xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 0f46ebee)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 4-operand operation using an out-of-line helper.  */
728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
729                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
730 {
731     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
732                        vec_full_reg_offset(s, rn),
733                        vec_full_reg_offset(s, rm),
734                        vec_full_reg_offset(s, ra),
735                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
736 }
737 
738 /*
739  * Expand a 4-operand + fpstatus pointer + simd data value operation using
740  * an out-of-line helper.
741  */
742 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
743                               int rm, int ra, bool is_fp16, int data,
744                               gen_helper_gvec_4_ptr *fn)
745 {
746     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
747     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
748                        vec_full_reg_offset(s, rn),
749                        vec_full_reg_offset(s, rm),
750                        vec_full_reg_offset(s, ra), fpst,
751                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
752 }
753 
754 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
755  * than the 32 bit equivalent.
756  */
757 static inline void gen_set_NZ64(TCGv_i64 result)
758 {
759     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
760     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
761 }
762 
763 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
764 static inline void gen_logic_CC(int sf, TCGv_i64 result)
765 {
766     if (sf) {
767         gen_set_NZ64(result);
768     } else {
769         tcg_gen_extrl_i64_i32(cpu_ZF, result);
770         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
771     }
772     tcg_gen_movi_i32(cpu_CF, 0);
773     tcg_gen_movi_i32(cpu_VF, 0);
774 }
775 
776 /* dest = T0 + T1; compute C, N, V and Z flags */
777 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
778 {
779     TCGv_i64 result, flag, tmp;
780     result = tcg_temp_new_i64();
781     flag = tcg_temp_new_i64();
782     tmp = tcg_temp_new_i64();
783 
784     tcg_gen_movi_i64(tmp, 0);
785     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
786 
787     tcg_gen_extrl_i64_i32(cpu_CF, flag);
788 
789     gen_set_NZ64(result);
790 
791     tcg_gen_xor_i64(flag, result, t0);
792     tcg_gen_xor_i64(tmp, t0, t1);
793     tcg_gen_andc_i64(flag, flag, tmp);
794     tcg_gen_extrh_i64_i32(cpu_VF, flag);
795 
796     tcg_gen_mov_i64(dest, result);
797 }
798 
799 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
800 {
801     TCGv_i32 t0_32 = tcg_temp_new_i32();
802     TCGv_i32 t1_32 = tcg_temp_new_i32();
803     TCGv_i32 tmp = tcg_temp_new_i32();
804 
805     tcg_gen_movi_i32(tmp, 0);
806     tcg_gen_extrl_i64_i32(t0_32, t0);
807     tcg_gen_extrl_i64_i32(t1_32, t1);
808     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
809     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
810     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
811     tcg_gen_xor_i32(tmp, t0_32, t1_32);
812     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
813     tcg_gen_extu_i32_i64(dest, cpu_NF);
814 }
815 
816 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
817 {
818     if (sf) {
819         gen_add64_CC(dest, t0, t1);
820     } else {
821         gen_add32_CC(dest, t0, t1);
822     }
823 }
824 
825 /* dest = T0 - T1; compute C, N, V and Z flags */
826 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
827 {
828     /* 64 bit arithmetic */
829     TCGv_i64 result, flag, tmp;
830 
831     result = tcg_temp_new_i64();
832     flag = tcg_temp_new_i64();
833     tcg_gen_sub_i64(result, t0, t1);
834 
835     gen_set_NZ64(result);
836 
837     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
838     tcg_gen_extrl_i64_i32(cpu_CF, flag);
839 
840     tcg_gen_xor_i64(flag, result, t0);
841     tmp = tcg_temp_new_i64();
842     tcg_gen_xor_i64(tmp, t0, t1);
843     tcg_gen_and_i64(flag, flag, tmp);
844     tcg_gen_extrh_i64_i32(cpu_VF, flag);
845     tcg_gen_mov_i64(dest, result);
846 }
847 
848 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
849 {
850     /* 32 bit arithmetic */
851     TCGv_i32 t0_32 = tcg_temp_new_i32();
852     TCGv_i32 t1_32 = tcg_temp_new_i32();
853     TCGv_i32 tmp;
854 
855     tcg_gen_extrl_i64_i32(t0_32, t0);
856     tcg_gen_extrl_i64_i32(t1_32, t1);
857     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
858     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
859     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
860     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
861     tmp = tcg_temp_new_i32();
862     tcg_gen_xor_i32(tmp, t0_32, t1_32);
863     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
864     tcg_gen_extu_i32_i64(dest, cpu_NF);
865 }
866 
867 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
868 {
869     if (sf) {
870         gen_sub64_CC(dest, t0, t1);
871     } else {
872         gen_sub32_CC(dest, t0, t1);
873     }
874 }
875 
876 /* dest = T0 + T1 + CF; do not compute flags. */
877 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
878 {
879     TCGv_i64 flag = tcg_temp_new_i64();
880     tcg_gen_extu_i32_i64(flag, cpu_CF);
881     tcg_gen_add_i64(dest, t0, t1);
882     tcg_gen_add_i64(dest, dest, flag);
883 
884     if (!sf) {
885         tcg_gen_ext32u_i64(dest, dest);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
890 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     if (sf) {
893         TCGv_i64 result = tcg_temp_new_i64();
894         TCGv_i64 cf_64 = tcg_temp_new_i64();
895         TCGv_i64 vf_64 = tcg_temp_new_i64();
896         TCGv_i64 tmp = tcg_temp_new_i64();
897         TCGv_i64 zero = tcg_constant_i64(0);
898 
899         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
900         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
901         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
902         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
903         gen_set_NZ64(result);
904 
905         tcg_gen_xor_i64(vf_64, result, t0);
906         tcg_gen_xor_i64(tmp, t0, t1);
907         tcg_gen_andc_i64(vf_64, vf_64, tmp);
908         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
909 
910         tcg_gen_mov_i64(dest, result);
911     } else {
912         TCGv_i32 t0_32 = tcg_temp_new_i32();
913         TCGv_i32 t1_32 = tcg_temp_new_i32();
914         TCGv_i32 tmp = tcg_temp_new_i32();
915         TCGv_i32 zero = tcg_constant_i32(0);
916 
917         tcg_gen_extrl_i64_i32(t0_32, t0);
918         tcg_gen_extrl_i64_i32(t1_32, t1);
919         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
920         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
921 
922         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
923         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
924         tcg_gen_xor_i32(tmp, t0_32, t1_32);
925         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
926         tcg_gen_extu_i32_i64(dest, cpu_NF);
927     }
928 }
929 
930 /*
931  * Load/Store generators
932  */
933 
934 /*
935  * Store from GPR register to memory.
936  */
937 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
938                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
939                              bool iss_valid,
940                              unsigned int iss_srt,
941                              bool iss_sf, bool iss_ar)
942 {
943     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
944 
945     if (iss_valid) {
946         uint32_t syn;
947 
948         syn = syn_data_abort_with_iss(0,
949                                       (memop & MO_SIZE),
950                                       false,
951                                       iss_srt,
952                                       iss_sf,
953                                       iss_ar,
954                                       0, 0, 0, 0, 0, false);
955         disas_set_insn_syndrome(s, syn);
956     }
957 }
958 
959 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
960                       TCGv_i64 tcg_addr, MemOp memop,
961                       bool iss_valid,
962                       unsigned int iss_srt,
963                       bool iss_sf, bool iss_ar)
964 {
965     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
966                      iss_valid, iss_srt, iss_sf, iss_ar);
967 }
968 
969 /*
970  * Load from memory to GPR register
971  */
972 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
973                              MemOp memop, bool extend, int memidx,
974                              bool iss_valid, unsigned int iss_srt,
975                              bool iss_sf, bool iss_ar)
976 {
977     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
978 
979     if (extend && (memop & MO_SIGN)) {
980         g_assert((memop & MO_SIZE) <= MO_32);
981         tcg_gen_ext32u_i64(dest, dest);
982     }
983 
984     if (iss_valid) {
985         uint32_t syn;
986 
987         syn = syn_data_abort_with_iss(0,
988                                       (memop & MO_SIZE),
989                                       (memop & MO_SIGN) != 0,
990                                       iss_srt,
991                                       iss_sf,
992                                       iss_ar,
993                                       0, 0, 0, 0, 0, false);
994         disas_set_insn_syndrome(s, syn);
995     }
996 }
997 
998 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
999                       MemOp memop, bool extend,
1000                       bool iss_valid, unsigned int iss_srt,
1001                       bool iss_sf, bool iss_ar)
1002 {
1003     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1004                      iss_valid, iss_srt, iss_sf, iss_ar);
1005 }
1006 
1007 /*
1008  * Store from FP register to memory
1009  */
1010 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1011 {
1012     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1013     TCGv_i64 tmplo = tcg_temp_new_i64();
1014 
1015     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1016 
1017     if ((mop & MO_SIZE) < MO_128) {
1018         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1019     } else {
1020         TCGv_i64 tmphi = tcg_temp_new_i64();
1021         TCGv_i128 t16 = tcg_temp_new_i128();
1022 
1023         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1024         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1025 
1026         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1027     }
1028 }
1029 
1030 /*
1031  * Load from memory to FP register
1032  */
1033 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1034 {
1035     /* This always zero-extends and writes to a full 128 bit wide vector */
1036     TCGv_i64 tmplo = tcg_temp_new_i64();
1037     TCGv_i64 tmphi = NULL;
1038 
1039     if ((mop & MO_SIZE) < MO_128) {
1040         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1041     } else {
1042         TCGv_i128 t16 = tcg_temp_new_i128();
1043 
1044         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1045 
1046         tmphi = tcg_temp_new_i64();
1047         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1048     }
1049 
1050     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1051 
1052     if (tmphi) {
1053         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1054     }
1055     clear_vec_high(s, tmphi != NULL, destidx);
1056 }
1057 
1058 /*
1059  * Vector load/store helpers.
1060  *
1061  * The principal difference between this and a FP load is that we don't
1062  * zero extend as we are filling a partial chunk of the vector register.
1063  * These functions don't support 128 bit loads/stores, which would be
1064  * normal load/store operations.
1065  *
1066  * The _i32 versions are useful when operating on 32 bit quantities
1067  * (eg for floating point single or using Neon helper functions).
1068  */
1069 
1070 /* Get value of an element within a vector register */
1071 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1072                              int element, MemOp memop)
1073 {
1074     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1075     switch ((unsigned)memop) {
1076     case MO_8:
1077         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1078         break;
1079     case MO_16:
1080         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1081         break;
1082     case MO_32:
1083         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1084         break;
1085     case MO_8|MO_SIGN:
1086         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1087         break;
1088     case MO_16|MO_SIGN:
1089         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1090         break;
1091     case MO_32|MO_SIGN:
1092         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1093         break;
1094     case MO_64:
1095     case MO_64|MO_SIGN:
1096         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     default:
1099         g_assert_not_reached();
1100     }
1101 }
1102 
1103 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1104                                  int element, MemOp memop)
1105 {
1106     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1107     switch (memop) {
1108     case MO_8:
1109         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1110         break;
1111     case MO_16:
1112         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1113         break;
1114     case MO_8|MO_SIGN:
1115         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1116         break;
1117     case MO_16|MO_SIGN:
1118         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1119         break;
1120     case MO_32:
1121     case MO_32|MO_SIGN:
1122         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     default:
1125         g_assert_not_reached();
1126     }
1127 }
1128 
1129 /* Set value of an element within a vector register */
1130 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1131                               int element, MemOp memop)
1132 {
1133     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1134     switch (memop) {
1135     case MO_8:
1136         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1137         break;
1138     case MO_16:
1139         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1140         break;
1141     case MO_32:
1142         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1143         break;
1144     case MO_64:
1145         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1146         break;
1147     default:
1148         g_assert_not_reached();
1149     }
1150 }
1151 
1152 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1153                                   int destidx, int element, MemOp memop)
1154 {
1155     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1156     switch (memop) {
1157     case MO_8:
1158         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1159         break;
1160     case MO_16:
1161         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1162         break;
1163     case MO_32:
1164         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1165         break;
1166     default:
1167         g_assert_not_reached();
1168     }
1169 }
1170 
1171 /* Store from vector register to memory */
1172 static void do_vec_st(DisasContext *s, int srcidx, int element,
1173                       TCGv_i64 tcg_addr, MemOp mop)
1174 {
1175     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1176 
1177     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1178     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1179 }
1180 
1181 /* Load from memory to vector register */
1182 static void do_vec_ld(DisasContext *s, int destidx, int element,
1183                       TCGv_i64 tcg_addr, MemOp mop)
1184 {
1185     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1186 
1187     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1188     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1189 }
1190 
1191 /* Check that FP/Neon access is enabled. If it is, return
1192  * true. If not, emit code to generate an appropriate exception,
1193  * and return false; the caller should not emit any code for
1194  * the instruction. Note that this check must happen after all
1195  * unallocated-encoding checks (otherwise the syndrome information
1196  * for the resulting exception will be incorrect).
1197  */
1198 static bool fp_access_check_only(DisasContext *s)
1199 {
1200     if (s->fp_excp_el) {
1201         assert(!s->fp_access_checked);
1202         s->fp_access_checked = true;
1203 
1204         gen_exception_insn_el(s, 0, EXCP_UDEF,
1205                               syn_fp_access_trap(1, 0xe, false, 0),
1206                               s->fp_excp_el);
1207         return false;
1208     }
1209     s->fp_access_checked = true;
1210     return true;
1211 }
1212 
1213 static bool fp_access_check(DisasContext *s)
1214 {
1215     if (!fp_access_check_only(s)) {
1216         return false;
1217     }
1218     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1219         gen_exception_insn(s, 0, EXCP_UDEF,
1220                            syn_smetrap(SME_ET_Streaming, false));
1221         return false;
1222     }
1223     return true;
1224 }
1225 
1226 /*
1227  * Check that SVE access is enabled.  If it is, return true.
1228  * If not, emit code to generate an appropriate exception and return false.
1229  * This function corresponds to CheckSVEEnabled().
1230  */
1231 bool sve_access_check(DisasContext *s)
1232 {
1233     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1234         assert(dc_isar_feature(aa64_sme, s));
1235         if (!sme_sm_enabled_check(s)) {
1236             goto fail_exit;
1237         }
1238     } else if (s->sve_excp_el) {
1239         gen_exception_insn_el(s, 0, EXCP_UDEF,
1240                               syn_sve_access_trap(), s->sve_excp_el);
1241         goto fail_exit;
1242     }
1243     s->sve_access_checked = true;
1244     return fp_access_check(s);
1245 
1246  fail_exit:
1247     /* Assert that we only raise one exception per instruction. */
1248     assert(!s->sve_access_checked);
1249     s->sve_access_checked = true;
1250     return false;
1251 }
1252 
1253 /*
1254  * Check that SME access is enabled, raise an exception if not.
1255  * Note that this function corresponds to CheckSMEAccess and is
1256  * only used directly for cpregs.
1257  */
1258 static bool sme_access_check(DisasContext *s)
1259 {
1260     if (s->sme_excp_el) {
1261         gen_exception_insn_el(s, 0, EXCP_UDEF,
1262                               syn_smetrap(SME_ET_AccessTrap, false),
1263                               s->sme_excp_el);
1264         return false;
1265     }
1266     return true;
1267 }
1268 
1269 /* This function corresponds to CheckSMEEnabled. */
1270 bool sme_enabled_check(DisasContext *s)
1271 {
1272     /*
1273      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1274      * to be zero when fp_excp_el has priority.  This is because we need
1275      * sme_excp_el by itself for cpregs access checks.
1276      */
1277     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1278         s->fp_access_checked = true;
1279         return sme_access_check(s);
1280     }
1281     return fp_access_check_only(s);
1282 }
1283 
1284 /* Common subroutine for CheckSMEAnd*Enabled. */
1285 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1286 {
1287     if (!sme_enabled_check(s)) {
1288         return false;
1289     }
1290     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1291         gen_exception_insn(s, 0, EXCP_UDEF,
1292                            syn_smetrap(SME_ET_NotStreaming, false));
1293         return false;
1294     }
1295     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1296         gen_exception_insn(s, 0, EXCP_UDEF,
1297                            syn_smetrap(SME_ET_InactiveZA, false));
1298         return false;
1299     }
1300     return true;
1301 }
1302 
1303 /*
1304  * Expanders for AdvSIMD translation functions.
1305  */
1306 
1307 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1308                             gen_helper_gvec_2 *fn)
1309 {
1310     if (!a->q && a->esz == MO_64) {
1311         return false;
1312     }
1313     if (fp_access_check(s)) {
1314         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1315     }
1316     return true;
1317 }
1318 
1319 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1320                             gen_helper_gvec_3 *fn)
1321 {
1322     if (!a->q && a->esz == MO_64) {
1323         return false;
1324     }
1325     if (fp_access_check(s)) {
1326         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1327     }
1328     return true;
1329 }
1330 
1331 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1332 {
1333     if (!a->q && a->esz == MO_64) {
1334         return false;
1335     }
1336     if (fp_access_check(s)) {
1337         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1338     }
1339     return true;
1340 }
1341 
1342 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1343 {
1344     if (a->esz == MO_64) {
1345         return false;
1346     }
1347     if (fp_access_check(s)) {
1348         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1349     }
1350     return true;
1351 }
1352 
1353 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1354 {
1355     if (a->esz == MO_8) {
1356         return false;
1357     }
1358     return do_gvec_fn3_no64(s, a, fn);
1359 }
1360 
1361 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1362 {
1363     if (!a->q && a->esz == MO_64) {
1364         return false;
1365     }
1366     if (fp_access_check(s)) {
1367         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1368     }
1369     return true;
1370 }
1371 
1372 /*
1373  * This utility function is for doing register extension with an
1374  * optional shift. You will likely want to pass a temporary for the
1375  * destination register. See DecodeRegExtend() in the ARM ARM.
1376  */
1377 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1378                               int option, unsigned int shift)
1379 {
1380     int extsize = extract32(option, 0, 2);
1381     bool is_signed = extract32(option, 2, 1);
1382 
1383     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1384     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1385 }
1386 
1387 static inline void gen_check_sp_alignment(DisasContext *s)
1388 {
1389     /* The AArch64 architecture mandates that (if enabled via PSTATE
1390      * or SCTLR bits) there is a check that SP is 16-aligned on every
1391      * SP-relative load or store (with an exception generated if it is not).
1392      * In line with general QEMU practice regarding misaligned accesses,
1393      * we omit these checks for the sake of guest program performance.
1394      * This function is provided as a hook so we can more easily add these
1395      * checks in future (possibly as a "favour catching guest program bugs
1396      * over speed" user selectable option).
1397      */
1398 }
1399 
1400 /*
1401  * This provides a simple table based table lookup decoder. It is
1402  * intended to be used when the relevant bits for decode are too
1403  * awkwardly placed and switch/if based logic would be confusing and
1404  * deeply nested. Since it's a linear search through the table, tables
1405  * should be kept small.
1406  *
1407  * It returns the first handler where insn & mask == pattern, or
1408  * NULL if there is no match.
1409  * The table is terminated by an empty mask (i.e. 0)
1410  */
1411 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1412                                                uint32_t insn)
1413 {
1414     const AArch64DecodeTable *tptr = table;
1415 
1416     while (tptr->mask) {
1417         if ((insn & tptr->mask) == tptr->pattern) {
1418             return tptr->disas_fn;
1419         }
1420         tptr++;
1421     }
1422     return NULL;
1423 }
1424 
1425 /*
1426  * The instruction disassembly implemented here matches
1427  * the instruction encoding classifications in chapter C4
1428  * of the ARM Architecture Reference Manual (DDI0487B_a);
1429  * classification names and decode diagrams here should generally
1430  * match up with those in the manual.
1431  */
1432 
1433 static bool trans_B(DisasContext *s, arg_i *a)
1434 {
1435     reset_btype(s);
1436     gen_goto_tb(s, 0, a->imm);
1437     return true;
1438 }
1439 
1440 static bool trans_BL(DisasContext *s, arg_i *a)
1441 {
1442     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1443     reset_btype(s);
1444     gen_goto_tb(s, 0, a->imm);
1445     return true;
1446 }
1447 
1448 
1449 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1450 {
1451     DisasLabel match;
1452     TCGv_i64 tcg_cmp;
1453 
1454     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1455     reset_btype(s);
1456 
1457     match = gen_disas_label(s);
1458     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1459                         tcg_cmp, 0, match.label);
1460     gen_goto_tb(s, 0, 4);
1461     set_disas_label(s, match);
1462     gen_goto_tb(s, 1, a->imm);
1463     return true;
1464 }
1465 
1466 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1467 {
1468     DisasLabel match;
1469     TCGv_i64 tcg_cmp;
1470 
1471     tcg_cmp = tcg_temp_new_i64();
1472     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1473 
1474     reset_btype(s);
1475 
1476     match = gen_disas_label(s);
1477     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1478                         tcg_cmp, 0, match.label);
1479     gen_goto_tb(s, 0, 4);
1480     set_disas_label(s, match);
1481     gen_goto_tb(s, 1, a->imm);
1482     return true;
1483 }
1484 
1485 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1486 {
1487     /* BC.cond is only present with FEAT_HBC */
1488     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1489         return false;
1490     }
1491     reset_btype(s);
1492     if (a->cond < 0x0e) {
1493         /* genuinely conditional branches */
1494         DisasLabel match = gen_disas_label(s);
1495         arm_gen_test_cc(a->cond, match.label);
1496         gen_goto_tb(s, 0, 4);
1497         set_disas_label(s, match);
1498         gen_goto_tb(s, 1, a->imm);
1499     } else {
1500         /* 0xe and 0xf are both "always" conditions */
1501         gen_goto_tb(s, 0, a->imm);
1502     }
1503     return true;
1504 }
1505 
1506 static void set_btype_for_br(DisasContext *s, int rn)
1507 {
1508     if (dc_isar_feature(aa64_bti, s)) {
1509         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1510         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1511     }
1512 }
1513 
1514 static void set_btype_for_blr(DisasContext *s)
1515 {
1516     if (dc_isar_feature(aa64_bti, s)) {
1517         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1518         set_btype(s, 2);
1519     }
1520 }
1521 
1522 static bool trans_BR(DisasContext *s, arg_r *a)
1523 {
1524     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1525     set_btype_for_br(s, a->rn);
1526     s->base.is_jmp = DISAS_JUMP;
1527     return true;
1528 }
1529 
1530 static bool trans_BLR(DisasContext *s, arg_r *a)
1531 {
1532     TCGv_i64 dst = cpu_reg(s, a->rn);
1533     TCGv_i64 lr = cpu_reg(s, 30);
1534     if (dst == lr) {
1535         TCGv_i64 tmp = tcg_temp_new_i64();
1536         tcg_gen_mov_i64(tmp, dst);
1537         dst = tmp;
1538     }
1539     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1540     gen_a64_set_pc(s, dst);
1541     set_btype_for_blr(s);
1542     s->base.is_jmp = DISAS_JUMP;
1543     return true;
1544 }
1545 
1546 static bool trans_RET(DisasContext *s, arg_r *a)
1547 {
1548     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1549     s->base.is_jmp = DISAS_JUMP;
1550     return true;
1551 }
1552 
1553 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1554                                    TCGv_i64 modifier, bool use_key_a)
1555 {
1556     TCGv_i64 truedst;
1557     /*
1558      * Return the branch target for a BRAA/RETA/etc, which is either
1559      * just the destination dst, or that value with the pauth check
1560      * done and the code removed from the high bits.
1561      */
1562     if (!s->pauth_active) {
1563         return dst;
1564     }
1565 
1566     truedst = tcg_temp_new_i64();
1567     if (use_key_a) {
1568         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1569     } else {
1570         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1571     }
1572     return truedst;
1573 }
1574 
1575 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1576 {
1577     TCGv_i64 dst;
1578 
1579     if (!dc_isar_feature(aa64_pauth, s)) {
1580         return false;
1581     }
1582 
1583     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1584     gen_a64_set_pc(s, dst);
1585     set_btype_for_br(s, a->rn);
1586     s->base.is_jmp = DISAS_JUMP;
1587     return true;
1588 }
1589 
1590 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1591 {
1592     TCGv_i64 dst, lr;
1593 
1594     if (!dc_isar_feature(aa64_pauth, s)) {
1595         return false;
1596     }
1597 
1598     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1599     lr = cpu_reg(s, 30);
1600     if (dst == lr) {
1601         TCGv_i64 tmp = tcg_temp_new_i64();
1602         tcg_gen_mov_i64(tmp, dst);
1603         dst = tmp;
1604     }
1605     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1606     gen_a64_set_pc(s, dst);
1607     set_btype_for_blr(s);
1608     s->base.is_jmp = DISAS_JUMP;
1609     return true;
1610 }
1611 
1612 static bool trans_RETA(DisasContext *s, arg_reta *a)
1613 {
1614     TCGv_i64 dst;
1615 
1616     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1617     gen_a64_set_pc(s, dst);
1618     s->base.is_jmp = DISAS_JUMP;
1619     return true;
1620 }
1621 
1622 static bool trans_BRA(DisasContext *s, arg_bra *a)
1623 {
1624     TCGv_i64 dst;
1625 
1626     if (!dc_isar_feature(aa64_pauth, s)) {
1627         return false;
1628     }
1629     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1630     gen_a64_set_pc(s, dst);
1631     set_btype_for_br(s, a->rn);
1632     s->base.is_jmp = DISAS_JUMP;
1633     return true;
1634 }
1635 
1636 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1637 {
1638     TCGv_i64 dst, lr;
1639 
1640     if (!dc_isar_feature(aa64_pauth, s)) {
1641         return false;
1642     }
1643     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1644     lr = cpu_reg(s, 30);
1645     if (dst == lr) {
1646         TCGv_i64 tmp = tcg_temp_new_i64();
1647         tcg_gen_mov_i64(tmp, dst);
1648         dst = tmp;
1649     }
1650     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1651     gen_a64_set_pc(s, dst);
1652     set_btype_for_blr(s);
1653     s->base.is_jmp = DISAS_JUMP;
1654     return true;
1655 }
1656 
1657 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1658 {
1659     TCGv_i64 dst;
1660 
1661     if (s->current_el == 0) {
1662         return false;
1663     }
1664     if (s->trap_eret) {
1665         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1666         return true;
1667     }
1668     dst = tcg_temp_new_i64();
1669     tcg_gen_ld_i64(dst, tcg_env,
1670                    offsetof(CPUARMState, elr_el[s->current_el]));
1671 
1672     translator_io_start(&s->base);
1673 
1674     gen_helper_exception_return(tcg_env, dst);
1675     /* Must exit loop to check un-masked IRQs */
1676     s->base.is_jmp = DISAS_EXIT;
1677     return true;
1678 }
1679 
1680 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1681 {
1682     TCGv_i64 dst;
1683 
1684     if (!dc_isar_feature(aa64_pauth, s)) {
1685         return false;
1686     }
1687     if (s->current_el == 0) {
1688         return false;
1689     }
1690     /* The FGT trap takes precedence over an auth trap. */
1691     if (s->trap_eret) {
1692         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1693         return true;
1694     }
1695     dst = tcg_temp_new_i64();
1696     tcg_gen_ld_i64(dst, tcg_env,
1697                    offsetof(CPUARMState, elr_el[s->current_el]));
1698 
1699     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1700 
1701     translator_io_start(&s->base);
1702 
1703     gen_helper_exception_return(tcg_env, dst);
1704     /* Must exit loop to check un-masked IRQs */
1705     s->base.is_jmp = DISAS_EXIT;
1706     return true;
1707 }
1708 
1709 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1710 {
1711     return true;
1712 }
1713 
1714 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1715 {
1716     /*
1717      * When running in MTTCG we don't generate jumps to the yield and
1718      * WFE helpers as it won't affect the scheduling of other vCPUs.
1719      * If we wanted to more completely model WFE/SEV so we don't busy
1720      * spin unnecessarily we would need to do something more involved.
1721      */
1722     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1723         s->base.is_jmp = DISAS_YIELD;
1724     }
1725     return true;
1726 }
1727 
1728 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1729 {
1730     s->base.is_jmp = DISAS_WFI;
1731     return true;
1732 }
1733 
1734 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1735 {
1736     /*
1737      * When running in MTTCG we don't generate jumps to the yield and
1738      * WFE helpers as it won't affect the scheduling of other vCPUs.
1739      * If we wanted to more completely model WFE/SEV so we don't busy
1740      * spin unnecessarily we would need to do something more involved.
1741      */
1742     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1743         s->base.is_jmp = DISAS_WFE;
1744     }
1745     return true;
1746 }
1747 
1748 static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
1749 {
1750     if (!dc_isar_feature(aa64_wfxt, s)) {
1751         return false;
1752     }
1753 
1754     /*
1755      * Because we need to pass the register value to the helper,
1756      * it's easier to emit the code now, unlike trans_WFI which
1757      * defers it to aarch64_tr_tb_stop(). That means we need to
1758      * check ss_active so that single-stepping a WFIT doesn't halt.
1759      */
1760     if (s->ss_active) {
1761         /* Act like a NOP under architectural singlestep */
1762         return true;
1763     }
1764 
1765     gen_a64_update_pc(s, 4);
1766     gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
1767     /* Go back to the main loop to check for interrupts */
1768     s->base.is_jmp = DISAS_EXIT;
1769     return true;
1770 }
1771 
1772 static bool trans_WFET(DisasContext *s, arg_WFET *a)
1773 {
1774     if (!dc_isar_feature(aa64_wfxt, s)) {
1775         return false;
1776     }
1777 
1778     /*
1779      * We rely here on our WFE implementation being a NOP, so we
1780      * don't need to do anything different to handle the WFET timeout
1781      * from what trans_WFE does.
1782      */
1783     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1784         s->base.is_jmp = DISAS_WFE;
1785     }
1786     return true;
1787 }
1788 
1789 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1790 {
1791     if (s->pauth_active) {
1792         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1793     }
1794     return true;
1795 }
1796 
1797 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1798 {
1799     if (s->pauth_active) {
1800         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1801     }
1802     return true;
1803 }
1804 
1805 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1806 {
1807     if (s->pauth_active) {
1808         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1809     }
1810     return true;
1811 }
1812 
1813 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1814 {
1815     if (s->pauth_active) {
1816         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1817     }
1818     return true;
1819 }
1820 
1821 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1822 {
1823     if (s->pauth_active) {
1824         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1825     }
1826     return true;
1827 }
1828 
1829 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1830 {
1831     /* Without RAS, we must implement this as NOP. */
1832     if (dc_isar_feature(aa64_ras, s)) {
1833         /*
1834          * QEMU does not have a source of physical SErrors,
1835          * so we are only concerned with virtual SErrors.
1836          * The pseudocode in the ARM for this case is
1837          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1838          *      AArch64.vESBOperation();
1839          * Most of the condition can be evaluated at translation time.
1840          * Test for EL2 present, and defer test for SEL2 to runtime.
1841          */
1842         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1843             gen_helper_vesb(tcg_env);
1844         }
1845     }
1846     return true;
1847 }
1848 
1849 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1850 {
1851     if (s->pauth_active) {
1852         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1853     }
1854     return true;
1855 }
1856 
1857 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1858 {
1859     if (s->pauth_active) {
1860         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1861     }
1862     return true;
1863 }
1864 
1865 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1866 {
1867     if (s->pauth_active) {
1868         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1869     }
1870     return true;
1871 }
1872 
1873 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1874 {
1875     if (s->pauth_active) {
1876         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1877     }
1878     return true;
1879 }
1880 
1881 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1882 {
1883     if (s->pauth_active) {
1884         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1885     }
1886     return true;
1887 }
1888 
1889 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1890 {
1891     if (s->pauth_active) {
1892         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1893     }
1894     return true;
1895 }
1896 
1897 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1898 {
1899     if (s->pauth_active) {
1900         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1901     }
1902     return true;
1903 }
1904 
1905 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1906 {
1907     if (s->pauth_active) {
1908         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1909     }
1910     return true;
1911 }
1912 
1913 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1914 {
1915     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1916     return true;
1917 }
1918 
1919 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1920 {
1921     /* We handle DSB and DMB the same way */
1922     TCGBar bar;
1923 
1924     switch (a->types) {
1925     case 1: /* MBReqTypes_Reads */
1926         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1927         break;
1928     case 2: /* MBReqTypes_Writes */
1929         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1930         break;
1931     default: /* MBReqTypes_All */
1932         bar = TCG_BAR_SC | TCG_MO_ALL;
1933         break;
1934     }
1935     tcg_gen_mb(bar);
1936     return true;
1937 }
1938 
1939 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1940 {
1941     /*
1942      * We need to break the TB after this insn to execute
1943      * self-modifying code correctly and also to take
1944      * any pending interrupts immediately.
1945      */
1946     reset_btype(s);
1947     gen_goto_tb(s, 0, 4);
1948     return true;
1949 }
1950 
1951 static bool trans_SB(DisasContext *s, arg_SB *a)
1952 {
1953     if (!dc_isar_feature(aa64_sb, s)) {
1954         return false;
1955     }
1956     /*
1957      * TODO: There is no speculation barrier opcode for TCG;
1958      * MB and end the TB instead.
1959      */
1960     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1961     gen_goto_tb(s, 0, 4);
1962     return true;
1963 }
1964 
1965 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1966 {
1967     if (!dc_isar_feature(aa64_condm_4, s)) {
1968         return false;
1969     }
1970     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1971     return true;
1972 }
1973 
1974 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1975 {
1976     TCGv_i32 z;
1977 
1978     if (!dc_isar_feature(aa64_condm_5, s)) {
1979         return false;
1980     }
1981 
1982     z = tcg_temp_new_i32();
1983 
1984     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1985 
1986     /*
1987      * (!C & !Z) << 31
1988      * (!(C | Z)) << 31
1989      * ~((C | Z) << 31)
1990      * ~-(C | Z)
1991      * (C | Z) - 1
1992      */
1993     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1994     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1995 
1996     /* !(Z & C) */
1997     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1998     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1999 
2000     /* (!C & Z) << 31 -> -(Z & ~C) */
2001     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
2002     tcg_gen_neg_i32(cpu_VF, cpu_VF);
2003 
2004     /* C | Z */
2005     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
2006 
2007     return true;
2008 }
2009 
2010 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
2011 {
2012     if (!dc_isar_feature(aa64_condm_5, s)) {
2013         return false;
2014     }
2015 
2016     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
2017     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
2018 
2019     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
2020     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
2021 
2022     tcg_gen_movi_i32(cpu_NF, 0);
2023     tcg_gen_movi_i32(cpu_VF, 0);
2024 
2025     return true;
2026 }
2027 
2028 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
2029 {
2030     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
2031         return false;
2032     }
2033     if (a->imm & 1) {
2034         set_pstate_bits(PSTATE_UAO);
2035     } else {
2036         clear_pstate_bits(PSTATE_UAO);
2037     }
2038     gen_rebuild_hflags(s);
2039     s->base.is_jmp = DISAS_TOO_MANY;
2040     return true;
2041 }
2042 
2043 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2044 {
2045     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2046         return false;
2047     }
2048     if (a->imm & 1) {
2049         set_pstate_bits(PSTATE_PAN);
2050     } else {
2051         clear_pstate_bits(PSTATE_PAN);
2052     }
2053     gen_rebuild_hflags(s);
2054     s->base.is_jmp = DISAS_TOO_MANY;
2055     return true;
2056 }
2057 
2058 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2059 {
2060     if (s->current_el == 0) {
2061         return false;
2062     }
2063     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2064     s->base.is_jmp = DISAS_TOO_MANY;
2065     return true;
2066 }
2067 
2068 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2069 {
2070     if (!dc_isar_feature(aa64_ssbs, s)) {
2071         return false;
2072     }
2073     if (a->imm & 1) {
2074         set_pstate_bits(PSTATE_SSBS);
2075     } else {
2076         clear_pstate_bits(PSTATE_SSBS);
2077     }
2078     /* Don't need to rebuild hflags since SSBS is a nop */
2079     s->base.is_jmp = DISAS_TOO_MANY;
2080     return true;
2081 }
2082 
2083 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2084 {
2085     if (!dc_isar_feature(aa64_dit, s)) {
2086         return false;
2087     }
2088     if (a->imm & 1) {
2089         set_pstate_bits(PSTATE_DIT);
2090     } else {
2091         clear_pstate_bits(PSTATE_DIT);
2092     }
2093     /* There's no need to rebuild hflags because DIT is a nop */
2094     s->base.is_jmp = DISAS_TOO_MANY;
2095     return true;
2096 }
2097 
2098 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2099 {
2100     if (dc_isar_feature(aa64_mte, s)) {
2101         /* Full MTE is enabled -- set the TCO bit as directed. */
2102         if (a->imm & 1) {
2103             set_pstate_bits(PSTATE_TCO);
2104         } else {
2105             clear_pstate_bits(PSTATE_TCO);
2106         }
2107         gen_rebuild_hflags(s);
2108         /* Many factors, including TCO, go into MTE_ACTIVE. */
2109         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2110         return true;
2111     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2112         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2113         return true;
2114     } else {
2115         /* Insn not present */
2116         return false;
2117     }
2118 }
2119 
2120 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2121 {
2122     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2123     s->base.is_jmp = DISAS_TOO_MANY;
2124     return true;
2125 }
2126 
2127 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2128 {
2129     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2130     /* Exit the cpu loop to re-evaluate pending IRQs. */
2131     s->base.is_jmp = DISAS_UPDATE_EXIT;
2132     return true;
2133 }
2134 
2135 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2136 {
2137     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2138         return false;
2139     }
2140 
2141     if (a->imm == 0) {
2142         clear_pstate_bits(PSTATE_ALLINT);
2143     } else if (s->current_el > 1) {
2144         set_pstate_bits(PSTATE_ALLINT);
2145     } else {
2146         gen_helper_msr_set_allint_el1(tcg_env);
2147     }
2148 
2149     /* Exit the cpu loop to re-evaluate pending IRQs. */
2150     s->base.is_jmp = DISAS_UPDATE_EXIT;
2151     return true;
2152 }
2153 
2154 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2155 {
2156     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2157         return false;
2158     }
2159     if (sme_access_check(s)) {
2160         int old = s->pstate_sm | (s->pstate_za << 1);
2161         int new = a->imm * 3;
2162 
2163         if ((old ^ new) & a->mask) {
2164             /* At least one bit changes. */
2165             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2166                                 tcg_constant_i32(a->mask));
2167             s->base.is_jmp = DISAS_TOO_MANY;
2168         }
2169     }
2170     return true;
2171 }
2172 
2173 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2174 {
2175     TCGv_i32 tmp = tcg_temp_new_i32();
2176     TCGv_i32 nzcv = tcg_temp_new_i32();
2177 
2178     /* build bit 31, N */
2179     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2180     /* build bit 30, Z */
2181     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2182     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2183     /* build bit 29, C */
2184     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2185     /* build bit 28, V */
2186     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2187     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2188     /* generate result */
2189     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2190 }
2191 
2192 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2193 {
2194     TCGv_i32 nzcv = tcg_temp_new_i32();
2195 
2196     /* take NZCV from R[t] */
2197     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2198 
2199     /* bit 31, N */
2200     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2201     /* bit 30, Z */
2202     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2203     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2204     /* bit 29, C */
2205     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2206     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2207     /* bit 28, V */
2208     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2209     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2210 }
2211 
2212 static void gen_sysreg_undef(DisasContext *s, bool isread,
2213                              uint8_t op0, uint8_t op1, uint8_t op2,
2214                              uint8_t crn, uint8_t crm, uint8_t rt)
2215 {
2216     /*
2217      * Generate code to emit an UNDEF with correct syndrome
2218      * information for a failed system register access.
2219      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2220      * but if FEAT_IDST is implemented then read accesses to registers
2221      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2222      * syndrome.
2223      */
2224     uint32_t syndrome;
2225 
2226     if (isread && dc_isar_feature(aa64_ids, s) &&
2227         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2228         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2229     } else {
2230         syndrome = syn_uncategorized();
2231     }
2232     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2233 }
2234 
2235 /* MRS - move from system register
2236  * MSR (register) - move to system register
2237  * SYS
2238  * SYSL
2239  * These are all essentially the same insn in 'read' and 'write'
2240  * versions, with varying op0 fields.
2241  */
2242 static void handle_sys(DisasContext *s, bool isread,
2243                        unsigned int op0, unsigned int op1, unsigned int op2,
2244                        unsigned int crn, unsigned int crm, unsigned int rt)
2245 {
2246     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2247                                       crn, crm, op0, op1, op2);
2248     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2249     bool need_exit_tb = false;
2250     bool nv_trap_to_el2 = false;
2251     bool nv_redirect_reg = false;
2252     bool skip_fp_access_checks = false;
2253     bool nv2_mem_redirect = false;
2254     TCGv_ptr tcg_ri = NULL;
2255     TCGv_i64 tcg_rt;
2256     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2257 
2258     if (crn == 11 || crn == 15) {
2259         /*
2260          * Check for TIDCP trap, which must take precedence over
2261          * the UNDEF for "no such register" etc.
2262          */
2263         switch (s->current_el) {
2264         case 0:
2265             if (dc_isar_feature(aa64_tidcp1, s)) {
2266                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2267             }
2268             break;
2269         case 1:
2270             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2271             break;
2272         }
2273     }
2274 
2275     if (!ri) {
2276         /* Unknown register; this might be a guest error or a QEMU
2277          * unimplemented feature.
2278          */
2279         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2280                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2281                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2282         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2283         return;
2284     }
2285 
2286     if (s->nv2 && ri->nv2_redirect_offset) {
2287         /*
2288          * Some registers always redirect to memory; some only do so if
2289          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2290          * pairs which share an offset; see the table in R_CSRPQ).
2291          */
2292         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2293             nv2_mem_redirect = s->nv1;
2294         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2295             nv2_mem_redirect = !s->nv1;
2296         } else {
2297             nv2_mem_redirect = true;
2298         }
2299     }
2300 
2301     /* Check access permissions */
2302     if (!cp_access_ok(s->current_el, ri, isread)) {
2303         /*
2304          * FEAT_NV/NV2 handling does not do the usual FP access checks
2305          * for registers only accessible at EL2 (though it *does* do them
2306          * for registers accessible at EL1).
2307          */
2308         skip_fp_access_checks = true;
2309         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2310             /*
2311              * This is one of the few EL2 registers which should redirect
2312              * to the equivalent EL1 register. We do that after running
2313              * the EL2 register's accessfn.
2314              */
2315             nv_redirect_reg = true;
2316             assert(!nv2_mem_redirect);
2317         } else if (nv2_mem_redirect) {
2318             /*
2319              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2320              * UNDEF to EL1.
