1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 MemOp memop, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 268 269 ret = tcg_temp_new_i64(); 270 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 271 272 return ret; 273 } 274 return clean_data_tbi(s, addr); 275 } 276 277 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 278 bool tag_checked, MemOp memop) 279 { 280 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 281 false, get_mem_index(s)); 282 } 283 284 /* 285 * For MTE, check multiple logical sequential accesses. 286 */ 287 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 288 bool tag_checked, int size) 289 { 290 if (tag_checked && s->mte_active[0]) { 291 TCGv_i64 ret; 292 int desc = 0; 293 294 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 typedef struct DisasCompare64 { 309 TCGCond cond; 310 TCGv_i64 value; 311 } DisasCompare64; 312 313 static void a64_test_cc(DisasCompare64 *c64, int cc) 314 { 315 DisasCompare c32; 316 317 arm_test_cc(&c32, cc); 318 319 /* 320 * Sign-extend the 32-bit value so that the GE/LT comparisons work 321 * properly. The NE/EQ comparisons are also fine with this choice. 322 */ 323 c64->cond = c32.cond; 324 c64->value = tcg_temp_new_i64(); 325 tcg_gen_ext_i32_i64(c64->value, c32.value); 326 } 327 328 static void gen_rebuild_hflags(DisasContext *s) 329 { 330 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 331 } 332 333 static void gen_exception_internal(int excp) 334 { 335 assert(excp_is_internal(excp)); 336 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 337 } 338 339 static void gen_exception_internal_insn(DisasContext *s, int excp) 340 { 341 gen_a64_update_pc(s, 0); 342 gen_exception_internal(excp); 343 s->base.is_jmp = DISAS_NORETURN; 344 } 345 346 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 347 { 348 gen_a64_update_pc(s, 0); 349 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 350 s->base.is_jmp = DISAS_NORETURN; 351 } 352 353 static void gen_step_complete_exception(DisasContext *s) 354 { 355 /* We just completed step of an insn. Move from Active-not-pending 356 * to Active-pending, and then also take the swstep exception. 357 * This corresponds to making the (IMPDEF) choice to prioritize 358 * swstep exceptions over asynchronous exceptions taken to an exception 359 * level where debug is disabled. This choice has the advantage that 360 * we do not need to maintain internal state corresponding to the 361 * ISV/EX syndrome bits between completion of the step and generation 362 * of the exception, and our syndrome information is always correct. 363 */ 364 gen_ss_advance(s); 365 gen_swstep_exception(s, 1, s->is_ldex); 366 s->base.is_jmp = DISAS_NORETURN; 367 } 368 369 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 370 { 371 if (s->ss_active) { 372 return false; 373 } 374 return translator_use_goto_tb(&s->base, dest); 375 } 376 377 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 378 { 379 if (use_goto_tb(s, s->pc_curr + diff)) { 380 /* 381 * For pcrel, the pc must always be up-to-date on entry to 382 * the linked TB, so that it can use simple additions for all 383 * further adjustments. For !pcrel, the linked TB is compiled 384 * to know its full virtual address, so we can delay the 385 * update to pc to the unlinked path. A long chain of links 386 * can thus avoid many updates to the PC. 387 */ 388 if (tb_cflags(s->base.tb) & CF_PCREL) { 389 gen_a64_update_pc(s, diff); 390 tcg_gen_goto_tb(n); 391 } else { 392 tcg_gen_goto_tb(n); 393 gen_a64_update_pc(s, diff); 394 } 395 tcg_gen_exit_tb(s->base.tb, n); 396 s->base.is_jmp = DISAS_NORETURN; 397 } else { 398 gen_a64_update_pc(s, diff); 399 if (s->ss_active) { 400 gen_step_complete_exception(s); 401 } else { 402 tcg_gen_lookup_and_goto_ptr(); 403 s->base.is_jmp = DISAS_NORETURN; 404 } 405 } 406 } 407 408 /* 409 * Register access functions 410 * 411 * These functions are used for directly accessing a register in where 412 * changes to the final register value are likely to be made. If you 413 * need to use a register for temporary calculation (e.g. index type 414 * operations) use the read_* form. 415 * 416 * B1.2.1 Register mappings 417 * 418 * In instruction register encoding 31 can refer to ZR (zero register) or 419 * the SP (stack pointer) depending on context. In QEMU's case we map SP 420 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 421 * This is the point of the _sp forms. 422 */ 423 TCGv_i64 cpu_reg(DisasContext *s, int reg) 424 { 425 if (reg == 31) { 426 TCGv_i64 t = tcg_temp_new_i64(); 427 tcg_gen_movi_i64(t, 0); 428 return t; 429 } else { 430 return cpu_X[reg]; 431 } 432 } 433 434 /* register access for when 31 == SP */ 435 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 436 { 437 return cpu_X[reg]; 438 } 439 440 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 441 * representing the register contents. This TCGv is an auto-freed 442 * temporary so it need not be explicitly freed, and may be modified. 443 */ 444 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 445 { 446 TCGv_i64 v = tcg_temp_new_i64(); 447 if (reg != 31) { 448 if (sf) { 449 tcg_gen_mov_i64(v, cpu_X[reg]); 450 } else { 451 tcg_gen_ext32u_i64(v, cpu_X[reg]); 452 } 453 } else { 454 tcg_gen_movi_i64(v, 0); 455 } 456 return v; 457 } 458 459 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 460 { 461 TCGv_i64 v = tcg_temp_new_i64(); 462 if (sf) { 463 tcg_gen_mov_i64(v, cpu_X[reg]); 464 } else { 465 tcg_gen_ext32u_i64(v, cpu_X[reg]); 466 } 467 return v; 468 } 469 470 /* Return the offset into CPUARMState of a slice (from 471 * the least significant end) of FP register Qn (ie 472 * Dn, Sn, Hn or Bn). 473 * (Note that this is not the same mapping as for A32; see cpu.h) 474 */ 475 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 476 { 477 return vec_reg_offset(s, regno, 0, size); 478 } 479 480 /* Offset of the high half of the 128 bit vector Qn */ 481 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 482 { 483 return vec_reg_offset(s, regno, 1, MO_64); 484 } 485 486 /* Convenience accessors for reading and writing single and double 487 * FP registers. Writing clears the upper parts of the associated 488 * 128 bit vector register, as required by the architecture. 489 * Note that unlike the GP register accessors, the values returned 490 * by the read functions must be manually freed. 491 */ 492 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 493 { 494 TCGv_i64 v = tcg_temp_new_i64(); 495 496 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 497 return v; 498 } 499 500 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 501 { 502 TCGv_i32 v = tcg_temp_new_i32(); 503 504 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 505 return v; 506 } 507 508 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 509 { 510 TCGv_i32 v = tcg_temp_new_i32(); 511 512 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 513 return v; 514 } 515 516 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 517 * If SVE is not enabled, then there are only 128 bits in the vector. 518 */ 519 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 520 { 521 unsigned ofs = fp_reg_offset(s, rd, MO_64); 522 unsigned vsz = vec_full_reg_size(s); 523 524 /* Nop move, with side effect of clearing the tail. */ 525 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 526 } 527 528 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 529 { 530 unsigned ofs = fp_reg_offset(s, reg, MO_64); 531 532 tcg_gen_st_i64(v, cpu_env, ofs); 533 clear_vec_high(s, false, reg); 534 } 535 536 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 537 { 538 TCGv_i64 tmp = tcg_temp_new_i64(); 539 540 tcg_gen_extu_i32_i64(tmp, v); 541 write_fp_dreg(s, reg, tmp); 542 } 543 544 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 545 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 546 GVecGen2Fn *gvec_fn, int vece) 547 { 548 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 549 is_q ? 16 : 8, vec_full_reg_size(s)); 550 } 551 552 /* Expand a 2-operand + immediate AdvSIMD vector operation using 553 * an expander function. 554 */ 555 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 556 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 557 { 558 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 559 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 560 } 561 562 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 563 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 564 GVecGen3Fn *gvec_fn, int vece) 565 { 566 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 567 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 568 } 569 570 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 571 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 572 int rx, GVecGen4Fn *gvec_fn, int vece) 573 { 574 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 575 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 576 is_q ? 16 : 8, vec_full_reg_size(s)); 577 } 578 579 /* Expand a 2-operand operation using an out-of-line helper. */ 580 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 581 int rn, int data, gen_helper_gvec_2 *fn) 582 { 583 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 584 vec_full_reg_offset(s, rn), 585 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 586 } 587 588 /* Expand a 3-operand operation using an out-of-line helper. */ 589 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 590 int rn, int rm, int data, gen_helper_gvec_3 *fn) 591 { 592 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 593 vec_full_reg_offset(s, rn), 594 vec_full_reg_offset(s, rm), 595 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 596 } 597 598 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 599 * an out-of-line helper. 600 */ 601 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 602 int rm, bool is_fp16, int data, 603 gen_helper_gvec_3_ptr *fn) 604 { 605 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 606 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 607 vec_full_reg_offset(s, rn), 608 vec_full_reg_offset(s, rm), fpst, 609 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 610 } 611 612 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 613 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 614 int rm, gen_helper_gvec_3_ptr *fn) 615 { 616 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 617 618 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 619 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 620 vec_full_reg_offset(s, rn), 621 vec_full_reg_offset(s, rm), qc_ptr, 622 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 623 } 624 625 /* Expand a 4-operand operation using an out-of-line helper. */ 626 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 627 int rm, int ra, int data, gen_helper_gvec_4 *fn) 628 { 629 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 630 vec_full_reg_offset(s, rn), 631 vec_full_reg_offset(s, rm), 632 vec_full_reg_offset(s, ra), 633 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 634 } 635 636 /* 637 * Expand a 4-operand + fpstatus pointer + simd data value operation using 638 * an out-of-line helper. 639 */ 640 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 641 int rm, int ra, bool is_fp16, int data, 642 gen_helper_gvec_4_ptr *fn) 643 { 644 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 645 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 646 vec_full_reg_offset(s, rn), 647 vec_full_reg_offset(s, rm), 648 vec_full_reg_offset(s, ra), fpst, 649 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 650 } 651 652 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 653 * than the 32 bit equivalent. 654 */ 655 static inline void gen_set_NZ64(TCGv_i64 result) 656 { 657 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 658 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 659 } 660 661 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 662 static inline void gen_logic_CC(int sf, TCGv_i64 result) 663 { 664 if (sf) { 665 gen_set_NZ64(result); 666 } else { 667 tcg_gen_extrl_i64_i32(cpu_ZF, result); 668 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 669 } 670 tcg_gen_movi_i32(cpu_CF, 0); 671 tcg_gen_movi_i32(cpu_VF, 0); 672 } 673 674 /* dest = T0 + T1; compute C, N, V and Z flags */ 675 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 676 { 677 TCGv_i64 result, flag, tmp; 678 result = tcg_temp_new_i64(); 679 flag = tcg_temp_new_i64(); 680 tmp = tcg_temp_new_i64(); 681 682 tcg_gen_movi_i64(tmp, 0); 683 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 684 685 tcg_gen_extrl_i64_i32(cpu_CF, flag); 686 687 gen_set_NZ64(result); 688 689 tcg_gen_xor_i64(flag, result, t0); 690 tcg_gen_xor_i64(tmp, t0, t1); 691 tcg_gen_andc_i64(flag, flag, tmp); 692 tcg_gen_extrh_i64_i32(cpu_VF, flag); 693 694 tcg_gen_mov_i64(dest, result); 695 } 696 697 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 698 { 699 TCGv_i32 t0_32 = tcg_temp_new_i32(); 700 TCGv_i32 t1_32 = tcg_temp_new_i32(); 701 TCGv_i32 tmp = tcg_temp_new_i32(); 702 703 tcg_gen_movi_i32(tmp, 0); 704 tcg_gen_extrl_i64_i32(t0_32, t0); 705 tcg_gen_extrl_i64_i32(t1_32, t1); 706 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 707 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 708 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 709 tcg_gen_xor_i32(tmp, t0_32, t1_32); 710 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 711 tcg_gen_extu_i32_i64(dest, cpu_NF); 712 } 713 714 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 715 { 716 if (sf) { 717 gen_add64_CC(dest, t0, t1); 718 } else { 719 gen_add32_CC(dest, t0, t1); 720 } 721 } 722 723 /* dest = T0 - T1; compute C, N, V and Z flags */ 724 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 725 { 726 /* 64 bit arithmetic */ 727 TCGv_i64 result, flag, tmp; 728 729 result = tcg_temp_new_i64(); 730 flag = tcg_temp_new_i64(); 731 tcg_gen_sub_i64(result, t0, t1); 732 733 gen_set_NZ64(result); 734 735 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 736 tcg_gen_extrl_i64_i32(cpu_CF, flag); 737 738 tcg_gen_xor_i64(flag, result, t0); 739 tmp = tcg_temp_new_i64(); 740 tcg_gen_xor_i64(tmp, t0, t1); 741 tcg_gen_and_i64(flag, flag, tmp); 742 tcg_gen_extrh_i64_i32(cpu_VF, flag); 743 tcg_gen_mov_i64(dest, result); 744 } 745 746 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 747 { 748 /* 32 bit arithmetic */ 749 TCGv_i32 t0_32 = tcg_temp_new_i32(); 750 TCGv_i32 t1_32 = tcg_temp_new_i32(); 751 TCGv_i32 tmp; 752 753 tcg_gen_extrl_i64_i32(t0_32, t0); 754 tcg_gen_extrl_i64_i32(t1_32, t1); 755 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 756 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 757 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 758 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 759 tmp = tcg_temp_new_i32(); 760 tcg_gen_xor_i32(tmp, t0_32, t1_32); 761 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 762 tcg_gen_extu_i32_i64(dest, cpu_NF); 763 } 764 765 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 766 { 767 if (sf) { 768 gen_sub64_CC(dest, t0, t1); 769 } else { 770 gen_sub32_CC(dest, t0, t1); 771 } 772 } 773 774 /* dest = T0 + T1 + CF; do not compute flags. */ 775 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 776 { 777 TCGv_i64 flag = tcg_temp_new_i64(); 778 tcg_gen_extu_i32_i64(flag, cpu_CF); 779 tcg_gen_add_i64(dest, t0, t1); 780 tcg_gen_add_i64(dest, dest, flag); 781 782 if (!sf) { 783 tcg_gen_ext32u_i64(dest, dest); 784 } 785 } 786 787 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 788 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 789 { 790 if (sf) { 791 TCGv_i64 result = tcg_temp_new_i64(); 792 TCGv_i64 cf_64 = tcg_temp_new_i64(); 793 TCGv_i64 vf_64 = tcg_temp_new_i64(); 794 TCGv_i64 tmp = tcg_temp_new_i64(); 795 TCGv_i64 zero = tcg_constant_i64(0); 796 797 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 798 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 799 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 800 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 801 gen_set_NZ64(result); 802 803 tcg_gen_xor_i64(vf_64, result, t0); 804 tcg_gen_xor_i64(tmp, t0, t1); 805 tcg_gen_andc_i64(vf_64, vf_64, tmp); 806 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 807 808 tcg_gen_mov_i64(dest, result); 809 } else { 810 TCGv_i32 t0_32 = tcg_temp_new_i32(); 811 TCGv_i32 t1_32 = tcg_temp_new_i32(); 812 TCGv_i32 tmp = tcg_temp_new_i32(); 813 TCGv_i32 zero = tcg_constant_i32(0); 814 815 tcg_gen_extrl_i64_i32(t0_32, t0); 816 tcg_gen_extrl_i64_i32(t1_32, t1); 817 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 818 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 819 820 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 821 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 822 tcg_gen_xor_i32(tmp, t0_32, t1_32); 823 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 824 tcg_gen_extu_i32_i64(dest, cpu_NF); 825 } 826 } 827 828 /* 829 * Load/Store generators 830 */ 831 832 /* 833 * Store from GPR register to memory. 834 */ 835 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 836 TCGv_i64 tcg_addr, MemOp memop, int memidx, 837 bool iss_valid, 838 unsigned int iss_srt, 839 bool iss_sf, bool iss_ar) 840 { 841 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 842 843 if (iss_valid) { 844 uint32_t syn; 845 846 syn = syn_data_abort_with_iss(0, 847 (memop & MO_SIZE), 848 false, 849 iss_srt, 850 iss_sf, 851 iss_ar, 852 0, 0, 0, 0, 0, false); 853 disas_set_insn_syndrome(s, syn); 854 } 855 } 856 857 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 858 TCGv_i64 tcg_addr, MemOp memop, 859 bool iss_valid, 860 unsigned int iss_srt, 861 bool iss_sf, bool iss_ar) 862 { 863 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 864 iss_valid, iss_srt, iss_sf, iss_ar); 865 } 866 867 /* 868 * Load from memory to GPR register 869 */ 870 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 871 MemOp memop, bool extend, int memidx, 872 bool iss_valid, unsigned int iss_srt, 873 bool iss_sf, bool iss_ar) 874 { 875 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 876 877 if (extend && (memop & MO_SIGN)) { 878 g_assert((memop & MO_SIZE) <= MO_32); 879 tcg_gen_ext32u_i64(dest, dest); 880 } 881 882 if (iss_valid) { 883 uint32_t syn; 884 885 syn = syn_data_abort_with_iss(0, 886 (memop & MO_SIZE), 887 (memop & MO_SIGN) != 0, 888 iss_srt, 889 iss_sf, 890 iss_ar, 891 0, 0, 0, 0, 0, false); 892 disas_set_insn_syndrome(s, syn); 893 } 894 } 895 896 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 897 MemOp memop, bool extend, 898 bool iss_valid, unsigned int iss_srt, 899 bool iss_sf, bool iss_ar) 900 { 901 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 902 iss_valid, iss_srt, iss_sf, iss_ar); 903 } 904 905 /* 906 * Store from FP register to memory 907 */ 908 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 909 { 910 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 911 TCGv_i64 tmplo = tcg_temp_new_i64(); 912 913 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 914 915 if ((mop & MO_SIZE) < MO_128) { 916 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 917 } else { 918 TCGv_i64 tmphi = tcg_temp_new_i64(); 919 TCGv_i128 t16 = tcg_temp_new_i128(); 920 921 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 922 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 923 924 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 925 } 926 } 927 928 /* 929 * Load from memory to FP register 930 */ 931 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 932 { 933 /* This always zero-extends and writes to a full 128 bit wide vector */ 934 TCGv_i64 tmplo = tcg_temp_new_i64(); 935 TCGv_i64 tmphi = NULL; 936 937 if ((mop & MO_SIZE) < MO_128) { 938 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 939 } else { 940 TCGv_i128 t16 = tcg_temp_new_i128(); 941 942 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 943 944 tmphi = tcg_temp_new_i64(); 945 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 946 } 947 948 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 949 950 if (tmphi) { 951 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 952 } 953 clear_vec_high(s, tmphi != NULL, destidx); 954 } 955 956 /* 957 * Vector load/store helpers. 958 * 959 * The principal difference between this and a FP load is that we don't 960 * zero extend as we are filling a partial chunk of the vector register. 961 * These functions don't support 128 bit loads/stores, which would be 962 * normal load/store operations. 963 * 964 * The _i32 versions are useful when operating on 32 bit quantities 965 * (eg for floating point single or using Neon helper functions). 