /* ASRV */
5419         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5420         break;
5421     case 11: /* RORV */
5422         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5423         break;
5424     case 12: /* PACGA */
5425         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5426             goto do_unallocated;
5427         }
5428         gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5429                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
5430         break;
5431     case 16:
5432     case 17:
5433     case 18:
5434     case 19:
5435     case 20:
5436     case 21:
5437     case 22:
5438     case 23: /* CRC32 */
5439     {
5440         int sz = extract32(opcode, 0, 2);
5441         bool crc32c = extract32(opcode, 2, 1);
5442         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5443         break;
5444     }
5445     default:
5446     do_unallocated:
5447         unallocated_encoding(s);
5448         break;
5449     }
5450 }
5451 
5452 /*
5453  * Data processing - register
5454  *  31  30 29  28      25    21  20  16      10         0
5455  * +--+---+--+---+-------+-----+-------+-------+---------+
5456  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
5457  * +--+---+--+---+-------+-----+-------+-------+---------+
5458  */
5459 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5460 {
5461     int op0 = extract32(insn, 30, 1);
5462     int op1 = extract32(insn, 28, 1);
5463     int op2 = extract32(insn, 21, 4);
5464     int op3 = extract32(insn, 10, 6);
5465 
5466     if (!op1) {
5467         if (op2 & 8) {
5468             if (op2 & 1) {
5469                 /* Add/sub (extended register) */
5470                 disas_add_sub_ext_reg(s, insn);
5471             } else {
5472                 /* Add/sub (shifted register) */
5473                 disas_add_sub_reg(s, insn);
5474             }
5475         } else {
5476             /* Logical (shifted register) */
5477             disas_logic_reg(s, insn);
5478         }
5479         return;
5480     }
5481 
5482     switch (op2) {
5483     case 0x0:
5484         switch (op3) {
5485         case 0x00: /* Add/subtract (with carry) */
5486             disas_adc_sbc(s, insn);
5487             break;
5488 
5489         case 0x01: /* Rotate right into flags */
5490         case 0x21:
5491             disas_rotate_right_into_flags(s, insn);
5492             break;
5493 
5494         case 0x02: /* Evaluate into flags */
5495         case 0x12:
5496         case 0x22:
5497         case 0x32:
5498             disas_evaluate_into_flags(s, insn);
5499             break;
5500 
5501         default:
5502             goto do_unallocated;
5503         }
5504         break;
5505 
5506     case 0x2: /* Conditional compare */
5507         disas_cc(s, insn); /* both imm and reg forms */
5508         break;
5509 
5510     case 0x4: /* Conditional select */
5511         disas_cond_select(s, insn);
5512         break;
5513 
5514     case 0x6: /* Data-processing */
5515         if (op0) {    /* (1 source) */
5516             disas_data_proc_1src(s, insn);
5517         } else {      /* (2 source) */
5518             disas_data_proc_2src(s, insn);
5519         }
5520         break;
5521     case 0x8 ... 0xf: /* (3 source) */
5522         disas_data_proc_3src(s, insn);
5523         break;
5524 
5525     default:
5526     do_unallocated:
5527         unallocated_encoding(s);
5528         break;
5529     }
5530 }
5531 
5532 static void handle_fp_compare(DisasContext *s, int size,
5533                               unsigned int rn, unsigned int rm,
5534                               bool cmp_with_zero, bool signal_all_nans)
5535 {
5536     TCGv_i64 tcg_flags = tcg_temp_new_i64();
5537     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5538 
5539     if (size == MO_64) {
5540         TCGv_i64 tcg_vn, tcg_vm;
5541 
5542         tcg_vn = read_fp_dreg(s, rn);
5543         if (cmp_with_zero) {
5544             tcg_vm = tcg_constant_i64(0);
5545         } else {
5546             tcg_vm = read_fp_dreg(s, rm);
5547         }
5548         if (signal_all_nans) {
5549             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5550         } else {
5551             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5552         }
5553     } else {
5554         TCGv_i32 tcg_vn = tcg_temp_new_i32();
5555         TCGv_i32 tcg_vm = tcg_temp_new_i32();
5556 
5557         read_vec_element_i32(s, tcg_vn, rn, 0, size);
5558         if (cmp_with_zero) {
5559             tcg_gen_movi_i32(tcg_vm, 0);
5560         } else {
5561             read_vec_element_i32(s, tcg_vm, rm, 0, size);
5562         }
5563 
5564         switch (size) {
5565         case MO_32:
5566             if (signal_all_nans) {
5567                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5568             } else {
5569                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5570             }
5571             break;
5572         case MO_16:
5573             if (signal_all_nans) {
5574                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5575             } else {
5576                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5577             }
5578             break;
5579         default:
5580             g_assert_not_reached();
5581         }
5582     }
5583 
5584     gen_set_nzcv(tcg_flags);
5585 }
5586 
5587 /* Floating point compare
5588  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
5589  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5590  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
5591  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5592  */
5593 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5594 {
5595     unsigned int mos, type, rm, op, rn, opc, op2r;
5596     int size;
5597 
5598     mos = extract32(insn, 29, 3);
5599     type = extract32(insn, 22, 2);
5600     rm = extract32(insn, 16, 5);
5601     op = extract32(insn, 14, 2);
5602     rn = extract32(insn, 5, 5);
5603     opc = extract32(insn, 3, 2);
5604     op2r = extract32(insn, 0, 3);
5605 
5606     if (mos || op || op2r) {
5607         unallocated_encoding(s);
5608         return;
5609     }
5610 
5611     switch (type) {
5612     case 0:
5613         size = MO_32;
5614         break;
5615     case 1:
5616         size = MO_64;
5617         break;
5618     case 3:
5619         size = MO_16;
5620         if (dc_isar_feature(aa64_fp16, s)) {
5621             break;
5622         }
5623         /* fallthru */
5624     default:
5625         unallocated_encoding(s);
5626         return;
5627     }
5628 
5629     if (!fp_access_check(s)) {
5630         return;
5631     }
5632 
5633     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5634 }
5635 
5636 /* Floating point conditional compare
5637  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
5638  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5639  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
5640  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5641  */
5642 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5643 {
5644     unsigned int mos, type, rm, cond, rn, op, nzcv;
5645     TCGLabel *label_continue = NULL;
5646     int size;
5647 
5648     mos = extract32(insn, 29, 3);
5649     type = extract32(insn, 22, 2);
5650     rm = extract32(insn, 16, 5);
5651     cond = extract32(insn, 12, 4);
5652     rn = extract32(insn, 5, 5);
5653     op = extract32(insn, 4, 1);
5654     nzcv = extract32(insn, 0, 4);
5655 
5656     if (mos) {
5657         unallocated_encoding(s);
5658         return;
5659     }
5660 
5661     switch (type) {
5662     case 0:
5663         size = MO_32;
5664         break;
5665     case 1:
5666         size = MO_64;
5667         break;
5668     case 3:
5669         size = MO_16;
5670         if (dc_isar_feature(aa64_fp16, s)) {
5671             break;
5672         }
5673         /* fallthru */
5674     default:
5675         unallocated_encoding(s);
5676         return;
5677     }
5678 
5679     if (!fp_access_check(s)) {
5680         return;
5681     }
5682 
5683     if (cond < 0x0e) { /* not always */
5684         TCGLabel *label_match = gen_new_label();
5685         label_continue = gen_new_label();
5686         arm_gen_test_cc(cond, label_match);
5687         /* nomatch: */
5688         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
5689         tcg_gen_br(label_continue);
5690         gen_set_label(label_match);
5691     }
5692 
5693     handle_fp_compare(s, size, rn, rm, false, op);
5694 
5695     if (cond < 0x0e) {
5696         gen_set_label(label_continue);
5697     }
5698 }
5699 
5700 /* Floating point conditional select
5701  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
5702  * +---+---+---+-----------+------+---+------+------+-----+------+------+
5703  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
5704  * +---+---+---+-----------+------+---+------+------+-----+------+------+
5705  */
5706 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5707 {
5708     unsigned int mos, type, rm, cond, rn, rd;
5709     TCGv_i64 t_true, t_false;
5710     DisasCompare64 c;
5711     MemOp sz;
5712 
5713     mos = extract32(insn, 29, 3);
5714     type = extract32(insn, 22, 2);
5715     rm = extract32(insn, 16, 5);
5716     cond = extract32(insn, 12, 4);
5717     rn = extract32(insn, 5, 5);
5718     rd = extract32(insn, 0, 5);
5719 
5720     if (mos) {
5721         unallocated_encoding(s);
5722         return;
5723     }
5724 
5725     switch (type) {
5726     case 0:
5727         sz = MO_32;
5728         break;
5729     case 1:
5730         sz = MO_64;
5731         break;
5732     case 3:
5733         sz = MO_16;
5734         if (dc_isar_feature(aa64_fp16, s)) {
5735             break;
5736         }
5737         /* fallthru */
5738     default:
5739         unallocated_encoding(s);
5740         return;
5741     }
5742 
5743     if (!fp_access_check(s)) {
5744         return;
5745     }
5746 
5747     /* Zero extend sreg & hreg inputs to 64 bits now.  */
5748     t_true = tcg_temp_new_i64();
5749     t_false = tcg_temp_new_i64();
5750     read_vec_element(s, t_true, rn, 0, sz);
5751     read_vec_element(s, t_false, rm, 0, sz);
5752 
5753     a64_test_cc(&c, cond);
5754     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
5755                         t_true, t_false);
5756 
5757     /* Note that sregs & hregs write back zeros to the high bits,
5758        and we've already done the zero-extension.  */
5759     write_fp_dreg(s, rd, t_true);
5760 }
5761 
5762 /* Floating-point data-processing (1 source) - half precision */
5763 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5764 {
5765     TCGv_ptr fpst = NULL;
5766     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5767     TCGv_i32 tcg_res = tcg_temp_new_i32();
5768 
5769     switch (opcode) {
5770     case 0x0: /* FMOV */
5771         tcg_gen_mov_i32(tcg_res, tcg_op);
5772         break;
5773     case 0x1: /* FABS */
5774         tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
5775         break;
5776     case 0x2: /* FNEG */
5777         tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
5778         break;
5779     case 0x3: /* FSQRT */
5780         fpst = fpstatus_ptr(FPST_FPCR_F16);
5781         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
5782         break;
5783     case 0x8: /* FRINTN */
5784     case 0x9: /* FRINTP */
5785     case 0xa: /* FRINTM */
5786     case 0xb: /* FRINTZ */
5787     case 0xc: /* FRINTA */
5788     {
5789         TCGv_i32 tcg_rmode;
5790 
5791         fpst = fpstatus_ptr(FPST_FPCR_F16);
5792         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
5793         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5794         gen_restore_rmode(tcg_rmode, fpst);
5795         break;
5796     }
5797     case 0xe: /* FRINTX */
5798         fpst = fpstatus_ptr(FPST_FPCR_F16);
5799         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
5800         break;
5801     case 0xf: /* FRINTI */
5802         fpst = fpstatus_ptr(FPST_FPCR_F16);
5803         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5804         break;
5805     default:
5806         g_assert_not_reached();
5807     }
5808 
5809     write_fp_sreg(s, rd, tcg_res);
5810 }
5811 
5812 /* Floating-point data-processing (1 source) - single precision */
5813 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
5814 {
5815     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
5816     TCGv_i32 tcg_op, tcg_res;
5817     TCGv_ptr fpst;
5818     int rmode = -1;
5819 
5820     tcg_op = read_fp_sreg(s, rn);
5821     tcg_res = tcg_temp_new_i32();
5822 
5823     switch (opcode) {
5824     case 0x0: /* FMOV */
5825         tcg_gen_mov_i32(tcg_res, tcg_op);
5826         goto done;
5827     case 0x1: /* FABS */
5828         gen_helper_vfp_abss(tcg_res, tcg_op);
5829         goto done;
5830     case 0x2: /* FNEG */
5831         gen_helper_vfp_negs(tcg_res, tcg_op);
5832         goto done;
5833     case 0x3: /* FSQRT */
5834         gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
5835         goto done;
5836     case 0x6: /* BFCVT */
5837         gen_fpst = gen_helper_bfcvt;
5838         break;
5839     case 0x8: /* FRINTN */
5840     case 0x9: /* FRINTP */
5841     case 0xa: /* FRINTM */
5842     case 0xb: /* FRINTZ */
5843     case 0xc: /* FRINTA */
5844         rmode = opcode & 7;
5845         gen_fpst = gen_helper_rints;
5846         break;
5847     case 0xe: /* FRINTX */
5848         gen_fpst = gen_helper_rints_exact;
5849         break;
5850     case 0xf: /* FRINTI */
5851         gen_fpst = gen_helper_rints;
5852         break;
5853     case 0x10: /* FRINT32Z */
5854         rmode = FPROUNDING_ZERO;
5855         gen_fpst = gen_helper_frint32_s;
5856         break;
5857     case 0x11: /* FRINT32X */
5858         gen_fpst = gen_helper_frint32_s;
5859         break;
5860     case 0x12: /* FRINT64Z */
5861         rmode = FPROUNDING_ZERO;
5862         gen_fpst = gen_helper_frint64_s;
5863         break;
5864     case 0x13: /* FRINT64X */
5865         gen_fpst = gen_helper_frint64_s;
5866         break;
5867     default:
5868         g_assert_not_reached();
5869     }
5870 
5871     fpst = fpstatus_ptr(FPST_FPCR);
5872     if (rmode >= 0) {
5873         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
5874         gen_fpst(tcg_res, tcg_op, fpst);
5875         gen_restore_rmode(tcg_rmode, fpst);
5876     } else {
5877         gen_fpst(tcg_res, tcg_op, fpst);
5878     }
5879 
5880  done:
5881     write_fp_sreg(s, rd, tcg_res);
5882 }
5883 
5884 /* Floating-point data-processing (1 source) - double precision */
5885 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
5886 {
5887     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
5888     TCGv_i64 tcg_op, tcg_res;
5889     TCGv_ptr fpst;
5890     int rmode = -1;
5891 
5892     switch (opcode) {
5893     case 0x0: /* FMOV */
5894         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
5895         return;
5896     }
5897 
5898     tcg_op = read_fp_dreg(s, rn);
5899     tcg_res = tcg_temp_new_i64();
5900 
5901     switch (opcode) {
5902     case 0x1: /* FABS */
5903         gen_helper_vfp_absd(tcg_res, tcg_op);
5904         goto done;
5905     case 0x2: /* FNEG */
5906         gen_helper_vfp_negd(tcg_res, tcg_op);
5907         goto done;
5908     case 0x3: /* FSQRT */
5909         gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
5910         goto done;
5911     case 0x8: /* FRINTN */
5912     case 0x9: /* FRINTP */
5913     case 0xa: /* FRINTM */
5914     case 0xb: /* FRINTZ */
5915     case 0xc: /* FRINTA */
5916         rmode = opcode & 7;
5917         gen_fpst = gen_helper_rintd;
5918         break;
5919     case 0xe: /* FRINTX */
5920         gen_fpst = gen_helper_rintd_exact;
5921         break;
5922     case 0xf: /* FRINTI */
5923         gen_fpst = gen_helper_rintd;
5924         break;
5925     case 0x10: /* FRINT32Z */
5926         rmode = FPROUNDING_ZERO;
5927         gen_fpst = gen_helper_frint32_d;
5928         break;
5929     case 0x11: /* FRINT32X */
5930         gen_fpst = gen_helper_frint32_d;
5931         break;
5932     case 0x12: /* FRINT64Z */
5933         rmode = FPROUNDING_ZERO;
5934         gen_fpst = gen_helper_frint64_d;
5935         break;
5936     case 0x13: /* FRINT64X */
5937         gen_fpst = gen_helper_frint64_d;
5938         break;
5939     default:
5940         g_assert_not_reached();
5941     }
5942 
5943     fpst = fpstatus_ptr(FPST_FPCR);
5944     if (rmode >= 0) {
5945         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
5946         gen_fpst(tcg_res, tcg_op, fpst);
5947         gen_restore_rmode(tcg_rmode, fpst);
5948     } else {
5949         gen_fpst(tcg_res, tcg_op, fpst);
5950     }
5951 
5952  done:
5953     write_fp_dreg(s, rd, tcg_res);
5954 }
5955 
5956 static void handle_fp_fcvt(DisasContext *s, int opcode,
5957                            int rd, int rn, int dtype, int ntype)
5958 {
5959     switch (ntype) {
5960     case 0x0:
5961     {
5962         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5963         if (dtype == 1) {
5964             /* Single to double */
5965             TCGv_i64 tcg_rd = tcg_temp_new_i64();
5966             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
5967             write_fp_dreg(s, rd, tcg_rd);
5968         } else {
5969             /* Single to half */
5970             TCGv_i32 tcg_rd = tcg_temp_new_i32();
5971             TCGv_i32 ahp = get_ahp_flag();
5972             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
5973 
5974             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5975             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5976             write_fp_sreg(s, rd, tcg_rd);
5977         }
5978         break;
5979     }
5980     case 0x1:
5981     {
5982         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
5983         TCGv_i32 tcg_rd = tcg_temp_new_i32();
5984         if (dtype == 0) {
5985             /* Double to single */
5986             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
5987         } else {
5988             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
5989             TCGv_i32 ahp = get_ahp_flag();
5990             /* Double to half */
5991             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5992             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5993         }
5994         write_fp_sreg(s, rd, tcg_rd);
5995         break;
5996     }
5997     case 0x3:
5998     {
5999         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6000         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6001         TCGv_i32 tcg_ahp = get_ahp_flag();
6002         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6003         if (dtype == 0) {
6004             /* Half to single */
6005             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6006             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6007             write_fp_sreg(s, rd, tcg_rd);
6008         } else {
6009             /* Half to double */
6010             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6011             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6012             write_fp_dreg(s, rd, tcg_rd);
6013         }
6014         break;
6015     }
6016     default:
6017         g_assert_not_reached();
6018     }
6019 }
6020 
6021 /* Floating point data-processing (1 source)
6022  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
6023  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6024  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
6025  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6026  */
6027 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6028 {
6029     int mos = extract32(insn, 29, 3);
6030     int type = extract32(insn, 22, 2);
6031     int opcode = extract32(insn, 15, 6);
6032     int rn = extract32(insn, 5, 5);
6033     int rd = extract32(insn, 0, 5);
6034 
6035     if (mos) {
6036         goto do_unallocated;
6037     }
6038 
6039     switch (opcode) {
6040     case 0x4: case 0x5: case 0x7:
6041     {
6042         /* FCVT between half, single and double precision */
6043         int dtype = extract32(opcode, 0, 2);
6044         if (type == 2 || dtype == type) {
6045             goto do_unallocated;
6046         }
6047         if (!fp_access_check(s)) {
6048             return;
6049         }
6050 
6051         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6052         break;
6053     }
6054 
6055     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6056         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6057             goto do_unallocated;
6058         }
6059         /* fall through */
6060     case 0x0 ... 0x3:
6061     case 0x8 ... 0xc:
6062     case 0xe ... 0xf:
6063         /* 32-to-32 and 64-to-64 ops */
6064         switch (type) {
6065         case 0:
6066             if (!fp_access_check(s)) {
6067                 return;
6068             }
6069             handle_fp_1src_single(s, opcode, rd, rn);
6070             break;
6071         case 1:
6072             if (!fp_access_check(s)) {
6073                 return;
6074             }
6075             handle_fp_1src_double(s, opcode, rd, rn);
6076             break;
6077         case 3:
6078             if (!dc_isar_feature(aa64_fp16, s)) {
6079                 goto do_unallocated;
6080             }
6081 
6082             if (!fp_access_check(s)) {
6083                 return;
6084             }
6085             handle_fp_1src_half(s, opcode, rd, rn);
6086             break;
6087         default:
6088             goto do_unallocated;
6089         }
6090         break;
6091 
6092     case 0x6:
6093         switch (type) {
6094         case 1: /* BFCVT */
6095             if (!dc_isar_feature(aa64_bf16, s)) {
6096                 goto do_unallocated;
6097             }
6098             if (!fp_access_check(s)) {
6099                 return;
6100             }
6101             handle_fp_1src_single(s, opcode, rd, rn);
6102             break;
6103         default:
6104             goto do_unallocated;
6105         }
6106         break;
6107 
6108     default:
6109     do_unallocated:
6110         unallocated_encoding(s);
6111         break;
6112     }
6113 }
6114 
6115 /* Floating-point data-processing (2 source) - single precision */
6116 static void handle_fp_2src_single(DisasContext *s, int opcode,
6117                                   int rd, int rn, int rm)
6118 {
6119     TCGv_i32 tcg_op1;
6120     TCGv_i32 tcg_op2;
6121     TCGv_i32 tcg_res;
6122     TCGv_ptr fpst;
6123 
6124     tcg_res = tcg_temp_new_i32();
6125     fpst = fpstatus_ptr(FPST_FPCR);
6126     tcg_op1 = read_fp_sreg(s, rn);
6127     tcg_op2 = read_fp_sreg(s, rm);
6128 
6129     switch (opcode) {
6130     case 0x0: /* FMUL */
6131         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6132         break;
6133     case 0x1: /* FDIV */
6134         gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6135         break;
6136     case 0x2: /* FADD */
6137         gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6138         break;
6139     case 0x3: /* FSUB */
6140         gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6141         break;
6142     case 0x4: /* FMAX */
6143         gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6144         break;
6145     case 0x5: /* FMIN */
6146         gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6147         break;
6148     case 0x6: /* FMAXNM */
6149         gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6150         break;
6151     case 0x7: /* FMINNM */
6152         gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6153         break;
6154     case 0x8: /* FNMUL */
6155         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6156         gen_helper_vfp_negs(tcg_res, tcg_res);
6157         break;
6158     }
6159 
6160     write_fp_sreg(s, rd, tcg_res);
6161 }
6162 
6163 /* Floating-point data-processing (2 source) - double precision */
6164 static void handle_fp_2src_double(DisasContext *s, int opcode,
6165                                   int rd, int rn, int rm)
6166 {
6167     TCGv_i64 tcg_op1;
6168     TCGv_i64 tcg_op2;
6169     TCGv_i64 tcg_res;
6170     TCGv_ptr fpst;
6171 
6172     tcg_res = tcg_temp_new_i64();
6173     fpst = fpstatus_ptr(FPST_FPCR);
6174     tcg_op1 = read_fp_dreg(s, rn);
6175     tcg_op2 = read_fp_dreg(s, rm);
6176 
6177     switch (opcode) {
6178     case 0x0: /* FMUL */
6179         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6180         break;
6181     case 0x1: /* FDIV */
6182         gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6183         break;
6184     case 0x2: /* FADD */
6185         gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6186         break;
6187     case 0x3: /* FSUB */
6188         gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6189         break;
6190     case 0x4: /* FMAX */
6191         gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6192         break;
6193     case 0x5: /* FMIN */
6194         gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6195         break;
6196     case 0x6: /* FMAXNM */
6197         gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6198         break;
6199     case 0x7: /* FMINNM */
6200         gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6201         break;
6202     case 0x8: /* FNMUL */
6203         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6204         gen_helper_vfp_negd(tcg_res, tcg_res);
6205         break;
6206     }
6207 
6208     write_fp_dreg(s, rd, tcg_res);
6209 }
6210 
6211 /* Floating-point data-processing (2 source) - half precision */
6212 static void handle_fp_2src_half(DisasContext *s, int opcode,
6213                                 int rd, int rn, int rm)
6214 {
6215     TCGv_i32 tcg_op1;
6216     TCGv_i32 tcg_op2;
6217     TCGv_i32 tcg_res;
6218     TCGv_ptr fpst;
6219 
6220     tcg_res = tcg_temp_new_i32();
6221     fpst = fpstatus_ptr(FPST_FPCR_F16);
6222     tcg_op1 = read_fp_hreg(s, rn);
6223     tcg_op2 = read_fp_hreg(s, rm);
6224 
6225     switch (opcode) {
6226     case 0x0: /* FMUL */
6227         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6228         break;
6229     case 0x1: /* FDIV */
6230         gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6231         break;
6232     case 0x2: /* FADD */
6233         gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6234         break;
6235     case 0x3: /* FSUB */
6236         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6237         break;
6238     case 0x4: /* FMAX */
6239         gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6240         break;
6241     case 0x5: /* FMIN */
6242         gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6243         break;
6244     case 0x6: /* FMAXNM */
6245         gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6246         break;
6247     case 0x7: /* FMINNM */
6248         gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6249         break;
6250     case 0x8: /* FNMUL */
6251         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6252         tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6253         break;
6254     default:
6255         g_assert_not_reached();
6256     }
6257 
6258     write_fp_sreg(s, rd, tcg_res);
6259 }
6260 
6261 /* Floating point data-processing (2 source)
6262  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
6263  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6264  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | opcode | 1 0 |  Rn  |  Rd  |
6265  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6266  */
6267 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6268 {
6269     int mos = extract32(insn, 29, 3);
6270     int type = extract32(insn, 22, 2);
6271     int rd = extract32(insn, 0, 5);
6272     int rn = extract32(insn, 5, 5);
6273     int rm = extract32(insn, 16, 5);
6274     int opcode = extract32(insn, 12, 4);
6275 
6276     if (opcode > 8 || mos) {
6277         unallocated_encoding(s);
6278         return;
6279     }
6280 
6281     switch (type) {
6282     case 0:
6283         if (!fp_access_check(s)) {
6284             return;
6285         }
6286         handle_fp_2src_single(s, opcode, rd, rn, rm);
6287         break;
6288     case 1:
6289         if (!fp_access_check(s)) {
6290             return;
6291         }
6292         handle_fp_2src_double(s, opcode, rd, rn, rm);
6293         break;
6294     case 3:
6295         if (!dc_isar_feature(aa64_fp16, s)) {
6296             unallocated_encoding(s);
6297             return;
6298         }
6299         if (!fp_access_check(s)) {
6300             return;
6301         }
6302         handle_fp_2src_half(s, opcode, rd, rn, rm);
6303         break;
6304     default:
6305         unallocated_encoding(s);
6306     }
6307 }
6308 
6309 /* Floating-point data-processing (3 source) - single precision */
6310 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6311                                   int rd, int rn, int rm, int ra)
6312 {
6313     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6314     TCGv_i32 tcg_res = tcg_temp_new_i32();
6315     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6316 
6317     tcg_op1 = read_fp_sreg(s, rn);
6318     tcg_op2 = read_fp_sreg(s, rm);
6319     tcg_op3 = read_fp_sreg(s, ra);
6320 
6321     /* These are fused multiply-add, and must be done as one
6322      * floating point operation with no rounding between the
6323      * multiplication and addition steps.
6324      * NB that doing the negations here as separate steps is
6325      * correct : an input NaN should come out with its sign bit
6326      * flipped if it is a negated-input.
6327      */
6328     if (o1 == true) {
6329         gen_helper_vfp_negs(tcg_op3, tcg_op3);
6330     }
6331 
6332     if (o0 != o1) {
6333         gen_helper_vfp_negs(tcg_op1, tcg_op1);
6334     }
6335 
6336     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6337 
6338     write_fp_sreg(s, rd, tcg_res);
6339 }
6340 
6341 /* Floating-point data-processing (3 source) - double precision */
6342 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6343                                   int rd, int rn, int rm, int ra)
6344 {
6345     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6346     TCGv_i64 tcg_res = tcg_temp_new_i64();
6347     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6348 
6349     tcg_op1 = read_fp_dreg(s, rn);
6350     tcg_op2 = read_fp_dreg(s, rm);
6351     tcg_op3 = read_fp_dreg(s, ra);
6352 
6353     /* These are fused multiply-add, and must be done as one
6354      * floating point operation with no rounding between the
6355      * multiplication and addition steps.
6356      * NB that doing the negations here as separate steps is
6357      * correct : an input NaN should come out with its sign bit
6358      * flipped if it is a negated-input.
6359      */
6360     if (o1 == true) {
6361         gen_helper_vfp_negd(tcg_op3, tcg_op3);
6362     }
6363 
6364     if (o0 != o1) {
6365         gen_helper_vfp_negd(tcg_op1, tcg_op1);
6366     }
6367 
6368     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6369 
6370     write_fp_dreg(s, rd, tcg_res);
6371 }
6372 
6373 /* Floating-point data-processing (3 source) - half precision */
6374 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6375                                 int rd, int rn, int rm, int ra)
6376 {
6377     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6378     TCGv_i32 tcg_res = tcg_temp_new_i32();
6379     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6380 
6381     tcg_op1 = read_fp_hreg(s, rn);
6382     tcg_op2 = read_fp_hreg(s, rm);
6383     tcg_op3 = read_fp_hreg(s, ra);
6384 
6385     /* These are fused multiply-add, and must be done as one
6386      * floating point operation with no rounding between the
6387      * multiplication and addition steps.
6388      * NB that doing the negations here as separate steps is
6389      * correct : an input NaN should come out with its sign bit
6390      * flipped if it is a negated-input.
6391      */
6392     if (o1 == true) {
6393         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6394     }
6395 
6396     if (o0 != o1) {
6397         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6398     }
6399 
6400     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6401 
6402     write_fp_sreg(s, rd, tcg_res);
6403 }
6404 
6405 /* Floating point data-processing (3 source)
6406  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
6407  * +---+---+---+-----------+------+----+------+----+------+------+------+
6408  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6409  * +---+---+---+-----------+------+----+------+----+------+------+------+
6410  */
6411 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6412 {
6413     int mos = extract32(insn, 29, 3);
6414     int type = extract32(insn, 22, 2);
6415     int rd = extract32(insn, 0, 5);
6416     int rn = extract32(insn, 5, 5);
6417     int ra = extract32(insn, 10, 5);
6418     int rm = extract32(insn, 16, 5);
6419     bool o0 = extract32(insn, 15, 1);
6420     bool o1 = extract32(insn, 21, 1);
6421 
6422     if (mos) {
6423         unallocated_encoding(s);
6424         return;
6425     }
6426 
6427     switch (type) {
6428     case 0:
6429         if (!fp_access_check(s)) {
6430             return;
6431         }
6432         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6433         break;
6434     case 1:
6435         if (!fp_access_check(s)) {
6436             return;
6437         }
6438         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6439         break;
6440     case 3:
6441         if (!dc_isar_feature(aa64_fp16, s)) {
6442             unallocated_encoding(s);
6443             return;
6444         }
6445         if (!fp_access_check(s)) {
6446             return;
6447         }
6448         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6449         break;
6450     default:
6451         unallocated_encoding(s);
6452     }
6453 }
6454 
6455 /* Floating point immediate
6456  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
6457  * +---+---+---+-----------+------+---+------------+-------+------+------+
6458  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
6459  * +---+---+---+-----------+------+---+------------+-------+------+------+
6460  */
6461 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6462 {
6463     int rd = extract32(insn, 0, 5);
6464     int imm5 = extract32(insn, 5, 5);
6465     int imm8 = extract32(insn, 13, 8);
6466     int type = extract32(insn, 22, 2);
6467     int mos = extract32(insn, 29, 3);
6468     uint64_t imm;
6469     MemOp sz;
6470 
6471     if (mos || imm5) {
6472         unallocated_encoding(s);
6473         return;
6474     }
6475 
6476     switch (type) {
6477     case 0:
6478         sz = MO_32;
6479         break;
6480     case 1:
6481         sz = MO_64;
6482         break;
6483     case 3:
6484         sz = MO_16;
6485         if (dc_isar_feature(aa64_fp16, s)) {
6486             break;
6487         }
6488         /* fallthru */
6489     default:
6490         unallocated_encoding(s);
6491         return;
6492     }
6493 
6494     if (!fp_access_check(s)) {
6495         return;
6496     }
6497 
6498     imm = vfp_expand_imm(sz, imm8);
6499     write_fp_dreg(s, rd, tcg_constant_i64(imm));
6500 }
6501 
6502 /* Handle floating point <=> fixed point conversions. Note that we can
6503  * also deal with fp <=> integer conversions as a special case (scale == 64)
6504  * OPTME: consider handling that special case specially or at least skipping
6505  * the call to scalbn in the helpers for zero shifts.