2321              */
2322         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2323             /*
2324              * This register / instruction exists and is an EL2 register, so
2325              * we must trap to EL2 if accessed in nested virtualization EL1
2326              * instead of UNDEFing. We'll do that after the usual access checks.
2327              * (This makes a difference only for a couple of registers like
2328              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2329              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2330              * an accessfn which does nothing when called from EL1, because
2331              * the trap-to-EL3 controls which would apply to that register
2332              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2333              */
2334             nv_trap_to_el2 = true;
2335         } else {
2336             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2337             return;
2338         }
2339     }
2340 
2341     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2342         /* Emit code to perform further access permissions checks at
2343          * runtime; this may result in an exception.
2344          */
2345         gen_a64_update_pc(s, 0);
2346         tcg_ri = tcg_temp_new_ptr();
2347         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2348                                        tcg_constant_i32(key),
2349                                        tcg_constant_i32(syndrome),
2350                                        tcg_constant_i32(isread));
2351     } else if (ri->type & ARM_CP_RAISES_EXC) {
2352         /*
2353          * The readfn or writefn might raise an exception;
2354          * synchronize the CPU state in case it does.
2355          */
2356         gen_a64_update_pc(s, 0);
2357     }
2358 
2359     if (!skip_fp_access_checks) {
2360         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2361             return;
2362         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2363             return;
2364         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2365             return;
2366         }
2367     }
2368 
2369     if (nv_trap_to_el2) {
2370         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2371         return;
2372     }
2373 
2374     if (nv_redirect_reg) {
2375         /*
2376          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2377          * Conveniently in all cases the encoding of the EL1 register is
2378          * identical to the EL2 register except that opc1 is 0.
2379          * Get the reginfo for the EL1 register to use for the actual access.
2380          * We don't use the EL1 register's access function, and
2381          * fine-grained-traps on EL1 also do not apply here.
2382          */
2383         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2384                                  crn, crm, op0, 0, op2);
2385         ri = get_arm_cp_reginfo(s->cp_regs, key);
2386         assert(ri);
2387         assert(cp_access_ok(s->current_el, ri, isread));
2388         /*
2389          * We might not have done an update_pc earlier, so check we don't
2390          * need it. We could support this in future if necessary.
2391          */
2392         assert(!(ri->type & ARM_CP_RAISES_EXC));
2393     }
2394 
2395     if (nv2_mem_redirect) {
2396         /*
2397          * This system register is being redirected into an EL2 memory access.
2398          * This means it is not an IO operation, doesn't change hflags,
2399          * and need not end the TB, because it has no side effects.
2400          *
2401          * The access is 64-bit single copy atomic, guaranteed aligned because
2402          * of the definition of VCNR_EL2. Its endianness depends on
2403          * SCTLR_EL2.EE, not on the data endianness of EL1.
2404          * It is done under either the EL2 translation regime or the EL2&0
2405          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2406          * PSTATE.PAN is 0.
2407          */
2408         TCGv_i64 ptr = tcg_temp_new_i64();
2409         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2410         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2411         int memidx = arm_to_core_mmu_idx(armmemidx);
2412         uint32_t syn;
2413 
2414         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2415 
2416         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2417         tcg_gen_addi_i64(ptr, ptr,
2418                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2419         tcg_rt = cpu_reg(s, rt);
2420 
2421         syn = syn_data_abort_vncr(0, !isread, 0);
2422         disas_set_insn_syndrome(s, syn);
2423         if (isread) {
2424             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2425         } else {
2426             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2427         }
2428         return;
2429     }
2430 
2431     /* Handle special cases first */
2432     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2433     case 0:
2434         break;
2435     case ARM_CP_NOP:
2436         return;
2437     case ARM_CP_NZCV:
2438         tcg_rt = cpu_reg(s, rt);
2439         if (isread) {
2440             gen_get_nzcv(tcg_rt);
2441         } else {
2442             gen_set_nzcv(tcg_rt);
2443         }
2444         return;
2445     case ARM_CP_CURRENTEL:
2446     {
2447         /*
2448          * Reads as current EL value from pstate, which is
2449          * guaranteed to be constant by the tb flags.
2450          * For nested virt we should report EL2.
2451          */
2452         int el = s->nv ? 2 : s->current_el;
2453         tcg_rt = cpu_reg(s, rt);
2454         tcg_gen_movi_i64(tcg_rt, el << 2);
2455         return;
2456     }
2457     case ARM_CP_DC_ZVA:
2458         /* Writes clear the aligned block of memory which rt points into. */
2459         if (s->mte_active[0]) {
2460             int desc = 0;
2461 
2462             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2463             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2464             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2465 
2466             tcg_rt = tcg_temp_new_i64();
2467             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2468                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2469         } else {
2470             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2471         }
2472         gen_helper_dc_zva(tcg_env, tcg_rt);
2473         return;
2474     case ARM_CP_DC_GVA:
2475         {
2476             TCGv_i64 clean_addr, tag;
2477 
2478             /*
2479              * DC_GVA, like DC_ZVA, requires that we supply the original
2480              * pointer for an invalid page.  Probe that address first.
2481              */
2482             tcg_rt = cpu_reg(s, rt);
2483             clean_addr = clean_data_tbi(s, tcg_rt);
2484             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2485 
2486             if (s->ata[0]) {
2487                 /* Extract the tag from the register to match STZGM.  */
2488                 tag = tcg_temp_new_i64();
2489                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2490                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2491             }
2492         }
2493         return;
2494     case ARM_CP_DC_GZVA:
2495         {
2496             TCGv_i64 clean_addr, tag;
2497 
2498             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2499             tcg_rt = cpu_reg(s, rt);
2500             clean_addr = clean_data_tbi(s, tcg_rt);
2501             gen_helper_dc_zva(tcg_env, clean_addr);
2502 
2503             if (s->ata[0]) {
2504                 /* Extract the tag from the register to match STZGM.  */
2505                 tag = tcg_temp_new_i64();
2506                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2507                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2508             }
2509         }
2510         return;
2511     default:
2512         g_assert_not_reached();
2513     }
2514 
2515     if (ri->type & ARM_CP_IO) {
2516         /* I/O operations must end the TB here (whether read or write) */
2517         need_exit_tb = translator_io_start(&s->base);
2518     }
2519 
2520     tcg_rt = cpu_reg(s, rt);
2521 
2522     if (isread) {
2523         if (ri->type & ARM_CP_CONST) {
2524             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2525         } else if (ri->readfn) {
2526             if (!tcg_ri) {
2527                 tcg_ri = gen_lookup_cp_reg(key);
2528             }
2529             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2530         } else {
2531             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2532         }
2533     } else {
2534         if (ri->type & ARM_CP_CONST) {
2535             /* If not forbidden by access permissions, treat as WI */
2536             return;
2537         } else if (ri->writefn) {
2538             if (!tcg_ri) {
2539                 tcg_ri = gen_lookup_cp_reg(key);
2540             }
2541             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2542         } else {
2543             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2544         }
2545     }
2546 
2547     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2548         /*
2549          * A write to any coprocessor register that ends a TB
2550          * must rebuild the hflags for the next TB.
2551          */
2552         gen_rebuild_hflags(s);
2553         /*
2554          * We default to ending the TB on a coprocessor register write,
2555          * but allow this to be suppressed by the register definition
2556          * (usually only necessary to work around guest bugs).
2557          */
2558         need_exit_tb = true;
2559     }
2560     if (need_exit_tb) {
2561         s->base.is_jmp = DISAS_UPDATE_EXIT;
2562     }
2563 }
2564 
2565 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2566 {
2567     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2568     return true;
2569 }
2570 
2571 static bool trans_SVC(DisasContext *s, arg_i *a)
2572 {
2573     /*
2574      * For SVC, HVC and SMC we advance the single-step state
2575      * machine before taking the exception. This is architecturally
2576      * mandated, to ensure that single-stepping a system call
2577      * instruction works properly.
2578      */
2579     uint32_t syndrome = syn_aa64_svc(a->imm);
2580     if (s->fgt_svc) {
2581         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2582         return true;
2583     }
2584     gen_ss_advance(s);
2585     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2586     return true;
2587 }
2588 
2589 static bool trans_HVC(DisasContext *s, arg_i *a)
2590 {
2591     int target_el = s->current_el == 3 ? 3 : 2;
2592 
2593     if (s->current_el == 0) {
2594         unallocated_encoding(s);
2595         return true;
2596     }
2597     /*
2598      * The pre HVC helper handles cases when HVC gets trapped
2599      * as an undefined insn by runtime configuration.
2600      */
2601     gen_a64_update_pc(s, 0);
2602     gen_helper_pre_hvc(tcg_env);
2603     /* Architecture requires ss advance before we do the actual work */
2604     gen_ss_advance(s);
2605     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2606     return true;
2607 }
2608 
2609 static bool trans_SMC(DisasContext *s, arg_i *a)
2610 {
2611     if (s->current_el == 0) {
2612         unallocated_encoding(s);
2613         return true;
2614     }
2615     gen_a64_update_pc(s, 0);
2616     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2617     /* Architecture requires ss advance before we do the actual work */
2618     gen_ss_advance(s);
2619     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2620     return true;
2621 }
2622 
2623 static bool trans_BRK(DisasContext *s, arg_i *a)
2624 {
2625     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2626     return true;
2627 }
2628 
2629 static bool trans_HLT(DisasContext *s, arg_i *a)
2630 {
2631     /*
2632      * HLT. This has two purposes.
2633      * Architecturally, it is an external halting debug instruction.
2634      * Since QEMU doesn't implement external debug, we treat this as
2635      * it is required for halting debug disabled: it will UNDEF.
2636      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2637      */
2638     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2639         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2640     } else {
2641         unallocated_encoding(s);
2642     }
2643     return true;
2644 }
2645 
2646 /*
2647  * Load/Store exclusive instructions are implemented by remembering
2648  * the value/address loaded, and seeing if these are the same
2649  * when the store is performed. This is not actually the architecturally
2650  * mandated semantics, but it works for typical guest code sequences
2651  * and avoids having to monitor regular stores.
2652  *
2653  * The store exclusive uses the atomic cmpxchg primitives to avoid
2654  * races in multi-threaded linux-user and when MTTCG softmmu is
2655  * enabled.
2656  */
2657 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2658                                int size, bool is_pair)
2659 {
2660     int idx = get_mem_index(s);
2661     TCGv_i64 dirty_addr, clean_addr;
2662     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2663 
2664     s->is_ldex = true;
2665     dirty_addr = cpu_reg_sp(s, rn);
2666     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2667 
2668     g_assert(size <= 3);
2669     if (is_pair) {
2670         g_assert(size >= 2);
2671         if (size == 2) {
2672             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2673             if (s->be_data == MO_LE) {
2674                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2675                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2676             } else {
2677                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2678                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2679             }
2680         } else {
2681             TCGv_i128 t16 = tcg_temp_new_i128();
2682 
2683             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2684 
2685             if (s->be_data == MO_LE) {
2686                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2687                                       cpu_exclusive_high, t16);
2688             } else {
2689                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2690                                       cpu_exclusive_val, t16);
2691             }
2692             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2693             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2694         }
2695     } else {
2696         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2697         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2698     }
2699     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2700 }
2701 
2702 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2703                                 int rn, int size, int is_pair)
2704 {
2705     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2706      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2707      *     [addr] = {Rt};
2708      *     if (is_pair) {
2709      *         [addr + datasize] = {Rt2};
2710      *     }
2711      *     {Rd} = 0;
2712      * } else {
2713      *     {Rd} = 1;
2714      * }
2715      * env->exclusive_addr = -1;
2716      */
2717     TCGLabel *fail_label = gen_new_label();
2718     TCGLabel *done_label = gen_new_label();
2719     TCGv_i64 tmp, clean_addr;
2720     MemOp memop;
2721 
2722     /*
2723      * FIXME: We are out of spec here.  We have recorded only the address
2724      * from load_exclusive, not the entire range, and we assume that the
2725      * size of the access on both sides match.  The architecture allows the
2726      * store to be smaller than the load, so long as the stored bytes are
2727      * within the range recorded by the load.
2728      */
2729 
2730     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2731     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2732     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2733 
2734     /*
2735      * The write, and any associated faults, only happen if the virtual
2736      * and physical addresses pass the exclusive monitor check.  These
2737      * faults are exceedingly unlikely, because normally the guest uses
2738      * the exact same address register for the load_exclusive, and we
2739      * would have recognized these faults there.
2740      *
2741      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2742      * unaligned 4-byte write within the range of an aligned 8-byte load.
2743      * With LSE2, the store would need to cross a 16-byte boundary when the
2744      * load did not, which would mean the store is outside the range
2745      * recorded for the monitor, which would have failed a corrected monitor
2746      * check above.  For now, we assume no size change and retain the
2747      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2748      *
2749      * It is possible to trigger an MTE fault, by performing the load with
2750      * a virtual address with a valid tag and performing the store with the
2751      * same virtual address and a different invalid tag.
2752      */
2753     memop = size + is_pair;
2754     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2755         memop |= MO_ALIGN;
2756     }
2757     memop = finalize_memop(s, memop);
2758     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2759 
2760     tmp = tcg_temp_new_i64();
2761     if (is_pair) {
2762         if (size == 2) {
2763             if (s->be_data == MO_LE) {
2764                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2765             } else {
2766                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2767             }
2768             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2769                                        cpu_exclusive_val, tmp,
2770                                        get_mem_index(s), memop);
2771             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2772         } else {
2773             TCGv_i128 t16 = tcg_temp_new_i128();
2774             TCGv_i128 c16 = tcg_temp_new_i128();
2775             TCGv_i64 a, b;
2776 
2777             if (s->be_data == MO_LE) {
2778                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2779                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2780                                         cpu_exclusive_high);
2781             } else {
2782                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2783                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2784                                         cpu_exclusive_val);
2785             }
2786 
2787             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2788                                         get_mem_index(s), memop);
2789 
2790             a = tcg_temp_new_i64();
2791             b = tcg_temp_new_i64();
2792             if (s->be_data == MO_LE) {
2793                 tcg_gen_extr_i128_i64(a, b, t16);
2794             } else {
2795                 tcg_gen_extr_i128_i64(b, a, t16);
2796             }
2797 
2798             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2799             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2800             tcg_gen_or_i64(tmp, a, b);
2801 
2802             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2803         }
2804     } else {
2805         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2806                                    cpu_reg(s, rt), get_mem_index(s), memop);
2807         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2808     }
2809     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2810     tcg_gen_br(done_label);
2811 
2812     gen_set_label(fail_label);
2813     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2814     gen_set_label(done_label);
2815     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2816 }
2817 
2818 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2819                                  int rn, int size)
2820 {
2821     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2822     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2823     int memidx = get_mem_index(s);
2824     TCGv_i64 clean_addr;
2825     MemOp memop;
2826 
2827     if (rn == 31) {
2828         gen_check_sp_alignment(s);
2829     }
2830     memop = check_atomic_align(s, rn, size);
2831     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2832     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2833                                memidx, memop);
2834 }
2835 
2836 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2837                                       int rn, int size)
2838 {
2839     TCGv_i64 s1 = cpu_reg(s, rs);
2840     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2841     TCGv_i64 t1 = cpu_reg(s, rt);
2842     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2843     TCGv_i64 clean_addr;
2844     int memidx = get_mem_index(s);
2845     MemOp memop;
2846 
2847     if (rn == 31) {
2848         gen_check_sp_alignment(s);
2849     }
2850 
2851     /* This is a single atomic access, despite the "pair". */
2852     memop = check_atomic_align(s, rn, size + 1);
2853     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2854 
2855     if (size == 2) {
2856         TCGv_i64 cmp = tcg_temp_new_i64();
2857         TCGv_i64 val = tcg_temp_new_i64();
2858 
2859         if (s->be_data == MO_LE) {
2860             tcg_gen_concat32_i64(val, t1, t2);
2861             tcg_gen_concat32_i64(cmp, s1, s2);
2862         } else {
2863             tcg_gen_concat32_i64(val, t2, t1);
2864             tcg_gen_concat32_i64(cmp, s2, s1);
2865         }
2866 
2867         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2868 
2869         if (s->be_data == MO_LE) {
2870             tcg_gen_extr32_i64(s1, s2, cmp);
2871         } else {
2872             tcg_gen_extr32_i64(s2, s1, cmp);
2873         }
2874     } else {
2875         TCGv_i128 cmp = tcg_temp_new_i128();
2876         TCGv_i128 val = tcg_temp_new_i128();
2877 
2878         if (s->be_data == MO_LE) {
2879             tcg_gen_concat_i64_i128(val, t1, t2);
2880             tcg_gen_concat_i64_i128(cmp, s1, s2);
2881         } else {
2882             tcg_gen_concat_i64_i128(val, t2, t1);
2883             tcg_gen_concat_i64_i128(cmp, s2, s1);
2884         }
2885 
2886         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2887 
2888         if (s->be_data == MO_LE) {
2889             tcg_gen_extr_i128_i64(s1, s2, cmp);
2890         } else {
2891             tcg_gen_extr_i128_i64(s2, s1, cmp);
2892         }
2893     }
2894 }
2895 
2896 /*
2897  * Compute the ISS.SF bit for syndrome information if an exception
2898  * is taken on a load or store. This indicates whether the instruction
2899  * is accessing a 32-bit or 64-bit register. This logic is derived
2900  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2901  */
2902 static bool ldst_iss_sf(int size, bool sign, bool ext)
2903 {
2904 
2905     if (sign) {
2906         /*
2907          * Signed loads are 64 bit results if we are not going to
2908          * do a zero-extend from 32 to 64 after the load.
2909          * (For a store, sign and ext are always false.)
2910          */
2911         return !ext;
2912     } else {
2913         /* Unsigned loads/stores work at the specified size */
2914         return size == MO_64;
2915     }
2916 }
2917 
2918 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2919 {
2920     if (a->rn == 31) {
2921         gen_check_sp_alignment(s);
2922     }
2923     if (a->lasr) {
2924         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2925     }
2926     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2927     return true;
2928 }
2929 
2930 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2931 {
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2936     if (a->lasr) {
2937         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2938     }
2939     return true;
2940 }
2941 
2942 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2943 {
2944     TCGv_i64 clean_addr;
2945     MemOp memop;
2946     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2947 
2948     /*
2949      * StoreLORelease is the same as Store-Release for QEMU, but
2950      * needs the feature-test.
2951      */
2952     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2953         return false;
2954     }
2955     /* Generate ISS for non-exclusive accesses including LASR.  */
2956     if (a->rn == 31) {
2957         gen_check_sp_alignment(s);
2958     }
2959     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2960     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2961     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2962                                 true, a->rn != 31, memop);
2963     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2964               iss_sf, a->lasr);
2965     return true;
2966 }
2967 
2968 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2969 {
2970     TCGv_i64 clean_addr;
2971     MemOp memop;
2972     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2973 
2974     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2975     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2976         return false;
2977     }
2978     /* Generate ISS for non-exclusive accesses including LASR.  */
2979     if (a->rn == 31) {
2980         gen_check_sp_alignment(s);
2981     }
2982     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2983     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2984                                 false, a->rn != 31, memop);
2985     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2986               a->rt, iss_sf, a->lasr);
2987     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2988     return true;
2989 }
2990 
2991 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2992 {
2993     if (a->rn == 31) {
2994         gen_check_sp_alignment(s);
2995     }
2996     if (a->lasr) {
2997         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2998     }
2999     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
3000     return true;
3001 }
3002 
3003 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
3004 {
3005     if (a->rn == 31) {
3006         gen_check_sp_alignment(s);
3007     }
3008     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
3009     if (a->lasr) {
3010         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3011     }
3012     return true;
3013 }
3014 
3015 static bool trans_CASP(DisasContext *s, arg_CASP *a)
3016 {
3017     if (!dc_isar_feature(aa64_atomics, s)) {
3018         return false;
3019     }
3020     if (((a->rt | a->rs) & 1) != 0) {
3021         return false;
3022     }
3023 
3024     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
3025     return true;
3026 }
3027 
3028 static bool trans_CAS(DisasContext *s, arg_CAS *a)
3029 {
3030     if (!dc_isar_feature(aa64_atomics, s)) {
3031         return false;
3032     }
3033     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
3034     return true;
3035 }
3036 
3037 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3038 {
3039     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3040     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3041     TCGv_i64 clean_addr = tcg_temp_new_i64();
3042     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3043 
3044     gen_pc_plus_diff(s, clean_addr, a->imm);
3045     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3046               false, true, a->rt, iss_sf, false);
3047     return true;
3048 }
3049 
3050 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3051 {
3052     /* Load register (literal), vector version */
3053     TCGv_i64 clean_addr;
3054     MemOp memop;
3055 
3056     if (!fp_access_check(s)) {
3057         return true;
3058     }
3059     memop = finalize_memop_asimd(s, a->sz);
3060     clean_addr = tcg_temp_new_i64();
3061     gen_pc_plus_diff(s, clean_addr, a->imm);
3062     do_fp_ld(s, a->rt, clean_addr, memop);
3063     return true;
3064 }
3065 
3066 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3067                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3068                                  uint64_t offset, bool is_store, MemOp mop)
3069 {
3070     if (a->rn == 31) {
3071         gen_check_sp_alignment(s);
3072     }
3073 
3074     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3075     if (!a->p) {
3076         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3077     }
3078 
3079     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3080                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3081 }
3082 
3083 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3084                                   TCGv_i64 dirty_addr, uint64_t offset)
3085 {
3086     if (a->w) {
3087         if (a->p) {
3088             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3089         }
3090         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3091     }
3092 }
3093 
3094 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103     /*
3104      * We built mop above for the single logical access -- rebuild it
3105      * now for the paired operation.
3106      *
3107      * With LSE2, non-sign-extending pairs are treated atomically if
3108      * aligned, and if unaligned one of the pair will be completely
3109      * within a 16-byte block and that element will be atomic.
3110      * Otherwise each element is separately atomic.
3111      * In all cases, issue one operation with the correct atomicity.
3112      */
3113     mop = a->sz + 1;
3114     if (s->align_mem) {
3115         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3116     }
3117     mop = finalize_memop_pair(s, mop);
3118     if (a->sz == 2) {
3119         TCGv_i64 tmp = tcg_temp_new_i64();
3120 
3121         if (s->be_data == MO_LE) {
3122             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3123         } else {
3124             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3125         }
3126         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3127     } else {
3128         TCGv_i128 tmp = tcg_temp_new_i128();
3129 
3130         if (s->be_data == MO_LE) {
3131             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3132         } else {
3133             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3134         }
3135         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3136     }
3137     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3138     return true;
3139 }
3140 
3141 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3142 {
3143     uint64_t offset = a->imm << a->sz;
3144     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3145     MemOp mop = finalize_memop(s, a->sz);
3146 
3147     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3148     tcg_rt = cpu_reg(s, a->rt);
3149     tcg_rt2 = cpu_reg(s, a->rt2);
3150 
3151     /*
3152      * We built mop above for the single logical access -- rebuild it
3153      * now for the paired operation.
3154      *
3155      * With LSE2, non-sign-extending pairs are treated atomically if
3156      * aligned, and if unaligned one of the pair will be completely
3157      * within a 16-byte block and that element will be atomic.
3158      * Otherwise each element is separately atomic.
3159      * In all cases, issue one operation with the correct atomicity.
3160      *
3161      * This treats sign-extending loads like zero-extending loads,
3162      * since that reuses the most code below.
3163      */
3164     mop = a->sz + 1;
3165     if (s->align_mem) {
3166         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3167     }
3168     mop = finalize_memop_pair(s, mop);
3169     if (a->sz == 2) {
3170         int o2 = s->be_data == MO_LE ? 32 : 0;
3171         int o1 = o2 ^ 32;
3172 
3173         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3174         if (a->sign) {
3175             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3176             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3177         } else {
3178             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3179             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3180         }
3181     } else {
3182         TCGv_i128 tmp = tcg_temp_new_i128();
3183 
3184         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3185         if (s->be_data == MO_LE) {
3186             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3187         } else {
3188             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3189         }
3190     }
3191     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3192     return true;
3193 }
3194 
3195 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3196 {
3197     uint64_t offset = a->imm << a->sz;
3198     TCGv_i64 clean_addr, dirty_addr;
3199     MemOp mop;
3200 
3201     if (!fp_access_check(s)) {
3202         return true;
3203     }
3204 
3205     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3206     mop = finalize_memop_asimd(s, a->sz);
3207     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3208     do_fp_st(s, a->rt, clean_addr, mop);
3209     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3210     do_fp_st(s, a->rt2, clean_addr, mop);
3211     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3212     return true;
3213 }
3214 
3215 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3216 {
3217     uint64_t offset = a->imm << a->sz;
3218     TCGv_i64 clean_addr, dirty_addr;
3219     MemOp mop;
3220 
3221     if (!fp_access_check(s)) {
3222         return true;
3223     }
3224 
3225     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3226     mop = finalize_memop_asimd(s, a->sz);
3227     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3228     do_fp_ld(s, a->rt, clean_addr, mop);
3229     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3230     do_fp_ld(s, a->rt2, clean_addr, mop);
3231     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3232     return true;
3233 }
3234 
3235 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3236 {
3237     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3238     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3239     MemOp mop;
3240     TCGv_i128 tmp;
3241 
3242     /* STGP only comes in one size. */
3243     tcg_debug_assert(a->sz == MO_64);
3244 
3245     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3246         return false;
3247     }
3248 
3249     if (a->rn == 31) {
3250         gen_check_sp_alignment(s);
3251     }
3252 
3253     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3254     if (!a->p) {
3255         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3256     }
3257 
3258     clean_addr = clean_data_tbi(s, dirty_addr);
3259     tcg_rt = cpu_reg(s, a->rt);
3260     tcg_rt2 = cpu_reg(s, a->rt2);
3261 
3262     /*
3263      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3264      * and one tag operation.  We implement it as one single aligned 16-byte
3265      * memory operation for convenience.  Note that the alignment ensures
3266      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3267      */
3268     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3269 
3270     tmp = tcg_temp_new_i128();
3271     if (s->be_data == MO_LE) {
3272         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3273     } else {
3274         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3275     }
3276     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3277 
3278     /* Perform the tag store, if tag access enabled. */
3279     if (s->ata[0]) {
3280         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3281             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3282         } else {
3283             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3284         }
3285     }
3286 
3287     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3288     return true;
3289 }
3290 
3291 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3292                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3293                                  uint64_t offset, bool is_store, MemOp mop)
3294 {
3295     int memidx;
3296 
3297     if (a->rn == 31) {
3298         gen_check_sp_alignment(s);
3299     }
3300 
3301     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3302     if (!a->p) {
3303         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3304     }
3305     memidx = get_a64_user_mem_index(s, a->unpriv);
3306     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3307                                         a->w || a->rn != 31,
3308                                         mop, a->unpriv, memidx);
3309 }
3310 
3311 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3312                                   TCGv_i64 dirty_addr, uint64_t offset)
3313 {
3314     if (a->w) {
3315         if (a->p) {
3316             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3317         }
3318         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3319     }
3320 }
3321 
3322 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3323 {
3324     bool iss_sf, iss_valid = !a->w;
3325     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3326     int memidx = get_a64_user_mem_index(s, a->unpriv);
3327     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3328 
3329     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3330 
3331     tcg_rt = cpu_reg(s, a->rt);
3332     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3333 
3334     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3335                      iss_valid, a->rt, iss_sf, false);
3336     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3337     return true;
3338 }
3339 
3340 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3341 {
3342     bool iss_sf, iss_valid = !a->w;
3343     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3344     int memidx = get_a64_user_mem_index(s, a->unpriv);
3345     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3346 
3347     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3348 
3349     tcg_rt = cpu_reg(s, a->rt);
3350     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3351 
3352     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3353                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3354     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3355     return true;
3356 }
3357 
3358 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3359 {
3360     TCGv_i64 clean_addr, dirty_addr;
3361     MemOp mop;
3362 
3363     if (!fp_access_check(s)) {
3364         return true;
3365     }
3366     mop = finalize_memop_asimd(s, a->sz);
3367     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3368     do_fp_st(s, a->rt, clean_addr, mop);
3369     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3370     return true;
3371 }
3372 
3373 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3374 {
3375     TCGv_i64 clean_addr, dirty_addr;
3376     MemOp mop;
3377 
3378     if (!fp_access_check(s)) {
3379         return true;
3380     }
3381     mop = finalize_memop_asimd(s, a->sz);
3382     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3383     do_fp_ld(s, a->rt, clean_addr, mop);
3384     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3385     return true;
3386 }
3387 
3388 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3389                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3390                              bool is_store, MemOp memop)
3391 {
3392     TCGv_i64 tcg_rm;
3393 
3394     if (a->rn == 31) {
3395         gen_check_sp_alignment(s);
3396     }
3397     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3398 
3399     tcg_rm = read_cpu_reg(s, a->rm, 1);
3400     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3401 
3402     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3403     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3404 }
3405 
3406 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3407 {
3408     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3409     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3410     MemOp memop;
3411 
3412     if (extract32(a->opt, 1, 1) == 0) {
3413         return false;
3414     }
3415 
3416     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3417     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3418     tcg_rt = cpu_reg(s, a->rt);
3419     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3420               a->ext, true, a->rt, iss_sf, false);
3421     return true;
3422 }
3423 
3424 static bool trans_STR(DisasContext *s, arg_ldst *a)
3425 {
3426     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3427     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3428     MemOp memop;
3429 
3430     if (extract32(a->opt, 1, 1) == 0) {
3431         return false;
3432     }
3433 
3434     memop = finalize_memop(s, a->sz);
3435     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3436     tcg_rt = cpu_reg(s, a->rt);
3437     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3438     return true;
3439 }
3440 
3441 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3442 {
3443     TCGv_i64 clean_addr, dirty_addr;
3444     MemOp memop;
3445 
3446     if (extract32(a->opt, 1, 1) == 0) {
3447         return false;
3448     }
3449 
3450     if (!fp_access_check(s)) {
3451         return true;
3452     }
3453 
3454     memop = finalize_memop_asimd(s, a->sz);
3455     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3456     do_fp_ld(s, a->rt, clean_addr, memop);
3457     return true;
3458 }
3459 
3460 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3461 {
3462     TCGv_i64 clean_addr, dirty_addr;
3463     MemOp memop;
3464 
3465     if (extract32(a->opt, 1, 1) == 0) {
3466         return false;
3467     }
3468 
3469     if (!fp_access_check(s)) {
3470         return true;
3471     }
3472 
3473     memop = finalize_memop_asimd(s, a->sz);
3474     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3475     do_fp_st(s, a->rt, clean_addr, memop);
3476     return true;
3477 }
3478 
3479 
3480 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3481                          int sign, bool invert)
3482 {
3483     MemOp mop = a->sz | sign;
3484     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3485 
3486     if (a->rn == 31) {
3487         gen_check_sp_alignment(s);
3488     }
3489     mop = check_atomic_align(s, a->rn, mop);
3490     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3491                                 a->rn != 31, mop);
3492     tcg_rs = read_cpu_reg(s, a->rs, true);
3493     tcg_rt = cpu_reg(s, a->rt);
3494     if (invert) {
3495         tcg_gen_not_i64(tcg_rs, tcg_rs);
3496     }
3497     /*
3498      * The tcg atomic primitives are all full barriers.  Therefore we
3499      * can ignore the Acquire and Release bits of this instruction.
3500      */
3501     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3502 
3503     if (mop & MO_SIGN) {
3504         switch (a->sz) {
3505         case MO_8:
3506             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3507             break;
3508         case MO_16:
3509             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3510             break;
3511         case MO_32:
3512             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3513             break;
3514         case MO_64:
3515             break;
3516         default:
3517             g_assert_not_reached();
3518         }
3519     }
3520     return true;
3521 }
3522 
3523 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3524 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3525 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3526 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3527 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3528 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3529 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3530 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3531 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3532 
3533 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3534 {
3535     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3536     TCGv_i64 clean_addr;
3537     MemOp mop;
3538 
3539     if (!dc_isar_feature(aa64_atomics, s) ||
3540         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3541         return false;
3542     }
3543     if (a->rn == 31) {
3544         gen_check_sp_alignment(s);
3545     }
3546     mop = check_atomic_align(s, a->rn, a->sz);
3547     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3548                                 a->rn != 31, mop);
3549     /*
3550      * LDAPR* are a special case because they are a simple load, not a
3551      * fetch-and-do-something op.
3552      * The architectural consistency requirements here are weaker than
3553      * full load-acquire (we only need "load-acquire processor consistent"),
3554      * but we choose to implement them as full LDAQ.
3555      */
3556     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3557               true, a->rt, iss_sf, true);
3558     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3559     return true;
3560 }
3561 
3562 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3563 {
3564     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3565     MemOp memop;
3566 
3567     /* Load with pointer authentication */
3568     if (!dc_isar_feature(aa64_pauth, s)) {
3569         return false;
3570     }
3571 
3572     if (a->rn == 31) {
3573         gen_check_sp_alignment(s);
3574     }
3575     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3576 
3577     if (s->pauth_active) {
3578         if (!a->m) {
3579             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3580                                       tcg_constant_i64(0));
3581         } else {
3582             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3583                                       tcg_constant_i64(0));
3584         }
3585     }
3586 
3587     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3588 
3589     memop = finalize_memop(s, MO_64);
3590 
3591     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3592     clean_addr = gen_mte_check1(s, dirty_addr, false,
3593                                 a->w || a->rn != 31, memop);
3594 
3595     tcg_rt = cpu_reg(s, a->rt);
3596     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3597               /* extend */ false, /* iss_valid */ !a->w,
3598               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3599 
3600     if (a->w) {
3601         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3602     }
3603     return true;
3604 }
3605 
3606 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3607 {
3608     TCGv_i64 clean_addr, dirty_addr;
3609     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3610     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3611 
3612     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3613         return false;
3614     }
3615 
3616     if (a->rn == 31) {
3617         gen_check_sp_alignment(s);
3618     }
3619 
3620     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3621     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3622     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3623     clean_addr = clean_data_tbi(s, dirty_addr);
3624 
3625     /*
3626      * Load-AcquirePC semantics; we implement as the slightly more
3627      * restrictive Load-Acquire.
3628      */
3629     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3630               a->rt, iss_sf, true);
3631     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3632     return true;
3633 }
3634 
3635 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3636 {
3637     TCGv_i64 clean_addr, dirty_addr;
3638     MemOp mop = a->sz;
3639     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3640 
3641     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3642         return false;
3643     }
3644 
3645     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3646 
3647     if (a->rn == 31) {
3648         gen_check_sp_alignment(s);
3649     }
3650 
3651     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3652     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3653     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3654     clean_addr = clean_data_tbi(s, dirty_addr);
3655 
3656     /* Store-Release semantics */
3657     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3658     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3659     return true;
3660 }
3661 
3662 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3663 {
3664     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3665     MemOp endian, align, mop;
3666 
3667     int total;    /* total bytes */
3668     int elements; /* elements per vector */
3669     int r;
3670     int size = a->sz;
3671 
3672     if (!a->p && a->rm != 0) {
3673         /* For non-postindexed accesses the Rm field must be 0 */
3674         return false;
3675     }
3676     if (size == 3 && !a->q && a->selem != 1) {
3677         return false;
3678     }
3679     if (!fp_access_check(s)) {
3680         return true;
3681     }
3682 
3683     if (a->rn == 31) {
3684         gen_check_sp_alignment(s);
3685     }
3686 
3687     /* For our purposes, bytes are always little-endian.  */
3688     endian = s->be_data;
3689     if (size == 0) {
3690         endian = MO_LE;
3691     }
3692 
3693     total = a->rpt * a->selem * (a->q ? 16 : 8);
3694     tcg_rn = cpu_reg_sp(s, a->rn);
3695 
3696     /*
3697      * Issue the MTE check vs the logical repeat count, before we
3698      * promote consecutive little-endian elements below.
3699      */
3700     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3701                                 finalize_memop_asimd(s, size));
3702 
3703     /*
3704      * Consecutive little-endian elements from a single register
3705      * can be promoted to a larger little-endian operation.
3706      */
3707     align = MO_ALIGN;
3708     if (a->selem == 1 && endian == MO_LE) {
3709         align = pow2_align(size);
3710         size = 3;
3711     }
3712     if (!s->align_mem) {
3713         align = 0;
3714     }
3715     mop = endian | size | align;
3716 
3717     elements = (a->q ? 16 : 8) >> size;
3718     tcg_ebytes = tcg_constant_i64(1 << size);
3719     for (r = 0; r < a->rpt; r++) {
3720         int e;
3721         for (e = 0; e < elements; e++) {
3722             int xs;
3723             for (xs = 0; xs < a->selem; xs++) {
3724                 int tt = (a->rt + r + xs) % 32;
3725                 do_vec_ld(s, tt, e, clean_addr, mop);
3726                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3727             }
3728         }
3729     }
3730 
3731     /*
3732      * For non-quad operations, setting a slice of the low 64 bits of
3733      * the register clears the high 64 bits (in the ARM ARM pseudocode
3734      * this is implicit in the fact that 'rval' is a 64 bit wide
3735      * variable).  For quad operations, we might still need to zero
3736      * the high bits of SVE.
3737      */
3738     for (r = 0; r < a->rpt * a->selem; r++) {
3739         int tt = (a->rt + r) % 32;
3740         clear_vec_high(s, a->q, tt);
3741     }
3742 
3743     if (a->p) {
3744         if (a->rm == 31) {
3745             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3746         } else {
3747             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3748         }
3749     }
3750     return true;
3751 }
3752 
3753 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3754 {
3755     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3756     MemOp endian, align, mop;
3757 
3758     int total;    /* total bytes */
3759     int elements; /* elements per vector */
3760     int r;
3761     int size = a->sz;
3762 
3763     if (!a->p && a->rm != 0) {
3764         /* For non-postindexed accesses the Rm field must be 0 */
3765         return false;
3766     }
3767     if (size == 3 && !a->q && a->selem != 1) {
3768         return false;
3769     }
3770     if (!fp_access_check(s)) {
3771         return true;
3772     }
3773 
3774     if (a->rn == 31) {
3775         gen_check_sp_alignment(s);
3776     }
3777 
3778     /* For our purposes, bytes are always little-endian.  */
3779     endian = s->be_data;
3780     if (size == 0) {
3781         endian = MO_LE;
3782     }
3783 
3784     total = a->rpt * a->selem * (a->q ? 16 : 8);
3785     tcg_rn = cpu_reg_sp(s, a->rn);
3786 
3787     /*
3788      * Issue the MTE check vs the logical repeat count, before we
3789      * promote consecutive little-endian elements below.
3790      */
3791     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3792                                 finalize_memop_asimd(s, size));
3793 
3794     /*
3795      * Consecutive little-endian elements from a single register
3796      * can be promoted to a larger little-endian operation.
3797      */
3798     align = MO_ALIGN;
3799     if (a->selem == 1 && endian == MO_LE) {
3800         align = pow2_align(size);
3801         size = 3;
3802     }
3803     if (!s->align_mem) {
3804         align = 0;
3805     }
3806     mop = endian | size | align;
3807 
3808     elements = (a->q ? 16 : 8) >> size;
3809     tcg_ebytes = tcg_constant_i64(1 << size);
3810     for (r = 0; r < a->rpt; r++) {
3811         int e;
3812         for (e = 0; e < elements; e++) {
3813             int xs;
3814             for (xs = 0; xs < a->selem; xs++) {
3815                 int tt = (a->rt + r + xs) % 32;
3816                 do_vec_st(s, tt, e, clean_addr, mop);
3817                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3818             }
3819         }
3820     }
3821 
3822     if (a->p) {
3823         if (a->rm == 31) {
3824             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3825         } else {
3826             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3827         }
3828     }
3829     return true;
3830 }
3831 
3832 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3833 {
3834     int xs, total, rt;
3835     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3836     MemOp mop;
3837 
3838     if (!a->p && a->rm != 0) {
3839         return false;
3840     }
3841     if (!fp_access_check(s)) {
3842         return true;
3843     }
3844 
3845     if (a->rn == 31) {
3846         gen_check_sp_alignment(s);
3847     }
3848 
3849     total = a->selem << a->scale;
3850     tcg_rn = cpu_reg_sp(s, a->rn);
3851 
3852     mop = finalize_memop_asimd(s, a->scale);
3853     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3854                                 total, mop);
3855 
3856     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3857     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3858         do_vec_st(s, rt, a->index, clean_addr, mop);
3859         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3860     }
3861 
3862     if (a->p) {
3863         if (a->rm == 31) {
3864             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3865         } else {
3866             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3867         }
3868     }
3869     return true;
3870 }
3871 
3872 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3873 {
3874     int xs, total, rt;
3875     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3876     MemOp mop;
3877 
3878     if (!a->p && a->rm != 0) {
3879         return false;
3880     }
3881     if (!fp_access_check(s)) {
3882         return true;
3883     }
3884 
3885     if (a->rn == 31) {
3886         gen_check_sp_alignment(s);
3887     }
3888 
3889     total = a->selem << a->scale;
3890     tcg_rn = cpu_reg_sp(s, a->rn);
3891 
3892     mop = finalize_memop_asimd(s, a->scale);
3893     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3894                                 total, mop);
3895 
3896     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3897     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3898         do_vec_ld(s, rt, a->index, clean_addr, mop);
3899         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3900     }
3901 
3902     if (a->p) {
3903         if (a->rm == 31) {
3904             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3905         } else {
3906             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3907         }
3908     }
3909     return true;
3910 }
3911 
3912 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3913 {
3914     int xs, total, rt;
3915     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3916     MemOp mop;
3917 
3918     if (!a->p && a->rm != 0) {
3919         return false;
3920     }
3921     if (!fp_access_check(s)) {
3922         return true;
3923     }
3924 
3925     if (a->rn == 31) {
3926         gen_check_sp_alignment(s);
3927     }
3928 
3929     total = a->selem << a->scale;
3930     tcg_rn = cpu_reg_sp(s, a->rn);
3931 
3932     mop = finalize_memop_asimd(s, a->scale);
3933     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3934                                 total, mop);
3935 
3936     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3937     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3938         /* Load and replicate to all elements */
3939         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3940 
3941         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3942         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3943                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3944         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3945     }
3946 
3947     if (a->p) {
3948         if (a->rm == 31) {
3949             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3950         } else {
3951             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3952         }
3953     }
3954     return true;
3955 }
3956 
3957 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3958 {
3959     TCGv_i64 addr, clean_addr, tcg_rt;
3960     int size = 4 << s->dcz_blocksize;
3961 
3962     if (!dc_isar_feature(aa64_mte, s)) {
3963         return false;
3964     }
3965     if (s->current_el == 0) {
3966         return false;
3967     }
3968 
3969     if (a->rn == 31) {
3970         gen_check_sp_alignment(s);
3971     }
3972 
3973     addr = read_cpu_reg_sp(s, a->rn, true);
3974     tcg_gen_addi_i64(addr, addr, a->imm);
3975     tcg_rt = cpu_reg(s, a->rt);
3976 
3977     if (s->ata[0]) {
3978         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3979     }
3980     /*
3981      * The non-tags portion of STZGM is mostly like DC_ZVA,
3982      * except the alignment happens before the access.