966 */ 967 968 /* Get value of an element within a vector register */ 969 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 970 int element, MemOp memop) 971 { 972 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 973 switch ((unsigned)memop) { 974 case MO_8: 975 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 976 break; 977 case MO_16: 978 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 979 break; 980 case MO_32: 981 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 982 break; 983 case MO_8|MO_SIGN: 984 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 985 break; 986 case MO_16|MO_SIGN: 987 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 988 break; 989 case MO_32|MO_SIGN: 990 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 991 break; 992 case MO_64: 993 case MO_64|MO_SIGN: 994 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 995 break; 996 default: 997 g_assert_not_reached(); 998 } 999 } 1000 1001 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1002 int element, MemOp memop) 1003 { 1004 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1005 switch (memop) { 1006 case MO_8: 1007 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1008 break; 1009 case MO_16: 1010 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1011 break; 1012 case MO_8|MO_SIGN: 1013 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1014 break; 1015 case MO_16|MO_SIGN: 1016 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1017 break; 1018 case MO_32: 1019 case MO_32|MO_SIGN: 1020 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1021 break; 1022 default: 1023 g_assert_not_reached(); 1024 } 1025 } 1026 1027 /* Set value of an element within a vector register */ 1028 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1029 int element, MemOp memop) 1030 { 1031 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1032 switch (memop) { 1033 case MO_8: 1034 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1035 break; 1036 case MO_16: 1037 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1038 break; 1039 case MO_32: 1040 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1041 break; 1042 case MO_64: 1043 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1044 break; 1045 default: 1046 g_assert_not_reached(); 1047 } 1048 } 1049 1050 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1051 int destidx, int element, MemOp memop) 1052 { 1053 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1054 switch (memop) { 1055 case MO_8: 1056 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1057 break; 1058 case MO_16: 1059 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1060 break; 1061 case MO_32: 1062 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1063 break; 1064 default: 1065 g_assert_not_reached(); 1066 } 1067 } 1068 1069 /* Store from vector register to memory */ 1070 static void do_vec_st(DisasContext *s, int srcidx, int element, 1071 TCGv_i64 tcg_addr, MemOp mop) 1072 { 1073 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1074 1075 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1076 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1077 } 1078 1079 /* Load from memory to vector register */ 1080 static void do_vec_ld(DisasContext *s, int destidx, int element, 1081 TCGv_i64 tcg_addr, MemOp mop) 1082 { 1083 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1084 1085 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1086 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1087 } 1088 1089 /* Check that FP/Neon access is enabled. If it is, return 1090 * true. If not, emit code to generate an appropriate exception, 1091 * and return false; the caller should not emit any code for 1092 * the instruction. Note that this check must happen after all 1093 * unallocated-encoding checks (otherwise the syndrome information 1094 * for the resulting exception will be incorrect). 1095 */ 1096 static bool fp_access_check_only(DisasContext *s) 1097 { 1098 if (s->fp_excp_el) { 1099 assert(!s->fp_access_checked); 1100 s->fp_access_checked = true; 1101 1102 gen_exception_insn_el(s, 0, EXCP_UDEF, 1103 syn_fp_access_trap(1, 0xe, false, 0), 1104 s->fp_excp_el); 1105 return false; 1106 } 1107 s->fp_access_checked = true; 1108 return true; 1109 } 1110 1111 static bool fp_access_check(DisasContext *s) 1112 { 1113 if (!fp_access_check_only(s)) { 1114 return false; 1115 } 1116 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1117 gen_exception_insn(s, 0, EXCP_UDEF, 1118 syn_smetrap(SME_ET_Streaming, false)); 1119 return false; 1120 } 1121 return true; 1122 } 1123 1124 /* 1125 * Check that SVE access is enabled. If it is, return true. 1126 * If not, emit code to generate an appropriate exception and return false. 1127 * This function corresponds to CheckSVEEnabled(). 1128 */ 1129 bool sve_access_check(DisasContext *s) 1130 { 1131 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1132 assert(dc_isar_feature(aa64_sme, s)); 1133 if (!sme_sm_enabled_check(s)) { 1134 goto fail_exit; 1135 } 1136 } else if (s->sve_excp_el) { 1137 gen_exception_insn_el(s, 0, EXCP_UDEF, 1138 syn_sve_access_trap(), s->sve_excp_el); 1139 goto fail_exit; 1140 } 1141 s->sve_access_checked = true; 1142 return fp_access_check(s); 1143 1144 fail_exit: 1145 /* Assert that we only raise one exception per instruction. */ 1146 assert(!s->sve_access_checked); 1147 s->sve_access_checked = true; 1148 return false; 1149 } 1150 1151 /* 1152 * Check that SME access is enabled, raise an exception if not. 1153 * Note that this function corresponds to CheckSMEAccess and is 1154 * only used directly for cpregs. 1155 */ 1156 static bool sme_access_check(DisasContext *s) 1157 { 1158 if (s->sme_excp_el) { 1159 gen_exception_insn_el(s, 0, EXCP_UDEF, 1160 syn_smetrap(SME_ET_AccessTrap, false), 1161 s->sme_excp_el); 1162 return false; 1163 } 1164 return true; 1165 } 1166 1167 /* This function corresponds to CheckSMEEnabled. */ 1168 bool sme_enabled_check(DisasContext *s) 1169 { 1170 /* 1171 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1172 * to be zero when fp_excp_el has priority. This is because we need 1173 * sme_excp_el by itself for cpregs access checks. 1174 */ 1175 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1176 s->fp_access_checked = true; 1177 return sme_access_check(s); 1178 } 1179 return fp_access_check_only(s); 1180 } 1181 1182 /* Common subroutine for CheckSMEAnd*Enabled. */ 1183 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1184 { 1185 if (!sme_enabled_check(s)) { 1186 return false; 1187 } 1188 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1189 gen_exception_insn(s, 0, EXCP_UDEF, 1190 syn_smetrap(SME_ET_NotStreaming, false)); 1191 return false; 1192 } 1193 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1194 gen_exception_insn(s, 0, EXCP_UDEF, 1195 syn_smetrap(SME_ET_InactiveZA, false)); 1196 return false; 1197 } 1198 return true; 1199 } 1200 1201 /* 1202 * This utility function is for doing register extension with an 1203 * optional shift. You will likely want to pass a temporary for the 1204 * destination register. See DecodeRegExtend() in the ARM ARM. 1205 */ 1206 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1207 int option, unsigned int shift) 1208 { 1209 int extsize = extract32(option, 0, 2); 1210 bool is_signed = extract32(option, 2, 1); 1211 1212 if (is_signed) { 1213 switch (extsize) { 1214 case 0: 1215 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1216 break; 1217 case 1: 1218 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1219 break; 1220 case 2: 1221 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1222 break; 1223 case 3: 1224 tcg_gen_mov_i64(tcg_out, tcg_in); 1225 break; 1226 } 1227 } else { 1228 switch (extsize) { 1229 case 0: 1230 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1231 break; 1232 case 1: 1233 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1234 break; 1235 case 2: 1236 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1237 break; 1238 case 3: 1239 tcg_gen_mov_i64(tcg_out, tcg_in); 1240 break; 1241 } 1242 } 1243 1244 if (shift) { 1245 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1246 } 1247 } 1248 1249 static inline void gen_check_sp_alignment(DisasContext *s) 1250 { 1251 /* The AArch64 architecture mandates that (if enabled via PSTATE 1252 * or SCTLR bits) there is a check that SP is 16-aligned on every 1253 * SP-relative load or store (with an exception generated if it is not). 1254 * In line with general QEMU practice regarding misaligned accesses, 1255 * we omit these checks for the sake of guest program performance. 1256 * This function is provided as a hook so we can more easily add these 1257 * checks in future (possibly as a "favour catching guest program bugs 1258 * over speed" user selectable option). 1259 */ 1260 } 1261 1262 /* 1263 * This provides a simple table based table lookup decoder. It is 1264 * intended to be used when the relevant bits for decode are too 1265 * awkwardly placed and switch/if based logic would be confusing and 1266 * deeply nested. Since it's a linear search through the table, tables 1267 * should be kept small. 1268 * 1269 * It returns the first handler where insn & mask == pattern, or 1270 * NULL if there is no match. 1271 * The table is terminated by an empty mask (i.e. 0) 1272 */ 1273 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1274 uint32_t insn) 1275 { 1276 const AArch64DecodeTable *tptr = table; 1277 1278 while (tptr->mask) { 1279 if ((insn & tptr->mask) == tptr->pattern) { 1280 return tptr->disas_fn; 1281 } 1282 tptr++; 1283 } 1284 return NULL; 1285 } 1286 1287 /* 1288 * The instruction disassembly implemented here matches 1289 * the instruction encoding classifications in chapter C4 1290 * of the ARM Architecture Reference Manual (DDI0487B_a); 1291 * classification names and decode diagrams here should generally 1292 * match up with those in the manual. 1293 */ 1294 1295 static bool trans_B(DisasContext *s, arg_i *a) 1296 { 1297 reset_btype(s); 1298 gen_goto_tb(s, 0, a->imm); 1299 return true; 1300 } 1301 1302 static bool trans_BL(DisasContext *s, arg_i *a) 1303 { 1304 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1305 reset_btype(s); 1306 gen_goto_tb(s, 0, a->imm); 1307 return true; 1308 } 1309 1310 1311 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1312 { 1313 DisasLabel match; 1314 TCGv_i64 tcg_cmp; 1315 1316 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1317 reset_btype(s); 1318 1319 match = gen_disas_label(s); 1320 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1321 tcg_cmp, 0, match.label); 1322 gen_goto_tb(s, 0, 4); 1323 set_disas_label(s, match); 1324 gen_goto_tb(s, 1, a->imm); 1325 return true; 1326 } 1327 1328 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1329 { 1330 DisasLabel match; 1331 TCGv_i64 tcg_cmp; 1332 1333 tcg_cmp = tcg_temp_new_i64(); 1334 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1335 1336 reset_btype(s); 1337 1338 match = gen_disas_label(s); 1339 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1340 tcg_cmp, 0, match.label); 1341 gen_goto_tb(s, 0, 4); 1342 set_disas_label(s, match); 1343 gen_goto_tb(s, 1, a->imm); 1344 return true; 1345 } 1346 1347 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1348 { 1349 reset_btype(s); 1350 if (a->cond < 0x0e) { 1351 /* genuinely conditional branches */ 1352 DisasLabel match = gen_disas_label(s); 1353 arm_gen_test_cc(a->cond, match.label); 1354 gen_goto_tb(s, 0, 4); 1355 set_disas_label(s, match); 1356 gen_goto_tb(s, 1, a->imm); 1357 } else { 1358 /* 0xe and 0xf are both "always" conditions */ 1359 gen_goto_tb(s, 0, a->imm); 1360 } 1361 return true; 1362 } 1363 1364 static void set_btype_for_br(DisasContext *s, int rn) 1365 { 1366 if (dc_isar_feature(aa64_bti, s)) { 1367 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1368 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1369 } 1370 } 1371 1372 static void set_btype_for_blr(DisasContext *s) 1373 { 1374 if (dc_isar_feature(aa64_bti, s)) { 1375 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1376 set_btype(s, 2); 1377 } 1378 } 1379 1380 static bool trans_BR(DisasContext *s, arg_r *a) 1381 { 1382 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1383 set_btype_for_br(s, a->rn); 1384 s->base.is_jmp = DISAS_JUMP; 1385 return true; 1386 } 1387 1388 static bool trans_BLR(DisasContext *s, arg_r *a) 1389 { 1390 TCGv_i64 dst = cpu_reg(s, a->rn); 1391 TCGv_i64 lr = cpu_reg(s, 30); 1392 if (dst == lr) { 1393 TCGv_i64 tmp = tcg_temp_new_i64(); 1394 tcg_gen_mov_i64(tmp, dst); 1395 dst = tmp; 1396 } 1397 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1398 gen_a64_set_pc(s, dst); 1399 set_btype_for_blr(s); 1400 s->base.is_jmp = DISAS_JUMP; 1401 return true; 1402 } 1403 1404 static bool trans_RET(DisasContext *s, arg_r *a) 1405 { 1406 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1407 s->base.is_jmp = DISAS_JUMP; 1408 return true; 1409 } 1410 1411 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1412 TCGv_i64 modifier, bool use_key_a) 1413 { 1414 TCGv_i64 truedst; 1415 /* 1416 * Return the branch target for a BRAA/RETA/etc, which is either 1417 * just the destination dst, or that value with the pauth check 1418 * done and the code removed from the high bits. 1419 */ 1420 if (!s->pauth_active) { 1421 return dst; 1422 } 1423 1424 truedst = tcg_temp_new_i64(); 1425 if (use_key_a) { 1426 gen_helper_autia(truedst, cpu_env, dst, modifier); 1427 } else { 1428 gen_helper_autib(truedst, cpu_env, dst, modifier); 1429 } 1430 return truedst; 1431 } 1432 1433 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1434 { 1435 TCGv_i64 dst; 1436 1437 if (!dc_isar_feature(aa64_pauth, s)) { 1438 return false; 1439 } 1440 1441 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1442 gen_a64_set_pc(s, dst); 1443 set_btype_for_br(s, a->rn); 1444 s->base.is_jmp = DISAS_JUMP; 1445 return true; 1446 } 1447 1448 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1449 { 1450 TCGv_i64 dst, lr; 1451 1452 if (!dc_isar_feature(aa64_pauth, s)) { 1453 return false; 1454 } 1455 1456 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1457 lr = cpu_reg(s, 30); 1458 if (dst == lr) { 1459 TCGv_i64 tmp = tcg_temp_new_i64(); 1460 tcg_gen_mov_i64(tmp, dst); 1461 dst = tmp; 1462 } 1463 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1464 gen_a64_set_pc(s, dst); 1465 set_btype_for_blr(s); 1466 s->base.is_jmp = DISAS_JUMP; 1467 return true; 1468 } 1469 1470 static bool trans_RETA(DisasContext *s, arg_reta *a) 1471 { 1472 TCGv_i64 dst; 1473 1474 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1475 gen_a64_set_pc(s, dst); 1476 s->base.is_jmp = DISAS_JUMP; 1477 return true; 1478 } 1479 1480 static bool trans_BRA(DisasContext *s, arg_bra *a) 1481 { 1482 TCGv_i64 dst; 1483 1484 if (!dc_isar_feature(aa64_pauth, s)) { 1485 return false; 1486 } 1487 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1488 gen_a64_set_pc(s, dst); 1489 set_btype_for_br(s, a->rn); 1490 s->base.is_jmp = DISAS_JUMP; 1491 return true; 1492 } 1493 1494 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1495 { 1496 TCGv_i64 dst, lr; 1497 1498 if (!dc_isar_feature(aa64_pauth, s)) { 1499 return false; 1500 } 1501 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1502 lr = cpu_reg(s, 30); 1503 if (dst == lr) { 1504 TCGv_i64 tmp = tcg_temp_new_i64(); 1505 tcg_gen_mov_i64(tmp, dst); 1506 dst = tmp; 1507 } 1508 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1509 gen_a64_set_pc(s, dst); 1510 set_btype_for_blr(s); 1511 s->base.is_jmp = DISAS_JUMP; 1512 return true; 1513 } 1514 1515 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1516 { 1517 TCGv_i64 dst; 1518 1519 if (s->current_el == 0) { 1520 return false; 1521 } 1522 if (s->fgt_eret) { 1523 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1524 return true; 1525 } 1526 dst = tcg_temp_new_i64(); 1527 tcg_gen_ld_i64(dst, cpu_env, 1528 offsetof(CPUARMState, elr_el[s->current_el])); 1529 1530 translator_io_start(&s->base); 1531 1532 gen_helper_exception_return(cpu_env, dst); 1533 /* Must exit loop to check un-masked IRQs */ 1534 s->base.is_jmp = DISAS_EXIT; 1535 return true; 1536 } 1537 1538 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1539 { 1540 TCGv_i64 dst; 1541 1542 if (!dc_isar_feature(aa64_pauth, s)) { 1543 return false; 1544 } 1545 if (s->current_el == 0) { 1546 return false; 1547 } 1548 /* The FGT trap takes precedence over an auth trap. */ 1549 if (s->fgt_eret) { 1550 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1551 return true; 1552 } 1553 dst = tcg_temp_new_i64(); 1554 tcg_gen_ld_i64(dst, cpu_env, 1555 offsetof(CPUARMState, elr_el[s->current_el])); 1556 1557 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1558 1559 translator_io_start(&s->base); 1560 1561 gen_helper_exception_return(cpu_env, dst); 1562 /* Must exit loop to check un-masked IRQs */ 1563 s->base.is_jmp = DISAS_EXIT; 1564 return true; 1565 } 1566 1567 /* HINT instruction group, including various allocated HINTs */ 1568 static void handle_hint(DisasContext *s, uint32_t insn, 1569 unsigned int op1, unsigned int op2, unsigned int crm) 1570 { 1571 unsigned int selector = crm << 3 | op2; 1572 1573 if (op1 != 3) { 1574 unallocated_encoding(s); 1575 return; 1576 } 1577 1578 switch (selector) { 1579 case 0b00000: /* NOP */ 1580 break; 1581 case 0b00011: /* WFI */ 1582 s->base.is_jmp = DISAS_WFI; 1583 break; 1584 case 0b00001: /* YIELD */ 1585 /* When running in MTTCG we don't generate jumps to the yield and 1586 * WFE helpers as it won't affect the scheduling of other vCPUs. 1587 * If we wanted to more completely model WFE/SEV so we don't busy 1588 * spin unnecessarily we would need to do something more involved. 1589 */ 1590 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1591 s->base.is_jmp = DISAS_YIELD; 1592 } 1593 break; 1594 case 0b00010: /* WFE */ 1595 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1596 s->base.is_jmp = DISAS_WFE; 1597 } 1598 break; 1599 case 0b00100: /* SEV */ 1600 case 0b00101: /* SEVL */ 1601 case 0b00110: /* DGH */ 1602 /* we treat all as NOP at least for now */ 1603 break; 1604 case 0b00111: /* XPACLRI */ 1605 if (s->pauth_active) { 1606 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1607 } 1608 break; 1609 case 0b01000: /* PACIA1716 */ 1610 if (s->pauth_active) { 1611 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1612 } 1613 break; 1614 case 0b01010: /* PACIB1716 */ 1615 if (s->pauth_active) { 1616 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1617 } 1618 break; 1619 case 0b01100: /* AUTIA1716 */ 1620 if (s->pauth_active) { 1621 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1622 } 1623 break; 1624 case 0b01110: /* AUTIB1716 */ 1625 if (s->pauth_active) { 1626 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1627 } 1628 break; 1629 case 0b10000: /* ESB */ 1630 /* Without RAS, we must implement this as NOP. */ 1631 if (dc_isar_feature(aa64_ras, s)) { 1632 /* 1633 * QEMU does not have a source of physical SErrors, 1634 * so we are only concerned with virtual SErrors. 1635 * The pseudocode in the ARM for this case is 1636 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1637 * AArch64.vESBOperation(); 1638 * Most of the condition can be evaluated at translation time. 1639 * Test for EL2 present, and defer test for SEL2 to runtime. 1640 */ 1641 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1642 gen_helper_vesb(cpu_env); 1643 } 1644 } 1645 break; 1646 case 0b11000: /* PACIAZ */ 1647 if (s->pauth_active) { 1648 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1649 tcg_constant_i64(0)); 1650 } 1651 break; 1652 case 0b11001: /* PACIASP */ 1653 if (s->pauth_active) { 1654 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1655 } 1656 break; 1657 case 0b11010: /* PACIBZ */ 1658 if (s->pauth_active) { 1659 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1660 tcg_constant_i64(0)); 1661 } 1662 break; 1663 case 0b11011: /* PACIBSP */ 1664 if (s->pauth_active) { 1665 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1666 } 1667 break; 1668 case 0b11100: /* AUTIAZ */ 1669 if (s->pauth_active) { 1670 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1671 tcg_constant_i64(0)); 1672 } 1673 break; 1674 case 0b11101: /* AUTIASP */ 1675 if (s->pauth_active) { 1676 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1677 } 1678 break; 1679 case 0b11110: /* AUTIBZ */ 1680 if (s->pauth_active) { 1681 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1682 tcg_constant_i64(0)); 1683 } 1684 break; 1685 case 0b11111: /* AUTIBSP */ 1686 if (s->pauth_active) { 1687 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1688 } 1689 break; 1690 default: 1691 /* default specified as NOP equivalent */ 1692 break; 1693 } 1694 } 1695 1696 static void gen_clrex(DisasContext *s, uint32_t insn) 1697 { 1698 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1699 } 1700 1701 /* CLREX, DSB, DMB, ISB */ 1702 static void handle_sync(DisasContext *s, uint32_t insn, 1703 unsigned int op1, unsigned int op2, unsigned int crm) 1704 { 1705 TCGBar bar; 1706 1707 if (op1 != 3) { 1708 unallocated_encoding(s); 1709 return; 1710 } 1711 1712 switch (op2) { 1713 case 2: /* CLREX */ 1714 gen_clrex(s, insn); 1715 return; 1716 case 4: /* DSB */ 1717 case 5: /* DMB */ 1718 switch (crm & 3) { 1719 case 1: /* MBReqTypes_Reads */ 1720 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1721 break; 1722 case 2: /* MBReqTypes_Writes */ 1723 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1724 break; 1725 default: /* MBReqTypes_All */ 1726 bar = TCG_BAR_SC | TCG_MO_ALL; 1727 break; 1728 } 1729 tcg_gen_mb(bar); 1730 return; 1731 case 6: /* ISB */ 1732 /* We need to break the TB after this insn to execute 1733 * a self-modified code correctly and also to take 1734 * any pending interrupts immediately. 