6506  */
6507 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6508                            bool itof, int rmode, int scale, int sf, int type)
6509 {
6510     bool is_signed = !(opcode & 1);
6511     TCGv_ptr tcg_fpstatus;
6512     TCGv_i32 tcg_shift, tcg_single;
6513     TCGv_i64 tcg_double;
6514 
6515     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6516 
6517     tcg_shift = tcg_constant_i32(64 - scale);
6518 
6519     if (itof) {
6520         TCGv_i64 tcg_int = cpu_reg(s, rn);
6521         if (!sf) {
6522             TCGv_i64 tcg_extend = tcg_temp_new_i64();
6523 
6524             if (is_signed) {
6525                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6526             } else {
6527                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6528             }
6529 
6530             tcg_int = tcg_extend;
6531         }
6532 
6533         switch (type) {
6534         case 1: /* float64 */
6535             tcg_double = tcg_temp_new_i64();
6536             if (is_signed) {
6537                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6538                                      tcg_shift, tcg_fpstatus);
6539             } else {
6540                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6541                                      tcg_shift, tcg_fpstatus);
6542             }
6543             write_fp_dreg(s, rd, tcg_double);
6544             break;
6545 
6546         case 0: /* float32 */
6547             tcg_single = tcg_temp_new_i32();
6548             if (is_signed) {
6549                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6550                                      tcg_shift, tcg_fpstatus);
6551             } else {
6552                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6553                                      tcg_shift, tcg_fpstatus);
6554             }
6555             write_fp_sreg(s, rd, tcg_single);
6556             break;
6557 
6558         case 3: /* float16 */
6559             tcg_single = tcg_temp_new_i32();
6560             if (is_signed) {
6561                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6562                                      tcg_shift, tcg_fpstatus);
6563             } else {
6564                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6565                                      tcg_shift, tcg_fpstatus);
6566             }
6567             write_fp_sreg(s, rd, tcg_single);
6568             break;
6569 
6570         default:
6571             g_assert_not_reached();
6572         }
6573     } else {
6574         TCGv_i64 tcg_int = cpu_reg(s, rd);
6575         TCGv_i32 tcg_rmode;
6576 
6577         if (extract32(opcode, 2, 1)) {
6578             /* There are too many rounding modes to all fit into rmode,
6579              * so FCVTA[US] is a special case.
6580              */
6581             rmode = FPROUNDING_TIEAWAY;
6582         }
6583 
6584         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
6585 
6586         switch (type) {
6587         case 1: /* float64 */
6588             tcg_double = read_fp_dreg(s, rn);
6589             if (is_signed) {
6590                 if (!sf) {
6591                     gen_helper_vfp_tosld(tcg_int, tcg_double,
6592                                          tcg_shift, tcg_fpstatus);
6593                 } else {
6594                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
6595                                          tcg_shift, tcg_fpstatus);
6596                 }
6597             } else {
6598                 if (!sf) {
6599                     gen_helper_vfp_tould(tcg_int, tcg_double,
6600                                          tcg_shift, tcg_fpstatus);
6601                 } else {
6602                     gen_helper_vfp_touqd(tcg_int, tcg_double,
6603                                          tcg_shift, tcg_fpstatus);
6604                 }
6605             }
6606             if (!sf) {
6607                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6608             }
6609             break;
6610 
6611         case 0: /* float32 */
6612             tcg_single = read_fp_sreg(s, rn);
6613             if (sf) {
6614                 if (is_signed) {
6615                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
6616                                          tcg_shift, tcg_fpstatus);
6617                 } else {
6618                     gen_helper_vfp_touqs(tcg_int, tcg_single,
6619                                          tcg_shift, tcg_fpstatus);
6620                 }
6621             } else {
6622                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6623                 if (is_signed) {
6624                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
6625                                          tcg_shift, tcg_fpstatus);
6626                 } else {
6627                     gen_helper_vfp_touls(tcg_dest, tcg_single,
6628                                          tcg_shift, tcg_fpstatus);
6629                 }
6630                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6631             }
6632             break;
6633 
6634         case 3: /* float16 */
6635             tcg_single = read_fp_sreg(s, rn);
6636             if (sf) {
6637                 if (is_signed) {
6638                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
6639                                          tcg_shift, tcg_fpstatus);
6640                 } else {
6641                     gen_helper_vfp_touqh(tcg_int, tcg_single,
6642                                          tcg_shift, tcg_fpstatus);
6643                 }
6644             } else {
6645                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6646                 if (is_signed) {
6647                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
6648                                          tcg_shift, tcg_fpstatus);
6649                 } else {
6650                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
6651                                          tcg_shift, tcg_fpstatus);
6652                 }
6653                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6654             }
6655             break;
6656 
6657         default:
6658             g_assert_not_reached();
6659         }
6660 
6661         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
6662     }
6663 }
6664 
6665 /* Floating point <-> fixed point conversions
6666  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
6667  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6668  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
6669  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6670  */
6671 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6672 {
6673     int rd = extract32(insn, 0, 5);
6674     int rn = extract32(insn, 5, 5);
6675     int scale = extract32(insn, 10, 6);
6676     int opcode = extract32(insn, 16, 3);
6677     int rmode = extract32(insn, 19, 2);
6678     int type = extract32(insn, 22, 2);
6679     bool sbit = extract32(insn, 29, 1);
6680     bool sf = extract32(insn, 31, 1);
6681     bool itof;
6682 
6683     if (sbit || (!sf && scale < 32)) {
6684         unallocated_encoding(s);
6685         return;
6686     }
6687 
6688     switch (type) {
6689     case 0: /* float32 */
6690     case 1: /* float64 */
6691         break;
6692     case 3: /* float16 */
6693         if (dc_isar_feature(aa64_fp16, s)) {
6694             break;
6695         }
6696         /* fallthru */
6697     default:
6698         unallocated_encoding(s);
6699         return;
6700     }
6701 
6702     switch ((rmode << 3) | opcode) {
6703     case 0x2: /* SCVTF */
6704     case 0x3: /* UCVTF */
6705         itof = true;
6706         break;
6707     case 0x18: /* FCVTZS */
6708     case 0x19: /* FCVTZU */
6709         itof = false;
6710         break;
6711     default:
6712         unallocated_encoding(s);
6713         return;
6714     }
6715 
6716     if (!fp_access_check(s)) {
6717         return;
6718     }
6719 
6720     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6721 }
6722 
6723 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6724 {
6725     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6726      * without conversion.
6727      */
6728 
6729     if (itof) {
6730         TCGv_i64 tcg_rn = cpu_reg(s, rn);
6731         TCGv_i64 tmp;
6732 
6733         switch (type) {
6734         case 0:
6735             /* 32 bit */
6736             tmp = tcg_temp_new_i64();
6737             tcg_gen_ext32u_i64(tmp, tcg_rn);
6738             write_fp_dreg(s, rd, tmp);
6739             break;
6740         case 1:
6741             /* 64 bit */
6742             write_fp_dreg(s, rd, tcg_rn);
6743             break;
6744         case 2:
6745             /* 64 bit to top half. */
6746             tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
6747             clear_vec_high(s, true, rd);
6748             break;
6749         case 3:
6750             /* 16 bit */
6751             tmp = tcg_temp_new_i64();
6752             tcg_gen_ext16u_i64(tmp, tcg_rn);
6753             write_fp_dreg(s, rd, tmp);
6754             break;
6755         default:
6756             g_assert_not_reached();
6757         }
6758     } else {
6759         TCGv_i64 tcg_rd = cpu_reg(s, rd);
6760 
6761         switch (type) {
6762         case 0:
6763             /* 32 bit */
6764             tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
6765             break;
6766         case 1:
6767             /* 64 bit */
6768             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
6769             break;
6770         case 2:
6771             /* 64 bits from top half */
6772             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
6773             break;
6774         case 3:
6775             /* 16 bit */
6776             tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
6777             break;
6778         default:
6779             g_assert_not_reached();
6780         }
6781     }
6782 }
6783 
6784 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
6785 {
6786     TCGv_i64 t = read_fp_dreg(s, rn);
6787     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
6788 
6789     gen_helper_fjcvtzs(t, t, fpstatus);
6790 
6791     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
6792     tcg_gen_extrh_i64_i32(cpu_ZF, t);
6793     tcg_gen_movi_i32(cpu_CF, 0);
6794     tcg_gen_movi_i32(cpu_NF, 0);
6795     tcg_gen_movi_i32(cpu_VF, 0);
6796 }
6797 
6798 /* Floating point <-> integer conversions
6799  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
6800  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6801  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
6802  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6803  */
6804 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6805 {
6806     int rd = extract32(insn, 0, 5);
6807     int rn = extract32(insn, 5, 5);
6808     int opcode = extract32(insn, 16, 3);
6809     int rmode = extract32(insn, 19, 2);
6810     int type = extract32(insn, 22, 2);
6811     bool sbit = extract32(insn, 29, 1);
6812     bool sf = extract32(insn, 31, 1);
6813     bool itof = false;
6814 
6815     if (sbit) {
6816         goto do_unallocated;
6817     }
6818 
6819     switch (opcode) {
6820     case 2: /* SCVTF */
6821     case 3: /* UCVTF */
6822         itof = true;
6823         /* fallthru */
6824     case 4: /* FCVTAS */
6825     case 5: /* FCVTAU */
6826         if (rmode != 0) {
6827             goto do_unallocated;
6828         }
6829         /* fallthru */
6830     case 0: /* FCVT[NPMZ]S */
6831     case 1: /* FCVT[NPMZ]U */
6832         switch (type) {
6833         case 0: /* float32 */
6834         case 1: /* float64 */
6835             break;
6836         case 3: /* float16 */
6837             if (!dc_isar_feature(aa64_fp16, s)) {
6838                 goto do_unallocated;
6839             }
6840             break;
6841         default:
6842             goto do_unallocated;
6843         }
6844         if (!fp_access_check(s)) {
6845             return;
6846         }
6847         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
6848         break;
6849 
6850     default:
6851         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
6852         case 0b01100110: /* FMOV half <-> 32-bit int */
6853         case 0b01100111:
6854         case 0b11100110: /* FMOV half <-> 64-bit int */
6855         case 0b11100111:
6856             if (!dc_isar_feature(aa64_fp16, s)) {
6857                 goto do_unallocated;
6858             }
6859             /* fallthru */
6860         case 0b00000110: /* FMOV 32-bit */
6861         case 0b00000111:
6862         case 0b10100110: /* FMOV 64-bit */
6863         case 0b10100111:
6864         case 0b11001110: /* FMOV top half of 128-bit */
6865         case 0b11001111:
6866             if (!fp_access_check(s)) {
6867                 return;
6868             }
6869             itof = opcode & 1;
6870             handle_fmov(s, rd, rn, type, itof);
6871             break;
6872 
6873         case 0b00111110: /* FJCVTZS */
6874             if (!dc_isar_feature(aa64_jscvt, s)) {
6875                 goto do_unallocated;
6876             } else if (fp_access_check(s)) {
6877                 handle_fjcvtzs(s, rd, rn);
6878             }
6879             break;
6880 
6881         default:
6882         do_unallocated:
6883             unallocated_encoding(s);
6884             return;
6885         }
6886         break;
6887     }
6888 }
6889 
6890 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
6891  *   31  30  29 28     25 24                          0
6892  * +---+---+---+---------+-----------------------------+
6893  * |   | 0 |   | 1 1 1 1 |                             |
6894  * +---+---+---+---------+-----------------------------+
6895  */
6896 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
6897 {
6898     if (extract32(insn, 24, 1)) {
6899         /* Floating point data-processing (3 source) */
6900         disas_fp_3src(s, insn);
6901     } else if (extract32(insn, 21, 1) == 0) {
6902         /* Floating point to fixed point conversions */
6903         disas_fp_fixed_conv(s, insn);
6904     } else {
6905         switch (extract32(insn, 10, 2)) {
6906         case 1:
6907             /* Floating point conditional compare */
6908             disas_fp_ccomp(s, insn);
6909             break;
6910         case 2:
6911             /* Floating point data-processing (2 source) */
6912             disas_fp_2src(s, insn);
6913             break;
6914         case 3:
6915             /* Floating point conditional select */
6916             disas_fp_csel(s, insn);
6917             break;
6918         case 0:
6919             switch (ctz32(extract32(insn, 12, 4))) {
6920             case 0: /* [15:12] == xxx1 */
6921                 /* Floating point immediate */
6922                 disas_fp_imm(s, insn);
6923                 break;
6924             case 1: /* [15:12] == xx10 */
6925                 /* Floating point compare */
6926                 disas_fp_compare(s, insn);
6927                 break;
6928             case 2: /* [15:12] == x100 */
6929                 /* Floating point data-processing (1 source) */
6930                 disas_fp_1src(s, insn);
6931                 break;
6932             case 3: /* [15:12] == 1000 */
6933                 unallocated_encoding(s);
6934                 break;
6935             default: /* [15:12] == 0000 */
6936                 /* Floating point <-> integer conversions */
6937                 disas_fp_int_conv(s, insn);
6938                 break;
6939             }
6940             break;
6941         }
6942     }
6943 }
6944 
6945 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
6946                      int pos)
6947 {
6948     /* Extract 64 bits from the middle of two concatenated 64 bit
6949      * vector register slices left:right. The extracted bits start
6950      * at 'pos' bits into the right (least significant) side.
6951      * We return the result in tcg_right, and guarantee not to
6952      * trash tcg_left.
6953      */
6954     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6955     assert(pos > 0 && pos < 64);
6956 
6957     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
6958     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
6959     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
6960 }
6961 
6962 /* EXT
6963  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
6964  * +---+---+-------------+-----+---+------+---+------+---+------+------+
6965  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
6966  * +---+---+-------------+-----+---+------+---+------+---+------+------+
6967  */
6968 static void disas_simd_ext(DisasContext *s, uint32_t insn)
6969 {
6970     int is_q = extract32(insn, 30, 1);
6971     int op2 = extract32(insn, 22, 2);
6972     int imm4 = extract32(insn, 11, 4);
6973     int rm = extract32(insn, 16, 5);
6974     int rn = extract32(insn, 5, 5);
6975     int rd = extract32(insn, 0, 5);
6976     int pos = imm4 << 3;
6977     TCGv_i64 tcg_resl, tcg_resh;
6978 
6979     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
6980         unallocated_encoding(s);
6981         return;
6982     }
6983 
6984     if (!fp_access_check(s)) {
6985         return;
6986     }
6987 
6988     tcg_resh = tcg_temp_new_i64();
6989     tcg_resl = tcg_temp_new_i64();
6990 
6991     /* Vd gets bits starting at pos bits into Vm:Vn. This is
6992      * either extracting 128 bits from a 128:128 concatenation, or
6993      * extracting 64 bits from a 64:64 concatenation.
6994      */
6995     if (!is_q) {
6996         read_vec_element(s, tcg_resl, rn, 0, MO_64);
6997         if (pos != 0) {
6998             read_vec_element(s, tcg_resh, rm, 0, MO_64);
6999             do_ext64(s, tcg_resh, tcg_resl, pos);
7000         }
7001     } else {
7002         TCGv_i64 tcg_hh;
7003         typedef struct {
7004             int reg;
7005             int elt;
7006         } EltPosns;
7007         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7008         EltPosns *elt = eltposns;
7009 
7010         if (pos >= 64) {
7011             elt++;
7012             pos -= 64;
7013         }
7014 
7015         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7016         elt++;
7017         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7018         elt++;
7019         if (pos != 0) {
7020             do_ext64(s, tcg_resh, tcg_resl, pos);
7021             tcg_hh = tcg_temp_new_i64();
7022             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7023             do_ext64(s, tcg_hh, tcg_resh, pos);
7024         }
7025     }
7026 
7027     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7028     if (is_q) {
7029         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7030     }
7031     clear_vec_high(s, is_q, rd);
7032 }
7033 
7034 /* TBL/TBX
7035  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7036  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7037  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7038  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7039  */
7040 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7041 {
7042     int op2 = extract32(insn, 22, 2);
7043     int is_q = extract32(insn, 30, 1);
7044     int rm = extract32(insn, 16, 5);
7045     int rn = extract32(insn, 5, 5);
7046     int rd = extract32(insn, 0, 5);
7047     int is_tbx = extract32(insn, 12, 1);
7048     int len = (extract32(insn, 13, 2) + 1) * 16;
7049 
7050     if (op2 != 0) {
7051         unallocated_encoding(s);
7052         return;
7053     }
7054 
7055     if (!fp_access_check(s)) {
7056         return;
7057     }
7058 
7059     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7060                        vec_full_reg_offset(s, rm), cpu_env,
7061                        is_q ? 16 : 8, vec_full_reg_size(s),
7062                        (len << 6) | (is_tbx << 5) | rn,
7063                        gen_helper_simd_tblx);
7064 }
7065 
7066 /* ZIP/UZP/TRN
7067  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7068  * +---+---+-------------+------+---+------+---+------------------+------+
7069  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7070  * +---+---+-------------+------+---+------+---+------------------+------+
7071  */
7072 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7073 {
7074     int rd = extract32(insn, 0, 5);
7075     int rn = extract32(insn, 5, 5);
7076     int rm = extract32(insn, 16, 5);
7077     int size = extract32(insn, 22, 2);
7078     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7079      * bit 2 indicates 1 vs 2 variant of the insn.
7080      */
7081     int opcode = extract32(insn, 12, 2);
7082     bool part = extract32(insn, 14, 1);
7083     bool is_q = extract32(insn, 30, 1);
7084     int esize = 8 << size;
7085     int i;
7086     int datasize = is_q ? 128 : 64;
7087     int elements = datasize / esize;
7088     TCGv_i64 tcg_res[2], tcg_ele;
7089 
7090     if (opcode == 0 || (size == 3 && !is_q)) {
7091         unallocated_encoding(s);
7092         return;
7093     }
7094 
7095     if (!fp_access_check(s)) {
7096         return;
7097     }
7098 
7099     tcg_res[0] = tcg_temp_new_i64();
7100     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7101     tcg_ele = tcg_temp_new_i64();
7102 
7103     for (i = 0; i < elements; i++) {
7104         int o, w;
7105 
7106         switch (opcode) {
7107         case 1: /* UZP1/2 */
7108         {
7109             int midpoint = elements / 2;
7110             if (i < midpoint) {
7111                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7112             } else {
7113                 read_vec_element(s, tcg_ele, rm,
7114                                  2 * (i - midpoint) + part, size);
7115             }
7116             break;
7117         }
7118         case 2: /* TRN1/2 */
7119             if (i & 1) {
7120                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7121             } else {
7122                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7123             }
7124             break;
7125         case 3: /* ZIP1/2 */
7126         {
7127             int base = part * elements / 2;
7128             if (i & 1) {
7129                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7130             } else {
7131                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7132             }
7133             break;
7134         }
7135         default:
7136             g_assert_not_reached();
7137         }
7138 
7139         w = (i * esize) / 64;
7140         o = (i * esize) % 64;
7141         if (o == 0) {
7142             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7143         } else {
7144             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7145             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7146         }
7147     }
7148 
7149     for (i = 0; i <= is_q; ++i) {
7150         write_vec_element(s, tcg_res[i], rd, i, MO_64);
7151     }
7152     clear_vec_high(s, is_q, rd);
7153 }
7154 
7155 /*
7156  * do_reduction_op helper
7157  *
7158  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7159  * important for correct NaN propagation that we do these
7160  * operations in exactly the order specified by the pseudocode.
7161  *
7162  * This is a recursive function, TCG temps should be freed by the
7163  * calling function once it is done with the values.
7164  */
7165 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7166                                 int esize, int size, int vmap, TCGv_ptr fpst)
7167 {
7168     if (esize == size) {
7169         int element;
7170         MemOp msize = esize == 16 ? MO_16 : MO_32;
7171         TCGv_i32 tcg_elem;
7172 
7173         /* We should have one register left here */
7174         assert(ctpop8(vmap) == 1);
7175         element = ctz32(vmap);
7176         assert(element < 8);
7177 
7178         tcg_elem = tcg_temp_new_i32();
7179         read_vec_element_i32(s, tcg_elem, rn, element, msize);
7180         return tcg_elem;
7181     } else {
7182         int bits = size / 2;
7183         int shift = ctpop8(vmap) / 2;
7184         int vmap_lo = (vmap >> shift) & vmap;
7185         int vmap_hi = (vmap & ~vmap_lo);
7186         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7187 
7188         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7189         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7190         tcg_res = tcg_temp_new_i32();
7191 
7192         switch (fpopcode) {
7193         case 0x0c: /* fmaxnmv half-precision */
7194             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7195             break;
7196         case 0x0f: /* fmaxv half-precision */
7197             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7198             break;
7199         case 0x1c: /* fminnmv half-precision */
7200             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7201             break;
7202         case 0x1f: /* fminv half-precision */
7203             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7204             break;
7205         case 0x2c: /* fmaxnmv */
7206             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7207             break;
7208         case 0x2f: /* fmaxv */
7209             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7210             break;
7211         case 0x3c: /* fminnmv */
7212             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7213             break;
7214         case 0x3f: /* fminv */
7215             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7216             break;
7217         default:
7218             g_assert_not_reached();
7219         }
7220         return tcg_res;
7221     }
7222 }
7223 
7224 /* AdvSIMD across lanes
7225  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7226  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7227  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7228  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7229  */
7230 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7231 {
7232     int rd = extract32(insn, 0, 5);
7233     int rn = extract32(insn, 5, 5);
7234     int size = extract32(insn, 22, 2);
7235     int opcode = extract32(insn, 12, 5);
7236     bool is_q = extract32(insn, 30, 1);
7237     bool is_u = extract32(insn, 29, 1);
7238     bool is_fp = false;
7239     bool is_min = false;
7240     int esize;
7241     int elements;
7242     int i;
7243     TCGv_i64 tcg_res, tcg_elt;
7244 
7245     switch (opcode) {
7246     case 0x1b: /* ADDV */
7247         if (is_u) {
7248             unallocated_encoding(s);
7249             return;
7250         }
7251         /* fall through */
7252     case 0x3: /* SADDLV, UADDLV */
7253     case 0xa: /* SMAXV, UMAXV */
7254     case 0x1a: /* SMINV, UMINV */
7255         if (size == 3 || (size == 2 && !is_q)) {
7256             unallocated_encoding(s);
7257             return;
7258         }
7259         break;
7260     case 0xc: /* FMAXNMV, FMINNMV */
7261     case 0xf: /* FMAXV, FMINV */
7262         /* Bit 1 of size field encodes min vs max and the actual size
7263          * depends on the encoding of the U bit. If not set (and FP16
7264          * enabled) then we do half-precision float instead of single
7265          * precision.
7266          */
7267         is_min = extract32(size, 1, 1);
7268         is_fp = true;
7269         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7270             size = 1;
7271         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7272             unallocated_encoding(s);
7273             return;
7274         } else {
7275             size = 2;
7276         }
7277         break;
7278     default:
7279         unallocated_encoding(s);
7280         return;
7281     }
7282 
7283     if (!fp_access_check(s)) {
7284         return;
7285     }
7286 
7287     esize = 8 << size;
7288     elements = (is_q ? 128 : 64) / esize;
7289 
7290     tcg_res = tcg_temp_new_i64();
7291     tcg_elt = tcg_temp_new_i64();
7292 
7293     /* These instructions operate across all lanes of a vector
7294      * to produce a single result. We can guarantee that a 64
7295      * bit intermediate is sufficient:
7296      *  + for [US]ADDLV the maximum element size is 32 bits, and
7297      *    the result type is 64 bits
7298      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7299      *    same as the element size, which is 32 bits at most
7300      * For the integer operations we can choose to work at 64
7301      * or 32 bits and truncate at the end; for simplicity
7302      * we use 64 bits always. The floating point
7303      * ops do require 32 bit intermediates, though.
7304      */
7305     if (!is_fp) {
7306         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7307 
7308         for (i = 1; i < elements; i++) {
7309             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7310 
7311             switch (opcode) {
7312             case 0x03: /* SADDLV / UADDLV */
7313             case 0x1b: /* ADDV */
7314                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7315                 break;
7316             case 0x0a: /* SMAXV / UMAXV */
7317                 if (is_u) {
7318                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7319                 } else {
7320                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7321                 }
7322                 break;
7323             case 0x1a: /* SMINV / UMINV */
7324                 if (is_u) {
7325                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7326                 } else {
7327                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7328                 }
7329                 break;
7330             default:
7331                 g_assert_not_reached();
7332             }
7333 
7334         }
7335     } else {
7336         /* Floating point vector reduction ops which work across 32
7337          * bit (single) or 16 bit (half-precision) intermediates.
7338          * Note that correct NaN propagation requires that we do these
7339          * operations in exactly the order specified by the pseudocode.
7340          */
7341         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7342         int fpopcode = opcode | is_min << 4 | is_u << 5;
7343         int vmap = (1 << elements) - 1;
7344         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7345                                              (is_q ? 128 : 64), vmap, fpst);
7346         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7347     }
7348 
7349     /* Now truncate the result to the width required for the final output */
7350     if (opcode == 0x03) {
7351         /* SADDLV, UADDLV: result is 2*esize */
7352         size++;
7353     }
7354 
7355     switch (size) {
7356     case 0:
7357         tcg_gen_ext8u_i64(tcg_res, tcg_res);
7358         break;
7359     case 1:
7360         tcg_gen_ext16u_i64(tcg_res, tcg_res);
7361         break;
7362     case 2:
7363         tcg_gen_ext32u_i64(tcg_res, tcg_res);
7364         break;
7365     case 3:
7366         break;
7367     default:
7368         g_assert_not_reached();
7369     }
7370 
7371     write_fp_dreg(s, rd, tcg_res);
7372 }
7373 
7374 /* DUP (Element, Vector)
7375  *
7376  *  31  30   29              21 20    16 15        10  9    5 4    0
7377  * +---+---+-------------------+--------+-------------+------+------+
7378  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7379  * +---+---+-------------------+--------+-------------+------+------+
7380  *
7381  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7382  */
7383 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7384                              int imm5)
7385 {
7386     int size = ctz32(imm5);
7387     int index;
7388 
7389     if (size > 3 || (size == 3 && !is_q)) {
7390         unallocated_encoding(s);
7391         return;
7392     }
7393 
7394     if (!fp_access_check(s)) {
7395         return;
7396     }
7397 
7398     index = imm5 >> (size + 1);
7399     tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7400                          vec_reg_offset(s, rn, index, size),
7401                          is_q ? 16 : 8, vec_full_reg_size(s));
7402 }
7403 
7404 /* DUP (element, scalar)
7405  *  31                   21 20    16 15        10  9    5 4    0
7406  * +-----------------------+--------+-------------+------+------+
7407  * | 0 1 0 1 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7408  * +-----------------------+--------+-------------+------+------+
7409  */
7410 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7411                               int imm5)
7412 {
7413     int size = ctz32(imm5);
7414     int index;
7415     TCGv_i64 tmp;
7416 
7417     if (size > 3) {
7418         unallocated_encoding(s);
7419         return;
7420     }
7421 
7422     if (!fp_access_check(s)) {
7423         return;
7424     }
7425 
7426     index = imm5 >> (size + 1);
7427 
7428     /* This instruction just extracts the specified element and
7429      * zero-extends it into the bottom of the destination register.