3983      */
3984     clean_addr = clean_data_tbi(s, addr);
3985     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3986     gen_helper_dc_zva(tcg_env, clean_addr);
3987     return true;
3988 }
3989 
3990 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3991 {
3992     TCGv_i64 addr, clean_addr, tcg_rt;
3993 
3994     if (!dc_isar_feature(aa64_mte, s)) {
3995         return false;
3996     }
3997     if (s->current_el == 0) {
3998         return false;
3999     }
4000 
4001     if (a->rn == 31) {
4002         gen_check_sp_alignment(s);
4003     }
4004 
4005     addr = read_cpu_reg_sp(s, a->rn, true);
4006     tcg_gen_addi_i64(addr, addr, a->imm);
4007     tcg_rt = cpu_reg(s, a->rt);
4008 
4009     if (s->ata[0]) {
4010         gen_helper_stgm(tcg_env, addr, tcg_rt);
4011     } else {
4012         MMUAccessType acc = MMU_DATA_STORE;
4013         int size = 4 << s->gm_blocksize;
4014 
4015         clean_addr = clean_data_tbi(s, addr);
4016         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4017         gen_probe_access(s, clean_addr, acc, size);
4018     }
4019     return true;
4020 }
4021 
4022 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
4023 {
4024     TCGv_i64 addr, clean_addr, tcg_rt;
4025 
4026     if (!dc_isar_feature(aa64_mte, s)) {
4027         return false;
4028     }
4029     if (s->current_el == 0) {
4030         return false;
4031     }
4032 
4033     if (a->rn == 31) {
4034         gen_check_sp_alignment(s);
4035     }
4036 
4037     addr = read_cpu_reg_sp(s, a->rn, true);
4038     tcg_gen_addi_i64(addr, addr, a->imm);
4039     tcg_rt = cpu_reg(s, a->rt);
4040 
4041     if (s->ata[0]) {
4042         gen_helper_ldgm(tcg_rt, tcg_env, addr);
4043     } else {
4044         MMUAccessType acc = MMU_DATA_LOAD;
4045         int size = 4 << s->gm_blocksize;
4046 
4047         clean_addr = clean_data_tbi(s, addr);
4048         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4049         gen_probe_access(s, clean_addr, acc, size);
4050         /* The result tags are zeros.  */
4051         tcg_gen_movi_i64(tcg_rt, 0);
4052     }
4053     return true;
4054 }
4055 
4056 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4057 {
4058     TCGv_i64 addr, clean_addr, tcg_rt;
4059 
4060     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4061         return false;
4062     }
4063 
4064     if (a->rn == 31) {
4065         gen_check_sp_alignment(s);
4066     }
4067 
4068     addr = read_cpu_reg_sp(s, a->rn, true);
4069     if (!a->p) {
4070         /* pre-index or signed offset */
4071         tcg_gen_addi_i64(addr, addr, a->imm);
4072     }
4073 
4074     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4075     tcg_rt = cpu_reg(s, a->rt);
4076     if (s->ata[0]) {
4077         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4078     } else {
4079         /*
4080          * Tag access disabled: we must check for aborts on the load
4081          * load from [rn+offset], and then insert a 0 tag into rt.
4082          */
4083         clean_addr = clean_data_tbi(s, addr);
4084         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4085         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4086     }
4087 
4088     if (a->w) {
4089         /* pre-index or post-index */
4090         if (a->p) {
4091             /* post-index */
4092             tcg_gen_addi_i64(addr, addr, a->imm);
4093         }
4094         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4095     }
4096     return true;
4097 }
4098 
4099 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4100 {
4101     TCGv_i64 addr, tcg_rt;
4102 
4103     if (a->rn == 31) {
4104         gen_check_sp_alignment(s);
4105     }
4106 
4107     addr = read_cpu_reg_sp(s, a->rn, true);
4108     if (!a->p) {
4109         /* pre-index or signed offset */
4110         tcg_gen_addi_i64(addr, addr, a->imm);
4111     }
4112     tcg_rt = cpu_reg_sp(s, a->rt);
4113     if (!s->ata[0]) {
4114         /*
4115          * For STG and ST2G, we need to check alignment and probe memory.
4116          * TODO: For STZG and STZ2G, we could rely on the stores below,
4117          * at least for system mode; user-only won't enforce alignment.
4118          */
4119         if (is_pair) {
4120             gen_helper_st2g_stub(tcg_env, addr);
4121         } else {
4122             gen_helper_stg_stub(tcg_env, addr);
4123         }
4124     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4125         if (is_pair) {
4126             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4127         } else {
4128             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4129         }
4130     } else {
4131         if (is_pair) {
4132             gen_helper_st2g(tcg_env, addr, tcg_rt);
4133         } else {
4134             gen_helper_stg(tcg_env, addr, tcg_rt);
4135         }
4136     }
4137 
4138     if (is_zero) {
4139         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4140         TCGv_i64 zero64 = tcg_constant_i64(0);
4141         TCGv_i128 zero128 = tcg_temp_new_i128();
4142         int mem_index = get_mem_index(s);
4143         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4144 
4145         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4146 
4147         /* This is 1 or 2 atomic 16-byte operations. */
4148         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4149         if (is_pair) {
4150             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4151             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4152         }
4153     }
4154 
4155     if (a->w) {
4156         /* pre-index or post-index */
4157         if (a->p) {
4158             /* post-index */
4159             tcg_gen_addi_i64(addr, addr, a->imm);
4160         }
4161         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4162     }
4163     return true;
4164 }
4165 
4166 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4167 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4168 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4169 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4170 
4171 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4172 
4173 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4174                    bool is_setg, SetFn fn)
4175 {
4176     int memidx;
4177     uint32_t syndrome, desc = 0;
4178 
4179     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4180         return false;
4181     }
4182 
4183     /*
4184      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4185      * us to pull this check before the CheckMOPSEnabled() test
4186      * (which we do in the helper function)
4187      */
4188     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4189         a->rd == 31 || a->rn == 31) {
4190         return false;
4191     }
4192 
4193     memidx = get_a64_user_mem_index(s, a->unpriv);
4194 
4195     /*
4196      * We pass option_a == true, matching our implementation;
4197      * we pass wrong_option == false: helper function may set that bit.
4198      */
4199     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4200                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4201 
4202     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4203         /* We may need to do MTE tag checking, so assemble the descriptor */
4204         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4205         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4206         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4207         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4208     }
4209     /* The helper function always needs the memidx even with MTE disabled */
4210     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4211 
4212     /*
4213      * The helper needs the register numbers, but since they're in
4214      * the syndrome anyway, we let it extract them from there rather
4215      * than passing in an extra three integer arguments.
4216      */
4217     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4218     return true;
4219 }
4220 
4221 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4222 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4223 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4224 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4225 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4226 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4227 
4228 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4229 
4230 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4231 {
4232     int rmemidx, wmemidx;
4233     uint32_t syndrome, rdesc = 0, wdesc = 0;
4234     bool wunpriv = extract32(a->options, 0, 1);
4235     bool runpriv = extract32(a->options, 1, 1);
4236 
4237     /*
4238      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4239      * us to pull this check before the CheckMOPSEnabled() test
4240      * (which we do in the helper function)
4241      */
4242     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4243         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4244         return false;
4245     }
4246 
4247     rmemidx = get_a64_user_mem_index(s, runpriv);
4248     wmemidx = get_a64_user_mem_index(s, wunpriv);
4249 
4250     /*
4251      * We pass option_a == true, matching our implementation;
4252      * we pass wrong_option == false: helper function may set that bit.
4253      */
4254     syndrome = syn_mop(false, false, a->options, is_epilogue,
4255                        false, true, a->rd, a->rs, a->rn);
4256 
4257     /* If we need to do MTE tag checking, assemble the descriptors */
4258     if (s->mte_active[runpriv]) {
4259         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4260         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4261     }
4262     if (s->mte_active[wunpriv]) {
4263         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4264         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4265         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4266     }
4267     /* The helper function needs these parts of the descriptor regardless */
4268     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4269     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4270 
4271     /*
4272      * The helper needs the register numbers, but since they're in
4273      * the syndrome anyway, we let it extract them from there rather
4274      * than passing in an extra three integer arguments.
4275      */
4276     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4277        tcg_constant_i32(rdesc));
4278     return true;
4279 }
4280 
4281 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4282 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4283 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4284 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4285 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4286 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4287 
4288 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4289 
4290 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4291                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4292 {
4293     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4294     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4295     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4296 
4297     fn(tcg_rd, tcg_rn, tcg_imm);
4298     if (!a->sf) {
4299         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4300     }
4301     return true;
4302 }
4303 
4304 /*
4305  * PC-rel. addressing
4306  */
4307 
4308 static bool trans_ADR(DisasContext *s, arg_ri *a)
4309 {
4310     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4311     return true;
4312 }
4313 
4314 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4315 {
4316     int64_t offset = (int64_t)a->imm << 12;
4317 
4318     /* The page offset is ok for CF_PCREL. */
4319     offset -= s->pc_curr & 0xfff;
4320     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4321     return true;
4322 }
4323 
4324 /*
4325  * Add/subtract (immediate)
4326  */
4327 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4328 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4329 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4330 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4331 
4332 /*
4333  * Add/subtract (immediate, with tags)
4334  */
4335 
4336 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4337                                       bool sub_op)
4338 {
4339     TCGv_i64 tcg_rn, tcg_rd;
4340     int imm;
4341 
4342     imm = a->uimm6 << LOG2_TAG_GRANULE;
4343     if (sub_op) {
4344         imm = -imm;
4345     }
4346 
4347     tcg_rn = cpu_reg_sp(s, a->rn);
4348     tcg_rd = cpu_reg_sp(s, a->rd);
4349 
4350     if (s->ata[0]) {
4351         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4352                            tcg_constant_i32(imm),
4353                            tcg_constant_i32(a->uimm4));
4354     } else {
4355         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4356         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4357     }
4358     return true;
4359 }
4360 
4361 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4362 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4363 
4364 /* The input should be a value in the bottom e bits (with higher
4365  * bits zero); returns that value replicated into every element
4366  * of size e in a 64 bit integer.
4367  */
4368 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4369 {
4370     assert(e != 0);
4371     while (e < 64) {
4372         mask |= mask << e;
4373         e *= 2;
4374     }
4375     return mask;
4376 }
4377 
4378 /*
4379  * Logical (immediate)
4380  */
4381 
4382 /*
4383  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4384  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4385  * value (ie should cause a guest UNDEF exception), and true if they are
4386  * valid, in which case the decoded bit pattern is written to result.
4387  */
4388 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4389                             unsigned int imms, unsigned int immr)
4390 {
4391     uint64_t mask;
4392     unsigned e, levels, s, r;
4393     int len;
4394 
4395     assert(immn < 2 && imms < 64 && immr < 64);
4396 
4397     /* The bit patterns we create here are 64 bit patterns which
4398      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4399      * 64 bits each. Each element contains the same value: a run
4400      * of between 1 and e-1 non-zero bits, rotated within the
4401      * element by between 0 and e-1 bits.
4402      *
4403      * The element size and run length are encoded into immn (1 bit)
4404      * and imms (6 bits) as follows:
4405      * 64 bit elements: immn = 1, imms = <length of run - 1>
4406      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4407      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4408      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4409      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4410      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4411      * Notice that immn = 0, imms = 11111x is the only combination
4412      * not covered by one of the above options; this is reserved.
4413      * Further, <length of run - 1> all-ones is a reserved pattern.
4414      *
4415      * In all cases the rotation is by immr % e (and immr is 6 bits).
4416      */
4417 
4418     /* First determine the element size */
4419     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4420     if (len < 1) {
4421         /* This is the immn == 0, imms == 0x11111x case */
4422         return false;
4423     }
4424     e = 1 << len;
4425 
4426     levels = e - 1;
4427     s = imms & levels;
4428     r = immr & levels;
4429 
4430     if (s == levels) {
4431         /* <length of run - 1> mustn't be all-ones. */
4432         return false;
4433     }
4434 
4435     /* Create the value of one element: s+1 set bits rotated
4436      * by r within the element (which is e bits wide)...
4437      */
4438     mask = MAKE_64BIT_MASK(0, s + 1);
4439     if (r) {
4440         mask = (mask >> r) | (mask << (e - r));
4441         mask &= MAKE_64BIT_MASK(0, e);
4442     }
4443     /* ...then replicate the element over the whole 64 bit value */
4444     mask = bitfield_replicate(mask, e);
4445     *result = mask;
4446     return true;
4447 }
4448 
4449 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4450                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4451 {
4452     TCGv_i64 tcg_rd, tcg_rn;
4453     uint64_t imm;
4454 
4455     /* Some immediate field values are reserved. */
4456     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4457                                 extract32(a->dbm, 0, 6),
4458                                 extract32(a->dbm, 6, 6))) {
4459         return false;
4460     }
4461     if (!a->sf) {
4462         imm &= 0xffffffffull;
4463     }
4464 
4465     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4466     tcg_rn = cpu_reg(s, a->rn);
4467 
4468     fn(tcg_rd, tcg_rn, imm);
4469     if (set_cc) {
4470         gen_logic_CC(a->sf, tcg_rd);
4471     }
4472     if (!a->sf) {
4473         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4474     }
4475     return true;
4476 }
4477 
4478 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4479 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4480 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4481 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4482 
4483 /*
4484  * Move wide (immediate)
4485  */
4486 
4487 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4488 {
4489     int pos = a->hw << 4;
4490     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4491     return true;
4492 }
4493 
4494 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4495 {
4496     int pos = a->hw << 4;
4497     uint64_t imm = a->imm;
4498 
4499     imm = ~(imm << pos);
4500     if (!a->sf) {
4501         imm = (uint32_t)imm;
4502     }
4503     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4504     return true;
4505 }
4506 
4507 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4508 {
4509     int pos = a->hw << 4;
4510     TCGv_i64 tcg_rd, tcg_im;
4511 
4512     tcg_rd = cpu_reg(s, a->rd);
4513     tcg_im = tcg_constant_i64(a->imm);
4514     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4515     if (!a->sf) {
4516         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4517     }
4518     return true;
4519 }
4520 
4521 /*
4522  * Bitfield
4523  */
4524 
4525 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4526 {
4527     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4528     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529     unsigned int bitsize = a->sf ? 64 : 32;
4530     unsigned int ri = a->immr;
4531     unsigned int si = a->imms;
4532     unsigned int pos, len;
4533 
4534     if (si >= ri) {
4535         /* Wd<s-r:0> = Wn<s:r> */
4536         len = (si - ri) + 1;
4537         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4538         if (!a->sf) {
4539             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4540         }
4541     } else {
4542         /* Wd<32+s-r,32-r> = Wn<s:0> */
4543         len = si + 1;
4544         pos = (bitsize - ri) & (bitsize - 1);
4545 
4546         if (len < ri) {
4547             /*
4548              * Sign extend the destination field from len to fill the
4549              * balance of the word.  Let the deposit below insert all
4550              * of those sign bits.
4551              */
4552             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4553             len = ri;
4554         }
4555 
4556         /*
4557          * We start with zero, and we haven't modified any bits outside
4558          * bitsize, therefore no final zero-extension is unneeded for !sf.
4559          */
4560         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4561     }
4562     return true;
4563 }
4564 
4565 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4566 {
4567     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4568     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4569     unsigned int bitsize = a->sf ? 64 : 32;
4570     unsigned int ri = a->immr;
4571     unsigned int si = a->imms;
4572     unsigned int pos, len;
4573 
4574     tcg_rd = cpu_reg(s, a->rd);
4575     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4576 
4577     if (si >= ri) {
4578         /* Wd<s-r:0> = Wn<s:r> */
4579         len = (si - ri) + 1;
4580         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4581     } else {
4582         /* Wd<32+s-r,32-r> = Wn<s:0> */
4583         len = si + 1;
4584         pos = (bitsize - ri) & (bitsize - 1);
4585         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4586     }
4587     return true;
4588 }
4589 
4590 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4591 {
4592     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4593     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4594     unsigned int bitsize = a->sf ? 64 : 32;
4595     unsigned int ri = a->immr;
4596     unsigned int si = a->imms;
4597     unsigned int pos, len;
4598 
4599     tcg_rd = cpu_reg(s, a->rd);
4600     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4601 
4602     if (si >= ri) {
4603         /* Wd<s-r:0> = Wn<s:r> */
4604         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4605         len = (si - ri) + 1;
4606         pos = 0;
4607     } else {
4608         /* Wd<32+s-r,32-r> = Wn<s:0> */
4609         len = si + 1;
4610         pos = (bitsize - ri) & (bitsize - 1);
4611     }
4612 
4613     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4614     if (!a->sf) {
4615         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4616     }
4617     return true;
4618 }
4619 
4620 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4621 {
4622     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4623 
4624     tcg_rd = cpu_reg(s, a->rd);
4625 
4626     if (unlikely(a->imm == 0)) {
4627         /*
4628          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4629          * so an extract from bit 0 is a special case.
4630          */
4631         if (a->sf) {
4632             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4633         } else {
4634             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4635         }
4636     } else {
4637         tcg_rm = cpu_reg(s, a->rm);
4638         tcg_rn = cpu_reg(s, a->rn);
4639 
4640         if (a->sf) {
4641             /* Specialization to ROR happens in EXTRACT2.  */
4642             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4643         } else {
4644             TCGv_i32 t0 = tcg_temp_new_i32();
4645 
4646             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4647             if (a->rm == a->rn) {
4648                 tcg_gen_rotri_i32(t0, t0, a->imm);
4649             } else {
4650                 TCGv_i32 t1 = tcg_temp_new_i32();
4651                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4652                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4653             }
4654             tcg_gen_extu_i32_i64(tcg_rd, t0);
4655         }
4656     }
4657     return true;
4658 }
4659 
4660 /*
4661  * Cryptographic AES, SHA, SHA512
4662  */
4663 
4664 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4665 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4666 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4667 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4668 
4669 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4670 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4671 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4672 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4673 
4674 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4675 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4676 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4677 
4678 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4679 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4680 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4681 
4682 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4683 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4684 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4685 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4686 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4687 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4688 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4689 
4690 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4691 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4692 
4693 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4694 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4695 
4696 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4697 {
4698     if (!dc_isar_feature(aa64_sm3, s)) {
4699         return false;
4700     }
4701     if (fp_access_check(s)) {
4702         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4703         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4704         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4705         TCGv_i32 tcg_res = tcg_temp_new_i32();
4706         unsigned vsz, dofs;
4707 
4708         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4709         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4710         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4711 
4712         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4713         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4714         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4715         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4716 
4717         /* Clear the whole register first, then store bits [127:96]. */
4718         vsz = vec_full_reg_size(s);
4719         dofs = vec_full_reg_offset(s, a->rd);
4720         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4721         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4722     }
4723     return true;
4724 }
4725 
4726 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4727 {
4728     if (fp_access_check(s)) {
4729         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4730     }
4731     return true;
4732 }
4733 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4734 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4735 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4736 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4737 
4738 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4739 {
4740     if (!dc_isar_feature(aa64_sha3, s)) {
4741         return false;
4742     }
4743     if (fp_access_check(s)) {
4744         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4745                      vec_full_reg_offset(s, a->rn),
4746                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4747                      vec_full_reg_size(s));
4748     }
4749     return true;
4750 }
4751 
4752 /*
4753  * Advanced SIMD copy
4754  */
4755 
4756 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4757 {
4758     unsigned esz = ctz32(imm);
4759     if (esz <= MO_64) {
4760         *pesz = esz;
4761         *pidx = imm >> (esz + 1);
4762         return true;
4763     }
4764     return false;
4765 }
4766 
4767 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4768 {
4769     MemOp esz;
4770     unsigned idx;
4771 
4772     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4773         return false;
4774     }
4775     if (fp_access_check(s)) {
4776         /*
4777          * This instruction just extracts the specified element and
4778          * zero-extends it into the bottom of the destination register.
4779          */
4780         TCGv_i64 tmp = tcg_temp_new_i64();
4781         read_vec_element(s, tmp, a->rn, idx, esz);
4782         write_fp_dreg(s, a->rd, tmp);
4783     }
4784     return true;
4785 }
4786 
4787 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4788 {
4789     MemOp esz;
4790     unsigned idx;
4791 
4792     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4793         return false;
4794     }
4795     if (esz == MO_64 && !a->q) {
4796         return false;
4797     }
4798     if (fp_access_check(s)) {
4799         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4800                              vec_reg_offset(s, a->rn, idx, esz),
4801                              a->q ? 16 : 8, vec_full_reg_size(s));
4802     }
4803     return true;
4804 }
4805 
4806 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4807 {
4808     MemOp esz;
4809     unsigned idx;
4810 
4811     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4812         return false;
4813     }
4814     if (esz == MO_64 && !a->q) {
4815         return false;
4816     }
4817     if (fp_access_check(s)) {
4818         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4819                              a->q ? 16 : 8, vec_full_reg_size(s),
4820                              cpu_reg(s, a->rn));
4821     }
4822     return true;
4823 }
4824 
4825 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4826 {
4827     MemOp esz;
4828     unsigned idx;
4829 
4830     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4831         return false;
4832     }
4833     if (is_signed) {
4834         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4835             return false;
4836         }
4837     } else {
4838         if (esz == MO_64 ? !a->q : a->q) {
4839             return false;
4840         }
4841     }
4842     if (fp_access_check(s)) {
4843         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4844         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4845         if (is_signed && !a->q) {
4846             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4847         }
4848     }
4849     return true;
4850 }
4851 
4852 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4853 TRANS(UMOV, do_smov_umov, a, 0)
4854 
4855 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4856 {
4857     MemOp esz;
4858     unsigned idx;
4859 
4860     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4861         return false;
4862     }
4863     if (fp_access_check(s)) {
4864         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4865         clear_vec_high(s, true, a->rd);
4866     }
4867     return true;
4868 }
4869 
4870 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4871 {
4872     MemOp esz;
4873     unsigned didx, sidx;
4874 
4875     if (!decode_esz_idx(a->di, &esz, &didx)) {
4876         return false;
4877     }
4878     sidx = a->si >> esz;
4879     if (fp_access_check(s)) {
4880         TCGv_i64 tmp = tcg_temp_new_i64();
4881 
4882         read_vec_element(s, tmp, a->rn, sidx, esz);
4883         write_vec_element(s, tmp, a->rd, didx, esz);
4884 
4885         /* INS is considered a 128-bit write for SVE. */
4886         clear_vec_high(s, true, a->rd);
4887     }
4888     return true;
4889 }
4890 
4891 /*
4892  * Advanced SIMD three same
4893  */
4894 
4895 typedef struct FPScalar {
4896     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4897     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4898     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4899 } FPScalar;
4900 
4901 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4902 {
4903     switch (a->esz) {
4904     case MO_64:
4905         if (fp_access_check(s)) {
4906             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4907             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4908             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4909             write_fp_dreg(s, a->rd, t0);
4910         }
4911         break;
4912     case MO_32:
4913         if (fp_access_check(s)) {
4914             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4915             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4916             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4917             write_fp_sreg(s, a->rd, t0);
4918         }
4919         break;
4920     case MO_16:
4921         if (!dc_isar_feature(aa64_fp16, s)) {
4922             return false;
4923         }
4924         if (fp_access_check(s)) {
4925             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4926             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4927             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4928             write_fp_sreg(s, a->rd, t0);
4929         }
4930         break;
4931     default:
4932         return false;
4933     }
4934     return true;
4935 }
4936 
4937 static const FPScalar f_scalar_fadd = {
4938     gen_helper_vfp_addh,
4939     gen_helper_vfp_adds,
4940     gen_helper_vfp_addd,
4941 };
4942 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4943 
4944 static const FPScalar f_scalar_fsub = {
4945     gen_helper_vfp_subh,
4946     gen_helper_vfp_subs,
4947     gen_helper_vfp_subd,
4948 };
4949 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4950 
4951 static const FPScalar f_scalar_fdiv = {
4952     gen_helper_vfp_divh,
4953     gen_helper_vfp_divs,
4954     gen_helper_vfp_divd,
4955 };
4956 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4957 
4958 static const FPScalar f_scalar_fmul = {
4959     gen_helper_vfp_mulh,
4960     gen_helper_vfp_muls,
4961     gen_helper_vfp_muld,
4962 };
4963 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4964 
4965 static const FPScalar f_scalar_fmax = {
4966     gen_helper_advsimd_maxh,
4967     gen_helper_vfp_maxs,
4968     gen_helper_vfp_maxd,
4969 };
4970 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4971 
4972 static const FPScalar f_scalar_fmin = {
4973     gen_helper_advsimd_minh,
4974     gen_helper_vfp_mins,
4975     gen_helper_vfp_mind,
4976 };
4977 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4978 
4979 static const FPScalar f_scalar_fmaxnm = {
4980     gen_helper_advsimd_maxnumh,
4981     gen_helper_vfp_maxnums,
4982     gen_helper_vfp_maxnumd,
4983 };
4984 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4985 
4986 static const FPScalar f_scalar_fminnm = {
4987     gen_helper_advsimd_minnumh,
4988     gen_helper_vfp_minnums,
4989     gen_helper_vfp_minnumd,
4990 };
4991 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4992 
4993 static const FPScalar f_scalar_fmulx = {
4994     gen_helper_advsimd_mulxh,
4995     gen_helper_vfp_mulxs,
4996     gen_helper_vfp_mulxd,
4997 };
4998 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4999 
5000 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5001 {
5002     gen_helper_vfp_mulh(d, n, m, s);
5003     gen_vfp_negh(d, d);
5004 }
5005 
5006 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5007 {
5008     gen_helper_vfp_muls(d, n, m, s);
5009     gen_vfp_negs(d, d);
5010 }
5011 
5012 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5013 {
5014     gen_helper_vfp_muld(d, n, m, s);
5015     gen_vfp_negd(d, d);
5016 }
5017 
5018 static const FPScalar f_scalar_fnmul = {
5019     gen_fnmul_h,
5020     gen_fnmul_s,
5021     gen_fnmul_d,
5022 };
5023 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
5024 
5025 static const FPScalar f_scalar_fcmeq = {
5026     gen_helper_advsimd_ceq_f16,
5027     gen_helper_neon_ceq_f32,
5028     gen_helper_neon_ceq_f64,
5029 };
5030 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
5031 
5032 static const FPScalar f_scalar_fcmge = {
5033     gen_helper_advsimd_cge_f16,
5034     gen_helper_neon_cge_f32,
5035     gen_helper_neon_cge_f64,
5036 };
5037 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
5038 
5039 static const FPScalar f_scalar_fcmgt = {
5040     gen_helper_advsimd_cgt_f16,
5041     gen_helper_neon_cgt_f32,
5042     gen_helper_neon_cgt_f64,
5043 };
5044 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
5045 
5046 static const FPScalar f_scalar_facge = {
5047     gen_helper_advsimd_acge_f16,
5048     gen_helper_neon_acge_f32,
5049     gen_helper_neon_acge_f64,
5050 };
5051 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5052 
5053 static const FPScalar f_scalar_facgt = {
5054     gen_helper_advsimd_acgt_f16,
5055     gen_helper_neon_acgt_f32,
5056     gen_helper_neon_acgt_f64,
5057 };
5058 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5059 
5060 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5061 {
5062     gen_helper_vfp_subh(d, n, m, s);
5063     gen_vfp_absh(d, d);
5064 }
5065 
5066 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5067 {
5068     gen_helper_vfp_subs(d, n, m, s);
5069     gen_vfp_abss(d, d);
5070 }
5071 
5072 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5073 {
5074     gen_helper_vfp_subd(d, n, m, s);
5075     gen_vfp_absd(d, d);
5076 }
5077 
5078 static const FPScalar f_scalar_fabd = {
5079     gen_fabd_h,
5080     gen_fabd_s,
5081     gen_fabd_d,
5082 };
5083 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5084 
5085 static const FPScalar f_scalar_frecps = {
5086     gen_helper_recpsf_f16,
5087     gen_helper_recpsf_f32,
5088     gen_helper_recpsf_f64,
5089 };
5090 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5091 
5092 static const FPScalar f_scalar_frsqrts = {
5093     gen_helper_rsqrtsf_f16,
5094     gen_helper_rsqrtsf_f32,
5095     gen_helper_rsqrtsf_f64,
5096 };
5097 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5098 
5099 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5100                 MemOp sgn_n, MemOp sgn_m,
5101                 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5102                 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5103 {
5104     TCGv_i64 t0, t1, t2, qc;
5105     MemOp esz = a->esz;
5106 
5107     if (!fp_access_check(s)) {
5108         return true;
5109     }
5110 
5111     t0 = tcg_temp_new_i64();
5112     t1 = tcg_temp_new_i64();
5113     t2 = tcg_temp_new_i64();
5114     qc = tcg_temp_new_i64();
5115     read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5116     read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5117     tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5118 
5119     if (esz == MO_64) {
5120         gen_d(t0, qc, t1, t2);
5121     } else {
5122         gen_bhs(t0, qc, t1, t2, esz);
5123         tcg_gen_ext_i64(t0, t0, esz);
5124     }
5125 
5126     write_fp_dreg(s, a->rd, t0);
5127     tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5128     return true;
5129 }
5130 
5131 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5132 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5133 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5134 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5135 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5136 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5137 
5138 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5139                              void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5140 {
5141     if (fp_access_check(s)) {
5142         TCGv_i64 t0 = tcg_temp_new_i64();
5143         TCGv_i64 t1 = tcg_temp_new_i64();
5144 
5145         read_vec_element(s, t0, a->rn, 0, MO_64);
5146         read_vec_element(s, t1, a->rm, 0, MO_64);
5147         fn(t0, t0, t1);
5148         write_fp_dreg(s, a->rd, t0);
5149     }
5150     return true;
5151 }
5152 
5153 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5154 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5155 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5156 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5157 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5158 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5159 
5160 typedef struct ENVScalar2 {
5161     NeonGenTwoOpEnvFn *gen_bhs[3];
5162     NeonGenTwo64OpEnvFn *gen_d;
5163 } ENVScalar2;
5164 
5165 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5166 {
5167     if (!fp_access_check(s)) {
5168         return true;
5169     }
5170     if (a->esz == MO_64) {
5171         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5172         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5173         f->gen_d(t0, tcg_env, t0, t1);
5174         write_fp_dreg(s, a->rd, t0);
5175     } else {
5176         TCGv_i32 t0 = tcg_temp_new_i32();
5177         TCGv_i32 t1 = tcg_temp_new_i32();
5178 
5179         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5180         read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5181         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5182         write_fp_sreg(s, a->rd, t0);
5183     }
5184     return true;
5185 }
5186 
5187 static const ENVScalar2 f_scalar_sqshl = {
5188     { gen_helper_neon_qshl_s8,
5189       gen_helper_neon_qshl_s16,
5190       gen_helper_neon_qshl_s32 },
5191     gen_helper_neon_qshl_s64,
5192 };
5193 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5194 
5195 static const ENVScalar2 f_scalar_uqshl = {
5196     { gen_helper_neon_qshl_u8,
5197       gen_helper_neon_qshl_u16,
5198       gen_helper_neon_qshl_u32 },
5199     gen_helper_neon_qshl_u64,
5200 };
5201 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5202 
5203 static const ENVScalar2 f_scalar_sqrshl = {
5204     { gen_helper_neon_qrshl_s8,
5205       gen_helper_neon_qrshl_s16,
5206       gen_helper_neon_qrshl_s32 },
5207     gen_helper_neon_qrshl_s64,
5208 };
5209 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5210 
5211 static const ENVScalar2 f_scalar_uqrshl = {
5212     { gen_helper_neon_qrshl_u8,
5213       gen_helper_neon_qrshl_u16,
5214       gen_helper_neon_qrshl_u32 },
5215     gen_helper_neon_qrshl_u64,
5216 };
5217 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5218 
5219 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
5220                               const ENVScalar2 *f)
5221 {
5222     if (a->esz == MO_16 || a->esz == MO_32) {
5223         return do_env_scalar2(s, a, f);
5224     }
5225     return false;
5226 }
5227 
5228 static const ENVScalar2 f_scalar_sqdmulh = {
5229     { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
5230 };
5231 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
5232 
5233 static const ENVScalar2 f_scalar_sqrdmulh = {
5234     { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
5235 };
5236 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
5237 
5238 typedef struct ENVScalar3 {
5239     NeonGenThreeOpEnvFn *gen_hs[2];
5240 } ENVScalar3;
5241 
5242 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a,
5243                               const ENVScalar3 *f)
5244 {
5245     TCGv_i32 t0, t1, t2;
5246 
5247     if (a->esz != MO_16 && a->esz != MO_32) {
5248         return false;
5249     }
5250     if (!fp_access_check(s)) {
5251         return true;
5252     }
5253 
5254     t0 = tcg_temp_new_i32();
5255     t1 = tcg_temp_new_i32();
5256     t2 = tcg_temp_new_i32();
5257     read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5258     read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5259     read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5260     f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5261     write_fp_sreg(s, a->rd, t0);
5262     return true;
5263 }
5264 
5265 static const ENVScalar3 f_scalar_sqrdmlah = {
5266     { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 }
5267 };
5268 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah)
5269 
5270 static const ENVScalar3 f_scalar_sqrdmlsh = {
5271     { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 }
5272 };
5273 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh)
5274 
5275 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5276 {
5277     if (fp_access_check(s)) {
5278         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5279         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5280         tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5281         write_fp_dreg(s, a->rd, t0);
5282     }
5283     return true;
5284 }
5285 
5286 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5287 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5288 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5289 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5290 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5291 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5292 
5293 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, int data,
5294                           gen_helper_gvec_3_ptr * const fns[3])
5295 {
5296     MemOp esz = a->esz;
5297 
5298     switch (esz) {
5299     case MO_64:
5300         if (!a->q) {
5301             return false;
5302         }
5303         break;
5304     case MO_32:
5305         break;
5306     case MO_16:
5307         if (!dc_isar_feature(aa64_fp16, s)) {
5308             return false;
5309         }
5310         break;
5311     default:
5312         return false;
5313     }
5314     if (fp_access_check(s)) {
5315         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5316                           esz == MO_16, data, fns[esz - 1]);
5317     }
5318     return true;
5319 }
5320 
5321 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5322     gen_helper_gvec_fadd_h,
5323     gen_helper_gvec_fadd_s,
5324     gen_helper_gvec_fadd_d,
5325 };
5326 TRANS(FADD_v, do_fp3_vector, a, 0, f_vector_fadd)
5327 
5328 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5329     gen_helper_gvec_fsub_h,
5330     gen_helper_gvec_fsub_s,
5331     gen_helper_gvec_fsub_d,
5332 };
5333 TRANS(FSUB_v, do_fp3_vector, a, 0, f_vector_fsub)
5334 
5335 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5336     gen_helper_gvec_fdiv_h,
5337     gen_helper_gvec_fdiv_s,
5338     gen_helper_gvec_fdiv_d,
5339 };
5340 TRANS(FDIV_v, do_fp3_vector, a, 0, f_vector_fdiv)
5341 
5342 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5343     gen_helper_gvec_fmul_h,
5344     gen_helper_gvec_fmul_s,
5345     gen_helper_gvec_fmul_d,
5346 };
5347 TRANS(FMUL_v, do_fp3_vector, a, 0, f_vector_fmul)
5348 
5349 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5350     gen_helper_gvec_fmax_h,
5351     gen_helper_gvec_fmax_s,
5352     gen_helper_gvec_fmax_d,
5353 };
5354 TRANS(FMAX_v, do_fp3_vector, a, 0, f_vector_fmax)
5355 
5356 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5357     gen_helper_gvec_fmin_h,
5358     gen_helper_gvec_fmin_s,
5359     gen_helper_gvec_fmin_d,
5360 };
5361 TRANS(FMIN_v, do_fp3_vector, a, 0, f_vector_fmin)
5362 
5363 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5364     gen_helper_gvec_fmaxnum_h,
5365     gen_helper_gvec_fmaxnum_s,
5366     gen_helper_gvec_fmaxnum_d,
5367 };
5368 TRANS(FMAXNM_v, do_fp3_vector, a, 0, f_vector_fmaxnm)
5369 
5370 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5371     gen_helper_gvec_fminnum_h,
5372     gen_helper_gvec_fminnum_s,
5373     gen_helper_gvec_fminnum_d,
5374 };
5375 TRANS(FMINNM_v, do_fp3_vector, a, 0, f_vector_fminnm)
5376 
5377 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5378     gen_helper_gvec_fmulx_h,
5379     gen_helper_gvec_fmulx_s,
5380     gen_helper_gvec_fmulx_d,
5381 };
5382 TRANS(FMULX_v, do_fp3_vector, a, 0, f_vector_fmulx)
5383 
5384 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5385     gen_helper_gvec_vfma_h,
5386     gen_helper_gvec_vfma_s,
5387     gen_helper_gvec_vfma_d,
5388 };
5389 TRANS(FMLA_v, do_fp3_vector, a, 0, f_vector_fmla)
5390 
5391 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5392     gen_helper_gvec_vfms_h,