1735 */ 1736 reset_btype(s); 1737 gen_goto_tb(s, 0, 4); 1738 return; 1739 1740 case 7: /* SB */ 1741 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1742 goto do_unallocated; 1743 } 1744 /* 1745 * TODO: There is no speculation barrier opcode for TCG; 1746 * MB and end the TB instead. 1747 */ 1748 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1749 gen_goto_tb(s, 0, 4); 1750 return; 1751 1752 default: 1753 do_unallocated: 1754 unallocated_encoding(s); 1755 return; 1756 } 1757 } 1758 1759 static void gen_xaflag(void) 1760 { 1761 TCGv_i32 z = tcg_temp_new_i32(); 1762 1763 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1764 1765 /* 1766 * (!C & !Z) << 31 1767 * (!(C | Z)) << 31 1768 * ~((C | Z) << 31) 1769 * ~-(C | Z) 1770 * (C | Z) - 1 1771 */ 1772 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1773 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1774 1775 /* !(Z & C) */ 1776 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1777 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1778 1779 /* (!C & Z) << 31 -> -(Z & ~C) */ 1780 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1781 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1782 1783 /* C | Z */ 1784 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1785 } 1786 1787 static void gen_axflag(void) 1788 { 1789 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1790 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1791 1792 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1793 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1794 1795 tcg_gen_movi_i32(cpu_NF, 0); 1796 tcg_gen_movi_i32(cpu_VF, 0); 1797 } 1798 1799 /* MSR (immediate) - move immediate to processor state field */ 1800 static void handle_msr_i(DisasContext *s, uint32_t insn, 1801 unsigned int op1, unsigned int op2, unsigned int crm) 1802 { 1803 int op = op1 << 3 | op2; 1804 1805 /* End the TB by default, chaining is ok. */ 1806 s->base.is_jmp = DISAS_TOO_MANY; 1807 1808 switch (op) { 1809 case 0x00: /* CFINV */ 1810 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1811 goto do_unallocated; 1812 } 1813 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1814 s->base.is_jmp = DISAS_NEXT; 1815 break; 1816 1817 case 0x01: /* XAFlag */ 1818 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1819 goto do_unallocated; 1820 } 1821 gen_xaflag(); 1822 s->base.is_jmp = DISAS_NEXT; 1823 break; 1824 1825 case 0x02: /* AXFlag */ 1826 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1827 goto do_unallocated; 1828 } 1829 gen_axflag(); 1830 s->base.is_jmp = DISAS_NEXT; 1831 break; 1832 1833 case 0x03: /* UAO */ 1834 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1835 goto do_unallocated; 1836 } 1837 if (crm & 1) { 1838 set_pstate_bits(PSTATE_UAO); 1839 } else { 1840 clear_pstate_bits(PSTATE_UAO); 1841 } 1842 gen_rebuild_hflags(s); 1843 break; 1844 1845 case 0x04: /* PAN */ 1846 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1847 goto do_unallocated; 1848 } 1849 if (crm & 1) { 1850 set_pstate_bits(PSTATE_PAN); 1851 } else { 1852 clear_pstate_bits(PSTATE_PAN); 1853 } 1854 gen_rebuild_hflags(s); 1855 break; 1856 1857 case 0x05: /* SPSel */ 1858 if (s->current_el == 0) { 1859 goto do_unallocated; 1860 } 1861 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1862 break; 1863 1864 case 0x19: /* SSBS */ 1865 if (!dc_isar_feature(aa64_ssbs, s)) { 1866 goto do_unallocated; 1867 } 1868 if (crm & 1) { 1869 set_pstate_bits(PSTATE_SSBS); 1870 } else { 1871 clear_pstate_bits(PSTATE_SSBS); 1872 } 1873 /* Don't need to rebuild hflags since SSBS is a nop */ 1874 break; 1875 1876 case 0x1a: /* DIT */ 1877 if (!dc_isar_feature(aa64_dit, s)) { 1878 goto do_unallocated; 1879 } 1880 if (crm & 1) { 1881 set_pstate_bits(PSTATE_DIT); 1882 } else { 1883 clear_pstate_bits(PSTATE_DIT); 1884 } 1885 /* There's no need to rebuild hflags because DIT is a nop */ 1886 break; 1887 1888 case 0x1e: /* DAIFSet */ 1889 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1890 break; 1891 1892 case 0x1f: /* DAIFClear */ 1893 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1894 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1895 s->base.is_jmp = DISAS_UPDATE_EXIT; 1896 break; 1897 1898 case 0x1c: /* TCO */ 1899 if (dc_isar_feature(aa64_mte, s)) { 1900 /* Full MTE is enabled -- set the TCO bit as directed. */ 1901 if (crm & 1) { 1902 set_pstate_bits(PSTATE_TCO); 1903 } else { 1904 clear_pstate_bits(PSTATE_TCO); 1905 } 1906 gen_rebuild_hflags(s); 1907 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1908 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1909 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1910 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1911 s->base.is_jmp = DISAS_NEXT; 1912 } else { 1913 goto do_unallocated; 1914 } 1915 break; 1916 1917 case 0x1b: /* SVCR* */ 1918 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 1919 goto do_unallocated; 1920 } 1921 if (sme_access_check(s)) { 1922 int old = s->pstate_sm | (s->pstate_za << 1); 1923 int new = (crm & 1) * 3; 1924 int msk = (crm >> 1) & 3; 1925 1926 if ((old ^ new) & msk) { 1927 /* At least one bit changes. */ 1928 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 1929 tcg_constant_i32(msk)); 1930 } else { 1931 s->base.is_jmp = DISAS_NEXT; 1932 } 1933 } 1934 break; 1935 1936 default: 1937 do_unallocated: 1938 unallocated_encoding(s); 1939 return; 1940 } 1941 } 1942 1943 static void gen_get_nzcv(TCGv_i64 tcg_rt) 1944 { 1945 TCGv_i32 tmp = tcg_temp_new_i32(); 1946 TCGv_i32 nzcv = tcg_temp_new_i32(); 1947 1948 /* build bit 31, N */ 1949 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 1950 /* build bit 30, Z */ 1951 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 1952 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 1953 /* build bit 29, C */ 1954 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 1955 /* build bit 28, V */ 1956 tcg_gen_shri_i32(tmp, cpu_VF, 31); 1957 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 1958 /* generate result */ 1959 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 1960 } 1961 1962 static void gen_set_nzcv(TCGv_i64 tcg_rt) 1963 { 1964 TCGv_i32 nzcv = tcg_temp_new_i32(); 1965 1966 /* take NZCV from R[t] */ 1967 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 1968 1969 /* bit 31, N */ 1970 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 1971 /* bit 30, Z */ 1972 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 1973 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 1974 /* bit 29, C */ 1975 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 1976 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 1977 /* bit 28, V */ 1978 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 1979 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 1980 } 1981 1982 static void gen_sysreg_undef(DisasContext *s, bool isread, 1983 uint8_t op0, uint8_t op1, uint8_t op2, 1984 uint8_t crn, uint8_t crm, uint8_t rt) 1985 { 1986 /* 1987 * Generate code to emit an UNDEF with correct syndrome 1988 * information for a failed system register access. 1989 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 1990 * but if FEAT_IDST is implemented then read accesses to registers 1991 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 1992 * syndrome. 1993 */ 1994 uint32_t syndrome; 1995 1996 if (isread && dc_isar_feature(aa64_ids, s) && 1997 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 1998 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 1999 } else { 2000 syndrome = syn_uncategorized(); 2001 } 2002 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2003 } 2004 2005 /* MRS - move from system register 2006 * MSR (register) - move to system register 2007 * SYS 2008 * SYSL 2009 * These are all essentially the same insn in 'read' and 'write' 2010 * versions, with varying op0 fields. 2011 */ 2012 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2013 unsigned int op0, unsigned int op1, unsigned int op2, 2014 unsigned int crn, unsigned int crm, unsigned int rt) 2015 { 2016 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2017 crn, crm, op0, op1, op2); 2018 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2019 bool need_exit_tb = false; 2020 TCGv_ptr tcg_ri = NULL; 2021 TCGv_i64 tcg_rt; 2022 2023 if (!ri) { 2024 /* Unknown register; this might be a guest error or a QEMU 2025 * unimplemented feature. 2026 */ 2027 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2028 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2029 isread ? "read" : "write", op0, op1, crn, crm, op2); 2030 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2031 return; 2032 } 2033 2034 /* Check access permissions */ 2035 if (!cp_access_ok(s->current_el, ri, isread)) { 2036 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2037 return; 2038 } 2039 2040 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2041 /* Emit code to perform further access permissions checks at 2042 * runtime; this may result in an exception. 2043 */ 2044 uint32_t syndrome; 2045 2046 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2047 gen_a64_update_pc(s, 0); 2048 tcg_ri = tcg_temp_new_ptr(); 2049 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2050 tcg_constant_i32(key), 2051 tcg_constant_i32(syndrome), 2052 tcg_constant_i32(isread)); 2053 } else if (ri->type & ARM_CP_RAISES_EXC) { 2054 /* 2055 * The readfn or writefn might raise an exception; 2056 * synchronize the CPU state in case it does. 2057 */ 2058 gen_a64_update_pc(s, 0); 2059 } 2060 2061 /* Handle special cases first */ 2062 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2063 case 0: 2064 break; 2065 case ARM_CP_NOP: 2066 return; 2067 case ARM_CP_NZCV: 2068 tcg_rt = cpu_reg(s, rt); 2069 if (isread) { 2070 gen_get_nzcv(tcg_rt); 2071 } else { 2072 gen_set_nzcv(tcg_rt); 2073 } 2074 return; 2075 case ARM_CP_CURRENTEL: 2076 /* Reads as current EL value from pstate, which is 2077 * guaranteed to be constant by the tb flags. 2078 */ 2079 tcg_rt = cpu_reg(s, rt); 2080 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2081 return; 2082 case ARM_CP_DC_ZVA: 2083 /* Writes clear the aligned block of memory which rt points into. */ 2084 if (s->mte_active[0]) { 2085 int desc = 0; 2086 2087 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2088 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2089 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2090 2091 tcg_rt = tcg_temp_new_i64(); 2092 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2093 tcg_constant_i32(desc), cpu_reg(s, rt)); 2094 } else { 2095 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2096 } 2097 gen_helper_dc_zva(cpu_env, tcg_rt); 2098 return; 2099 case ARM_CP_DC_GVA: 2100 { 2101 TCGv_i64 clean_addr, tag; 2102 2103 /* 2104 * DC_GVA, like DC_ZVA, requires that we supply the original 2105 * pointer for an invalid page. Probe that address first. 2106 */ 2107 tcg_rt = cpu_reg(s, rt); 2108 clean_addr = clean_data_tbi(s, tcg_rt); 2109 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2110 2111 if (s->ata) { 2112 /* Extract the tag from the register to match STZGM. */ 2113 tag = tcg_temp_new_i64(); 2114 tcg_gen_shri_i64(tag, tcg_rt, 56); 2115 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2116 } 2117 } 2118 return; 2119 case ARM_CP_DC_GZVA: 2120 { 2121 TCGv_i64 clean_addr, tag; 2122 2123 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2124 tcg_rt = cpu_reg(s, rt); 2125 clean_addr = clean_data_tbi(s, tcg_rt); 2126 gen_helper_dc_zva(cpu_env, clean_addr); 2127 2128 if (s->ata) { 2129 /* Extract the tag from the register to match STZGM. */ 2130 tag = tcg_temp_new_i64(); 2131 tcg_gen_shri_i64(tag, tcg_rt, 56); 2132 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2133 } 2134 } 2135 return; 2136 default: 2137 g_assert_not_reached(); 2138 } 2139 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2140 return; 2141 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2142 return; 2143 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2144 return; 2145 } 2146 2147 if (ri->type & ARM_CP_IO) { 2148 /* I/O operations must end the TB here (whether read or write) */ 2149 need_exit_tb = translator_io_start(&s->base); 2150 } 2151 2152 tcg_rt = cpu_reg(s, rt); 2153 2154 if (isread) { 2155 if (ri->type & ARM_CP_CONST) { 2156 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2157 } else if (ri->readfn) { 2158 if (!tcg_ri) { 2159 tcg_ri = gen_lookup_cp_reg(key); 2160 } 2161 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2162 } else { 2163 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2164 } 2165 } else { 2166 if (ri->type & ARM_CP_CONST) { 2167 /* If not forbidden by access permissions, treat as WI */ 2168 return; 2169 } else if (ri->writefn) { 2170 if (!tcg_ri) { 2171 tcg_ri = gen_lookup_cp_reg(key); 2172 } 2173 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2174 } else { 2175 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2176 } 2177 } 2178 2179 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2180 /* 2181 * A write to any coprocessor regiser that ends a TB 2182 * must rebuild the hflags for the next TB. 2183 */ 2184 gen_rebuild_hflags(s); 2185 /* 2186 * We default to ending the TB on a coprocessor register write, 2187 * but allow this to be suppressed by the register definition 2188 * (usually only necessary to work around guest bugs). 2189 */ 2190 need_exit_tb = true; 2191 } 2192 if (need_exit_tb) { 2193 s->base.is_jmp = DISAS_UPDATE_EXIT; 2194 } 2195 } 2196 2197 /* System 2198 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2199 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2200 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2201 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2202 */ 2203 static void disas_system(DisasContext *s, uint32_t insn) 2204 { 2205 unsigned int l, op0, op1, crn, crm, op2, rt; 2206 l = extract32(insn, 21, 1); 2207 op0 = extract32(insn, 19, 2); 2208 op1 = extract32(insn, 16, 3); 2209 crn = extract32(insn, 12, 4); 2210 crm = extract32(insn, 8, 4); 2211 op2 = extract32(insn, 5, 3); 2212 rt = extract32(insn, 0, 5); 2213 2214 if (op0 == 0) { 2215 if (l || rt != 31) { 2216 unallocated_encoding(s); 2217 return; 2218 } 2219 switch (crn) { 2220 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2221 handle_hint(s, insn, op1, op2, crm); 2222 break; 2223 case 3: /* CLREX, DSB, DMB, ISB */ 2224 handle_sync(s, insn, op1, op2, crm); 2225 break; 2226 case 4: /* MSR (immediate) */ 2227 handle_msr_i(s, insn, op1, op2, crm); 2228 break; 2229 default: 2230 unallocated_encoding(s); 2231 break; 2232 } 2233 return; 2234 } 2235 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2236 } 2237 2238 /* Exception generation 2239 * 2240 * 31 24 23 21 20 5 4 2 1 0 2241 * +-----------------+-----+------------------------+-----+----+ 2242 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2243 * +-----------------------+------------------------+----------+ 2244 */ 2245 static void disas_exc(DisasContext *s, uint32_t insn) 2246 { 2247 int opc = extract32(insn, 21, 3); 2248 int op2_ll = extract32(insn, 0, 5); 2249 int imm16 = extract32(insn, 5, 16); 2250 uint32_t syndrome; 2251 2252 switch (opc) { 2253 case 0: 2254 /* For SVC, HVC and SMC we advance the single-step state 2255 * machine before taking the exception. This is architecturally 2256 * mandated, to ensure that single-stepping a system call 2257 * instruction works properly. 2258 */ 2259 switch (op2_ll) { 2260 case 1: /* SVC */ 2261 syndrome = syn_aa64_svc(imm16); 2262 if (s->fgt_svc) { 2263 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2264 break; 2265 } 2266 gen_ss_advance(s); 2267 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2268 break; 2269 case 2: /* HVC */ 2270 if (s->current_el == 0) { 2271 unallocated_encoding(s); 2272 break; 2273 } 2274 /* The pre HVC helper handles cases when HVC gets trapped 2275 * as an undefined insn by runtime configuration. 2276 */ 2277 gen_a64_update_pc(s, 0); 2278 gen_helper_pre_hvc(cpu_env); 2279 gen_ss_advance(s); 2280 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2281 break; 2282 case 3: /* SMC */ 2283 if (s->current_el == 0) { 2284 unallocated_encoding(s); 2285 break; 2286 } 2287 gen_a64_update_pc(s, 0); 2288 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2289 gen_ss_advance(s); 2290 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2291 break; 2292 default: 2293 unallocated_encoding(s); 2294 break; 2295 } 2296 break; 2297 case 1: 2298 if (op2_ll != 0) { 2299 unallocated_encoding(s); 2300 break; 2301 } 2302 /* BRK */ 2303 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2304 break; 2305 case 2: 2306 if (op2_ll != 0) { 2307 unallocated_encoding(s); 2308 break; 2309 } 2310 /* HLT. This has two purposes. 2311 * Architecturally, it is an external halting debug instruction. 2312 * Since QEMU doesn't implement external debug, we treat this as 2313 * it is required for halting debug disabled: it will UNDEF. 2314 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2315 */ 2316 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2317 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2318 } else { 2319 unallocated_encoding(s); 2320 } 2321 break; 2322 case 5: 2323 if (op2_ll < 1 || op2_ll > 3) { 2324 unallocated_encoding(s); 2325 break; 2326 } 2327 /* DCPS1, DCPS2, DCPS3 */ 2328 unallocated_encoding(s); 2329 break; 2330 default: 2331 unallocated_encoding(s); 2332 break; 2333 } 2334 } 2335 2336 /* Branches, exception generating and system instructions */ 2337 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2338 { 2339 switch (extract32(insn, 25, 7)) { 2340 case 0x6a: /* Exception generation / System */ 2341 if (insn & (1 << 24)) { 2342 if (extract32(insn, 22, 2) == 0) { 2343 disas_system(s, insn); 2344 } else { 2345 unallocated_encoding(s); 2346 } 2347 } else { 2348 disas_exc(s, insn); 2349 } 2350 break; 2351 default: 2352 unallocated_encoding(s); 2353 break; 2354 } 2355 } 2356 2357 /* 2358 * Load/Store exclusive instructions are implemented by remembering 2359 * the value/address loaded, and seeing if these are the same 2360 * when the store is performed. This is not actually the architecturally 2361 * mandated semantics, but it works for typical guest code sequences 2362 * and avoids having to monitor regular stores. 2363 * 2364 * The store exclusive uses the atomic cmpxchg primitives to avoid 2365 * races in multi-threaded linux-user and when MTTCG softmmu is 2366 * enabled. 2367 */ 2368 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2369 int size, bool is_pair) 2370 { 2371 int idx = get_mem_index(s); 2372 TCGv_i64 dirty_addr, clean_addr; 2373 MemOp memop; 2374 2375 /* 2376 * For pairs: 2377 * if size == 2, the operation is single-copy atomic for the doubleword. 2378 * if size == 3, the operation is single-copy atomic for *each* doubleword, 2379 * not the entire quadword, however it must be quadword aligned. 