7430      */
7431     tmp = tcg_temp_new_i64();
7432     read_vec_element(s, tmp, rn, index, size);
7433     write_fp_dreg(s, rd, tmp);
7434 }
7435 
7436 /* DUP (General)
7437  *
7438  *  31  30   29              21 20    16 15        10  9    5 4    0
7439  * +---+---+-------------------+--------+-------------+------+------+
7440  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 1 1 |  Rn  |  Rd  |
7441  * +---+---+-------------------+--------+-------------+------+------+
7442  *
7443  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7444  */
7445 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7446                              int imm5)
7447 {
7448     int size = ctz32(imm5);
7449     uint32_t dofs, oprsz, maxsz;
7450 
7451     if (size > 3 || ((size == 3) && !is_q)) {
7452         unallocated_encoding(s);
7453         return;
7454     }
7455 
7456     if (!fp_access_check(s)) {
7457         return;
7458     }
7459 
7460     dofs = vec_full_reg_offset(s, rd);
7461     oprsz = is_q ? 16 : 8;
7462     maxsz = vec_full_reg_size(s);
7463 
7464     tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7465 }
7466 
7467 /* INS (Element)
7468  *
7469  *  31                   21 20    16 15  14    11  10 9    5 4    0
7470  * +-----------------------+--------+------------+---+------+------+
7471  * | 0 1 1 0 1 1 1 0 0 0 0 |  imm5  | 0 |  imm4  | 1 |  Rn  |  Rd  |
7472  * +-----------------------+--------+------------+---+------+------+
7473  *
7474  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7475  * index: encoded in imm5<4:size+1>
7476  */
7477 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7478                              int imm4, int imm5)
7479 {
7480     int size = ctz32(imm5);
7481     int src_index, dst_index;
7482     TCGv_i64 tmp;
7483 
7484     if (size > 3) {
7485         unallocated_encoding(s);
7486         return;
7487     }
7488 
7489     if (!fp_access_check(s)) {
7490         return;
7491     }
7492 
7493     dst_index = extract32(imm5, 1+size, 5);
7494     src_index = extract32(imm4, size, 4);
7495 
7496     tmp = tcg_temp_new_i64();
7497 
7498     read_vec_element(s, tmp, rn, src_index, size);
7499     write_vec_element(s, tmp, rd, dst_index, size);
7500 
7501     /* INS is considered a 128-bit write for SVE. */
7502     clear_vec_high(s, true, rd);
7503 }
7504 
7505 
7506 /* INS (General)
7507  *
7508  *  31                   21 20    16 15        10  9    5 4    0
7509  * +-----------------------+--------+-------------+------+------+
7510  * | 0 1 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 1 1 1 |  Rn  |  Rd  |
7511  * +-----------------------+--------+-------------+------+------+
7512  *
7513  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7514  * index: encoded in imm5<4:size+1>
7515  */
7516 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7517 {
7518     int size = ctz32(imm5);
7519     int idx;
7520 
7521     if (size > 3) {
7522         unallocated_encoding(s);
7523         return;
7524     }
7525 
7526     if (!fp_access_check(s)) {
7527         return;
7528     }
7529 
7530     idx = extract32(imm5, 1 + size, 4 - size);
7531     write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7532 
7533     /* INS is considered a 128-bit write for SVE. */
7534     clear_vec_high(s, true, rd);
7535 }
7536 
7537 /*
7538  * UMOV (General)
7539  * SMOV (General)
7540  *
7541  *  31  30   29              21 20    16 15    12   10 9    5 4    0
7542  * +---+---+-------------------+--------+-------------+------+------+
7543  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 1 U 1 1 |  Rn  |  Rd  |
7544  * +---+---+-------------------+--------+-------------+------+------+
7545  *
7546  * U: unsigned when set
7547  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7548  */
7549 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7550                                   int rn, int rd, int imm5)
7551 {
7552     int size = ctz32(imm5);
7553     int element;
7554     TCGv_i64 tcg_rd;
7555 
7556     /* Check for UnallocatedEncodings */
7557     if (is_signed) {
7558         if (size > 2 || (size == 2 && !is_q)) {
7559             unallocated_encoding(s);
7560             return;
7561         }
7562     } else {
7563         if (size > 3
7564             || (size < 3 && is_q)
7565             || (size == 3 && !is_q)) {
7566             unallocated_encoding(s);
7567             return;
7568         }
7569     }
7570 
7571     if (!fp_access_check(s)) {
7572         return;
7573     }
7574 
7575     element = extract32(imm5, 1+size, 4);
7576 
7577     tcg_rd = cpu_reg(s, rd);
7578     read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7579     if (is_signed && !is_q) {
7580         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7581     }
7582 }
7583 
7584 /* AdvSIMD copy
7585  *   31  30  29  28             21 20  16 15  14  11 10  9    5 4    0
7586  * +---+---+----+-----------------+------+---+------+---+------+------+
7587  * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7588  * +---+---+----+-----------------+------+---+------+---+------+------+
7589  */
7590 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7591 {
7592     int rd = extract32(insn, 0, 5);
7593     int rn = extract32(insn, 5, 5);
7594     int imm4 = extract32(insn, 11, 4);
7595     int op = extract32(insn, 29, 1);
7596     int is_q = extract32(insn, 30, 1);
7597     int imm5 = extract32(insn, 16, 5);
7598 
7599     if (op) {
7600         if (is_q) {
7601             /* INS (element) */
7602             handle_simd_inse(s, rd, rn, imm4, imm5);
7603         } else {
7604             unallocated_encoding(s);
7605         }
7606     } else {
7607         switch (imm4) {
7608         case 0:
7609             /* DUP (element - vector) */
7610             handle_simd_dupe(s, is_q, rd, rn, imm5);
7611             break;
7612         case 1:
7613             /* DUP (general) */
7614             handle_simd_dupg(s, is_q, rd, rn, imm5);
7615             break;
7616         case 3:
7617             if (is_q) {
7618                 /* INS (general) */
7619                 handle_simd_insg(s, rd, rn, imm5);
7620             } else {
7621                 unallocated_encoding(s);
7622             }
7623             break;
7624         case 5:
7625         case 7:
7626             /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7627             handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7628             break;
7629         default:
7630             unallocated_encoding(s);
7631             break;
7632         }
7633     }
7634 }
7635 
7636 /* AdvSIMD modified immediate
7637  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
7638  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7639  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
7640  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7641  *
7642  * There are a number of operations that can be carried out here:
7643  *   MOVI - move (shifted) imm into register
7644  *   MVNI - move inverted (shifted) imm into register
7645  *   ORR  - bitwise OR of (shifted) imm with register
7646  *   BIC  - bitwise clear of (shifted) imm with register
7647  * With ARMv8.2 we also have:
7648  *   FMOV half-precision
7649  */
7650 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7651 {
7652     int rd = extract32(insn, 0, 5);
7653     int cmode = extract32(insn, 12, 4);
7654     int o2 = extract32(insn, 11, 1);
7655     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7656     bool is_neg = extract32(insn, 29, 1);
7657     bool is_q = extract32(insn, 30, 1);
7658     uint64_t imm = 0;
7659 
7660     if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7661         /* Check for FMOV (vector, immediate) - half-precision */
7662         if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7663             unallocated_encoding(s);
7664             return;
7665         }
7666     }
7667 
7668     if (!fp_access_check(s)) {
7669         return;
7670     }
7671 
7672     if (cmode == 15 && o2 && !is_neg) {
7673         /* FMOV (vector, immediate) - half-precision */
7674         imm = vfp_expand_imm(MO_16, abcdefgh);
7675         /* now duplicate across the lanes */
7676         imm = dup_const(MO_16, imm);
7677     } else {
7678         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
7679     }
7680 
7681     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7682         /* MOVI or MVNI, with MVNI negation handled above.  */
7683         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7684                              vec_full_reg_size(s), imm);
7685     } else {
7686         /* ORR or BIC, with BIC negation to AND handled above.  */
7687         if (is_neg) {
7688             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7689         } else {
7690             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7691         }
7692     }
7693 }
7694 
7695 /* AdvSIMD scalar copy
7696  *  31 30  29  28             21 20  16 15  14  11 10  9    5 4    0
7697  * +-----+----+-----------------+------+---+------+---+------+------+
7698  * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7699  * +-----+----+-----------------+------+---+------+---+------+------+
7700  */
7701 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7702 {
7703     int rd = extract32(insn, 0, 5);
7704     int rn = extract32(insn, 5, 5);
7705     int imm4 = extract32(insn, 11, 4);
7706     int imm5 = extract32(insn, 16, 5);
7707     int op = extract32(insn, 29, 1);
7708 
7709     if (op != 0 || imm4 != 0) {
7710         unallocated_encoding(s);
7711         return;
7712     }
7713 
7714     /* DUP (element, scalar) */
7715     handle_simd_dupes(s, rd, rn, imm5);
7716 }
7717 
7718 /* AdvSIMD scalar pairwise
7719  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7720  * +-----+---+-----------+------+-----------+--------+-----+------+------+
7721  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7722  * +-----+---+-----------+------+-----------+--------+-----+------+------+
7723  */
7724 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7725 {
7726     int u = extract32(insn, 29, 1);
7727     int size = extract32(insn, 22, 2);
7728     int opcode = extract32(insn, 12, 5);
7729     int rn = extract32(insn, 5, 5);
7730     int rd = extract32(insn, 0, 5);
7731     TCGv_ptr fpst;
7732 
7733     /* For some ops (the FP ones), size[1] is part of the encoding.
7734      * For ADDP strictly it is not but size[1] is always 1 for valid
7735      * encodings.
7736      */
7737     opcode |= (extract32(size, 1, 1) << 5);
7738 
7739     switch (opcode) {
7740     case 0x3b: /* ADDP */
7741         if (u || size != 3) {
7742             unallocated_encoding(s);
7743             return;
7744         }
7745         if (!fp_access_check(s)) {
7746             return;
7747         }
7748 
7749         fpst = NULL;
7750         break;
7751     case 0xc: /* FMAXNMP */
7752     case 0xd: /* FADDP */
7753     case 0xf: /* FMAXP */
7754     case 0x2c: /* FMINNMP */
7755     case 0x2f: /* FMINP */
7756         /* FP op, size[0] is 32 or 64 bit*/
7757         if (!u) {
7758             if (!dc_isar_feature(aa64_fp16, s)) {
7759                 unallocated_encoding(s);
7760                 return;
7761             } else {
7762                 size = MO_16;
7763             }
7764         } else {
7765             size = extract32(size, 0, 1) ? MO_64 : MO_32;
7766         }
7767 
7768         if (!fp_access_check(s)) {
7769             return;
7770         }
7771 
7772         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7773         break;
7774     default:
7775         unallocated_encoding(s);
7776         return;
7777     }
7778 
7779     if (size == MO_64) {
7780         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7781         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7782         TCGv_i64 tcg_res = tcg_temp_new_i64();
7783 
7784         read_vec_element(s, tcg_op1, rn, 0, MO_64);
7785         read_vec_element(s, tcg_op2, rn, 1, MO_64);
7786 
7787         switch (opcode) {
7788         case 0x3b: /* ADDP */
7789             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7790             break;
7791         case 0xc: /* FMAXNMP */
7792             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7793             break;
7794         case 0xd: /* FADDP */
7795             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7796             break;
7797         case 0xf: /* FMAXP */
7798             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7799             break;
7800         case 0x2c: /* FMINNMP */
7801             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7802             break;
7803         case 0x2f: /* FMINP */
7804             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7805             break;
7806         default:
7807             g_assert_not_reached();
7808         }
7809 
7810         write_fp_dreg(s, rd, tcg_res);
7811     } else {
7812         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7813         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7814         TCGv_i32 tcg_res = tcg_temp_new_i32();
7815 
7816         read_vec_element_i32(s, tcg_op1, rn, 0, size);
7817         read_vec_element_i32(s, tcg_op2, rn, 1, size);
7818 
7819         if (size == MO_16) {
7820             switch (opcode) {
7821             case 0xc: /* FMAXNMP */
7822                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7823                 break;
7824             case 0xd: /* FADDP */
7825                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
7826                 break;
7827             case 0xf: /* FMAXP */
7828                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
7829                 break;
7830             case 0x2c: /* FMINNMP */
7831                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7832                 break;
7833             case 0x2f: /* FMINP */
7834                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
7835                 break;
7836             default:
7837                 g_assert_not_reached();
7838             }
7839         } else {
7840             switch (opcode) {
7841             case 0xc: /* FMAXNMP */
7842                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7843                 break;
7844             case 0xd: /* FADDP */
7845                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7846                 break;
7847             case 0xf: /* FMAXP */
7848                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7849                 break;
7850             case 0x2c: /* FMINNMP */
7851                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7852                 break;
7853             case 0x2f: /* FMINP */
7854                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7855                 break;
7856             default:
7857                 g_assert_not_reached();
7858             }
7859         }
7860 
7861         write_fp_sreg(s, rd, tcg_res);
7862     }
7863 }
7864 
7865 /*
7866  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
7867  *
7868  * This code is handles the common shifting code and is used by both
7869  * the vector and scalar code.
7870  */
7871 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
7872                                     TCGv_i64 tcg_rnd, bool accumulate,
7873                                     bool is_u, int size, int shift)
7874 {
7875     bool extended_result = false;
7876     bool round = tcg_rnd != NULL;
7877     int ext_lshift = 0;
7878     TCGv_i64 tcg_src_hi;
7879 
7880     if (round && size == 3) {
7881         extended_result = true;
7882         ext_lshift = 64 - shift;
7883         tcg_src_hi = tcg_temp_new_i64();
7884     } else if (shift == 64) {
7885         if (!accumulate && is_u) {
7886             /* result is zero */
7887             tcg_gen_movi_i64(tcg_res, 0);
7888             return;
7889         }
7890     }
7891 
7892     /* Deal with the rounding step */
7893     if (round) {
7894         if (extended_result) {
7895             TCGv_i64 tcg_zero = tcg_constant_i64(0);
7896             if (!is_u) {
7897                 /* take care of sign extending tcg_res */
7898                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
7899                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7900                                  tcg_src, tcg_src_hi,
7901                                  tcg_rnd, tcg_zero);
7902             } else {
7903                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7904                                  tcg_src, tcg_zero,
7905                                  tcg_rnd, tcg_zero);
7906             }
7907         } else {
7908             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
7909         }
7910     }
7911 
7912     /* Now do the shift right */
7913     if (round && extended_result) {
7914         /* extended case, >64 bit precision required */
7915         if (ext_lshift == 0) {
7916             /* special case, only high bits matter */
7917             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
7918         } else {
7919             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7920             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
7921             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
7922         }
7923     } else {
7924         if (is_u) {
7925             if (shift == 64) {
7926                 /* essentially shifting in 64 zeros */
7927                 tcg_gen_movi_i64(tcg_src, 0);
7928             } else {
7929                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7930             }
7931         } else {
7932             if (shift == 64) {
7933                 /* effectively extending the sign-bit */
7934                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
7935             } else {
7936                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
7937             }
7938         }
7939     }
7940 
7941     if (accumulate) {
7942         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
7943     } else {
7944         tcg_gen_mov_i64(tcg_res, tcg_src);
7945     }
7946 }
7947 
7948 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
7949 static void handle_scalar_simd_shri(DisasContext *s,
7950                                     bool is_u, int immh, int immb,
7951                                     int opcode, int rn, int rd)
7952 {
7953     const int size = 3;
7954     int immhb = immh << 3 | immb;
7955     int shift = 2 * (8 << size) - immhb;
7956     bool accumulate = false;
7957     bool round = false;
7958     bool insert = false;
7959     TCGv_i64 tcg_rn;
7960     TCGv_i64 tcg_rd;
7961     TCGv_i64 tcg_round;
7962 
7963     if (!extract32(immh, 3, 1)) {
7964         unallocated_encoding(s);
7965         return;
7966     }
7967 
7968     if (!fp_access_check(s)) {
7969         return;
7970     }
7971 
7972     switch (opcode) {
7973     case 0x02: /* SSRA / USRA (accumulate) */
7974         accumulate = true;
7975         break;
7976     case 0x04: /* SRSHR / URSHR (rounding) */
7977         round = true;
7978         break;
7979     case 0x06: /* SRSRA / URSRA (accum + rounding) */
7980         accumulate = round = true;
7981         break;
7982     case 0x08: /* SRI */
7983         insert = true;
7984         break;
7985     }
7986 
7987     if (round) {
7988         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
7989     } else {
7990         tcg_round = NULL;
7991     }
7992 
7993     tcg_rn = read_fp_dreg(s, rn);
7994     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7995 
7996     if (insert) {
7997         /* shift count same as element size is valid but does nothing;
7998          * special case to avoid potential shift by 64.
7999          */
8000         int esize = 8 << size;
8001         if (shift != esize) {
8002             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8003             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8004         }
8005     } else {
8006         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8007                                 accumulate, is_u, size, shift);
8008     }
8009 
8010     write_fp_dreg(s, rd, tcg_rd);
8011 }
8012 
8013 /* SHL/SLI - Scalar shift left */
8014 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8015                                     int immh, int immb, int opcode,
8016                                     int rn, int rd)
8017 {
8018     int size = 32 - clz32(immh) - 1;
8019     int immhb = immh << 3 | immb;
8020     int shift = immhb - (8 << size);
8021     TCGv_i64 tcg_rn;
8022     TCGv_i64 tcg_rd;
8023 
8024     if (!extract32(immh, 3, 1)) {
8025         unallocated_encoding(s);
8026         return;
8027     }
8028 
8029     if (!fp_access_check(s)) {
8030         return;
8031     }
8032 
8033     tcg_rn = read_fp_dreg(s, rn);
8034     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8035 
8036     if (insert) {
8037         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8038     } else {
8039         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8040     }
8041 
8042     write_fp_dreg(s, rd, tcg_rd);
8043 }
8044 
8045 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8046  * (signed/unsigned) narrowing */
8047 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8048                                    bool is_u_shift, bool is_u_narrow,
8049                                    int immh, int immb, int opcode,
8050                                    int rn, int rd)
8051 {
8052     int immhb = immh << 3 | immb;
8053     int size = 32 - clz32(immh) - 1;
8054     int esize = 8 << size;
8055     int shift = (2 * esize) - immhb;
8056     int elements = is_scalar ? 1 : (64 / esize);
8057     bool round = extract32(opcode, 0, 1);
8058     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8059     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8060     TCGv_i32 tcg_rd_narrowed;
8061     TCGv_i64 tcg_final;
8062 
8063     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8064         { gen_helper_neon_narrow_sat_s8,
8065           gen_helper_neon_unarrow_sat8 },
8066         { gen_helper_neon_narrow_sat_s16,
8067           gen_helper_neon_unarrow_sat16 },
8068         { gen_helper_neon_narrow_sat_s32,
8069           gen_helper_neon_unarrow_sat32 },
8070         { NULL, NULL },
8071     };
8072     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8073         gen_helper_neon_narrow_sat_u8,
8074         gen_helper_neon_narrow_sat_u16,
8075         gen_helper_neon_narrow_sat_u32,
8076         NULL
8077     };
8078     NeonGenNarrowEnvFn *narrowfn;
8079 
8080     int i;
8081 
8082     assert(size < 4);
8083 
8084     if (extract32(immh, 3, 1)) {
8085         unallocated_encoding(s);
8086         return;
8087     }
8088 
8089     if (!fp_access_check(s)) {
8090         return;
8091     }
8092 
8093     if (is_u_shift) {
8094         narrowfn = unsigned_narrow_fns[size];
8095     } else {
8096         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8097     }
8098 
8099     tcg_rn = tcg_temp_new_i64();
8100     tcg_rd = tcg_temp_new_i64();
8101     tcg_rd_narrowed = tcg_temp_new_i32();
8102     tcg_final = tcg_temp_new_i64();
8103 
8104     if (round) {
8105         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8106     } else {
8107         tcg_round = NULL;
8108     }
8109 
8110     for (i = 0; i < elements; i++) {
8111         read_vec_element(s, tcg_rn, rn, i, ldop);
8112         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8113                                 false, is_u_shift, size+1, shift);
8114         narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8115         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8116         if (i == 0) {
8117             tcg_gen_mov_i64(tcg_final, tcg_rd);
8118         } else {
8119             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8120         }
8121     }
8122 
8123     if (!is_q) {
8124         write_vec_element(s, tcg_final, rd, 0, MO_64);
8125     } else {
8126         write_vec_element(s, tcg_final, rd, 1, MO_64);
8127     }
8128     clear_vec_high(s, is_q, rd);
8129 }
8130 
8131 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8132 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8133                              bool src_unsigned, bool dst_unsigned,
8134                              int immh, int immb, int rn, int rd)
8135 {
8136     int immhb = immh << 3 | immb;
8137     int size = 32 - clz32(immh) - 1;
8138     int shift = immhb - (8 << size);
8139     int pass;
8140 
8141     assert(immh != 0);
8142     assert(!(scalar && is_q));
8143 
8144     if (!scalar) {
8145         if (!is_q && extract32(immh, 3, 1)) {
8146             unallocated_encoding(s);
8147             return;
8148         }
8149 
8150         /* Since we use the variable-shift helpers we must
8151          * replicate the shift count into each element of
8152          * the tcg_shift value.
8153          */
8154         switch (size) {
8155         case 0:
8156             shift |= shift << 8;
8157             /* fall through */
8158         case 1:
8159             shift |= shift << 16;
8160             break;
8161         case 2:
8162         case 3:
8163             break;
8164         default:
8165             g_assert_not_reached();
8166         }
8167     }
8168 
8169     if (!fp_access_check(s)) {
8170         return;
8171     }
8172 
8173     if (size == 3) {
8174         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8175         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8176             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8177             { NULL, gen_helper_neon_qshl_u64 },
8178         };
8179         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8180         int maxpass = is_q ? 2 : 1;
8181 
8182         for (pass = 0; pass < maxpass; pass++) {
8183             TCGv_i64 tcg_op = tcg_temp_new_i64();
8184 
8185             read_vec_element(s, tcg_op, rn, pass, MO_64);
8186             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8187             write_vec_element(s, tcg_op, rd, pass, MO_64);
8188         }
8189         clear_vec_high(s, is_q, rd);
8190     } else {
8191         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8192         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8193             {
8194                 { gen_helper_neon_qshl_s8,
8195                   gen_helper_neon_qshl_s16,
8196                   gen_helper_neon_qshl_s32 },
8197                 { gen_helper_neon_qshlu_s8,
8198                   gen_helper_neon_qshlu_s16,
8199                   gen_helper_neon_qshlu_s32 }
8200             }, {
8201                 { NULL, NULL, NULL },
8202                 { gen_helper_neon_qshl_u8,
8203                   gen_helper_neon_qshl_u16,
8204                   gen_helper_neon_qshl_u32 }
8205             }
8206         };
8207         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8208         MemOp memop = scalar ? size : MO_32;
8209         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8210 
8211         for (pass = 0; pass < maxpass; pass++) {
8212             TCGv_i32 tcg_op = tcg_temp_new_i32();
8213 
8214             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8215             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8216             if (scalar) {
8217                 switch (size) {
8218                 case 0:
8219                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8220                     break;
8221                 case 1:
8222                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8223                     break;
8224                 case 2:
8225                     break;
8226                 default:
8227                     g_assert_not_reached();
8228                 }
8229                 write_fp_sreg(s, rd, tcg_op);
8230             } else {
8231                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8232             }
8233         }
8234 
8235         if (!scalar) {
8236             clear_vec_high(s, is_q, rd);
8237         }
8238     }
8239 }
8240 
8241 /* Common vector code for handling integer to FP conversion */
8242 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8243                                    int elements, int is_signed,
8244                                    int fracbits, int size)
8245 {
8246     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8247     TCGv_i32 tcg_shift = NULL;
8248 
8249     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8250     int pass;
8251 
8252     if (fracbits || size == MO_64) {
8253         tcg_shift = tcg_constant_i32(fracbits);
8254     }
8255 
8256     if (size == MO_64) {
8257         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8258         TCGv_i64 tcg_double = tcg_temp_new_i64();
8259 
8260         for (pass = 0; pass < elements; pass++) {
8261             read_vec_element(s, tcg_int64, rn, pass, mop);
8262 
8263             if (is_signed) {
8264                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8265                                      tcg_shift, tcg_fpst);
8266             } else {
8267                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8268                                      tcg_shift, tcg_fpst);
8269             }
8270             if (elements == 1) {
8271                 write_fp_dreg(s, rd, tcg_double);
8272             } else {
8273                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8274             }
8275         }
8276     } else {
8277         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8278         TCGv_i32 tcg_float = tcg_temp_new_i32();
8279 
8280         for (pass = 0; pass < elements; pass++) {
8281             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8282 
8283             switch (size) {
8284             case MO_32:
8285                 if (fracbits) {
8286                     if (is_signed) {
8287                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8288                                              tcg_shift, tcg_fpst);
8289                     } else {
8290                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8291                                              tcg_shift, tcg_fpst);
8292                     }
8293                 } else {
8294                     if (is_signed) {
8295                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8296                     } else {
8297                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8298                     }
8299                 }
8300                 break;
8301             case MO_16:
8302                 if (fracbits) {
8303                     if (is_signed) {
8304                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8305                                              tcg_shift, tcg_fpst);
8306                     } else {
8307                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8308                                              tcg_shift, tcg_fpst);
8309                     }
8310                 } else {
8311                     if (is_signed) {
8312                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8313                     } else {
8314                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8315                     }
8316                 }
8317                 break;
8318             default:
8319                 g_assert_not_reached();
8320             }
8321 
8322             if (elements == 1) {
8323                 write_fp_sreg(s, rd, tcg_float);
8324             } else {
8325                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8326             }
8327         }
8328     }
8329 
8330     clear_vec_high(s, elements << size == 16, rd);
8331 }
8332 
8333 /* UCVTF/SCVTF - Integer to FP conversion */
8334 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8335                                          bool is_q, bool is_u,
8336                                          int immh, int immb, int opcode,
8337                                          int rn, int rd)
8338 {
8339     int size, elements, fracbits;
8340     int immhb = immh << 3 | immb;
8341 
8342     if (immh & 8) {
8343         size = MO_64;
8344         if (!is_scalar && !is_q) {
8345             unallocated_encoding(s);
8346             return;
8347         }
8348     } else if (immh & 4) {
8349         size = MO_32;
8350     } else if (immh & 2) {
8351         size = MO_16;
8352         if (!dc_isar_feature(aa64_fp16, s)) {
8353             unallocated_encoding(s);
8354             return;
8355         }
8356     } else {
8357         /* immh == 0 would be a failure of the decode logic */
8358         g_assert(immh == 1);
8359         unallocated_encoding(s);
8360         return;
8361     }
8362 
8363     if (is_scalar) {
8364         elements = 1;
8365     } else {
8366         elements = (8 << is_q) >> size;
8367     }
8368     fracbits = (16 << size) - immhb;
8369 
8370     if (!fp_access_check(s)) {
8371         return;
8372     }
8373 
8374     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8375 }
8376 
8377 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8378 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8379                                          bool is_q, bool is_u,
8380                                          int immh, int immb, int rn, int rd)
8381 {
8382     int immhb = immh << 3 | immb;
8383     int pass, size, fracbits;
8384     TCGv_ptr tcg_fpstatus;
8385     TCGv_i32 tcg_rmode, tcg_shift;
8386 
8387     if (immh & 0x8) {
8388         size = MO_64;
8389         if (!is_scalar && !is_q) {
8390             unallocated_encoding(s);
8391             return;
8392         }
8393     } else if (immh & 0x4) {
8394         size = MO_32;
8395     } else if (immh & 0x2) {
8396         size = MO_16;
8397         if (!dc_isar_feature(aa64_fp16, s)) {
8398             unallocated_encoding(s);
8399             return;
8400         }
8401     } else {
8402         /* Should have split out AdvSIMD modified immediate earlier.  */
8403         assert(immh == 1);
8404         unallocated_encoding(s);
8405         return;
8406     }
8407 
8408     if (!fp_access_check(s)) {
8409         return;
8410     }
8411 
8412     assert(!(is_scalar && is_q));
8413 
8414     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8415     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8416     fracbits = (16 << size) - immhb;
8417     tcg_shift = tcg_constant_i32(fracbits);
8418 
8419     if (size == MO_64) {
8420         int maxpass = is_scalar ? 1 : 2;
8421 
8422         for (pass = 0; pass < maxpass; pass++) {
8423             TCGv_i64 tcg_op = tcg_temp_new_i64();
8424 
8425             read_vec_element(s, tcg_op, rn, pass, MO_64);
8426             if (is_u) {
8427                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8428             } else {
8429                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8430             }
8431             write_vec_element(s, tcg_op, rd, pass, MO_64);
8432         }
8433         clear_vec_high(s, is_q, rd);
8434     } else {
8435         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8436         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8437 
8438         switch (size) {
8439         case MO_16:
8440             if (is_u) {
8441                 fn = gen_helper_vfp_touhh;
8442             } else {
8443                 fn = gen_helper_vfp_toshh;
8444             }
8445             break;
8446         case MO_32:
8447             if (is_u) {
8448                 fn = gen_helper_vfp_touls;
8449             } else {
8450                 fn = gen_helper_vfp_tosls;
8451             }
8452             break;
8453         default:
8454             g_assert_not_reached();
8455         }
8456 
8457         for (pass = 0; pass < maxpass; pass++) {
8458             TCGv_i32 tcg_op = tcg_temp_new_i32();
8459 
8460             read_vec_element_i32(s, tcg_op, rn, pass, size);
8461             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8462             if (is_scalar) {
8463                 write_fp_sreg(s, rd, tcg_op);
8464             } else {
8465                 write_vec_element_i32(s, tcg_op, rd, pass, size);
8466             }
8467         }
8468         if (!is_scalar) {
8469             clear_vec_high(s, is_q, rd);
8470         }
8471     }
8472 
8473     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8474 }
8475 
8476 /* AdvSIMD scalar shift by immediate
8477  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
8478  * +-----+---+-------------+------+------+--------+---+------+------+
8479  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
8480  * +-----+---+-------------+------+------+--------+---+------+------+
8481  *
8482  * This is the scalar version so it works on a fixed sized registers
8483  */
8484 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8485 {
8486     int rd = extract32(insn, 0, 5);
8487     int rn = extract32(insn, 5, 5);
8488     int opcode = extract32(insn, 11, 5);
8489     int immb = extract32(insn, 16, 3);
8490     int immh = extract32(insn, 19, 4);
8491     bool is_u = extract32(insn, 29, 1);
8492 
8493     if (immh == 0) {
8494         unallocated_encoding(s);
8495         return;
8496     }
8497 
8498     switch (opcode) {
8499     case 0x08: /* SRI */
8500         if (!is_u) {
8501             unallocated_encoding(s);
8502             return;
8503         }
8504         /* fall through */
8505     case 0x00: /* SSHR / USHR */
8506     case 0x02: /* SSRA / USRA */
8507     case 0x04: /* SRSHR / URSHR */
8508     case 0x06: /* SRSRA / URSRA */
8509         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8510         break;
8511     case 0x0a: /* SHL / SLI */
8512         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8513         break;
8514     case 0x1c: /* SCVTF, UCVTF */
8515         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8516                                      opcode, rn, rd);
8517         break;
8518     case 0x10: /* SQSHRUN, SQSHRUN2 */
8519     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8520         if (!is_u) {
8521             unallocated_encoding(s);
8522             return;
8523         }
8524         handle_vec_simd_sqshrn(s, true, false, false, true,
8525                                immh, immb, opcode, rn, rd);
8526         break;
8527     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8528     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8529         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8530                                immh, immb, opcode, rn, rd);
8531         break;
8532     case 0xc: /* SQSHLU */
8533         if (!is_u) {
8534             unallocated_encoding(s);
8535             return;
8536         }
8537         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8538         break;
8539     case 0xe: /* SQSHL, UQSHL */
8540         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8541         break;
8542     case 0x1f: /* FCVTZS, FCVTZU */
8543         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8544         break;
8545     default:
8546         unallocated_encoding(s);
8547         break;
8548     }
8549 }
8550 
8551 /* AdvSIMD scalar three different
8552  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
8553  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8554  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
8555  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8556  */
8557 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8558 {
8559     bool is_u = extract32(insn, 29, 1);
8560     int size = extract32(insn, 22, 2);
8561     int opcode = extract32(insn, 12, 4);
8562     int rm = extract32(insn, 16, 5);
8563     int rn = extract32(insn, 5, 5);
8564     int rd = extract32(insn, 0, 5);
8565 
8566     if (is_u) {
8567         unallocated_encoding(s);
8568         return;
8569     }
8570 
8571     switch (opcode) {
8572     case 0x9: /* SQDMLAL, SQDMLAL2 */
8573     case 0xb: /* SQDMLSL, SQDMLSL2 */
8574     case 0xd: /* SQDMULL, SQDMULL2 */
8575         if (size == 0 || size == 3) {
8576             unallocated_encoding(s);
8577             return;
8578         }
8579         break;
8580     default:
8581         unallocated_encoding(s);
8582         return;
8583     }
8584 
8585     if (!fp_access_check(s)) {
8586         return;
8587     }
8588 
8589     if (size == 2) {
8590         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8591         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8592         TCGv_i64 tcg_res = tcg_temp_new_i64();
8593 
8594         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8595         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8596 
8597         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8598         gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8599 
8600         switch (opcode) {
8601         case 0xd: /* SQDMULL, SQDMULL2 */
8602             break;
8603         case 0xb: /* SQDMLSL, SQDMLSL2 */
8604             tcg_gen_neg_i64(tcg_res, tcg_res);
8605             /* fall through */
8606         case 0x9: /* SQDMLAL, SQDMLAL2 */
8607             read_vec_element(s, tcg_op1, rd, 0, MO_64);
8608             gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8609                                               tcg_res, tcg_op1);
8610             break;
8611         default:
8612             g_assert_not_reached();
8613         }
8614 
8615         write_fp_dreg(s, rd, tcg_res);
8616     } else {
8617         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8618         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8619         TCGv_i64 tcg_res = tcg_temp_new_i64();
8620 
8621         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8622         gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8623 
8624         switch (opcode) {
8625         case 0xd: /* SQDMULL, SQDMULL2 */
8626             break;
8627         case 0xb: /* SQDMLSL, SQDMLSL2 */
8628             gen_helper_neon_negl_u32(tcg_res, tcg_res);
8629             /* fall through */
8630         case 0x9: /* SQDMLAL, SQDMLAL2 */
8631         {
8632             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8633             read_vec_element(s, tcg_op3, rd, 0, MO_32);
8634             gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8635                                               tcg_res, tcg_op3);
8636             break;
8637         }
8638         default:
8639             g_assert_not_reached();
8640         }
8641 
8642         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8643         write_fp_dreg(s, rd, tcg_res);
8644     }
8645 }
8646 
8647 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8648                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8649 {
8650     /* Handle 64x64->64 opcodes which are shared between the scalar
8651      * and vector 3-same groups. We cover every opcode where size == 3
8652      * is valid in either the three-reg-same (integer, not pairwise)
8653      * or scalar-three-reg-same groups.
8654      */
8655     TCGCond cond;
8656 
8657     switch (opcode) {
8658     case 0x1: /* SQADD */
8659         if (u) {
8660             gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8661         } else {
8662             gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8663         }
8664         break;
8665     case 0x5: /* SQSUB */
8666         if (u) {
8667             gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8668         } else {
8669             gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8670         }
8671         break;
8672     case 0x6: /* CMGT, CMHI */
8673         /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8674          * We implement this using setcond (test) and then negating.