5393     gen_helper_gvec_vfms_s,
5394     gen_helper_gvec_vfms_d,
5395 };
5396 TRANS(FMLS_v, do_fp3_vector, a, 0, f_vector_fmls)
5397 
5398 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5399     gen_helper_gvec_fceq_h,
5400     gen_helper_gvec_fceq_s,
5401     gen_helper_gvec_fceq_d,
5402 };
5403 TRANS(FCMEQ_v, do_fp3_vector, a, 0, f_vector_fcmeq)
5404 
5405 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5406     gen_helper_gvec_fcge_h,
5407     gen_helper_gvec_fcge_s,
5408     gen_helper_gvec_fcge_d,
5409 };
5410 TRANS(FCMGE_v, do_fp3_vector, a, 0, f_vector_fcmge)
5411 
5412 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5413     gen_helper_gvec_fcgt_h,
5414     gen_helper_gvec_fcgt_s,
5415     gen_helper_gvec_fcgt_d,
5416 };
5417 TRANS(FCMGT_v, do_fp3_vector, a, 0, f_vector_fcmgt)
5418 
5419 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5420     gen_helper_gvec_facge_h,
5421     gen_helper_gvec_facge_s,
5422     gen_helper_gvec_facge_d,
5423 };
5424 TRANS(FACGE_v, do_fp3_vector, a, 0, f_vector_facge)
5425 
5426 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5427     gen_helper_gvec_facgt_h,
5428     gen_helper_gvec_facgt_s,
5429     gen_helper_gvec_facgt_d,
5430 };
5431 TRANS(FACGT_v, do_fp3_vector, a, 0, f_vector_facgt)
5432 
5433 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5434     gen_helper_gvec_fabd_h,
5435     gen_helper_gvec_fabd_s,
5436     gen_helper_gvec_fabd_d,
5437 };
5438 TRANS(FABD_v, do_fp3_vector, a, 0, f_vector_fabd)
5439 
5440 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5441     gen_helper_gvec_recps_h,
5442     gen_helper_gvec_recps_s,
5443     gen_helper_gvec_recps_d,
5444 };
5445 TRANS(FRECPS_v, do_fp3_vector, a, 0, f_vector_frecps)
5446 
5447 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5448     gen_helper_gvec_rsqrts_h,
5449     gen_helper_gvec_rsqrts_s,
5450     gen_helper_gvec_rsqrts_d,
5451 };
5452 TRANS(FRSQRTS_v, do_fp3_vector, a, 0, f_vector_frsqrts)
5453 
5454 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5455     gen_helper_gvec_faddp_h,
5456     gen_helper_gvec_faddp_s,
5457     gen_helper_gvec_faddp_d,
5458 };
5459 TRANS(FADDP_v, do_fp3_vector, a, 0, f_vector_faddp)
5460 
5461 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5462     gen_helper_gvec_fmaxp_h,
5463     gen_helper_gvec_fmaxp_s,
5464     gen_helper_gvec_fmaxp_d,
5465 };
5466 TRANS(FMAXP_v, do_fp3_vector, a, 0, f_vector_fmaxp)
5467 
5468 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5469     gen_helper_gvec_fminp_h,
5470     gen_helper_gvec_fminp_s,
5471     gen_helper_gvec_fminp_d,
5472 };
5473 TRANS(FMINP_v, do_fp3_vector, a, 0, f_vector_fminp)
5474 
5475 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5476     gen_helper_gvec_fmaxnump_h,
5477     gen_helper_gvec_fmaxnump_s,
5478     gen_helper_gvec_fmaxnump_d,
5479 };
5480 TRANS(FMAXNMP_v, do_fp3_vector, a, 0, f_vector_fmaxnmp)
5481 
5482 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5483     gen_helper_gvec_fminnump_h,
5484     gen_helper_gvec_fminnump_s,
5485     gen_helper_gvec_fminnump_d,
5486 };
5487 TRANS(FMINNMP_v, do_fp3_vector, a, 0, f_vector_fminnmp)
5488 
5489 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5490 {
5491     if (fp_access_check(s)) {
5492         int data = (is_2 << 1) | is_s;
5493         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5494                            vec_full_reg_offset(s, a->rn),
5495                            vec_full_reg_offset(s, a->rm), tcg_env,
5496                            a->q ? 16 : 8, vec_full_reg_size(s),
5497                            data, gen_helper_gvec_fmlal_a64);
5498     }
5499     return true;
5500 }
5501 
5502 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
5503 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
5504 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
5505 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
5506 
5507 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5508 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
5509 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
5510 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
5511 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
5512 
5513 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
5514 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
5515 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
5516 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
5517 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
5518 
5519 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
5520 {
5521     if (fp_access_check(s)) {
5522         gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
5523     }
5524     return true;
5525 }
5526 
5527 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
5528 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
5529 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
5530 
5531 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
5532 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
5533 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
5534 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
5535 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
5536 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
5537 
5538 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
5539 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
5540 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
5541 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
5542 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
5543 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
5544 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
5545 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
5546 
5547 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
5548 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
5549 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
5550 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
5551 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
5552 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
5553 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
5554 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
5555 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
5556 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
5557 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
5558 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
5559 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
5560 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
5561 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
5562 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
5563 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
5564 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
5565 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
5566 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
5567 
5568 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
5569 {
5570     if (a->esz == MO_64 && !a->q) {
5571         return false;
5572     }
5573     if (fp_access_check(s)) {
5574         tcg_gen_gvec_cmp(cond, a->esz,
5575                          vec_full_reg_offset(s, a->rd),
5576                          vec_full_reg_offset(s, a->rn),
5577                          vec_full_reg_offset(s, a->rm),
5578                          a->q ? 16 : 8, vec_full_reg_size(s));
5579     }
5580     return true;
5581 }
5582 
5583 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
5584 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
5585 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
5586 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
5587 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
5588 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
5589 
5590 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
5591 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
5592 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc)
5593 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc)
5594 
5595 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a,
5596                           gen_helper_gvec_4 *fn)
5597 {
5598     if (fp_access_check(s)) {
5599         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
5600     }
5601     return true;
5602 }
5603 
5604 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_b)
5605 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_b)
5606 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_b)
5607 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfdot)
5608 TRANS_FEAT(BFMMLA, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfmmla)
5609 TRANS_FEAT(SMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_smmla_b)
5610 TRANS_FEAT(UMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_ummla_b)
5611 TRANS_FEAT(USMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usmmla_b)
5612 
5613 static bool trans_BFMLAL_v(DisasContext *s, arg_qrrr_e *a)
5614 {
5615     if (!dc_isar_feature(aa64_bf16, s)) {
5616         return false;
5617     }
5618     if (fp_access_check(s)) {
5619         /* Q bit selects BFMLALB vs BFMLALT. */
5620         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, false, a->q,
5621                           gen_helper_gvec_bfmlal);
5622     }
5623     return true;
5624 }
5625 
5626 static gen_helper_gvec_3_ptr * const f_vector_fcadd[3] = {
5627     gen_helper_gvec_fcaddh,
5628     gen_helper_gvec_fcadds,
5629     gen_helper_gvec_fcaddd,
5630 };
5631 TRANS_FEAT(FCADD_90, aa64_fcma, do_fp3_vector, a, 0, f_vector_fcadd)
5632 TRANS_FEAT(FCADD_270, aa64_fcma, do_fp3_vector, a, 1, f_vector_fcadd)
5633 
5634 /*
5635  * Advanced SIMD scalar/vector x indexed element
5636  */
5637 
5638 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5639 {
5640     switch (a->esz) {
5641     case MO_64:
5642         if (fp_access_check(s)) {
5643             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5644             TCGv_i64 t1 = tcg_temp_new_i64();
5645 
5646             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5647             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5648             write_fp_dreg(s, a->rd, t0);
5649         }
5650         break;
5651     case MO_32:
5652         if (fp_access_check(s)) {
5653             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5654             TCGv_i32 t1 = tcg_temp_new_i32();
5655 
5656             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5657             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5658             write_fp_sreg(s, a->rd, t0);
5659         }
5660         break;
5661     case MO_16:
5662         if (!dc_isar_feature(aa64_fp16, s)) {
5663             return false;
5664         }
5665         if (fp_access_check(s)) {
5666             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5667             TCGv_i32 t1 = tcg_temp_new_i32();
5668 
5669             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5670             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5671             write_fp_sreg(s, a->rd, t0);
5672         }
5673         break;
5674     default:
5675         g_assert_not_reached();
5676     }
5677     return true;
5678 }
5679 
5680 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5681 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5682 
5683 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5684 {
5685     switch (a->esz) {
5686     case MO_64:
5687         if (fp_access_check(s)) {
5688             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5689             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5690             TCGv_i64 t2 = tcg_temp_new_i64();
5691 
5692             read_vec_element(s, t2, a->rm, a->idx, MO_64);
5693             if (neg) {
5694                 gen_vfp_negd(t1, t1);
5695             }
5696             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5697             write_fp_dreg(s, a->rd, t0);
5698         }
5699         break;
5700     case MO_32:
5701         if (fp_access_check(s)) {
5702             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5703             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5704             TCGv_i32 t2 = tcg_temp_new_i32();
5705 
5706             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5707             if (neg) {
5708                 gen_vfp_negs(t1, t1);
5709             }
5710             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5711             write_fp_sreg(s, a->rd, t0);
5712         }
5713         break;
5714     case MO_16:
5715         if (!dc_isar_feature(aa64_fp16, s)) {
5716             return false;
5717         }
5718         if (fp_access_check(s)) {
5719             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5720             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5721             TCGv_i32 t2 = tcg_temp_new_i32();
5722 
5723             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5724             if (neg) {
5725                 gen_vfp_negh(t1, t1);
5726             }
5727             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5728                                        fpstatus_ptr(FPST_FPCR_F16));
5729             write_fp_sreg(s, a->rd, t0);
5730         }
5731         break;
5732     default:
5733         g_assert_not_reached();
5734     }
5735     return true;
5736 }
5737 
5738 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5739 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5740 
5741 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
5742                                   const ENVScalar2 *f)
5743 {
5744     if (a->esz < MO_16 || a->esz > MO_32) {
5745         return false;
5746     }
5747     if (fp_access_check(s)) {
5748         TCGv_i32 t0 = tcg_temp_new_i32();
5749         TCGv_i32 t1 = tcg_temp_new_i32();
5750 
5751         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5752         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
5753         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5754         write_fp_sreg(s, a->rd, t0);
5755     }
5756     return true;
5757 }
5758 
5759 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
5760 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
5761 
5762 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a,
5763                                   const ENVScalar3 *f)
5764 {
5765     if (a->esz < MO_16 || a->esz > MO_32) {
5766         return false;
5767     }
5768     if (fp_access_check(s)) {
5769         TCGv_i32 t0 = tcg_temp_new_i32();
5770         TCGv_i32 t1 = tcg_temp_new_i32();
5771         TCGv_i32 t2 = tcg_temp_new_i32();
5772 
5773         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5774         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
5775         read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5776         f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5777         write_fp_sreg(s, a->rd, t0);
5778     }
5779     return true;
5780 }
5781 
5782 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah)
5783 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh)
5784 
5785 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5786                               gen_helper_gvec_3_ptr * const fns[3])
5787 {
5788     MemOp esz = a->esz;
5789 
5790     switch (esz) {
5791     case MO_64:
5792         if (!a->q) {
5793             return false;
5794         }
5795         break;
5796     case MO_32:
5797         break;
5798     case MO_16:
5799         if (!dc_isar_feature(aa64_fp16, s)) {
5800             return false;
5801         }
5802         break;
5803     default:
5804         g_assert_not_reached();
5805     }
5806     if (fp_access_check(s)) {
5807         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5808                           esz == MO_16, a->idx, fns[esz - 1]);
5809     }
5810     return true;
5811 }
5812 
5813 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5814     gen_helper_gvec_fmul_idx_h,
5815     gen_helper_gvec_fmul_idx_s,
5816     gen_helper_gvec_fmul_idx_d,
5817 };
5818 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5819 
5820 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5821     gen_helper_gvec_fmulx_idx_h,
5822     gen_helper_gvec_fmulx_idx_s,
5823     gen_helper_gvec_fmulx_idx_d,
5824 };
5825 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5826 
5827 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5828 {
5829     static gen_helper_gvec_4_ptr * const fns[3] = {
5830         gen_helper_gvec_fmla_idx_h,
5831         gen_helper_gvec_fmla_idx_s,
5832         gen_helper_gvec_fmla_idx_d,
5833     };
5834     MemOp esz = a->esz;
5835 
5836     switch (esz) {
5837     case MO_64:
5838         if (!a->q) {
5839             return false;
5840         }
5841         break;
5842     case MO_32:
5843         break;
5844     case MO_16:
5845         if (!dc_isar_feature(aa64_fp16, s)) {
5846             return false;
5847         }
5848         break;
5849     default:
5850         g_assert_not_reached();
5851     }
5852     if (fp_access_check(s)) {
5853         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5854                           esz == MO_16, (a->idx << 1) | neg,
5855                           fns[esz - 1]);
5856     }
5857     return true;
5858 }
5859 
5860 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5861 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5862 
5863 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
5864 {
5865     if (fp_access_check(s)) {
5866         int data = (a->idx << 2) | (is_2 << 1) | is_s;
5867         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5868                            vec_full_reg_offset(s, a->rn),
5869                            vec_full_reg_offset(s, a->rm), tcg_env,
5870                            a->q ? 16 : 8, vec_full_reg_size(s),
5871                            data, gen_helper_gvec_fmlal_idx_a64);
5872     }
5873     return true;
5874 }
5875 
5876 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
5877 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
5878 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
5879 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
5880 
5881 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5882                                gen_helper_gvec_3 * const fns[2])
5883 {
5884     assert(a->esz == MO_16 || a->esz == MO_32);
5885     if (fp_access_check(s)) {
5886         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
5887     }
5888     return true;
5889 }
5890 
5891 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
5892     gen_helper_gvec_mul_idx_h,
5893     gen_helper_gvec_mul_idx_s,
5894 };
5895 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
5896 
5897 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
5898 {
5899     static gen_helper_gvec_4 * const fns[2][2] = {
5900         { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
5901         { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
5902     };
5903 
5904     assert(a->esz == MO_16 || a->esz == MO_32);
5905     if (fp_access_check(s)) {
5906         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
5907                          a->idx, fns[a->esz - 1][sub]);
5908     }
5909     return true;
5910 }
5911 
5912 TRANS(MLA_vi, do_mla_vector_idx, a, false)
5913 TRANS(MLS_vi, do_mla_vector_idx, a, true)
5914 
5915 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
5916                                   gen_helper_gvec_4 * const fns[2])
5917 {
5918     assert(a->esz == MO_16 || a->esz == MO_32);
5919     if (fp_access_check(s)) {
5920         tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
5921                            vec_full_reg_offset(s, a->rn),
5922                            vec_full_reg_offset(s, a->rm),
5923                            offsetof(CPUARMState, vfp.qc),
5924                            a->q ? 16 : 8, vec_full_reg_size(s),
5925                            a->idx, fns[a->esz - 1]);
5926     }
5927     return true;
5928 }
5929 
5930 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
5931     gen_helper_neon_sqdmulh_idx_h,
5932     gen_helper_neon_sqdmulh_idx_s,
5933 };
5934 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
5935 
5936 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
5937     gen_helper_neon_sqrdmulh_idx_h,
5938     gen_helper_neon_sqrdmulh_idx_s,
5939 };
5940 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
5941 
5942 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = {
5943     gen_helper_neon_sqrdmlah_idx_h,
5944     gen_helper_neon_sqrdmlah_idx_s,
5945 };
5946 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
5947            f_vector_idx_sqrdmlah)
5948 
5949 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = {
5950     gen_helper_neon_sqrdmlsh_idx_h,
5951     gen_helper_neon_sqrdmlsh_idx_s,
5952 };
5953 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
5954            f_vector_idx_sqrdmlsh)
5955 
5956 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a,
5957                               gen_helper_gvec_4 *fn)
5958 {
5959     if (fp_access_check(s)) {
5960         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
5961     }
5962     return true;
5963 }
5964 
5965 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_b)
5966 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_b)
5967 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
5968            gen_helper_gvec_sudot_idx_b)
5969 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
5970            gen_helper_gvec_usdot_idx_b)
5971 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx, a,
5972            gen_helper_gvec_bfdot_idx)
5973 
5974 static bool trans_BFMLAL_vi(DisasContext *s, arg_qrrx_e *a)
5975 {
5976     if (!dc_isar_feature(aa64_bf16, s)) {
5977         return false;
5978     }
5979     if (fp_access_check(s)) {
5980         /* Q bit selects BFMLALB vs BFMLALT. */
5981         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, 0,
5982                           (a->idx << 1) | a->q,
5983                           gen_helper_gvec_bfmlal_idx);
5984     }
5985     return true;
5986 }
5987 
5988 /*
5989  * Advanced SIMD scalar pairwise
5990  */
5991 
5992 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
5993 {
5994     switch (a->esz) {
5995     case MO_64:
5996         if (fp_access_check(s)) {
5997             TCGv_i64 t0 = tcg_temp_new_i64();
5998             TCGv_i64 t1 = tcg_temp_new_i64();
5999 
6000             read_vec_element(s, t0, a->rn, 0, MO_64);
6001             read_vec_element(s, t1, a->rn, 1, MO_64);
6002             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6003             write_fp_dreg(s, a->rd, t0);
6004         }
6005         break;
6006     case MO_32:
6007         if (fp_access_check(s)) {
6008             TCGv_i32 t0 = tcg_temp_new_i32();
6009             TCGv_i32 t1 = tcg_temp_new_i32();
6010 
6011             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
6012             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
6013             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6014             write_fp_sreg(s, a->rd, t0);
6015         }
6016         break;
6017     case MO_16:
6018         if (!dc_isar_feature(aa64_fp16, s)) {
6019             return false;
6020         }
6021         if (fp_access_check(s)) {
6022             TCGv_i32 t0 = tcg_temp_new_i32();
6023             TCGv_i32 t1 = tcg_temp_new_i32();
6024 
6025             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
6026             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
6027             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
6028             write_fp_sreg(s, a->rd, t0);
6029         }
6030         break;
6031     default:
6032         g_assert_not_reached();
6033     }
6034     return true;
6035 }
6036 
6037 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
6038 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
6039 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
6040 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
6041 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
6042 
6043 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
6044 {
6045     if (fp_access_check(s)) {
6046         TCGv_i64 t0 = tcg_temp_new_i64();
6047         TCGv_i64 t1 = tcg_temp_new_i64();
6048 
6049         read_vec_element(s, t0, a->rn, 0, MO_64);
6050         read_vec_element(s, t1, a->rn, 1, MO_64);
6051         tcg_gen_add_i64(t0, t0, t1);
6052         write_fp_dreg(s, a->rd, t0);
6053     }
6054     return true;
6055 }
6056 
6057 /*
6058  * Floating-point conditional select
6059  */
6060 
6061 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
6062 {
6063     TCGv_i64 t_true, t_false;
6064     DisasCompare64 c;
6065 
6066     switch (a->esz) {
6067     case MO_32:
6068     case MO_64:
6069         break;
6070     case MO_16:
6071         if (!dc_isar_feature(aa64_fp16, s)) {
6072             return false;
6073         }
6074         break;
6075     default:
6076         return false;
6077     }
6078 
6079     if (!fp_access_check(s)) {
6080         return true;
6081     }
6082 
6083     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6084     t_true = tcg_temp_new_i64();
6085     t_false = tcg_temp_new_i64();
6086     read_vec_element(s, t_true, a->rn, 0, a->esz);
6087     read_vec_element(s, t_false, a->rm, 0, a->esz);
6088 
6089     a64_test_cc(&c, a->cond);
6090     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6091                         t_true, t_false);
6092 
6093     /*
6094      * Note that sregs & hregs write back zeros to the high bits,
6095      * and we've already done the zero-extension.
6096      */
6097     write_fp_dreg(s, a->rd, t_true);
6098     return true;
6099 }
6100 
6101 /*
6102  * Floating-point data-processing (3 source)
6103  */
6104 
6105 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
6106 {
6107     TCGv_ptr fpst;
6108 
6109     /*
6110      * These are fused multiply-add.  Note that doing the negations here
6111      * as separate steps is correct: an input NaN should come out with
6112      * its sign bit flipped if it is a negated-input.
6113      */
6114     switch (a->esz) {
6115     case MO_64:
6116         if (fp_access_check(s)) {
6117             TCGv_i64 tn = read_fp_dreg(s, a->rn);
6118             TCGv_i64 tm = read_fp_dreg(s, a->rm);
6119             TCGv_i64 ta = read_fp_dreg(s, a->ra);
6120 
6121             if (neg_a) {
6122                 gen_vfp_negd(ta, ta);
6123             }
6124             if (neg_n) {
6125                 gen_vfp_negd(tn, tn);
6126             }
6127             fpst = fpstatus_ptr(FPST_FPCR);
6128             gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
6129             write_fp_dreg(s, a->rd, ta);
6130         }
6131         break;
6132 
6133     case MO_32:
6134         if (fp_access_check(s)) {
6135             TCGv_i32 tn = read_fp_sreg(s, a->rn);
6136             TCGv_i32 tm = read_fp_sreg(s, a->rm);
6137             TCGv_i32 ta = read_fp_sreg(s, a->ra);
6138 
6139             if (neg_a) {
6140                 gen_vfp_negs(ta, ta);
6141             }
6142             if (neg_n) {
6143                 gen_vfp_negs(tn, tn);
6144             }
6145             fpst = fpstatus_ptr(FPST_FPCR);
6146             gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
6147             write_fp_sreg(s, a->rd, ta);
6148         }
6149         break;
6150 
6151     case MO_16:
6152         if (!dc_isar_feature(aa64_fp16, s)) {
6153             return false;
6154         }
6155         if (fp_access_check(s)) {
6156             TCGv_i32 tn = read_fp_hreg(s, a->rn);
6157             TCGv_i32 tm = read_fp_hreg(s, a->rm);
6158             TCGv_i32 ta = read_fp_hreg(s, a->ra);
6159 
6160             if (neg_a) {
6161                 gen_vfp_negh(ta, ta);
6162             }
6163             if (neg_n) {
6164                 gen_vfp_negh(tn, tn);
6165             }
6166             fpst = fpstatus_ptr(FPST_FPCR_F16);
6167             gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
6168             write_fp_sreg(s, a->rd, ta);
6169         }
6170         break;
6171 
6172     default:
6173         return false;
6174     }
6175     return true;
6176 }
6177 
6178 TRANS(FMADD, do_fmadd, a, false, false)
6179 TRANS(FNMADD, do_fmadd, a, true, true)
6180 TRANS(FMSUB, do_fmadd, a, false, true)
6181 TRANS(FNMSUB, do_fmadd, a, true, false)
6182 
6183 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
6184  * Note that it is the caller's responsibility to ensure that the
6185  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
6186  * mandated semantics for out of range shifts.
6187  */
6188 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
6189                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
6190 {
6191     switch (shift_type) {
6192     case A64_SHIFT_TYPE_LSL:
6193         tcg_gen_shl_i64(dst, src, shift_amount);
6194         break;
6195     case A64_SHIFT_TYPE_LSR:
6196         tcg_gen_shr_i64(dst, src, shift_amount);
6197         break;
6198     case A64_SHIFT_TYPE_ASR:
6199         if (!sf) {
6200             tcg_gen_ext32s_i64(dst, src);
6201         }
6202         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
6203         break;
6204     case A64_SHIFT_TYPE_ROR:
6205         if (sf) {
6206             tcg_gen_rotr_i64(dst, src, shift_amount);
6207         } else {
6208             TCGv_i32 t0, t1;
6209             t0 = tcg_temp_new_i32();
6210             t1 = tcg_temp_new_i32();
6211             tcg_gen_extrl_i64_i32(t0, src);
6212             tcg_gen_extrl_i64_i32(t1, shift_amount);
6213             tcg_gen_rotr_i32(t0, t0, t1);
6214             tcg_gen_extu_i32_i64(dst, t0);
6215         }
6216         break;
6217     default:
6218         assert(FALSE); /* all shift types should be handled */
6219         break;
6220     }
6221 
6222     if (!sf) { /* zero extend final result */
6223         tcg_gen_ext32u_i64(dst, dst);
6224     }
6225 }
6226 
6227 /* Shift a TCGv src by immediate, put result in dst.
6228  * The shift amount must be in range (this should always be true as the
6229  * relevant instructions will UNDEF on bad shift immediates).
6230  */
6231 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
6232                           enum a64_shift_type shift_type, unsigned int shift_i)
6233 {
6234     assert(shift_i < (sf ? 64 : 32));
6235 
6236     if (shift_i == 0) {
6237         tcg_gen_mov_i64(dst, src);
6238     } else {
6239         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
6240     }
6241 }
6242 
6243 /* Logical (shifted register)
6244  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
6245  * +----+-----+-----------+-------+---+------+--------+------+------+
6246  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
6247  * +----+-----+-----------+-------+---+------+--------+------+------+
6248  */
6249 static void disas_logic_reg(DisasContext *s, uint32_t insn)
6250 {
6251     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
6252     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
6253 
6254     sf = extract32(insn, 31, 1);
6255     opc = extract32(insn, 29, 2);
6256     shift_type = extract32(insn, 22, 2);
6257     invert = extract32(insn, 21, 1);
6258     rm = extract32(insn, 16, 5);
6259     shift_amount = extract32(insn, 10, 6);
6260     rn = extract32(insn, 5, 5);
6261     rd = extract32(insn, 0, 5);
6262 
6263     if (!sf && (shift_amount & (1 << 5))) {
6264         unallocated_encoding(s);
6265         return;
6266     }
6267 
6268     tcg_rd = cpu_reg(s, rd);
6269 
6270     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
6271         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
6272          * register-register MOV and MVN, so it is worth special casing.
6273          */
6274         tcg_rm = cpu_reg(s, rm);
6275         if (invert) {
6276             tcg_gen_not_i64(tcg_rd, tcg_rm);
6277             if (!sf) {
6278                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6279             }
6280         } else {
6281             if (sf) {
6282                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
6283             } else {
6284                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
6285             }
6286         }
6287         return;
6288     }
6289 
6290     tcg_rm = read_cpu_reg(s, rm, sf);
6291 
6292     if (shift_amount) {
6293         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
6294     }
6295 
6296     tcg_rn = cpu_reg(s, rn);
6297 
6298     switch (opc | (invert << 2)) {
6299     case 0: /* AND */
6300     case 3: /* ANDS */
6301         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
6302         break;
6303     case 1: /* ORR */
6304         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
6305         break;
6306     case 2: /* EOR */
6307         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
6308         break;
6309     case 4: /* BIC */
6310     case 7: /* BICS */
6311         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
6312         break;
6313     case 5: /* ORN */
6314         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
6315         break;
6316     case 6: /* EON */
6317         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
6318         break;
6319     default:
6320         assert(FALSE);
6321         break;
6322     }
6323 
6324     if (!sf) {
6325         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6326     }
6327 
6328     if (opc == 3) {
6329         gen_logic_CC(sf, tcg_rd);
6330     }
6331 }
6332 
6333 /*
6334  * Add/subtract (extended register)
6335  *
6336  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
6337  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6338  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
6339  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6340  *
6341  *  sf: 0 -> 32bit, 1 -> 64bit
6342  *  op: 0 -> add  , 1 -> sub
6343  *   S: 1 -> set flags
6344  * opt: 00
6345  * option: extension type (see DecodeRegExtend)
6346  * imm3: optional shift to Rm
6347  *
6348  * Rd = Rn + LSL(extend(Rm), amount)
6349  */
6350 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
6351 {
6352     int rd = extract32(insn, 0, 5);
6353     int rn = extract32(insn, 5, 5);
6354     int imm3 = extract32(insn, 10, 3);
6355     int option = extract32(insn, 13, 3);
6356     int rm = extract32(insn, 16, 5);
6357     int opt = extract32(insn, 22, 2);
6358     bool setflags = extract32(insn, 29, 1);
6359     bool sub_op = extract32(insn, 30, 1);
6360     bool sf = extract32(insn, 31, 1);
6361 
6362     TCGv_i64 tcg_rm, tcg_rn; /* temps */
6363     TCGv_i64 tcg_rd;
6364     TCGv_i64 tcg_result;
6365 
6366     if (imm3 > 4 || opt != 0) {
6367         unallocated_encoding(s);
6368         return;
6369     }
6370 
6371     /* non-flag setting ops may use SP */
6372     if (!setflags) {
6373         tcg_rd = cpu_reg_sp(s, rd);
6374     } else {
6375         tcg_rd = cpu_reg(s, rd);
6376     }
6377     tcg_rn = read_cpu_reg_sp(s, rn, sf);
6378 
6379     tcg_rm = read_cpu_reg(s, rm, sf);
6380     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
6381 
6382     tcg_result = tcg_temp_new_i64();
6383 
6384     if (!setflags) {
6385         if (sub_op) {
6386             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6387         } else {
6388             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6389         }
6390     } else {
6391         if (sub_op) {
6392             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6393         } else {
6394             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6395         }
6396     }
6397 
6398     if (sf) {
6399         tcg_gen_mov_i64(tcg_rd, tcg_result);
6400     } else {
6401         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6402     }
6403 }
6404 
6405 /*
6406  * Add/subtract (shifted register)
6407  *
6408  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
6409  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6410  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
6411  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6412  *
6413  *    sf: 0 -> 32bit, 1 -> 64bit
6414  *    op: 0 -> add  , 1 -> sub
6415  *     S: 1 -> set flags
6416  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
6417  *  imm6: Shift amount to apply to Rm before the add/sub
6418  */
6419 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
6420 {
6421     int rd = extract32(insn, 0, 5);
6422     int rn = extract32(insn, 5, 5);
6423     int imm6 = extract32(insn, 10, 6);
6424     int rm = extract32(insn, 16, 5);
6425     int shift_type = extract32(insn, 22, 2);
6426     bool setflags = extract32(insn, 29, 1);
6427     bool sub_op = extract32(insn, 30, 1);
6428     bool sf = extract32(insn, 31, 1);
6429 
6430     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6431     TCGv_i64 tcg_rn, tcg_rm;
6432     TCGv_i64 tcg_result;
6433 
6434     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
6435         unallocated_encoding(s);
6436         return;
6437     }
6438 
6439     tcg_rn = read_cpu_reg(s, rn, sf);
6440     tcg_rm = read_cpu_reg(s, rm, sf);
6441 
6442     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
6443 
6444     tcg_result = tcg_temp_new_i64();
6445 
6446     if (!setflags) {
6447         if (sub_op) {
6448             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6449         } else {
6450             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6451         }
6452     } else {
6453         if (sub_op) {
6454             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6455         } else {
6456             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6457         }
6458     }
6459 
6460     if (sf) {
6461         tcg_gen_mov_i64(tcg_rd, tcg_result);
6462     } else {
6463         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6464     }
6465 }
6466 
6467 /* Data-processing (3 source)
6468  *
6469  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
6470  *  +--+------+-----------+------+------+----+------+------+------+
6471  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6472  *  +--+------+-----------+------+------+----+------+------+------+
6473  */
6474 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
6475 {
6476     int rd = extract32(insn, 0, 5);
6477     int rn = extract32(insn, 5, 5);
6478     int ra = extract32(insn, 10, 5);
6479     int rm = extract32(insn, 16, 5);
6480     int op_id = (extract32(insn, 29, 3) << 4) |
6481         (extract32(insn, 21, 3) << 1) |
6482         extract32(insn, 15, 1);
6483     bool sf = extract32(insn, 31, 1);
6484     bool is_sub = extract32(op_id, 0, 1);
6485     bool is_high = extract32(op_id, 2, 1);
6486     bool is_signed = false;
6487     TCGv_i64 tcg_op1;
6488     TCGv_i64 tcg_op2;
6489     TCGv_i64 tcg_tmp;
6490 
6491     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
6492     switch (op_id) {
6493     case 0x42: /* SMADDL */
6494     case 0x43: /* SMSUBL */
6495     case 0x44: /* SMULH */
6496         is_signed = true;
6497         break;
6498     case 0x0: /* MADD (32bit) */
6499     case 0x1: /* MSUB (32bit) */
6500     case 0x40: /* MADD (64bit) */
6501     case 0x41: /* MSUB (64bit) */
6502     case 0x4a: /* UMADDL */
6503     case 0x4b: /* UMSUBL */
6504     case 0x4c: /* UMULH */
6505         break;
6506     default:
6507         unallocated_encoding(s);
6508         return;
6509     }
6510 
6511     if (is_high) {
6512         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
6513         TCGv_i64 tcg_rd = cpu_reg(s, rd);
6514         TCGv_i64 tcg_rn = cpu_reg(s, rn);
6515         TCGv_i64 tcg_rm = cpu_reg(s, rm);
6516 
6517         if (is_signed) {
6518             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6519         } else {
6520             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6521         }
6522         return;
6523     }
6524 
6525     tcg_op1 = tcg_temp_new_i64();
6526     tcg_op2 = tcg_temp_new_i64();
6527     tcg_tmp = tcg_temp_new_i64();
6528 
6529     if (op_id < 0x42) {
6530         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
6531         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
6532     } else {
6533         if (is_signed) {
6534             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
6535             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
6536         } else {
6537             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
6538             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
6539         }
6540     }
6541 
6542     if (ra == 31 && !is_sub) {
6543         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
6544         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
6545     } else {
6546         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
6547         if (is_sub) {
6548             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6549         } else {
6550             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6551         }
6552     }
6553 
6554     if (!sf) {
6555         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
6556     }
6557 }
6558 
6559 /* Add/subtract (with carry)
6560  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
6561  * +--+--+--+------------------------+------+-------------+------+-----+
6562  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
6563  * +--+--+--+------------------------+------+-------------+------+-----+
6564  */
6565 
6566 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
6567 {
6568     unsigned int sf, op, setflags, rm, rn, rd;
6569     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
6570 
6571     sf = extract32(insn, 31, 1);
6572     op = extract32(insn, 30, 1);
6573     setflags = extract32(insn, 29, 1);
6574     rm = extract32(insn, 16, 5);
6575     rn = extract32(insn, 5, 5);
6576     rd = extract32(insn, 0, 5);
6577 
6578     tcg_rd = cpu_reg(s, rd);
6579     tcg_rn = cpu_reg(s, rn);
6580 
6581     if (op) {
6582         tcg_y = tcg_temp_new_i64();
6583         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
6584     } else {
6585         tcg_y = cpu_reg(s, rm);
6586     }
6587 
6588     if (setflags) {
6589         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
6590     } else {
6591         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
6592     }
6593 }
6594 
6595 /*
6596  * Rotate right into flags
6597  *  31 30 29                21       15          10      5  4      0
6598  * +--+--+--+-----------------+--------+-----------+------+--+------+
6599  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
6600  * +--+--+--+-----------------+--------+-----------+------+--+------+
6601  */
6602 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
6603 {
6604     int mask = extract32(insn, 0, 4);
6605     int o2 = extract32(insn, 4, 1);
6606     int rn = extract32(insn, 5, 5);
6607     int imm6 = extract32(insn, 15, 6);
6608     int sf_op_s = extract32(insn, 29, 3);
6609     TCGv_i64 tcg_rn;
6610     TCGv_i32 nzcv;
6611 
6612     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
6613         unallocated_encoding(s);
6614         return;
6615     }
6616 
6617     tcg_rn = read_cpu_reg(s, rn, 1);
6618     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
6619 
6620     nzcv = tcg_temp_new_i32();
6621     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
6622 
6623     if (mask & 8) { /* N */
6624         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
6625     }
6626     if (mask & 4) { /* Z */
6627         tcg_gen_not_i32(cpu_ZF, nzcv);
6628         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
6629     }
6630     if (mask & 2) { /* C */
6631         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
6632     }
6633     if (mask & 1) { /* V */
6634         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
6635     }
6636 }
6637 
6638 /*
6639  * Evaluate into flags
6640  *  31 30 29                21        15   14        10      5  4      0
6641  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6642  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
6643  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6644  */
6645 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
6646 {
6647     int o3_mask = extract32(insn, 0, 5);
6648     int rn = extract32(insn, 5, 5);
6649     int o2 = extract32(insn, 15, 6);
6650     int sz = extract32(insn, 14, 1);
6651     int sf_op_s = extract32(insn, 29, 3);
6652     TCGv_i32 tmp;
6653     int shift;
6654 
6655     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
6656         !dc_isar_feature(aa64_condm_4, s)) {
6657         unallocated_encoding(s);
6658         return;
6659     }
6660     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
6661 
6662     tmp = tcg_temp_new_i32();
6663     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
6664     tcg_gen_shli_i32(cpu_NF, tmp, shift);
6665     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
6666     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
6667     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
6668 }
6669 
6670 /* Conditional compare (immediate / register)
6671  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
6672  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6673  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
6674  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6675  *        [1]                             y                [0]       [0]
6676  */
6677 static void disas_cc(DisasContext *s, uint32_t insn)
6678 {
6679     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
6680     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
6681     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
6682     DisasCompare c;
6683 
6684     if (!extract32(insn, 29, 1)) {
6685         unallocated_encoding(s);
6686         return;
6687     }
6688     if (insn & (1 << 10 | 1 << 4)) {
6689         unallocated_encoding(s);
6690         return;
6691     }
6692     sf = extract32(insn, 31, 1);
6693     op = extract32(insn, 30, 1);
6694     is_imm = extract32(insn, 11, 1);
6695     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
6696     cond = extract32(insn, 12, 4);
6697     rn = extract32(insn, 5, 5);
6698     nzcv = extract32(insn, 0, 4);
6699 
6700     /* Set T0 = !COND.  */
6701     tcg_t0 = tcg_temp_new_i32();
6702     arm_test_cc(&c, cond);
6703     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
6704 
6705     /* Load the arguments for the new comparison.  */
6706     if (is_imm) {
6707         tcg_y = tcg_temp_new_i64();
6708         tcg_gen_movi_i64(tcg_y, y);
6709     } else {
6710         tcg_y = cpu_reg(s, y);
6711     }
6712     tcg_rn = cpu_reg(s, rn);
6713 
6714     /* Set the flags for the new comparison.  */
6715     tcg_tmp = tcg_temp_new_i64();
6716     if (op) {
6717         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6718     } else {
6719         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6720     }
6721 
6722     /* If COND was false, force the flags to #nzcv.  Compute two masks
6723      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
6724      * For tcg hosts that support ANDC, we can make do with just T1.
6725      * In either case, allow the tcg optimizer to delete any unused mask.