2380 */ 2381 memop = size + is_pair; 2382 if (memop == MO_128) { 2383 memop = finalize_memop_atom(s, MO_128 | MO_ALIGN, 2384 MO_ATOM_IFALIGN_PAIR); 2385 } else { 2386 memop = finalize_memop(s, memop | MO_ALIGN); 2387 } 2388 2389 s->is_ldex = true; 2390 dirty_addr = cpu_reg_sp(s, rn); 2391 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2392 2393 g_assert(size <= 3); 2394 if (is_pair) { 2395 g_assert(size >= 2); 2396 if (size == 2) { 2397 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2398 if (s->be_data == MO_LE) { 2399 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2400 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2401 } else { 2402 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2403 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2404 } 2405 } else { 2406 TCGv_i128 t16 = tcg_temp_new_i128(); 2407 2408 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2409 2410 if (s->be_data == MO_LE) { 2411 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2412 cpu_exclusive_high, t16); 2413 } else { 2414 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2415 cpu_exclusive_val, t16); 2416 } 2417 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2418 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2419 } 2420 } else { 2421 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2422 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2423 } 2424 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2425 } 2426 2427 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2428 int rn, int size, int is_pair) 2429 { 2430 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2431 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2432 * [addr] = {Rt}; 2433 * if (is_pair) { 2434 * [addr + datasize] = {Rt2}; 2435 * } 2436 * {Rd} = 0; 2437 * } else { 2438 * {Rd} = 1; 2439 * } 2440 * env->exclusive_addr = -1; 2441 */ 2442 TCGLabel *fail_label = gen_new_label(); 2443 TCGLabel *done_label = gen_new_label(); 2444 TCGv_i64 tmp, dirty_addr, clean_addr; 2445 MemOp memop; 2446 2447 memop = (size + is_pair) | MO_ALIGN; 2448 memop = finalize_memop(s, memop); 2449 2450 dirty_addr = cpu_reg_sp(s, rn); 2451 clean_addr = gen_mte_check1(s, dirty_addr, true, rn != 31, memop); 2452 2453 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2454 2455 tmp = tcg_temp_new_i64(); 2456 if (is_pair) { 2457 if (size == 2) { 2458 if (s->be_data == MO_LE) { 2459 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2460 } else { 2461 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2462 } 2463 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2464 cpu_exclusive_val, tmp, 2465 get_mem_index(s), memop); 2466 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2467 } else { 2468 TCGv_i128 t16 = tcg_temp_new_i128(); 2469 TCGv_i128 c16 = tcg_temp_new_i128(); 2470 TCGv_i64 a, b; 2471 2472 if (s->be_data == MO_LE) { 2473 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2474 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2475 cpu_exclusive_high); 2476 } else { 2477 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2478 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2479 cpu_exclusive_val); 2480 } 2481 2482 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2483 get_mem_index(s), memop); 2484 2485 a = tcg_temp_new_i64(); 2486 b = tcg_temp_new_i64(); 2487 if (s->be_data == MO_LE) { 2488 tcg_gen_extr_i128_i64(a, b, t16); 2489 } else { 2490 tcg_gen_extr_i128_i64(b, a, t16); 2491 } 2492 2493 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2494 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2495 tcg_gen_or_i64(tmp, a, b); 2496 2497 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2498 } 2499 } else { 2500 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2501 cpu_reg(s, rt), get_mem_index(s), memop); 2502 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2503 } 2504 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2505 tcg_gen_br(done_label); 2506 2507 gen_set_label(fail_label); 2508 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2509 gen_set_label(done_label); 2510 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2511 } 2512 2513 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2514 int rn, int size) 2515 { 2516 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2517 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2518 int memidx = get_mem_index(s); 2519 TCGv_i64 clean_addr; 2520 MemOp memop; 2521 2522 if (rn == 31) { 2523 gen_check_sp_alignment(s); 2524 } 2525 memop = finalize_memop(s, size | MO_ALIGN); 2526 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2527 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2528 memidx, memop); 2529 } 2530 2531 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2532 int rn, int size) 2533 { 2534 TCGv_i64 s1 = cpu_reg(s, rs); 2535 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2536 TCGv_i64 t1 = cpu_reg(s, rt); 2537 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2538 TCGv_i64 clean_addr; 2539 int memidx = get_mem_index(s); 2540 MemOp memop; 2541 2542 if (rn == 31) { 2543 gen_check_sp_alignment(s); 2544 } 2545 2546 /* This is a single atomic access, despite the "pair". */ 2547 memop = finalize_memop(s, (size + 1) | MO_ALIGN); 2548 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2549 2550 if (size == 2) { 2551 TCGv_i64 cmp = tcg_temp_new_i64(); 2552 TCGv_i64 val = tcg_temp_new_i64(); 2553 2554 if (s->be_data == MO_LE) { 2555 tcg_gen_concat32_i64(val, t1, t2); 2556 tcg_gen_concat32_i64(cmp, s1, s2); 2557 } else { 2558 tcg_gen_concat32_i64(val, t2, t1); 2559 tcg_gen_concat32_i64(cmp, s2, s1); 2560 } 2561 2562 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2563 2564 if (s->be_data == MO_LE) { 2565 tcg_gen_extr32_i64(s1, s2, cmp); 2566 } else { 2567 tcg_gen_extr32_i64(s2, s1, cmp); 2568 } 2569 } else { 2570 TCGv_i128 cmp = tcg_temp_new_i128(); 2571 TCGv_i128 val = tcg_temp_new_i128(); 2572 2573 if (s->be_data == MO_LE) { 2574 tcg_gen_concat_i64_i128(val, t1, t2); 2575 tcg_gen_concat_i64_i128(cmp, s1, s2); 2576 } else { 2577 tcg_gen_concat_i64_i128(val, t2, t1); 2578 tcg_gen_concat_i64_i128(cmp, s2, s1); 2579 } 2580 2581 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2582 2583 if (s->be_data == MO_LE) { 2584 tcg_gen_extr_i128_i64(s1, s2, cmp); 2585 } else { 2586 tcg_gen_extr_i128_i64(s2, s1, cmp); 2587 } 2588 } 2589 } 2590 2591 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2592 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2593 */ 2594 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2595 { 2596 int opc0 = extract32(opc, 0, 1); 2597 int regsize; 2598 2599 if (is_signed) { 2600 regsize = opc0 ? 32 : 64; 2601 } else { 2602 regsize = size == 3 ? 64 : 32; 2603 } 2604 return regsize == 64; 2605 } 2606 2607 /* Load/store exclusive 2608 * 2609 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2610 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2611 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2612 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2613 * 2614 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2615 * L: 0 -> store, 1 -> load 2616 * o2: 0 -> exclusive, 1 -> not 2617 * o1: 0 -> single register, 1 -> register pair 2618 * o0: 1 -> load-acquire/store-release, 0 -> not 2619 */ 2620 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2621 { 2622 int rt = extract32(insn, 0, 5); 2623 int rn = extract32(insn, 5, 5); 2624 int rt2 = extract32(insn, 10, 5); 2625 int rs = extract32(insn, 16, 5); 2626 int is_lasr = extract32(insn, 15, 1); 2627 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2628 int size = extract32(insn, 30, 2); 2629 TCGv_i64 clean_addr; 2630 MemOp memop; 2631 2632 switch (o2_L_o1_o0) { 2633 case 0x0: /* STXR */ 2634 case 0x1: /* STLXR */ 2635 if (rn == 31) { 2636 gen_check_sp_alignment(s); 2637 } 2638 if (is_lasr) { 2639 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2640 } 2641 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2642 return; 2643 2644 case 0x4: /* LDXR */ 2645 case 0x5: /* LDAXR */ 2646 if (rn == 31) { 2647 gen_check_sp_alignment(s); 2648 } 2649 gen_load_exclusive(s, rt, rt2, rn, size, false); 2650 if (is_lasr) { 2651 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2652 } 2653 return; 2654 2655 case 0x8: /* STLLR */ 2656 if (!dc_isar_feature(aa64_lor, s)) { 2657 break; 2658 } 2659 /* StoreLORelease is the same as Store-Release for QEMU. */ 2660 /* fall through */ 2661 case 0x9: /* STLR */ 2662 /* Generate ISS for non-exclusive accesses including LASR. */ 2663 if (rn == 31) { 2664 gen_check_sp_alignment(s); 2665 } 2666 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2667 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2668 memop = finalize_memop(s, size | MO_ALIGN); 2669 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2670 true, rn != 31, memop); 2671 do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt, 2672 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2673 return; 2674 2675 case 0xc: /* LDLAR */ 2676 if (!dc_isar_feature(aa64_lor, s)) { 2677 break; 2678 } 2679 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2680 /* fall through */ 2681 case 0xd: /* LDAR */ 2682 /* Generate ISS for non-exclusive accesses including LASR. */ 2683 if (rn == 31) { 2684 gen_check_sp_alignment(s); 2685 } 2686 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2687 memop = finalize_memop(s, size | MO_ALIGN); 2688 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2689 false, rn != 31, memop); 2690 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true, 2691 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2692 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2693 return; 2694 2695 case 0x2: case 0x3: /* CASP / STXP */ 2696 if (size & 2) { /* STXP / STLXP */ 2697 if (rn == 31) { 2698 gen_check_sp_alignment(s); 2699 } 2700 if (is_lasr) { 2701 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2702 } 2703 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2704 return; 2705 } 2706 if (rt2 == 31 2707 && ((rt | rs) & 1) == 0 2708 && dc_isar_feature(aa64_atomics, s)) { 2709 /* CASP / CASPL */ 2710 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2711 return; 2712 } 2713 break; 2714 2715 case 0x6: case 0x7: /* CASPA / LDXP */ 2716 if (size & 2) { /* LDXP / LDAXP */ 2717 if (rn == 31) { 2718 gen_check_sp_alignment(s); 2719 } 2720 gen_load_exclusive(s, rt, rt2, rn, size, true); 2721 if (is_lasr) { 2722 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2723 } 2724 return; 2725 } 2726 if (rt2 == 31 2727 && ((rt | rs) & 1) == 0 2728 && dc_isar_feature(aa64_atomics, s)) { 2729 /* CASPA / CASPAL */ 2730 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2731 return; 2732 } 2733 break; 2734 2735 case 0xa: /* CAS */ 2736 case 0xb: /* CASL */ 2737 case 0xe: /* CASA */ 2738 case 0xf: /* CASAL */ 2739 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2740 gen_compare_and_swap(s, rs, rt, rn, size); 2741 return; 2742 } 2743 break; 2744 } 2745 unallocated_encoding(s); 2746 } 2747 2748 /* 2749 * Load register (literal) 2750 * 2751 * 31 30 29 27 26 25 24 23 5 4 0 2752 * +-----+-------+---+-----+-------------------+-------+ 2753 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2754 * +-----+-------+---+-----+-------------------+-------+ 2755 * 2756 * V: 1 -> vector (simd/fp) 2757 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2758 * 10-> 32 bit signed, 11 -> prefetch 2759 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2760 */ 2761 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2762 { 2763 int rt = extract32(insn, 0, 5); 2764 int64_t imm = sextract32(insn, 5, 19) << 2; 2765 bool is_vector = extract32(insn, 26, 1); 2766 int opc = extract32(insn, 30, 2); 2767 bool is_signed = false; 2768 int size = 2; 2769 TCGv_i64 tcg_rt, clean_addr; 2770 MemOp memop; 2771 2772 if (is_vector) { 2773 if (opc == 3) { 2774 unallocated_encoding(s); 2775 return; 2776 } 2777 size = 2 + opc; 2778 if (!fp_access_check(s)) { 2779 return; 2780 } 2781 memop = finalize_memop_asimd(s, size); 2782 } else { 2783 if (opc == 3) { 2784 /* PRFM (literal) : prefetch */ 2785 return; 2786 } 2787 size = 2 + extract32(opc, 0, 1); 2788 is_signed = extract32(opc, 1, 1); 2789 memop = finalize_memop(s, size + is_signed * MO_SIGN); 2790 } 2791 2792 tcg_rt = cpu_reg(s, rt); 2793 2794 clean_addr = tcg_temp_new_i64(); 2795 gen_pc_plus_diff(s, clean_addr, imm); 2796 2797 if (is_vector) { 2798 do_fp_ld(s, rt, clean_addr, memop); 2799 } else { 2800 /* Only unsigned 32bit loads target 32bit registers. */ 2801 bool iss_sf = opc != 0; 2802 do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false); 2803 } 2804 } 2805 2806 /* 2807 * LDNP (Load Pair - non-temporal hint) 2808 * LDP (Load Pair - non vector) 2809 * LDPSW (Load Pair Signed Word - non vector) 2810 * STNP (Store Pair - non-temporal hint) 2811 * STP (Store Pair - non vector) 2812 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2813 * LDP (Load Pair of SIMD&FP) 2814 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2815 * STP (Store Pair of SIMD&FP) 2816 * 2817 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2818 * +-----+-------+---+---+-------+---+-----------------------------+ 2819 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2820 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2821 * 2822 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2823 * LDPSW/STGP 01 2824 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2825 * V: 0 -> GPR, 1 -> Vector 2826 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2827 * 10 -> signed offset, 11 -> pre-index 2828 * L: 0 -> Store 1 -> Load 2829 * 2830 * Rt, Rt2 = GPR or SIMD registers to be stored 2831 * Rn = general purpose register containing address 2832 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2833 */ 2834 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2835 { 2836 int rt = extract32(insn, 0, 5); 2837 int rn = extract32(insn, 5, 5); 2838 int rt2 = extract32(insn, 10, 5); 2839 uint64_t offset = sextract64(insn, 15, 7); 2840 int index = extract32(insn, 23, 2); 2841 bool is_vector = extract32(insn, 26, 1); 2842 bool is_load = extract32(insn, 22, 1); 2843 int opc = extract32(insn, 30, 2); 2844 2845 bool is_signed = false; 2846 bool postindex = false; 2847 bool wback = false; 2848 bool set_tag = false; 2849 2850 TCGv_i64 clean_addr, dirty_addr; 2851 2852 int size; 2853 2854 if (opc == 3) { 2855 unallocated_encoding(s); 2856 return; 2857 } 2858 2859 if (is_vector) { 2860 size = 2 + opc; 2861 } else if (opc == 1 && !is_load) { 2862 /* STGP */ 2863 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2864 unallocated_encoding(s); 2865 return; 2866 } 2867 size = 3; 2868 set_tag = true; 2869 } else { 2870 size = 2 + extract32(opc, 1, 1); 2871 is_signed = extract32(opc, 0, 1); 2872 if (!is_load && is_signed) { 2873 unallocated_encoding(s); 2874 return; 2875 } 2876 } 2877 2878 switch (index) { 2879 case 1: /* post-index */ 2880 postindex = true; 2881 wback = true; 2882 break; 2883 case 0: 2884 /* signed offset with "non-temporal" hint. Since we don't emulate 2885 * caches we don't care about hints to the cache system about 2886 * data access patterns, and handle this identically to plain 2887 * signed offset. 2888 */ 2889 if (is_signed) { 2890 /* There is no non-temporal-hint version of LDPSW */ 2891 unallocated_encoding(s); 2892 return; 2893 } 2894 postindex = false; 2895 break; 2896 case 2: /* signed offset, rn not updated */ 2897 postindex = false; 2898 break; 2899 case 3: /* pre-index */ 2900 postindex = false; 2901 wback = true; 2902 break; 2903 } 2904 2905 if (is_vector && !fp_access_check(s)) { 2906 return; 2907 } 2908 2909 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2910 2911 if (rn == 31) { 2912 gen_check_sp_alignment(s); 2913 } 2914 2915 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2916 if (!postindex) { 2917 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2918 } 2919 2920 if (set_tag) { 2921 if (!s->ata) { 2922 /* 2923 * TODO: We could rely on the stores below, at least for 2924 * system mode, if we arrange to add MO_ALIGN_16. 2925 */ 2926 gen_helper_stg_stub(cpu_env, dirty_addr); 2927 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 2928 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 2929 } else { 2930 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 2931 } 2932 } 2933 2934 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 2935 (wback || rn != 31) && !set_tag, 2 << size); 2936 2937 if (is_vector) { 2938 MemOp mop = finalize_memop_asimd(s, size); 2939 2940 if (is_load) { 2941 do_fp_ld(s, rt, clean_addr, mop); 2942 } else { 2943 do_fp_st(s, rt, clean_addr, mop); 2944 } 2945 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2946 if (is_load) { 2947 do_fp_ld(s, rt2, clean_addr, mop); 2948 } else { 2949 do_fp_st(s, rt2, clean_addr, mop); 2950 } 2951 } else { 2952 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2953 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 2954 MemOp mop = size + 1; 2955 2956 /* 2957 * With LSE2, non-sign-extending pairs are treated atomically if 2958 * aligned, and if unaligned one of the pair will be completely 2959 * within a 16-byte block and that element will be atomic. 2960 * Otherwise each element is separately atomic. 2961 * In all cases, issue one operation with the correct atomicity. 2962 * 2963 * This treats sign-extending loads like zero-extending loads, 2964 * since that reuses the most code below. 2965 */ 2966 if (s->align_mem) { 2967 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2968 } 2969 mop = finalize_memop_pair(s, mop); 2970 2971 if (is_load) { 2972 if (size == 2) { 2973 int o2 = s->be_data == MO_LE ? 32 : 0; 2974 int o1 = o2 ^ 32; 2975 2976 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 2977 if (is_signed) { 2978 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 2979 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 2980 } else { 2981 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 2982 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 2983 } 2984 } else { 2985 TCGv_i128 tmp = tcg_temp_new_i128(); 2986 2987 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 2988 if (s->be_data == MO_LE) { 2989 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 2990 } else { 2991 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 2992 } 2993 } 2994 } else { 2995 if (size == 2) { 2996 TCGv_i64 tmp = tcg_temp_new_i64(); 2997 2998 if (s->be_data == MO_LE) { 2999 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3000 } else { 3001 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3002 } 3003 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3004 } else { 3005 TCGv_i128 tmp = tcg_temp_new_i128(); 3006 3007 if (s->be_data == MO_LE) { 3008 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3009 } else { 3010 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3011 } 3012 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3013 } 3014 } 3015 } 3016 3017 if (wback) { 3018 if (postindex) { 3019 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3020 } 3021 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3022 } 3023 } 3024 3025 /* 3026 * Load/store (immediate post-indexed) 3027 * Load/store (immediate pre-indexed) 3028 * Load/store (unscaled immediate) 3029 * 3030 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3031 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3032 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3033 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3034 * 3035 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3036 10 -> unprivileged 3037 * V = 0 -> non-vector 3038 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3039 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3040 */ 3041 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3042 int opc, 3043 int size, 3044 int rt, 3045 bool is_vector) 3046 { 3047 int rn = extract32(insn, 5, 5); 3048 int imm9 = sextract32(insn, 12, 9); 3049 int idx = extract32(insn, 10, 2); 3050 bool is_signed = false; 3051 bool is_store = false; 3052 bool is_extended = false; 3053 bool is_unpriv = (idx == 2); 3054 bool iss_valid; 3055 bool post_index; 3056 bool writeback; 3057 int memidx; 3058 MemOp memop; 3059 TCGv_i64 clean_addr, dirty_addr; 3060 3061 if (is_vector) { 3062 size |= (opc & 2) << 1; 3063 if (size > 4 || is_unpriv) { 3064 unallocated_encoding(s); 3065 return; 3066 } 3067 is_store = ((opc & 1) == 0); 3068 if (!fp_access_check(s)) { 3069 return; 3070 } 3071 memop = finalize_memop_asimd(s, size); 3072 } else { 3073 if (size == 3 && opc == 2) { 3074 /* PRFM - prefetch */ 3075 if (idx != 0) { 3076 unallocated_encoding(s); 3077 return; 3078 } 3079 return; 3080 } 3081 if (opc == 3 && size > 1) { 3082 unallocated_encoding(s); 3083 return; 3084 } 3085 is_store = (opc == 0); 3086 is_signed = !is_store && extract32(opc, 1, 1); 3087 is_extended = (size < 3) && extract32(opc, 0, 1); 3088 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3089 } 3090 3091 switch (idx) { 3092 case 0: 3093 case 2: 3094 post_index = false; 3095 writeback = false; 3096 break; 3097 case 1: 3098 post_index = true; 3099 writeback = true; 3100 break; 3101 case 3: 3102 post_index = false; 3103 writeback = true; 3104 break; 3105 