8675          */
8676         cond = u ? TCG_COND_GTU : TCG_COND_GT;
8677     do_cmop:
8678         tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8679         tcg_gen_neg_i64(tcg_rd, tcg_rd);
8680         break;
8681     case 0x7: /* CMGE, CMHS */
8682         cond = u ? TCG_COND_GEU : TCG_COND_GE;
8683         goto do_cmop;
8684     case 0x11: /* CMTST, CMEQ */
8685         if (u) {
8686             cond = TCG_COND_EQ;
8687             goto do_cmop;
8688         }
8689         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8690         break;
8691     case 0x8: /* SSHL, USHL */
8692         if (u) {
8693             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
8694         } else {
8695             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
8696         }
8697         break;
8698     case 0x9: /* SQSHL, UQSHL */
8699         if (u) {
8700             gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8701         } else {
8702             gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8703         }
8704         break;
8705     case 0xa: /* SRSHL, URSHL */
8706         if (u) {
8707             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8708         } else {
8709             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8710         }
8711         break;
8712     case 0xb: /* SQRSHL, UQRSHL */
8713         if (u) {
8714             gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8715         } else {
8716             gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8717         }
8718         break;
8719     case 0x10: /* ADD, SUB */
8720         if (u) {
8721             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8722         } else {
8723             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8724         }
8725         break;
8726     default:
8727         g_assert_not_reached();
8728     }
8729 }
8730 
8731 /* Handle the 3-same-operands float operations; shared by the scalar
8732  * and vector encodings. The caller must filter out any encodings
8733  * not allocated for the encoding it is dealing with.
8734  */
8735 static void handle_3same_float(DisasContext *s, int size, int elements,
8736                                int fpopcode, int rd, int rn, int rm)
8737 {
8738     int pass;
8739     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8740 
8741     for (pass = 0; pass < elements; pass++) {
8742         if (size) {
8743             /* Double */
8744             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8745             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8746             TCGv_i64 tcg_res = tcg_temp_new_i64();
8747 
8748             read_vec_element(s, tcg_op1, rn, pass, MO_64);
8749             read_vec_element(s, tcg_op2, rm, pass, MO_64);
8750 
8751             switch (fpopcode) {
8752             case 0x39: /* FMLS */
8753                 /* As usual for ARM, separate negation for fused multiply-add */
8754                 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8755                 /* fall through */
8756             case 0x19: /* FMLA */
8757                 read_vec_element(s, tcg_res, rd, pass, MO_64);
8758                 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8759                                        tcg_res, fpst);
8760                 break;
8761             case 0x18: /* FMAXNM */
8762                 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8763                 break;
8764             case 0x1a: /* FADD */
8765                 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8766                 break;
8767             case 0x1b: /* FMULX */
8768                 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8769                 break;
8770             case 0x1c: /* FCMEQ */
8771                 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8772                 break;
8773             case 0x1e: /* FMAX */
8774                 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8775                 break;
8776             case 0x1f: /* FRECPS */
8777                 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8778                 break;
8779             case 0x38: /* FMINNM */
8780                 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8781                 break;
8782             case 0x3a: /* FSUB */
8783                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8784                 break;
8785             case 0x3e: /* FMIN */
8786                 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8787                 break;
8788             case 0x3f: /* FRSQRTS */
8789                 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8790                 break;
8791             case 0x5b: /* FMUL */
8792                 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8793                 break;
8794             case 0x5c: /* FCMGE */
8795                 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8796                 break;
8797             case 0x5d: /* FACGE */
8798                 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8799                 break;
8800             case 0x5f: /* FDIV */
8801                 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8802                 break;
8803             case 0x7a: /* FABD */
8804                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8805                 gen_helper_vfp_absd(tcg_res, tcg_res);
8806                 break;
8807             case 0x7c: /* FCMGT */
8808                 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8809                 break;
8810             case 0x7d: /* FACGT */
8811                 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8812                 break;
8813             default:
8814                 g_assert_not_reached();
8815             }
8816 
8817             write_vec_element(s, tcg_res, rd, pass, MO_64);
8818         } else {
8819             /* Single */
8820             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8821             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8822             TCGv_i32 tcg_res = tcg_temp_new_i32();
8823 
8824             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
8825             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
8826 
8827             switch (fpopcode) {
8828             case 0x39: /* FMLS */
8829                 /* As usual for ARM, separate negation for fused multiply-add */
8830                 gen_helper_vfp_negs(tcg_op1, tcg_op1);
8831                 /* fall through */
8832             case 0x19: /* FMLA */
8833                 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8834                 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
8835                                        tcg_res, fpst);
8836                 break;
8837             case 0x1a: /* FADD */
8838                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8839                 break;
8840             case 0x1b: /* FMULX */
8841                 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
8842                 break;
8843             case 0x1c: /* FCMEQ */
8844                 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8845                 break;
8846             case 0x1e: /* FMAX */
8847                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8848                 break;
8849             case 0x1f: /* FRECPS */
8850                 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8851                 break;
8852             case 0x18: /* FMAXNM */
8853                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8854                 break;
8855             case 0x38: /* FMINNM */
8856                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8857                 break;
8858             case 0x3a: /* FSUB */
8859                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8860                 break;
8861             case 0x3e: /* FMIN */
8862                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8863                 break;
8864             case 0x3f: /* FRSQRTS */
8865                 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8866                 break;
8867             case 0x5b: /* FMUL */
8868                 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
8869                 break;
8870             case 0x5c: /* FCMGE */
8871                 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8872                 break;
8873             case 0x5d: /* FACGE */
8874                 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8875                 break;
8876             case 0x5f: /* FDIV */
8877                 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
8878                 break;
8879             case 0x7a: /* FABD */
8880                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8881                 gen_helper_vfp_abss(tcg_res, tcg_res);
8882                 break;
8883             case 0x7c: /* FCMGT */
8884                 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8885                 break;
8886             case 0x7d: /* FACGT */
8887                 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8888                 break;
8889             default:
8890                 g_assert_not_reached();
8891             }
8892 
8893             if (elements == 1) {
8894                 /* scalar single so clear high part */
8895                 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8896 
8897                 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
8898                 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
8899             } else {
8900                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8901             }
8902         }
8903     }
8904 
8905     clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
8906 }
8907 
8908 /* AdvSIMD scalar three same
8909  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
8910  * +-----+---+-----------+------+---+------+--------+---+------+------+
8911  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
8912  * +-----+---+-----------+------+---+------+--------+---+------+------+
8913  */
8914 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
8915 {
8916     int rd = extract32(insn, 0, 5);
8917     int rn = extract32(insn, 5, 5);
8918     int opcode = extract32(insn, 11, 5);
8919     int rm = extract32(insn, 16, 5);
8920     int size = extract32(insn, 22, 2);
8921     bool u = extract32(insn, 29, 1);
8922     TCGv_i64 tcg_rd;
8923 
8924     if (opcode >= 0x18) {
8925         /* Floating point: U, size[1] and opcode indicate operation */
8926         int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
8927         switch (fpopcode) {
8928         case 0x1b: /* FMULX */
8929         case 0x1f: /* FRECPS */
8930         case 0x3f: /* FRSQRTS */
8931         case 0x5d: /* FACGE */
8932         case 0x7d: /* FACGT */
8933         case 0x1c: /* FCMEQ */
8934         case 0x5c: /* FCMGE */
8935         case 0x7c: /* FCMGT */
8936         case 0x7a: /* FABD */
8937             break;
8938         default:
8939             unallocated_encoding(s);
8940             return;
8941         }
8942 
8943         if (!fp_access_check(s)) {
8944             return;
8945         }
8946 
8947         handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
8948         return;
8949     }
8950 
8951     switch (opcode) {
8952     case 0x1: /* SQADD, UQADD */
8953     case 0x5: /* SQSUB, UQSUB */
8954     case 0x9: /* SQSHL, UQSHL */
8955     case 0xb: /* SQRSHL, UQRSHL */
8956         break;
8957     case 0x8: /* SSHL, USHL */
8958     case 0xa: /* SRSHL, URSHL */
8959     case 0x6: /* CMGT, CMHI */
8960     case 0x7: /* CMGE, CMHS */
8961     case 0x11: /* CMTST, CMEQ */
8962     case 0x10: /* ADD, SUB (vector) */
8963         if (size != 3) {
8964             unallocated_encoding(s);
8965             return;
8966         }
8967         break;
8968     case 0x16: /* SQDMULH, SQRDMULH (vector) */
8969         if (size != 1 && size != 2) {
8970             unallocated_encoding(s);
8971             return;
8972         }
8973         break;
8974     default:
8975         unallocated_encoding(s);
8976         return;
8977     }
8978 
8979     if (!fp_access_check(s)) {
8980         return;
8981     }
8982 
8983     tcg_rd = tcg_temp_new_i64();
8984 
8985     if (size == 3) {
8986         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8987         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
8988 
8989         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
8990     } else {
8991         /* Do a single operation on the lowest element in the vector.
8992          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
8993          * no side effects for all these operations.
8994          * OPTME: special-purpose helpers would avoid doing some
8995          * unnecessary work in the helper for the 8 and 16 bit cases.
8996          */
8997         NeonGenTwoOpEnvFn *genenvfn;
8998         TCGv_i32 tcg_rn = tcg_temp_new_i32();
8999         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9000         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9001 
9002         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9003         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9004 
9005         switch (opcode) {
9006         case 0x1: /* SQADD, UQADD */
9007         {
9008             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9009                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9010                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9011                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9012             };
9013             genenvfn = fns[size][u];
9014             break;
9015         }
9016         case 0x5: /* SQSUB, UQSUB */
9017         {
9018             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9019                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9020                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9021                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9022             };
9023             genenvfn = fns[size][u];
9024             break;
9025         }
9026         case 0x9: /* SQSHL, UQSHL */
9027         {
9028             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9029                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9030                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9031                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9032             };
9033             genenvfn = fns[size][u];
9034             break;
9035         }
9036         case 0xb: /* SQRSHL, UQRSHL */
9037         {
9038             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9039                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9040                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9041                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9042             };
9043             genenvfn = fns[size][u];
9044             break;
9045         }
9046         case 0x16: /* SQDMULH, SQRDMULH */
9047         {
9048             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9049                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9050                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9051             };
9052             assert(size == 1 || size == 2);
9053             genenvfn = fns[size - 1][u];
9054             break;
9055         }
9056         default:
9057             g_assert_not_reached();
9058         }
9059 
9060         genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9061         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9062     }
9063 
9064     write_fp_dreg(s, rd, tcg_rd);
9065 }
9066 
9067 /* AdvSIMD scalar three same FP16
9068  *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9069  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9070  * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9071  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9072  * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9073  * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9074  */
9075 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9076                                                   uint32_t insn)
9077 {
9078     int rd = extract32(insn, 0, 5);
9079     int rn = extract32(insn, 5, 5);
9080     int opcode = extract32(insn, 11, 3);
9081     int rm = extract32(insn, 16, 5);
9082     bool u = extract32(insn, 29, 1);
9083     bool a = extract32(insn, 23, 1);
9084     int fpopcode = opcode | (a << 3) |  (u << 4);
9085     TCGv_ptr fpst;
9086     TCGv_i32 tcg_op1;
9087     TCGv_i32 tcg_op2;
9088     TCGv_i32 tcg_res;
9089 
9090     switch (fpopcode) {
9091     case 0x03: /* FMULX */
9092     case 0x04: /* FCMEQ (reg) */
9093     case 0x07: /* FRECPS */
9094     case 0x0f: /* FRSQRTS */
9095     case 0x14: /* FCMGE (reg) */
9096     case 0x15: /* FACGE */
9097     case 0x1a: /* FABD */
9098     case 0x1c: /* FCMGT (reg) */
9099     case 0x1d: /* FACGT */
9100         break;
9101     default:
9102         unallocated_encoding(s);
9103         return;
9104     }
9105 
9106     if (!dc_isar_feature(aa64_fp16, s)) {
9107         unallocated_encoding(s);
9108     }
9109 
9110     if (!fp_access_check(s)) {
9111         return;
9112     }
9113 
9114     fpst = fpstatus_ptr(FPST_FPCR_F16);
9115 
9116     tcg_op1 = read_fp_hreg(s, rn);
9117     tcg_op2 = read_fp_hreg(s, rm);
9118     tcg_res = tcg_temp_new_i32();
9119 
9120     switch (fpopcode) {
9121     case 0x03: /* FMULX */
9122         gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9123         break;
9124     case 0x04: /* FCMEQ (reg) */
9125         gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9126         break;
9127     case 0x07: /* FRECPS */
9128         gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9129         break;
9130     case 0x0f: /* FRSQRTS */
9131         gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9132         break;
9133     case 0x14: /* FCMGE (reg) */
9134         gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9135         break;
9136     case 0x15: /* FACGE */
9137         gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9138         break;
9139     case 0x1a: /* FABD */
9140         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9141         tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9142         break;
9143     case 0x1c: /* FCMGT (reg) */
9144         gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9145         break;
9146     case 0x1d: /* FACGT */
9147         gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9148         break;
9149     default:
9150         g_assert_not_reached();
9151     }
9152 
9153     write_fp_sreg(s, rd, tcg_res);
9154 }
9155 
9156 /* AdvSIMD scalar three same extra
9157  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9158  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9159  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9160  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9161  */
9162 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9163                                                    uint32_t insn)
9164 {
9165     int rd = extract32(insn, 0, 5);
9166     int rn = extract32(insn, 5, 5);
9167     int opcode = extract32(insn, 11, 4);
9168     int rm = extract32(insn, 16, 5);
9169     int size = extract32(insn, 22, 2);
9170     bool u = extract32(insn, 29, 1);
9171     TCGv_i32 ele1, ele2, ele3;
9172     TCGv_i64 res;
9173     bool feature;
9174 
9175     switch (u * 16 + opcode) {
9176     case 0x10: /* SQRDMLAH (vector) */
9177     case 0x11: /* SQRDMLSH (vector) */
9178         if (size != 1 && size != 2) {
9179             unallocated_encoding(s);
9180             return;
9181         }
9182         feature = dc_isar_feature(aa64_rdm, s);
9183         break;
9184     default:
9185         unallocated_encoding(s);
9186         return;
9187     }
9188     if (!feature) {
9189         unallocated_encoding(s);
9190         return;
9191     }
9192     if (!fp_access_check(s)) {
9193         return;
9194     }
9195 
9196     /* Do a single operation on the lowest element in the vector.
9197      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9198      * with no side effects for all these operations.
9199      * OPTME: special-purpose helpers would avoid doing some
9200      * unnecessary work in the helper for the 16 bit cases.
9201      */
9202     ele1 = tcg_temp_new_i32();
9203     ele2 = tcg_temp_new_i32();
9204     ele3 = tcg_temp_new_i32();
9205 
9206     read_vec_element_i32(s, ele1, rn, 0, size);
9207     read_vec_element_i32(s, ele2, rm, 0, size);
9208     read_vec_element_i32(s, ele3, rd, 0, size);
9209 
9210     switch (opcode) {
9211     case 0x0: /* SQRDMLAH */
9212         if (size == 1) {
9213             gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9214         } else {
9215             gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9216         }
9217         break;
9218     case 0x1: /* SQRDMLSH */
9219         if (size == 1) {
9220             gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9221         } else {
9222             gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9223         }
9224         break;
9225     default:
9226         g_assert_not_reached();
9227     }
9228 
9229     res = tcg_temp_new_i64();
9230     tcg_gen_extu_i32_i64(res, ele3);
9231     write_fp_dreg(s, rd, res);
9232 }
9233 
9234 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9235                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9236                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9237 {
9238     /* Handle 64->64 opcodes which are shared between the scalar and
9239      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9240      * is valid in either group and also the double-precision fp ops.
9241      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9242      * requires them.
9243      */
9244     TCGCond cond;
9245 
9246     switch (opcode) {
9247     case 0x4: /* CLS, CLZ */
9248         if (u) {
9249             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9250         } else {
9251             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9252         }
9253         break;
9254     case 0x5: /* NOT */
9255         /* This opcode is shared with CNT and RBIT but we have earlier
9256          * enforced that size == 3 if and only if this is the NOT insn.
9257          */
9258         tcg_gen_not_i64(tcg_rd, tcg_rn);
9259         break;
9260     case 0x7: /* SQABS, SQNEG */
9261         if (u) {
9262             gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9263         } else {
9264             gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9265         }
9266         break;
9267     case 0xa: /* CMLT */
9268         /* 64 bit integer comparison against zero, result is
9269          * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9270          * subtracting 1.
9271          */
9272         cond = TCG_COND_LT;
9273     do_cmop:
9274         tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9275         tcg_gen_neg_i64(tcg_rd, tcg_rd);
9276         break;
9277     case 0x8: /* CMGT, CMGE */
9278         cond = u ? TCG_COND_GE : TCG_COND_GT;
9279         goto do_cmop;
9280     case 0x9: /* CMEQ, CMLE */
9281         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9282         goto do_cmop;
9283     case 0xb: /* ABS, NEG */
9284         if (u) {
9285             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9286         } else {
9287             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9288         }
9289         break;
9290     case 0x2f: /* FABS */
9291         gen_helper_vfp_absd(tcg_rd, tcg_rn);
9292         break;
9293     case 0x6f: /* FNEG */
9294         gen_helper_vfp_negd(tcg_rd, tcg_rn);
9295         break;
9296     case 0x7f: /* FSQRT */
9297         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9298         break;
9299     case 0x1a: /* FCVTNS */
9300     case 0x1b: /* FCVTMS */
9301     case 0x1c: /* FCVTAS */
9302     case 0x3a: /* FCVTPS */
9303     case 0x3b: /* FCVTZS */
9304         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9305         break;
9306     case 0x5a: /* FCVTNU */
9307     case 0x5b: /* FCVTMU */
9308     case 0x5c: /* FCVTAU */
9309     case 0x7a: /* FCVTPU */
9310     case 0x7b: /* FCVTZU */
9311         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9312         break;
9313     case 0x18: /* FRINTN */
9314     case 0x19: /* FRINTM */
9315     case 0x38: /* FRINTP */
9316     case 0x39: /* FRINTZ */
9317     case 0x58: /* FRINTA */
9318     case 0x79: /* FRINTI */
9319         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9320         break;
9321     case 0x59: /* FRINTX */
9322         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9323         break;
9324     case 0x1e: /* FRINT32Z */
9325     case 0x5e: /* FRINT32X */
9326         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9327         break;
9328     case 0x1f: /* FRINT64Z */
9329     case 0x5f: /* FRINT64X */
9330         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9331         break;
9332     default:
9333         g_assert_not_reached();
9334     }
9335 }
9336 
9337 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9338                                    bool is_scalar, bool is_u, bool is_q,
9339                                    int size, int rn, int rd)
9340 {
9341     bool is_double = (size == MO_64);
9342     TCGv_ptr fpst;
9343 
9344     if (!fp_access_check(s)) {
9345         return;
9346     }
9347 
9348     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9349 
9350     if (is_double) {
9351         TCGv_i64 tcg_op = tcg_temp_new_i64();
9352         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9353         TCGv_i64 tcg_res = tcg_temp_new_i64();
9354         NeonGenTwoDoubleOpFn *genfn;
9355         bool swap = false;
9356         int pass;
9357 
9358         switch (opcode) {
9359         case 0x2e: /* FCMLT (zero) */
9360             swap = true;
9361             /* fallthrough */
9362         case 0x2c: /* FCMGT (zero) */
9363             genfn = gen_helper_neon_cgt_f64;
9364             break;
9365         case 0x2d: /* FCMEQ (zero) */
9366             genfn = gen_helper_neon_ceq_f64;
9367             break;
9368         case 0x6d: /* FCMLE (zero) */
9369             swap = true;
9370             /* fall through */
9371         case 0x6c: /* FCMGE (zero) */
9372             genfn = gen_helper_neon_cge_f64;
9373             break;
9374         default:
9375             g_assert_not_reached();
9376         }
9377 
9378         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9379             read_vec_element(s, tcg_op, rn, pass, MO_64);
9380             if (swap) {
9381                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9382             } else {
9383                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9384             }
9385             write_vec_element(s, tcg_res, rd, pass, MO_64);
9386         }
9387 
9388         clear_vec_high(s, !is_scalar, rd);
9389     } else {
9390         TCGv_i32 tcg_op = tcg_temp_new_i32();
9391         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9392         TCGv_i32 tcg_res = tcg_temp_new_i32();
9393         NeonGenTwoSingleOpFn *genfn;
9394         bool swap = false;
9395         int pass, maxpasses;
9396 
9397         if (size == MO_16) {
9398             switch (opcode) {
9399             case 0x2e: /* FCMLT (zero) */
9400                 swap = true;
9401                 /* fall through */
9402             case 0x2c: /* FCMGT (zero) */
9403                 genfn = gen_helper_advsimd_cgt_f16;
9404                 break;
9405             case 0x2d: /* FCMEQ (zero) */
9406                 genfn = gen_helper_advsimd_ceq_f16;
9407                 break;
9408             case 0x6d: /* FCMLE (zero) */
9409                 swap = true;
9410                 /* fall through */
9411             case 0x6c: /* FCMGE (zero) */
9412                 genfn = gen_helper_advsimd_cge_f16;
9413                 break;
9414             default:
9415                 g_assert_not_reached();
9416             }
9417         } else {
9418             switch (opcode) {
9419             case 0x2e: /* FCMLT (zero) */
9420                 swap = true;
9421                 /* fall through */
9422             case 0x2c: /* FCMGT (zero) */
9423                 genfn = gen_helper_neon_cgt_f32;
9424                 break;
9425             case 0x2d: /* FCMEQ (zero) */
9426                 genfn = gen_helper_neon_ceq_f32;
9427                 break;
9428             case 0x6d: /* FCMLE (zero) */
9429                 swap = true;
9430                 /* fall through */
9431             case 0x6c: /* FCMGE (zero) */
9432                 genfn = gen_helper_neon_cge_f32;
9433                 break;
9434             default:
9435                 g_assert_not_reached();
9436             }
9437         }
9438 
9439         if (is_scalar) {
9440             maxpasses = 1;
9441         } else {
9442             int vector_size = 8 << is_q;
9443             maxpasses = vector_size >> size;
9444         }
9445 
9446         for (pass = 0; pass < maxpasses; pass++) {
9447             read_vec_element_i32(s, tcg_op, rn, pass, size);
9448             if (swap) {
9449                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9450             } else {
9451                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9452             }
9453             if (is_scalar) {
9454                 write_fp_sreg(s, rd, tcg_res);
9455             } else {
9456                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9457             }
9458         }
9459 
9460         if (!is_scalar) {
9461             clear_vec_high(s, is_q, rd);
9462         }
9463     }
9464 }
9465 
9466 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9467                                     bool is_scalar, bool is_u, bool is_q,
9468                                     int size, int rn, int rd)
9469 {
9470     bool is_double = (size == 3);
9471     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9472 
9473     if (is_double) {
9474         TCGv_i64 tcg_op = tcg_temp_new_i64();
9475         TCGv_i64 tcg_res = tcg_temp_new_i64();
9476         int pass;
9477 
9478         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9479             read_vec_element(s, tcg_op, rn, pass, MO_64);
9480             switch (opcode) {
9481             case 0x3d: /* FRECPE */
9482                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9483                 break;
9484             case 0x3f: /* FRECPX */
9485                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9486                 break;
9487             case 0x7d: /* FRSQRTE */
9488                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9489                 break;
9490             default:
9491                 g_assert_not_reached();
9492             }
9493             write_vec_element(s, tcg_res, rd, pass, MO_64);
9494         }
9495         clear_vec_high(s, !is_scalar, rd);
9496     } else {
9497         TCGv_i32 tcg_op = tcg_temp_new_i32();
9498         TCGv_i32 tcg_res = tcg_temp_new_i32();
9499         int pass, maxpasses;
9500 
9501         if (is_scalar) {
9502             maxpasses = 1;
9503         } else {
9504             maxpasses = is_q ? 4 : 2;
9505         }
9506 
9507         for (pass = 0; pass < maxpasses; pass++) {
9508             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9509 
9510             switch (opcode) {
9511             case 0x3c: /* URECPE */
9512                 gen_helper_recpe_u32(tcg_res, tcg_op);
9513                 break;
9514             case 0x3d: /* FRECPE */
9515                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9516                 break;
9517             case 0x3f: /* FRECPX */
9518                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9519                 break;
9520             case 0x7d: /* FRSQRTE */
9521                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9522                 break;
9523             default:
9524                 g_assert_not_reached();
9525             }
9526 
9527             if (is_scalar) {
9528                 write_fp_sreg(s, rd, tcg_res);
9529             } else {
9530                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9531             }
9532         }
9533         if (!is_scalar) {
9534             clear_vec_high(s, is_q, rd);
9535         }
9536     }
9537 }
9538 
9539 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9540                                 int opcode, bool u, bool is_q,
9541                                 int size, int rn, int rd)
9542 {
9543     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9544      * in the source becomes a size element in the destination).
9545      */
9546     int pass;
9547     TCGv_i32 tcg_res[2];
9548     int destelt = is_q ? 2 : 0;
9549     int passes = scalar ? 1 : 2;
9550 
9551     if (scalar) {
9552         tcg_res[1] = tcg_constant_i32(0);
9553     }
9554 
9555     for (pass = 0; pass < passes; pass++) {
9556         TCGv_i64 tcg_op = tcg_temp_new_i64();
9557         NeonGenNarrowFn *genfn = NULL;
9558         NeonGenNarrowEnvFn *genenvfn = NULL;
9559 
9560         if (scalar) {
9561             read_vec_element(s, tcg_op, rn, pass, size + 1);
9562         } else {
9563             read_vec_element(s, tcg_op, rn, pass, MO_64);
9564         }
9565         tcg_res[pass] = tcg_temp_new_i32();
9566 
9567         switch (opcode) {
9568         case 0x12: /* XTN, SQXTUN */
9569         {
9570             static NeonGenNarrowFn * const xtnfns[3] = {
9571                 gen_helper_neon_narrow_u8,
9572                 gen_helper_neon_narrow_u16,
9573                 tcg_gen_extrl_i64_i32,
9574             };
9575             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9576                 gen_helper_neon_unarrow_sat8,
9577                 gen_helper_neon_unarrow_sat16,
9578                 gen_helper_neon_unarrow_sat32,
9579             };
9580             if (u) {
9581                 genenvfn = sqxtunfns[size];
9582             } else {
9583                 genfn = xtnfns[size];
9584             }
9585             break;
9586         }
9587         case 0x14: /* SQXTN, UQXTN */
9588         {
9589             static NeonGenNarrowEnvFn * const fns[3][2] = {
9590                 { gen_helper_neon_narrow_sat_s8,
9591                   gen_helper_neon_narrow_sat_u8 },
9592                 { gen_helper_neon_narrow_sat_s16,
9593                   gen_helper_neon_narrow_sat_u16 },
9594                 { gen_helper_neon_narrow_sat_s32,
9595                   gen_helper_neon_narrow_sat_u32 },
9596             };
9597             genenvfn = fns[size][u];
9598             break;
9599         }
9600         case 0x16: /* FCVTN, FCVTN2 */
9601             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9602             if (size == 2) {
9603                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9604             } else {
9605                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9606                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9607                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9608                 TCGv_i32 ahp = get_ahp_flag();
9609 
9610                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9611                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9612                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9613                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9614             }
9615             break;
9616         case 0x36: /* BFCVTN, BFCVTN2 */
9617             {
9618                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9619                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9620             }
9621             break;
9622         case 0x56:  /* FCVTXN, FCVTXN2 */
9623             /* 64 bit to 32 bit float conversion
9624              * with von Neumann rounding (round to odd)
9625              */
9626             assert(size == 2);
9627             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9628             break;
9629         default:
9630             g_assert_not_reached();
9631         }
9632 
9633         if (genfn) {
9634             genfn(tcg_res[pass], tcg_op);
9635         } else if (genenvfn) {
9636             genenvfn(tcg_res[pass], cpu_env, tcg_op);
9637         }
9638     }
9639 
9640     for (pass = 0; pass < 2; pass++) {
9641         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9642     }
9643     clear_vec_high(s, is_q, rd);
9644 }
9645 
9646 /* Remaining saturating accumulating ops */
9647 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9648                                 bool is_q, int size, int rn, int rd)
9649 {
9650     bool is_double = (size == 3);
9651 
9652     if (is_double) {
9653         TCGv_i64 tcg_rn = tcg_temp_new_i64();
9654         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9655         int pass;
9656 
9657         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9658             read_vec_element(s, tcg_rn, rn, pass, MO_64);
9659             read_vec_element(s, tcg_rd, rd, pass, MO_64);
9660 
9661             if (is_u) { /* USQADD */
9662                 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9663             } else { /* SUQADD */
9664                 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9665             }
9666             write_vec_element(s, tcg_rd, rd, pass, MO_64);
9667         }
9668         clear_vec_high(s, !is_scalar, rd);
9669     } else {
9670         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9671         TCGv_i32 tcg_rd = tcg_temp_new_i32();
9672         int pass, maxpasses;
9673 
9674         if (is_scalar) {
9675             maxpasses = 1;
9676         } else {
9677             maxpasses = is_q ? 4 : 2;
9678         }
9679 
9680         for (pass = 0; pass < maxpasses; pass++) {
9681             if (is_scalar) {
9682                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9683                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9684             } else {
9685                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9686                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9687             }
9688 
9689             if (is_u) { /* USQADD */
9690                 switch (size) {
9691                 case 0:
9692                     gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9693                     break;
9694                 case 1:
9695                     gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9696                     break;
9697                 case 2:
9698                     gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9699                     break;
9700                 default:
9701                     g_assert_not_reached();
9702                 }
9703             } else { /* SUQADD */
9704                 switch (size) {
9705                 case 0:
9706                     gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9707                     break;
9708                 case 1:
9709                     gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9710                     break;
9711                 case 2:
9712                     gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9713                     break;
9714                 default:
9715                     g_assert_not_reached();
9716                 }
9717             }
9718 
9719             if (is_scalar) {
9720                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
9721             }
9722             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9723         }
9724         clear_vec_high(s, is_q, rd);
9725     }
9726 }
9727 
9728 /* AdvSIMD scalar two reg misc
9729  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
9730  * +-----+---+-----------+------+-----------+--------+-----+------+------+
9731  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
9732  * +-----+---+-----------+------+-----------+--------+-----+------+------+
9733  */
9734 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9735 {
9736     int rd = extract32(insn, 0, 5);
9737     int rn = extract32(insn, 5, 5);
9738     int opcode = extract32(insn, 12, 5);
9739     int size = extract32(insn, 22, 2);
9740     bool u = extract32(insn, 29, 1);
9741     bool is_fcvt = false;
9742     int rmode;
9743     TCGv_i32 tcg_rmode;
9744     TCGv_ptr tcg_fpstatus;
9745 
9746     switch (opcode) {
9747     case 0x3: /* USQADD / SUQADD*/
9748         if (!fp_access_check(s)) {
9749             return;
9750         }
9751         handle_2misc_satacc(s, true, u, false, size, rn, rd);
9752         return;
9753     case 0x7: /* SQABS / SQNEG */
9754         break;
9755     case 0xa: /* CMLT */
9756         if (u) {
9757             unallocated_encoding(s);
9758             return;
9759         }
9760         /* fall through */
9761     case 0x8: /* CMGT, CMGE */
9762     case 0x9: /* CMEQ, CMLE */
9763     case 0xb: /* ABS, NEG */
9764         if (size != 3) {
9765             unallocated_encoding(s);
9766             return;
9767         }
9768         break;
9769     case 0x12: /* SQXTUN */
9770         if (!u) {
9771             unallocated_encoding(s);
9772             return;
9773         }
9774         /* fall through */
9775     case 0x14: /* SQXTN, UQXTN */
9776         if (size == 3) {
9777             unallocated_encoding(s);
9778             return;
9779         }
9780         if (!fp_access_check(s)) {
9781             return;
9782         }
9783         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
9784         return;
9785     case 0xc ... 0xf:
9786     case 0x16 ... 0x1d:
9787     case 0x1f:
9788         /* Floating point: U, size[1] and opcode indicate operation;
9789          * size[0] indicates single or double precision.