6726      */
6727     tcg_t1 = tcg_temp_new_i32();
6728     tcg_t2 = tcg_temp_new_i32();
6729     tcg_gen_neg_i32(tcg_t1, tcg_t0);
6730     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
6731 
6732     if (nzcv & 8) { /* N */
6733         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
6734     } else {
6735         if (TCG_TARGET_HAS_andc_i32) {
6736             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
6737         } else {
6738             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
6739         }
6740     }
6741     if (nzcv & 4) { /* Z */
6742         if (TCG_TARGET_HAS_andc_i32) {
6743             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
6744         } else {
6745             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
6746         }
6747     } else {
6748         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
6749     }
6750     if (nzcv & 2) { /* C */
6751         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
6752     } else {
6753         if (TCG_TARGET_HAS_andc_i32) {
6754             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
6755         } else {
6756             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
6757         }
6758     }
6759     if (nzcv & 1) { /* V */
6760         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
6761     } else {
6762         if (TCG_TARGET_HAS_andc_i32) {
6763             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
6764         } else {
6765             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
6766         }
6767     }
6768 }
6769 
6770 /* Conditional select
6771  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
6772  * +----+----+---+-----------------+------+------+-----+------+------+
6773  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
6774  * +----+----+---+-----------------+------+------+-----+------+------+
6775  */
6776 static void disas_cond_select(DisasContext *s, uint32_t insn)
6777 {
6778     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
6779     TCGv_i64 tcg_rd, zero;
6780     DisasCompare64 c;
6781 
6782     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
6783         /* S == 1 or op2<1> == 1 */
6784         unallocated_encoding(s);
6785         return;
6786     }
6787     sf = extract32(insn, 31, 1);
6788     else_inv = extract32(insn, 30, 1);
6789     rm = extract32(insn, 16, 5);
6790     cond = extract32(insn, 12, 4);
6791     else_inc = extract32(insn, 10, 1);
6792     rn = extract32(insn, 5, 5);
6793     rd = extract32(insn, 0, 5);
6794 
6795     tcg_rd = cpu_reg(s, rd);
6796 
6797     a64_test_cc(&c, cond);
6798     zero = tcg_constant_i64(0);
6799 
6800     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
6801         /* CSET & CSETM.  */
6802         if (else_inv) {
6803             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
6804                                    tcg_rd, c.value, zero);
6805         } else {
6806             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
6807                                 tcg_rd, c.value, zero);
6808         }
6809     } else {
6810         TCGv_i64 t_true = cpu_reg(s, rn);
6811         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
6812         if (else_inv && else_inc) {
6813             tcg_gen_neg_i64(t_false, t_false);
6814         } else if (else_inv) {
6815             tcg_gen_not_i64(t_false, t_false);
6816         } else if (else_inc) {
6817             tcg_gen_addi_i64(t_false, t_false, 1);
6818         }
6819         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
6820     }
6821 
6822     if (!sf) {
6823         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6824     }
6825 }
6826 
6827 static void handle_clz(DisasContext *s, unsigned int sf,
6828                        unsigned int rn, unsigned int rd)
6829 {
6830     TCGv_i64 tcg_rd, tcg_rn;
6831     tcg_rd = cpu_reg(s, rd);
6832     tcg_rn = cpu_reg(s, rn);
6833 
6834     if (sf) {
6835         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
6836     } else {
6837         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6838         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6839         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
6840         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6841     }
6842 }
6843 
6844 static void handle_cls(DisasContext *s, unsigned int sf,
6845                        unsigned int rn, unsigned int rd)
6846 {
6847     TCGv_i64 tcg_rd, tcg_rn;
6848     tcg_rd = cpu_reg(s, rd);
6849     tcg_rn = cpu_reg(s, rn);
6850 
6851     if (sf) {
6852         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6853     } else {
6854         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6855         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6856         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6857         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6858     }
6859 }
6860 
6861 static void handle_rbit(DisasContext *s, unsigned int sf,
6862                         unsigned int rn, unsigned int rd)
6863 {
6864     TCGv_i64 tcg_rd, tcg_rn;
6865     tcg_rd = cpu_reg(s, rd);
6866     tcg_rn = cpu_reg(s, rn);
6867 
6868     if (sf) {
6869         gen_helper_rbit64(tcg_rd, tcg_rn);
6870     } else {
6871         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6872         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6873         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6874         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6875     }
6876 }
6877 
6878 /* REV with sf==1, opcode==3 ("REV64") */
6879 static void handle_rev64(DisasContext *s, unsigned int sf,
6880                          unsigned int rn, unsigned int rd)
6881 {
6882     if (!sf) {
6883         unallocated_encoding(s);
6884         return;
6885     }
6886     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6887 }
6888 
6889 /* REV with sf==0, opcode==2
6890  * REV32 (sf==1, opcode==2)
6891  */
6892 static void handle_rev32(DisasContext *s, unsigned int sf,
6893                          unsigned int rn, unsigned int rd)
6894 {
6895     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6896     TCGv_i64 tcg_rn = cpu_reg(s, rn);
6897 
6898     if (sf) {
6899         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6900         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6901     } else {
6902         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6903     }
6904 }
6905 
6906 /* REV16 (opcode==1) */
6907 static void handle_rev16(DisasContext *s, unsigned int sf,
6908                          unsigned int rn, unsigned int rd)
6909 {
6910     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6911     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6912     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6913     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6914 
6915     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6916     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6917     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6918     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6919     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6920 }
6921 
6922 /* Data-processing (1 source)
6923  *   31  30  29  28             21 20     16 15    10 9    5 4    0
6924  * +----+---+---+-----------------+---------+--------+------+------+
6925  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
6926  * +----+---+---+-----------------+---------+--------+------+------+
6927  */
6928 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6929 {
6930     unsigned int sf, opcode, opcode2, rn, rd;
6931     TCGv_i64 tcg_rd;
6932 
6933     if (extract32(insn, 29, 1)) {
6934         unallocated_encoding(s);
6935         return;
6936     }
6937 
6938     sf = extract32(insn, 31, 1);
6939     opcode = extract32(insn, 10, 6);
6940     opcode2 = extract32(insn, 16, 5);
6941     rn = extract32(insn, 5, 5);
6942     rd = extract32(insn, 0, 5);
6943 
6944 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6945 
6946     switch (MAP(sf, opcode2, opcode)) {
6947     case MAP(0, 0x00, 0x00): /* RBIT */
6948     case MAP(1, 0x00, 0x00):
6949         handle_rbit(s, sf, rn, rd);
6950         break;
6951     case MAP(0, 0x00, 0x01): /* REV16 */
6952     case MAP(1, 0x00, 0x01):
6953         handle_rev16(s, sf, rn, rd);
6954         break;
6955     case MAP(0, 0x00, 0x02): /* REV/REV32 */
6956     case MAP(1, 0x00, 0x02):
6957         handle_rev32(s, sf, rn, rd);
6958         break;
6959     case MAP(1, 0x00, 0x03): /* REV64 */
6960         handle_rev64(s, sf, rn, rd);
6961         break;
6962     case MAP(0, 0x00, 0x04): /* CLZ */
6963     case MAP(1, 0x00, 0x04):
6964         handle_clz(s, sf, rn, rd);
6965         break;
6966     case MAP(0, 0x00, 0x05): /* CLS */
6967     case MAP(1, 0x00, 0x05):
6968         handle_cls(s, sf, rn, rd);
6969         break;
6970     case MAP(1, 0x01, 0x00): /* PACIA */
6971         if (s->pauth_active) {
6972             tcg_rd = cpu_reg(s, rd);
6973             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6974         } else if (!dc_isar_feature(aa64_pauth, s)) {
6975             goto do_unallocated;
6976         }
6977         break;
6978     case MAP(1, 0x01, 0x01): /* PACIB */
6979         if (s->pauth_active) {
6980             tcg_rd = cpu_reg(s, rd);
6981             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6982         } else if (!dc_isar_feature(aa64_pauth, s)) {
6983             goto do_unallocated;
6984         }
6985         break;
6986     case MAP(1, 0x01, 0x02): /* PACDA */
6987         if (s->pauth_active) {
6988             tcg_rd = cpu_reg(s, rd);
6989             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6990         } else if (!dc_isar_feature(aa64_pauth, s)) {
6991             goto do_unallocated;
6992         }
6993         break;
6994     case MAP(1, 0x01, 0x03): /* PACDB */
6995         if (s->pauth_active) {
6996             tcg_rd = cpu_reg(s, rd);
6997             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6998         } else if (!dc_isar_feature(aa64_pauth, s)) {
6999             goto do_unallocated;
7000         }
7001         break;
7002     case MAP(1, 0x01, 0x04): /* AUTIA */
7003         if (s->pauth_active) {
7004             tcg_rd = cpu_reg(s, rd);
7005             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7006         } else if (!dc_isar_feature(aa64_pauth, s)) {
7007             goto do_unallocated;
7008         }
7009         break;
7010     case MAP(1, 0x01, 0x05): /* AUTIB */
7011         if (s->pauth_active) {
7012             tcg_rd = cpu_reg(s, rd);
7013             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7014         } else if (!dc_isar_feature(aa64_pauth, s)) {
7015             goto do_unallocated;
7016         }
7017         break;
7018     case MAP(1, 0x01, 0x06): /* AUTDA */
7019         if (s->pauth_active) {
7020             tcg_rd = cpu_reg(s, rd);
7021             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7022         } else if (!dc_isar_feature(aa64_pauth, s)) {
7023             goto do_unallocated;
7024         }
7025         break;
7026     case MAP(1, 0x01, 0x07): /* AUTDB */
7027         if (s->pauth_active) {
7028             tcg_rd = cpu_reg(s, rd);
7029             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7030         } else if (!dc_isar_feature(aa64_pauth, s)) {
7031             goto do_unallocated;
7032         }
7033         break;
7034     case MAP(1, 0x01, 0x08): /* PACIZA */
7035         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7036             goto do_unallocated;
7037         } else if (s->pauth_active) {
7038             tcg_rd = cpu_reg(s, rd);
7039             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7040         }
7041         break;
7042     case MAP(1, 0x01, 0x09): /* PACIZB */
7043         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7044             goto do_unallocated;
7045         } else if (s->pauth_active) {
7046             tcg_rd = cpu_reg(s, rd);
7047             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7048         }
7049         break;
7050     case MAP(1, 0x01, 0x0a): /* PACDZA */
7051         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7052             goto do_unallocated;
7053         } else if (s->pauth_active) {
7054             tcg_rd = cpu_reg(s, rd);
7055             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7056         }
7057         break;
7058     case MAP(1, 0x01, 0x0b): /* PACDZB */
7059         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7060             goto do_unallocated;
7061         } else if (s->pauth_active) {
7062             tcg_rd = cpu_reg(s, rd);
7063             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7064         }
7065         break;
7066     case MAP(1, 0x01, 0x0c): /* AUTIZA */
7067         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7068             goto do_unallocated;
7069         } else if (s->pauth_active) {
7070             tcg_rd = cpu_reg(s, rd);
7071             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7072         }
7073         break;
7074     case MAP(1, 0x01, 0x0d): /* AUTIZB */
7075         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7076             goto do_unallocated;
7077         } else if (s->pauth_active) {
7078             tcg_rd = cpu_reg(s, rd);
7079             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7080         }
7081         break;
7082     case MAP(1, 0x01, 0x0e): /* AUTDZA */
7083         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7084             goto do_unallocated;
7085         } else if (s->pauth_active) {
7086             tcg_rd = cpu_reg(s, rd);
7087             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7088         }
7089         break;
7090     case MAP(1, 0x01, 0x0f): /* AUTDZB */
7091         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7092             goto do_unallocated;
7093         } else if (s->pauth_active) {
7094             tcg_rd = cpu_reg(s, rd);
7095             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7096         }
7097         break;
7098     case MAP(1, 0x01, 0x10): /* XPACI */
7099         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7100             goto do_unallocated;
7101         } else if (s->pauth_active) {
7102             tcg_rd = cpu_reg(s, rd);
7103             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
7104         }
7105         break;
7106     case MAP(1, 0x01, 0x11): /* XPACD */
7107         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7108             goto do_unallocated;
7109         } else if (s->pauth_active) {
7110             tcg_rd = cpu_reg(s, rd);
7111             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
7112         }
7113         break;
7114     default:
7115     do_unallocated:
7116         unallocated_encoding(s);
7117         break;
7118     }
7119 
7120 #undef MAP
7121 }
7122 
7123 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
7124                        unsigned int rm, unsigned int rn, unsigned int rd)
7125 {
7126     TCGv_i64 tcg_n, tcg_m, tcg_rd;
7127     tcg_rd = cpu_reg(s, rd);
7128 
7129     if (!sf && is_signed) {
7130         tcg_n = tcg_temp_new_i64();
7131         tcg_m = tcg_temp_new_i64();
7132         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
7133         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
7134     } else {
7135         tcg_n = read_cpu_reg(s, rn, sf);
7136         tcg_m = read_cpu_reg(s, rm, sf);
7137     }
7138 
7139     if (is_signed) {
7140         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
7141     } else {
7142         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
7143     }
7144 
7145     if (!sf) { /* zero extend final result */
7146         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7147     }
7148 }
7149 
7150 /* LSLV, LSRV, ASRV, RORV */
7151 static void handle_shift_reg(DisasContext *s,
7152                              enum a64_shift_type shift_type, unsigned int sf,
7153                              unsigned int rm, unsigned int rn, unsigned int rd)
7154 {
7155     TCGv_i64 tcg_shift = tcg_temp_new_i64();
7156     TCGv_i64 tcg_rd = cpu_reg(s, rd);
7157     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
7158 
7159     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
7160     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
7161 }
7162 
7163 /* CRC32[BHWX], CRC32C[BHWX] */
7164 static void handle_crc32(DisasContext *s,
7165                          unsigned int sf, unsigned int sz, bool crc32c,
7166                          unsigned int rm, unsigned int rn, unsigned int rd)
7167 {
7168     TCGv_i64 tcg_acc, tcg_val;
7169     TCGv_i32 tcg_bytes;
7170 
7171     if (!dc_isar_feature(aa64_crc32, s)
7172         || (sf == 1 && sz != 3)
7173         || (sf == 0 && sz == 3)) {
7174         unallocated_encoding(s);
7175         return;
7176     }
7177 
7178     if (sz == 3) {
7179         tcg_val = cpu_reg(s, rm);
7180     } else {
7181         uint64_t mask;
7182         switch (sz) {
7183         case 0:
7184             mask = 0xFF;
7185             break;
7186         case 1:
7187             mask = 0xFFFF;
7188             break;
7189         case 2:
7190             mask = 0xFFFFFFFF;
7191             break;
7192         default:
7193             g_assert_not_reached();
7194         }
7195         tcg_val = tcg_temp_new_i64();
7196         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
7197     }
7198 
7199     tcg_acc = cpu_reg(s, rn);
7200     tcg_bytes = tcg_constant_i32(1 << sz);
7201 
7202     if (crc32c) {
7203         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7204     } else {
7205         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7206     }
7207 }
7208 
7209 /* Data-processing (2 source)
7210  *   31   30  29 28             21 20  16 15    10 9    5 4    0
7211  * +----+---+---+-----------------+------+--------+------+------+
7212  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
7213  * +----+---+---+-----------------+------+--------+------+------+
7214  */
7215 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
7216 {
7217     unsigned int sf, rm, opcode, rn, rd, setflag;
7218     sf = extract32(insn, 31, 1);
7219     setflag = extract32(insn, 29, 1);
7220     rm = extract32(insn, 16, 5);
7221     opcode = extract32(insn, 10, 6);
7222     rn = extract32(insn, 5, 5);
7223     rd = extract32(insn, 0, 5);
7224 
7225     if (setflag && opcode != 0) {
7226         unallocated_encoding(s);
7227         return;
7228     }
7229 
7230     switch (opcode) {
7231     case 0: /* SUBP(S) */
7232         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7233             goto do_unallocated;
7234         } else {
7235             TCGv_i64 tcg_n, tcg_m, tcg_d;
7236 
7237             tcg_n = read_cpu_reg_sp(s, rn, true);
7238             tcg_m = read_cpu_reg_sp(s, rm, true);
7239             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
7240             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
7241             tcg_d = cpu_reg(s, rd);
7242 
7243             if (setflag) {
7244                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
7245             } else {
7246                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
7247             }
7248         }
7249         break;
7250     case 2: /* UDIV */
7251         handle_div(s, false, sf, rm, rn, rd);
7252         break;
7253     case 3: /* SDIV */
7254         handle_div(s, true, sf, rm, rn, rd);
7255         break;
7256     case 4: /* IRG */
7257         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7258             goto do_unallocated;
7259         }
7260         if (s->ata[0]) {
7261             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
7262                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
7263         } else {
7264             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
7265                                              cpu_reg_sp(s, rn));
7266         }
7267         break;
7268     case 5: /* GMI */
7269         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7270             goto do_unallocated;
7271         } else {
7272             TCGv_i64 t = tcg_temp_new_i64();
7273 
7274             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
7275             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
7276             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
7277         }
7278         break;
7279     case 8: /* LSLV */
7280         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
7281         break;
7282     case 9: /* LSRV */
7283         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
7284         break;
7285     case 10: /* ASRV */
7286         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
7287         break;
7288     case 11: /* RORV */
7289         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
7290         break;
7291     case 12: /* PACGA */
7292         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
7293             goto do_unallocated;
7294         }
7295         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
7296                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
7297         break;
7298     case 16:
7299     case 17:
7300     case 18:
7301     case 19:
7302     case 20:
7303     case 21:
7304     case 22:
7305     case 23: /* CRC32 */
7306     {
7307         int sz = extract32(opcode, 0, 2);
7308         bool crc32c = extract32(opcode, 2, 1);
7309         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
7310         break;
7311     }
7312     default:
7313     do_unallocated:
7314         unallocated_encoding(s);
7315         break;
7316     }
7317 }
7318 
7319 /*
7320  * Data processing - register
7321  *  31  30 29  28      25    21  20  16      10         0
7322  * +--+---+--+---+-------+-----+-------+-------+---------+
7323  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
7324  * +--+---+--+---+-------+-----+-------+-------+---------+
7325  */
7326 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
7327 {
7328     int op0 = extract32(insn, 30, 1);
7329     int op1 = extract32(insn, 28, 1);
7330     int op2 = extract32(insn, 21, 4);
7331     int op3 = extract32(insn, 10, 6);
7332 
7333     if (!op1) {
7334         if (op2 & 8) {
7335             if (op2 & 1) {
7336                 /* Add/sub (extended register) */
7337                 disas_add_sub_ext_reg(s, insn);
7338             } else {
7339                 /* Add/sub (shifted register) */
7340                 disas_add_sub_reg(s, insn);
7341             }
7342         } else {
7343             /* Logical (shifted register) */
7344             disas_logic_reg(s, insn);
7345         }
7346         return;
7347     }
7348 
7349     switch (op2) {
7350     case 0x0:
7351         switch (op3) {
7352         case 0x00: /* Add/subtract (with carry) */
7353             disas_adc_sbc(s, insn);
7354             break;
7355 
7356         case 0x01: /* Rotate right into flags */
7357         case 0x21:
7358             disas_rotate_right_into_flags(s, insn);
7359             break;
7360 
7361         case 0x02: /* Evaluate into flags */
7362         case 0x12:
7363         case 0x22:
7364         case 0x32:
7365             disas_evaluate_into_flags(s, insn);
7366             break;
7367 
7368         default:
7369             goto do_unallocated;
7370         }
7371         break;
7372 
7373     case 0x2: /* Conditional compare */
7374         disas_cc(s, insn); /* both imm and reg forms */
7375         break;
7376 
7377     case 0x4: /* Conditional select */
7378         disas_cond_select(s, insn);
7379         break;
7380 
7381     case 0x6: /* Data-processing */
7382         if (op0) {    /* (1 source) */
7383             disas_data_proc_1src(s, insn);
7384         } else {      /* (2 source) */
7385             disas_data_proc_2src(s, insn);
7386         }
7387         break;
7388     case 0x8 ... 0xf: /* (3 source) */
7389         disas_data_proc_3src(s, insn);
7390         break;
7391 
7392     default:
7393     do_unallocated:
7394         unallocated_encoding(s);
7395         break;
7396     }
7397 }
7398 
7399 static void handle_fp_compare(DisasContext *s, int size,
7400                               unsigned int rn, unsigned int rm,
7401                               bool cmp_with_zero, bool signal_all_nans)
7402 {
7403     TCGv_i64 tcg_flags = tcg_temp_new_i64();
7404     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7405 
7406     if (size == MO_64) {
7407         TCGv_i64 tcg_vn, tcg_vm;
7408 
7409         tcg_vn = read_fp_dreg(s, rn);
7410         if (cmp_with_zero) {
7411             tcg_vm = tcg_constant_i64(0);
7412         } else {
7413             tcg_vm = read_fp_dreg(s, rm);
7414         }
7415         if (signal_all_nans) {
7416             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7417         } else {
7418             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7419         }
7420     } else {
7421         TCGv_i32 tcg_vn = tcg_temp_new_i32();
7422         TCGv_i32 tcg_vm = tcg_temp_new_i32();
7423 
7424         read_vec_element_i32(s, tcg_vn, rn, 0, size);
7425         if (cmp_with_zero) {
7426             tcg_gen_movi_i32(tcg_vm, 0);
7427         } else {
7428             read_vec_element_i32(s, tcg_vm, rm, 0, size);
7429         }
7430 
7431         switch (size) {
7432         case MO_32:
7433             if (signal_all_nans) {
7434                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7435             } else {
7436                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7437             }
7438             break;
7439         case MO_16:
7440             if (signal_all_nans) {
7441                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7442             } else {
7443                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7444             }
7445             break;
7446         default:
7447             g_assert_not_reached();
7448         }
7449     }
7450 
7451     gen_set_nzcv(tcg_flags);
7452 }
7453 
7454 /* Floating point compare
7455  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
7456  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7457  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
7458  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7459  */
7460 static void disas_fp_compare(DisasContext *s, uint32_t insn)
7461 {
7462     unsigned int mos, type, rm, op, rn, opc, op2r;
7463     int size;
7464 
7465     mos = extract32(insn, 29, 3);
7466     type = extract32(insn, 22, 2);
7467     rm = extract32(insn, 16, 5);
7468     op = extract32(insn, 14, 2);
7469     rn = extract32(insn, 5, 5);
7470     opc = extract32(insn, 3, 2);
7471     op2r = extract32(insn, 0, 3);
7472 
7473     if (mos || op || op2r) {
7474         unallocated_encoding(s);
7475         return;
7476     }
7477 
7478     switch (type) {
7479     case 0:
7480         size = MO_32;
7481         break;
7482     case 1:
7483         size = MO_64;
7484         break;
7485     case 3:
7486         size = MO_16;
7487         if (dc_isar_feature(aa64_fp16, s)) {
7488             break;
7489         }
7490         /* fallthru */
7491     default:
7492         unallocated_encoding(s);
7493         return;
7494     }
7495 
7496     if (!fp_access_check(s)) {
7497         return;
7498     }
7499 
7500     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
7501 }
7502 
7503 /* Floating point conditional compare
7504  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
7505  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7506  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
7507  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7508  */
7509 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
7510 {
7511     unsigned int mos, type, rm, cond, rn, op, nzcv;
7512     TCGLabel *label_continue = NULL;
7513     int size;
7514 
7515     mos = extract32(insn, 29, 3);
7516     type = extract32(insn, 22, 2);
7517     rm = extract32(insn, 16, 5);
7518     cond = extract32(insn, 12, 4);
7519     rn = extract32(insn, 5, 5);
7520     op = extract32(insn, 4, 1);
7521     nzcv = extract32(insn, 0, 4);
7522 
7523     if (mos) {
7524         unallocated_encoding(s);
7525         return;
7526     }
7527 
7528     switch (type) {
7529     case 0:
7530         size = MO_32;
7531         break;
7532     case 1:
7533         size = MO_64;
7534         break;
7535     case 3:
7536         size = MO_16;
7537         if (dc_isar_feature(aa64_fp16, s)) {
7538             break;
7539         }
7540         /* fallthru */
7541     default:
7542         unallocated_encoding(s);
7543         return;
7544     }
7545 
7546     if (!fp_access_check(s)) {
7547         return;
7548     }
7549 
7550     if (cond < 0x0e) { /* not always */
7551         TCGLabel *label_match = gen_new_label();
7552         label_continue = gen_new_label();
7553         arm_gen_test_cc(cond, label_match);
7554         /* nomatch: */
7555         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
7556         tcg_gen_br(label_continue);
7557         gen_set_label(label_match);
7558     }
7559 
7560     handle_fp_compare(s, size, rn, rm, false, op);
7561 
7562     if (cond < 0x0e) {
7563         gen_set_label(label_continue);
7564     }
7565 }
7566 
7567 /* Floating-point data-processing (1 source) - half precision */
7568 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
7569 {
7570     TCGv_ptr fpst = NULL;
7571     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
7572     TCGv_i32 tcg_res = tcg_temp_new_i32();
7573 
7574     switch (opcode) {
7575     case 0x0: /* FMOV */
7576         tcg_gen_mov_i32(tcg_res, tcg_op);
7577         break;
7578     case 0x1: /* FABS */
7579         gen_vfp_absh(tcg_res, tcg_op);
7580         break;
7581     case 0x2: /* FNEG */
7582         gen_vfp_negh(tcg_res, tcg_op);
7583         break;
7584     case 0x3: /* FSQRT */
7585         fpst = fpstatus_ptr(FPST_FPCR_F16);
7586         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
7587         break;
7588     case 0x8: /* FRINTN */
7589     case 0x9: /* FRINTP */
7590     case 0xa: /* FRINTM */
7591     case 0xb: /* FRINTZ */
7592     case 0xc: /* FRINTA */
7593     {
7594         TCGv_i32 tcg_rmode;
7595 
7596         fpst = fpstatus_ptr(FPST_FPCR_F16);
7597         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
7598         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7599         gen_restore_rmode(tcg_rmode, fpst);
7600         break;
7601     }
7602     case 0xe: /* FRINTX */
7603         fpst = fpstatus_ptr(FPST_FPCR_F16);
7604         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
7605         break;
7606     case 0xf: /* FRINTI */
7607         fpst = fpstatus_ptr(FPST_FPCR_F16);
7608         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7609         break;
7610     default:
7611         g_assert_not_reached();
7612     }
7613 
7614     write_fp_sreg(s, rd, tcg_res);
7615 }
7616 
7617 /* Floating-point data-processing (1 source) - single precision */
7618 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
7619 {
7620     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
7621     TCGv_i32 tcg_op, tcg_res;
7622     TCGv_ptr fpst;
7623     int rmode = -1;
7624 
7625     tcg_op = read_fp_sreg(s, rn);
7626     tcg_res = tcg_temp_new_i32();
7627 
7628     switch (opcode) {
7629     case 0x0: /* FMOV */
7630         tcg_gen_mov_i32(tcg_res, tcg_op);
7631         goto done;
7632     case 0x1: /* FABS */
7633         gen_vfp_abss(tcg_res, tcg_op);
7634         goto done;
7635     case 0x2: /* FNEG */
7636         gen_vfp_negs(tcg_res, tcg_op);
7637         goto done;
7638     case 0x3: /* FSQRT */
7639         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
7640         goto done;
7641     case 0x6: /* BFCVT */
7642         gen_fpst = gen_helper_bfcvt;
7643         break;
7644     case 0x8: /* FRINTN */
7645     case 0x9: /* FRINTP */
7646     case 0xa: /* FRINTM */
7647     case 0xb: /* FRINTZ */
7648     case 0xc: /* FRINTA */
7649         rmode = opcode & 7;
7650         gen_fpst = gen_helper_rints;
7651         break;
7652     case 0xe: /* FRINTX */
7653         gen_fpst = gen_helper_rints_exact;
7654         break;
7655     case 0xf: /* FRINTI */
7656         gen_fpst = gen_helper_rints;
7657         break;
7658     case 0x10: /* FRINT32Z */
7659         rmode = FPROUNDING_ZERO;
7660         gen_fpst = gen_helper_frint32_s;
7661         break;
7662     case 0x11: /* FRINT32X */
7663         gen_fpst = gen_helper_frint32_s;
7664         break;
7665     case 0x12: /* FRINT64Z */
7666         rmode = FPROUNDING_ZERO;
7667         gen_fpst = gen_helper_frint64_s;
7668         break;
7669     case 0x13: /* FRINT64X */
7670         gen_fpst = gen_helper_frint64_s;
7671         break;
7672     default:
7673         g_assert_not_reached();
7674     }
7675 
7676     fpst = fpstatus_ptr(FPST_FPCR);
7677     if (rmode >= 0) {
7678         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7679         gen_fpst(tcg_res, tcg_op, fpst);
7680         gen_restore_rmode(tcg_rmode, fpst);
7681     } else {
7682         gen_fpst(tcg_res, tcg_op, fpst);
7683     }
7684 
7685  done:
7686     write_fp_sreg(s, rd, tcg_res);
7687 }
7688 
7689 /* Floating-point data-processing (1 source) - double precision */
7690 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
7691 {
7692     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
7693     TCGv_i64 tcg_op, tcg_res;
7694     TCGv_ptr fpst;
7695     int rmode = -1;
7696 
7697     switch (opcode) {
7698     case 0x0: /* FMOV */
7699         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
7700         return;
7701     }
7702 
7703     tcg_op = read_fp_dreg(s, rn);
7704     tcg_res = tcg_temp_new_i64();
7705 
7706     switch (opcode) {
7707     case 0x1: /* FABS */
7708         gen_vfp_absd(tcg_res, tcg_op);
7709         goto done;
7710     case 0x2: /* FNEG */
7711         gen_vfp_negd(tcg_res, tcg_op);
7712         goto done;
7713     case 0x3: /* FSQRT */
7714         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
7715         goto done;
7716     case 0x8: /* FRINTN */
7717     case 0x9: /* FRINTP */
7718     case 0xa: /* FRINTM */
7719     case 0xb: /* FRINTZ */
7720     case 0xc: /* FRINTA */
7721         rmode = opcode & 7;
7722         gen_fpst = gen_helper_rintd;
7723         break;
7724     case 0xe: /* FRINTX */
7725         gen_fpst = gen_helper_rintd_exact;
7726         break;
7727     case 0xf: /* FRINTI */
7728         gen_fpst = gen_helper_rintd;
7729         break;
7730     case 0x10: /* FRINT32Z */
7731         rmode = FPROUNDING_ZERO;
7732         gen_fpst = gen_helper_frint32_d;
7733         break;
7734     case 0x11: /* FRINT32X */
7735         gen_fpst = gen_helper_frint32_d;
7736         break;
7737     case 0x12: /* FRINT64Z */
7738         rmode = FPROUNDING_ZERO;
7739         gen_fpst = gen_helper_frint64_d;
7740         break;
7741     case 0x13: /* FRINT64X */
7742         gen_fpst = gen_helper_frint64_d;
7743         break;
7744     default:
7745         g_assert_not_reached();
7746     }
7747 
7748     fpst = fpstatus_ptr(FPST_FPCR);
7749     if (rmode >= 0) {
7750         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7751         gen_fpst(tcg_res, tcg_op, fpst);
7752         gen_restore_rmode(tcg_rmode, fpst);
7753     } else {
7754         gen_fpst(tcg_res, tcg_op, fpst);
7755     }
7756 
7757  done:
7758     write_fp_dreg(s, rd, tcg_res);
7759 }
7760 
7761 static void handle_fp_fcvt(DisasContext *s, int opcode,
7762                            int rd, int rn, int dtype, int ntype)
7763 {
7764     switch (ntype) {
7765     case 0x0:
7766     {
7767         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7768         if (dtype == 1) {
7769             /* Single to double */
7770             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7771             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
7772             write_fp_dreg(s, rd, tcg_rd);
7773         } else {
7774             /* Single to half */
7775             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7776             TCGv_i32 ahp = get_ahp_flag();
7777             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7778 
7779             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7780             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7781             write_fp_sreg(s, rd, tcg_rd);
7782         }
7783         break;
7784     }
7785     case 0x1:
7786     {
7787         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7788         TCGv_i32 tcg_rd = tcg_temp_new_i32();
7789         if (dtype == 0) {
7790             /* Double to single */
7791             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7792         } else {
7793             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7794             TCGv_i32 ahp = get_ahp_flag();
7795             /* Double to half */
7796             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7797             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7798         }
7799         write_fp_sreg(s, rd, tcg_rd);
7800         break;
7801     }
7802     case 0x3:
7803     {
7804         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7805         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7806         TCGv_i32 tcg_ahp = get_ahp_flag();
7807         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7808         if (dtype == 0) {
7809             /* Half to single */
7810             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7811             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7812             write_fp_sreg(s, rd, tcg_rd);
7813         } else {
7814             /* Half to double */
7815             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7816             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7817             write_fp_dreg(s, rd, tcg_rd);
7818         }
7819         break;
7820     }
7821     default:
7822         g_assert_not_reached();
7823     }
7824 }
7825 
7826 /* Floating point data-processing (1 source)
7827  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
7828  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7829  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
7830  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7831  */
7832 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7833 {
7834     int mos = extract32(insn, 29, 3);
7835     int type = extract32(insn, 22, 2);
7836     int opcode = extract32(insn, 15, 6);
7837     int rn = extract32(insn, 5, 5);
7838     int rd = extract32(insn, 0, 5);
7839 
7840     if (mos) {
7841         goto do_unallocated;
7842     }
7843 
7844     switch (opcode) {
7845     case 0x4: case 0x5: case 0x7:
7846     {
7847         /* FCVT between half, single and double precision */
7848         int dtype = extract32(opcode, 0, 2);
7849         if (type == 2 || dtype == type) {
7850             goto do_unallocated;
7851         }
7852         if (!fp_access_check(s)) {
7853             return;
7854         }
7855 
7856         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7857         break;
7858     }
7859 
7860     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7861         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7862             goto do_unallocated;
7863         }
7864         /* fall through */
7865     case 0x0 ... 0x3:
7866     case 0x8 ... 0xc:
7867     case 0xe ... 0xf:
7868         /* 32-to-32 and 64-to-64 ops */
7869         switch (type) {
7870         case 0:
7871             if (!fp_access_check(s)) {
7872                 return;
7873             }
7874             handle_fp_1src_single(s, opcode, rd, rn);
7875             break;
7876         case 1:
7877             if (!fp_access_check(s)) {
7878                 return;
7879             }
7880             handle_fp_1src_double(s, opcode, rd, rn);
7881             break;
7882         case 3:
7883             if (!dc_isar_feature(aa64_fp16, s)) {
7884                 goto do_unallocated;
7885             }
7886 
7887             if (!fp_access_check(s)) {
7888                 return;
7889             }
7890             handle_fp_1src_half(s, opcode, rd, rn);
7891             break;
7892         default:
7893             goto do_unallocated;
7894         }
7895         break;
7896 
7897     case 0x6:
7898         switch (type) {
7899         case 1: /* BFCVT */
7900             if (!dc_isar_feature(aa64_bf16, s)) {
7901                 goto do_unallocated;
7902             }
7903             if (!fp_access_check(s)) {
7904                 return;
7905             }
7906             handle_fp_1src_single(s, opcode, rd, rn);
7907             break;
7908         default:
7909             goto do_unallocated;
7910         }
7911         break;
7912 
7913     default:
7914     do_unallocated:
7915         unallocated_encoding(s);
7916         break;
7917     }
7918 }
7919 
7920 /* Floating point immediate
7921  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7922  * +---+---+---+-----------+------+---+------------+-------+------+------+
7923  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7924  * +---+---+---+-----------+------+---+------------+-------+------+------+
7925  */
7926 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7927 {
7928     int rd = extract32(insn, 0, 5);
7929     int imm5 = extract32(insn, 5, 5);
7930     int imm8 = extract32(insn, 13, 8);
7931     int type = extract32(insn, 22, 2);
7932     int mos = extract32(insn, 29, 3);
7933     uint64_t imm;
7934     MemOp sz;
7935 
7936     if (mos || imm5) {
7937         unallocated_encoding(s);
7938         return;
7939     }
7940 
7941     switch (type) {
7942     case 0:
7943         sz = MO_32;
7944         break;
7945     case 1:
7946         sz = MO_64;
7947         break;
7948     case 3:
7949         sz = MO_16;
7950         if (dc_isar_feature(aa64_fp16, s)) {
7951             break;
7952         }
7953         /* fallthru */
7954     default:
7955         unallocated_encoding(s);
7956         return;
7957     }
7958 
7959     if (!fp_access_check(s)) {
7960         return;
7961     }
7962 
7963     imm = vfp_expand_imm(sz, imm8);
7964     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7965 }
7966 
7967 /* Handle floating point <=> fixed point conversions. Note that we can
7968  * also deal with fp <=> integer conversions as a special case (scale == 64)
7969  * OPTME: consider handling that special case specially or at least skipping
7970  * the call to scalbn in the helpers for zero shifts.
7971  */
7972 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7973                            bool itof, int rmode, int scale, int sf, int type)
7974 {
7975     bool is_signed = !(opcode & 1);
7976     TCGv_ptr tcg_fpstatus;
7977     TCGv_i32 tcg_shift, tcg_single;
7978     TCGv_i64 tcg_double;
7979 
7980     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7981 
7982     tcg_shift = tcg_constant_i32(64 - scale);
7983 
7984     if (itof) {
7985         TCGv_i64 tcg_int = cpu_reg(s, rn);
7986         if (!sf) {
7987             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7988 
7989             if (is_signed) {
7990                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7991             } else {
7992                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7993             }
7994 
7995             tcg_int = tcg_extend;
7996         }
7997 
7998         switch (type) {
7999         case 1: /* float64 */
8000             tcg_double = tcg_temp_new_i64();
8001             if (is_signed) {
8002                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
8003                                      tcg_shift, tcg_fpstatus);
8004             } else {
8005                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
8006                                      tcg_shift, tcg_fpstatus);
8007             }
8008             write_fp_dreg(s, rd, tcg_double);
8009             break;
8010 
8011         case 0: /* float32 */
8012             tcg_single = tcg_temp_new_i32();
8013             if (is_signed) {
8014                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
8015                                      tcg_shift, tcg_fpstatus);
8016             } else {
8017                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
8018                                      tcg_shift, tcg_fpstatus);
8019             }
8020             write_fp_sreg(s, rd, tcg_single);
8021             break;
8022 
8023         case 3: /* float16 */
8024             tcg_single = tcg_temp_new_i32();
8025             if (is_signed) {
8026                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
8027                                      tcg_shift, tcg_fpstatus);
8028             } else {
8029                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
8030                                      tcg_shift, tcg_fpstatus);
8031             }
8032             write_fp_sreg(s, rd, tcg_single);
8033             break;
8034 
8035         default:
8036             g_assert_not_reached();
8037         }
8038     } else {
8039         TCGv_i64 tcg_int = cpu_reg(s, rd);
8040         TCGv_i32 tcg_rmode;
8041 
8042         if (extract32(opcode, 2, 1)) {
8043             /* There are too many rounding modes to all fit into rmode,
8044              * so FCVTA[US] is a special case.
8045              */
8046             rmode = FPROUNDING_TIEAWAY;
8047         }
8048 
8049         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
8050 
8051         switch (type) {
8052         case 1: /* float64 */
8053             tcg_double = read_fp_dreg(s, rn);
8054             if (is_signed) {
8055                 if (!sf) {
8056                     gen_helper_vfp_tosld(tcg_int, tcg_double,
8057                                          tcg_shift, tcg_fpstatus);
8058                 } else {
8059                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
8060                                          tcg_shift, tcg_fpstatus);
8061                 }
8062             } else {
8063                 if (!sf) {
8064                     gen_helper_vfp_tould(tcg_int, tcg_double,
8065                                          tcg_shift, tcg_fpstatus);
8066                 } else {
8067                     gen_helper_vfp_touqd(tcg_int, tcg_double,
8068                                          tcg_shift, tcg_fpstatus);
8069                 }
8070             }
8071             if (!sf) {
8072                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
8073             }
8074             break;
8075 
8076         case 0: /* float32 */
8077             tcg_single = read_fp_sreg(s, rn);
8078             if (sf) {
8079                 if (is_signed) {
8080                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
8081                                          tcg_shift, tcg_fpstatus);
8082                 } else {
8083                     gen_helper_vfp_touqs(tcg_int, tcg_single,
8084                                          tcg_shift, tcg_fpstatus);
8085                 }
8086             } else {
8087                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8088                 if (is_signed) {
8089                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
8090                                          tcg_shift, tcg_fpstatus);
8091                 } else {
8092                     gen_helper_vfp_touls(tcg_dest, tcg_single,
8093                                          tcg_shift, tcg_fpstatus);
8094                 }
8095                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8096             }
8097             break;
8098 
8099         case 3: /* float16 */
8100             tcg_single = read_fp_sreg(s, rn);
8101             if (sf) {
8102                 if (is_signed) {
8103                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
8104                                          tcg_shift, tcg_fpstatus);
8105                 } else {
8106                     gen_helper_vfp_touqh(tcg_int, tcg_single,
8107                                          tcg_shift, tcg_fpstatus);
8108                 }
8109             } else {
8110                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8111                 if (is_signed) {
8112                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
8113                                          tcg_shift, tcg_fpstatus);
8114                 } else {
8115                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
8116                                          tcg_shift, tcg_fpstatus);
8117                 }
8118                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8119             }
8120             break;
8121 
8122         default:
8123             g_assert_not_reached();
8124         }
8125 
8126         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8127     }
8128 }
8129 
8130 /* Floating point <-> fixed point conversions
8131  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
8132  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8133  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
8134  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8135  */
8136 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
8137 {
8138     int rd = extract32(insn, 0, 5);
8139     int rn = extract32(insn, 5, 5);
8140     int scale = extract32(insn, 10, 6);
8141     int opcode = extract32(insn, 16, 3);
8142     int rmode = extract32(insn, 19, 2);
8143     int type = extract32(insn, 22, 2);
8144     bool sbit = extract32(insn, 29, 1);
8145     bool sf = extract32(insn, 31, 1);
8146     bool itof;
8147 
8148     if (sbit || (!sf && scale < 32)) {
8149         unallocated_encoding(s);
8150         return;
8151     }
8152 
8153     switch (type) {
8154     case 0: /* float32 */
8155     case 1: /* float64 */
8156         break;
8157     case 3: /* float16 */
8158         if (dc_isar_feature(aa64_fp16, s)) {
8159             break;
8160         }
8161         /* fallthru */
8162     default:
8163         unallocated_encoding(s);
8164         return;
8165     }
8166 
8167     switch ((rmode << 3) | opcode) {
8168     case 0x2: /* SCVTF */
8169     case 0x3: /* UCVTF */
8170         itof = true;
8171         break;
8172     case 0x18: /* FCVTZS */
8173     case 0x19: /* FCVTZU */
8174         itof = false;
8175         break;
8176     default:
8177         unallocated_encoding(s);
8178         return;
8179     }
8180 
8181     if (!fp_access_check(s)) {
8182         return;
8183     }
8184 
8185     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
8186 }
8187 
8188 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
8189 {
8190     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
8191      * without conversion.
8192      */
8193 
8194     if (itof) {
8195         TCGv_i64 tcg_rn = cpu_reg(s, rn);
8196         TCGv_i64 tmp;
8197 
8198         switch (type) {
8199         case 0:
8200             /* 32 bit */
8201             tmp = tcg_temp_new_i64();
8202             tcg_gen_ext32u_i64(tmp, tcg_rn);
8203             write_fp_dreg(s, rd, tmp);
8204             break;
8205         case 1:
8206             /* 64 bit */
8207             write_fp_dreg(s, rd, tcg_rn);
8208             break;
8209         case 2:
8210             /* 64 bit to top half. */
8211             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
8212             clear_vec_high(s, true, rd);
8213             break;
8214         case 3:
8215             /* 16 bit */
8216             tmp = tcg_temp_new_i64();
8217             tcg_gen_ext16u_i64(tmp, tcg_rn);
8218             write_fp_dreg(s, rd, tmp);
8219             break;
8220         default:
8221             g_assert_not_reached();
8222         }
8223     } else {
8224         TCGv_i64 tcg_rd = cpu_reg(s, rd);
8225 
8226         switch (type) {
8227         case 0:
8228             /* 32 bit */
8229             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
8230             break;
8231         case 1:
8232             /* 64 bit */
8233             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
8234             break;
8235         case 2:
8236             /* 64 bits from top half */
8237             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
8238             break;
8239         case 3:
8240             /* 16 bit */
8241             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
8242             break;
8243         default:
8244             g_assert_not_reached();
8245         }
8246     }
8247 }
8248 
8249 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
8250 {
8251     TCGv_i64 t = read_fp_dreg(s, rn);
8252     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
8253 
8254     gen_helper_fjcvtzs(t, t, fpstatus);
8255 
8256     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
8257     tcg_gen_extrh_i64_i32(cpu_ZF, t);
8258     tcg_gen_movi_i32(cpu_CF, 0);
8259     tcg_gen_movi_i32(cpu_NF, 0);
8260     tcg_gen_movi_i32(cpu_VF, 0);
8261 }
8262 
8263 /* Floating point <-> integer conversions
8264  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
8265  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8266  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
8267  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8268  */
8269 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
8270 {
8271     int rd = extract32(insn, 0, 5);
8272     int rn = extract32(insn, 5, 5);
8273     int opcode = extract32(insn, 16, 3);
8274     int rmode = extract32(insn, 19, 2);
8275     int type = extract32(insn, 22, 2);
8276     bool sbit = extract32(insn, 29, 1);
8277     bool sf = extract32(insn, 31, 1);
8278     bool itof = false;
8279 
8280     if (sbit) {
8281         goto do_unallocated;
8282     }
8283 
8284     switch (opcode) {
8285     case 2: /* SCVTF */
8286     case 3: /* UCVTF */
8287         itof = true;
8288         /* fallthru */
8289     case 4: /* FCVTAS */
8290     case 5: /* FCVTAU */
8291         if (rmode != 0) {
8292             goto do_unallocated;
8293         }
8294         /* fallthru */
8295     case 0: /* FCVT[NPMZ]S */
8296     case 1: /* FCVT[NPMZ]U */
8297         switch (type) {
8298         case 0: /* float32 */
8299         case 1: /* float64 */
8300             break;
8301         case 3: /* float16 */
8302             if (!dc_isar_feature(aa64_fp16, s)) {
8303                 goto do_unallocated;
8304             }
8305             break;
8306         default:
8307             goto do_unallocated;
8308         }
8309         if (!fp_access_check(s)) {
8310             return;
8311         }
8312         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
8313         break;
8314 
8315     default:
8316         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
8317         case 0b01100110: /* FMOV half <-> 32-bit int */
8318         case 0b01100111:
8319         case 0b11100110: /* FMOV half <-> 64-bit int */
8320         case 0b11100111:
8321             if (!dc_isar_feature(aa64_fp16, s)) {
8322                 goto do_unallocated;
8323             }
8324             /* fallthru */
8325         case 0b00000110: /* FMOV 32-bit */
8326         case 0b00000111:
8327         case 0b10100110: /* FMOV 64-bit */
8328         case 0b10100111:
8329         case 0b11001110: /* FMOV top half of 128-bit */
8330         case 0b11001111:
8331             if (!fp_access_check(s)) {
8332                 return;
8333             }
8334             itof = opcode & 1;
8335             handle_fmov(s, rd, rn, type, itof);
8336             break;
8337 
8338         case 0b00111110: /* FJCVTZS */
8339             if (!dc_isar_feature(aa64_jscvt, s)) {
8340                 goto do_unallocated;
8341             } else if (fp_access_check(s)) {
8342                 handle_fjcvtzs(s, rd, rn);
8343             }
8344             break;
8345 
8346         default:
8347         do_unallocated:
8348             unallocated_encoding(s);
8349             return;
8350         }
8351         break;
8352     }
8353 }
8354 
8355 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
8356  *   31  30  29 28     25 24                          0
8357  * +---+---+---+---------+-----------------------------+
8358  * |   | 0 |   | 1 1 1 1 |                             |
8359  * +---+---+---+---------+-----------------------------+
8360  */
8361 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
8362 {
8363     if (extract32(insn, 24, 1)) {
8364         unallocated_encoding(s); /* in decodetree */
8365     } else if (extract32(insn, 21, 1) == 0) {
8366         /* Floating point to fixed point conversions */
8367         disas_fp_fixed_conv(s, insn);
8368     } else {
8369         switch (extract32(insn, 10, 2)) {
8370         case 1:
8371             /* Floating point conditional compare */
8372             disas_fp_ccomp(s, insn);
8373             break;
8374         case 2:
8375             /* Floating point data-processing (2 source) */
8376             unallocated_encoding(s); /* in decodetree */
8377             break;
8378         case 3:
8379             /* Floating point conditional select */
8380             unallocated_encoding(s); /* in decodetree */
8381             break;
8382         case 0:
8383             switch (ctz32(extract32(insn, 12, 4))) {
8384             case 0: /* [15:12] == xxx1 */
8385                 /* Floating point immediate */
8386                 disas_fp_imm(s, insn);
8387                 break;
8388             case 1: /* [15:12] == xx10 */
8389                 /* Floating point compare */
8390                 disas_fp_compare(s, insn);
8391                 break;
8392             case 2: /* [15:12] == x100 */
8393                 /* Floating point data-processing (1 source) */
8394                 disas_fp_1src(s, insn);
8395                 break;
8396             case 3: /* [15:12] == 1000 */
8397                 unallocated_encoding(s);
8398                 break;
8399             default: /* [15:12] == 0000 */
8400                 /* Floating point <-> integer conversions */
8401                 disas_fp_int_conv(s, insn);
8402                 break;
8403             }
8404             break;
8405         }
8406     }
8407 }
8408 
8409 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
8410                      int pos)
8411 {
8412     /* Extract 64 bits from the middle of two concatenated 64 bit
8413      * vector register slices left:right. The extracted bits start
8414      * at 'pos' bits into the right (least significant) side.
8415      * We return the result in tcg_right, and guarantee not to
8416      * trash tcg_left.
8417      */
8418     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8419     assert(pos > 0 && pos < 64);
8420 
8421     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
8422     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
8423     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
8424 }
8425 
8426 /* EXT
8427  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
8428  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8429  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
8430  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8431  */
8432 static void disas_simd_ext(DisasContext *s, uint32_t insn)
8433 {
8434     int is_q = extract32(insn, 30, 1);
8435     int op2 = extract32(insn, 22, 2);
8436     int imm4 = extract32(insn, 11, 4);
8437     int rm = extract32(insn, 16, 5);
8438     int rn = extract32(insn, 5, 5);
8439     int rd = extract32(insn, 0, 5);
8440     int pos = imm4 << 3;
8441     TCGv_i64 tcg_resl, tcg_resh;
8442 
8443     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
8444         unallocated_encoding(s);
8445         return;
8446     }
8447 
8448     if (!fp_access_check(s)) {
8449         return;
8450     }
8451 
8452     tcg_resh = tcg_temp_new_i64();
8453     tcg_resl = tcg_temp_new_i64();
8454 
8455     /* Vd gets bits starting at pos bits into Vm:Vn. This is
8456      * either extracting 128 bits from a 128:128 concatenation, or
8457      * extracting 64 bits from a 64:64 concatenation.