default: 3106 g_assert_not_reached(); 3107 } 3108 3109 iss_valid = !is_vector && !writeback; 3110 3111 if (rn == 31) { 3112 gen_check_sp_alignment(s); 3113 } 3114 3115 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3116 if (!post_index) { 3117 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3118 } 3119 3120 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3121 3122 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3123 writeback || rn != 31, 3124 size, is_unpriv, memidx); 3125 3126 if (is_vector) { 3127 if (is_store) { 3128 do_fp_st(s, rt, clean_addr, memop); 3129 } else { 3130 do_fp_ld(s, rt, clean_addr, memop); 3131 } 3132 } else { 3133 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3134 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3135 3136 if (is_store) { 3137 do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx, 3138 iss_valid, rt, iss_sf, false); 3139 } else { 3140 do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop, 3141 is_extended, memidx, 3142 iss_valid, rt, iss_sf, false); 3143 } 3144 } 3145 3146 if (writeback) { 3147 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3148 if (post_index) { 3149 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3150 } 3151 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3152 } 3153 } 3154 3155 /* 3156 * Load/store (register offset) 3157 * 3158 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3159 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3160 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3161 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3162 * 3163 * For non-vector: 3164 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3165 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3166 * For vector: 3167 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3168 * opc<0>: 0 -> store, 1 -> load 3169 * V: 1 -> vector/simd 3170 * opt: extend encoding (see DecodeRegExtend) 3171 * S: if S=1 then scale (essentially index by sizeof(size)) 3172 * Rt: register to transfer into/out of 3173 * Rn: address register or SP for base 3174 * Rm: offset register or ZR for offset 3175 */ 3176 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3177 int opc, 3178 int size, 3179 int rt, 3180 bool is_vector) 3181 { 3182 int rn = extract32(insn, 5, 5); 3183 int shift = extract32(insn, 12, 1); 3184 int rm = extract32(insn, 16, 5); 3185 int opt = extract32(insn, 13, 3); 3186 bool is_signed = false; 3187 bool is_store = false; 3188 bool is_extended = false; 3189 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3190 MemOp memop; 3191 3192 if (extract32(opt, 1, 1) == 0) { 3193 unallocated_encoding(s); 3194 return; 3195 } 3196 3197 if (is_vector) { 3198 size |= (opc & 2) << 1; 3199 if (size > 4) { 3200 unallocated_encoding(s); 3201 return; 3202 } 3203 is_store = !extract32(opc, 0, 1); 3204 if (!fp_access_check(s)) { 3205 return; 3206 } 3207 } else { 3208 if (size == 3 && opc == 2) { 3209 /* PRFM - prefetch */ 3210 return; 3211 } 3212 if (opc == 3 && size > 1) { 3213 unallocated_encoding(s); 3214 return; 3215 } 3216 is_store = (opc == 0); 3217 is_signed = !is_store && extract32(opc, 1, 1); 3218 is_extended = (size < 3) && extract32(opc, 0, 1); 3219 } 3220 3221 if (rn == 31) { 3222 gen_check_sp_alignment(s); 3223 } 3224 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3225 3226 tcg_rm = read_cpu_reg(s, rm, 1); 3227 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3228 3229 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3230 3231 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3232 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop); 3233 3234 if (is_vector) { 3235 if (is_store) { 3236 do_fp_st(s, rt, clean_addr, memop); 3237 } else { 3238 do_fp_ld(s, rt, clean_addr, memop); 3239 } 3240 } else { 3241 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3242 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3243 3244 if (is_store) { 3245 do_gpr_st(s, tcg_rt, clean_addr, memop, 3246 true, rt, iss_sf, false); 3247 } else { 3248 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3249 is_extended, true, rt, iss_sf, false); 3250 } 3251 } 3252 } 3253 3254 /* 3255 * Load/store (unsigned immediate) 3256 * 3257 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3258 * +----+-------+---+-----+-----+------------+-------+------+ 3259 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3260 * +----+-------+---+-----+-----+------------+-------+------+ 3261 * 3262 * For non-vector: 3263 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3264 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3265 * For vector: 3266 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3267 * opc<0>: 0 -> store, 1 -> load 3268 * Rn: base address register (inc SP) 3269 * Rt: target register 3270 */ 3271 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3272 int opc, 3273 int size, 3274 int rt, 3275 bool is_vector) 3276 { 3277 int rn = extract32(insn, 5, 5); 3278 unsigned int imm12 = extract32(insn, 10, 12); 3279 unsigned int offset; 3280 TCGv_i64 clean_addr, dirty_addr; 3281 bool is_store; 3282 bool is_signed = false; 3283 bool is_extended = false; 3284 MemOp memop; 3285 3286 if (is_vector) { 3287 size |= (opc & 2) << 1; 3288 if (size > 4) { 3289 unallocated_encoding(s); 3290 return; 3291 } 3292 is_store = !extract32(opc, 0, 1); 3293 if (!fp_access_check(s)) { 3294 return; 3295 } 3296 } else { 3297 if (size == 3 && opc == 2) { 3298 /* PRFM - prefetch */ 3299 return; 3300 } 3301 if (opc == 3 && size > 1) { 3302 unallocated_encoding(s); 3303 return; 3304 } 3305 is_store = (opc == 0); 3306 is_signed = !is_store && extract32(opc, 1, 1); 3307 is_extended = (size < 3) && extract32(opc, 0, 1); 3308 } 3309 3310 if (rn == 31) { 3311 gen_check_sp_alignment(s); 3312 } 3313 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3314 offset = imm12 << size; 3315 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3316 3317 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3318 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop); 3319 3320 if (is_vector) { 3321 if (is_store) { 3322 do_fp_st(s, rt, clean_addr, memop); 3323 } else { 3324 do_fp_ld(s, rt, clean_addr, memop); 3325 } 3326 } else { 3327 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3328 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3329 if (is_store) { 3330 do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false); 3331 } else { 3332 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3333 is_extended, true, rt, iss_sf, false); 3334 } 3335 } 3336 } 3337 3338 /* Atomic memory operations 3339 * 3340 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3341 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3342 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3343 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3344 * 3345 * Rt: the result register 3346 * Rn: base address or SP 3347 * Rs: the source register for the operation 3348 * V: vector flag (always 0 as of v8.3) 3349 * A: acquire flag 3350 * R: release flag 3351 */ 3352 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3353 int size, int rt, bool is_vector) 3354 { 3355 int rs = extract32(insn, 16, 5); 3356 int rn = extract32(insn, 5, 5); 3357 int o3_opc = extract32(insn, 12, 4); 3358 bool r = extract32(insn, 22, 1); 3359 bool a = extract32(insn, 23, 1); 3360 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3361 AtomicThreeOpFn *fn = NULL; 3362 MemOp mop = finalize_memop(s, size | MO_ALIGN); 3363 3364 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3365 unallocated_encoding(s); 3366 return; 3367 } 3368 switch (o3_opc) { 3369 case 000: /* LDADD */ 3370 fn = tcg_gen_atomic_fetch_add_i64; 3371 break; 3372 case 001: /* LDCLR */ 3373 fn = tcg_gen_atomic_fetch_and_i64; 3374 break; 3375 case 002: /* LDEOR */ 3376 fn = tcg_gen_atomic_fetch_xor_i64; 3377 break; 3378 case 003: /* LDSET */ 3379 fn = tcg_gen_atomic_fetch_or_i64; 3380 break; 3381 case 004: /* LDSMAX */ 3382 fn = tcg_gen_atomic_fetch_smax_i64; 3383 mop |= MO_SIGN; 3384 break; 3385 case 005: /* LDSMIN */ 3386 fn = tcg_gen_atomic_fetch_smin_i64; 3387 mop |= MO_SIGN; 3388 break; 3389 case 006: /* LDUMAX */ 3390 fn = tcg_gen_atomic_fetch_umax_i64; 3391 break; 3392 case 007: /* LDUMIN */ 3393 fn = tcg_gen_atomic_fetch_umin_i64; 3394 break; 3395 case 010: /* SWP */ 3396 fn = tcg_gen_atomic_xchg_i64; 3397 break; 3398 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3399 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3400 rs != 31 || a != 1 || r != 0) { 3401 unallocated_encoding(s); 3402 return; 3403 } 3404 break; 3405 default: 3406 unallocated_encoding(s); 3407 return; 3408 } 3409 3410 if (rn == 31) { 3411 gen_check_sp_alignment(s); 3412 } 3413 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop); 3414 3415 if (o3_opc == 014) { 3416 /* 3417 * LDAPR* are a special case because they are a simple load, not a 3418 * fetch-and-do-something op. 3419 * The architectural consistency requirements here are weaker than 3420 * full load-acquire (we only need "load-acquire processor consistent"), 3421 * but we choose to implement them as full LDAQ. 3422 */ 3423 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false, 3424 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3425 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3426 return; 3427 } 3428 3429 tcg_rs = read_cpu_reg(s, rs, true); 3430 tcg_rt = cpu_reg(s, rt); 3431 3432 if (o3_opc == 1) { /* LDCLR */ 3433 tcg_gen_not_i64(tcg_rs, tcg_rs); 3434 } 3435 3436 /* The tcg atomic primitives are all full barriers. Therefore we 3437 * can ignore the Acquire and Release bits of this instruction. 3438 */ 3439 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3440 3441 if ((mop & MO_SIGN) && size != MO_64) { 3442 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3443 } 3444 } 3445 3446 /* 3447 * PAC memory operations 3448 * 3449 * 31 30 27 26 24 22 21 12 11 10 5 0 3450 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3451 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3452 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3453 * 3454 * Rt: the result register 3455 * Rn: base address or SP 3456 * V: vector flag (always 0 as of v8.3) 3457 * M: clear for key DA, set for key DB 3458 * W: pre-indexing flag 3459 * S: sign for imm9. 3460 */ 3461 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3462 int size, int rt, bool is_vector) 3463 { 3464 int rn = extract32(insn, 5, 5); 3465 bool is_wback = extract32(insn, 11, 1); 3466 bool use_key_a = !extract32(insn, 23, 1); 3467 int offset; 3468 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3469 MemOp memop; 3470 3471 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3472 unallocated_encoding(s); 3473 return; 3474 } 3475 3476 if (rn == 31) { 3477 gen_check_sp_alignment(s); 3478 } 3479 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3480 3481 if (s->pauth_active) { 3482 if (use_key_a) { 3483 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3484 tcg_constant_i64(0)); 3485 } else { 3486 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3487 tcg_constant_i64(0)); 3488 } 3489 } 3490 3491 /* Form the 10-bit signed, scaled offset. */ 3492 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3493 offset = sextract32(offset << size, 0, 10 + size); 3494 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3495 3496 memop = finalize_memop(s, size); 3497 3498 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3499 clean_addr = gen_mte_check1(s, dirty_addr, false, 3500 is_wback || rn != 31, memop); 3501 3502 tcg_rt = cpu_reg(s, rt); 3503 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3504 /* extend */ false, /* iss_valid */ !is_wback, 3505 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3506 3507 if (is_wback) { 3508 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3509 } 3510 } 3511 3512 /* 3513 * LDAPR/STLR (unscaled immediate) 3514 * 3515 * 31 30 24 22 21 12 10 5 0 3516 * +------+-------------+-----+---+--------+-----+----+-----+ 3517 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3518 * +------+-------------+-----+---+--------+-----+----+-----+ 3519 * 3520 * Rt: source or destination register 3521 * Rn: base register 3522 * imm9: unscaled immediate offset 3523 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3524 * size: size of load/store 3525 */ 3526 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3527 { 3528 int rt = extract32(insn, 0, 5); 3529 int rn = extract32(insn, 5, 5); 3530 int offset = sextract32(insn, 12, 9); 3531 int opc = extract32(insn, 22, 2); 3532 int size = extract32(insn, 30, 2); 3533 TCGv_i64 clean_addr, dirty_addr; 3534 bool is_store = false; 3535 bool extend = false; 3536 bool iss_sf; 3537 MemOp mop; 3538 3539 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3540 unallocated_encoding(s); 3541 return; 3542 } 3543 3544 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3545 mop = finalize_memop(s, size | MO_ALIGN); 3546 3547 switch (opc) { 3548 case 0: /* STLURB */ 3549 is_store = true; 3550 break; 3551 case 1: /* LDAPUR* */ 3552 break; 3553 case 2: /* LDAPURS* 64-bit variant */ 3554 if (size == 3) { 3555 unallocated_encoding(s); 3556 return; 3557 } 3558 mop |= MO_SIGN; 3559 break; 3560 case 3: /* LDAPURS* 32-bit variant */ 3561 if (size > 1) { 3562 unallocated_encoding(s); 3563 return; 3564 } 3565 mop |= MO_SIGN; 3566 extend = true; /* zero-extend 32->64 after signed load */ 3567 break; 3568 default: 3569 g_assert_not_reached(); 3570 } 3571 3572 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3573 3574 if (rn == 31) { 3575 gen_check_sp_alignment(s); 3576 } 3577 3578 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3579 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3580 clean_addr = clean_data_tbi(s, dirty_addr); 3581 3582 if (is_store) { 3583 /* Store-Release semantics */ 3584 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3585 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3586 } else { 3587 /* 3588 * Load-AcquirePC semantics; we implement as the slightly more 3589 * restrictive Load-Acquire. 3590 */ 3591 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3592 extend, true, rt, iss_sf, true); 3593 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3594 } 3595 } 3596 3597 /* Load/store register (all forms) */ 3598 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3599 { 3600 int rt = extract32(insn, 0, 5); 3601 int opc = extract32(insn, 22, 2); 3602 bool is_vector = extract32(insn, 26, 1); 3603 int size = extract32(insn, 30, 2); 3604 3605 switch (extract32(insn, 24, 2)) { 3606 case 0: 3607 if (extract32(insn, 21, 1) == 0) { 3608 /* Load/store register (unscaled immediate) 3609 * Load/store immediate pre/post-indexed 3610 * Load/store register unprivileged 3611 */ 3612 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3613 return; 3614 } 3615 switch (extract32(insn, 10, 2)) { 3616 case 0: 3617 disas_ldst_atomic(s, insn, size, rt, is_vector); 3618 return; 3619 case 2: 3620 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3621 return; 3622 default: 3623 disas_ldst_pac(s, insn, size, rt, is_vector); 3624 return; 3625 } 3626 break; 3627 case 1: 3628 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3629 return; 3630 } 3631 unallocated_encoding(s); 3632 } 3633 3634 /* AdvSIMD load/store multiple structures 3635 * 3636 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3637 * +---+---+---------------+---+-------------+--------+------+------+------+ 3638 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3639 * +---+---+---------------+---+-------------+--------+------+------+------+ 3640 * 3641 * AdvSIMD load/store multiple structures (post-indexed) 3642 * 3643 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3644 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3645 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3646 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3647 * 3648 * Rt: first (or only) SIMD&FP register to be transferred 3649 * Rn: base address or SP 3650 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3651 */ 3652 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3653 { 3654 int rt = extract32(insn, 0, 5); 3655 int rn = extract32(insn, 5, 5); 3656 int rm = extract32(insn, 16, 5); 3657 int size = extract32(insn, 10, 2); 3658 int opcode = extract32(insn, 12, 4); 3659 bool is_store = !extract32(insn, 22, 1); 3660 bool is_postidx = extract32(insn, 23, 1); 3661 bool is_q = extract32(insn, 30, 1); 3662 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3663 MemOp endian, align, mop; 3664 3665 int total; /* total bytes */ 3666 int elements; /* elements per vector */ 3667 int rpt; /* num iterations */ 3668 int selem; /* structure elements */ 3669 int r; 3670 3671 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3672 unallocated_encoding(s); 3673 return; 3674 } 3675 3676 if (!is_postidx && rm != 0) { 3677 unallocated_encoding(s); 3678 return; 3679 } 3680 3681 /* From the shared decode logic */ 3682 switch (opcode) { 3683 case 0x0: 3684 rpt = 1; 3685 selem = 4; 3686 break; 3687 case 0x2: 3688 rpt = 4; 3689 selem = 1; 3690 break; 3691 case 0x4: 3692 rpt = 1; 3693 selem = 3; 3694 break; 3695 case 0x6: 3696 rpt = 3; 3697 selem = 1; 3698 break; 3699 case 0x7: 3700 rpt = 1; 3701 selem = 1; 3702 break; 3703 case 0x8: 3704 rpt = 1; 3705 selem = 2; 3706 break; 3707 case 0xa: 3708 rpt = 2; 3709 selem = 1; 3710 break; 3711 default: 3712 unallocated_encoding(s); 3713 return; 3714 } 3715 3716 if (size == 3 && !is_q && selem != 1) { 3717 /* reserved */ 3718 unallocated_encoding(s); 3719 return; 3720 } 3721 3722 if (!fp_access_check(s)) { 3723 return; 3724 } 3725 3726 if (rn == 31) { 3727 gen_check_sp_alignment(s); 3728 } 3729 3730 /* For our purposes, bytes are always little-endian. */ 3731 endian = s->be_data; 3732 if (size == 0) { 3733 endian = MO_LE; 3734 } 3735 3736 total = rpt * selem * (is_q ? 16 : 8); 3737 tcg_rn = cpu_reg_sp(s, rn); 3738 3739 /* 3740 * Issue the MTE check vs the logical repeat count, before we 3741 * promote consecutive little-endian elements below. 3742 */ 3743 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3744 total); 3745 3746 /* 3747 * Consecutive little-endian elements from a single register 3748 * can be promoted to a larger little-endian operation. 3749 */ 3750 align = MO_ALIGN; 3751 if (selem == 1 && endian == MO_LE) { 3752 align = pow2_align(size); 3753 size = 3; 3754 } 3755 if (!s->align_mem) { 3756 align = 0; 3757 } 3758 mop = endian | size | align; 3759 3760 elements = (is_q ? 16 : 8) >> size; 3761 tcg_ebytes = tcg_constant_i64(1 << size); 3762 for (r = 0; r < rpt; r++) { 3763 int e; 3764 for (e = 0; e < elements; e++) { 3765 int xs; 3766 for (xs = 0; xs < selem; xs++) { 3767 int tt = (rt + r + xs) % 32; 3768 if (is_store) { 3769 do_vec_st(s, tt, e, clean_addr, mop); 3770 } else { 3771 do_vec_ld(s, tt, e, clean_addr, mop); 3772 } 3773 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3774 } 3775 } 3776 } 3777 3778 if (!is_store) { 3779 /* For non-quad operations, setting a slice of the low 3780 * 64 bits of the register clears the high 64 bits (in 3781 * the ARM ARM pseudocode this is implicit in the fact 3782 * that 'rval' is a 64 bit wide variable). 