9790          */
9791         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9792         size = extract32(size, 0, 1) ? 3 : 2;
9793         switch (opcode) {
9794         case 0x2c: /* FCMGT (zero) */
9795         case 0x2d: /* FCMEQ (zero) */
9796         case 0x2e: /* FCMLT (zero) */
9797         case 0x6c: /* FCMGE (zero) */
9798         case 0x6d: /* FCMLE (zero) */
9799             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
9800             return;
9801         case 0x1d: /* SCVTF */
9802         case 0x5d: /* UCVTF */
9803         {
9804             bool is_signed = (opcode == 0x1d);
9805             if (!fp_access_check(s)) {
9806                 return;
9807             }
9808             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
9809             return;
9810         }
9811         case 0x3d: /* FRECPE */
9812         case 0x3f: /* FRECPX */
9813         case 0x7d: /* FRSQRTE */
9814             if (!fp_access_check(s)) {
9815                 return;
9816             }
9817             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
9818             return;
9819         case 0x1a: /* FCVTNS */
9820         case 0x1b: /* FCVTMS */
9821         case 0x3a: /* FCVTPS */
9822         case 0x3b: /* FCVTZS */
9823         case 0x5a: /* FCVTNU */
9824         case 0x5b: /* FCVTMU */
9825         case 0x7a: /* FCVTPU */
9826         case 0x7b: /* FCVTZU */
9827             is_fcvt = true;
9828             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9829             break;
9830         case 0x1c: /* FCVTAS */
9831         case 0x5c: /* FCVTAU */
9832             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
9833             is_fcvt = true;
9834             rmode = FPROUNDING_TIEAWAY;
9835             break;
9836         case 0x56: /* FCVTXN, FCVTXN2 */
9837             if (size == 2) {
9838                 unallocated_encoding(s);
9839                 return;
9840             }
9841             if (!fp_access_check(s)) {
9842                 return;
9843             }
9844             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
9845             return;
9846         default:
9847             unallocated_encoding(s);
9848             return;
9849         }
9850         break;
9851     default:
9852         unallocated_encoding(s);
9853         return;
9854     }
9855 
9856     if (!fp_access_check(s)) {
9857         return;
9858     }
9859 
9860     if (is_fcvt) {
9861         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
9862         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
9863     } else {
9864         tcg_fpstatus = NULL;
9865         tcg_rmode = NULL;
9866     }
9867 
9868     if (size == 3) {
9869         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9870         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9871 
9872         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
9873         write_fp_dreg(s, rd, tcg_rd);
9874     } else {
9875         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9876         TCGv_i32 tcg_rd = tcg_temp_new_i32();
9877 
9878         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9879 
9880         switch (opcode) {
9881         case 0x7: /* SQABS, SQNEG */
9882         {
9883             NeonGenOneOpEnvFn *genfn;
9884             static NeonGenOneOpEnvFn * const fns[3][2] = {
9885                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
9886                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
9887                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
9888             };
9889             genfn = fns[size][u];
9890             genfn(tcg_rd, cpu_env, tcg_rn);
9891             break;
9892         }
9893         case 0x1a: /* FCVTNS */
9894         case 0x1b: /* FCVTMS */
9895         case 0x1c: /* FCVTAS */
9896         case 0x3a: /* FCVTPS */
9897         case 0x3b: /* FCVTZS */
9898             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
9899                                  tcg_fpstatus);
9900             break;
9901         case 0x5a: /* FCVTNU */
9902         case 0x5b: /* FCVTMU */
9903         case 0x5c: /* FCVTAU */
9904         case 0x7a: /* FCVTPU */
9905         case 0x7b: /* FCVTZU */
9906             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
9907                                  tcg_fpstatus);
9908             break;
9909         default:
9910             g_assert_not_reached();
9911         }
9912 
9913         write_fp_sreg(s, rd, tcg_rd);
9914     }
9915 
9916     if (is_fcvt) {
9917         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9918     }
9919 }
9920 
9921 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
9922 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
9923                                  int immh, int immb, int opcode, int rn, int rd)
9924 {
9925     int size = 32 - clz32(immh) - 1;
9926     int immhb = immh << 3 | immb;
9927     int shift = 2 * (8 << size) - immhb;
9928     GVecGen2iFn *gvec_fn;
9929 
9930     if (extract32(immh, 3, 1) && !is_q) {
9931         unallocated_encoding(s);
9932         return;
9933     }
9934     tcg_debug_assert(size <= 3);
9935 
9936     if (!fp_access_check(s)) {
9937         return;
9938     }
9939 
9940     switch (opcode) {
9941     case 0x02: /* SSRA / USRA (accumulate) */
9942         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
9943         break;
9944 
9945     case 0x08: /* SRI */
9946         gvec_fn = gen_gvec_sri;
9947         break;
9948 
9949     case 0x00: /* SSHR / USHR */
9950         if (is_u) {
9951             if (shift == 8 << size) {
9952                 /* Shift count the same size as element size produces zero.  */
9953                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
9954                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
9955                 return;
9956             }
9957             gvec_fn = tcg_gen_gvec_shri;
9958         } else {
9959             /* Shift count the same size as element size produces all sign.  */
9960             if (shift == 8 << size) {
9961                 shift -= 1;
9962             }
9963             gvec_fn = tcg_gen_gvec_sari;
9964         }
9965         break;
9966 
9967     case 0x04: /* SRSHR / URSHR (rounding) */
9968         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
9969         break;
9970 
9971     case 0x06: /* SRSRA / URSRA (accum + rounding) */
9972         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
9973         break;
9974 
9975     default:
9976         g_assert_not_reached();
9977     }
9978 
9979     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
9980 }
9981 
9982 /* SHL/SLI - Vector shift left */
9983 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
9984                                  int immh, int immb, int opcode, int rn, int rd)
9985 {
9986     int size = 32 - clz32(immh) - 1;
9987     int immhb = immh << 3 | immb;
9988     int shift = immhb - (8 << size);
9989 
9990     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
9991     assert(size >= 0 && size <= 3);
9992 
9993     if (extract32(immh, 3, 1) && !is_q) {
9994         unallocated_encoding(s);
9995         return;
9996     }
9997 
9998     if (!fp_access_check(s)) {
9999         return;
10000     }
10001 
10002     if (insert) {
10003         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10004     } else {
10005         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10006     }
10007 }
10008 
10009 /* USHLL/SHLL - Vector shift left with widening */
10010 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10011                                  int immh, int immb, int opcode, int rn, int rd)
10012 {
10013     int size = 32 - clz32(immh) - 1;
10014     int immhb = immh << 3 | immb;
10015     int shift = immhb - (8 << size);
10016     int dsize = 64;
10017     int esize = 8 << size;
10018     int elements = dsize/esize;
10019     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10020     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10021     int i;
10022 
10023     if (size >= 3) {
10024         unallocated_encoding(s);
10025         return;
10026     }
10027 
10028     if (!fp_access_check(s)) {
10029         return;
10030     }
10031 
10032     /* For the LL variants the store is larger than the load,
10033      * so if rd == rn we would overwrite parts of our input.
10034      * So load everything right now and use shifts in the main loop.
10035      */
10036     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10037 
10038     for (i = 0; i < elements; i++) {
10039         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10040         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10041         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10042         write_vec_element(s, tcg_rd, rd, i, size + 1);
10043     }
10044 }
10045 
10046 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10047 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10048                                  int immh, int immb, int opcode, int rn, int rd)
10049 {
10050     int immhb = immh << 3 | immb;
10051     int size = 32 - clz32(immh) - 1;
10052     int dsize = 64;
10053     int esize = 8 << size;
10054     int elements = dsize/esize;
10055     int shift = (2 * esize) - immhb;
10056     bool round = extract32(opcode, 0, 1);
10057     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10058     TCGv_i64 tcg_round;
10059     int i;
10060 
10061     if (extract32(immh, 3, 1)) {
10062         unallocated_encoding(s);
10063         return;
10064     }
10065 
10066     if (!fp_access_check(s)) {
10067         return;
10068     }
10069 
10070     tcg_rn = tcg_temp_new_i64();
10071     tcg_rd = tcg_temp_new_i64();
10072     tcg_final = tcg_temp_new_i64();
10073     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10074 
10075     if (round) {
10076         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10077     } else {
10078         tcg_round = NULL;
10079     }
10080 
10081     for (i = 0; i < elements; i++) {
10082         read_vec_element(s, tcg_rn, rn, i, size+1);
10083         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10084                                 false, true, size+1, shift);
10085 
10086         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10087     }
10088 
10089     if (!is_q) {
10090         write_vec_element(s, tcg_final, rd, 0, MO_64);
10091     } else {
10092         write_vec_element(s, tcg_final, rd, 1, MO_64);
10093     }
10094 
10095     clear_vec_high(s, is_q, rd);
10096 }
10097 
10098 
10099 /* AdvSIMD shift by immediate
10100  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10101  * +---+---+---+-------------+------+------+--------+---+------+------+
10102  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10103  * +---+---+---+-------------+------+------+--------+---+------+------+
10104  */
10105 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10106 {
10107     int rd = extract32(insn, 0, 5);
10108     int rn = extract32(insn, 5, 5);
10109     int opcode = extract32(insn, 11, 5);
10110     int immb = extract32(insn, 16, 3);
10111     int immh = extract32(insn, 19, 4);
10112     bool is_u = extract32(insn, 29, 1);
10113     bool is_q = extract32(insn, 30, 1);
10114 
10115     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10116     assert(immh != 0);
10117 
10118     switch (opcode) {
10119     case 0x08: /* SRI */
10120         if (!is_u) {
10121             unallocated_encoding(s);
10122             return;
10123         }
10124         /* fall through */
10125     case 0x00: /* SSHR / USHR */
10126     case 0x02: /* SSRA / USRA (accumulate) */
10127     case 0x04: /* SRSHR / URSHR (rounding) */
10128     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10129         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10130         break;
10131     case 0x0a: /* SHL / SLI */
10132         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10133         break;
10134     case 0x10: /* SHRN */
10135     case 0x11: /* RSHRN / SQRSHRUN */
10136         if (is_u) {
10137             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10138                                    opcode, rn, rd);
10139         } else {
10140             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10141         }
10142         break;
10143     case 0x12: /* SQSHRN / UQSHRN */
10144     case 0x13: /* SQRSHRN / UQRSHRN */
10145         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10146                                opcode, rn, rd);
10147         break;
10148     case 0x14: /* SSHLL / USHLL */
10149         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10150         break;
10151     case 0x1c: /* SCVTF / UCVTF */
10152         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10153                                      opcode, rn, rd);
10154         break;
10155     case 0xc: /* SQSHLU */
10156         if (!is_u) {
10157             unallocated_encoding(s);
10158             return;
10159         }
10160         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10161         break;
10162     case 0xe: /* SQSHL, UQSHL */
10163         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10164         break;
10165     case 0x1f: /* FCVTZS/ FCVTZU */
10166         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10167         return;
10168     default:
10169         unallocated_encoding(s);
10170         return;
10171     }
10172 }
10173 
10174 /* Generate code to do a "long" addition or subtraction, ie one done in
10175  * TCGv_i64 on vector lanes twice the width specified by size.
10176  */
10177 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10178                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10179 {
10180     static NeonGenTwo64OpFn * const fns[3][2] = {
10181         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10182         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10183         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10184     };
10185     NeonGenTwo64OpFn *genfn;
10186     assert(size < 3);
10187 
10188     genfn = fns[size][is_sub];
10189     genfn(tcg_res, tcg_op1, tcg_op2);
10190 }
10191 
10192 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10193                                 int opcode, int rd, int rn, int rm)
10194 {
10195     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10196     TCGv_i64 tcg_res[2];
10197     int pass, accop;
10198 
10199     tcg_res[0] = tcg_temp_new_i64();
10200     tcg_res[1] = tcg_temp_new_i64();
10201 
10202     /* Does this op do an adding accumulate, a subtracting accumulate,
10203      * or no accumulate at all?
10204      */
10205     switch (opcode) {
10206     case 5:
10207     case 8:
10208     case 9:
10209         accop = 1;
10210         break;
10211     case 10:
10212     case 11:
10213         accop = -1;
10214         break;
10215     default:
10216         accop = 0;
10217         break;
10218     }
10219 
10220     if (accop != 0) {
10221         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10222         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10223     }
10224 
10225     /* size == 2 means two 32x32->64 operations; this is worth special
10226      * casing because we can generally handle it inline.
10227      */
10228     if (size == 2) {
10229         for (pass = 0; pass < 2; pass++) {
10230             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10231             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10232             TCGv_i64 tcg_passres;
10233             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10234 
10235             int elt = pass + is_q * 2;
10236 
10237             read_vec_element(s, tcg_op1, rn, elt, memop);
10238             read_vec_element(s, tcg_op2, rm, elt, memop);
10239 
10240             if (accop == 0) {
10241                 tcg_passres = tcg_res[pass];
10242             } else {
10243                 tcg_passres = tcg_temp_new_i64();
10244             }
10245 
10246             switch (opcode) {
10247             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10248                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10249                 break;
10250             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10251                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10252                 break;
10253             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10254             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10255             {
10256                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10257                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10258 
10259                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10260                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10261                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10262                                     tcg_passres,
10263                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10264                 break;
10265             }
10266             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10267             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10268             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10269                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10270                 break;
10271             case 9: /* SQDMLAL, SQDMLAL2 */
10272             case 11: /* SQDMLSL, SQDMLSL2 */
10273             case 13: /* SQDMULL, SQDMULL2 */
10274                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10275                 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10276                                                   tcg_passres, tcg_passres);
10277                 break;
10278             default:
10279                 g_assert_not_reached();
10280             }
10281 
10282             if (opcode == 9 || opcode == 11) {
10283                 /* saturating accumulate ops */
10284                 if (accop < 0) {
10285                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10286                 }
10287                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10288                                                   tcg_res[pass], tcg_passres);
10289             } else if (accop > 0) {
10290                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10291             } else if (accop < 0) {
10292                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10293             }
10294         }
10295     } else {
10296         /* size 0 or 1, generally helper functions */
10297         for (pass = 0; pass < 2; pass++) {
10298             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10299             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10300             TCGv_i64 tcg_passres;
10301             int elt = pass + is_q * 2;
10302 
10303             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10304             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10305 
10306             if (accop == 0) {
10307                 tcg_passres = tcg_res[pass];
10308             } else {
10309                 tcg_passres = tcg_temp_new_i64();
10310             }
10311 
10312             switch (opcode) {
10313             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10314             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10315             {
10316                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10317                 static NeonGenWidenFn * const widenfns[2][2] = {
10318                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10319                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10320                 };
10321                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10322 
10323                 widenfn(tcg_op2_64, tcg_op2);
10324                 widenfn(tcg_passres, tcg_op1);
10325                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10326                               tcg_passres, tcg_op2_64);
10327                 break;
10328             }
10329             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10330             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10331                 if (size == 0) {
10332                     if (is_u) {
10333                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10334                     } else {
10335                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10336                     }
10337                 } else {
10338                     if (is_u) {
10339                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10340                     } else {
10341                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10342                     }
10343                 }
10344                 break;
10345             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10346             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10347             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10348                 if (size == 0) {
10349                     if (is_u) {
10350                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10351                     } else {
10352                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10353                     }
10354                 } else {
10355                     if (is_u) {
10356                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10357                     } else {
10358                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10359                     }
10360                 }
10361                 break;
10362             case 9: /* SQDMLAL, SQDMLAL2 */
10363             case 11: /* SQDMLSL, SQDMLSL2 */
10364             case 13: /* SQDMULL, SQDMULL2 */
10365                 assert(size == 1);
10366                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10367                 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10368                                                   tcg_passres, tcg_passres);
10369                 break;
10370             default:
10371                 g_assert_not_reached();
10372             }
10373 
10374             if (accop != 0) {
10375                 if (opcode == 9 || opcode == 11) {
10376                     /* saturating accumulate ops */
10377                     if (accop < 0) {
10378                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10379                     }
10380                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10381                                                       tcg_res[pass],
10382                                                       tcg_passres);
10383                 } else {
10384                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10385                                   tcg_res[pass], tcg_passres);
10386                 }
10387             }
10388         }
10389     }
10390 
10391     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10392     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10393 }
10394 
10395 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10396                             int opcode, int rd, int rn, int rm)
10397 {
10398     TCGv_i64 tcg_res[2];
10399     int part = is_q ? 2 : 0;
10400     int pass;
10401 
10402     for (pass = 0; pass < 2; pass++) {
10403         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10404         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10405         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10406         static NeonGenWidenFn * const widenfns[3][2] = {
10407             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10408             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10409             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10410         };
10411         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10412 
10413         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10414         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10415         widenfn(tcg_op2_wide, tcg_op2);
10416         tcg_res[pass] = tcg_temp_new_i64();
10417         gen_neon_addl(size, (opcode == 3),
10418                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10419     }
10420 
10421     for (pass = 0; pass < 2; pass++) {
10422         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10423     }
10424 }
10425 
10426 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10427 {
10428     tcg_gen_addi_i64(in, in, 1U << 31);
10429     tcg_gen_extrh_i64_i32(res, in);
10430 }
10431 
10432 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10433                                  int opcode, int rd, int rn, int rm)
10434 {
10435     TCGv_i32 tcg_res[2];
10436     int part = is_q ? 2 : 0;
10437     int pass;
10438 
10439     for (pass = 0; pass < 2; pass++) {
10440         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10441         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10442         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10443         static NeonGenNarrowFn * const narrowfns[3][2] = {
10444             { gen_helper_neon_narrow_high_u8,
10445               gen_helper_neon_narrow_round_high_u8 },
10446             { gen_helper_neon_narrow_high_u16,
10447               gen_helper_neon_narrow_round_high_u16 },
10448             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10449         };
10450         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10451 
10452         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10453         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10454 
10455         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10456 
10457         tcg_res[pass] = tcg_temp_new_i32();
10458         gennarrow(tcg_res[pass], tcg_wideres);
10459     }
10460 
10461     for (pass = 0; pass < 2; pass++) {
10462         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10463     }
10464     clear_vec_high(s, is_q, rd);
10465 }
10466 
10467 /* AdvSIMD three different
10468  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10469  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10470  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10471  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10472  */
10473 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10474 {
10475     /* Instructions in this group fall into three basic classes
10476      * (in each case with the operation working on each element in
10477      * the input vectors):
10478      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10479      *     128 bit input)
10480      * (2) wide 64 x 128 -> 128
10481      * (3) narrowing 128 x 128 -> 64
10482      * Here we do initial decode, catch unallocated cases and
10483      * dispatch to separate functions for each class.
10484      */
10485     int is_q = extract32(insn, 30, 1);
10486     int is_u = extract32(insn, 29, 1);
10487     int size = extract32(insn, 22, 2);
10488     int opcode = extract32(insn, 12, 4);
10489     int rm = extract32(insn, 16, 5);
10490     int rn = extract32(insn, 5, 5);
10491     int rd = extract32(insn, 0, 5);
10492 
10493     switch (opcode) {
10494     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10495     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10496         /* 64 x 128 -> 128 */
10497         if (size == 3) {
10498             unallocated_encoding(s);
10499             return;
10500         }
10501         if (!fp_access_check(s)) {
10502             return;
10503         }
10504         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10505         break;
10506     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10507     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10508         /* 128 x 128 -> 64 */
10509         if (size == 3) {
10510             unallocated_encoding(s);
10511             return;
10512         }
10513         if (!fp_access_check(s)) {
10514             return;
10515         }
10516         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10517         break;
10518     case 14: /* PMULL, PMULL2 */
10519         if (is_u) {
10520             unallocated_encoding(s);
10521             return;
10522         }
10523         switch (size) {
10524         case 0: /* PMULL.P8 */
10525             if (!fp_access_check(s)) {
10526                 return;
10527             }
10528             /* The Q field specifies lo/hi half input for this insn.  */
10529             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10530                              gen_helper_neon_pmull_h);
10531             break;
10532 
10533         case 3: /* PMULL.P64 */
10534             if (!dc_isar_feature(aa64_pmull, s)) {
10535                 unallocated_encoding(s);
10536                 return;
10537             }
10538             if (!fp_access_check(s)) {
10539                 return;
10540             }
10541             /* The Q field specifies lo/hi half input for this insn.  */
10542             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10543                              gen_helper_gvec_pmull_q);
10544             break;
10545 
10546         default:
10547             unallocated_encoding(s);
10548             break;
10549         }
10550         return;
10551     case 9: /* SQDMLAL, SQDMLAL2 */
10552     case 11: /* SQDMLSL, SQDMLSL2 */
10553     case 13: /* SQDMULL, SQDMULL2 */
10554         if (is_u || size == 0) {
10555             unallocated_encoding(s);
10556             return;
10557         }
10558         /* fall through */
10559     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10560     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10561     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10562     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10563     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10564     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10565     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10566         /* 64 x 64 -> 128 */
10567         if (size == 3) {
10568             unallocated_encoding(s);
10569             return;
10570         }
10571         if (!fp_access_check(s)) {
10572             return;
10573         }
10574 
10575         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10576         break;
10577     default:
10578         /* opcode 15 not allocated */
10579         unallocated_encoding(s);
10580         break;
10581     }
10582 }
10583 
10584 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10585 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10586 {
10587     int rd = extract32(insn, 0, 5);
10588     int rn = extract32(insn, 5, 5);
10589     int rm = extract32(insn, 16, 5);
10590     int size = extract32(insn, 22, 2);
10591     bool is_u = extract32(insn, 29, 1);
10592     bool is_q = extract32(insn, 30, 1);
10593 
10594     if (!fp_access_check(s)) {
10595         return;
10596     }
10597 
10598     switch (size + 4 * is_u) {
10599     case 0: /* AND */
10600         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10601         return;
10602     case 1: /* BIC */
10603         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10604         return;
10605     case 2: /* ORR */
10606         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10607         return;
10608     case 3: /* ORN */
10609         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10610         return;
10611     case 4: /* EOR */
10612         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10613         return;
10614 
10615     case 5: /* BSL bitwise select */
10616         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10617         return;
10618     case 6: /* BIT, bitwise insert if true */
10619         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10620         return;
10621     case 7: /* BIF, bitwise insert if false */
10622         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10623         return;
10624 
10625     default:
10626         g_assert_not_reached();
10627     }
10628 }
10629 
10630 /* Pairwise op subgroup of C3.6.16.
10631  *
10632  * This is called directly or via the handle_3same_float for float pairwise
10633  * operations where the opcode and size are calculated differently.
10634  */
10635 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10636                                    int size, int rn, int rm, int rd)
10637 {
10638     TCGv_ptr fpst;
10639     int pass;
10640 
10641     /* Floating point operations need fpst */
10642     if (opcode >= 0x58) {
10643         fpst = fpstatus_ptr(FPST_FPCR);
10644     } else {
10645         fpst = NULL;
10646     }
10647 
10648     if (!fp_access_check(s)) {
10649         return;
10650     }
10651 
10652     /* These operations work on the concatenated rm:rn, with each pair of
10653      * adjacent elements being operated on to produce an element in the result.
10654      */
10655     if (size == 3) {
10656         TCGv_i64 tcg_res[2];
10657 
10658         for (pass = 0; pass < 2; pass++) {
10659             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10660             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10661             int passreg = (pass == 0) ? rn : rm;
10662 
10663             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10664             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10665             tcg_res[pass] = tcg_temp_new_i64();
10666 
10667             switch (opcode) {
10668             case 0x17: /* ADDP */
10669                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10670                 break;
10671             case 0x58: /* FMAXNMP */
10672                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10673                 break;
10674             case 0x5a: /* FADDP */
10675                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10676                 break;
10677             case 0x5e: /* FMAXP */
10678                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10679                 break;
10680             case 0x78: /* FMINNMP */
10681                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10682                 break;
10683             case 0x7e: /* FMINP */
10684                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10685                 break;
10686             default:
10687                 g_assert_not_reached();
10688             }
10689         }
10690 
10691         for (pass = 0; pass < 2; pass++) {
10692             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10693         }
10694     } else {
10695         int maxpass = is_q ? 4 : 2;
10696         TCGv_i32 tcg_res[4];
10697 
10698         for (pass = 0; pass < maxpass; pass++) {
10699             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10700             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10701             NeonGenTwoOpFn *genfn = NULL;
10702             int passreg = pass < (maxpass / 2) ? rn : rm;
10703             int passelt = (is_q && (pass & 1)) ? 2 : 0;
10704 
10705             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10706             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10707             tcg_res[pass] = tcg_temp_new_i32();
10708 
10709             switch (opcode) {
10710             case 0x17: /* ADDP */
10711             {
10712                 static NeonGenTwoOpFn * const fns[3] = {
10713                     gen_helper_neon_padd_u8,
10714                     gen_helper_neon_padd_u16,
10715                     tcg_gen_add_i32,
10716                 };
10717                 genfn = fns[size];
10718                 break;
10719             }
10720             case 0x14: /* SMAXP, UMAXP */
10721             {
10722                 static NeonGenTwoOpFn * const fns[3][2] = {
10723                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10724                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10725                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10726                 };
10727                 genfn = fns[size][u];
10728                 break;
10729             }
10730             case 0x15: /* SMINP, UMINP */
10731             {
10732                 static NeonGenTwoOpFn * const fns[3][2] = {
10733                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10734                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10735                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10736                 };
10737                 genfn = fns[size][u];
10738                 break;
10739             }
10740             /* The FP operations are all on single floats (32 bit) */
10741             case 0x58: /* FMAXNMP */
10742                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10743                 break;
10744             case 0x5a: /* FADDP */
10745                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10746                 break;
10747             case 0x5e: /* FMAXP */
10748                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10749                 break;
10750             case 0x78: /* FMINNMP */
10751                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10752                 break;
10753             case 0x7e: /* FMINP */
10754                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10755                 break;
10756             default:
10757                 g_assert_not_reached();
10758             }
10759 
10760             /* FP ops called directly, otherwise call now */
10761             if (genfn) {
10762                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10763             }
10764         }
10765 
10766         for (pass = 0; pass < maxpass; pass++) {
10767             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10768         }
10769         clear_vec_high(s, is_q, rd);
10770     }
10771 }
10772 
10773 /* Floating point op subgroup of C3.6.16. */
10774 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10775 {
10776     /* For floating point ops, the U, size[1] and opcode bits
10777      * together indicate the operation. size[0] indicates single
10778      * or double.