8458      */
8459     if (!is_q) {
8460         read_vec_element(s, tcg_resl, rn, 0, MO_64);
8461         if (pos != 0) {
8462             read_vec_element(s, tcg_resh, rm, 0, MO_64);
8463             do_ext64(s, tcg_resh, tcg_resl, pos);
8464         }
8465     } else {
8466         TCGv_i64 tcg_hh;
8467         typedef struct {
8468             int reg;
8469             int elt;
8470         } EltPosns;
8471         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
8472         EltPosns *elt = eltposns;
8473 
8474         if (pos >= 64) {
8475             elt++;
8476             pos -= 64;
8477         }
8478 
8479         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
8480         elt++;
8481         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
8482         elt++;
8483         if (pos != 0) {
8484             do_ext64(s, tcg_resh, tcg_resl, pos);
8485             tcg_hh = tcg_temp_new_i64();
8486             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
8487             do_ext64(s, tcg_hh, tcg_resh, pos);
8488         }
8489     }
8490 
8491     write_vec_element(s, tcg_resl, rd, 0, MO_64);
8492     if (is_q) {
8493         write_vec_element(s, tcg_resh, rd, 1, MO_64);
8494     }
8495     clear_vec_high(s, is_q, rd);
8496 }
8497 
8498 /* TBL/TBX
8499  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
8500  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8501  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
8502  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8503  */
8504 static void disas_simd_tb(DisasContext *s, uint32_t insn)
8505 {
8506     int op2 = extract32(insn, 22, 2);
8507     int is_q = extract32(insn, 30, 1);
8508     int rm = extract32(insn, 16, 5);
8509     int rn = extract32(insn, 5, 5);
8510     int rd = extract32(insn, 0, 5);
8511     int is_tbx = extract32(insn, 12, 1);
8512     int len = (extract32(insn, 13, 2) + 1) * 16;
8513 
8514     if (op2 != 0) {
8515         unallocated_encoding(s);
8516         return;
8517     }
8518 
8519     if (!fp_access_check(s)) {
8520         return;
8521     }
8522 
8523     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8524                        vec_full_reg_offset(s, rm), tcg_env,
8525                        is_q ? 16 : 8, vec_full_reg_size(s),
8526                        (len << 6) | (is_tbx << 5) | rn,
8527                        gen_helper_simd_tblx);
8528 }
8529 
8530 /* ZIP/UZP/TRN
8531  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
8532  * +---+---+-------------+------+---+------+---+------------------+------+
8533  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
8534  * +---+---+-------------+------+---+------+---+------------------+------+
8535  */
8536 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8537 {
8538     int rd = extract32(insn, 0, 5);
8539     int rn = extract32(insn, 5, 5);
8540     int rm = extract32(insn, 16, 5);
8541     int size = extract32(insn, 22, 2);
8542     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8543      * bit 2 indicates 1 vs 2 variant of the insn.
8544      */
8545     int opcode = extract32(insn, 12, 2);
8546     bool part = extract32(insn, 14, 1);
8547     bool is_q = extract32(insn, 30, 1);
8548     int esize = 8 << size;
8549     int i;
8550     int datasize = is_q ? 128 : 64;
8551     int elements = datasize / esize;
8552     TCGv_i64 tcg_res[2], tcg_ele;
8553 
8554     if (opcode == 0 || (size == 3 && !is_q)) {
8555         unallocated_encoding(s);
8556         return;
8557     }
8558 
8559     if (!fp_access_check(s)) {
8560         return;
8561     }
8562 
8563     tcg_res[0] = tcg_temp_new_i64();
8564     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
8565     tcg_ele = tcg_temp_new_i64();
8566 
8567     for (i = 0; i < elements; i++) {
8568         int o, w;
8569 
8570         switch (opcode) {
8571         case 1: /* UZP1/2 */
8572         {
8573             int midpoint = elements / 2;
8574             if (i < midpoint) {
8575                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
8576             } else {
8577                 read_vec_element(s, tcg_ele, rm,
8578                                  2 * (i - midpoint) + part, size);
8579             }
8580             break;
8581         }
8582         case 2: /* TRN1/2 */
8583             if (i & 1) {
8584                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
8585             } else {
8586                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
8587             }
8588             break;
8589         case 3: /* ZIP1/2 */
8590         {
8591             int base = part * elements / 2;
8592             if (i & 1) {
8593                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
8594             } else {
8595                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
8596             }
8597             break;
8598         }
8599         default:
8600             g_assert_not_reached();
8601         }
8602 
8603         w = (i * esize) / 64;
8604         o = (i * esize) % 64;
8605         if (o == 0) {
8606             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
8607         } else {
8608             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
8609             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
8610         }
8611     }
8612 
8613     for (i = 0; i <= is_q; ++i) {
8614         write_vec_element(s, tcg_res[i], rd, i, MO_64);
8615     }
8616     clear_vec_high(s, is_q, rd);
8617 }
8618 
8619 /*
8620  * do_reduction_op helper
8621  *
8622  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8623  * important for correct NaN propagation that we do these
8624  * operations in exactly the order specified by the pseudocode.
8625  *
8626  * This is a recursive function, TCG temps should be freed by the
8627  * calling function once it is done with the values.
8628  */
8629 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
8630                                 int esize, int size, int vmap, TCGv_ptr fpst)
8631 {
8632     if (esize == size) {
8633         int element;
8634         MemOp msize = esize == 16 ? MO_16 : MO_32;
8635         TCGv_i32 tcg_elem;
8636 
8637         /* We should have one register left here */
8638         assert(ctpop8(vmap) == 1);
8639         element = ctz32(vmap);
8640         assert(element < 8);
8641 
8642         tcg_elem = tcg_temp_new_i32();
8643         read_vec_element_i32(s, tcg_elem, rn, element, msize);
8644         return tcg_elem;
8645     } else {
8646         int bits = size / 2;
8647         int shift = ctpop8(vmap) / 2;
8648         int vmap_lo = (vmap >> shift) & vmap;
8649         int vmap_hi = (vmap & ~vmap_lo);
8650         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8651 
8652         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8653         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8654         tcg_res = tcg_temp_new_i32();
8655 
8656         switch (fpopcode) {
8657         case 0x0c: /* fmaxnmv half-precision */
8658             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8659             break;
8660         case 0x0f: /* fmaxv half-precision */
8661             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8662             break;
8663         case 0x1c: /* fminnmv half-precision */
8664             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8665             break;
8666         case 0x1f: /* fminv half-precision */
8667             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8668             break;
8669         case 0x2c: /* fmaxnmv */
8670             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8671             break;
8672         case 0x2f: /* fmaxv */
8673             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8674             break;
8675         case 0x3c: /* fminnmv */
8676             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8677             break;
8678         case 0x3f: /* fminv */
8679             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8680             break;
8681         default:
8682             g_assert_not_reached();
8683         }
8684         return tcg_res;
8685     }
8686 }
8687 
8688 /* AdvSIMD across lanes
8689  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8690  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8691  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8692  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8693  */
8694 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8695 {
8696     int rd = extract32(insn, 0, 5);
8697     int rn = extract32(insn, 5, 5);
8698     int size = extract32(insn, 22, 2);
8699     int opcode = extract32(insn, 12, 5);
8700     bool is_q = extract32(insn, 30, 1);
8701     bool is_u = extract32(insn, 29, 1);
8702     bool is_fp = false;
8703     bool is_min = false;
8704     int esize;
8705     int elements;
8706     int i;
8707     TCGv_i64 tcg_res, tcg_elt;
8708 
8709     switch (opcode) {
8710     case 0x1b: /* ADDV */
8711         if (is_u) {
8712             unallocated_encoding(s);
8713             return;
8714         }
8715         /* fall through */
8716     case 0x3: /* SADDLV, UADDLV */
8717     case 0xa: /* SMAXV, UMAXV */
8718     case 0x1a: /* SMINV, UMINV */
8719         if (size == 3 || (size == 2 && !is_q)) {
8720             unallocated_encoding(s);
8721             return;
8722         }
8723         break;
8724     case 0xc: /* FMAXNMV, FMINNMV */
8725     case 0xf: /* FMAXV, FMINV */
8726         /* Bit 1 of size field encodes min vs max and the actual size
8727          * depends on the encoding of the U bit. If not set (and FP16
8728          * enabled) then we do half-precision float instead of single
8729          * precision.
8730          */
8731         is_min = extract32(size, 1, 1);
8732         is_fp = true;
8733         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8734             size = 1;
8735         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8736             unallocated_encoding(s);
8737             return;
8738         } else {
8739             size = 2;
8740         }
8741         break;
8742     default:
8743         unallocated_encoding(s);
8744         return;
8745     }
8746 
8747     if (!fp_access_check(s)) {
8748         return;
8749     }
8750 
8751     esize = 8 << size;
8752     elements = (is_q ? 128 : 64) / esize;
8753 
8754     tcg_res = tcg_temp_new_i64();
8755     tcg_elt = tcg_temp_new_i64();
8756 
8757     /* These instructions operate across all lanes of a vector
8758      * to produce a single result. We can guarantee that a 64
8759      * bit intermediate is sufficient:
8760      *  + for [US]ADDLV the maximum element size is 32 bits, and
8761      *    the result type is 64 bits
8762      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8763      *    same as the element size, which is 32 bits at most
8764      * For the integer operations we can choose to work at 64
8765      * or 32 bits and truncate at the end; for simplicity
8766      * we use 64 bits always. The floating point
8767      * ops do require 32 bit intermediates, though.
8768      */
8769     if (!is_fp) {
8770         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8771 
8772         for (i = 1; i < elements; i++) {
8773             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8774 
8775             switch (opcode) {
8776             case 0x03: /* SADDLV / UADDLV */
8777             case 0x1b: /* ADDV */
8778                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8779                 break;
8780             case 0x0a: /* SMAXV / UMAXV */
8781                 if (is_u) {
8782                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8783                 } else {
8784                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8785                 }
8786                 break;
8787             case 0x1a: /* SMINV / UMINV */
8788                 if (is_u) {
8789                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8790                 } else {
8791                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8792                 }
8793                 break;
8794             default:
8795                 g_assert_not_reached();
8796             }
8797 
8798         }
8799     } else {
8800         /* Floating point vector reduction ops which work across 32
8801          * bit (single) or 16 bit (half-precision) intermediates.
8802          * Note that correct NaN propagation requires that we do these
8803          * operations in exactly the order specified by the pseudocode.
8804          */
8805         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8806         int fpopcode = opcode | is_min << 4 | is_u << 5;
8807         int vmap = (1 << elements) - 1;
8808         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8809                                              (is_q ? 128 : 64), vmap, fpst);
8810         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8811     }
8812 
8813     /* Now truncate the result to the width required for the final output */
8814     if (opcode == 0x03) {
8815         /* SADDLV, UADDLV: result is 2*esize */
8816         size++;
8817     }
8818 
8819     switch (size) {
8820     case 0:
8821         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8822         break;
8823     case 1:
8824         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8825         break;
8826     case 2:
8827         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8828         break;
8829     case 3:
8830         break;
8831     default:
8832         g_assert_not_reached();
8833     }
8834 
8835     write_fp_dreg(s, rd, tcg_res);
8836 }
8837 
8838 /* AdvSIMD modified immediate
8839  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8840  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8841  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8842  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8843  *
8844  * There are a number of operations that can be carried out here:
8845  *   MOVI - move (shifted) imm into register
8846  *   MVNI - move inverted (shifted) imm into register
8847  *   ORR  - bitwise OR of (shifted) imm with register
8848  *   BIC  - bitwise clear of (shifted) imm with register
8849  * With ARMv8.2 we also have:
8850  *   FMOV half-precision
8851  */
8852 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8853 {
8854     int rd = extract32(insn, 0, 5);
8855     int cmode = extract32(insn, 12, 4);
8856     int o2 = extract32(insn, 11, 1);
8857     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8858     bool is_neg = extract32(insn, 29, 1);
8859     bool is_q = extract32(insn, 30, 1);
8860     uint64_t imm = 0;
8861 
8862     if (o2) {
8863         if (cmode != 0xf || is_neg) {
8864             unallocated_encoding(s);
8865             return;
8866         }
8867         /* FMOV (vector, immediate) - half-precision */
8868         if (!dc_isar_feature(aa64_fp16, s)) {
8869             unallocated_encoding(s);
8870             return;
8871         }
8872         imm = vfp_expand_imm(MO_16, abcdefgh);
8873         /* now duplicate across the lanes */
8874         imm = dup_const(MO_16, imm);
8875     } else {
8876         if (cmode == 0xf && is_neg && !is_q) {
8877             unallocated_encoding(s);
8878             return;
8879         }
8880         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8881     }
8882 
8883     if (!fp_access_check(s)) {
8884         return;
8885     }
8886 
8887     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8888         /* MOVI or MVNI, with MVNI negation handled above.  */
8889         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8890                              vec_full_reg_size(s), imm);
8891     } else {
8892         /* ORR or BIC, with BIC negation to AND handled above.  */
8893         if (is_neg) {
8894             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8895         } else {
8896             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8897         }
8898     }
8899 }
8900 
8901 /*
8902  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8903  *
8904  * This code is handles the common shifting code and is used by both
8905  * the vector and scalar code.
8906  */
8907 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8908                                     TCGv_i64 tcg_rnd, bool accumulate,
8909                                     bool is_u, int size, int shift)
8910 {
8911     bool extended_result = false;
8912     bool round = tcg_rnd != NULL;
8913     int ext_lshift = 0;
8914     TCGv_i64 tcg_src_hi;
8915 
8916     if (round && size == 3) {
8917         extended_result = true;
8918         ext_lshift = 64 - shift;
8919         tcg_src_hi = tcg_temp_new_i64();
8920     } else if (shift == 64) {
8921         if (!accumulate && is_u) {
8922             /* result is zero */
8923             tcg_gen_movi_i64(tcg_res, 0);
8924             return;
8925         }
8926     }
8927 
8928     /* Deal with the rounding step */
8929     if (round) {
8930         if (extended_result) {
8931             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8932             if (!is_u) {
8933                 /* take care of sign extending tcg_res */
8934                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8935                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8936                                  tcg_src, tcg_src_hi,
8937                                  tcg_rnd, tcg_zero);
8938             } else {
8939                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8940                                  tcg_src, tcg_zero,
8941                                  tcg_rnd, tcg_zero);
8942             }
8943         } else {
8944             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8945         }
8946     }
8947 
8948     /* Now do the shift right */
8949     if (round && extended_result) {
8950         /* extended case, >64 bit precision required */
8951         if (ext_lshift == 0) {
8952             /* special case, only high bits matter */
8953             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8954         } else {
8955             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8956             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8957             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8958         }
8959     } else {
8960         if (is_u) {
8961             if (shift == 64) {
8962                 /* essentially shifting in 64 zeros */
8963                 tcg_gen_movi_i64(tcg_src, 0);
8964             } else {
8965                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8966             }
8967         } else {
8968             if (shift == 64) {
8969                 /* effectively extending the sign-bit */
8970                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8971             } else {
8972                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8973             }
8974         }
8975     }
8976 
8977     if (accumulate) {
8978         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8979     } else {
8980         tcg_gen_mov_i64(tcg_res, tcg_src);
8981     }
8982 }
8983 
8984 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8985 static void handle_scalar_simd_shri(DisasContext *s,
8986                                     bool is_u, int immh, int immb,
8987                                     int opcode, int rn, int rd)
8988 {
8989     const int size = 3;
8990     int immhb = immh << 3 | immb;
8991     int shift = 2 * (8 << size) - immhb;
8992     bool accumulate = false;
8993     bool round = false;
8994     bool insert = false;
8995     TCGv_i64 tcg_rn;
8996     TCGv_i64 tcg_rd;
8997     TCGv_i64 tcg_round;
8998 
8999     if (!extract32(immh, 3, 1)) {
9000         unallocated_encoding(s);
9001         return;
9002     }
9003 
9004     if (!fp_access_check(s)) {
9005         return;
9006     }
9007 
9008     switch (opcode) {
9009     case 0x02: /* SSRA / USRA (accumulate) */
9010         accumulate = true;
9011         break;
9012     case 0x04: /* SRSHR / URSHR (rounding) */
9013         round = true;
9014         break;
9015     case 0x06: /* SRSRA / URSRA (accum + rounding) */
9016         accumulate = round = true;
9017         break;
9018     case 0x08: /* SRI */
9019         insert = true;
9020         break;
9021     }
9022 
9023     if (round) {
9024         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9025     } else {
9026         tcg_round = NULL;
9027     }
9028 
9029     tcg_rn = read_fp_dreg(s, rn);
9030     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9031 
9032     if (insert) {
9033         /* shift count same as element size is valid but does nothing;
9034          * special case to avoid potential shift by 64.
9035          */
9036         int esize = 8 << size;
9037         if (shift != esize) {
9038             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
9039             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
9040         }
9041     } else {
9042         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9043                                 accumulate, is_u, size, shift);
9044     }
9045 
9046     write_fp_dreg(s, rd, tcg_rd);
9047 }
9048 
9049 /* SHL/SLI - Scalar shift left */
9050 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
9051                                     int immh, int immb, int opcode,
9052                                     int rn, int rd)
9053 {
9054     int size = 32 - clz32(immh) - 1;
9055     int immhb = immh << 3 | immb;
9056     int shift = immhb - (8 << size);
9057     TCGv_i64 tcg_rn;
9058     TCGv_i64 tcg_rd;
9059 
9060     if (!extract32(immh, 3, 1)) {
9061         unallocated_encoding(s);
9062         return;
9063     }
9064 
9065     if (!fp_access_check(s)) {
9066         return;
9067     }
9068 
9069     tcg_rn = read_fp_dreg(s, rn);
9070     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9071 
9072     if (insert) {
9073         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
9074     } else {
9075         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
9076     }
9077 
9078     write_fp_dreg(s, rd, tcg_rd);
9079 }
9080 
9081 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
9082  * (signed/unsigned) narrowing */
9083 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
9084                                    bool is_u_shift, bool is_u_narrow,
9085                                    int immh, int immb, int opcode,
9086                                    int rn, int rd)
9087 {
9088     int immhb = immh << 3 | immb;
9089     int size = 32 - clz32(immh) - 1;
9090     int esize = 8 << size;
9091     int shift = (2 * esize) - immhb;
9092     int elements = is_scalar ? 1 : (64 / esize);
9093     bool round = extract32(opcode, 0, 1);
9094     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
9095     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
9096     TCGv_i32 tcg_rd_narrowed;
9097     TCGv_i64 tcg_final;
9098 
9099     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
9100         { gen_helper_neon_narrow_sat_s8,
9101           gen_helper_neon_unarrow_sat8 },
9102         { gen_helper_neon_narrow_sat_s16,
9103           gen_helper_neon_unarrow_sat16 },
9104         { gen_helper_neon_narrow_sat_s32,
9105           gen_helper_neon_unarrow_sat32 },
9106         { NULL, NULL },
9107     };
9108     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
9109         gen_helper_neon_narrow_sat_u8,
9110         gen_helper_neon_narrow_sat_u16,
9111         gen_helper_neon_narrow_sat_u32,
9112         NULL
9113     };
9114     NeonGenNarrowEnvFn *narrowfn;
9115 
9116     int i;
9117 
9118     assert(size < 4);
9119 
9120     if (extract32(immh, 3, 1)) {
9121         unallocated_encoding(s);
9122         return;
9123     }
9124 
9125     if (!fp_access_check(s)) {
9126         return;
9127     }
9128 
9129     if (is_u_shift) {
9130         narrowfn = unsigned_narrow_fns[size];
9131     } else {
9132         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
9133     }
9134 
9135     tcg_rn = tcg_temp_new_i64();
9136     tcg_rd = tcg_temp_new_i64();
9137     tcg_rd_narrowed = tcg_temp_new_i32();
9138     tcg_final = tcg_temp_new_i64();
9139 
9140     if (round) {
9141         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9142     } else {
9143         tcg_round = NULL;
9144     }
9145 
9146     for (i = 0; i < elements; i++) {
9147         read_vec_element(s, tcg_rn, rn, i, ldop);
9148         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9149                                 false, is_u_shift, size+1, shift);
9150         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
9151         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
9152         if (i == 0) {
9153             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
9154         } else {
9155             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9156         }
9157     }
9158 
9159     if (!is_q) {
9160         write_vec_element(s, tcg_final, rd, 0, MO_64);
9161     } else {
9162         write_vec_element(s, tcg_final, rd, 1, MO_64);
9163     }
9164     clear_vec_high(s, is_q, rd);
9165 }
9166 
9167 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
9168 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
9169                              bool src_unsigned, bool dst_unsigned,
9170                              int immh, int immb, int rn, int rd)
9171 {
9172     int immhb = immh << 3 | immb;
9173     int size = 32 - clz32(immh) - 1;
9174     int shift = immhb - (8 << size);
9175     int pass;
9176 
9177     assert(immh != 0);
9178     assert(!(scalar && is_q));
9179 
9180     if (!scalar) {
9181         if (!is_q && extract32(immh, 3, 1)) {
9182             unallocated_encoding(s);
9183             return;
9184         }
9185 
9186         /* Since we use the variable-shift helpers we must
9187          * replicate the shift count into each element of
9188          * the tcg_shift value.
9189          */
9190         switch (size) {
9191         case 0:
9192             shift |= shift << 8;
9193             /* fall through */
9194         case 1:
9195             shift |= shift << 16;
9196             break;
9197         case 2:
9198         case 3:
9199             break;
9200         default:
9201             g_assert_not_reached();
9202         }
9203     }
9204 
9205     if (!fp_access_check(s)) {
9206         return;
9207     }
9208 
9209     if (size == 3) {
9210         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
9211         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
9212             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
9213             { NULL, gen_helper_neon_qshl_u64 },
9214         };
9215         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
9216         int maxpass = is_q ? 2 : 1;
9217 
9218         for (pass = 0; pass < maxpass; pass++) {
9219             TCGv_i64 tcg_op = tcg_temp_new_i64();
9220 
9221             read_vec_element(s, tcg_op, rn, pass, MO_64);
9222             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9223             write_vec_element(s, tcg_op, rd, pass, MO_64);
9224         }
9225         clear_vec_high(s, is_q, rd);
9226     } else {
9227         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
9228         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
9229             {
9230                 { gen_helper_neon_qshl_s8,
9231                   gen_helper_neon_qshl_s16,
9232                   gen_helper_neon_qshl_s32 },
9233                 { gen_helper_neon_qshlu_s8,
9234                   gen_helper_neon_qshlu_s16,
9235                   gen_helper_neon_qshlu_s32 }
9236             }, {
9237                 { NULL, NULL, NULL },
9238                 { gen_helper_neon_qshl_u8,
9239                   gen_helper_neon_qshl_u16,
9240                   gen_helper_neon_qshl_u32 }
9241             }
9242         };
9243         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
9244         MemOp memop = scalar ? size : MO_32;
9245         int maxpass = scalar ? 1 : is_q ? 4 : 2;
9246 
9247         for (pass = 0; pass < maxpass; pass++) {
9248             TCGv_i32 tcg_op = tcg_temp_new_i32();
9249 
9250             read_vec_element_i32(s, tcg_op, rn, pass, memop);
9251             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9252             if (scalar) {
9253                 switch (size) {
9254                 case 0:
9255                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
9256                     break;
9257                 case 1:
9258                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9259                     break;
9260                 case 2:
9261                     break;
9262                 default:
9263                     g_assert_not_reached();
9264                 }
9265                 write_fp_sreg(s, rd, tcg_op);
9266             } else {
9267                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
9268             }
9269         }
9270 
9271         if (!scalar) {
9272             clear_vec_high(s, is_q, rd);
9273         }
9274     }
9275 }
9276 
9277 /* Common vector code for handling integer to FP conversion */
9278 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
9279                                    int elements, int is_signed,
9280                                    int fracbits, int size)
9281 {
9282     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9283     TCGv_i32 tcg_shift = NULL;
9284 
9285     MemOp mop = size | (is_signed ? MO_SIGN : 0);
9286     int pass;
9287 
9288     if (fracbits || size == MO_64) {
9289         tcg_shift = tcg_constant_i32(fracbits);
9290     }
9291 
9292     if (size == MO_64) {
9293         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
9294         TCGv_i64 tcg_double = tcg_temp_new_i64();
9295 
9296         for (pass = 0; pass < elements; pass++) {
9297             read_vec_element(s, tcg_int64, rn, pass, mop);
9298 
9299             if (is_signed) {
9300                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
9301                                      tcg_shift, tcg_fpst);
9302             } else {
9303                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
9304                                      tcg_shift, tcg_fpst);
9305             }
9306             if (elements == 1) {
9307                 write_fp_dreg(s, rd, tcg_double);
9308             } else {
9309                 write_vec_element(s, tcg_double, rd, pass, MO_64);
9310             }
9311         }
9312     } else {
9313         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
9314         TCGv_i32 tcg_float = tcg_temp_new_i32();
9315 
9316         for (pass = 0; pass < elements; pass++) {
9317             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
9318 
9319             switch (size) {
9320             case MO_32:
9321                 if (fracbits) {
9322                     if (is_signed) {
9323                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
9324                                              tcg_shift, tcg_fpst);
9325                     } else {
9326                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
9327                                              tcg_shift, tcg_fpst);
9328                     }
9329                 } else {
9330                     if (is_signed) {
9331                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
9332                     } else {
9333                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
9334                     }
9335                 }
9336                 break;
9337             case MO_16:
9338                 if (fracbits) {
9339                     if (is_signed) {
9340                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
9341                                              tcg_shift, tcg_fpst);
9342                     } else {
9343                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
9344                                              tcg_shift, tcg_fpst);
9345                     }
9346                 } else {
9347                     if (is_signed) {
9348                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
9349                     } else {
9350                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
9351                     }
9352                 }
9353                 break;
9354             default:
9355                 g_assert_not_reached();
9356             }
9357 
9358             if (elements == 1) {
9359                 write_fp_sreg(s, rd, tcg_float);
9360             } else {
9361                 write_vec_element_i32(s, tcg_float, rd, pass, size);
9362             }
9363         }
9364     }
9365 
9366     clear_vec_high(s, elements << size == 16, rd);
9367 }
9368 
9369 /* UCVTF/SCVTF - Integer to FP conversion */
9370 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
9371                                          bool is_q, bool is_u,
9372                                          int immh, int immb, int opcode,
9373                                          int rn, int rd)
9374 {
9375     int size, elements, fracbits;
9376     int immhb = immh << 3 | immb;
9377 
9378     if (immh & 8) {
9379         size = MO_64;
9380         if (!is_scalar && !is_q) {
9381             unallocated_encoding(s);
9382             return;
9383         }
9384     } else if (immh & 4) {
9385         size = MO_32;
9386     } else if (immh & 2) {
9387         size = MO_16;
9388         if (!dc_isar_feature(aa64_fp16, s)) {
9389             unallocated_encoding(s);
9390             return;
9391         }
9392     } else {
9393         /* immh == 0 would be a failure of the decode logic */
9394         g_assert(immh == 1);
9395         unallocated_encoding(s);
9396         return;
9397     }
9398 
9399     if (is_scalar) {
9400         elements = 1;
9401     } else {
9402         elements = (8 << is_q) >> size;
9403     }
9404     fracbits = (16 << size) - immhb;
9405 
9406     if (!fp_access_check(s)) {
9407         return;
9408     }
9409 
9410     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9411 }
9412 
9413 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9414 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9415                                          bool is_q, bool is_u,
9416                                          int immh, int immb, int rn, int rd)
9417 {
9418     int immhb = immh << 3 | immb;
9419     int pass, size, fracbits;
9420     TCGv_ptr tcg_fpstatus;
9421     TCGv_i32 tcg_rmode, tcg_shift;
9422 
9423     if (immh & 0x8) {
9424         size = MO_64;
9425         if (!is_scalar && !is_q) {
9426             unallocated_encoding(s);
9427             return;
9428         }
9429     } else if (immh & 0x4) {
9430         size = MO_32;
9431     } else if (immh & 0x2) {
9432         size = MO_16;
9433         if (!dc_isar_feature(aa64_fp16, s)) {
9434             unallocated_encoding(s);
9435             return;
9436         }
9437     } else {
9438         /* Should have split out AdvSIMD modified immediate earlier.  */
9439         assert(immh == 1);
9440         unallocated_encoding(s);
9441         return;
9442     }
9443 
9444     if (!fp_access_check(s)) {
9445         return;
9446     }
9447 
9448     assert(!(is_scalar && is_q));
9449 
9450     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9451     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9452     fracbits = (16 << size) - immhb;
9453     tcg_shift = tcg_constant_i32(fracbits);
9454 
9455     if (size == MO_64) {
9456         int maxpass = is_scalar ? 1 : 2;
9457 
9458         for (pass = 0; pass < maxpass; pass++) {
9459             TCGv_i64 tcg_op = tcg_temp_new_i64();
9460 
9461             read_vec_element(s, tcg_op, rn, pass, MO_64);
9462             if (is_u) {
9463                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9464             } else {
9465                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9466             }
9467             write_vec_element(s, tcg_op, rd, pass, MO_64);
9468         }
9469         clear_vec_high(s, is_q, rd);
9470     } else {
9471         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9472         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9473 
9474         switch (size) {
9475         case MO_16:
9476             if (is_u) {
9477                 fn = gen_helper_vfp_touhh;
9478             } else {
9479                 fn = gen_helper_vfp_toshh;
9480             }
9481             break;
9482         case MO_32:
9483             if (is_u) {
9484                 fn = gen_helper_vfp_touls;
9485             } else {
9486                 fn = gen_helper_vfp_tosls;
9487             }
9488             break;
9489         default:
9490             g_assert_not_reached();
9491         }
9492 
9493         for (pass = 0; pass < maxpass; pass++) {
9494             TCGv_i32 tcg_op = tcg_temp_new_i32();
9495 
9496             read_vec_element_i32(s, tcg_op, rn, pass, size);
9497             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9498             if (is_scalar) {
9499                 if (size == MO_16 && !is_u) {
9500                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9501                 }
9502                 write_fp_sreg(s, rd, tcg_op);
9503             } else {
9504                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9505             }
9506         }
9507         if (!is_scalar) {
9508             clear_vec_high(s, is_q, rd);
9509         }
9510     }
9511 
9512     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9513 }
9514 
9515 /* AdvSIMD scalar shift by immediate
9516  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9517  * +-----+---+-------------+------+------+--------+---+------+------+
9518  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9519  * +-----+---+-------------+------+------+--------+---+------+------+
9520  *
9521  * This is the scalar version so it works on a fixed sized registers
9522  */
9523 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9524 {
9525     int rd = extract32(insn, 0, 5);
9526     int rn = extract32(insn, 5, 5);
9527     int opcode = extract32(insn, 11, 5);
9528     int immb = extract32(insn, 16, 3);
9529     int immh = extract32(insn, 19, 4);
9530     bool is_u = extract32(insn, 29, 1);
9531 
9532     if (immh == 0) {
9533         unallocated_encoding(s);
9534         return;
9535     }
9536 
9537     switch (opcode) {
9538     case 0x08: /* SRI */
9539         if (!is_u) {
9540             unallocated_encoding(s);
9541             return;
9542         }
9543         /* fall through */
9544     case 0x00: /* SSHR / USHR */
9545     case 0x02: /* SSRA / USRA */
9546     case 0x04: /* SRSHR / URSHR */
9547     case 0x06: /* SRSRA / URSRA */
9548         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9549         break;
9550     case 0x0a: /* SHL / SLI */
9551         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9552         break;
9553     case 0x1c: /* SCVTF, UCVTF */
9554         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9555                                      opcode, rn, rd);
9556         break;
9557     case 0x10: /* SQSHRUN, SQSHRUN2 */
9558     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9559         if (!is_u) {
9560             unallocated_encoding(s);
9561             return;
9562         }
9563         handle_vec_simd_sqshrn(s, true, false, false, true,
9564                                immh, immb, opcode, rn, rd);
9565         break;
9566     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9567     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9568         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9569                                immh, immb, opcode, rn, rd);
9570         break;
9571     case 0xc: /* SQSHLU */
9572         if (!is_u) {
9573             unallocated_encoding(s);
9574             return;
9575         }
9576         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9577         break;
9578     case 0xe: /* SQSHL, UQSHL */
9579         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9580         break;
9581     case 0x1f: /* FCVTZS, FCVTZU */
9582         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9583         break;
9584     default:
9585         unallocated_encoding(s);
9586         break;
9587     }
9588 }
9589 
9590 /* AdvSIMD scalar three different
9591  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9592  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9593  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9594  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9595  */
9596 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9597 {
9598     bool is_u = extract32(insn, 29, 1);
9599     int size = extract32(insn, 22, 2);
9600     int opcode = extract32(insn, 12, 4);
9601     int rm = extract32(insn, 16, 5);
9602     int rn = extract32(insn, 5, 5);
9603     int rd = extract32(insn, 0, 5);
9604 
9605     if (is_u) {
9606         unallocated_encoding(s);
9607         return;
9608     }
9609 
9610     switch (opcode) {
9611     case 0x9: /* SQDMLAL, SQDMLAL2 */
9612     case 0xb: /* SQDMLSL, SQDMLSL2 */
9613     case 0xd: /* SQDMULL, SQDMULL2 */
9614         if (size == 0 || size == 3) {
9615             unallocated_encoding(s);
9616             return;
9617         }
9618         break;
9619     default:
9620         unallocated_encoding(s);
9621         return;
9622     }
9623 
9624     if (!fp_access_check(s)) {
9625         return;
9626     }
9627 
9628     if (size == 2) {
9629         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9630         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9631         TCGv_i64 tcg_res = tcg_temp_new_i64();
9632 
9633         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9634         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9635 
9636         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9637         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9638 
9639         switch (opcode) {
9640         case 0xd: /* SQDMULL, SQDMULL2 */
9641             break;
9642         case 0xb: /* SQDMLSL, SQDMLSL2 */
9643             tcg_gen_neg_i64(tcg_res, tcg_res);
9644             /* fall through */
9645         case 0x9: /* SQDMLAL, SQDMLAL2 */
9646             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9647             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9648                                               tcg_res, tcg_op1);
9649             break;
9650         default:
9651             g_assert_not_reached();
9652         }
9653 
9654         write_fp_dreg(s, rd, tcg_res);
9655     } else {
9656         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9657         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9658         TCGv_i64 tcg_res = tcg_temp_new_i64();
9659 
9660         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9661         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9662 
9663         switch (opcode) {
9664         case 0xd: /* SQDMULL, SQDMULL2 */
9665             break;
9666         case 0xb: /* SQDMLSL, SQDMLSL2 */
9667             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9668             /* fall through */
9669         case 0x9: /* SQDMLAL, SQDMLAL2 */
9670         {
9671             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9672             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9673             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9674                                               tcg_res, tcg_op3);
9675             break;
9676         }
9677         default:
9678             g_assert_not_reached();
9679         }
9680 
9681         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9682         write_fp_dreg(s, rd, tcg_res);
9683     }
9684 }
9685 
9686 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9687                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9688                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9689 {
9690     /* Handle 64->64 opcodes which are shared between the scalar and
9691      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9692      * is valid in either group and also the double-precision fp ops.
9693      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9694      * requires them.
9695      */
9696     TCGCond cond;
9697 
9698     switch (opcode) {
9699     case 0x4: /* CLS, CLZ */
9700         if (u) {
9701             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9702         } else {
9703             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9704         }
9705         break;
9706     case 0x5: /* NOT */
9707         /* This opcode is shared with CNT and RBIT but we have earlier
9708          * enforced that size == 3 if and only if this is the NOT insn.
9709          */
9710         tcg_gen_not_i64(tcg_rd, tcg_rn);
9711         break;
9712     case 0x7: /* SQABS, SQNEG */
9713         if (u) {
9714             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9715         } else {
9716             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9717         }
9718         break;
9719     case 0xa: /* CMLT */
9720         cond = TCG_COND_LT;
9721     do_cmop:
9722         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9723         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9724         break;
9725     case 0x8: /* CMGT, CMGE */
9726         cond = u ? TCG_COND_GE : TCG_COND_GT;
9727         goto do_cmop;
9728     case 0x9: /* CMEQ, CMLE */
9729         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9730         goto do_cmop;
9731     case 0xb: /* ABS, NEG */
9732         if (u) {
9733             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9734         } else {
9735             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9736         }
9737         break;
9738     case 0x2f: /* FABS */
9739         gen_vfp_absd(tcg_rd, tcg_rn);
9740         break;
9741     case 0x6f: /* FNEG */
9742         gen_vfp_negd(tcg_rd, tcg_rn);
9743         break;
9744     case 0x7f: /* FSQRT */
9745         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9746         break;
9747     case 0x1a: /* FCVTNS */
9748     case 0x1b: /* FCVTMS */
9749     case 0x1c: /* FCVTAS */
9750     case 0x3a: /* FCVTPS */
9751     case 0x3b: /* FCVTZS */
9752         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9753         break;
9754     case 0x5a: /* FCVTNU */
9755     case 0x5b: /* FCVTMU */
9756     case 0x5c: /* FCVTAU */
9757     case 0x7a: /* FCVTPU */
9758     case 0x7b: /* FCVTZU */
9759         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9760         break;
9761     case 0x18: /* FRINTN */
9762     case 0x19: /* FRINTM */
9763     case 0x38: /* FRINTP */
9764     case 0x39: /* FRINTZ */
9765     case 0x58: /* FRINTA */
9766     case 0x79: /* FRINTI */
9767         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9768         break;
9769     case 0x59: /* FRINTX */
9770         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9771         break;
9772     case 0x1e: /* FRINT32Z */
9773     case 0x5e: /* FRINT32X */
9774         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9775         break;
9776     case 0x1f: /* FRINT64Z */
9777     case 0x5f: /* FRINT64X */
9778         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9779         break;
9780     default:
9781         g_assert_not_reached();
9782     }
9783 }
9784 
9785 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9786                                    bool is_scalar, bool is_u, bool is_q,
9787                                    int size, int rn, int rd)
9788 {
9789     bool is_double = (size == MO_64);
9790     TCGv_ptr fpst;
9791 
9792     if (!fp_access_check(s)) {
9793         return;
9794     }
9795 
9796     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9797 
9798     if (is_double) {
9799         TCGv_i64 tcg_op = tcg_temp_new_i64();
9800         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9801         TCGv_i64 tcg_res = tcg_temp_new_i64();
9802         NeonGenTwoDoubleOpFn *genfn;
9803         bool swap = false;
9804         int pass;
9805 
9806         switch (opcode) {
9807         case 0x2e: /* FCMLT (zero) */
9808             swap = true;
9809             /* fallthrough */
9810         case 0x2c: /* FCMGT (zero) */
9811             genfn = gen_helper_neon_cgt_f64;
9812             break;
9813         case 0x2d: /* FCMEQ (zero) */
9814             genfn = gen_helper_neon_ceq_f64;
9815             break;
9816         case 0x6d: /* FCMLE (zero) */
9817             swap = true;
9818             /* fall through */
9819         case 0x6c: /* FCMGE (zero) */
9820             genfn = gen_helper_neon_cge_f64;
9821             break;
9822         default:
9823             g_assert_not_reached();
9824         }
9825 
9826         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9827             read_vec_element(s, tcg_op, rn, pass, MO_64);
9828             if (swap) {
9829                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9830             } else {
9831                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9832             }
9833             write_vec_element(s, tcg_res, rd, pass, MO_64);
9834         }
9835 
9836         clear_vec_high(s, !is_scalar, rd);
9837     } else {
9838         TCGv_i32 tcg_op = tcg_temp_new_i32();
9839         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9840         TCGv_i32 tcg_res = tcg_temp_new_i32();
9841         NeonGenTwoSingleOpFn *genfn;
9842         bool swap = false;
9843         int pass, maxpasses;
9844 
9845         if (size == MO_16) {
9846             switch (opcode) {
9847             case 0x2e: /* FCMLT (zero) */
9848                 swap = true;
9849                 /* fall through */
9850             case 0x2c: /* FCMGT (zero) */
9851                 genfn = gen_helper_advsimd_cgt_f16;
9852                 break;
9853             case 0x2d: /* FCMEQ (zero) */
9854                 genfn = gen_helper_advsimd_ceq_f16;
9855                 break;
9856             case 0x6d: /* FCMLE (zero) */
9857                 swap = true;
9858                 /* fall through */
9859             case 0x6c: /* FCMGE (zero) */
9860                 genfn = gen_helper_advsimd_cge_f16;
9861                 break;
9862             default:
9863                 g_assert_not_reached();
9864             }
9865         } else {
9866             switch (opcode) {
9867             case 0x2e: /* FCMLT (zero) */
9868                 swap = true;
9869                 /* fall through */
9870             case 0x2c: /* FCMGT (zero) */
9871                 genfn = gen_helper_neon_cgt_f32;
9872                 break;
9873             case 0x2d: /* FCMEQ (zero) */
9874                 genfn = gen_helper_neon_ceq_f32;
9875                 break;
9876             case 0x6d: /* FCMLE (zero) */
9877                 swap = true;
9878                 /* fall through */
9879             case 0x6c: /* FCMGE (zero) */
9880                 genfn = gen_helper_neon_cge_f32;
9881                 break;
9882             default:
9883                 g_assert_not_reached();
9884             }
9885         }
9886 
9887         if (is_scalar) {
9888             maxpasses = 1;
9889         } else {
9890             int vector_size = 8 << is_q;
9891             maxpasses = vector_size >> size;
9892         }
9893 
9894         for (pass = 0; pass < maxpasses; pass++) {
9895             read_vec_element_i32(s, tcg_op, rn, pass, size);
9896             if (swap) {
9897                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9898             } else {
9899                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9900             }
9901             if (is_scalar) {
9902                 write_fp_sreg(s, rd, tcg_res);
9903             } else {
9904                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9905             }
9906         }
9907 
9908         if (!is_scalar) {
9909             clear_vec_high(s, is_q, rd);
9910         }
9911     }
9912 }
9913 
9914 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9915                                     bool is_scalar, bool is_u, bool is_q,
9916                                     int size, int rn, int rd)
9917 {
9918     bool is_double = (size == 3);
9919     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9920 
9921     if (is_double) {
9922         TCGv_i64 tcg_op = tcg_temp_new_i64();
9923         TCGv_i64 tcg_res = tcg_temp_new_i64();
9924         int pass;
9925 
9926         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9927             read_vec_element(s, tcg_op, rn, pass, MO_64);
9928             switch (opcode) {
9929             case 0x3d: /* FRECPE */
9930                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9931                 break;
9932             case 0x3f: /* FRECPX */
9933                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9934                 break;
9935             case 0x7d: /* FRSQRTE */
9936                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9937                 break;
9938             default:
9939                 g_assert_not_reached();
9940             }
9941             write_vec_element(s, tcg_res, rd, pass, MO_64);
9942         }
9943         clear_vec_high(s, !is_scalar, rd);
9944     } else {
9945         TCGv_i32 tcg_op = tcg_temp_new_i32();
9946         TCGv_i32 tcg_res = tcg_temp_new_i32();
9947         int pass, maxpasses;
9948 
9949         if (is_scalar) {
9950             maxpasses = 1;
9951         } else {
9952             maxpasses = is_q ? 4 : 2;
9953         }
9954 
9955         for (pass = 0; pass < maxpasses; pass++) {
9956             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9957 
9958             switch (opcode) {
9959             case 0x3c: /* URECPE */
9960                 gen_helper_recpe_u32(tcg_res, tcg_op);
9961                 break;
9962             case 0x3d: /* FRECPE */
9963                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9964                 break;
9965             case 0x3f: /* FRECPX */
9966                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9967                 break;
9968             case 0x7d: /* FRSQRTE */
9969                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9970                 break;
9971             default:
9972                 g_assert_not_reached();
9973             }
9974 
9975             if (is_scalar) {
9976                 write_fp_sreg(s, rd, tcg_res);
9977             } else {
9978                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9979             }
9980         }
9981         if (!is_scalar) {
9982             clear_vec_high(s, is_q, rd);
9983         }
9984     }
9985 }
9986 
9987 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9988                                 int opcode, bool u, bool is_q,
9989                                 int size, int rn, int rd)
9990 {
9991     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9992      * in the source becomes a size element in the destination).