3783 * For quad operations, we might still need to zero the 3784 * high bits of SVE. 3785 */ 3786 for (r = 0; r < rpt * selem; r++) { 3787 int tt = (rt + r) % 32; 3788 clear_vec_high(s, is_q, tt); 3789 } 3790 } 3791 3792 if (is_postidx) { 3793 if (rm == 31) { 3794 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3795 } else { 3796 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3797 } 3798 } 3799 } 3800 3801 /* AdvSIMD load/store single structure 3802 * 3803 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3804 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3805 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3806 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3807 * 3808 * AdvSIMD load/store single structure (post-indexed) 3809 * 3810 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3811 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3812 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3813 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3814 * 3815 * Rt: first (or only) SIMD&FP register to be transferred 3816 * Rn: base address or SP 3817 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3818 * index = encoded in Q:S:size dependent on size 3819 * 3820 * lane_size = encoded in R, opc 3821 * transfer width = encoded in opc, S, size 3822 */ 3823 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3824 { 3825 int rt = extract32(insn, 0, 5); 3826 int rn = extract32(insn, 5, 5); 3827 int rm = extract32(insn, 16, 5); 3828 int size = extract32(insn, 10, 2); 3829 int S = extract32(insn, 12, 1); 3830 int opc = extract32(insn, 13, 3); 3831 int R = extract32(insn, 21, 1); 3832 int is_load = extract32(insn, 22, 1); 3833 int is_postidx = extract32(insn, 23, 1); 3834 int is_q = extract32(insn, 30, 1); 3835 3836 int scale = extract32(opc, 1, 2); 3837 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3838 bool replicate = false; 3839 int index = is_q << 3 | S << 2 | size; 3840 int xs, total; 3841 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3842 MemOp mop; 3843 3844 if (extract32(insn, 31, 1)) { 3845 unallocated_encoding(s); 3846 return; 3847 } 3848 if (!is_postidx && rm != 0) { 3849 unallocated_encoding(s); 3850 return; 3851 } 3852 3853 switch (scale) { 3854 case 3: 3855 if (!is_load || S) { 3856 unallocated_encoding(s); 3857 return; 3858 } 3859 scale = size; 3860 replicate = true; 3861 break; 3862 case 0: 3863 break; 3864 case 1: 3865 if (extract32(size, 0, 1)) { 3866 unallocated_encoding(s); 3867 return; 3868 } 3869 index >>= 1; 3870 break; 3871 case 2: 3872 if (extract32(size, 1, 1)) { 3873 unallocated_encoding(s); 3874 return; 3875 } 3876 if (!extract32(size, 0, 1)) { 3877 index >>= 2; 3878 } else { 3879 if (S) { 3880 unallocated_encoding(s); 3881 return; 3882 } 3883 index >>= 3; 3884 scale = 3; 3885 } 3886 break; 3887 default: 3888 g_assert_not_reached(); 3889 } 3890 3891 if (!fp_access_check(s)) { 3892 return; 3893 } 3894 3895 if (rn == 31) { 3896 gen_check_sp_alignment(s); 3897 } 3898 3899 total = selem << scale; 3900 tcg_rn = cpu_reg_sp(s, rn); 3901 3902 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3903 total); 3904 mop = finalize_memop(s, scale); 3905 3906 tcg_ebytes = tcg_constant_i64(1 << scale); 3907 for (xs = 0; xs < selem; xs++) { 3908 if (replicate) { 3909 /* Load and replicate to all elements */ 3910 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3911 3912 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3913 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3914 (is_q + 1) * 8, vec_full_reg_size(s), 3915 tcg_tmp); 3916 } else { 3917 /* Load/store one element per register */ 3918 if (is_load) { 3919 do_vec_ld(s, rt, index, clean_addr, mop); 3920 } else { 3921 do_vec_st(s, rt, index, clean_addr, mop); 3922 } 3923 } 3924 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3925 rt = (rt + 1) % 32; 3926 } 3927 3928 if (is_postidx) { 3929 if (rm == 31) { 3930 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3931 } else { 3932 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3933 } 3934 } 3935 } 3936 3937 /* 3938 * Load/Store memory tags 3939 * 3940 * 31 30 29 24 22 21 12 10 5 0 3941 * +-----+-------------+-----+---+------+-----+------+------+ 3942 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 3943 * +-----+-------------+-----+---+------+-----+------+------+ 3944 */ 3945 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 3946 { 3947 int rt = extract32(insn, 0, 5); 3948 int rn = extract32(insn, 5, 5); 3949 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 3950 int op2 = extract32(insn, 10, 2); 3951 int op1 = extract32(insn, 22, 2); 3952 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 3953 int index = 0; 3954 TCGv_i64 addr, clean_addr, tcg_rt; 3955 3956 /* We checked insn bits [29:24,21] in the caller. */ 3957 if (extract32(insn, 30, 2) != 3) { 3958 goto do_unallocated; 3959 } 3960 3961 /* 3962 * @index is a tri-state variable which has 3 states: 3963 * < 0 : post-index, writeback 3964 * = 0 : signed offset 3965 * > 0 : pre-index, writeback 3966 */ 3967 switch (op1) { 3968 case 0: 3969 if (op2 != 0) { 3970 /* STG */ 3971 index = op2 - 2; 3972 } else { 3973 /* STZGM */ 3974 if (s->current_el == 0 || offset != 0) { 3975 goto do_unallocated; 3976 } 3977 is_mult = is_zero = true; 3978 } 3979 break; 3980 case 1: 3981 if (op2 != 0) { 3982 /* STZG */ 3983 is_zero = true; 3984 index = op2 - 2; 3985 } else { 3986 /* LDG */ 3987 is_load = true; 3988 } 3989 break; 3990 case 2: 3991 if (op2 != 0) { 3992 /* ST2G */ 3993 is_pair = true; 3994 index = op2 - 2; 3995 } else { 3996 /* STGM */ 3997 if (s->current_el == 0 || offset != 0) { 3998 goto do_unallocated; 3999 } 4000 is_mult = true; 4001 } 4002 break; 4003 case 3: 4004 if (op2 != 0) { 4005 /* STZ2G */ 4006 is_pair = is_zero = true; 4007 index = op2 - 2; 4008 } else { 4009 /* LDGM */ 4010 if (s->current_el == 0 || offset != 0) { 4011 goto do_unallocated; 4012 } 4013 is_mult = is_load = true; 4014 } 4015 break; 4016 4017 default: 4018 do_unallocated: 4019 unallocated_encoding(s); 4020 return; 4021 } 4022 4023 if (is_mult 4024 ? !dc_isar_feature(aa64_mte, s) 4025 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4026 goto do_unallocated; 4027 } 4028 4029 if (rn == 31) { 4030 gen_check_sp_alignment(s); 4031 } 4032 4033 addr = read_cpu_reg_sp(s, rn, true); 4034 if (index >= 0) { 4035 /* pre-index or signed offset */ 4036 tcg_gen_addi_i64(addr, addr, offset); 4037 } 4038 4039 if (is_mult) { 4040 tcg_rt = cpu_reg(s, rt); 4041 4042 if (is_zero) { 4043 int size = 4 << s->dcz_blocksize; 4044 4045 if (s->ata) { 4046 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4047 } 4048 /* 4049 * The non-tags portion of STZGM is mostly like DC_ZVA, 4050 * except the alignment happens before the access. 4051 */ 4052 clean_addr = clean_data_tbi(s, addr); 4053 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4054 gen_helper_dc_zva(cpu_env, clean_addr); 4055 } else if (s->ata) { 4056 if (is_load) { 4057 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4058 } else { 4059 gen_helper_stgm(cpu_env, addr, tcg_rt); 4060 } 4061 } else { 4062 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4063 int size = 4 << GMID_EL1_BS; 4064 4065 clean_addr = clean_data_tbi(s, addr); 4066 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4067 gen_probe_access(s, clean_addr, acc, size); 4068 4069 if (is_load) { 4070 /* The result tags are zeros. */ 4071 tcg_gen_movi_i64(tcg_rt, 0); 4072 } 4073 } 4074 return; 4075 } 4076 4077 if (is_load) { 4078 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4079 tcg_rt = cpu_reg(s, rt); 4080 if (s->ata) { 4081 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4082 } else { 4083 clean_addr = clean_data_tbi(s, addr); 4084 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4085 gen_address_with_allocation_tag0(tcg_rt, addr); 4086 } 4087 } else { 4088 tcg_rt = cpu_reg_sp(s, rt); 4089 if (!s->ata) { 4090 /* 4091 * For STG and ST2G, we need to check alignment and probe memory. 4092 * TODO: For STZG and STZ2G, we could rely on the stores below, 4093 * at least for system mode; user-only won't enforce alignment. 4094 */ 4095 if (is_pair) { 4096 gen_helper_st2g_stub(cpu_env, addr); 4097 } else { 4098 gen_helper_stg_stub(cpu_env, addr); 4099 } 4100 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4101 if (is_pair) { 4102 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4103 } else { 4104 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4105 } 4106 } else { 4107 if (is_pair) { 4108 gen_helper_st2g(cpu_env, addr, tcg_rt); 4109 } else { 4110 gen_helper_stg(cpu_env, addr, tcg_rt); 4111 } 4112 } 4113 } 4114 4115 if (is_zero) { 4116 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4117 TCGv_i64 zero64 = tcg_constant_i64(0); 4118 TCGv_i128 zero128 = tcg_temp_new_i128(); 4119 int mem_index = get_mem_index(s); 4120 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4121 4122 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4123 4124 /* This is 1 or 2 atomic 16-byte operations. */ 4125 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4126 if (is_pair) { 4127 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4128 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4129 } 4130 } 4131 4132 if (index != 0) { 4133 /* pre-index or post-index */ 4134 if (index < 0) { 4135 /* post-index */ 4136 tcg_gen_addi_i64(addr, addr, offset); 4137 } 4138 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4139 } 4140 } 4141 4142 /* Loads and stores */ 4143 static void disas_ldst(DisasContext *s, uint32_t insn) 4144 { 4145 switch (extract32(insn, 24, 6)) { 4146 case 0x08: /* Load/store exclusive */ 4147 disas_ldst_excl(s, insn); 4148 break; 4149 case 0x18: case 0x1c: /* Load register (literal) */ 4150 disas_ld_lit(s, insn); 4151 break; 4152 case 0x28: case 0x29: 4153 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4154 disas_ldst_pair(s, insn); 4155 break; 4156 case 0x38: case 0x39: 4157 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4158 disas_ldst_reg(s, insn); 4159 break; 4160 case 0x0c: /* AdvSIMD load/store multiple structures */ 4161 disas_ldst_multiple_struct(s, insn); 4162 break; 4163 case 0x0d: /* AdvSIMD load/store single structure */ 4164 disas_ldst_single_struct(s, insn); 4165 break; 4166 case 0x19: 4167 if (extract32(insn, 21, 1) != 0) { 4168 disas_ldst_tag(s, insn); 4169 } else if (extract32(insn, 10, 2) == 0) { 4170 disas_ldst_ldapr_stlr(s, insn); 4171 } else { 4172 unallocated_encoding(s); 4173 } 4174 break; 4175 default: 4176 unallocated_encoding(s); 4177 break; 4178 } 4179 } 4180 4181 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4182 4183 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4184 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4185 { 4186 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4187 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4188 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4189 4190 fn(tcg_rd, tcg_rn, tcg_imm); 4191 if (!a->sf) { 4192 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4193 } 4194 return true; 4195 } 4196 4197 /* 4198 * PC-rel. addressing 4199 */ 4200 4201 static bool trans_ADR(DisasContext *s, arg_ri *a) 4202 { 4203 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4204 return true; 4205 } 4206 4207 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4208 { 4209 int64_t offset = (int64_t)a->imm << 12; 4210 4211 /* The page offset is ok for CF_PCREL. */ 4212 offset -= s->pc_curr & 0xfff; 4213 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4214 return true; 4215 } 4216 4217 /* 4218 * Add/subtract (immediate) 4219 */ 4220 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4221 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4222 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4223 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4224 4225 /* 4226 * Add/subtract (immediate, with tags) 4227 */ 4228 4229 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4230 bool sub_op) 4231 { 4232 TCGv_i64 tcg_rn, tcg_rd; 4233 int imm; 4234 4235 imm = a->uimm6 << LOG2_TAG_GRANULE; 4236 if (sub_op) { 4237 imm = -imm; 4238 } 4239 4240 tcg_rn = cpu_reg_sp(s, a->rn); 4241 tcg_rd = cpu_reg_sp(s, a->rd); 4242 4243 if (s->ata) { 4244 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4245 tcg_constant_i32(imm), 4246 tcg_constant_i32(a->uimm4)); 4247 } else { 4248 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4249 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4250 } 4251 return true; 4252 } 4253 4254 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4255 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4256 4257 /* The input should be a value in the bottom e bits (with higher 4258 * bits zero); returns that value replicated into every element 4259 * of size e in a 64 bit integer. 4260 */ 4261 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4262 { 4263 assert(e != 0); 4264 while (e < 64) { 4265 mask |= mask << e; 4266 e *= 2; 4267 } 4268 return mask; 4269 } 4270 4271 /* 4272 * Logical (immediate) 4273 */ 4274 4275 /* 4276 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4277 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4278 * value (ie should cause a guest UNDEF exception), and true if they are 4279 * valid, in which case the decoded bit pattern is written to result. 4280 */ 4281 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4282 unsigned int imms, unsigned int immr) 4283 { 4284 uint64_t mask; 4285 unsigned e, levels, s, r; 4286 int len; 4287 4288 assert(immn < 2 && imms < 64 && immr < 64); 4289 4290 /* The bit patterns we create here are 64 bit patterns which 4291 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4292 * 64 bits each. Each element contains the same value: a run 4293 * of between 1 and e-1 non-zero bits, rotated within the 4294 * element by between 0 and e-1 bits. 4295 * 4296 * The element size and run length are encoded into immn (1 bit) 4297 * and imms (6 bits) as follows: 4298 * 64 bit elements: immn = 1, imms = <length of run - 1> 4299 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4300 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4301 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4302 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4303 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4304 * Notice that immn = 0, imms = 11111x is the only combination 4305 * not covered by one of the above options; this is reserved. 4306 * Further, <length of run - 1> all-ones is a reserved pattern. 4307 * 4308 * In all cases the rotation is by immr % e (and immr is 6 bits). 4309 */ 4310 4311 /* First determine the element size */ 4312 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4313 if (len < 1) { 4314 /* This is the immn == 0, imms == 0x11111x case */ 4315 return false; 4316 } 4317 e = 1 << len; 4318 4319 levels = e - 1; 4320 s = imms & levels; 4321 r = immr & levels; 4322 4323 if (s == levels) { 4324 /* <length of run - 1> mustn't be all-ones. */ 4325 return false; 4326 } 4327 4328 /* Create the value of one element: s+1 set bits rotated 4329 * by r within the element (which is e bits wide)... 4330 */ 4331 mask = MAKE_64BIT_MASK(0, s + 1); 4332 if (r) { 4333 mask = (mask >> r) | (mask << (e - r)); 4334 mask &= MAKE_64BIT_MASK(0, e); 4335 } 4336 /* ...then replicate the element over the whole 64 bit value */ 4337 mask = bitfield_replicate(mask, e); 4338 *result = mask; 4339 return true; 4340 } 4341 4342 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4343 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4344 { 4345 TCGv_i64 tcg_rd, tcg_rn; 4346 uint64_t imm; 4347 4348 /* Some immediate field values are reserved. */ 4349 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4350 extract32(a->dbm, 0, 6), 4351 extract32(a->dbm, 6, 6))) { 4352 return false; 4353 } 4354 if (!a->sf) { 4355 imm &= 0xffffffffull; 4356 } 4357 4358 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4359 tcg_rn = cpu_reg(s, a->rn); 4360 4361 fn(tcg_rd, tcg_rn, imm); 4362 if (set_cc) { 4363 gen_logic_CC(a->sf, tcg_rd); 4364 } 4365 if (!a->sf) { 4366 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4367 } 4368 return true; 4369 } 4370 4371 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4372 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4373 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4374 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4375 4376 /* 4377 * Move wide (immediate) 4378 */ 4379 4380 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4381 { 4382 int pos = a->hw << 4; 4383 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4384 return true; 4385 } 4386 4387 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4388 { 4389 int pos = a->hw << 4; 4390 uint64_t imm = a->imm; 4391 4392 imm = ~(imm << pos); 4393 if (!a->sf) { 4394 imm = (uint32_t)imm; 4395 } 4396 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4397 return true; 4398 } 4399 4400 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4401 { 4402 int pos = a->hw << 4; 4403 TCGv_i64 tcg_rd, tcg_im; 4404 4405 tcg_rd = cpu_reg(s, a->rd); 4406 tcg_im = tcg_constant_i64(a->imm); 4407 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4408 if (!a->sf) { 4409 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4410 } 4411 return true; 4412 } 4413 4414 /* 4415 * Bitfield 4416 */ 4417 4418 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4419 { 4420 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4421 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4422 unsigned int bitsize = a->sf ? 64 : 32; 4423 unsigned int ri = a->immr; 4424 unsigned int si = a->imms; 4425 unsigned int pos, len; 4426 4427 if (si >= ri) { 4428 /* Wd<s-r:0> = Wn<s:r> */ 4429 len = (si - ri) + 1; 4430 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4431 if (!a->sf) { 4432 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4433 } 4434 } else { 4435 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4436 len = si + 1; 4437 pos = (bitsize - ri) & (bitsize - 1); 4438 4439 if (len < ri) { 4440 /* 4441 * Sign extend the destination field from len to fill the 4442 * balance of the word. Let the deposit below insert all 4443 * of those sign bits. 4444 */ 4445 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4446 len = ri; 4447 } 4448 4449 /* 4450 * We start with zero, and we haven't modified any bits outside 4451 * bitsize, therefore no final zero-extension is unneeded for !sf. 4452 */ 4453 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4454 } 4455 return true; 4456 } 4457 4458 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4459 { 4460 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4461 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4462 unsigned int bitsize = a->sf ? 64 : 32; 4463 unsigned int ri = a->immr; 4464 unsigned int si = a->imms; 4465 unsigned int pos, len; 4466 4467 tcg_rd = cpu_reg(s, a->rd); 4468 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4469 4470 if (si >= ri) { 4471 /* Wd<s-r:0> = Wn<s:r> */ 4472 len = (si - ri) + 1; 4473 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4474 } else { 4475 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4476 len = si + 1; 4477 pos = (bitsize - ri) & (bitsize - 1); 4478 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4479 } 4480 return true; 4481 } 4482 4483 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4484 { 4485 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4486 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4487 unsigned int bitsize = a->sf ? 64 : 32; 4488 unsigned int ri = a->immr; 4489 unsigned int si = a->imms; 4490 unsigned int pos, len; 4491 4492 tcg_rd = cpu_reg(s, a->rd); 4493 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4494 4495 if (si >= ri) { 4496 /* Wd<s-r:0> = Wn<s:r> */ 4497 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4498 len = (si - ri) + 1; 4499 pos = 0; 4500 } else { 4501 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4502 len = si + 1; 4503 pos = (bitsize - ri) & (bitsize - 1); 4504 } 4505 4506 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4507 if (!a->sf) { 4508 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4509 } 4510 return true; 4511 } 4512 4513 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4514 { 4515 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4516 4517 tcg_rd = cpu_reg(s, a->rd); 4518 4519 if (unlikely(a->imm == 0)) { 4520 /* 4521 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4522 * so an extract from bit 0 is a special case. 4523 */ 4524 if (a->sf) { 4525 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4526 } else { 4527 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4528 } 4529 } else { 4530 tcg_rm = cpu_reg(s, a->rm); 4531 tcg_rn = cpu_reg(s, a->rn); 4532 4533 if (a->sf) { 4534 /* Specialization to ROR happens in EXTRACT2. */ 4535 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4536 } else { 4537 TCGv_i32 t0 = tcg_temp_new_i32(); 4538 4539 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4540 if (a->rm == a->rn) { 4541 tcg_gen_rotri_i32(t0, t0, a->imm); 4542 } else { 4543 TCGv_i32 t1 = tcg_temp_new_i32(); 4544 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4545 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4546 } 4547 tcg_gen_extu_i32_i64(tcg_rd, t0); 4548 } 4549 } 4550 return true; 4551 } 4552 4553 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4554 * Note that it is the caller's responsibility to ensure that the 4555 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4556 * mandated semantics for out of range shifts. 