10779      */
10780     int fpopcode = extract32(insn, 11, 5)
10781         | (extract32(insn, 23, 1) << 5)
10782         | (extract32(insn, 29, 1) << 6);
10783     int is_q = extract32(insn, 30, 1);
10784     int size = extract32(insn, 22, 1);
10785     int rm = extract32(insn, 16, 5);
10786     int rn = extract32(insn, 5, 5);
10787     int rd = extract32(insn, 0, 5);
10788 
10789     int datasize = is_q ? 128 : 64;
10790     int esize = 32 << size;
10791     int elements = datasize / esize;
10792 
10793     if (size == 1 && !is_q) {
10794         unallocated_encoding(s);
10795         return;
10796     }
10797 
10798     switch (fpopcode) {
10799     case 0x58: /* FMAXNMP */
10800     case 0x5a: /* FADDP */
10801     case 0x5e: /* FMAXP */
10802     case 0x78: /* FMINNMP */
10803     case 0x7e: /* FMINP */
10804         if (size && !is_q) {
10805             unallocated_encoding(s);
10806             return;
10807         }
10808         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10809                                rn, rm, rd);
10810         return;
10811     case 0x1b: /* FMULX */
10812     case 0x1f: /* FRECPS */
10813     case 0x3f: /* FRSQRTS */
10814     case 0x5d: /* FACGE */
10815     case 0x7d: /* FACGT */
10816     case 0x19: /* FMLA */
10817     case 0x39: /* FMLS */
10818     case 0x18: /* FMAXNM */
10819     case 0x1a: /* FADD */
10820     case 0x1c: /* FCMEQ */
10821     case 0x1e: /* FMAX */
10822     case 0x38: /* FMINNM */
10823     case 0x3a: /* FSUB */
10824     case 0x3e: /* FMIN */
10825     case 0x5b: /* FMUL */
10826     case 0x5c: /* FCMGE */
10827     case 0x5f: /* FDIV */
10828     case 0x7a: /* FABD */
10829     case 0x7c: /* FCMGT */
10830         if (!fp_access_check(s)) {
10831             return;
10832         }
10833         handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
10834         return;
10835 
10836     case 0x1d: /* FMLAL  */
10837     case 0x3d: /* FMLSL  */
10838     case 0x59: /* FMLAL2 */
10839     case 0x79: /* FMLSL2 */
10840         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
10841             unallocated_encoding(s);
10842             return;
10843         }
10844         if (fp_access_check(s)) {
10845             int is_s = extract32(insn, 23, 1);
10846             int is_2 = extract32(insn, 29, 1);
10847             int data = (is_2 << 1) | is_s;
10848             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
10849                                vec_full_reg_offset(s, rn),
10850                                vec_full_reg_offset(s, rm), cpu_env,
10851                                is_q ? 16 : 8, vec_full_reg_size(s),
10852                                data, gen_helper_gvec_fmlal_a64);
10853         }
10854         return;
10855 
10856     default:
10857         unallocated_encoding(s);
10858         return;
10859     }
10860 }
10861 
10862 /* Integer op subgroup of C3.6.16. */
10863 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10864 {
10865     int is_q = extract32(insn, 30, 1);
10866     int u = extract32(insn, 29, 1);
10867     int size = extract32(insn, 22, 2);
10868     int opcode = extract32(insn, 11, 5);
10869     int rm = extract32(insn, 16, 5);
10870     int rn = extract32(insn, 5, 5);
10871     int rd = extract32(insn, 0, 5);
10872     int pass;
10873     TCGCond cond;
10874 
10875     switch (opcode) {
10876     case 0x13: /* MUL, PMUL */
10877         if (u && size != 0) {
10878             unallocated_encoding(s);
10879             return;
10880         }
10881         /* fall through */
10882     case 0x0: /* SHADD, UHADD */
10883     case 0x2: /* SRHADD, URHADD */
10884     case 0x4: /* SHSUB, UHSUB */
10885     case 0xc: /* SMAX, UMAX */
10886     case 0xd: /* SMIN, UMIN */
10887     case 0xe: /* SABD, UABD */
10888     case 0xf: /* SABA, UABA */
10889     case 0x12: /* MLA, MLS */
10890         if (size == 3) {
10891             unallocated_encoding(s);
10892             return;
10893         }
10894         break;
10895     case 0x16: /* SQDMULH, SQRDMULH */
10896         if (size == 0 || size == 3) {
10897             unallocated_encoding(s);
10898             return;
10899         }
10900         break;
10901     default:
10902         if (size == 3 && !is_q) {
10903             unallocated_encoding(s);
10904             return;
10905         }
10906         break;
10907     }
10908 
10909     if (!fp_access_check(s)) {
10910         return;
10911     }
10912 
10913     switch (opcode) {
10914     case 0x01: /* SQADD, UQADD */
10915         if (u) {
10916             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
10917         } else {
10918             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
10919         }
10920         return;
10921     case 0x05: /* SQSUB, UQSUB */
10922         if (u) {
10923             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
10924         } else {
10925             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
10926         }
10927         return;
10928     case 0x08: /* SSHL, USHL */
10929         if (u) {
10930             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
10931         } else {
10932             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
10933         }
10934         return;
10935     case 0x0c: /* SMAX, UMAX */
10936         if (u) {
10937             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
10938         } else {
10939             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
10940         }
10941         return;
10942     case 0x0d: /* SMIN, UMIN */
10943         if (u) {
10944             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
10945         } else {
10946             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
10947         }
10948         return;
10949     case 0xe: /* SABD, UABD */
10950         if (u) {
10951             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
10952         } else {
10953             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
10954         }
10955         return;
10956     case 0xf: /* SABA, UABA */
10957         if (u) {
10958             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
10959         } else {
10960             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
10961         }
10962         return;
10963     case 0x10: /* ADD, SUB */
10964         if (u) {
10965             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
10966         } else {
10967             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
10968         }
10969         return;
10970     case 0x13: /* MUL, PMUL */
10971         if (!u) { /* MUL */
10972             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
10973         } else {  /* PMUL */
10974             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
10975         }
10976         return;
10977     case 0x12: /* MLA, MLS */
10978         if (u) {
10979             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
10980         } else {
10981             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
10982         }
10983         return;
10984     case 0x16: /* SQDMULH, SQRDMULH */
10985         {
10986             static gen_helper_gvec_3_ptr * const fns[2][2] = {
10987                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
10988                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
10989             };
10990             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
10991         }
10992         return;
10993     case 0x11:
10994         if (!u) { /* CMTST */
10995             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
10996             return;
10997         }
10998         /* else CMEQ */
10999         cond = TCG_COND_EQ;
11000         goto do_gvec_cmp;
11001     case 0x06: /* CMGT, CMHI */
11002         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11003         goto do_gvec_cmp;
11004     case 0x07: /* CMGE, CMHS */
11005         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11006     do_gvec_cmp:
11007         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11008                          vec_full_reg_offset(s, rn),
11009                          vec_full_reg_offset(s, rm),
11010                          is_q ? 16 : 8, vec_full_reg_size(s));
11011         return;
11012     }
11013 
11014     if (size == 3) {
11015         assert(is_q);
11016         for (pass = 0; pass < 2; pass++) {
11017             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11018             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11019             TCGv_i64 tcg_res = tcg_temp_new_i64();
11020 
11021             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11022             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11023 
11024             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11025 
11026             write_vec_element(s, tcg_res, rd, pass, MO_64);
11027         }
11028     } else {
11029         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11030             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11031             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11032             TCGv_i32 tcg_res = tcg_temp_new_i32();
11033             NeonGenTwoOpFn *genfn = NULL;
11034             NeonGenTwoOpEnvFn *genenvfn = NULL;
11035 
11036             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11037             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11038 
11039             switch (opcode) {
11040             case 0x0: /* SHADD, UHADD */
11041             {
11042                 static NeonGenTwoOpFn * const fns[3][2] = {
11043                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11044                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11045                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11046                 };
11047                 genfn = fns[size][u];
11048                 break;
11049             }
11050             case 0x2: /* SRHADD, URHADD */
11051             {
11052                 static NeonGenTwoOpFn * const fns[3][2] = {
11053                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11054                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11055                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11056                 };
11057                 genfn = fns[size][u];
11058                 break;
11059             }
11060             case 0x4: /* SHSUB, UHSUB */
11061             {
11062                 static NeonGenTwoOpFn * const fns[3][2] = {
11063                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11064                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11065                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11066                 };
11067                 genfn = fns[size][u];
11068                 break;
11069             }
11070             case 0x9: /* SQSHL, UQSHL */
11071             {
11072                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11073                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11074                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11075                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11076                 };
11077                 genenvfn = fns[size][u];
11078                 break;
11079             }
11080             case 0xa: /* SRSHL, URSHL */
11081             {
11082                 static NeonGenTwoOpFn * const fns[3][2] = {
11083                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11084                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11085                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11086                 };
11087                 genfn = fns[size][u];
11088                 break;
11089             }
11090             case 0xb: /* SQRSHL, UQRSHL */
11091             {
11092                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11093                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11094                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11095                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11096                 };
11097                 genenvfn = fns[size][u];
11098                 break;
11099             }
11100             default:
11101                 g_assert_not_reached();
11102             }
11103 
11104             if (genenvfn) {
11105                 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11106             } else {
11107                 genfn(tcg_res, tcg_op1, tcg_op2);
11108             }
11109 
11110             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11111         }
11112     }
11113     clear_vec_high(s, is_q, rd);
11114 }
11115 
11116 /* AdvSIMD three same
11117  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11118  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11119  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11120  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11121  */
11122 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11123 {
11124     int opcode = extract32(insn, 11, 5);
11125 
11126     switch (opcode) {
11127     case 0x3: /* logic ops */
11128         disas_simd_3same_logic(s, insn);
11129         break;
11130     case 0x17: /* ADDP */
11131     case 0x14: /* SMAXP, UMAXP */
11132     case 0x15: /* SMINP, UMINP */
11133     {
11134         /* Pairwise operations */
11135         int is_q = extract32(insn, 30, 1);
11136         int u = extract32(insn, 29, 1);
11137         int size = extract32(insn, 22, 2);
11138         int rm = extract32(insn, 16, 5);
11139         int rn = extract32(insn, 5, 5);
11140         int rd = extract32(insn, 0, 5);
11141         if (opcode == 0x17) {
11142             if (u || (size == 3 && !is_q)) {
11143                 unallocated_encoding(s);
11144                 return;
11145             }
11146         } else {
11147             if (size == 3) {
11148                 unallocated_encoding(s);
11149                 return;
11150             }
11151         }
11152         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11153         break;
11154     }
11155     case 0x18 ... 0x31:
11156         /* floating point ops, sz[1] and U are part of opcode */
11157         disas_simd_3same_float(s, insn);
11158         break;
11159     default:
11160         disas_simd_3same_int(s, insn);
11161         break;
11162     }
11163 }
11164 
11165 /*
11166  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11167  *
11168  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11169  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11170  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11171  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11172  *
11173  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11174  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11175  *
11176  */
11177 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11178 {
11179     int opcode = extract32(insn, 11, 3);
11180     int u = extract32(insn, 29, 1);
11181     int a = extract32(insn, 23, 1);
11182     int is_q = extract32(insn, 30, 1);
11183     int rm = extract32(insn, 16, 5);
11184     int rn = extract32(insn, 5, 5);
11185     int rd = extract32(insn, 0, 5);
11186     /*
11187      * For these floating point ops, the U, a and opcode bits
11188      * together indicate the operation.
11189      */
11190     int fpopcode = opcode | (a << 3) | (u << 4);
11191     int datasize = is_q ? 128 : 64;
11192     int elements = datasize / 16;
11193     bool pairwise;
11194     TCGv_ptr fpst;
11195     int pass;
11196 
11197     switch (fpopcode) {
11198     case 0x0: /* FMAXNM */
11199     case 0x1: /* FMLA */
11200     case 0x2: /* FADD */
11201     case 0x3: /* FMULX */
11202     case 0x4: /* FCMEQ */
11203     case 0x6: /* FMAX */
11204     case 0x7: /* FRECPS */
11205     case 0x8: /* FMINNM */
11206     case 0x9: /* FMLS */
11207     case 0xa: /* FSUB */
11208     case 0xe: /* FMIN */
11209     case 0xf: /* FRSQRTS */
11210     case 0x13: /* FMUL */
11211     case 0x14: /* FCMGE */
11212     case 0x15: /* FACGE */
11213     case 0x17: /* FDIV */
11214     case 0x1a: /* FABD */
11215     case 0x1c: /* FCMGT */
11216     case 0x1d: /* FACGT */
11217         pairwise = false;
11218         break;
11219     case 0x10: /* FMAXNMP */
11220     case 0x12: /* FADDP */
11221     case 0x16: /* FMAXP */
11222     case 0x18: /* FMINNMP */
11223     case 0x1e: /* FMINP */
11224         pairwise = true;
11225         break;
11226     default:
11227         unallocated_encoding(s);
11228         return;
11229     }
11230 
11231     if (!dc_isar_feature(aa64_fp16, s)) {
11232         unallocated_encoding(s);
11233         return;
11234     }
11235 
11236     if (!fp_access_check(s)) {
11237         return;
11238     }
11239 
11240     fpst = fpstatus_ptr(FPST_FPCR_F16);
11241 
11242     if (pairwise) {
11243         int maxpass = is_q ? 8 : 4;
11244         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11245         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11246         TCGv_i32 tcg_res[8];
11247 
11248         for (pass = 0; pass < maxpass; pass++) {
11249             int passreg = pass < (maxpass / 2) ? rn : rm;
11250             int passelt = (pass << 1) & (maxpass - 1);
11251 
11252             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11253             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11254             tcg_res[pass] = tcg_temp_new_i32();
11255 
11256             switch (fpopcode) {
11257             case 0x10: /* FMAXNMP */
11258                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11259                                            fpst);
11260                 break;
11261             case 0x12: /* FADDP */
11262                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11263                 break;
11264             case 0x16: /* FMAXP */
11265                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11266                 break;
11267             case 0x18: /* FMINNMP */
11268                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11269                                            fpst);
11270                 break;
11271             case 0x1e: /* FMINP */
11272                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11273                 break;
11274             default:
11275                 g_assert_not_reached();
11276             }
11277         }
11278 
11279         for (pass = 0; pass < maxpass; pass++) {
11280             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11281         }
11282     } else {
11283         for (pass = 0; pass < elements; pass++) {
11284             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11285             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11286             TCGv_i32 tcg_res = tcg_temp_new_i32();
11287 
11288             read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11289             read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11290 
11291             switch (fpopcode) {
11292             case 0x0: /* FMAXNM */
11293                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11294                 break;
11295             case 0x1: /* FMLA */
11296                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11297                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11298                                            fpst);
11299                 break;
11300             case 0x2: /* FADD */
11301                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11302                 break;
11303             case 0x3: /* FMULX */
11304                 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11305                 break;
11306             case 0x4: /* FCMEQ */
11307                 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11308                 break;
11309             case 0x6: /* FMAX */
11310                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11311                 break;
11312             case 0x7: /* FRECPS */
11313                 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11314                 break;
11315             case 0x8: /* FMINNM */
11316                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11317                 break;
11318             case 0x9: /* FMLS */
11319                 /* As usual for ARM, separate negation for fused multiply-add */
11320                 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11321                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11322                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11323                                            fpst);
11324                 break;
11325             case 0xa: /* FSUB */
11326                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11327                 break;
11328             case 0xe: /* FMIN */
11329                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11330                 break;
11331             case 0xf: /* FRSQRTS */
11332                 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11333                 break;
11334             case 0x13: /* FMUL */
11335                 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11336                 break;
11337             case 0x14: /* FCMGE */
11338                 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11339                 break;
11340             case 0x15: /* FACGE */
11341                 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11342                 break;
11343             case 0x17: /* FDIV */
11344                 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11345                 break;
11346             case 0x1a: /* FABD */
11347                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11348                 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11349                 break;
11350             case 0x1c: /* FCMGT */
11351                 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11352                 break;
11353             case 0x1d: /* FACGT */
11354                 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11355                 break;
11356             default:
11357                 g_assert_not_reached();
11358             }
11359 
11360             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11361         }
11362     }
11363 
11364     clear_vec_high(s, is_q, rd);
11365 }
11366 
11367 /* AdvSIMD three same extra
11368  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11369  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11370  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11371  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11372  */
11373 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11374 {
11375     int rd = extract32(insn, 0, 5);
11376     int rn = extract32(insn, 5, 5);
11377     int opcode = extract32(insn, 11, 4);
11378     int rm = extract32(insn, 16, 5);
11379     int size = extract32(insn, 22, 2);
11380     bool u = extract32(insn, 29, 1);
11381     bool is_q = extract32(insn, 30, 1);
11382     bool feature;
11383     int rot;
11384 
11385     switch (u * 16 + opcode) {
11386     case 0x10: /* SQRDMLAH (vector) */
11387     case 0x11: /* SQRDMLSH (vector) */
11388         if (size != 1 && size != 2) {
11389             unallocated_encoding(s);
11390             return;
11391         }
11392         feature = dc_isar_feature(aa64_rdm, s);
11393         break;
11394     case 0x02: /* SDOT (vector) */
11395     case 0x12: /* UDOT (vector) */
11396         if (size != MO_32) {
11397             unallocated_encoding(s);
11398             return;
11399         }
11400         feature = dc_isar_feature(aa64_dp, s);
11401         break;
11402     case 0x03: /* USDOT */
11403         if (size != MO_32) {
11404             unallocated_encoding(s);
11405             return;
11406         }
11407         feature = dc_isar_feature(aa64_i8mm, s);
11408         break;
11409     case 0x04: /* SMMLA */
11410     case 0x14: /* UMMLA */
11411     case 0x05: /* USMMLA */
11412         if (!is_q || size != MO_32) {
11413             unallocated_encoding(s);
11414             return;
11415         }
11416         feature = dc_isar_feature(aa64_i8mm, s);
11417         break;
11418     case 0x18: /* FCMLA, #0 */
11419     case 0x19: /* FCMLA, #90 */
11420     case 0x1a: /* FCMLA, #180 */
11421     case 0x1b: /* FCMLA, #270 */
11422     case 0x1c: /* FCADD, #90 */
11423     case 0x1e: /* FCADD, #270 */
11424         if (size == 0
11425             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11426             || (size == 3 && !is_q)) {
11427             unallocated_encoding(s);
11428             return;
11429         }
11430         feature = dc_isar_feature(aa64_fcma, s);
11431         break;
11432     case 0x1d: /* BFMMLA */
11433         if (size != MO_16 || !is_q) {
11434             unallocated_encoding(s);
11435             return;
11436         }
11437         feature = dc_isar_feature(aa64_bf16, s);
11438         break;
11439     case 0x1f:
11440         switch (size) {
11441         case 1: /* BFDOT */
11442         case 3: /* BFMLAL{B,T} */
11443             feature = dc_isar_feature(aa64_bf16, s);
11444             break;
11445         default:
11446             unallocated_encoding(s);
11447             return;
11448         }
11449         break;
11450     default:
11451         unallocated_encoding(s);
11452         return;
11453     }
11454     if (!feature) {
11455         unallocated_encoding(s);
11456         return;
11457     }
11458     if (!fp_access_check(s)) {
11459         return;
11460     }
11461 
11462     switch (opcode) {
11463     case 0x0: /* SQRDMLAH (vector) */
11464         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11465         return;
11466 
11467     case 0x1: /* SQRDMLSH (vector) */
11468         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11469         return;
11470 
11471     case 0x2: /* SDOT / UDOT */
11472         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11473                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11474         return;
11475 
11476     case 0x3: /* USDOT */
11477         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11478         return;
11479 
11480     case 0x04: /* SMMLA, UMMLA */
11481         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11482                          u ? gen_helper_gvec_ummla_b
11483                          : gen_helper_gvec_smmla_b);
11484         return;
11485     case 0x05: /* USMMLA */
11486         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11487         return;
11488 
11489     case 0x8: /* FCMLA, #0 */
11490     case 0x9: /* FCMLA, #90 */
11491     case 0xa: /* FCMLA, #180 */
11492     case 0xb: /* FCMLA, #270 */
11493         rot = extract32(opcode, 0, 2);
11494         switch (size) {
11495         case 1:
11496             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11497                               gen_helper_gvec_fcmlah);
11498             break;
11499         case 2:
11500             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11501                               gen_helper_gvec_fcmlas);
11502             break;
11503         case 3:
11504             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11505                               gen_helper_gvec_fcmlad);
11506             break;
11507         default:
11508             g_assert_not_reached();
11509         }
11510         return;
11511 
11512     case 0xc: /* FCADD, #90 */
11513     case 0xe: /* FCADD, #270 */
11514         rot = extract32(opcode, 1, 1);
11515         switch (size) {
11516         case 1:
11517             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11518                               gen_helper_gvec_fcaddh);
11519             break;
11520         case 2:
11521             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11522                               gen_helper_gvec_fcadds);
11523             break;
11524         case 3:
11525             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11526                               gen_helper_gvec_fcaddd);
11527             break;
11528         default:
11529             g_assert_not_reached();
11530         }
11531         return;
11532 
11533     case 0xd: /* BFMMLA */
11534         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11535         return;
11536     case 0xf:
11537         switch (size) {
11538         case 1: /* BFDOT */
11539             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11540             break;
11541         case 3: /* BFMLAL{B,T} */
11542             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11543                               gen_helper_gvec_bfmlal);
11544             break;
11545         default:
11546             g_assert_not_reached();
11547         }
11548         return;
11549 
11550     default:
11551         g_assert_not_reached();
11552     }
11553 }
11554 
11555 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11556                                   int size, int rn, int rd)
11557 {
11558     /* Handle 2-reg-misc ops which are widening (so each size element
11559      * in the source becomes a 2*size element in the destination.
11560      * The only instruction like this is FCVTL.
11561      */
11562     int pass;
11563 
11564     if (size == 3) {
11565         /* 32 -> 64 bit fp conversion */
11566         TCGv_i64 tcg_res[2];
11567         int srcelt = is_q ? 2 : 0;
11568 
11569         for (pass = 0; pass < 2; pass++) {
11570             TCGv_i32 tcg_op = tcg_temp_new_i32();
11571             tcg_res[pass] = tcg_temp_new_i64();
11572 
11573             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11574             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11575         }
11576         for (pass = 0; pass < 2; pass++) {
11577             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11578         }
11579     } else {
11580         /* 16 -> 32 bit fp conversion */
11581         int srcelt = is_q ? 4 : 0;
11582         TCGv_i32 tcg_res[4];
11583         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11584         TCGv_i32 ahp = get_ahp_flag();
11585 
11586         for (pass = 0; pass < 4; pass++) {
11587             tcg_res[pass] = tcg_temp_new_i32();
11588 
11589             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11590             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11591                                            fpst, ahp);
11592         }
11593         for (pass = 0; pass < 4; pass++) {
11594             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11595         }
11596     }
11597 }
11598 
11599 static void handle_rev(DisasContext *s, int opcode, bool u,
11600                        bool is_q, int size, int rn, int rd)
11601 {
11602     int op = (opcode << 1) | u;
11603     int opsz = op + size;
11604     int grp_size = 3 - opsz;
11605     int dsize = is_q ? 128 : 64;
11606     int i;
11607 
11608     if (opsz >= 3) {
11609         unallocated_encoding(s);
11610         return;
11611     }
11612 
11613     if (!fp_access_check(s)) {
11614         return;
11615     }
11616 
11617     if (size == 0) {
11618         /* Special case bytes, use bswap op on each group of elements */
11619         int groups = dsize / (8 << grp_size);
11620 
11621         for (i = 0; i < groups; i++) {
11622             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11623 
11624             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11625             switch (grp_size) {
11626             case MO_16:
11627                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11628                 break;
11629             case MO_32:
11630                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11631                 break;
11632             case MO_64:
11633                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11634                 break;
11635             default:
11636                 g_assert_not_reached();
11637             }
11638             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11639         }
11640         clear_vec_high(s, is_q, rd);
11641     } else {
11642         int revmask = (1 << grp_size) - 1;
11643         int esize = 8 << size;
11644         int elements = dsize / esize;
11645         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11646         TCGv_i64 tcg_rd[2];
11647 
11648         for (i = 0; i < 2; i++) {
11649             tcg_rd[i] = tcg_temp_new_i64();
11650             tcg_gen_movi_i64(tcg_rd[i], 0);
11651         }
11652 
11653         for (i = 0; i < elements; i++) {
11654             int e_rev = (i & 0xf) ^ revmask;
11655             int w = (e_rev * esize) / 64;
11656             int o = (e_rev * esize) % 64;
11657 
11658             read_vec_element(s, tcg_rn, rn, i, size);
11659             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11660         }
11661 
11662         for (i = 0; i < 2; i++) {
11663             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11664         }
11665         clear_vec_high(s, true, rd);
11666     }
11667 }
11668 
11669 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11670                                   bool is_q, int size, int rn, int rd)
11671 {
11672     /* Implement the pairwise operations from 2-misc:
11673      * SADDLP, UADDLP, SADALP, UADALP.
11674      * These all add pairs of elements in the input to produce a
11675      * double-width result element in the output (possibly accumulating).
11676      */
11677     bool accum = (opcode == 0x6);
11678     int maxpass = is_q ? 2 : 1;
11679     int pass;
11680     TCGv_i64 tcg_res[2];
11681 
11682     if (size == 2) {
11683         /* 32 + 32 -> 64 op */
11684         MemOp memop = size + (u ? 0 : MO_SIGN);
11685 
11686         for (pass = 0; pass < maxpass; pass++) {
11687             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11688             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11689 
11690             tcg_res[pass] = tcg_temp_new_i64();
11691 
11692             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11693             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11694             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11695             if (accum) {
11696                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11697                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11698             }
11699         }
11700     } else {
11701         for (pass = 0; pass < maxpass; pass++) {
11702             TCGv_i64 tcg_op = tcg_temp_new_i64();
11703             NeonGenOne64OpFn *genfn;
11704             static NeonGenOne64OpFn * const fns[2][2] = {
11705                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11706                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11707             };
11708 
11709             genfn = fns[size][u];
11710 
11711             tcg_res[pass] = tcg_temp_new_i64();
11712 
11713             read_vec_element(s, tcg_op, rn, pass, MO_64);
11714             genfn(tcg_res[pass], tcg_op);
11715 
11716             if (accum) {
11717                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11718                 if (size == 0) {
11719                     gen_helper_neon_addl_u16(tcg_res[pass],
11720                                              tcg_res[pass], tcg_op);
11721                 } else {
11722                     gen_helper_neon_addl_u32(tcg_res[pass],
11723                                              tcg_res[pass], tcg_op);
11724                 }
11725             }
11726         }
11727     }
11728     if (!is_q) {
11729         tcg_res[1] = tcg_constant_i64(0);
11730     }
11731     for (pass = 0; pass < 2; pass++) {
11732         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11733     }
11734 }
11735 
11736 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11737 {
11738     /* Implement SHLL and SHLL2 */
11739     int pass;
11740     int part = is_q ? 2 : 0;
11741     TCGv_i64 tcg_res[2];
11742 
11743     for (pass = 0; pass < 2; pass++) {
11744         static NeonGenWidenFn * const widenfns[3] = {
11745             gen_helper_neon_widen_u8,
11746             gen_helper_neon_widen_u16,
11747             tcg_gen_extu_i32_i64,
11748         };
11749         NeonGenWidenFn *widenfn = widenfns[size];
11750         TCGv_i32 tcg_op = tcg_temp_new_i32();
11751 
11752         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11753         tcg_res[pass] = tcg_temp_new_i64();
11754         widenfn(tcg_res[pass], tcg_op);
11755         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11756     }
11757 
11758     for (pass = 0; pass < 2; pass++) {
11759         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11760     }
11761 }
11762 
11763 /* AdvSIMD two reg misc
11764  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11765  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11766  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11767  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11768  */
11769 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11770 {
11771     int size = extract32(insn, 22, 2);
11772     int opcode = extract32(insn, 12, 5);
11773     bool u = extract32(insn, 29, 1);
11774     bool is_q = extract32(insn, 30, 1);
11775     int rn = extract32(insn, 5, 5);
11776     int rd = extract32(insn, 0, 5);
11777     bool need_fpstatus = false;
11778     int rmode = -1;
11779     TCGv_i32 tcg_rmode;
11780     TCGv_ptr tcg_fpstatus;
11781 
11782     switch (opcode) {
11783     case 0x0: /* REV64, REV32 */
11784     case 0x1: /* REV16 */
11785         handle_rev(s, opcode, u, is_q, size, rn, rd);
11786         return;
11787     case 0x5: /* CNT, NOT, RBIT */
11788         if (u && size == 0) {
11789             /* NOT */
11790             break;
11791         } else if (u && size == 1) {
11792             /* RBIT */
11793             break;
11794         } else if (!u && size == 0) {
11795             /* CNT */
11796             break;
11797         }
11798         unallocated_encoding(s);
11799         return;
11800     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11801     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11802         if (size == 3) {
11803             unallocated_encoding(s);
11804             return;
11805         }
11806         if (!fp_access_check(s)) {
11807             return;
11808         }
11809 
11810         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11811         return;
11812     case 0x4: /* CLS, CLZ */
11813         if (size == 3) {
11814             unallocated_encoding(s);
11815             return;
11816         }
11817         break;
11818     case 0x2: /* SADDLP, UADDLP */
11819     case 0x6: /* SADALP, UADALP */
11820         if (size == 3) {
11821             unallocated_encoding(s);
11822             return;
11823         }
11824         if (!fp_access_check(s)) {
11825             return;
11826         }
11827         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11828         return;
11829     case 0x13: /* SHLL, SHLL2 */
11830         if (u == 0 || size == 3) {
11831             unallocated_encoding(s);
11832             return;
11833         }
11834         if (!fp_access_check(s)) {
11835             return;
11836         }
11837         handle_shll(s, is_q, size, rn, rd);
11838         return;
11839     case 0xa: /* CMLT */
11840         if (u == 1) {
11841             unallocated_encoding(s);
11842             return;
11843         }
11844         /* fall through */
11845     case 0x8: /* CMGT, CMGE */
11846     case 0x9: /* CMEQ, CMLE */
11847     case 0xb: /* ABS, NEG */
11848         if (size == 3 && !is_q) {
11849             unallocated_encoding(s);
11850             return;
11851         }
11852         break;
11853     case 0x3: /* SUQADD, USQADD */
11854         if (size == 3 && !is_q) {
11855             unallocated_encoding(s);
11856             return;
11857         }
11858         if (!fp_access_check(s)) {
11859             return;
11860         }
11861         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11862         return;
11863     case 0x7: /* SQABS, SQNEG */
11864         if (size == 3 && !is_q) {
11865             unallocated_encoding(s);
11866             return;
11867         }
11868         break;
11869     case 0xc ... 0xf:
11870     case 0x16 ... 0x1f:
11871     {
11872         /* Floating point: U, size[1] and opcode indicate operation;
11873          * size[0] indicates single or double precision.
11874          */
11875         int is_double = extract32(size, 0, 1);
11876         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11877         size = is_double ? 3 : 2;
11878         switch (opcode) {
11879         case 0x2f: /* FABS */
11880         case 0x6f: /* FNEG */
11881             if (size == 3 && !is_q) {
11882                 unallocated_encoding(s);
11883                 return;
11884             }
11885             break;
11886         case 0x1d: /* SCVTF */
11887         case 0x5d: /* UCVTF */
11888         {
11889             bool is_signed = (opcode == 0x1d) ? true : false;
11890             int elements = is_double ? 2 : is_q ? 4 : 2;
11891             if (is_double && !is_q) {
11892                 unallocated_encoding(s);
11893                 return;
11894             }
11895             if (!fp_access_check(s)) {
11896                 return;
11897             }
11898             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11899             return;
11900         }
11901         case 0x2c: /* FCMGT (zero) */
11902         case 0x2d: /* FCMEQ (zero) */
11903         case 0x2e: /* FCMLT (zero) */
11904         case 0x6c: /* FCMGE (zero) */
11905         case 0x6d: /* FCMLE (zero) */
11906             if (size == 3 && !is_q) {
11907                 unallocated_encoding(s);
11908                 return;
11909             }
11910             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11911             return;
11912         case 0x7f: /* FSQRT */
11913             if (size == 3 && !is_q) {
11914                 unallocated_encoding(s);
11915                 return;
11916             }
11917             break;
11918         case 0x1a: /* FCVTNS */
11919         case 0x1b: /* FCVTMS */
11920         case 0x3a: /* FCVTPS */
11921         case 0x3b: /* FCVTZS */
11922         case 0x5a: /* FCVTNU */
11923         case 0x5b: /* FCVTMU */
11924         case 0x7a: /* FCVTPU */
11925         case 0x7b: /* FCVTZU */
11926             need_fpstatus = true;
11927             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11928             if (size == 3 && !is_q) {
11929                 unallocated_encoding(s);
11930                 return;
11931             }
11932             break;
11933         case 0x5c: /* FCVTAU */
11934         case 0x1c: /* FCVTAS */
11935             need_fpstatus = true;
11936             rmode = FPROUNDING_TIEAWAY;
11937             if (size == 3 && !is_q) {
11938                 unallocated_encoding(s);
11939                 return;
11940             }
11941             break;
11942         case 0x3c: /* URECPE */
11943             if (size == 3) {
11944                 unallocated_encoding(s);
11945                 return;
11946             }
11947             /* fall through */
11948         case 0x3d: /* FRECPE */
11949         case 0x7d: /* FRSQRTE */
11950             if (size == 3 && !is_q) {
11951                 unallocated_encoding(s);
11952                 return;
11953             }
11954             if (!fp_access_check(s)) {
11955                 return;
11956             }
11957             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11958             return;
11959         case 0x56: /* FCVTXN, FCVTXN2 */
11960             if (size == 2) {
11961                 unallocated_encoding(s);
11962                 return;
11963             }
11964             /* fall through */
11965         case 0x16: /* FCVTN, FCVTN2 */
11966             /* handle_2misc_narrow does a 2*size -> size operation, but these
11967              * instructions encode the source size rather than dest size.
11968              */
11969             if (!fp_access_check(s)) {
11970                 return;
11971             }
11972             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11973             return;
11974         case 0x36: /* BFCVTN, BFCVTN2 */
11975             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11976                 unallocated_encoding(s);
11977                 return;
11978             }
11979             if (!fp_access_check(s)) {
11980                 return;
11981             }
11982             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11983             return;
11984         case 0x17: /* FCVTL, FCVTL2 */
11985             if (!fp_access_check(s)) {
11986                 return;
11987             }
11988             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11989             return;
11990         case 0x18: /* FRINTN */
11991         case 0x19: /* FRINTM */
11992         case 0x38: /* FRINTP */
11993         case 0x39: /* FRINTZ */
11994             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11995             /* fall through */
11996         case 0x59: /* FRINTX */
11997         case 0x79: /* FRINTI */
11998             need_fpstatus = true;
11999             if (size == 3 && !is_q) {
12000                 unallocated_encoding(s);
12001                 return;
12002             }
12003             break;
12004         case 0x58: /* FRINTA */
12005             rmode = FPROUNDING_TIEAWAY;
12006             need_fpstatus = true;
12007             if (size == 3 && !is_q) {
12008                 unallocated_encoding(s);
12009                 return;
12010             }
12011             break;
12012         case 0x7c: /* URSQRTE */
12013             if (size == 3) {
12014                 unallocated_encoding(s);
12015                 return;
12016             }
12017             break;
12018         case 0x1e: /* FRINT32Z */
12019         case 0x1f: /* FRINT64Z */
12020             rmode = FPROUNDING_ZERO;
12021             /* fall through */
12022         case 0x5e: /* FRINT32X */
12023         case 0x5f: /* FRINT64X */
12024             need_fpstatus = true;
12025             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12026                 unallocated_encoding(s);
12027                 return;
12028             }
12029             break;
12030         default:
12031             unallocated_encoding(s);
12032             return;
12033         }
12034         break;
12035     }
12036     default:
12037         unallocated_encoding(s);
12038         return;
12039     }
12040 
12041     if (!fp_access_check(s)) {
12042         return;
12043     }
12044 
12045     if (need_fpstatus || rmode >= 0) {
12046         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12047     } else {
12048         tcg_fpstatus = NULL;
12049     }
12050     if (rmode >= 0) {
12051         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12052     } else {
12053         tcg_rmode = NULL;
12054     }
12055 
12056     switch (opcode) {
12057     case 0x5:
12058         if (u && size == 0) { /* NOT */
12059             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12060             return;
12061         }
12062         break;
12063     case 0x8: /* CMGT, CMGE */
12064         if (u) {
12065             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12066         } else {
12067             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12068         }
12069         return;
12070     case 0x9: /* CMEQ, CMLE */
12071         if (u) {
12072             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12073         } else {
12074             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12075         }
12076         return;
12077     case 0xa: /* CMLT */
12078         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12079         return;
12080     case 0xb:
12081         if (u) { /* ABS, NEG */
12082             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12083         } else {
12084             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12085         }
12086         return;
12087     }
12088 
12089     if (size == 3) {
12090         /* All 64-bit element operations can be shared with scalar 2misc */
12091         int pass;
12092 
12093         /* Coverity claims (size == 3 && !is_q) has been eliminated
12094          * from all paths leading to here.