9993      */
9994     int pass;
9995     TCGv_i32 tcg_res[2];
9996     int destelt = is_q ? 2 : 0;
9997     int passes = scalar ? 1 : 2;
9998 
9999     if (scalar) {
10000         tcg_res[1] = tcg_constant_i32(0);
10001     }
10002 
10003     for (pass = 0; pass < passes; pass++) {
10004         TCGv_i64 tcg_op = tcg_temp_new_i64();
10005         NeonGenNarrowFn *genfn = NULL;
10006         NeonGenNarrowEnvFn *genenvfn = NULL;
10007 
10008         if (scalar) {
10009             read_vec_element(s, tcg_op, rn, pass, size + 1);
10010         } else {
10011             read_vec_element(s, tcg_op, rn, pass, MO_64);
10012         }
10013         tcg_res[pass] = tcg_temp_new_i32();
10014 
10015         switch (opcode) {
10016         case 0x12: /* XTN, SQXTUN */
10017         {
10018             static NeonGenNarrowFn * const xtnfns[3] = {
10019                 gen_helper_neon_narrow_u8,
10020                 gen_helper_neon_narrow_u16,
10021                 tcg_gen_extrl_i64_i32,
10022             };
10023             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10024                 gen_helper_neon_unarrow_sat8,
10025                 gen_helper_neon_unarrow_sat16,
10026                 gen_helper_neon_unarrow_sat32,
10027             };
10028             if (u) {
10029                 genenvfn = sqxtunfns[size];
10030             } else {
10031                 genfn = xtnfns[size];
10032             }
10033             break;
10034         }
10035         case 0x14: /* SQXTN, UQXTN */
10036         {
10037             static NeonGenNarrowEnvFn * const fns[3][2] = {
10038                 { gen_helper_neon_narrow_sat_s8,
10039                   gen_helper_neon_narrow_sat_u8 },
10040                 { gen_helper_neon_narrow_sat_s16,
10041                   gen_helper_neon_narrow_sat_u16 },
10042                 { gen_helper_neon_narrow_sat_s32,
10043                   gen_helper_neon_narrow_sat_u32 },
10044             };
10045             genenvfn = fns[size][u];
10046             break;
10047         }
10048         case 0x16: /* FCVTN, FCVTN2 */
10049             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10050             if (size == 2) {
10051                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
10052             } else {
10053                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10054                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10055                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10056                 TCGv_i32 ahp = get_ahp_flag();
10057 
10058                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10059                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10060                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10061                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10062             }
10063             break;
10064         case 0x36: /* BFCVTN, BFCVTN2 */
10065             {
10066                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10067                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10068             }
10069             break;
10070         case 0x56:  /* FCVTXN, FCVTXN2 */
10071             /* 64 bit to 32 bit float conversion
10072              * with von Neumann rounding (round to odd)
10073              */
10074             assert(size == 2);
10075             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10076             break;
10077         default:
10078             g_assert_not_reached();
10079         }
10080 
10081         if (genfn) {
10082             genfn(tcg_res[pass], tcg_op);
10083         } else if (genenvfn) {
10084             genenvfn(tcg_res[pass], tcg_env, tcg_op);
10085         }
10086     }
10087 
10088     for (pass = 0; pass < 2; pass++) {
10089         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10090     }
10091     clear_vec_high(s, is_q, rd);
10092 }
10093 
10094 /* AdvSIMD scalar two reg misc
10095  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10096  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10097  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10098  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10099  */
10100 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10101 {
10102     int rd = extract32(insn, 0, 5);
10103     int rn = extract32(insn, 5, 5);
10104     int opcode = extract32(insn, 12, 5);
10105     int size = extract32(insn, 22, 2);
10106     bool u = extract32(insn, 29, 1);
10107     bool is_fcvt = false;
10108     int rmode;
10109     TCGv_i32 tcg_rmode;
10110     TCGv_ptr tcg_fpstatus;
10111 
10112     switch (opcode) {
10113     case 0x7: /* SQABS / SQNEG */
10114         break;
10115     case 0xa: /* CMLT */
10116         if (u) {
10117             unallocated_encoding(s);
10118             return;
10119         }
10120         /* fall through */
10121     case 0x8: /* CMGT, CMGE */
10122     case 0x9: /* CMEQ, CMLE */
10123     case 0xb: /* ABS, NEG */
10124         if (size != 3) {
10125             unallocated_encoding(s);
10126             return;
10127         }
10128         break;
10129     case 0x12: /* SQXTUN */
10130         if (!u) {
10131             unallocated_encoding(s);
10132             return;
10133         }
10134         /* fall through */
10135     case 0x14: /* SQXTN, UQXTN */
10136         if (size == 3) {
10137             unallocated_encoding(s);
10138             return;
10139         }
10140         if (!fp_access_check(s)) {
10141             return;
10142         }
10143         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10144         return;
10145     case 0xc ... 0xf:
10146     case 0x16 ... 0x1d:
10147     case 0x1f:
10148         /* Floating point: U, size[1] and opcode indicate operation;
10149          * size[0] indicates single or double precision.
10150          */
10151         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10152         size = extract32(size, 0, 1) ? 3 : 2;
10153         switch (opcode) {
10154         case 0x2c: /* FCMGT (zero) */
10155         case 0x2d: /* FCMEQ (zero) */
10156         case 0x2e: /* FCMLT (zero) */
10157         case 0x6c: /* FCMGE (zero) */
10158         case 0x6d: /* FCMLE (zero) */
10159             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10160             return;
10161         case 0x1d: /* SCVTF */
10162         case 0x5d: /* UCVTF */
10163         {
10164             bool is_signed = (opcode == 0x1d);
10165             if (!fp_access_check(s)) {
10166                 return;
10167             }
10168             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10169             return;
10170         }
10171         case 0x3d: /* FRECPE */
10172         case 0x3f: /* FRECPX */
10173         case 0x7d: /* FRSQRTE */
10174             if (!fp_access_check(s)) {
10175                 return;
10176             }
10177             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10178             return;
10179         case 0x1a: /* FCVTNS */
10180         case 0x1b: /* FCVTMS */
10181         case 0x3a: /* FCVTPS */
10182         case 0x3b: /* FCVTZS */
10183         case 0x5a: /* FCVTNU */
10184         case 0x5b: /* FCVTMU */
10185         case 0x7a: /* FCVTPU */
10186         case 0x7b: /* FCVTZU */
10187             is_fcvt = true;
10188             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10189             break;
10190         case 0x1c: /* FCVTAS */
10191         case 0x5c: /* FCVTAU */
10192             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10193             is_fcvt = true;
10194             rmode = FPROUNDING_TIEAWAY;
10195             break;
10196         case 0x56: /* FCVTXN, FCVTXN2 */
10197             if (size == 2) {
10198                 unallocated_encoding(s);
10199                 return;
10200             }
10201             if (!fp_access_check(s)) {
10202                 return;
10203             }
10204             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10205             return;
10206         default:
10207             unallocated_encoding(s);
10208             return;
10209         }
10210         break;
10211     default:
10212     case 0x3: /* USQADD / SUQADD */
10213         unallocated_encoding(s);
10214         return;
10215     }
10216 
10217     if (!fp_access_check(s)) {
10218         return;
10219     }
10220 
10221     if (is_fcvt) {
10222         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10223         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10224     } else {
10225         tcg_fpstatus = NULL;
10226         tcg_rmode = NULL;
10227     }
10228 
10229     if (size == 3) {
10230         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10231         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10232 
10233         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10234         write_fp_dreg(s, rd, tcg_rd);
10235     } else {
10236         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10237         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10238 
10239         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10240 
10241         switch (opcode) {
10242         case 0x7: /* SQABS, SQNEG */
10243         {
10244             NeonGenOneOpEnvFn *genfn;
10245             static NeonGenOneOpEnvFn * const fns[3][2] = {
10246                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10247                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10248                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10249             };
10250             genfn = fns[size][u];
10251             genfn(tcg_rd, tcg_env, tcg_rn);
10252             break;
10253         }
10254         case 0x1a: /* FCVTNS */
10255         case 0x1b: /* FCVTMS */
10256         case 0x1c: /* FCVTAS */
10257         case 0x3a: /* FCVTPS */
10258         case 0x3b: /* FCVTZS */
10259             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10260                                  tcg_fpstatus);
10261             break;
10262         case 0x5a: /* FCVTNU */
10263         case 0x5b: /* FCVTMU */
10264         case 0x5c: /* FCVTAU */
10265         case 0x7a: /* FCVTPU */
10266         case 0x7b: /* FCVTZU */
10267             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10268                                  tcg_fpstatus);
10269             break;
10270         default:
10271             g_assert_not_reached();
10272         }
10273 
10274         write_fp_sreg(s, rd, tcg_rd);
10275     }
10276 
10277     if (is_fcvt) {
10278         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10279     }
10280 }
10281 
10282 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10283 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10284                                  int immh, int immb, int opcode, int rn, int rd)
10285 {
10286     int size = 32 - clz32(immh) - 1;
10287     int immhb = immh << 3 | immb;
10288     int shift = 2 * (8 << size) - immhb;
10289     GVecGen2iFn *gvec_fn;
10290 
10291     if (extract32(immh, 3, 1) && !is_q) {
10292         unallocated_encoding(s);
10293         return;
10294     }
10295     tcg_debug_assert(size <= 3);
10296 
10297     if (!fp_access_check(s)) {
10298         return;
10299     }
10300 
10301     switch (opcode) {
10302     case 0x02: /* SSRA / USRA (accumulate) */
10303         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10304         break;
10305 
10306     case 0x08: /* SRI */
10307         gvec_fn = gen_gvec_sri;
10308         break;
10309 
10310     case 0x00: /* SSHR / USHR */
10311         if (is_u) {
10312             if (shift == 8 << size) {
10313                 /* Shift count the same size as element size produces zero.  */
10314                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10315                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10316                 return;
10317             }
10318             gvec_fn = tcg_gen_gvec_shri;
10319         } else {
10320             /* Shift count the same size as element size produces all sign.  */
10321             if (shift == 8 << size) {
10322                 shift -= 1;
10323             }
10324             gvec_fn = tcg_gen_gvec_sari;
10325         }
10326         break;
10327 
10328     case 0x04: /* SRSHR / URSHR (rounding) */
10329         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10330         break;
10331 
10332     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10333         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10334         break;
10335 
10336     default:
10337         g_assert_not_reached();
10338     }
10339 
10340     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10341 }
10342 
10343 /* SHL/SLI - Vector shift left */
10344 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10345                                  int immh, int immb, int opcode, int rn, int rd)
10346 {
10347     int size = 32 - clz32(immh) - 1;
10348     int immhb = immh << 3 | immb;
10349     int shift = immhb - (8 << size);
10350 
10351     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10352     assert(size >= 0 && size <= 3);
10353 
10354     if (extract32(immh, 3, 1) && !is_q) {
10355         unallocated_encoding(s);
10356         return;
10357     }
10358 
10359     if (!fp_access_check(s)) {
10360         return;
10361     }
10362 
10363     if (insert) {
10364         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10365     } else {
10366         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10367     }
10368 }
10369 
10370 /* USHLL/SHLL - Vector shift left with widening */
10371 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10372                                  int immh, int immb, int opcode, int rn, int rd)
10373 {
10374     int size = 32 - clz32(immh) - 1;
10375     int immhb = immh << 3 | immb;
10376     int shift = immhb - (8 << size);
10377     int dsize = 64;
10378     int esize = 8 << size;
10379     int elements = dsize/esize;
10380     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10381     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10382     int i;
10383 
10384     if (size >= 3) {
10385         unallocated_encoding(s);
10386         return;
10387     }
10388 
10389     if (!fp_access_check(s)) {
10390         return;
10391     }
10392 
10393     /* For the LL variants the store is larger than the load,
10394      * so if rd == rn we would overwrite parts of our input.
10395      * So load everything right now and use shifts in the main loop.
10396      */
10397     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10398 
10399     for (i = 0; i < elements; i++) {
10400         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10401         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10402         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10403         write_vec_element(s, tcg_rd, rd, i, size + 1);
10404     }
10405 }
10406 
10407 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10408 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10409                                  int immh, int immb, int opcode, int rn, int rd)
10410 {
10411     int immhb = immh << 3 | immb;
10412     int size = 32 - clz32(immh) - 1;
10413     int dsize = 64;
10414     int esize = 8 << size;
10415     int elements = dsize/esize;
10416     int shift = (2 * esize) - immhb;
10417     bool round = extract32(opcode, 0, 1);
10418     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10419     TCGv_i64 tcg_round;
10420     int i;
10421 
10422     if (extract32(immh, 3, 1)) {
10423         unallocated_encoding(s);
10424         return;
10425     }
10426 
10427     if (!fp_access_check(s)) {
10428         return;
10429     }
10430 
10431     tcg_rn = tcg_temp_new_i64();
10432     tcg_rd = tcg_temp_new_i64();
10433     tcg_final = tcg_temp_new_i64();
10434     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10435 
10436     if (round) {
10437         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10438     } else {
10439         tcg_round = NULL;
10440     }
10441 
10442     for (i = 0; i < elements; i++) {
10443         read_vec_element(s, tcg_rn, rn, i, size+1);
10444         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10445                                 false, true, size+1, shift);
10446 
10447         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10448     }
10449 
10450     if (!is_q) {
10451         write_vec_element(s, tcg_final, rd, 0, MO_64);
10452     } else {
10453         write_vec_element(s, tcg_final, rd, 1, MO_64);
10454     }
10455 
10456     clear_vec_high(s, is_q, rd);
10457 }
10458 
10459 
10460 /* AdvSIMD shift by immediate
10461  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10462  * +---+---+---+-------------+------+------+--------+---+------+------+
10463  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10464  * +---+---+---+-------------+------+------+--------+---+------+------+
10465  */
10466 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10467 {
10468     int rd = extract32(insn, 0, 5);
10469     int rn = extract32(insn, 5, 5);
10470     int opcode = extract32(insn, 11, 5);
10471     int immb = extract32(insn, 16, 3);
10472     int immh = extract32(insn, 19, 4);
10473     bool is_u = extract32(insn, 29, 1);
10474     bool is_q = extract32(insn, 30, 1);
10475 
10476     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10477     assert(immh != 0);
10478 
10479     switch (opcode) {
10480     case 0x08: /* SRI */
10481         if (!is_u) {
10482             unallocated_encoding(s);
10483             return;
10484         }
10485         /* fall through */
10486     case 0x00: /* SSHR / USHR */
10487     case 0x02: /* SSRA / USRA (accumulate) */
10488     case 0x04: /* SRSHR / URSHR (rounding) */
10489     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10490         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10491         break;
10492     case 0x0a: /* SHL / SLI */
10493         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10494         break;
10495     case 0x10: /* SHRN */
10496     case 0x11: /* RSHRN / SQRSHRUN */
10497         if (is_u) {
10498             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10499                                    opcode, rn, rd);
10500         } else {
10501             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10502         }
10503         break;
10504     case 0x12: /* SQSHRN / UQSHRN */
10505     case 0x13: /* SQRSHRN / UQRSHRN */
10506         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10507                                opcode, rn, rd);
10508         break;
10509     case 0x14: /* SSHLL / USHLL */
10510         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10511         break;
10512     case 0x1c: /* SCVTF / UCVTF */
10513         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10514                                      opcode, rn, rd);
10515         break;
10516     case 0xc: /* SQSHLU */
10517         if (!is_u) {
10518             unallocated_encoding(s);
10519             return;
10520         }
10521         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10522         break;
10523     case 0xe: /* SQSHL, UQSHL */
10524         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10525         break;
10526     case 0x1f: /* FCVTZS/ FCVTZU */
10527         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10528         return;
10529     default:
10530         unallocated_encoding(s);
10531         return;
10532     }
10533 }
10534 
10535 /* Generate code to do a "long" addition or subtraction, ie one done in
10536  * TCGv_i64 on vector lanes twice the width specified by size.
10537  */
10538 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10539                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10540 {
10541     static NeonGenTwo64OpFn * const fns[3][2] = {
10542         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10543         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10544         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10545     };
10546     NeonGenTwo64OpFn *genfn;
10547     assert(size < 3);
10548 
10549     genfn = fns[size][is_sub];
10550     genfn(tcg_res, tcg_op1, tcg_op2);
10551 }
10552 
10553 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10554                                 int opcode, int rd, int rn, int rm)
10555 {
10556     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10557     TCGv_i64 tcg_res[2];
10558     int pass, accop;
10559 
10560     tcg_res[0] = tcg_temp_new_i64();
10561     tcg_res[1] = tcg_temp_new_i64();
10562 
10563     /* Does this op do an adding accumulate, a subtracting accumulate,
10564      * or no accumulate at all?
10565      */
10566     switch (opcode) {
10567     case 5:
10568     case 8:
10569     case 9:
10570         accop = 1;
10571         break;
10572     case 10:
10573     case 11:
10574         accop = -1;
10575         break;
10576     default:
10577         accop = 0;
10578         break;
10579     }
10580 
10581     if (accop != 0) {
10582         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10583         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10584     }
10585 
10586     /* size == 2 means two 32x32->64 operations; this is worth special
10587      * casing because we can generally handle it inline.
10588      */
10589     if (size == 2) {
10590         for (pass = 0; pass < 2; pass++) {
10591             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10592             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10593             TCGv_i64 tcg_passres;
10594             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10595 
10596             int elt = pass + is_q * 2;
10597 
10598             read_vec_element(s, tcg_op1, rn, elt, memop);
10599             read_vec_element(s, tcg_op2, rm, elt, memop);
10600 
10601             if (accop == 0) {
10602                 tcg_passres = tcg_res[pass];
10603             } else {
10604                 tcg_passres = tcg_temp_new_i64();
10605             }
10606 
10607             switch (opcode) {
10608             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10609                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10610                 break;
10611             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10612                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10613                 break;
10614             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10615             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10616             {
10617                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10618                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10619 
10620                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10621                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10622                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10623                                     tcg_passres,
10624                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10625                 break;
10626             }
10627             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10628             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10629             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10630                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10631                 break;
10632             case 9: /* SQDMLAL, SQDMLAL2 */
10633             case 11: /* SQDMLSL, SQDMLSL2 */
10634             case 13: /* SQDMULL, SQDMULL2 */
10635                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10636                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10637                                                   tcg_passres, tcg_passres);
10638                 break;
10639             default:
10640                 g_assert_not_reached();
10641             }
10642 
10643             if (opcode == 9 || opcode == 11) {
10644                 /* saturating accumulate ops */
10645                 if (accop < 0) {
10646                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10647                 }
10648                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10649                                                   tcg_res[pass], tcg_passres);
10650             } else if (accop > 0) {
10651                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10652             } else if (accop < 0) {
10653                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10654             }
10655         }
10656     } else {
10657         /* size 0 or 1, generally helper functions */
10658         for (pass = 0; pass < 2; pass++) {
10659             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10660             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10661             TCGv_i64 tcg_passres;
10662             int elt = pass + is_q * 2;
10663 
10664             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10665             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10666 
10667             if (accop == 0) {
10668                 tcg_passres = tcg_res[pass];
10669             } else {
10670                 tcg_passres = tcg_temp_new_i64();
10671             }
10672 
10673             switch (opcode) {
10674             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10675             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10676             {
10677                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10678                 static NeonGenWidenFn * const widenfns[2][2] = {
10679                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10680                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10681                 };
10682                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10683 
10684                 widenfn(tcg_op2_64, tcg_op2);
10685                 widenfn(tcg_passres, tcg_op1);
10686                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10687                               tcg_passres, tcg_op2_64);
10688                 break;
10689             }
10690             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10691             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10692                 if (size == 0) {
10693                     if (is_u) {
10694                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10695                     } else {
10696                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10697                     }
10698                 } else {
10699                     if (is_u) {
10700                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10701                     } else {
10702                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10703                     }
10704                 }
10705                 break;
10706             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10707             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10708             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10709                 if (size == 0) {
10710                     if (is_u) {
10711                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10712                     } else {
10713                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10714                     }
10715                 } else {
10716                     if (is_u) {
10717                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10718                     } else {
10719                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10720                     }
10721                 }
10722                 break;
10723             case 9: /* SQDMLAL, SQDMLAL2 */
10724             case 11: /* SQDMLSL, SQDMLSL2 */
10725             case 13: /* SQDMULL, SQDMULL2 */
10726                 assert(size == 1);
10727                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10728                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10729                                                   tcg_passres, tcg_passres);
10730                 break;
10731             default:
10732                 g_assert_not_reached();
10733             }
10734 
10735             if (accop != 0) {
10736                 if (opcode == 9 || opcode == 11) {
10737                     /* saturating accumulate ops */
10738                     if (accop < 0) {
10739                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10740                     }
10741                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10742                                                       tcg_res[pass],
10743                                                       tcg_passres);
10744                 } else {
10745                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10746                                   tcg_res[pass], tcg_passres);
10747                 }
10748             }
10749         }
10750     }
10751 
10752     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10753     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10754 }
10755 
10756 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10757                             int opcode, int rd, int rn, int rm)
10758 {
10759     TCGv_i64 tcg_res[2];
10760     int part = is_q ? 2 : 0;
10761     int pass;
10762 
10763     for (pass = 0; pass < 2; pass++) {
10764         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10765         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10766         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10767         static NeonGenWidenFn * const widenfns[3][2] = {
10768             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10769             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10770             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10771         };
10772         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10773 
10774         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10775         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10776         widenfn(tcg_op2_wide, tcg_op2);
10777         tcg_res[pass] = tcg_temp_new_i64();
10778         gen_neon_addl(size, (opcode == 3),
10779                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10780     }
10781 
10782     for (pass = 0; pass < 2; pass++) {
10783         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10784     }
10785 }
10786 
10787 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10788 {
10789     tcg_gen_addi_i64(in, in, 1U << 31);
10790     tcg_gen_extrh_i64_i32(res, in);
10791 }
10792 
10793 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10794                                  int opcode, int rd, int rn, int rm)
10795 {
10796     TCGv_i32 tcg_res[2];
10797     int part = is_q ? 2 : 0;
10798     int pass;
10799 
10800     for (pass = 0; pass < 2; pass++) {
10801         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10802         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10803         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10804         static NeonGenNarrowFn * const narrowfns[3][2] = {
10805             { gen_helper_neon_narrow_high_u8,
10806               gen_helper_neon_narrow_round_high_u8 },
10807             { gen_helper_neon_narrow_high_u16,
10808               gen_helper_neon_narrow_round_high_u16 },
10809             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10810         };
10811         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10812 
10813         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10814         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10815 
10816         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10817 
10818         tcg_res[pass] = tcg_temp_new_i32();
10819         gennarrow(tcg_res[pass], tcg_wideres);
10820     }
10821 
10822     for (pass = 0; pass < 2; pass++) {
10823         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10824     }
10825     clear_vec_high(s, is_q, rd);
10826 }
10827 
10828 /* AdvSIMD three different
10829  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10830  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10831  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10832  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10833  */
10834 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10835 {
10836     /* Instructions in this group fall into three basic classes
10837      * (in each case with the operation working on each element in
10838      * the input vectors):
10839      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10840      *     128 bit input)
10841      * (2) wide 64 x 128 -> 128
10842      * (3) narrowing 128 x 128 -> 64
10843      * Here we do initial decode, catch unallocated cases and
10844      * dispatch to separate functions for each class.
10845      */
10846     int is_q = extract32(insn, 30, 1);
10847     int is_u = extract32(insn, 29, 1);
10848     int size = extract32(insn, 22, 2);
10849     int opcode = extract32(insn, 12, 4);
10850     int rm = extract32(insn, 16, 5);
10851     int rn = extract32(insn, 5, 5);
10852     int rd = extract32(insn, 0, 5);
10853 
10854     switch (opcode) {
10855     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10856     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10857         /* 64 x 128 -> 128 */
10858         if (size == 3) {
10859             unallocated_encoding(s);
10860             return;
10861         }
10862         if (!fp_access_check(s)) {
10863             return;
10864         }
10865         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10866         break;
10867     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10868     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10869         /* 128 x 128 -> 64 */
10870         if (size == 3) {
10871             unallocated_encoding(s);
10872             return;
10873         }
10874         if (!fp_access_check(s)) {
10875             return;
10876         }
10877         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10878         break;
10879     case 14: /* PMULL, PMULL2 */
10880         if (is_u) {
10881             unallocated_encoding(s);
10882             return;
10883         }
10884         switch (size) {
10885         case 0: /* PMULL.P8 */
10886             if (!fp_access_check(s)) {
10887                 return;
10888             }
10889             /* The Q field specifies lo/hi half input for this insn.  */
10890             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10891                              gen_helper_neon_pmull_h);
10892             break;
10893 
10894         case 3: /* PMULL.P64 */
10895             if (!dc_isar_feature(aa64_pmull, s)) {
10896                 unallocated_encoding(s);
10897                 return;
10898             }
10899             if (!fp_access_check(s)) {
10900                 return;
10901             }
10902             /* The Q field specifies lo/hi half input for this insn.  */
10903             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10904                              gen_helper_gvec_pmull_q);
10905             break;
10906 
10907         default:
10908             unallocated_encoding(s);
10909             break;
10910         }
10911         return;
10912     case 9: /* SQDMLAL, SQDMLAL2 */
10913     case 11: /* SQDMLSL, SQDMLSL2 */
10914     case 13: /* SQDMULL, SQDMULL2 */
10915         if (is_u || size == 0) {
10916             unallocated_encoding(s);
10917             return;
10918         }
10919         /* fall through */
10920     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10921     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10922     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10923     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10924     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10925     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10926     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10927         /* 64 x 64 -> 128 */
10928         if (size == 3) {
10929             unallocated_encoding(s);
10930             return;
10931         }
10932         if (!fp_access_check(s)) {
10933             return;
10934         }
10935 
10936         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10937         break;
10938     default:
10939         /* opcode 15 not allocated */
10940         unallocated_encoding(s);
10941         break;
10942     }
10943 }
10944 
10945 /* AdvSIMD three same extra
10946  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
10947  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10948  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
10949  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10950  */
10951 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
10952 {
10953     int rd = extract32(insn, 0, 5);
10954     int rn = extract32(insn, 5, 5);
10955     int opcode = extract32(insn, 11, 4);
10956     int rm = extract32(insn, 16, 5);
10957     int size = extract32(insn, 22, 2);
10958     bool u = extract32(insn, 29, 1);
10959     bool is_q = extract32(insn, 30, 1);
10960     bool feature;
10961     int rot;
10962 
10963     switch (u * 16 + opcode) {
10964     case 0x18: /* FCMLA, #0 */
10965     case 0x19: /* FCMLA, #90 */
10966     case 0x1a: /* FCMLA, #180 */
10967     case 0x1b: /* FCMLA, #270 */
10968         if (size == 0
10969             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
10970             || (size == 3 && !is_q)) {
10971             unallocated_encoding(s);
10972             return;
10973         }
10974         feature = dc_isar_feature(aa64_fcma, s);
10975         break;
10976     default:
10977     case 0x02: /* SDOT (vector) */
10978     case 0x03: /* USDOT */
10979     case 0x04: /* SMMLA */
10980     case 0x05: /* USMMLA */
10981     case 0x10: /* SQRDMLAH (vector) */
10982     case 0x11: /* SQRDMLSH (vector) */
10983     case 0x12: /* UDOT (vector) */
10984     case 0x14: /* UMMLA */
10985     case 0x1c: /* FCADD, #90 */
10986     case 0x1d: /* BFMMLA */
10987     case 0x1e: /* FCADD, #270 */
10988     case 0x1f: /* BFDOT / BFMLAL */
10989         unallocated_encoding(s);
10990         return;
10991     }
10992     if (!feature) {
10993         unallocated_encoding(s);
10994         return;
10995     }
10996     if (!fp_access_check(s)) {
10997         return;
10998     }
10999 
11000     switch (opcode) {
11001     case 0x8: /* FCMLA, #0 */
11002     case 0x9: /* FCMLA, #90 */
11003     case 0xa: /* FCMLA, #180 */
11004     case 0xb: /* FCMLA, #270 */
11005         rot = extract32(opcode, 0, 2);
11006         switch (size) {
11007         case 1:
11008             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11009                               gen_helper_gvec_fcmlah);
11010             break;
11011         case 2:
11012             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11013                               gen_helper_gvec_fcmlas);
11014             break;
11015         case 3:
11016             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11017                               gen_helper_gvec_fcmlad);
11018             break;
11019         default:
11020             g_assert_not_reached();
11021         }
11022         return;
11023 
11024     default:
11025         g_assert_not_reached();
11026     }
11027 }
11028 
11029 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11030                                   int size, int rn, int rd)
11031 {
11032     /* Handle 2-reg-misc ops which are widening (so each size element
11033      * in the source becomes a 2*size element in the destination.
11034      * The only instruction like this is FCVTL.
11035      */
11036     int pass;
11037 
11038     if (size == 3) {
11039         /* 32 -> 64 bit fp conversion */
11040         TCGv_i64 tcg_res[2];
11041         int srcelt = is_q ? 2 : 0;
11042 
11043         for (pass = 0; pass < 2; pass++) {
11044             TCGv_i32 tcg_op = tcg_temp_new_i32();
11045             tcg_res[pass] = tcg_temp_new_i64();
11046 
11047             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11048             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11049         }
11050         for (pass = 0; pass < 2; pass++) {
11051             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11052         }
11053     } else {
11054         /* 16 -> 32 bit fp conversion */
11055         int srcelt = is_q ? 4 : 0;
11056         TCGv_i32 tcg_res[4];
11057         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11058         TCGv_i32 ahp = get_ahp_flag();
11059 
11060         for (pass = 0; pass < 4; pass++) {
11061             tcg_res[pass] = tcg_temp_new_i32();
11062 
11063             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11064             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11065                                            fpst, ahp);
11066         }
11067         for (pass = 0; pass < 4; pass++) {
11068             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11069         }
11070     }
11071 }
11072 
11073 static void handle_rev(DisasContext *s, int opcode, bool u,
11074                        bool is_q, int size, int rn, int rd)
11075 {
11076     int op = (opcode << 1) | u;
11077     int opsz = op + size;
11078     int grp_size = 3 - opsz;
11079     int dsize = is_q ? 128 : 64;
11080     int i;
11081 
11082     if (opsz >= 3) {
11083         unallocated_encoding(s);
11084         return;
11085     }
11086 
11087     if (!fp_access_check(s)) {
11088         return;
11089     }
11090 
11091     if (size == 0) {
11092         /* Special case bytes, use bswap op on each group of elements */
11093         int groups = dsize / (8 << grp_size);
11094 
11095         for (i = 0; i < groups; i++) {
11096             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11097 
11098             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11099             switch (grp_size) {
11100             case MO_16:
11101                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11102                 break;
11103             case MO_32:
11104                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11105                 break;
11106             case MO_64:
11107                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11108                 break;
11109             default:
11110                 g_assert_not_reached();
11111             }
11112             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11113         }
11114         clear_vec_high(s, is_q, rd);
11115     } else {
11116         int revmask = (1 << grp_size) - 1;
11117         int esize = 8 << size;
11118         int elements = dsize / esize;
11119         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11120         TCGv_i64 tcg_rd[2];
11121 
11122         for (i = 0; i < 2; i++) {
11123             tcg_rd[i] = tcg_temp_new_i64();
11124             tcg_gen_movi_i64(tcg_rd[i], 0);
11125         }
11126 
11127         for (i = 0; i < elements; i++) {
11128             int e_rev = (i & 0xf) ^ revmask;
11129             int w = (e_rev * esize) / 64;
11130             int o = (e_rev * esize) % 64;
11131 
11132             read_vec_element(s, tcg_rn, rn, i, size);
11133             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11134         }
11135 
11136         for (i = 0; i < 2; i++) {
11137             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11138         }
11139         clear_vec_high(s, true, rd);
11140     }
11141 }
11142 
11143 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11144                                   bool is_q, int size, int rn, int rd)
11145 {
11146     /* Implement the pairwise operations from 2-misc:
11147      * SADDLP, UADDLP, SADALP, UADALP.
11148      * These all add pairs of elements in the input to produce a
11149      * double-width result element in the output (possibly accumulating).
11150      */
11151     bool accum = (opcode == 0x6);
11152     int maxpass = is_q ? 2 : 1;
11153     int pass;
11154     TCGv_i64 tcg_res[2];
11155 
11156     if (size == 2) {
11157         /* 32 + 32 -> 64 op */
11158         MemOp memop = size + (u ? 0 : MO_SIGN);
11159 
11160         for (pass = 0; pass < maxpass; pass++) {
11161             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11162             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11163 
11164             tcg_res[pass] = tcg_temp_new_i64();
11165 
11166             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11167             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11168             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11169             if (accum) {
11170                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11171                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11172             }
11173         }
11174     } else {
11175         for (pass = 0; pass < maxpass; pass++) {
11176             TCGv_i64 tcg_op = tcg_temp_new_i64();
11177             NeonGenOne64OpFn *genfn;
11178             static NeonGenOne64OpFn * const fns[2][2] = {
11179                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11180                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11181             };
11182 
11183             genfn = fns[size][u];
11184 
11185             tcg_res[pass] = tcg_temp_new_i64();
11186 
11187             read_vec_element(s, tcg_op, rn, pass, MO_64);
11188             genfn(tcg_res[pass], tcg_op);
11189 
11190             if (accum) {
11191                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11192                 if (size == 0) {
11193                     gen_helper_neon_addl_u16(tcg_res[pass],
11194                                              tcg_res[pass], tcg_op);
11195                 } else {
11196                     gen_helper_neon_addl_u32(tcg_res[pass],
11197                                              tcg_res[pass], tcg_op);
11198                 }
11199             }
11200         }
11201     }
11202     if (!is_q) {
11203         tcg_res[1] = tcg_constant_i64(0);
11204     }
11205     for (pass = 0; pass < 2; pass++) {
11206         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11207     }
11208 }
11209 
11210 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11211 {
11212     /* Implement SHLL and SHLL2 */
11213     int pass;
11214     int part = is_q ? 2 : 0;
11215     TCGv_i64 tcg_res[2];
11216 
11217     for (pass = 0; pass < 2; pass++) {
11218         static NeonGenWidenFn * const widenfns[3] = {
11219             gen_helper_neon_widen_u8,
11220             gen_helper_neon_widen_u16,
11221             tcg_gen_extu_i32_i64,
11222         };
11223         NeonGenWidenFn *widenfn = widenfns[size];
11224         TCGv_i32 tcg_op = tcg_temp_new_i32();
11225 
11226         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11227         tcg_res[pass] = tcg_temp_new_i64();
11228         widenfn(tcg_res[pass], tcg_op);
11229         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11230     }
11231 
11232     for (pass = 0; pass < 2; pass++) {
11233         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11234     }
11235 }
11236 
11237 /* AdvSIMD two reg misc
11238  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11239  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11240  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11241  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11242  */
11243 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11244 {
11245     int size = extract32(insn, 22, 2);
11246     int opcode = extract32(insn, 12, 5);
11247     bool u = extract32(insn, 29, 1);
11248     bool is_q = extract32(insn, 30, 1);
11249     int rn = extract32(insn, 5, 5);
11250     int rd = extract32(insn, 0, 5);
11251     bool need_fpstatus = false;
11252     int rmode = -1;
11253     TCGv_i32 tcg_rmode;
11254     TCGv_ptr tcg_fpstatus;
11255 
11256     switch (opcode) {
11257     case 0x0: /* REV64, REV32 */
11258     case 0x1: /* REV16 */
11259         handle_rev(s, opcode, u, is_q, size, rn, rd);
11260         return;
11261     case 0x5: /* CNT, NOT, RBIT */
11262         if (u && size == 0) {
11263             /* NOT */
11264             break;
11265         } else if (u && size == 1) {
11266             /* RBIT */
11267             break;
11268         } else if (!u && size == 0) {
11269             /* CNT */
11270             break;
11271         }
11272         unallocated_encoding(s);
11273         return;
11274     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11275     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11276         if (size == 3) {
11277             unallocated_encoding(s);
11278             return;
11279         }
11280         if (!fp_access_check(s)) {
11281             return;
11282         }
11283 
11284         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11285         return;
11286     case 0x4: /* CLS, CLZ */
11287         if (size == 3) {
11288             unallocated_encoding(s);
11289             return;
11290         }
11291         break;
11292     case 0x2: /* SADDLP, UADDLP */
11293     case 0x6: /* SADALP, UADALP */
11294         if (size == 3) {
11295             unallocated_encoding(s);
11296             return;
11297         }
11298         if (!fp_access_check(s)) {
11299             return;
11300         }
11301         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11302         return;
11303     case 0x13: /* SHLL, SHLL2 */
11304         if (u == 0 || size == 3) {
11305             unallocated_encoding(s);
11306             return;
11307         }
11308         if (!fp_access_check(s)) {
11309             return;
11310         }
11311         handle_shll(s, is_q, size, rn, rd);
11312         return;
11313     case 0xa: /* CMLT */
11314         if (u == 1) {
11315             unallocated_encoding(s);
11316             return;
11317         }
11318         /* fall through */
11319     case 0x8: /* CMGT, CMGE */
11320     case 0x9: /* CMEQ, CMLE */
11321     case 0xb: /* ABS, NEG */
11322         if (size == 3 && !is_q) {
11323             unallocated_encoding(s);
11324             return;
11325         }
11326         break;
11327     case 0x7: /* SQABS, SQNEG */
11328         if (size == 3 && !is_q) {
11329             unallocated_encoding(s);
11330             return;
11331         }
11332         break;
11333     case 0xc ... 0xf:
11334     case 0x16 ... 0x1f:
11335     {
11336         /* Floating point: U, size[1] and opcode indicate operation;
11337          * size[0] indicates single or double precision.
11338          */
11339         int is_double = extract32(size, 0, 1);
11340         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11341         size = is_double ? 3 : 2;
11342         switch (opcode) {
11343         case 0x2f: /* FABS */
11344         case 0x6f: /* FNEG */
11345             if (size == 3 && !is_q) {
11346                 unallocated_encoding(s);
11347                 return;
11348             }
11349             break;
11350         case 0x1d: /* SCVTF */
11351         case 0x5d: /* UCVTF */
11352         {
11353             bool is_signed = (opcode == 0x1d) ? true : false;
11354             int elements = is_double ? 2 : is_q ? 4 : 2;
11355             if (is_double && !is_q) {
11356                 unallocated_encoding(s);
11357                 return;
11358             }
11359             if (!fp_access_check(s)) {
11360                 return;
11361             }
11362             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11363             return;
11364         }
11365         case 0x2c: /* FCMGT (zero) */
11366         case 0x2d: /* FCMEQ (zero) */
11367         case 0x2e: /* FCMLT (zero) */
11368         case 0x6c: /* FCMGE (zero) */
11369         case 0x6d: /* FCMLE (zero) */
11370             if (size == 3 && !is_q) {
11371                 unallocated_encoding(s);
11372                 return;
11373             }
11374             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11375             return;
11376         case 0x7f: /* FSQRT */
11377             if (size == 3 && !is_q) {
11378                 unallocated_encoding(s);
11379                 return;
11380             }
11381             break;
11382         case 0x1a: /* FCVTNS */
11383         case 0x1b: /* FCVTMS */
11384         case 0x3a: /* FCVTPS */
11385         case 0x3b: /* FCVTZS */
11386         case 0x5a: /* FCVTNU */
11387         case 0x5b: /* FCVTMU */
11388         case 0x7a: /* FCVTPU */
11389         case 0x7b: /* FCVTZU */
11390             need_fpstatus = true;
11391             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11392             if (size == 3 && !is_q) {
11393                 unallocated_encoding(s);
11394                 return;
11395             }
11396             break;
11397         case 0x5c: /* FCVTAU */
11398         case 0x1c: /* FCVTAS */
11399             need_fpstatus = true;
11400             rmode = FPROUNDING_TIEAWAY;
11401             if (size == 3 && !is_q) {
11402                 unallocated_encoding(s);
11403                 return;
11404             }
11405             break;
11406         case 0x3c: /* URECPE */
11407             if (size == 3) {
11408                 unallocated_encoding(s);
11409                 return;
11410             }
11411             /* fall through */
11412         case 0x3d: /* FRECPE */
11413         case 0x7d: /* FRSQRTE */
11414             if (size == 3 && !is_q) {
11415                 unallocated_encoding(s);
11416                 return;
11417             }
11418             if (!fp_access_check(s)) {
11419                 return;
11420             }
11421             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11422             return;
11423         case 0x56: /* FCVTXN, FCVTXN2 */
11424             if (size == 2) {
11425                 unallocated_encoding(s);
11426                 return;
11427             }
11428             /* fall through */
11429         case 0x16: /* FCVTN, FCVTN2 */
11430             /* handle_2misc_narrow does a 2*size -> size operation, but these
11431              * instructions encode the source size rather than dest size.