12095          */
12096         tcg_debug_assert(is_q);
12097         for (pass = 0; pass < 2; pass++) {
12098             TCGv_i64 tcg_op = tcg_temp_new_i64();
12099             TCGv_i64 tcg_res = tcg_temp_new_i64();
12100 
12101             read_vec_element(s, tcg_op, rn, pass, MO_64);
12102 
12103             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12104                             tcg_rmode, tcg_fpstatus);
12105 
12106             write_vec_element(s, tcg_res, rd, pass, MO_64);
12107         }
12108     } else {
12109         int pass;
12110 
12111         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12112             TCGv_i32 tcg_op = tcg_temp_new_i32();
12113             TCGv_i32 tcg_res = tcg_temp_new_i32();
12114 
12115             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12116 
12117             if (size == 2) {
12118                 /* Special cases for 32 bit elements */
12119                 switch (opcode) {
12120                 case 0x4: /* CLS */
12121                     if (u) {
12122                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12123                     } else {
12124                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12125                     }
12126                     break;
12127                 case 0x7: /* SQABS, SQNEG */
12128                     if (u) {
12129                         gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12130                     } else {
12131                         gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12132                     }
12133                     break;
12134                 case 0x2f: /* FABS */
12135                     gen_helper_vfp_abss(tcg_res, tcg_op);
12136                     break;
12137                 case 0x6f: /* FNEG */
12138                     gen_helper_vfp_negs(tcg_res, tcg_op);
12139                     break;
12140                 case 0x7f: /* FSQRT */
12141                     gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12142                     break;
12143                 case 0x1a: /* FCVTNS */
12144                 case 0x1b: /* FCVTMS */
12145                 case 0x1c: /* FCVTAS */
12146                 case 0x3a: /* FCVTPS */
12147                 case 0x3b: /* FCVTZS */
12148                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12149                                          tcg_constant_i32(0), tcg_fpstatus);
12150                     break;
12151                 case 0x5a: /* FCVTNU */
12152                 case 0x5b: /* FCVTMU */
12153                 case 0x5c: /* FCVTAU */
12154                 case 0x7a: /* FCVTPU */
12155                 case 0x7b: /* FCVTZU */
12156                     gen_helper_vfp_touls(tcg_res, tcg_op,
12157                                          tcg_constant_i32(0), tcg_fpstatus);
12158                     break;
12159                 case 0x18: /* FRINTN */
12160                 case 0x19: /* FRINTM */
12161                 case 0x38: /* FRINTP */
12162                 case 0x39: /* FRINTZ */
12163                 case 0x58: /* FRINTA */
12164                 case 0x79: /* FRINTI */
12165                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12166                     break;
12167                 case 0x59: /* FRINTX */
12168                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12169                     break;
12170                 case 0x7c: /* URSQRTE */
12171                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12172                     break;
12173                 case 0x1e: /* FRINT32Z */
12174                 case 0x5e: /* FRINT32X */
12175                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12176                     break;
12177                 case 0x1f: /* FRINT64Z */
12178                 case 0x5f: /* FRINT64X */
12179                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12180                     break;
12181                 default:
12182                     g_assert_not_reached();
12183                 }
12184             } else {
12185                 /* Use helpers for 8 and 16 bit elements */
12186                 switch (opcode) {
12187                 case 0x5: /* CNT, RBIT */
12188                     /* For these two insns size is part of the opcode specifier
12189                      * (handled earlier); they always operate on byte elements.
12190                      */
12191                     if (u) {
12192                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12193                     } else {
12194                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12195                     }
12196                     break;
12197                 case 0x7: /* SQABS, SQNEG */
12198                 {
12199                     NeonGenOneOpEnvFn *genfn;
12200                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12201                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12202                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12203                     };
12204                     genfn = fns[size][u];
12205                     genfn(tcg_res, cpu_env, tcg_op);
12206                     break;
12207                 }
12208                 case 0x4: /* CLS, CLZ */
12209                     if (u) {
12210                         if (size == 0) {
12211                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12212                         } else {
12213                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12214                         }
12215                     } else {
12216                         if (size == 0) {
12217                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12218                         } else {
12219                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12220                         }
12221                     }
12222                     break;
12223                 default:
12224                     g_assert_not_reached();
12225                 }
12226             }
12227 
12228             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12229         }
12230     }
12231     clear_vec_high(s, is_q, rd);
12232 
12233     if (tcg_rmode) {
12234         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12235     }
12236 }
12237 
12238 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12239  *
12240  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12241  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12242  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12243  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12244  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12245  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12246  *
12247  * This actually covers two groups where scalar access is governed by
12248  * bit 28. A bunch of the instructions (float to integral) only exist
12249  * in the vector form and are un-allocated for the scalar decode. Also
12250  * in the scalar decode Q is always 1.
12251  */
12252 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12253 {
12254     int fpop, opcode, a, u;
12255     int rn, rd;
12256     bool is_q;
12257     bool is_scalar;
12258     bool only_in_vector = false;
12259 
12260     int pass;
12261     TCGv_i32 tcg_rmode = NULL;
12262     TCGv_ptr tcg_fpstatus = NULL;
12263     bool need_fpst = true;
12264     int rmode = -1;
12265 
12266     if (!dc_isar_feature(aa64_fp16, s)) {
12267         unallocated_encoding(s);
12268         return;
12269     }
12270 
12271     rd = extract32(insn, 0, 5);
12272     rn = extract32(insn, 5, 5);
12273 
12274     a = extract32(insn, 23, 1);
12275     u = extract32(insn, 29, 1);
12276     is_scalar = extract32(insn, 28, 1);
12277     is_q = extract32(insn, 30, 1);
12278 
12279     opcode = extract32(insn, 12, 5);
12280     fpop = deposit32(opcode, 5, 1, a);
12281     fpop = deposit32(fpop, 6, 1, u);
12282 
12283     switch (fpop) {
12284     case 0x1d: /* SCVTF */
12285     case 0x5d: /* UCVTF */
12286     {
12287         int elements;
12288 
12289         if (is_scalar) {
12290             elements = 1;
12291         } else {
12292             elements = (is_q ? 8 : 4);
12293         }
12294 
12295         if (!fp_access_check(s)) {
12296             return;
12297         }
12298         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12299         return;
12300     }
12301     break;
12302     case 0x2c: /* FCMGT (zero) */
12303     case 0x2d: /* FCMEQ (zero) */
12304     case 0x2e: /* FCMLT (zero) */
12305     case 0x6c: /* FCMGE (zero) */
12306     case 0x6d: /* FCMLE (zero) */
12307         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12308         return;
12309     case 0x3d: /* FRECPE */
12310     case 0x3f: /* FRECPX */
12311         break;
12312     case 0x18: /* FRINTN */
12313         only_in_vector = true;
12314         rmode = FPROUNDING_TIEEVEN;
12315         break;
12316     case 0x19: /* FRINTM */
12317         only_in_vector = true;
12318         rmode = FPROUNDING_NEGINF;
12319         break;
12320     case 0x38: /* FRINTP */
12321         only_in_vector = true;
12322         rmode = FPROUNDING_POSINF;
12323         break;
12324     case 0x39: /* FRINTZ */
12325         only_in_vector = true;
12326         rmode = FPROUNDING_ZERO;
12327         break;
12328     case 0x58: /* FRINTA */
12329         only_in_vector = true;
12330         rmode = FPROUNDING_TIEAWAY;
12331         break;
12332     case 0x59: /* FRINTX */
12333     case 0x79: /* FRINTI */
12334         only_in_vector = true;
12335         /* current rounding mode */
12336         break;
12337     case 0x1a: /* FCVTNS */
12338         rmode = FPROUNDING_TIEEVEN;
12339         break;
12340     case 0x1b: /* FCVTMS */
12341         rmode = FPROUNDING_NEGINF;
12342         break;
12343     case 0x1c: /* FCVTAS */
12344         rmode = FPROUNDING_TIEAWAY;
12345         break;
12346     case 0x3a: /* FCVTPS */
12347         rmode = FPROUNDING_POSINF;
12348         break;
12349     case 0x3b: /* FCVTZS */
12350         rmode = FPROUNDING_ZERO;
12351         break;
12352     case 0x5a: /* FCVTNU */
12353         rmode = FPROUNDING_TIEEVEN;
12354         break;
12355     case 0x5b: /* FCVTMU */
12356         rmode = FPROUNDING_NEGINF;
12357         break;
12358     case 0x5c: /* FCVTAU */
12359         rmode = FPROUNDING_TIEAWAY;
12360         break;
12361     case 0x7a: /* FCVTPU */
12362         rmode = FPROUNDING_POSINF;
12363         break;
12364     case 0x7b: /* FCVTZU */
12365         rmode = FPROUNDING_ZERO;
12366         break;
12367     case 0x2f: /* FABS */
12368     case 0x6f: /* FNEG */
12369         need_fpst = false;
12370         break;
12371     case 0x7d: /* FRSQRTE */
12372     case 0x7f: /* FSQRT (vector) */
12373         break;
12374     default:
12375         unallocated_encoding(s);
12376         return;
12377     }
12378 
12379 
12380     /* Check additional constraints for the scalar encoding */
12381     if (is_scalar) {
12382         if (!is_q) {
12383             unallocated_encoding(s);
12384             return;
12385         }
12386         /* FRINTxx is only in the vector form */
12387         if (only_in_vector) {
12388             unallocated_encoding(s);
12389             return;
12390         }
12391     }
12392 
12393     if (!fp_access_check(s)) {
12394         return;
12395     }
12396 
12397     if (rmode >= 0 || need_fpst) {
12398         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12399     }
12400 
12401     if (rmode >= 0) {
12402         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12403     }
12404 
12405     if (is_scalar) {
12406         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12407         TCGv_i32 tcg_res = tcg_temp_new_i32();
12408 
12409         switch (fpop) {
12410         case 0x1a: /* FCVTNS */
12411         case 0x1b: /* FCVTMS */
12412         case 0x1c: /* FCVTAS */
12413         case 0x3a: /* FCVTPS */
12414         case 0x3b: /* FCVTZS */
12415             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12416             break;
12417         case 0x3d: /* FRECPE */
12418             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12419             break;
12420         case 0x3f: /* FRECPX */
12421             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12422             break;
12423         case 0x5a: /* FCVTNU */
12424         case 0x5b: /* FCVTMU */
12425         case 0x5c: /* FCVTAU */
12426         case 0x7a: /* FCVTPU */
12427         case 0x7b: /* FCVTZU */
12428             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12429             break;
12430         case 0x6f: /* FNEG */
12431             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12432             break;
12433         case 0x7d: /* FRSQRTE */
12434             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12435             break;
12436         default:
12437             g_assert_not_reached();
12438         }
12439 
12440         /* limit any sign extension going on */
12441         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12442         write_fp_sreg(s, rd, tcg_res);
12443     } else {
12444         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12445             TCGv_i32 tcg_op = tcg_temp_new_i32();
12446             TCGv_i32 tcg_res = tcg_temp_new_i32();
12447 
12448             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12449 
12450             switch (fpop) {
12451             case 0x1a: /* FCVTNS */
12452             case 0x1b: /* FCVTMS */
12453             case 0x1c: /* FCVTAS */
12454             case 0x3a: /* FCVTPS */
12455             case 0x3b: /* FCVTZS */
12456                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12457                 break;
12458             case 0x3d: /* FRECPE */
12459                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12460                 break;
12461             case 0x5a: /* FCVTNU */
12462             case 0x5b: /* FCVTMU */
12463             case 0x5c: /* FCVTAU */
12464             case 0x7a: /* FCVTPU */
12465             case 0x7b: /* FCVTZU */
12466                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12467                 break;
12468             case 0x18: /* FRINTN */
12469             case 0x19: /* FRINTM */
12470             case 0x38: /* FRINTP */
12471             case 0x39: /* FRINTZ */
12472             case 0x58: /* FRINTA */
12473             case 0x79: /* FRINTI */
12474                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12475                 break;
12476             case 0x59: /* FRINTX */
12477                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12478                 break;
12479             case 0x2f: /* FABS */
12480                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12481                 break;
12482             case 0x6f: /* FNEG */
12483                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12484                 break;
12485             case 0x7d: /* FRSQRTE */
12486                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12487                 break;
12488             case 0x7f: /* FSQRT */
12489                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12490                 break;
12491             default:
12492                 g_assert_not_reached();
12493             }
12494 
12495             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12496         }
12497 
12498         clear_vec_high(s, is_q, rd);
12499     }
12500 
12501     if (tcg_rmode) {
12502         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12503     }
12504 }
12505 
12506 /* AdvSIMD scalar x indexed element
12507  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12508  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12509  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12510  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12511  * AdvSIMD vector x indexed element
12512  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12513  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12514  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12515  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12516  */
12517 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12518 {
12519     /* This encoding has two kinds of instruction:
12520      *  normal, where we perform elt x idxelt => elt for each
12521      *     element in the vector
12522      *  long, where we perform elt x idxelt and generate a result of
12523      *     double the width of the input element
12524      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12525      */
12526     bool is_scalar = extract32(insn, 28, 1);
12527     bool is_q = extract32(insn, 30, 1);
12528     bool u = extract32(insn, 29, 1);
12529     int size = extract32(insn, 22, 2);
12530     int l = extract32(insn, 21, 1);
12531     int m = extract32(insn, 20, 1);
12532     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12533     int rm = extract32(insn, 16, 4);
12534     int opcode = extract32(insn, 12, 4);
12535     int h = extract32(insn, 11, 1);
12536     int rn = extract32(insn, 5, 5);
12537     int rd = extract32(insn, 0, 5);
12538     bool is_long = false;
12539     int is_fp = 0;
12540     bool is_fp16 = false;
12541     int index;
12542     TCGv_ptr fpst;
12543 
12544     switch (16 * u + opcode) {
12545     case 0x08: /* MUL */
12546     case 0x10: /* MLA */
12547     case 0x14: /* MLS */
12548         if (is_scalar) {
12549             unallocated_encoding(s);
12550             return;
12551         }
12552         break;
12553     case 0x02: /* SMLAL, SMLAL2 */
12554     case 0x12: /* UMLAL, UMLAL2 */
12555     case 0x06: /* SMLSL, SMLSL2 */
12556     case 0x16: /* UMLSL, UMLSL2 */
12557     case 0x0a: /* SMULL, SMULL2 */
12558     case 0x1a: /* UMULL, UMULL2 */
12559         if (is_scalar) {
12560             unallocated_encoding(s);
12561             return;
12562         }
12563         is_long = true;
12564         break;
12565     case 0x03: /* SQDMLAL, SQDMLAL2 */
12566     case 0x07: /* SQDMLSL, SQDMLSL2 */
12567     case 0x0b: /* SQDMULL, SQDMULL2 */
12568         is_long = true;
12569         break;
12570     case 0x0c: /* SQDMULH */
12571     case 0x0d: /* SQRDMULH */
12572         break;
12573     case 0x01: /* FMLA */
12574     case 0x05: /* FMLS */
12575     case 0x09: /* FMUL */
12576     case 0x19: /* FMULX */
12577         is_fp = 1;
12578         break;
12579     case 0x1d: /* SQRDMLAH */
12580     case 0x1f: /* SQRDMLSH */
12581         if (!dc_isar_feature(aa64_rdm, s)) {
12582             unallocated_encoding(s);
12583             return;
12584         }
12585         break;
12586     case 0x0e: /* SDOT */
12587     case 0x1e: /* UDOT */
12588         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12589             unallocated_encoding(s);
12590             return;
12591         }
12592         break;
12593     case 0x0f:
12594         switch (size) {
12595         case 0: /* SUDOT */
12596         case 2: /* USDOT */
12597             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12598                 unallocated_encoding(s);
12599                 return;
12600             }
12601             size = MO_32;
12602             break;
12603         case 1: /* BFDOT */
12604             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12605                 unallocated_encoding(s);
12606                 return;
12607             }
12608             size = MO_32;
12609             break;
12610         case 3: /* BFMLAL{B,T} */
12611             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12612                 unallocated_encoding(s);
12613                 return;
12614             }
12615             /* can't set is_fp without other incorrect size checks */
12616             size = MO_16;
12617             break;
12618         default:
12619             unallocated_encoding(s);
12620             return;
12621         }
12622         break;
12623     case 0x11: /* FCMLA #0 */
12624     case 0x13: /* FCMLA #90 */
12625     case 0x15: /* FCMLA #180 */
12626     case 0x17: /* FCMLA #270 */
12627         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12628             unallocated_encoding(s);
12629             return;
12630         }
12631         is_fp = 2;
12632         break;
12633     case 0x00: /* FMLAL */
12634     case 0x04: /* FMLSL */
12635     case 0x18: /* FMLAL2 */
12636     case 0x1c: /* FMLSL2 */
12637         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12638             unallocated_encoding(s);
12639             return;
12640         }
12641         size = MO_16;
12642         /* is_fp, but we pass cpu_env not fp_status.  */
12643         break;
12644     default:
12645         unallocated_encoding(s);
12646         return;
12647     }
12648 
12649     switch (is_fp) {
12650     case 1: /* normal fp */
12651         /* convert insn encoded size to MemOp size */
12652         switch (size) {
12653         case 0: /* half-precision */
12654             size = MO_16;
12655             is_fp16 = true;
12656             break;
12657         case MO_32: /* single precision */
12658         case MO_64: /* double precision */
12659             break;
12660         default:
12661             unallocated_encoding(s);
12662             return;
12663         }
12664         break;
12665 
12666     case 2: /* complex fp */
12667         /* Each indexable element is a complex pair.  */
12668         size += 1;
12669         switch (size) {
12670         case MO_32:
12671             if (h && !is_q) {
12672                 unallocated_encoding(s);
12673                 return;
12674             }
12675             is_fp16 = true;
12676             break;
12677         case MO_64:
12678             break;
12679         default:
12680             unallocated_encoding(s);
12681             return;
12682         }
12683         break;
12684 
12685     default: /* integer */
12686         switch (size) {
12687         case MO_8:
12688         case MO_64:
12689             unallocated_encoding(s);
12690             return;
12691         }
12692         break;
12693     }
12694     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12695         unallocated_encoding(s);
12696         return;
12697     }
12698 
12699     /* Given MemOp size, adjust register and indexing.  */
12700     switch (size) {
12701     case MO_16:
12702         index = h << 2 | l << 1 | m;
12703         break;
12704     case MO_32:
12705         index = h << 1 | l;
12706         rm |= m << 4;
12707         break;
12708     case MO_64:
12709         if (l || !is_q) {
12710             unallocated_encoding(s);
12711             return;
12712         }
12713         index = h;
12714         rm |= m << 4;
12715         break;
12716     default:
12717         g_assert_not_reached();
12718     }
12719 
12720     if (!fp_access_check(s)) {
12721         return;
12722     }
12723 
12724     if (is_fp) {
12725         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12726     } else {
12727         fpst = NULL;
12728     }
12729 
12730     switch (16 * u + opcode) {
12731     case 0x0e: /* SDOT */
12732     case 0x1e: /* UDOT */
12733         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12734                          u ? gen_helper_gvec_udot_idx_b
12735                          : gen_helper_gvec_sdot_idx_b);
12736         return;
12737     case 0x0f:
12738         switch (extract32(insn, 22, 2)) {
12739         case 0: /* SUDOT */
12740             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12741                              gen_helper_gvec_sudot_idx_b);
12742             return;
12743         case 1: /* BFDOT */
12744             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12745                              gen_helper_gvec_bfdot_idx);
12746             return;
12747         case 2: /* USDOT */
12748             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12749                              gen_helper_gvec_usdot_idx_b);
12750             return;
12751         case 3: /* BFMLAL{B,T} */
12752             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12753                               gen_helper_gvec_bfmlal_idx);
12754             return;
12755         }
12756         g_assert_not_reached();
12757     case 0x11: /* FCMLA #0 */
12758     case 0x13: /* FCMLA #90 */
12759     case 0x15: /* FCMLA #180 */
12760     case 0x17: /* FCMLA #270 */
12761         {
12762             int rot = extract32(insn, 13, 2);
12763             int data = (index << 2) | rot;
12764             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12765                                vec_full_reg_offset(s, rn),
12766                                vec_full_reg_offset(s, rm),
12767                                vec_full_reg_offset(s, rd), fpst,
12768                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12769                                size == MO_64
12770                                ? gen_helper_gvec_fcmlas_idx
12771                                : gen_helper_gvec_fcmlah_idx);
12772         }
12773         return;
12774 
12775     case 0x00: /* FMLAL */
12776     case 0x04: /* FMLSL */
12777     case 0x18: /* FMLAL2 */
12778     case 0x1c: /* FMLSL2 */
12779         {
12780             int is_s = extract32(opcode, 2, 1);
12781             int is_2 = u;
12782             int data = (index << 2) | (is_2 << 1) | is_s;
12783             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12784                                vec_full_reg_offset(s, rn),
12785                                vec_full_reg_offset(s, rm), cpu_env,
12786                                is_q ? 16 : 8, vec_full_reg_size(s),
12787                                data, gen_helper_gvec_fmlal_idx_a64);
12788         }
12789         return;
12790 
12791     case 0x08: /* MUL */
12792         if (!is_long && !is_scalar) {
12793             static gen_helper_gvec_3 * const fns[3] = {
12794                 gen_helper_gvec_mul_idx_h,
12795                 gen_helper_gvec_mul_idx_s,
12796                 gen_helper_gvec_mul_idx_d,
12797             };
12798             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
12799                                vec_full_reg_offset(s, rn),
12800                                vec_full_reg_offset(s, rm),
12801                                is_q ? 16 : 8, vec_full_reg_size(s),
12802                                index, fns[size - 1]);
12803             return;
12804         }
12805         break;
12806 
12807     case 0x10: /* MLA */
12808         if (!is_long && !is_scalar) {
12809             static gen_helper_gvec_4 * const fns[3] = {
12810                 gen_helper_gvec_mla_idx_h,
12811                 gen_helper_gvec_mla_idx_s,
12812                 gen_helper_gvec_mla_idx_d,
12813             };
12814             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12815                                vec_full_reg_offset(s, rn),
12816                                vec_full_reg_offset(s, rm),
12817                                vec_full_reg_offset(s, rd),
12818                                is_q ? 16 : 8, vec_full_reg_size(s),
12819                                index, fns[size - 1]);
12820             return;
12821         }
12822         break;
12823 
12824     case 0x14: /* MLS */
12825         if (!is_long && !is_scalar) {
12826             static gen_helper_gvec_4 * const fns[3] = {
12827                 gen_helper_gvec_mls_idx_h,
12828                 gen_helper_gvec_mls_idx_s,
12829                 gen_helper_gvec_mls_idx_d,
12830             };
12831             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12832                                vec_full_reg_offset(s, rn),
12833                                vec_full_reg_offset(s, rm),
12834                                vec_full_reg_offset(s, rd),
12835                                is_q ? 16 : 8, vec_full_reg_size(s),
12836                                index, fns[size - 1]);
12837             return;
12838         }
12839         break;
12840     }
12841 
12842     if (size == 3) {
12843         TCGv_i64 tcg_idx = tcg_temp_new_i64();
12844         int pass;
12845 
12846         assert(is_fp && is_q && !is_long);
12847 
12848         read_vec_element(s, tcg_idx, rm, index, MO_64);
12849 
12850         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12851             TCGv_i64 tcg_op = tcg_temp_new_i64();
12852             TCGv_i64 tcg_res = tcg_temp_new_i64();
12853 
12854             read_vec_element(s, tcg_op, rn, pass, MO_64);
12855 
12856             switch (16 * u + opcode) {
12857             case 0x05: /* FMLS */
12858                 /* As usual for ARM, separate negation for fused multiply-add */
12859                 gen_helper_vfp_negd(tcg_op, tcg_op);
12860                 /* fall through */
12861             case 0x01: /* FMLA */
12862                 read_vec_element(s, tcg_res, rd, pass, MO_64);
12863                 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
12864                 break;
12865             case 0x09: /* FMUL */
12866                 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
12867                 break;
12868             case 0x19: /* FMULX */
12869                 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
12870                 break;
12871             default:
12872                 g_assert_not_reached();
12873             }
12874 
12875             write_vec_element(s, tcg_res, rd, pass, MO_64);
12876         }
12877 
12878         clear_vec_high(s, !is_scalar, rd);
12879     } else if (!is_long) {
12880         /* 32 bit floating point, or 16 or 32 bit integer.
12881          * For the 16 bit scalar case we use the usual Neon helpers and
12882          * rely on the fact that 0 op 0 == 0 with no side effects.
12883          */
12884         TCGv_i32 tcg_idx = tcg_temp_new_i32();
12885         int pass, maxpasses;
12886 
12887         if (is_scalar) {
12888             maxpasses = 1;
12889         } else {
12890             maxpasses = is_q ? 4 : 2;
12891         }
12892 
12893         read_vec_element_i32(s, tcg_idx, rm, index, size);
12894 
12895         if (size == 1 && !is_scalar) {
12896             /* The simplest way to handle the 16x16 indexed ops is to duplicate
12897              * the index into both halves of the 32 bit tcg_idx and then use
12898              * the usual Neon helpers.
12899              */
12900             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12901         }
12902 
12903         for (pass = 0; pass < maxpasses; pass++) {
12904             TCGv_i32 tcg_op = tcg_temp_new_i32();
12905             TCGv_i32 tcg_res = tcg_temp_new_i32();
12906 
12907             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12908 
12909             switch (16 * u + opcode) {
12910             case 0x08: /* MUL */
12911             case 0x10: /* MLA */
12912             case 0x14: /* MLS */
12913             {
12914                 static NeonGenTwoOpFn * const fns[2][2] = {
12915                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12916                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
12917                 };
12918                 NeonGenTwoOpFn *genfn;
12919                 bool is_sub = opcode == 0x4;
12920 
12921                 if (size == 1) {
12922                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12923                 } else {
12924                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12925                 }
12926                 if (opcode == 0x8) {
12927                     break;
12928                 }
12929                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12930                 genfn = fns[size - 1][is_sub];
12931                 genfn(tcg_res, tcg_op, tcg_res);
12932                 break;
12933             }
12934             case 0x05: /* FMLS */
12935             case 0x01: /* FMLA */
12936                 read_vec_element_i32(s, tcg_res, rd, pass,
12937                                      is_scalar ? size : MO_32);
12938                 switch (size) {
12939                 case 1:
12940                     if (opcode == 0x5) {
12941                         /* As usual for ARM, separate negation for fused
12942                          * multiply-add */
12943                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
12944                     }
12945                     if (is_scalar) {
12946                         gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
12947                                                    tcg_res, fpst);
12948                     } else {
12949                         gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
12950                                                     tcg_res, fpst);
12951                     }
12952                     break;
12953                 case 2:
12954                     if (opcode == 0x5) {
12955                         /* As usual for ARM, separate negation for
12956                          * fused multiply-add */
12957                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
12958                     }
12959                     gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
12960                                            tcg_res, fpst);
12961                     break;
12962                 default:
12963                     g_assert_not_reached();
12964                 }
12965                 break;
12966             case 0x09: /* FMUL */
12967                 switch (size) {
12968                 case 1:
12969                     if (is_scalar) {
12970                         gen_helper_advsimd_mulh(tcg_res, tcg_op,
12971                                                 tcg_idx, fpst);
12972                     } else {
12973                         gen_helper_advsimd_mul2h(tcg_res, tcg_op,
12974                                                  tcg_idx, fpst);
12975                     }
12976                     break;
12977                 case 2:
12978                     gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
12979                     break;
12980                 default:
12981                     g_assert_not_reached();
12982                 }
12983                 break;
12984             case 0x19: /* FMULX */
12985                 switch (size) {
12986                 case 1:
12987                     if (is_scalar) {
12988                         gen_helper_advsimd_mulxh(tcg_res, tcg_op,
12989                                                  tcg_idx, fpst);
12990                     } else {
12991                         gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
12992                                                   tcg_idx, fpst);
12993                     }
12994                     break;
12995                 case 2:
12996                     gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
12997                     break;
12998                 default:
12999                     g_assert_not_reached();
13000                 }
13001                 break;
13002             case 0x0c: /* SQDMULH */
13003                 if (size == 1) {
13004                     gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13005                                                tcg_op, tcg_idx);
13006                 } else {
13007                     gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13008                                                tcg_op, tcg_idx);
13009                 }
13010                 break;
13011             case 0x0d: /* SQRDMULH */
13012                 if (size == 1) {
13013                     gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13014                                                 tcg_op, tcg_idx);
13015                 } else {
13016                     gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13017                                                 tcg_op, tcg_idx);
13018                 }
13019                 break;
13020             case 0x1d: /* SQRDMLAH */
13021                 read_vec_element_i32(s, tcg_res, rd, pass,
13022                                      is_scalar ? size : MO_32);
13023                 if (size == 1) {
13024                     gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13025                                                 tcg_op, tcg_idx, tcg_res);
13026                 } else {
13027                     gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13028                                                 tcg_op, tcg_idx, tcg_res);
13029                 }
13030                 break;
13031             case 0x1f: /* SQRDMLSH */
13032                 read_vec_element_i32(s, tcg_res, rd, pass,
13033                                      is_scalar ? size : MO_32);
13034                 if (size == 1) {
13035                     gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13036                                                 tcg_op, tcg_idx, tcg_res);
13037                 } else {
13038                     gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13039                                                 tcg_op, tcg_idx, tcg_res);
13040                 }
13041                 break;
13042             default:
13043                 g_assert_not_reached();
13044             }
13045 
13046             if (is_scalar) {
13047                 write_fp_sreg(s, rd, tcg_res);
13048             } else {
13049                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13050             }
13051         }
13052 
13053         clear_vec_high(s, is_q, rd);
13054     } else {
13055         /* long ops: 16x16->32 or 32x32->64 */
13056         TCGv_i64 tcg_res[2];
13057         int pass;
13058         bool satop = extract32(opcode, 0, 1);
13059         MemOp memop = MO_32;
13060 
13061         if (satop || !u) {
13062             memop |= MO_SIGN;
13063         }
13064 
13065         if (size == 2) {
13066             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13067 
13068             read_vec_element(s, tcg_idx, rm, index, memop);
13069 
13070             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13071                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13072                 TCGv_i64 tcg_passres;
13073                 int passelt;
13074 
13075                 if (is_scalar) {
13076                     passelt = 0;
13077                 } else {
13078                     passelt = pass + (is_q * 2);
13079                 }
13080 
13081                 read_vec_element(s, tcg_op, rn, passelt, memop);
13082 
13083                 tcg_res[pass] = tcg_temp_new_i64();
13084 
13085                 if (opcode == 0xa || opcode == 0xb) {
13086                     /* Non-accumulating ops */
13087                     tcg_passres = tcg_res[pass];
13088                 } else {
13089                     tcg_passres = tcg_temp_new_i64();
13090                 }
13091 
13092                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13093 
13094                 if (satop) {
13095                     /* saturating, doubling */
13096                     gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13097                                                       tcg_passres, tcg_passres);
13098                 }
13099 
13100                 if (opcode == 0xa || opcode == 0xb) {
13101                     continue;
13102                 }
13103 
13104                 /* Accumulating op: handle accumulate step */
13105                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13106 
13107                 switch (opcode) {
13108                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13109                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13110                     break;
13111                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13112                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13113                     break;
13114                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13115                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13116                     /* fall through */
13117                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13118                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13119                                                       tcg_res[pass],
13120                                                       tcg_passres);
13121                     break;
13122                 default:
13123                     g_assert_not_reached();
13124                 }
13125             }
13126 
13127             clear_vec_high(s, !is_scalar, rd);
13128         } else {
13129             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13130 
13131             assert(size == 1);
13132             read_vec_element_i32(s, tcg_idx, rm, index, size);
13133 
13134             if (!is_scalar) {
13135                 /* The simplest way to handle the 16x16 indexed ops is to
13136                  * duplicate the index into both halves of the 32 bit tcg_idx
13137                  * and then use the usual Neon helpers.
13138                  */
13139                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13140             }
13141 
13142             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13143                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13144                 TCGv_i64 tcg_passres;
13145 
13146                 if (is_scalar) {
13147                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13148                 } else {
13149                     read_vec_element_i32(s, tcg_op, rn,
13150                                          pass + (is_q * 2), MO_32);
13151                 }
13152 
13153                 tcg_res[pass] = tcg_temp_new_i64();
13154 
13155                 if (opcode == 0xa || opcode == 0xb) {
13156                     /* Non-accumulating ops */
13157                     tcg_passres = tcg_res[pass];
13158                 } else {
13159                     tcg_passres = tcg_temp_new_i64();
13160                 }
13161 
13162                 if (memop & MO_SIGN) {
13163                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13164                 } else {
13165                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13166                 }
13167                 if (satop) {
13168                     gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13169                                                       tcg_passres, tcg_passres);
13170                 }
13171 
13172                 if (opcode == 0xa || opcode == 0xb) {
13173                     continue;
13174                 }
13175 
13176                 /* Accumulating op: handle accumulate step */
13177                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13178 
13179                 switch (opcode) {
13180                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13181                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13182                                              tcg_passres);
13183                     break;
13184                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13185                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13186                                              tcg_passres);
13187                     break;
13188                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13189                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13190                     /* fall through */
13191                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13192                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13193                                                       tcg_res[pass],
13194                                                       tcg_passres);
13195                     break;
13196                 default:
13197                     g_assert_not_reached();
13198                 }
13199             }
13200 
13201             if (is_scalar) {
13202                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13203             }
13204         }
13205 
13206         if (is_scalar) {
13207             tcg_res[1] = tcg_constant_i64(0);
13208         }
13209 
13210         for (pass = 0; pass < 2; pass++) {
13211             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13212         }
13213     }
13214 }
13215 
13216 /* Crypto AES
13217  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13218  * +-----------------+------+-----------+--------+-----+------+------+
13219  * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13220  * +-----------------+------+-----------+--------+-----+------+------+
13221  */
13222 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13223 {
13224     int size = extract32(insn, 22, 2);
13225     int opcode = extract32(insn, 12, 5);
13226     int rn = extract32(insn, 5, 5);
13227     int rd = extract32(insn, 0, 5);
13228     gen_helper_gvec_2 *genfn2 = NULL;
13229     gen_helper_gvec_3 *genfn3 = NULL;
13230 
13231     if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13232         unallocated_encoding(s);
13233         return;
13234     }
13235 
13236     switch (opcode) {
13237     case 0x4: /* AESE */
13238         genfn3 = gen_helper_crypto_aese;
13239         break;
13240     case 0x6: /* AESMC */
13241         genfn2 = gen_helper_crypto_aesmc;
13242         break;
13243     case 0x5: /* AESD */
13244         genfn3 = gen_helper_crypto_aesd;
13245         break;
13246     case 0x7: /* AESIMC */
13247         genfn2 = gen_helper_crypto_aesimc;
13248         break;
13249     default:
13250         unallocated_encoding(s);
13251         return;
13252     }
13253 
13254     if (!fp_access_check(s)) {
13255         return;
13256     }
13257     if (genfn2) {
13258         gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2);
13259     } else {
13260         gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3);
13261     }
13262 }
13263 
13264 /* Crypto three-reg SHA
13265  *  31             24 23  22  21 20  16  15 14    12 11 10 9    5 4    0
13266  * +-----------------+------+---+------+---+--------+-----+------+------+
13267  * | 0 1 0 1 1 1 1 0 | size | 0 |  Rm  | 0 | opcode | 0 0 |  Rn  |  Rd  |
13268  * +-----------------+------+---+------+---+--------+-----+------+------+
13269  */
13270 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13271 {
13272     int size = extract32(insn, 22, 2);
13273     int opcode = extract32(insn, 12, 3);
13274     int rm = extract32(insn, 16, 5);
13275     int rn = extract32(insn, 5, 5);
13276     int rd = extract32(insn, 0, 5);
13277     gen_helper_gvec_3 *genfn;
13278     bool feature;
13279 
13280     if (size != 0) {
13281         unallocated_encoding(s);
13282         return;
13283     }
13284 
13285     switch (opcode) {
13286     case 0: /* SHA1C */
13287         genfn = gen_helper_crypto_sha1c;
13288         feature = dc_isar_feature(aa64_sha1, s);
13289         break;
13290     case 1: /* SHA1P */
13291         genfn = gen_helper_crypto_sha1p;
13292         feature = dc_isar_feature(aa64_sha1, s);
13293         break;
13294     case 2: /* SHA1M */
13295         genfn = gen_helper_crypto_sha1m;
13296         feature = dc_isar_feature(aa64_sha1, s);
13297         break;
13298     case 3: /* SHA1SU0 */
13299         genfn = gen_helper_crypto_sha1su0;
13300         feature = dc_isar_feature(aa64_sha1, s);
13301         break;
13302     case 4: /* SHA256H */
13303         genfn = gen_helper_crypto_sha256h;
13304         feature = dc_isar_feature(aa64_sha256, s);
13305         break;
13306     case 5: /* SHA256H2 */
13307         genfn = gen_helper_crypto_sha256h2;
13308         feature = dc_isar_feature(aa64_sha256, s);
13309         break;
13310     case 6: /* SHA256SU1 */
13311         genfn = gen_helper_crypto_sha256su1;
13312         feature = dc_isar_feature(aa64_sha256, s);
13313         break;
13314     default:
13315         unallocated_encoding(s);
13316         return;
13317     }
13318 
13319     if (!feature) {
13320         unallocated_encoding(s);
13321         return;
13322     }
13323 
13324     if (!fp_access_check(s)) {
13325         return;
13326     }
13327     gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13328 }
13329 
13330 /* Crypto two-reg SHA
13331  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13332  * +-----------------+------+-----------+--------+-----+------+------+
13333  * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13334  * +-----------------+------+-----------+--------+-----+------+------+
13335  */
13336 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13337 {
13338     int size = extract32(insn, 22, 2);
13339     int opcode = extract32(insn, 12, 5);
13340     int rn = extract32(insn, 5, 5);
13341     int rd = extract32(insn, 0, 5);
13342     gen_helper_gvec_2 *genfn;
13343     bool feature;
13344 
13345     if (size != 0) {
13346         unallocated_encoding(s);
13347         return;
13348     }
13349 
13350     switch (opcode) {
13351     case 0: /* SHA1H */
13352         feature = dc_isar_feature(aa64_sha1, s);
13353         genfn = gen_helper_crypto_sha1h;
13354         break;
13355     case 1: /* SHA1SU1 */
13356         feature = dc_isar_feature(aa64_sha1, s);
13357         genfn = gen_helper_crypto_sha1su1;
13358         break;
13359     case 2: /* SHA256SU0 */
13360         feature = dc_isar_feature(aa64_sha256, s);
13361         genfn = gen_helper_crypto_sha256su0;
13362         break;
13363     default:
13364         unallocated_encoding(s);
13365         return;
13366     }
13367 
13368     if (!feature) {
13369         unallocated_encoding(s);
13370         return;
13371     }
13372 
13373     if (!fp_access_check(s)) {
13374         return;
13375     }
13376     gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
13377 }
13378 
13379 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
13380 {
13381     tcg_gen_rotli_i64(d, m, 1);
13382     tcg_gen_xor_i64(d, d, n);
13383 }
13384 
13385 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
13386 {
13387     tcg_gen_rotli_vec(vece, d, m, 1);
13388     tcg_gen_xor_vec(vece, d, d, n);
13389 }
13390 
13391 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
13392                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
13393 {
13394     static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
13395     static const GVecGen3 op = {
13396         .fni8 = gen_rax1_i64,
13397         .fniv = gen_rax1_vec,
13398         .opt_opc = vecop_list,
13399         .fno = gen_helper_crypto_rax1,
13400         .vece = MO_64,
13401     };
13402     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
13403 }
13404 
13405 /* Crypto three-reg SHA512
13406  *  31                   21 20  16 15  14  13 12  11  10  9    5 4    0
13407  * +-----------------------+------+---+---+-----+--------+------+------+
13408  * | 1 1 0 0 1 1 1 0 0 1 1 |  Rm  | 1 | O | 0 0 | opcode |  Rn  |  Rd  |
13409  * +-----------------------+------+---+---+-----+--------+------+------+
13410  */
13411 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13412 {
13413     int opcode = extract32(insn, 10, 2);
13414     int o =  extract32(insn, 14, 1);
13415     int rm = extract32(insn, 16, 5);
13416     int rn = extract32(insn, 5, 5);
13417     int rd = extract32(insn, 0, 5);
13418     bool feature;
13419     gen_helper_gvec_3 *oolfn = NULL;
13420     GVecGen3Fn *gvecfn = NULL;
13421 
13422     if (o == 0) {
13423         switch (opcode) {
13424         case 0: /* SHA512H */
13425             feature = dc_isar_feature(aa64_sha512, s);
13426             oolfn = gen_helper_crypto_sha512h;
13427             break;
13428         case 1: /* SHA512H2 */
13429             feature = dc_isar_feature(aa64_sha512, s);
13430             oolfn = gen_helper_crypto_sha512h2;
13431             break;
13432         case 2: /* SHA512SU1 */
13433             feature = dc_isar_feature(aa64_sha512, s);
13434             oolfn = gen_helper_crypto_sha512su1;
13435             break;
13436         case 3: /* RAX1 */
13437             feature = dc_isar_feature(aa64_sha3, s);
13438             gvecfn = gen_gvec_rax1;
13439             break;
13440         default:
13441             g_assert_not_reached();
13442         }
13443     } else {
13444         switch (opcode) {
13445         case 0: /* SM3PARTW1 */
13446             feature = dc_isar_feature(aa64_sm3, s);
13447             oolfn = gen_helper_crypto_sm3partw1;
13448             break;
13449         case 1: /* SM3PARTW2 */
13450             feature = dc_isar_feature(aa64_sm3, s);
13451             oolfn = gen_helper_crypto_sm3partw2;
13452             break;
13453         case 2: /* SM4EKEY */
13454             feature = dc_isar_feature(aa64_sm4, s);
13455             oolfn = gen_helper_crypto_sm4ekey;
13456             break;
13457         default:
13458             unallocated_encoding(s);
13459             return;
13460         }
13461     }
13462 
13463     if (!feature) {
13464         unallocated_encoding(s);
13465         return;
13466     }
13467 
13468     if (!fp_access_check(s)) {
13469         return;
13470     }
13471 
13472     if (oolfn) {
13473         gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
13474     } else {
13475         gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
13476     }
13477 }
13478 
13479 /* Crypto two-reg SHA512
13480  *  31                                     12  11  10  9    5 4    0
13481  * +-----------------------------------------+--------+------+------+
13482  * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode |  Rn  |  Rd  |
13483  * +-----------------------------------------+--------+------+------+
13484  */
13485 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13486 {
13487     int opcode = extract32(insn, 10, 2);
13488     int rn = extract32(insn, 5, 5);
13489     int rd = extract32(insn, 0, 5);
13490     bool feature;
13491 
13492     switch (opcode) {
13493     case 0: /* SHA512SU0 */
13494         feature = dc_isar_feature(aa64_sha512, s);
13495         break;
13496     case 1: /* SM4E */
13497         feature = dc_isar_feature(aa64_sm4, s);
13498         break;
13499     default:
13500         unallocated_encoding(s);
13501         return;
13502     }
13503 
13504     if (!feature) {
13505         unallocated_encoding(s);
13506         return;
13507     }
13508 
13509     if (!fp_access_check(s)) {
13510         return;
13511     }
13512 
13513     switch (opcode) {
13514     case 0: /* SHA512SU0 */
13515         gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
13516         break;
13517     case 1: /* SM4E */
13518         gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
13519         break;
13520     default:
13521         g_assert_not_reached();
13522     }
13523 }
13524 
13525 /* Crypto four-register
13526  *  31               23 22 21 20  16 15  14  10 9    5 4    0
13527  * +-------------------+-----+------+---+------+------+------+
13528  * | 1 1 0 0 1 1 1 0 0 | Op0 |  Rm  | 0 |  Ra  |  Rn  |  Rd  |
13529  * +-------------------+-----+------+---+------+------+------+
13530  */
13531 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13532 {
13533     int op0 = extract32(insn, 21, 2);
13534     int rm = extract32(insn, 16, 5);
13535     int ra = extract32(insn, 10, 5);
13536     int rn = extract32(insn, 5, 5);
13537     int rd = extract32(insn, 0, 5);
13538     bool feature;
13539 
13540     switch (op0) {
13541     case 0: /* EOR3 */
13542     case 1: /* BCAX */
13543         feature = dc_isar_feature(aa64_sha3, s);
13544         break;
13545     case 2: /* SM3SS1 */
13546         feature = dc_isar_feature(aa64_sm3, s);
13547         break;
13548     default:
13549         unallocated_encoding(s);
13550         return;
13551     }
13552 
13553     if (!feature) {
13554         unallocated_encoding(s);
13555         return;
13556     }
13557 
13558     if (!fp_access_check(s)) {
13559         return;
13560     }
13561 
13562     if (op0 < 2) {
13563         TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13564         int pass;
13565 
13566         tcg_op1 = tcg_temp_new_i64();
13567         tcg_op2 = tcg_temp_new_i64();
13568         tcg_op3 = tcg_temp_new_i64();
13569         tcg_res[0] = tcg_temp_new_i64();
13570         tcg_res[1] = tcg_temp_new_i64();
13571 
13572         for (pass = 0; pass < 2; pass++) {
13573             read_vec_element(s, tcg_op1, rn, pass, MO_64);
13574             read_vec_element(s, tcg_op2, rm, pass, MO_64);
13575             read_vec_element(s, tcg_op3, ra, pass, MO_64);
13576 
13577             if (op0 == 0) {
13578                 /* EOR3 */
13579                 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13580             } else {
13581                 /* BCAX */
13582                 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13583             }
13584             tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13585         }
13586         write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13587         write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13588     } else {
13589         TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13590 
13591         tcg_op1 = tcg_temp_new_i32();
13592         tcg_op2 = tcg_temp_new_i32();
13593         tcg_op3 = tcg_temp_new_i32();
13594         tcg_res = tcg_temp_new_i32();
13595         tcg_zero = tcg_constant_i32(0);
13596 
13597         read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13598         read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13599         read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13600 
13601         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13602         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13603         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13604         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13605 
13606         write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13607         write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13608         write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13609         write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13610     }
13611 }
13612 
13613 /* Crypto XAR
13614  *  31                   21 20  16 15    10 9    5 4    0
13615  * +-----------------------+------+--------+------+------+
13616  * | 1 1 0 0 1 1 1 0 1 0 0 |  Rm  |  imm6  |  Rn  |  Rd  |
13617  * +-----------------------+------+--------+------+------+
13618  */
13619 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13620 {
13621     int rm = extract32(insn, 16, 5);
13622     int imm6 = extract32(insn, 10, 6);
13623     int rn = extract32(insn, 5, 5);
13624     int rd = extract32(insn, 0, 5);
13625 
13626     if (!dc_isar_feature(aa64_sha3, s)) {
13627         unallocated_encoding(s);
13628         return;
13629     }
13630 
13631     if (!fp_access_check(s)) {
13632         return;
13633     }
13634 
13635     gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
13636                  vec_full_reg_offset(s, rn),
13637                  vec_full_reg_offset(s, rm), imm6, 16,
13638                  vec_full_reg_size(s));
13639 }
13640 
13641 /* Crypto three-reg imm2
13642  *  31                   21 20  16 15  14 13 12  11  10  9    5 4    0
13643  * +-----------------------+------+-----+------+--------+------+------+
13644  * | 1 1 0 0 1 1 1 0 0 1 0 |  Rm  | 1 0 | imm2 | opcode |  Rn  |  Rd  |
13645  * +-----------------------+------+-----+------+--------+------+------+
13646  */
13647 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13648 {
13649     static gen_helper_gvec_3 * const fns[4] = {
13650         gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
13651         gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
13652     };
13653     int opcode = extract32(insn, 10, 2);
13654     int imm2 = extract32(insn, 12, 2);
13655     int rm = extract32(insn, 16, 5);
13656     int rn = extract32(insn, 5, 5);
13657     int rd = extract32(insn, 0, 5);
13658 
13659     if (!dc_isar_feature(aa64_sm3, s)) {
13660         unallocated_encoding(s);
13661         return;
13662     }
13663 
13664     if (!fp_access_check(s)) {
13665         return;
13666     }
13667 
13668     gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
13669 }
13670 
13671 /* C3.6 Data processing - SIMD, inc Crypto
13672  *
13673  * As the decode gets a little complex we are using a table based
13674  * approach for this part of the decode.
13675  */
13676 static const AArch64DecodeTable data_proc_simd[] = {
13677     /* pattern  ,  mask     ,  fn                        */
13678     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13679     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13680     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13681     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13682     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13683     { 0x0e000400, 0x9fe08400, disas_simd_copy },
13684     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13685     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13686     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13687     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13688     { 0x0e000000, 0xbf208c00, disas_simd_tb },
13689     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13690     { 0x2e000000, 0xbf208400, disas_simd_ext },
13691     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13692     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13693     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13694     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13695     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13696     { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13697     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13698     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13699     { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13700     { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13701     { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13702     { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13703     { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13704     { 0xce000000, 0xff808000, disas_crypto_four_reg },
13705     { 0xce800000, 0xffe00000, disas_crypto_xar },
13706     { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13707     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13708     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13709     { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13710     { 0x00000000, 0x00000000, NULL }
13711 };
13712 
13713 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13714 {
13715     /* Note that this is called with all non-FP cases from
13716      * table C3-6 so it must UNDEF for entries not specifically
13717      * allocated to instructions in that table.
13718      */
13719     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13720     if (fn) {
13721         fn(s, insn);
13722     } else {
13723         unallocated_encoding(s);
13724     }
13725 }
13726 
13727 /* C3.6 Data processing - SIMD and floating point */
13728 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13729 {
13730     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13731         disas_data_proc_fp(s, insn);
13732     } else {
13733         /* SIMD, including crypto */
13734         disas_data_proc_simd(s, insn);
13735     }
13736 }
13737 
13738 static bool trans_OK(DisasContext *s, arg_OK *a)
13739 {
13740     return true;
13741 }
13742 
13743 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13744 {
13745     s->is_nonstreaming = true;
13746     return true;
13747 }
13748 
13749 /**
13750  * is_guarded_page:
13751  * @env: The cpu environment
13752  * @s: The DisasContext
13753  *
13754  * Return true if the page is guarded.
13755  */
13756 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13757 {
13758     uint64_t addr = s->base.pc_first;
13759 #ifdef CONFIG_USER_ONLY
13760     return page_get_flags(addr) & PAGE_BTI;
13761 #else
13762     CPUTLBEntryFull *full;
13763     void *host;
13764     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13765     int flags;
13766 
13767     /*
13768      * We test this immediately after reading an insn, which means
13769      * that the TLB entry must be present and valid, and thus this
13770      * access will never raise an exception.
13771      */
13772     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13773                               false, &host, &full, 0);
13774     assert(!(flags & TLB_INVALID_MASK));
13775 
13776     return full->guarded;
13777 #endif
13778 }
13779 
13780 /**
13781  * btype_destination_ok:
13782  * @insn: The instruction at the branch destination
13783  * @bt: SCTLR_ELx.BT
13784  * @btype: PSTATE.BTYPE, and is non-zero
13785  *
13786  * On a guarded page, there are a limited number of insns
13787  * that may be present at the branch target:
13788  *   - branch target identifiers,
13789  *   - paciasp, pacibsp,
13790  *   - BRK insn
13791  *   - HLT insn
13792  * Anything else causes a Branch Target Exception.
13793  *
13794  * Return true if the branch is compatible, false to raise BTITRAP.
13795  */
13796 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13797 {
13798     if ((insn & 0xfffff01fu) == 0xd503201fu) {
13799         /* HINT space */
13800         switch (extract32(insn, 5, 7)) {
13801         case 0b011001: /* PACIASP */
13802         case 0b011011: /* PACIBSP */
13803             /*
13804              * If SCTLR_ELx.BT, then PACI*SP are not compatible
13805              * with btype == 3.  Otherwise all btype are ok.
13806              */
13807             return !bt || btype != 3;
13808         case 0b100000: /* BTI */
13809             /* Not compatible with any btype.  */
13810             return false;
13811         case 0b100010: /* BTI c */
13812             /* Not compatible with btype == 3 */
13813             return btype != 3;
13814         case 0b100100: /* BTI j */
13815             /* Not compatible with btype == 2 */
13816             return btype != 2;
13817         case 0b100110: /* BTI jc */
13818             /* Compatible with any btype.  */
13819             return true;
13820         }
13821     } else {
13822         switch (insn & 0xffe0001fu) {
13823         case 0xd4200000u: /* BRK */
13824         case 0xd4400000u: /* HLT */
13825             /* Give priority to the breakpoint exception.  */
13826             return true;
13827         }
13828     }
13829     return false;
13830 }
13831 
13832 /* C3.1 A64 instruction index by encoding */
13833 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
13834 {
13835     switch (extract32(insn, 25, 4)) {
13836     case 0x5:
13837     case 0xd:      /* Data processing - register */
13838         disas_data_proc_reg(s, insn);
13839         break;
13840     case 0x7:
13841     case 0xf:      /* Data processing - SIMD and floating point */
13842         disas_data_proc_simd_fp(s, insn);
13843         break;
13844     default:
13845         unallocated_encoding(s);
13846         break;
13847     }
13848 }
13849 
13850 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13851                                           CPUState *cpu)
13852 {
13853     DisasContext *dc = container_of(dcbase, DisasContext, base);
13854     CPUARMState *env = cpu->env_ptr;
13855     ARMCPU *arm_cpu = env_archcpu(env);
13856     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
13857     int bound, core_mmu_idx;
13858 
13859     dc->isar = &arm_cpu->isar;
13860     dc->condjmp = 0;
13861     dc->pc_save = dc->base.pc_first;
13862     dc->aarch64 = true;
13863     dc->thumb = false;
13864     dc->sctlr_b = 0;
13865     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
13866     dc->condexec_mask = 0;
13867     dc->condexec_cond = 0;
13868     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
13869     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
13870     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
13871     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
13872     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
13873     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13874 #if !defined(CONFIG_USER_ONLY)
13875     dc->user = (dc->current_el == 0);
13876 #endif
13877     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
13878     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
13879     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
13880     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
13881     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
13882     dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET);
13883     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
13884     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
13885     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
13886     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
13887     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
13888     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
13889     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
13890     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
13891     dc->ata = EX_TBFLAG_A64(tb_flags, ATA);
13892     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
13893     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
13894     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
13895     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
13896     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
13897     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
13898     dc->vec_len = 0;
13899     dc->vec_stride = 0;
13900     dc->cp_regs = arm_cpu->cp_regs;
13901     dc->features = env->features;
13902     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
13903 
13904 #ifdef CONFIG_USER_ONLY
13905     /* In sve_probe_page, we assume TBI is enabled. */
13906     tcg_debug_assert(dc->tbid & 1);
13907 #endif
13908 
13909     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
13910 
13911     /* Single step state. The code-generation logic here is:
13912      *  SS_ACTIVE == 0:
13913      *   generate code with no special handling for single-stepping (except
13914      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13915      *   this happens anyway because those changes are all system register or
13916      *   PSTATE writes).
13917      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13918      *   emit code for one insn
13919      *   emit code to clear PSTATE.SS
13920      *   emit code to generate software step exception for completed step
13921      *   end TB (as usual for having generated an exception)
13922      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13923      *   emit code to generate a software step exception
13924      *   end the TB
13925      */
13926     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
13927     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
13928     dc->is_ldex = false;
13929 
13930     /* Bound the number of insns to execute to those left on the page.  */
13931     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13932 
13933     /* If architectural single step active, limit to 1.  */
13934     if (dc->ss_active) {
13935         bound = 1;
13936     }
13937     dc->base.max_insns = MIN(dc->base.max_insns, bound);
13938 }
13939 
13940 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13941 {
13942 }
13943 
13944 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13945 {
13946     DisasContext *dc = container_of(dcbase, DisasContext, base);
13947     target_ulong pc_arg = dc->base.pc_next;
13948 
13949     if (tb_cflags(dcbase->tb) & CF_PCREL) {
13950         pc_arg &= ~TARGET_PAGE_MASK;
13951     }
13952     tcg_gen_insn_start(pc_arg, 0, 0);
13953     dc->insn_start = tcg_last_op();
13954 }
13955 
13956 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13957 {
13958     DisasContext *s = container_of(dcbase, DisasContext, base);
13959     CPUARMState *env = cpu->env_ptr;
13960     uint64_t pc = s->base.pc_next;
13961     uint32_t insn;
13962 
13963     /* Singlestep exceptions have the highest priority. */
13964     if (s->ss_active && !s->pstate_ss) {
13965         /* Singlestep state is Active-pending.
13966          * If we're in this state at the start of a TB then either
13967          *  a) we just took an exception to an EL which is being debugged
13968          *     and this is the first insn in the exception handler
13969          *  b) debug exceptions were masked and we just unmasked them
13970          *     without changing EL (eg by clearing PSTATE.D)
13971          * In either case we're going to take a swstep exception in the
13972          * "did not step an insn" case, and so the syndrome ISV and EX
13973          * bits should be zero.
13974          */
13975         assert(s->base.num_insns == 1);
13976         gen_swstep_exception(s, 0, 0);
13977         s->base.is_jmp = DISAS_NORETURN;
13978         s->base.pc_next = pc + 4;
13979         return;
13980     }
13981 
13982     if (pc & 3) {
13983         /*
13984          * PC alignment fault.  This has priority over the instruction abort
13985          * that we would receive from a translation fault via arm_ldl_code.
13986          * This should only be possible after an indirect branch, at the
13987          * start of the TB.
13988          */
13989         assert(s->base.num_insns == 1);
13990         gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc));
13991         s->base.is_jmp = DISAS_NORETURN;
13992         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
13993         return;
13994     }
13995 
13996     s->pc_curr = pc;
13997     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
13998     s->insn = insn;
13999     s->base.pc_next = pc + 4;
14000 
14001     s->fp_access_checked = false;
14002     s->sve_access_checked = false;
14003 
14004     if (s->pstate_il) {
14005         /*
14006          * Illegal execution state. This has priority over BTI
14007          * exceptions, but comes after instruction abort exceptions.
14008          */
14009         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14010         return;
14011     }
14012 
14013     if (dc_isar_feature(aa64_bti, s)) {
14014         if (s->base.num_insns == 1) {
14015             /*
14016              * At the first insn of the TB, compute s->guarded_page.
14017              * We delayed computing this until successfully reading
14018              * the first insn of the TB, above.  This (mostly) ensures
14019              * that the softmmu tlb entry has been populated, and the
14020              * page table GP bit is available.
14021              *
14022              * Note that we need to compute this even if btype == 0,
14023              * because this value is used for BR instructions later
14024              * where ENV is not available.
14025              */
14026             s->guarded_page = is_guarded_page(env, s);
14027 
14028             /* First insn can have btype set to non-zero.  */
14029             tcg_debug_assert(s->btype >= 0);
14030 
14031             /*
14032              * Note that the Branch Target Exception has fairly high
14033              * priority -- below debugging exceptions but above most
14034              * everything else.  This allows us to handle this now
14035              * instead of waiting until the insn is otherwise decoded.
14036              */
14037             if (s->btype != 0
14038                 && s->guarded_page
14039                 && !btype_destination_ok(insn, s->bt, s->btype)) {
14040                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14041                 return;
14042             }
14043         } else {
14044             /* Not the first insn: btype must be 0.  */
14045             tcg_debug_assert(s->btype == 0);
14046         }
14047     }
14048 
14049     s->is_nonstreaming = false;
14050     if (s->sme_trap_nonstreaming) {
14051         disas_sme_fa64(s, insn);
14052     }
14053 
14054     if (!disas_a64(s, insn) &&
14055         !disas_sme(s, insn) &&
14056         !disas_sve(s, insn)) {
14057         disas_a64_legacy(s, insn);
14058     }
14059 
14060     /*
14061      * After execution of most insns, btype is reset to 0.
14062      * Note that we set btype == -1 when the insn sets btype.
14063      */
14064     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14065         reset_btype(s);
14066     }
14067 }
14068 
14069 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14070 {
14071     DisasContext *dc = container_of(dcbase, DisasContext, base);
14072 
14073     if (unlikely(dc->ss_active)) {
14074         /* Note that this means single stepping WFI doesn't halt the CPU.
14075          * For conditional branch insns this is harmless unreachable code as
14076          * gen_goto_tb() has already handled emitting the debug exception
14077          * (and thus a tb-jump is not possible when singlestepping).
14078          */
14079         switch (dc->base.is_jmp) {
14080         default:
14081             gen_a64_update_pc(dc, 4);
14082             /* fall through */
14083         case DISAS_EXIT:
14084         case DISAS_JUMP:
14085             gen_step_complete_exception(dc);
14086             break;
14087         case DISAS_NORETURN:
14088             break;
14089         }
14090     } else {
14091         switch (dc->base.is_jmp) {
14092         case DISAS_NEXT:
14093         case DISAS_TOO_MANY:
14094             gen_goto_tb(dc, 1, 4);
14095             break;
14096         default:
14097         case DISAS_UPDATE_EXIT:
14098             gen_a64_update_pc(dc, 4);
14099             /* fall through */
14100         case DISAS_EXIT:
14101             tcg_gen_exit_tb(NULL, 0);
14102             break;
14103         case DISAS_UPDATE_NOCHAIN:
14104             gen_a64_update_pc(dc, 4);
14105             /* fall through */
14106         case DISAS_JUMP:
14107             tcg_gen_lookup_and_goto_ptr();
14108             break;
14109         case DISAS_NORETURN:
14110         case DISAS_SWI:
14111             break;
14112         case DISAS_WFE:
14113             gen_a64_update_pc(dc, 4);
14114             gen_helper_wfe(cpu_env);
14115             break;
14116         case DISAS_YIELD:
14117             gen_a64_update_pc(dc, 4);
14118             gen_helper_yield(cpu_env);
14119             break;
14120         case DISAS_WFI:
14121             /*
14122              * This is a special case because we don't want to just halt
14123              * the CPU if trying to debug across a WFI.
14124              */
14125             gen_a64_update_pc(dc, 4);
14126             gen_helper_wfi(cpu_env, tcg_constant_i32(4));
14127             /*
14128              * The helper doesn't necessarily throw an exception, but we
14129              * must go back to the main loop to check for interrupts anyway.
14130              */
14131             tcg_gen_exit_tb(NULL, 0);
14132             break;
14133         }
14134     }
14135 }
14136 
14137 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14138                                  CPUState *cpu, FILE *logfile)
14139 {
14140     DisasContext *dc = container_of(dcbase, DisasContext, base);
14141 
14142     fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14143     target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
14144 }
14145 
14146 const TranslatorOps aarch64_translator_ops = {
14147     .init_disas_context = aarch64_tr_init_disas_context,
14148     .tb_start           = aarch64_tr_tb_start,
14149     .insn_start         = aarch64_tr_insn_start,
14150     .translate_insn     = aarch64_tr_translate_insn,
14151     .tb_stop            = aarch64_tr_tb_stop,
14152     .disas_log          = aarch64_tr_disas_log,
14153 };
14154