11432              */
11433             if (!fp_access_check(s)) {
11434                 return;
11435             }
11436             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11437             return;
11438         case 0x36: /* BFCVTN, BFCVTN2 */
11439             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11440                 unallocated_encoding(s);
11441                 return;
11442             }
11443             if (!fp_access_check(s)) {
11444                 return;
11445             }
11446             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11447             return;
11448         case 0x17: /* FCVTL, FCVTL2 */
11449             if (!fp_access_check(s)) {
11450                 return;
11451             }
11452             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11453             return;
11454         case 0x18: /* FRINTN */
11455         case 0x19: /* FRINTM */
11456         case 0x38: /* FRINTP */
11457         case 0x39: /* FRINTZ */
11458             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11459             /* fall through */
11460         case 0x59: /* FRINTX */
11461         case 0x79: /* FRINTI */
11462             need_fpstatus = true;
11463             if (size == 3 && !is_q) {
11464                 unallocated_encoding(s);
11465                 return;
11466             }
11467             break;
11468         case 0x58: /* FRINTA */
11469             rmode = FPROUNDING_TIEAWAY;
11470             need_fpstatus = true;
11471             if (size == 3 && !is_q) {
11472                 unallocated_encoding(s);
11473                 return;
11474             }
11475             break;
11476         case 0x7c: /* URSQRTE */
11477             if (size == 3) {
11478                 unallocated_encoding(s);
11479                 return;
11480             }
11481             break;
11482         case 0x1e: /* FRINT32Z */
11483         case 0x1f: /* FRINT64Z */
11484             rmode = FPROUNDING_ZERO;
11485             /* fall through */
11486         case 0x5e: /* FRINT32X */
11487         case 0x5f: /* FRINT64X */
11488             need_fpstatus = true;
11489             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
11490                 unallocated_encoding(s);
11491                 return;
11492             }
11493             break;
11494         default:
11495             unallocated_encoding(s);
11496             return;
11497         }
11498         break;
11499     }
11500     default:
11501     case 0x3: /* SUQADD, USQADD */
11502         unallocated_encoding(s);
11503         return;
11504     }
11505 
11506     if (!fp_access_check(s)) {
11507         return;
11508     }
11509 
11510     if (need_fpstatus || rmode >= 0) {
11511         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
11512     } else {
11513         tcg_fpstatus = NULL;
11514     }
11515     if (rmode >= 0) {
11516         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11517     } else {
11518         tcg_rmode = NULL;
11519     }
11520 
11521     switch (opcode) {
11522     case 0x5:
11523         if (u && size == 0) { /* NOT */
11524             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11525             return;
11526         }
11527         break;
11528     case 0x8: /* CMGT, CMGE */
11529         if (u) {
11530             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
11531         } else {
11532             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
11533         }
11534         return;
11535     case 0x9: /* CMEQ, CMLE */
11536         if (u) {
11537             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
11538         } else {
11539             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
11540         }
11541         return;
11542     case 0xa: /* CMLT */
11543         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
11544         return;
11545     case 0xb:
11546         if (u) { /* ABS, NEG */
11547             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11548         } else {
11549             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
11550         }
11551         return;
11552     }
11553 
11554     if (size == 3) {
11555         /* All 64-bit element operations can be shared with scalar 2misc */
11556         int pass;
11557 
11558         /* Coverity claims (size == 3 && !is_q) has been eliminated
11559          * from all paths leading to here.
11560          */
11561         tcg_debug_assert(is_q);
11562         for (pass = 0; pass < 2; pass++) {
11563             TCGv_i64 tcg_op = tcg_temp_new_i64();
11564             TCGv_i64 tcg_res = tcg_temp_new_i64();
11565 
11566             read_vec_element(s, tcg_op, rn, pass, MO_64);
11567 
11568             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11569                             tcg_rmode, tcg_fpstatus);
11570 
11571             write_vec_element(s, tcg_res, rd, pass, MO_64);
11572         }
11573     } else {
11574         int pass;
11575 
11576         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11577             TCGv_i32 tcg_op = tcg_temp_new_i32();
11578             TCGv_i32 tcg_res = tcg_temp_new_i32();
11579 
11580             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11581 
11582             if (size == 2) {
11583                 /* Special cases for 32 bit elements */
11584                 switch (opcode) {
11585                 case 0x4: /* CLS */
11586                     if (u) {
11587                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11588                     } else {
11589                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
11590                     }
11591                     break;
11592                 case 0x7: /* SQABS, SQNEG */
11593                     if (u) {
11594                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
11595                     } else {
11596                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
11597                     }
11598                     break;
11599                 case 0x2f: /* FABS */
11600                     gen_vfp_abss(tcg_res, tcg_op);
11601                     break;
11602                 case 0x6f: /* FNEG */
11603                     gen_vfp_negs(tcg_res, tcg_op);
11604                     break;
11605                 case 0x7f: /* FSQRT */
11606                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
11607                     break;
11608                 case 0x1a: /* FCVTNS */
11609                 case 0x1b: /* FCVTMS */
11610                 case 0x1c: /* FCVTAS */
11611                 case 0x3a: /* FCVTPS */
11612                 case 0x3b: /* FCVTZS */
11613                     gen_helper_vfp_tosls(tcg_res, tcg_op,
11614                                          tcg_constant_i32(0), tcg_fpstatus);
11615                     break;
11616                 case 0x5a: /* FCVTNU */
11617                 case 0x5b: /* FCVTMU */
11618                 case 0x5c: /* FCVTAU */
11619                 case 0x7a: /* FCVTPU */
11620                 case 0x7b: /* FCVTZU */
11621                     gen_helper_vfp_touls(tcg_res, tcg_op,
11622                                          tcg_constant_i32(0), tcg_fpstatus);
11623                     break;
11624                 case 0x18: /* FRINTN */
11625                 case 0x19: /* FRINTM */
11626                 case 0x38: /* FRINTP */
11627                 case 0x39: /* FRINTZ */
11628                 case 0x58: /* FRINTA */
11629                 case 0x79: /* FRINTI */
11630                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11631                     break;
11632                 case 0x59: /* FRINTX */
11633                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11634                     break;
11635                 case 0x7c: /* URSQRTE */
11636                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
11637                     break;
11638                 case 0x1e: /* FRINT32Z */
11639                 case 0x5e: /* FRINT32X */
11640                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
11641                     break;
11642                 case 0x1f: /* FRINT64Z */
11643                 case 0x5f: /* FRINT64X */
11644                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
11645                     break;
11646                 default:
11647                     g_assert_not_reached();
11648                 }
11649             } else {
11650                 /* Use helpers for 8 and 16 bit elements */
11651                 switch (opcode) {
11652                 case 0x5: /* CNT, RBIT */
11653                     /* For these two insns size is part of the opcode specifier
11654                      * (handled earlier); they always operate on byte elements.
11655                      */
11656                     if (u) {
11657                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
11658                     } else {
11659                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
11660                     }
11661                     break;
11662                 case 0x7: /* SQABS, SQNEG */
11663                 {
11664                     NeonGenOneOpEnvFn *genfn;
11665                     static NeonGenOneOpEnvFn * const fns[2][2] = {
11666                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
11667                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
11668                     };
11669                     genfn = fns[size][u];
11670                     genfn(tcg_res, tcg_env, tcg_op);
11671                     break;
11672                 }
11673                 case 0x4: /* CLS, CLZ */
11674                     if (u) {
11675                         if (size == 0) {
11676                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
11677                         } else {
11678                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
11679                         }
11680                     } else {
11681                         if (size == 0) {
11682                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
11683                         } else {
11684                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
11685                         }
11686                     }
11687                     break;
11688                 default:
11689                     g_assert_not_reached();
11690                 }
11691             }
11692 
11693             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11694         }
11695     }
11696     clear_vec_high(s, is_q, rd);
11697 
11698     if (tcg_rmode) {
11699         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11700     }
11701 }
11702 
11703 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11704  *
11705  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
11706  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11707  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11708  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11709  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11710  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11711  *
11712  * This actually covers two groups where scalar access is governed by
11713  * bit 28. A bunch of the instructions (float to integral) only exist
11714  * in the vector form and are un-allocated for the scalar decode. Also
11715  * in the scalar decode Q is always 1.
11716  */
11717 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
11718 {
11719     int fpop, opcode, a, u;
11720     int rn, rd;
11721     bool is_q;
11722     bool is_scalar;
11723     bool only_in_vector = false;
11724 
11725     int pass;
11726     TCGv_i32 tcg_rmode = NULL;
11727     TCGv_ptr tcg_fpstatus = NULL;
11728     bool need_fpst = true;
11729     int rmode = -1;
11730 
11731     if (!dc_isar_feature(aa64_fp16, s)) {
11732         unallocated_encoding(s);
11733         return;
11734     }
11735 
11736     rd = extract32(insn, 0, 5);
11737     rn = extract32(insn, 5, 5);
11738 
11739     a = extract32(insn, 23, 1);
11740     u = extract32(insn, 29, 1);
11741     is_scalar = extract32(insn, 28, 1);
11742     is_q = extract32(insn, 30, 1);
11743 
11744     opcode = extract32(insn, 12, 5);
11745     fpop = deposit32(opcode, 5, 1, a);
11746     fpop = deposit32(fpop, 6, 1, u);
11747 
11748     switch (fpop) {
11749     case 0x1d: /* SCVTF */
11750     case 0x5d: /* UCVTF */
11751     {
11752         int elements;
11753 
11754         if (is_scalar) {
11755             elements = 1;
11756         } else {
11757             elements = (is_q ? 8 : 4);
11758         }
11759 
11760         if (!fp_access_check(s)) {
11761             return;
11762         }
11763         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
11764         return;
11765     }
11766     break;
11767     case 0x2c: /* FCMGT (zero) */
11768     case 0x2d: /* FCMEQ (zero) */
11769     case 0x2e: /* FCMLT (zero) */
11770     case 0x6c: /* FCMGE (zero) */
11771     case 0x6d: /* FCMLE (zero) */
11772         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
11773         return;
11774     case 0x3d: /* FRECPE */
11775     case 0x3f: /* FRECPX */
11776         break;
11777     case 0x18: /* FRINTN */
11778         only_in_vector = true;
11779         rmode = FPROUNDING_TIEEVEN;
11780         break;
11781     case 0x19: /* FRINTM */
11782         only_in_vector = true;
11783         rmode = FPROUNDING_NEGINF;
11784         break;
11785     case 0x38: /* FRINTP */
11786         only_in_vector = true;
11787         rmode = FPROUNDING_POSINF;
11788         break;
11789     case 0x39: /* FRINTZ */
11790         only_in_vector = true;
11791         rmode = FPROUNDING_ZERO;
11792         break;
11793     case 0x58: /* FRINTA */
11794         only_in_vector = true;
11795         rmode = FPROUNDING_TIEAWAY;
11796         break;
11797     case 0x59: /* FRINTX */
11798     case 0x79: /* FRINTI */
11799         only_in_vector = true;
11800         /* current rounding mode */
11801         break;
11802     case 0x1a: /* FCVTNS */
11803         rmode = FPROUNDING_TIEEVEN;
11804         break;
11805     case 0x1b: /* FCVTMS */
11806         rmode = FPROUNDING_NEGINF;
11807         break;
11808     case 0x1c: /* FCVTAS */
11809         rmode = FPROUNDING_TIEAWAY;
11810         break;
11811     case 0x3a: /* FCVTPS */
11812         rmode = FPROUNDING_POSINF;
11813         break;
11814     case 0x3b: /* FCVTZS */
11815         rmode = FPROUNDING_ZERO;
11816         break;
11817     case 0x5a: /* FCVTNU */
11818         rmode = FPROUNDING_TIEEVEN;
11819         break;
11820     case 0x5b: /* FCVTMU */
11821         rmode = FPROUNDING_NEGINF;
11822         break;
11823     case 0x5c: /* FCVTAU */
11824         rmode = FPROUNDING_TIEAWAY;
11825         break;
11826     case 0x7a: /* FCVTPU */
11827         rmode = FPROUNDING_POSINF;
11828         break;
11829     case 0x7b: /* FCVTZU */
11830         rmode = FPROUNDING_ZERO;
11831         break;
11832     case 0x2f: /* FABS */
11833     case 0x6f: /* FNEG */
11834         need_fpst = false;
11835         break;
11836     case 0x7d: /* FRSQRTE */
11837     case 0x7f: /* FSQRT (vector) */
11838         break;
11839     default:
11840         unallocated_encoding(s);
11841         return;
11842     }
11843 
11844 
11845     /* Check additional constraints for the scalar encoding */
11846     if (is_scalar) {
11847         if (!is_q) {
11848             unallocated_encoding(s);
11849             return;
11850         }
11851         /* FRINTxx is only in the vector form */
11852         if (only_in_vector) {
11853             unallocated_encoding(s);
11854             return;
11855         }
11856     }
11857 
11858     if (!fp_access_check(s)) {
11859         return;
11860     }
11861 
11862     if (rmode >= 0 || need_fpst) {
11863         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
11864     }
11865 
11866     if (rmode >= 0) {
11867         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11868     }
11869 
11870     if (is_scalar) {
11871         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
11872         TCGv_i32 tcg_res = tcg_temp_new_i32();
11873 
11874         switch (fpop) {
11875         case 0x1a: /* FCVTNS */
11876         case 0x1b: /* FCVTMS */
11877         case 0x1c: /* FCVTAS */
11878         case 0x3a: /* FCVTPS */
11879         case 0x3b: /* FCVTZS */
11880             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11881             break;
11882         case 0x3d: /* FRECPE */
11883             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11884             break;
11885         case 0x3f: /* FRECPX */
11886             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
11887             break;
11888         case 0x5a: /* FCVTNU */
11889         case 0x5b: /* FCVTMU */
11890         case 0x5c: /* FCVTAU */
11891         case 0x7a: /* FCVTPU */
11892         case 0x7b: /* FCVTZU */
11893             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11894             break;
11895         case 0x6f: /* FNEG */
11896             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11897             break;
11898         case 0x7d: /* FRSQRTE */
11899             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11900             break;
11901         default:
11902             g_assert_not_reached();
11903         }
11904 
11905         /* limit any sign extension going on */
11906         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
11907         write_fp_sreg(s, rd, tcg_res);
11908     } else {
11909         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
11910             TCGv_i32 tcg_op = tcg_temp_new_i32();
11911             TCGv_i32 tcg_res = tcg_temp_new_i32();
11912 
11913             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
11914 
11915             switch (fpop) {
11916             case 0x1a: /* FCVTNS */
11917             case 0x1b: /* FCVTMS */
11918             case 0x1c: /* FCVTAS */
11919             case 0x3a: /* FCVTPS */
11920             case 0x3b: /* FCVTZS */
11921                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11922                 break;
11923             case 0x3d: /* FRECPE */
11924                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11925                 break;
11926             case 0x5a: /* FCVTNU */
11927             case 0x5b: /* FCVTMU */
11928             case 0x5c: /* FCVTAU */
11929             case 0x7a: /* FCVTPU */
11930             case 0x7b: /* FCVTZU */
11931                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11932                 break;
11933             case 0x18: /* FRINTN */
11934             case 0x19: /* FRINTM */
11935             case 0x38: /* FRINTP */
11936             case 0x39: /* FRINTZ */
11937             case 0x58: /* FRINTA */
11938             case 0x79: /* FRINTI */
11939                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
11940                 break;
11941             case 0x59: /* FRINTX */
11942                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
11943                 break;
11944             case 0x2f: /* FABS */
11945                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
11946                 break;
11947             case 0x6f: /* FNEG */
11948                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11949                 break;
11950             case 0x7d: /* FRSQRTE */
11951                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11952                 break;
11953             case 0x7f: /* FSQRT */
11954                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
11955                 break;
11956             default:
11957                 g_assert_not_reached();
11958             }
11959 
11960             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11961         }
11962 
11963         clear_vec_high(s, is_q, rd);
11964     }
11965 
11966     if (tcg_rmode) {
11967         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11968     }
11969 }
11970 
11971 /* AdvSIMD scalar x indexed element
11972  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
11973  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
11974  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
11975  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
11976  * AdvSIMD vector x indexed element
11977  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
11978  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
11979  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
11980  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
11981  */
11982 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
11983 {
11984     /* This encoding has two kinds of instruction:
11985      *  normal, where we perform elt x idxelt => elt for each
11986      *     element in the vector
11987      *  long, where we perform elt x idxelt and generate a result of
11988      *     double the width of the input element
11989      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
11990      */
11991     bool is_scalar = extract32(insn, 28, 1);
11992     bool is_q = extract32(insn, 30, 1);
11993     bool u = extract32(insn, 29, 1);
11994     int size = extract32(insn, 22, 2);
11995     int l = extract32(insn, 21, 1);
11996     int m = extract32(insn, 20, 1);
11997     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
11998     int rm = extract32(insn, 16, 4);
11999     int opcode = extract32(insn, 12, 4);
12000     int h = extract32(insn, 11, 1);
12001     int rn = extract32(insn, 5, 5);
12002     int rd = extract32(insn, 0, 5);
12003     bool is_long = false;
12004     int is_fp = 0;
12005     bool is_fp16 = false;
12006     int index;
12007     TCGv_ptr fpst;
12008 
12009     switch (16 * u + opcode) {
12010     case 0x02: /* SMLAL, SMLAL2 */
12011     case 0x12: /* UMLAL, UMLAL2 */
12012     case 0x06: /* SMLSL, SMLSL2 */
12013     case 0x16: /* UMLSL, UMLSL2 */
12014     case 0x0a: /* SMULL, SMULL2 */
12015     case 0x1a: /* UMULL, UMULL2 */
12016         if (is_scalar) {
12017             unallocated_encoding(s);
12018             return;
12019         }
12020         is_long = true;
12021         break;
12022     case 0x03: /* SQDMLAL, SQDMLAL2 */
12023     case 0x07: /* SQDMLSL, SQDMLSL2 */
12024     case 0x0b: /* SQDMULL, SQDMULL2 */
12025         is_long = true;
12026         break;
12027     case 0x11: /* FCMLA #0 */
12028     case 0x13: /* FCMLA #90 */
12029     case 0x15: /* FCMLA #180 */
12030     case 0x17: /* FCMLA #270 */
12031         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12032             unallocated_encoding(s);
12033             return;
12034         }
12035         is_fp = 2;
12036         break;
12037     default:
12038     case 0x00: /* FMLAL */
12039     case 0x01: /* FMLA */
12040     case 0x04: /* FMLSL */
12041     case 0x05: /* FMLS */
12042     case 0x08: /* MUL */
12043     case 0x09: /* FMUL */
12044     case 0x0c: /* SQDMULH */
12045     case 0x0d: /* SQRDMULH */
12046     case 0x0e: /* SDOT */
12047     case 0x0f: /* SUDOT / BFDOT / USDOT / BFMLAL */
12048     case 0x10: /* MLA */
12049     case 0x14: /* MLS */
12050     case 0x18: /* FMLAL2 */
12051     case 0x19: /* FMULX */
12052     case 0x1c: /* FMLSL2 */
12053     case 0x1d: /* SQRDMLAH */
12054     case 0x1e: /* UDOT */
12055     case 0x1f: /* SQRDMLSH */
12056         unallocated_encoding(s);
12057         return;
12058     }
12059 
12060     switch (is_fp) {
12061     case 1: /* normal fp */
12062         unallocated_encoding(s); /* in decodetree */
12063         return;
12064 
12065     case 2: /* complex fp */
12066         /* Each indexable element is a complex pair.  */
12067         size += 1;
12068         switch (size) {
12069         case MO_32:
12070             if (h && !is_q) {
12071                 unallocated_encoding(s);
12072                 return;
12073             }
12074             is_fp16 = true;
12075             break;
12076         case MO_64:
12077             break;
12078         default:
12079             unallocated_encoding(s);
12080             return;
12081         }
12082         break;
12083 
12084     default: /* integer */
12085         switch (size) {
12086         case MO_8:
12087         case MO_64:
12088             unallocated_encoding(s);
12089             return;
12090         }
12091         break;
12092     }
12093     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12094         unallocated_encoding(s);
12095         return;
12096     }
12097 
12098     /* Given MemOp size, adjust register and indexing.  */
12099     switch (size) {
12100     case MO_16:
12101         index = h << 2 | l << 1 | m;
12102         break;
12103     case MO_32:
12104         index = h << 1 | l;
12105         rm |= m << 4;
12106         break;
12107     case MO_64:
12108         if (l || !is_q) {
12109             unallocated_encoding(s);
12110             return;
12111         }
12112         index = h;
12113         rm |= m << 4;
12114         break;
12115     default:
12116         g_assert_not_reached();
12117     }
12118 
12119     if (!fp_access_check(s)) {
12120         return;
12121     }
12122 
12123     if (is_fp) {
12124         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12125     } else {
12126         fpst = NULL;
12127     }
12128 
12129     switch (16 * u + opcode) {
12130     case 0x11: /* FCMLA #0 */
12131     case 0x13: /* FCMLA #90 */
12132     case 0x15: /* FCMLA #180 */
12133     case 0x17: /* FCMLA #270 */
12134         {
12135             int rot = extract32(insn, 13, 2);
12136             int data = (index << 2) | rot;
12137             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12138                                vec_full_reg_offset(s, rn),
12139                                vec_full_reg_offset(s, rm),
12140                                vec_full_reg_offset(s, rd), fpst,
12141                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12142                                size == MO_64
12143                                ? gen_helper_gvec_fcmlas_idx
12144                                : gen_helper_gvec_fcmlah_idx);
12145         }
12146         return;
12147     }
12148 
12149     if (size == 3) {
12150         g_assert_not_reached();
12151     } else if (!is_long) {
12152         /* 32 bit floating point, or 16 or 32 bit integer.
12153          * For the 16 bit scalar case we use the usual Neon helpers and
12154          * rely on the fact that 0 op 0 == 0 with no side effects.
12155          */
12156         TCGv_i32 tcg_idx = tcg_temp_new_i32();
12157         int pass, maxpasses;
12158 
12159         if (is_scalar) {
12160             maxpasses = 1;
12161         } else {
12162             maxpasses = is_q ? 4 : 2;
12163         }
12164 
12165         read_vec_element_i32(s, tcg_idx, rm, index, size);
12166 
12167         if (size == 1 && !is_scalar) {
12168             /* The simplest way to handle the 16x16 indexed ops is to duplicate
12169              * the index into both halves of the 32 bit tcg_idx and then use
12170              * the usual Neon helpers.
12171              */
12172             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12173         }
12174 
12175         for (pass = 0; pass < maxpasses; pass++) {
12176             TCGv_i32 tcg_op = tcg_temp_new_i32();
12177             TCGv_i32 tcg_res = tcg_temp_new_i32();
12178 
12179             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12180 
12181             switch (16 * u + opcode) {
12182             case 0x10: /* MLA */
12183             case 0x14: /* MLS */
12184             {
12185                 static NeonGenTwoOpFn * const fns[2][2] = {
12186                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12187                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
12188                 };
12189                 NeonGenTwoOpFn *genfn;
12190                 bool is_sub = opcode == 0x4;
12191 
12192                 if (size == 1) {
12193                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12194                 } else {
12195                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12196                 }
12197                 if (opcode == 0x8) {
12198                     break;
12199                 }
12200                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12201                 genfn = fns[size - 1][is_sub];
12202                 genfn(tcg_res, tcg_op, tcg_res);
12203                 break;
12204             }
12205             case 0x0c: /* SQDMULH */
12206                 if (size == 1) {
12207                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
12208                                                tcg_op, tcg_idx);
12209                 } else {
12210                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
12211                                                tcg_op, tcg_idx);
12212                 }
12213                 break;
12214             case 0x0d: /* SQRDMULH */
12215                 if (size == 1) {
12216                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
12217                                                 tcg_op, tcg_idx);
12218                 } else {
12219                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
12220                                                 tcg_op, tcg_idx);
12221                 }
12222                 break;
12223             default:
12224             case 0x01: /* FMLA */
12225             case 0x05: /* FMLS */
12226             case 0x09: /* FMUL */
12227             case 0x19: /* FMULX */
12228             case 0x1d: /* SQRDMLAH */
12229             case 0x1f: /* SQRDMLSH */
12230                 g_assert_not_reached();
12231             }
12232 
12233             if (is_scalar) {
12234                 write_fp_sreg(s, rd, tcg_res);
12235             } else {
12236                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12237             }
12238         }
12239 
12240         clear_vec_high(s, is_q, rd);
12241     } else {
12242         /* long ops: 16x16->32 or 32x32->64 */
12243         TCGv_i64 tcg_res[2];
12244         int pass;
12245         bool satop = extract32(opcode, 0, 1);
12246         MemOp memop = MO_32;
12247 
12248         if (satop || !u) {
12249             memop |= MO_SIGN;
12250         }
12251 
12252         if (size == 2) {
12253             TCGv_i64 tcg_idx = tcg_temp_new_i64();
12254 
12255             read_vec_element(s, tcg_idx, rm, index, memop);
12256 
12257             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12258                 TCGv_i64 tcg_op = tcg_temp_new_i64();
12259                 TCGv_i64 tcg_passres;
12260                 int passelt;
12261 
12262                 if (is_scalar) {
12263                     passelt = 0;
12264                 } else {
12265                     passelt = pass + (is_q * 2);
12266                 }
12267 
12268                 read_vec_element(s, tcg_op, rn, passelt, memop);
12269 
12270                 tcg_res[pass] = tcg_temp_new_i64();
12271 
12272                 if (opcode == 0xa || opcode == 0xb) {
12273                     /* Non-accumulating ops */
12274                     tcg_passres = tcg_res[pass];
12275                 } else {
12276                     tcg_passres = tcg_temp_new_i64();
12277                 }
12278 
12279                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12280 
12281                 if (satop) {
12282                     /* saturating, doubling */
12283                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
12284                                                       tcg_passres, tcg_passres);
12285                 }
12286 
12287                 if (opcode == 0xa || opcode == 0xb) {
12288                     continue;
12289                 }
12290 
12291                 /* Accumulating op: handle accumulate step */
12292                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12293 
12294                 switch (opcode) {
12295                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12296                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12297                     break;
12298                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12299                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12300                     break;
12301                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12302                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
12303                     /* fall through */
12304                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12305                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
12306                                                       tcg_res[pass],
12307                                                       tcg_passres);
12308                     break;
12309                 default:
12310                     g_assert_not_reached();
12311                 }
12312             }
12313 
12314             clear_vec_high(s, !is_scalar, rd);
12315         } else {
12316             TCGv_i32 tcg_idx = tcg_temp_new_i32();
12317 
12318             assert(size == 1);
12319             read_vec_element_i32(s, tcg_idx, rm, index, size);
12320 
12321             if (!is_scalar) {
12322                 /* The simplest way to handle the 16x16 indexed ops is to
12323                  * duplicate the index into both halves of the 32 bit tcg_idx
12324                  * and then use the usual Neon helpers.
12325                  */
12326                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12327             }
12328 
12329             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12330                 TCGv_i32 tcg_op = tcg_temp_new_i32();
12331                 TCGv_i64 tcg_passres;
12332 
12333                 if (is_scalar) {
12334                     read_vec_element_i32(s, tcg_op, rn, pass, size);
12335                 } else {
12336                     read_vec_element_i32(s, tcg_op, rn,
12337                                          pass + (is_q * 2), MO_32);
12338                 }
12339 
12340                 tcg_res[pass] = tcg_temp_new_i64();
12341 
12342                 if (opcode == 0xa || opcode == 0xb) {
12343                     /* Non-accumulating ops */
12344                     tcg_passres = tcg_res[pass];
12345                 } else {
12346                     tcg_passres = tcg_temp_new_i64();
12347                 }
12348 
12349                 if (memop & MO_SIGN) {
12350                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
12351                 } else {
12352                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
12353                 }
12354                 if (satop) {
12355                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
12356                                                       tcg_passres, tcg_passres);
12357                 }
12358 
12359                 if (opcode == 0xa || opcode == 0xb) {
12360                     continue;
12361                 }
12362 
12363                 /* Accumulating op: handle accumulate step */
12364                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12365 
12366                 switch (opcode) {
12367                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12368                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
12369                                              tcg_passres);
12370                     break;
12371                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12372                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
12373                                              tcg_passres);
12374                     break;
12375                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12376                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
12377                     /* fall through */
12378                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12379                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
12380                                                       tcg_res[pass],
12381                                                       tcg_passres);
12382                     break;
12383                 default:
12384                     g_assert_not_reached();
12385                 }
12386             }
12387 
12388             if (is_scalar) {
12389                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
12390             }
12391         }
12392 
12393         if (is_scalar) {
12394             tcg_res[1] = tcg_constant_i64(0);
12395         }
12396 
12397         for (pass = 0; pass < 2; pass++) {
12398             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12399         }
12400     }
12401 }
12402 
12403 /* C3.6 Data processing - SIMD, inc Crypto
12404  *
12405  * As the decode gets a little complex we are using a table based
12406  * approach for this part of the decode.
12407  */
12408 static const AArch64DecodeTable data_proc_simd[] = {
12409     /* pattern  ,  mask     ,  fn                        */
12410     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
12411     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
12412     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
12413     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
12414     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
12415     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
12416     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
12417     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
12418     { 0x0e000000, 0xbf208c00, disas_simd_tb },
12419     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
12420     { 0x2e000000, 0xbf208400, disas_simd_ext },
12421     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
12422     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
12423     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
12424     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
12425     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
12426     { 0x00000000, 0x00000000, NULL }
12427 };
12428 
12429 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
12430 {
12431     /* Note that this is called with all non-FP cases from
12432      * table C3-6 so it must UNDEF for entries not specifically
12433      * allocated to instructions in that table.
12434      */
12435     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
12436     if (fn) {
12437         fn(s, insn);
12438     } else {
12439         unallocated_encoding(s);
12440     }
12441 }
12442 
12443 /* C3.6 Data processing - SIMD and floating point */
12444 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
12445 {
12446     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
12447         disas_data_proc_fp(s, insn);
12448     } else {
12449         /* SIMD, including crypto */
12450         disas_data_proc_simd(s, insn);
12451     }
12452 }
12453 
12454 static bool trans_OK(DisasContext *s, arg_OK *a)
12455 {
12456     return true;
12457 }
12458 
12459 static bool trans_FAIL(DisasContext *s, arg_OK *a)
12460 {
12461     s->is_nonstreaming = true;
12462     return true;
12463 }
12464 
12465 /**
12466  * is_guarded_page:
12467  * @env: The cpu environment
12468  * @s: The DisasContext
12469  *
12470  * Return true if the page is guarded.
12471  */
12472 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
12473 {
12474     uint64_t addr = s->base.pc_first;
12475 #ifdef CONFIG_USER_ONLY
12476     return page_get_flags(addr) & PAGE_BTI;
12477 #else
12478     CPUTLBEntryFull *full;
12479     void *host;
12480     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
12481     int flags;
12482 
12483     /*
12484      * We test this immediately after reading an insn, which means
12485      * that the TLB entry must be present and valid, and thus this
12486      * access will never raise an exception.
12487      */
12488     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
12489                               false, &host, &full, 0);
12490     assert(!(flags & TLB_INVALID_MASK));
12491 
12492     return full->extra.arm.guarded;
12493 #endif
12494 }
12495 
12496 /**
12497  * btype_destination_ok:
12498  * @insn: The instruction at the branch destination
12499  * @bt: SCTLR_ELx.BT
12500  * @btype: PSTATE.BTYPE, and is non-zero
12501  *
12502  * On a guarded page, there are a limited number of insns
12503  * that may be present at the branch target:
12504  *   - branch target identifiers,
12505  *   - paciasp, pacibsp,
12506  *   - BRK insn
12507  *   - HLT insn
12508  * Anything else causes a Branch Target Exception.
12509  *
12510  * Return true if the branch is compatible, false to raise BTITRAP.
12511  */
12512 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
12513 {
12514     if ((insn & 0xfffff01fu) == 0xd503201fu) {
12515         /* HINT space */
12516         switch (extract32(insn, 5, 7)) {
12517         case 0b011001: /* PACIASP */
12518         case 0b011011: /* PACIBSP */
12519             /*
12520              * If SCTLR_ELx.BT, then PACI*SP are not compatible
12521              * with btype == 3.  Otherwise all btype are ok.
12522              */
12523             return !bt || btype != 3;
12524         case 0b100000: /* BTI */
12525             /* Not compatible with any btype.  */
12526             return false;
12527         case 0b100010: /* BTI c */
12528             /* Not compatible with btype == 3 */
12529             return btype != 3;
12530         case 0b100100: /* BTI j */
12531             /* Not compatible with btype == 2 */
12532             return btype != 2;
12533         case 0b100110: /* BTI jc */
12534             /* Compatible with any btype.  */
12535             return true;
12536         }
12537     } else {
12538         switch (insn & 0xffe0001fu) {
12539         case 0xd4200000u: /* BRK */
12540         case 0xd4400000u: /* HLT */
12541             /* Give priority to the breakpoint exception.  */
12542             return true;
12543         }
12544     }
12545     return false;
12546 }
12547 
12548 /* C3.1 A64 instruction index by encoding */
12549 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
12550 {
12551     switch (extract32(insn, 25, 4)) {
12552     case 0x5:
12553     case 0xd:      /* Data processing - register */
12554         disas_data_proc_reg(s, insn);
12555         break;
12556     case 0x7:
12557     case 0xf:      /* Data processing - SIMD and floating point */
12558         disas_data_proc_simd_fp(s, insn);
12559         break;
12560     default:
12561         unallocated_encoding(s);
12562         break;
12563     }
12564 }
12565 
12566 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
12567                                           CPUState *cpu)
12568 {
12569     DisasContext *dc = container_of(dcbase, DisasContext, base);
12570     CPUARMState *env = cpu_env(cpu);
12571     ARMCPU *arm_cpu = env_archcpu(env);
12572     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
12573     int bound, core_mmu_idx;
12574 
12575     dc->isar = &arm_cpu->isar;
12576     dc->condjmp = 0;
12577     dc->pc_save = dc->base.pc_first;
12578     dc->aarch64 = true;
12579     dc->thumb = false;
12580     dc->sctlr_b = 0;
12581     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
12582     dc->condexec_mask = 0;
12583     dc->condexec_cond = 0;
12584     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
12585     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
12586     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
12587     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
12588     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
12589     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
12590 #if !defined(CONFIG_USER_ONLY)
12591     dc->user = (dc->current_el == 0);
12592 #endif
12593     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
12594     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
12595     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
12596     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
12597     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
12598     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
12599     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
12600     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
12601     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
12602     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
12603     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
12604     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
12605     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
12606     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
12607     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
12608     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
12609     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
12610     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
12611     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
12612     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
12613     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
12614     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
12615     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
12616     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
12617     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
12618     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
12619     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
12620     dc->vec_len = 0;
12621     dc->vec_stride = 0;
12622     dc->cp_regs = arm_cpu->cp_regs;
12623     dc->features = env->features;
12624     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
12625     dc->gm_blocksize = arm_cpu->gm_blocksize;
12626 
12627 #ifdef CONFIG_USER_ONLY
12628     /* In sve_probe_page, we assume TBI is enabled. */
12629     tcg_debug_assert(dc->tbid & 1);
12630 #endif
12631 
12632     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
12633 
12634     /* Single step state. The code-generation logic here is:
12635      *  SS_ACTIVE == 0:
12636      *   generate code with no special handling for single-stepping (except
12637      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
12638      *   this happens anyway because those changes are all system register or
12639      *   PSTATE writes).
12640      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
12641      *   emit code for one insn
12642      *   emit code to clear PSTATE.SS
12643      *   emit code to generate software step exception for completed step
12644      *   end TB (as usual for having generated an exception)
12645      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
12646      *   emit code to generate a software step exception
12647      *   end the TB
12648      */
12649     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
12650     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
12651     dc->is_ldex = false;
12652 
12653     /* Bound the number of insns to execute to those left on the page.  */
12654     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
12655 
12656     /* If architectural single step active, limit to 1.  */
12657     if (dc->ss_active) {
12658         bound = 1;
12659     }
12660     dc->base.max_insns = MIN(dc->base.max_insns, bound);
12661 }
12662 
12663 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
12664 {
12665 }
12666 
12667 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
12668 {
12669     DisasContext *dc = container_of(dcbase, DisasContext, base);
12670     target_ulong pc_arg = dc->base.pc_next;
12671 
12672     if (tb_cflags(dcbase->tb) & CF_PCREL) {
12673         pc_arg &= ~TARGET_PAGE_MASK;
12674     }
12675     tcg_gen_insn_start(pc_arg, 0, 0);
12676     dc->insn_start_updated = false;
12677 }
12678 
12679 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
12680 {
12681     DisasContext *s = container_of(dcbase, DisasContext, base);
12682     CPUARMState *env = cpu_env(cpu);
12683     uint64_t pc = s->base.pc_next;
12684     uint32_t insn;
12685 
12686     /* Singlestep exceptions have the highest priority. */
12687     if (s->ss_active && !s->pstate_ss) {
12688         /* Singlestep state is Active-pending.
12689          * If we're in this state at the start of a TB then either
12690          *  a) we just took an exception to an EL which is being debugged
12691          *     and this is the first insn in the exception handler
12692          *  b) debug exceptions were masked and we just unmasked them
12693          *     without changing EL (eg by clearing PSTATE.D)
12694          * In either case we're going to take a swstep exception in the
12695          * "did not step an insn" case, and so the syndrome ISV and EX
12696          * bits should be zero.
12697          */
12698         assert(s->base.num_insns == 1);
12699         gen_swstep_exception(s, 0, 0);
12700         s->base.is_jmp = DISAS_NORETURN;
12701         s->base.pc_next = pc + 4;
12702         return;
12703     }
12704 
12705     if (pc & 3) {
12706         /*
12707          * PC alignment fault.  This has priority over the instruction abort
12708          * that we would receive from a translation fault via arm_ldl_code.
12709          * This should only be possible after an indirect branch, at the
12710          * start of the TB.
12711          */
12712         assert(s->base.num_insns == 1);
12713         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
12714         s->base.is_jmp = DISAS_NORETURN;
12715         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
12716         return;
12717     }
12718 
12719     s->pc_curr = pc;
12720     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
12721     s->insn = insn;
12722     s->base.pc_next = pc + 4;
12723 
12724     s->fp_access_checked = false;
12725     s->sve_access_checked = false;
12726 
12727     if (s->pstate_il) {
12728         /*
12729          * Illegal execution state. This has priority over BTI
12730          * exceptions, but comes after instruction abort exceptions.
12731          */
12732         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
12733         return;
12734     }
12735 
12736     if (dc_isar_feature(aa64_bti, s)) {
12737         if (s->base.num_insns == 1) {
12738             /*
12739              * At the first insn of the TB, compute s->guarded_page.
12740              * We delayed computing this until successfully reading
12741              * the first insn of the TB, above.  This (mostly) ensures
12742              * that the softmmu tlb entry has been populated, and the
12743              * page table GP bit is available.
12744              *
12745              * Note that we need to compute this even if btype == 0,
12746              * because this value is used for BR instructions later
12747              * where ENV is not available.
12748              */
12749             s->guarded_page = is_guarded_page(env, s);
12750 
12751             /* First insn can have btype set to non-zero.  */
12752             tcg_debug_assert(s->btype >= 0);
12753 
12754             /*
12755              * Note that the Branch Target Exception has fairly high
12756              * priority -- below debugging exceptions but above most
12757              * everything else.  This allows us to handle this now
12758              * instead of waiting until the insn is otherwise decoded.
12759              */
12760             if (s->btype != 0
12761                 && s->guarded_page
12762                 && !btype_destination_ok(insn, s->bt, s->btype)) {
12763                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
12764                 return;
12765             }
12766         } else {
12767             /* Not the first insn: btype must be 0.  */
12768             tcg_debug_assert(s->btype == 0);
12769         }
12770     }
12771 
12772     s->is_nonstreaming = false;
12773     if (s->sme_trap_nonstreaming) {
12774         disas_sme_fa64(s, insn);
12775     }
12776 
12777     if (!disas_a64(s, insn) &&
12778         !disas_sme(s, insn) &&
12779         !disas_sve(s, insn)) {
12780         disas_a64_legacy(s, insn);
12781     }
12782 
12783     /*
12784      * After execution of most insns, btype is reset to 0.
12785      * Note that we set btype == -1 when the insn sets btype.
12786      */
12787     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
12788         reset_btype(s);
12789     }
12790 }
12791 
12792 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
12793 {
12794     DisasContext *dc = container_of(dcbase, DisasContext, base);
12795 
12796     if (unlikely(dc->ss_active)) {
12797         /* Note that this means single stepping WFI doesn't halt the CPU.
12798          * For conditional branch insns this is harmless unreachable code as
12799          * gen_goto_tb() has already handled emitting the debug exception
12800          * (and thus a tb-jump is not possible when singlestepping).
12801          */
12802         switch (dc->base.is_jmp) {
12803         default:
12804             gen_a64_update_pc(dc, 4);
12805             /* fall through */
12806         case DISAS_EXIT:
12807         case DISAS_JUMP:
12808             gen_step_complete_exception(dc);
12809             break;
12810         case DISAS_NORETURN:
12811             break;
12812         }
12813     } else {
12814         switch (dc->base.is_jmp) {
12815         case DISAS_NEXT:
12816         case DISAS_TOO_MANY:
12817             gen_goto_tb(dc, 1, 4);
12818             break;
12819         default:
12820         case DISAS_UPDATE_EXIT:
12821             gen_a64_update_pc(dc, 4);
12822             /* fall through */
12823         case DISAS_EXIT:
12824             tcg_gen_exit_tb(NULL, 0);
12825             break;
12826         case DISAS_UPDATE_NOCHAIN:
12827             gen_a64_update_pc(dc, 4);
12828             /* fall through */
12829         case DISAS_JUMP:
12830             tcg_gen_lookup_and_goto_ptr();
12831             break;
12832         case DISAS_NORETURN:
12833         case DISAS_SWI:
12834             break;
12835         case DISAS_WFE:
12836             gen_a64_update_pc(dc, 4);
12837             gen_helper_wfe(tcg_env);
12838             break;
12839         case DISAS_YIELD:
12840             gen_a64_update_pc(dc, 4);
12841             gen_helper_yield(tcg_env);
12842             break;
12843         case DISAS_WFI:
12844             /*
12845              * This is a special case because we don't want to just halt
12846              * the CPU if trying to debug across a WFI.
12847              */
12848             gen_a64_update_pc(dc, 4);
12849             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
12850             /*
12851              * The helper doesn't necessarily throw an exception, but we
12852              * must go back to the main loop to check for interrupts anyway.
12853              */
12854             tcg_gen_exit_tb(NULL, 0);
12855             break;
12856         }
12857     }
12858 }
12859 
12860 const TranslatorOps aarch64_translator_ops = {
12861     .init_disas_context = aarch64_tr_init_disas_context,
12862     .tb_start           = aarch64_tr_tb_start,
12863     .insn_start         = aarch64_tr_insn_start,
12864     .translate_insn     = aarch64_tr_translate_insn,
12865     .tb_stop            = aarch64_tr_tb_stop,
12866 };
12867