4557 */ 4558 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4559 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4560 { 4561 switch (shift_type) { 4562 case A64_SHIFT_TYPE_LSL: 4563 tcg_gen_shl_i64(dst, src, shift_amount); 4564 break; 4565 case A64_SHIFT_TYPE_LSR: 4566 tcg_gen_shr_i64(dst, src, shift_amount); 4567 break; 4568 case A64_SHIFT_TYPE_ASR: 4569 if (!sf) { 4570 tcg_gen_ext32s_i64(dst, src); 4571 } 4572 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4573 break; 4574 case A64_SHIFT_TYPE_ROR: 4575 if (sf) { 4576 tcg_gen_rotr_i64(dst, src, shift_amount); 4577 } else { 4578 TCGv_i32 t0, t1; 4579 t0 = tcg_temp_new_i32(); 4580 t1 = tcg_temp_new_i32(); 4581 tcg_gen_extrl_i64_i32(t0, src); 4582 tcg_gen_extrl_i64_i32(t1, shift_amount); 4583 tcg_gen_rotr_i32(t0, t0, t1); 4584 tcg_gen_extu_i32_i64(dst, t0); 4585 } 4586 break; 4587 default: 4588 assert(FALSE); /* all shift types should be handled */ 4589 break; 4590 } 4591 4592 if (!sf) { /* zero extend final result */ 4593 tcg_gen_ext32u_i64(dst, dst); 4594 } 4595 } 4596 4597 /* Shift a TCGv src by immediate, put result in dst. 4598 * The shift amount must be in range (this should always be true as the 4599 * relevant instructions will UNDEF on bad shift immediates). 4600 */ 4601 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4602 enum a64_shift_type shift_type, unsigned int shift_i) 4603 { 4604 assert(shift_i < (sf ? 64 : 32)); 4605 4606 if (shift_i == 0) { 4607 tcg_gen_mov_i64(dst, src); 4608 } else { 4609 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4610 } 4611 } 4612 4613 /* Logical (shifted register) 4614 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4615 * +----+-----+-----------+-------+---+------+--------+------+------+ 4616 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4617 * +----+-----+-----------+-------+---+------+--------+------+------+ 4618 */ 4619 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4620 { 4621 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4622 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4623 4624 sf = extract32(insn, 31, 1); 4625 opc = extract32(insn, 29, 2); 4626 shift_type = extract32(insn, 22, 2); 4627 invert = extract32(insn, 21, 1); 4628 rm = extract32(insn, 16, 5); 4629 shift_amount = extract32(insn, 10, 6); 4630 rn = extract32(insn, 5, 5); 4631 rd = extract32(insn, 0, 5); 4632 4633 if (!sf && (shift_amount & (1 << 5))) { 4634 unallocated_encoding(s); 4635 return; 4636 } 4637 4638 tcg_rd = cpu_reg(s, rd); 4639 4640 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4641 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4642 * register-register MOV and MVN, so it is worth special casing. 4643 */ 4644 tcg_rm = cpu_reg(s, rm); 4645 if (invert) { 4646 tcg_gen_not_i64(tcg_rd, tcg_rm); 4647 if (!sf) { 4648 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4649 } 4650 } else { 4651 if (sf) { 4652 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4653 } else { 4654 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4655 } 4656 } 4657 return; 4658 } 4659 4660 tcg_rm = read_cpu_reg(s, rm, sf); 4661 4662 if (shift_amount) { 4663 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4664 } 4665 4666 tcg_rn = cpu_reg(s, rn); 4667 4668 switch (opc | (invert << 2)) { 4669 case 0: /* AND */ 4670 case 3: /* ANDS */ 4671 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4672 break; 4673 case 1: /* ORR */ 4674 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4675 break; 4676 case 2: /* EOR */ 4677 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4678 break; 4679 case 4: /* BIC */ 4680 case 7: /* BICS */ 4681 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4682 break; 4683 case 5: /* ORN */ 4684 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4685 break; 4686 case 6: /* EON */ 4687 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4688 break; 4689 default: 4690 assert(FALSE); 4691 break; 4692 } 4693 4694 if (!sf) { 4695 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4696 } 4697 4698 if (opc == 3) { 4699 gen_logic_CC(sf, tcg_rd); 4700 } 4701 } 4702 4703 /* 4704 * Add/subtract (extended register) 4705 * 4706 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4707 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4708 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4709 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4710 * 4711 * sf: 0 -> 32bit, 1 -> 64bit 4712 * op: 0 -> add , 1 -> sub 4713 * S: 1 -> set flags 4714 * opt: 00 4715 * option: extension type (see DecodeRegExtend) 4716 * imm3: optional shift to Rm 4717 * 4718 * Rd = Rn + LSL(extend(Rm), amount) 4719 */ 4720 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4721 { 4722 int rd = extract32(insn, 0, 5); 4723 int rn = extract32(insn, 5, 5); 4724 int imm3 = extract32(insn, 10, 3); 4725 int option = extract32(insn, 13, 3); 4726 int rm = extract32(insn, 16, 5); 4727 int opt = extract32(insn, 22, 2); 4728 bool setflags = extract32(insn, 29, 1); 4729 bool sub_op = extract32(insn, 30, 1); 4730 bool sf = extract32(insn, 31, 1); 4731 4732 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4733 TCGv_i64 tcg_rd; 4734 TCGv_i64 tcg_result; 4735 4736 if (imm3 > 4 || opt != 0) { 4737 unallocated_encoding(s); 4738 return; 4739 } 4740 4741 /* non-flag setting ops may use SP */ 4742 if (!setflags) { 4743 tcg_rd = cpu_reg_sp(s, rd); 4744 } else { 4745 tcg_rd = cpu_reg(s, rd); 4746 } 4747 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4748 4749 tcg_rm = read_cpu_reg(s, rm, sf); 4750 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4751 4752 tcg_result = tcg_temp_new_i64(); 4753 4754 if (!setflags) { 4755 if (sub_op) { 4756 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4757 } else { 4758 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4759 } 4760 } else { 4761 if (sub_op) { 4762 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4763 } else { 4764 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4765 } 4766 } 4767 4768 if (sf) { 4769 tcg_gen_mov_i64(tcg_rd, tcg_result); 4770 } else { 4771 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4772 } 4773 } 4774 4775 /* 4776 * Add/subtract (shifted register) 4777 * 4778 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4779 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4780 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4781 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4782 * 4783 * sf: 0 -> 32bit, 1 -> 64bit 4784 * op: 0 -> add , 1 -> sub 4785 * S: 1 -> set flags 4786 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4787 * imm6: Shift amount to apply to Rm before the add/sub 4788 */ 4789 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4790 { 4791 int rd = extract32(insn, 0, 5); 4792 int rn = extract32(insn, 5, 5); 4793 int imm6 = extract32(insn, 10, 6); 4794 int rm = extract32(insn, 16, 5); 4795 int shift_type = extract32(insn, 22, 2); 4796 bool setflags = extract32(insn, 29, 1); 4797 bool sub_op = extract32(insn, 30, 1); 4798 bool sf = extract32(insn, 31, 1); 4799 4800 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4801 TCGv_i64 tcg_rn, tcg_rm; 4802 TCGv_i64 tcg_result; 4803 4804 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4805 unallocated_encoding(s); 4806 return; 4807 } 4808 4809 tcg_rn = read_cpu_reg(s, rn, sf); 4810 tcg_rm = read_cpu_reg(s, rm, sf); 4811 4812 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4813 4814 tcg_result = tcg_temp_new_i64(); 4815 4816 if (!setflags) { 4817 if (sub_op) { 4818 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4819 } else { 4820 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4821 } 4822 } else { 4823 if (sub_op) { 4824 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4825 } else { 4826 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4827 } 4828 } 4829 4830 if (sf) { 4831 tcg_gen_mov_i64(tcg_rd, tcg_result); 4832 } else { 4833 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4834 } 4835 } 4836 4837 /* Data-processing (3 source) 4838 * 4839 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4840 * +--+------+-----------+------+------+----+------+------+------+ 4841 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4842 * +--+------+-----------+------+------+----+------+------+------+ 4843 */ 4844 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4845 { 4846 int rd = extract32(insn, 0, 5); 4847 int rn = extract32(insn, 5, 5); 4848 int ra = extract32(insn, 10, 5); 4849 int rm = extract32(insn, 16, 5); 4850 int op_id = (extract32(insn, 29, 3) << 4) | 4851 (extract32(insn, 21, 3) << 1) | 4852 extract32(insn, 15, 1); 4853 bool sf = extract32(insn, 31, 1); 4854 bool is_sub = extract32(op_id, 0, 1); 4855 bool is_high = extract32(op_id, 2, 1); 4856 bool is_signed = false; 4857 TCGv_i64 tcg_op1; 4858 TCGv_i64 tcg_op2; 4859 TCGv_i64 tcg_tmp; 4860 4861 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4862 switch (op_id) { 4863 case 0x42: /* SMADDL */ 4864 case 0x43: /* SMSUBL */ 4865 case 0x44: /* SMULH */ 4866 is_signed = true; 4867 break; 4868 case 0x0: /* MADD (32bit) */ 4869 case 0x1: /* MSUB (32bit) */ 4870 case 0x40: /* MADD (64bit) */ 4871 case 0x41: /* MSUB (64bit) */ 4872 case 0x4a: /* UMADDL */ 4873 case 0x4b: /* UMSUBL */ 4874 case 0x4c: /* UMULH */ 4875 break; 4876 default: 4877 unallocated_encoding(s); 4878 return; 4879 } 4880 4881 if (is_high) { 4882 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4883 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4884 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4885 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4886 4887 if (is_signed) { 4888 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4889 } else { 4890 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4891 } 4892 return; 4893 } 4894 4895 tcg_op1 = tcg_temp_new_i64(); 4896 tcg_op2 = tcg_temp_new_i64(); 4897 tcg_tmp = tcg_temp_new_i64(); 4898 4899 if (op_id < 0x42) { 4900 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4901 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4902 } else { 4903 if (is_signed) { 4904 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4905 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4906 } else { 4907 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4908 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4909 } 4910 } 4911 4912 if (ra == 31 && !is_sub) { 4913 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4914 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4915 } else { 4916 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4917 if (is_sub) { 4918 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4919 } else { 4920 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4921 } 4922 } 4923 4924 if (!sf) { 4925 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4926 } 4927 } 4928 4929 /* Add/subtract (with carry) 4930 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4931 * +--+--+--+------------------------+------+-------------+------+-----+ 4932 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4933 * +--+--+--+------------------------+------+-------------+------+-----+ 4934 */ 4935 4936 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4937 { 4938 unsigned int sf, op, setflags, rm, rn, rd; 4939 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4940 4941 sf = extract32(insn, 31, 1); 4942 op = extract32(insn, 30, 1); 4943 setflags = extract32(insn, 29, 1); 4944 rm = extract32(insn, 16, 5); 4945 rn = extract32(insn, 5, 5); 4946 rd = extract32(insn, 0, 5); 4947 4948 tcg_rd = cpu_reg(s, rd); 4949 tcg_rn = cpu_reg(s, rn); 4950 4951 if (op) { 4952 tcg_y = tcg_temp_new_i64(); 4953 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4954 } else { 4955 tcg_y = cpu_reg(s, rm); 4956 } 4957 4958 if (setflags) { 4959 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4960 } else { 4961 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4962 } 4963 } 4964 4965 /* 4966 * Rotate right into flags 4967 * 31 30 29 21 15 10 5 4 0 4968 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4969 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4970 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4971 */ 4972 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4973 { 4974 int mask = extract32(insn, 0, 4); 4975 int o2 = extract32(insn, 4, 1); 4976 int rn = extract32(insn, 5, 5); 4977 int imm6 = extract32(insn, 15, 6); 4978 int sf_op_s = extract32(insn, 29, 3); 4979 TCGv_i64 tcg_rn; 4980 TCGv_i32 nzcv; 4981 4982 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4983 unallocated_encoding(s); 4984 return; 4985 } 4986 4987 tcg_rn = read_cpu_reg(s, rn, 1); 4988 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4989 4990 nzcv = tcg_temp_new_i32(); 4991 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4992 4993 if (mask & 8) { /* N */ 4994 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4995 } 4996 if (mask & 4) { /* Z */ 4997 tcg_gen_not_i32(cpu_ZF, nzcv); 4998 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4999 } 5000 if (mask & 2) { /* C */ 5001 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5002 } 5003 if (mask & 1) { /* V */ 5004 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5005 } 5006 } 5007 5008 /* 5009 * Evaluate into flags 5010 * 31 30 29 21 15 14 10 5 4 0 5011 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5012 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5013 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5014 */ 5015 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5016 { 5017 int o3_mask = extract32(insn, 0, 5); 5018 int rn = extract32(insn, 5, 5); 5019 int o2 = extract32(insn, 15, 6); 5020 int sz = extract32(insn, 14, 1); 5021 int sf_op_s = extract32(insn, 29, 3); 5022 TCGv_i32 tmp; 5023 int shift; 5024 5025 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5026 !dc_isar_feature(aa64_condm_4, s)) { 5027 unallocated_encoding(s); 5028 return; 5029 } 5030 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5031 5032 tmp = tcg_temp_new_i32(); 5033 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5034 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5035 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5036 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5037 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5038 } 5039 5040 /* Conditional compare (immediate / register) 5041 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5042 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5043 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5044 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5045 * [1] y [0] [0] 5046 */ 5047 static void disas_cc(DisasContext *s, uint32_t insn) 5048 { 5049 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5050 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5051 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5052 DisasCompare c; 5053 5054 if (!extract32(insn, 29, 1)) { 5055 unallocated_encoding(s); 5056 return; 5057 } 5058 if (insn & (1 << 10 | 1 << 4)) { 5059 unallocated_encoding(s); 5060 return; 5061 } 5062 sf = extract32(insn, 31, 1); 5063 op = extract32(insn, 30, 1); 5064 is_imm = extract32(insn, 11, 1); 5065 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5066 cond = extract32(insn, 12, 4); 5067 rn = extract32(insn, 5, 5); 5068 nzcv = extract32(insn, 0, 4); 5069 5070 /* Set T0 = !COND. */ 5071 tcg_t0 = tcg_temp_new_i32(); 5072 arm_test_cc(&c, cond); 5073 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5074 5075 /* Load the arguments for the new comparison. */ 5076 if (is_imm) { 5077 tcg_y = tcg_temp_new_i64(); 5078 tcg_gen_movi_i64(tcg_y, y); 5079 } else { 5080 tcg_y = cpu_reg(s, y); 5081 } 5082 tcg_rn = cpu_reg(s, rn); 5083 5084 /* Set the flags for the new comparison. */ 5085 tcg_tmp = tcg_temp_new_i64(); 5086 if (op) { 5087 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5088 } else { 5089 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5090 } 5091 5092 /* If COND was false, force the flags to #nzcv. Compute two masks 5093 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5094 * For tcg hosts that support ANDC, we can make do with just T1. 5095 * In either case, allow the tcg optimizer to delete any unused mask. 5096 */ 5097 tcg_t1 = tcg_temp_new_i32(); 5098 tcg_t2 = tcg_temp_new_i32(); 5099 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5100 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5101 5102 if (nzcv & 8) { /* N */ 5103 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5104 } else { 5105 if (TCG_TARGET_HAS_andc_i32) { 5106 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5107 } else { 5108 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5109 } 5110 } 5111 if (nzcv & 4) { /* Z */ 5112 if (TCG_TARGET_HAS_andc_i32) { 5113 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5114 } else { 5115 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5116 } 5117 } else { 5118 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5119 } 5120 if (nzcv & 2) { /* C */ 5121 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5122 } else { 5123 if (TCG_TARGET_HAS_andc_i32) { 5124 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5125 } else { 5126 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5127 } 5128 } 5129 if (nzcv & 1) { /* V */ 5130 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5131 } else { 5132 if (TCG_TARGET_HAS_andc_i32) { 5133 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5134 } else { 5135 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5136 } 5137 } 5138 } 5139 5140 /* Conditional select 5141 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5142 * +----+----+---+-----------------+------+------+-----+------+------+ 5143 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5144 * +----+----+---+-----------------+------+------+-----+------+------+ 5145 */ 5146 static void disas_cond_select(DisasContext *s, uint32_t insn) 5147 { 5148 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5149 TCGv_i64 tcg_rd, zero; 5150 DisasCompare64 c; 5151 5152 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5153 /* S == 1 or op2<1> == 1 */ 5154 unallocated_encoding(s); 5155 return; 5156 } 5157 sf = extract32(insn, 31, 1); 5158 else_inv = extract32(insn, 30, 1); 5159 rm = extract32(insn, 16, 5); 5160 cond = extract32(insn, 12, 4); 5161 else_inc = extract32(insn, 10, 1); 5162 rn = extract32(insn, 5, 5); 5163 rd = extract32(insn, 0, 5); 5164 5165 tcg_rd = cpu_reg(s, rd); 5166 5167 a64_test_cc(&c, cond); 5168 zero = tcg_constant_i64(0); 5169 5170 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5171 /* CSET & CSETM. */ 5172 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5173 if (else_inv) { 5174 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5175 } 5176 } else { 5177 TCGv_i64 t_true = cpu_reg(s, rn); 5178 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5179 if (else_inv && else_inc) { 5180 tcg_gen_neg_i64(t_false, t_false); 5181 } else if (else_inv) { 5182 tcg_gen_not_i64(t_false, t_false); 5183 } else if (else_inc) { 5184 tcg_gen_addi_i64(t_false, t_false, 1); 5185 } 5186 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5187 } 5188 5189 if (!sf) { 5190 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5191 } 5192 } 5193 5194 static void handle_clz(DisasContext *s, unsigned int sf, 5195 unsigned int rn, unsigned int rd) 5196 { 5197 TCGv_i64 tcg_rd, tcg_rn; 5198 tcg_rd = cpu_reg(s, rd); 5199 tcg_rn = cpu_reg(s, rn); 5200 5201 if (sf) { 5202 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5203 } else { 5204 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5205 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5206 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5207 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5208 } 5209 } 5210 5211 static void handle_cls(DisasContext *s, unsigned int sf, 5212 unsigned int rn, unsigned int rd) 5213 { 5214 TCGv_i64 tcg_rd, tcg_rn; 5215 tcg_rd = cpu_reg(s, rd); 5216 tcg_rn = cpu_reg(s, rn); 5217 5218 if (sf) { 5219 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5220 } else { 5221 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5222 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5223 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5224 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5225 } 5226 } 5227 5228 static void handle_rbit(DisasContext *s, unsigned int sf, 5229 unsigned int rn, unsigned int rd) 5230 { 5231 TCGv_i64 tcg_rd, tcg_rn; 5232 tcg_rd = cpu_reg(s, rd); 5233 tcg_rn = cpu_reg(s, rn); 5234 5235 if (sf) { 5236 gen_helper_rbit64(tcg_rd, tcg_rn); 5237 } else { 5238 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5239 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5240 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5241 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5242 } 5243 } 5244 5245 /* REV with sf==1, opcode==3 ("REV64") */ 5246 static void handle_rev64(DisasContext *s, unsigned int sf, 5247 unsigned int rn, unsigned int rd) 5248 { 5249 if (!sf) { 5250 unallocated_encoding(s); 5251 return; 5252 } 5253 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5254 } 5255 5256 /* REV with sf==0, opcode==2 5257 * REV32 (sf==1, opcode==2) 5258 */ 5259 static void handle_rev32(DisasContext *s, unsigned int sf, 5260 unsigned int rn, unsigned int rd) 5261 { 5262 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5263 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5264 5265 if (sf) { 5266 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5267 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5268 } else { 5269 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5270 } 5271 } 5272 5273 /* REV16 (opcode==1) */ 5274 static void handle_rev16(DisasContext *s, unsigned int sf, 5275 unsigned int rn, unsigned int rd) 5276 { 5277 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5278 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5279 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5280 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5281 5282 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5283 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5284 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5285 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5286 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5287 } 5288 5289 /* Data-processing (1 source) 5290 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5291 * +----+---+---+-----------------+---------+--------+------+------+ 5292 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5293 * +----+---+---+-----------------+---------+--------+------+------+ 5294 */ 5295 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5296 { 5297 unsigned int sf, opcode, opcode2, rn, rd; 5298 TCGv_i64 tcg_rd; 5299 5300 if (extract32(insn, 29, 1)) { 5301 unallocated_encoding(s); 5302 return; 5303 } 5304 5305 sf = extract32(insn, 31, 1); 5306 opcode = extract32(insn, 10, 6); 5307 opcode2 = extract32(insn, 16, 5); 5308 rn = extract32(insn, 5, 5); 5309 rd = extract32(insn, 0, 5); 5310 5311 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5312 5313 switch (MAP(sf, opcode2, opcode)) { 5314 case MAP(0, 0x00, 0x00): /* RBIT */ 5315 case MAP(1, 0x00, 0x00): 5316 handle_rbit(s, sf, rn, rd); 5317 break; 5318 case MAP(0, 0x00, 0x01): /* REV16 */ 5319 case MAP(1, 0x00, 0x01): 5320 handle_rev16(s, sf, rn, rd); 5321 break; 5322 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5323 case MAP(1, 0x00, 0x02): 5324 handle_rev32(s, sf, rn, rd); 5325 break; 5326 case MAP(1, 0x00, 0x03): /* REV64 */ 5327 handle_rev64(s, sf, rn, rd); 5328 break; 5329 case MAP(0, 0x00, 0x04): /* CLZ */ 5330 case MAP(1, 0x00, 0x04): 5331 handle_clz(s, sf, rn, rd); 5332 break; 5333 case MAP(0, 0x00, 0x05): /* CLS */ 5334 case MAP(1, 0x00, 0x05): 5335 handle_cls(s, sf, rn, rd); 5336 break; 5337 case MAP(1, 0x01, 0x00): /* PACIA */ 5338 if (s->pauth_active) { 5339 tcg_rd = cpu_reg(s, rd); 5340 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5341 } else if (!dc_isar_feature(aa64_pauth, s)) { 5342 goto do_unallocated; 5343 } 5344 break; 5345 case MAP(1, 0x01, 0x01): /* PACIB */ 5346 if (s->pauth_active) { 5347 tcg_rd = cpu_reg(s, rd); 5348 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5349 } else if (!dc_isar_feature(aa64_pauth, s)) { 5350 goto do_unallocated; 5351 } 5352 break; 5353 case MAP(1, 0x01, 0x02): /* PACDA */ 5354 if (s->pauth_active) { 5355 tcg_rd = cpu_reg(s, rd); 5356 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5357 } else if (!dc_isar_feature(aa64_pauth, s)) { 5358 goto do_unallocated; 5359 } 5360 break; 5361 case MAP(1, 0x01, 0x03): /* PACDB */ 5362 if (s->pauth_active) { 5363 tcg_rd = cpu_reg(s, rd); 5364 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5365 } else if (!dc_isar_feature(aa64_pauth, s)) { 5366 goto do_unallocated; 5367 } 5368 break; 5369 case MAP(1, 0x01, 0x04): /* AUTIA */ 5370 if (s->pauth_active) { 5371 tcg_rd = cpu_reg(s, rd); 5372 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5373 } else if (!dc_isar_feature(aa64_pauth, s)) { 5374 goto do_unallocated; 5375 } 5376 break; 5377 case MAP(1, 0x01, 0x05): /* AUTIB */ 5378 if (s->pauth_active) { 5379 tcg_rd = cpu_reg(s, rd); 5380 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5381 } else if (!dc_isar_feature(aa64_pauth, s)) { 5382 goto do_unallocated; 5383 } 5384 break; 5385 case MAP(1, 0x01, 0x06): /* AUTDA */ 5386 if (s->pauth_active) { 5387 tcg_rd = cpu_reg(s, rd); 5388 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5389 } else if (!dc_isar_feature(aa64_pauth, s)) { 5390 goto do_unallocated; 5391 } 5392 break; 5393 case MAP(1, 0x01, 0x07): /* AUTDB */ 5394 if (s->pauth_active) { 5395 tcg_rd = cpu_reg(s, rd); 5396 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5397 } else if (!dc_isar_feature(aa64_pauth, s)) { 5398 goto do_unallocated; 5399 } 5400 break; 5401 case MAP(1, 0x01, 0x08): /* PACIZA */ 5402 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5403 goto do_unallocated; 5404 } else if (s->pauth_active) { 5405 tcg_rd = cpu_reg(s, rd); 5406 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5407 } 5408 break; 5409 case MAP(1, 0x01, 0x09): /* PACIZB */ 5410 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5411 goto do_unallocated; 5412 } else if (s->pauth_active) { 5413 tcg_rd = cpu_reg(s, rd); 5414 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5415 } 5416 break; 5417 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5418 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5419 goto do_unallocated; 5420 } else if (s->pauth_active) { 5421 tcg_rd = cpu_reg(s, rd); 5422 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5423 } 5424 break; 5425 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5426 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5427 goto do_unallocated; 5428 } else if (s->pauth_active) { 5429 tcg_rd = cpu_reg(s, rd); 5430 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5431 } 5432 break; 5433 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5434 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5435 goto do_unallocated; 5436 } else if (s->pauth_active) { 5437 tcg_rd = cpu_reg(s, rd); 5438 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5439 } 5440 break; 5441 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5442 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5443 goto do_unallocated; 5444 } else if (s->pauth_active) { 5445 tcg_rd = cpu_reg(s, rd); 5446 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5447 } 5448 break; 5449 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5450 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5451 goto do_unallocated; 5452 } else if (s->pauth_active) { 5453 tcg_rd = cpu_reg(s, rd); 5454 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5455 } 5456 break; 5457 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5458 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5459 goto do_unallocated; 5460 } else if (s->pauth_active) { 5461 tcg_rd = cpu_reg(s, rd); 5462 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5463 } 5464 break; 5465 case MAP(1, 0x01, 0x10): /* XPACI */ 5466 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5467 goto do_unallocated; 5468 } else if (s->pauth_active) { 5469 tcg_rd = cpu_reg(s, rd); 5470 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5471 } 5472 break; 5473 case MAP(1, 0x01, 0x11): /* XPACD */ 5474 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5475 goto do_unallocated; 5476 } else if (s->pauth_active) { 5477 tcg_rd = cpu_reg(s, rd); 5478 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5479 } 5480 break; 5481 default: 5482 do_unallocated: 5483 unallocated_encoding(s); 5484 break; 5485 } 5486 5487 #undef MAP 5488 } 5489 5490 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5491 unsigned int rm, unsigned int rn, unsigned int rd) 5492 { 5493 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5494 tcg_rd = cpu_reg(s, rd); 5495 5496 if (!sf && is_signed) { 5497 tcg_n = tcg_temp_new_i64(); 5498 tcg_m = tcg_temp_new_i64(); 5499 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5500 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5501 } else { 5502 tcg_n = read_cpu_reg(s, rn, sf); 5503 tcg_m = read_cpu_reg(s, rm, sf); 5504 } 5505 5506 if (is_signed) { 5507 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5508 } else { 5509 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5510 } 5511 5512 if (!sf) { /* zero extend final result */ 5513 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5514 } 5515 } 5516 5517 /* LSLV, LSRV, ASRV, RORV */ 5518 static void handle_shift_reg(DisasContext *s, 5519 enum a64_shift_type shift_type, unsigned int sf, 5520 unsigned int rm, unsigned int rn, unsigned int rd) 5521 { 5522 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5523 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5524 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5525 5526 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5527 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5528 } 5529 5530 /* CRC32[BHWX], CRC32C[BHWX] */ 5531 static void handle_crc32(DisasContext *s, 5532 unsigned int sf, unsigned int sz, bool crc32c, 5533 unsigned int rm, unsigned int rn, unsigned int rd) 5534 { 5535 TCGv_i64 tcg_acc, tcg_val; 5536 TCGv_i32 tcg_bytes; 5537 5538 if (!dc_isar_feature(aa64_crc32, s) 5539 || (sf == 1 && sz != 3) 5540 || (sf == 0 && sz == 3)) { 5541 unallocated_encoding(s); 5542 return; 5543 } 5544 5545 if (sz == 3) { 5546 tcg_val = cpu_reg(s, rm); 5547 } else { 5548 uint64_t mask; 5549 switch (sz) { 5550 case 0: 5551 mask = 0xFF; 5552 break; 5553 case 1: 5554 mask = 0xFFFF; 5555 break; 5556 case 2: 5557 mask = 0xFFFFFFFF; 5558 break; 5559 default: 5560 g_assert_not_reached(); 5561 } 5562 tcg_val = tcg_temp_new_i64(); 5563 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5564 } 5565 5566 tcg_acc = cpu_reg(s, rn); 5567 tcg_bytes = tcg_constant_i32(1 << sz); 5568 5569 if (crc32c) { 5570 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5571 } else { 5572 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5573 } 5574 } 5575 5576 /* Data-processing (2 source) 5577 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5578 * +----+---+---+-----------------+------+--------+------+------+ 5579 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5580 * +----+---+---+-----------------+------+--------+------+------+ 5581 */ 5582 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5583 { 5584 unsigned int sf, rm, opcode, rn, rd, setflag; 5585 sf = extract32(insn, 31, 1); 5586 setflag = extract32(insn, 29, 1); 5587 rm = extract32(insn, 16, 5); 5588 opcode = extract32(insn, 10, 6); 5589 rn = extract32(insn, 5, 5); 5590 rd = extract32(insn, 0, 5); 5591 5592 if (setflag && opcode != 0) { 5593 unallocated_encoding(s); 5594 return; 5595 } 5596 5597 switch (opcode) { 5598 case 0: /* SUBP(S) */ 5599 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5600 goto do_unallocated; 5601 } else { 5602 TCGv_i64 tcg_n, tcg_m, tcg_d; 5603 5604 tcg_n = read_cpu_reg_sp(s, rn, true); 5605 tcg_m = read_cpu_reg_sp(s, rm, true); 5606 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5607 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5608 tcg_d = cpu_reg(s, rd); 5609 5610 if (setflag) { 5611 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5612 } else { 5613 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5614 } 5615 } 5616 break; 5617 case 2: /* UDIV */ 5618 handle_div(s, false, sf, rm, rn, rd); 5619 break; 5620 case 3: /* SDIV */ 5621 handle_div(s, true, sf, rm, rn, rd); 5622 break; 5623 case 4: /* IRG */ 5624 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5625 goto do_unallocated; 5626 } 5627 if (s->ata) { 5628 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5629 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5630 } else { 5631 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5632 cpu_reg_sp(s, rn)); 5633 } 5634 break; 5635 case 5: /* GMI */ 5636 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5637 goto do_unallocated; 5638 } else { 5639 TCGv_i64 t = tcg_temp_new_i64(); 5640 5641 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5642 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5643 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5644 } 5645 break; 5646 case 8: /* LSLV */ 5647 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5648 break; 5649 case 9: /* LSRV */ 5650 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5651 break; 5652 case 10: /* ASRV */ 5653 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5654 break; 5655 case 11: /* RORV */ 5656 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5657 break; 5658 case 12: /* PACGA */ 5659 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5660 goto do_unallocated; 5661 } 5662 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5663 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5664 break; 5665 case 16: 5666 case 17: 5667 case 18: 5668 case 19: 5669 case 20: 5670 case 21: 5671 case 22: 5672 case 23: /* CRC32 */ 5673 { 5674 int sz = extract32(opcode, 0, 2); 5675 bool crc32c = extract32(opcode, 2, 1); 5676 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5677 break; 5678 } 5679 default: 5680 do_unallocated: 5681 unallocated_encoding(s); 5682 break; 5683 } 5684 } 5685 5686 /* 5687 * Data processing - register 5688 * 31 30 29 28 25 21 20 16 10 0 5689 * +--+---+--+---+-------+-----+-------+-------+---------+ 5690 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5691 * +--+---+--+---+-------+-----+-------+-------+---------+ 5692 */ 5693 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5694 { 5695 int op0 = extract32(insn, 30, 1); 5696 int op1 = extract32(insn, 28, 1); 5697 int op2 = extract32(insn, 21, 4); 5698 int op3 = extract32(insn, 10, 6); 5699 5700 if (!op1) { 5701 if (op2 & 8) { 5702 if (op2 & 1) { 5703 /* Add/sub (extended register) */ 5704 disas_add_sub_ext_reg(s, insn); 5705 } else { 5706 /* Add/sub (shifted register) */ 5707 disas_add_sub_reg(s, insn); 5708 } 5709 } else { 5710 /* Logical (shifted register) */ 5711 disas_logic_reg(s, insn); 5712 } 5713 return; 5714 } 5715 5716 switch (op2) { 5717 case 0x0: 5718 switch (op3) { 5719 case 0x00: /* Add/subtract (with carry) */ 5720 disas_adc_sbc(s, insn); 5721 break; 5722 5723 case 0x01: /* Rotate right into flags */ 5724 case 0x21: 5725 disas_rotate_right_into_flags(s, insn); 5726 break; 5727 5728 case 0x02: /* Evaluate into flags */ 5729 case 0x12: 5730 case 0x22: 5731 case 0x32: 5732 disas_evaluate_into_flags(s, insn); 5733 break; 5734 5735 default: 5736 goto do_unallocated; 5737 } 5738 break; 5739 5740 case 0x2: /* Conditional compare */ 5741 disas_cc(s, insn); /* both imm and reg forms */ 5742 break; 5743 5744 case 0x4: /* Conditional select */ 5745 disas_cond_select(s, insn); 5746 break; 5747 5748 case 0x6: /* Data-processing */ 5749 if (op0) { /* (1 source) */ 5750 disas_data_proc_1src(s, insn); 5751 } else { /* (2 source) */ 5752 disas_data_proc_2src(s, insn); 5753 } 5754 break; 5755 case 0x8 ... 0xf: /* (3 source) */ 5756 disas_data_proc_3src(s, insn); 5757 break; 5758 5759 default: 5760 do_unallocated: 5761 unallocated_encoding(s); 5762 break; 5763 } 5764 } 5765 5766 static void handle_fp_compare(DisasContext *s, int size, 5767 unsigned int rn, unsigned int rm, 5768 bool cmp_with_zero, bool signal_all_nans) 5769 { 5770 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5771 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5772 5773 if (size == MO_64) { 5774 TCGv_i64 tcg_vn, tcg_vm; 5775 5776 tcg_vn = read_fp_dreg(s, rn); 5777 if (cmp_with_zero) { 5778 tcg_vm = tcg_constant_i64(0); 5779 } else { 5780 tcg_vm = read_fp_dreg(s, rm); 5781 } 5782 if (signal_all_nans) { 5783 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5784 } else { 5785 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5786 } 5787 } else { 5788 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5789 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5790 5791 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5792 if (cmp_with_zero) { 5793 tcg_gen_movi_i32(tcg_vm, 0); 5794 } else { 5795 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5796 } 5797 5798 switch (size) { 5799 case MO_32: 5800 if (signal_all_nans) { 5801 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5802 } else { 5803 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5804 } 5805 break; 5806 case MO_16: 5807 if (signal_all_nans) { 5808 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5809 } else { 5810 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5811 } 5812 break; 5813 default: 5814 g_assert_not_reached(); 5815 } 5816 } 5817 5818 gen_set_nzcv(tcg_flags); 5819 } 5820 5821 /* Floating point compare 5822 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5823 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5824 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5825 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5826 */ 5827 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5828 { 5829 unsigned int mos, type, rm, op, rn, opc, op2r; 5830 int size; 5831 5832 mos = extract32(insn, 29, 3); 5833 type = extract32(insn, 22, 2); 5834 rm = extract32(insn, 16, 5); 5835 op = extract32(insn, 14, 2); 5836 rn = extract32(insn, 5, 5); 5837 opc = extract32(insn, 3, 2); 5838 op2r = extract32(insn, 0, 3); 5839 5840 if (mos || op || op2r) { 5841 unallocated_encoding(s); 5842 return; 5843 } 5844 5845 switch (type) { 5846 case 0: 5847 size = MO_32; 5848 break; 5849 case 1: 5850 size = MO_64; 5851 break; 5852 case 3: 5853 size = MO_16; 5854 if (dc_isar_feature(aa64_fp16, s)) { 5855 break; 5856 } 5857 /* fallthru */ 5858 default: 5859 unallocated_encoding(s); 5860 return; 5861 } 5862 5863 if (!fp_access_check(s)) { 5864 return; 5865 } 5866 5867 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5868 } 5869 5870 /* Floating point conditional compare 5871 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5872 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5873 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5874 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5875 */ 5876 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5877 { 5878 unsigned int mos, type, rm, cond, rn, op, nzcv; 5879 TCGLabel *label_continue = NULL; 5880 int size; 5881 5882 mos = extract32(insn, 29, 3); 5883 type = extract32(insn, 22, 2); 5884 rm = extract32(insn, 16, 5); 5885 cond = extract32(insn, 12, 4); 5886 rn = extract32(insn, 5, 5); 5887 op = extract32(insn, 4, 1); 5888 nzcv = extract32(insn, 0, 4); 5889 5890 if (mos) { 5891 unallocated_encoding(s); 5892 return; 5893 } 5894 5895 switch (type) { 5896 case 0: 5897 size = MO_32; 5898 break; 5899 case 1: 5900 size = MO_64; 5901 break; 5902 case 3: 5903 size = MO_16; 5904 if (dc_isar_feature(aa64_fp16, s)) { 5905 break; 5906 } 5907 /* fallthru */ 5908 default: 5909 unallocated_encoding(s); 5910 return; 5911 } 5912 5913 if (!fp_access_check(s)) { 5914 return; 5915 } 5916 5917 if (cond < 0x0e) { /* not always */ 5918 TCGLabel *label_match = gen_new_label(); 5919 label_continue = gen_new_label(); 5920 arm_gen_test_cc(cond, label_match); 5921 /* nomatch: */ 5922 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5923 tcg_gen_br(label_continue); 5924 gen_set_label(label_match); 5925 } 5926 5927 handle_fp_compare(s, size, rn, rm, false, op); 5928 5929 if (cond < 0x0e) { 5930 gen_set_label(label_continue); 5931 } 5932 } 5933 5934 /* Floating point conditional select 5935 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5936 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5937 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5938 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5939 */ 5940 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5941 { 5942 unsigned int mos, type, rm, cond, rn, rd; 5943 TCGv_i64 t_true, t_false; 5944 DisasCompare64 c; 5945 MemOp sz; 5946 5947 mos = extract32(insn, 29, 3); 5948 type = extract32(insn, 22, 2); 5949 rm = extract32(insn, 16, 5); 5950 cond = extract32(insn, 12, 4); 5951 rn = extract32(insn, 5, 5); 5952 rd = extract32(insn, 0, 5); 5953 5954 if (mos) { 5955 unallocated_encoding(s); 5956 return; 5957 } 5958 5959 switch (type) { 5960 case 0: 5961 sz = MO_32; 5962 break; 5963 case 1: 5964 sz = MO_64; 5965 break; 5966 case 3: 5967 sz = MO_16; 5968 if (dc_isar_feature(aa64_fp16, s)) { 5969 break; 5970 } 5971 /* fallthru */ 5972 default: 5973 unallocated_encoding(s); 5974 return; 5975 } 5976 5977 if (!fp_access_check(s)) { 5978 return; 5979 } 5980 5981 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5982 t_true = tcg_temp_new_i64(); 5983 t_false = tcg_temp_new_i64(); 5984 read_vec_element(s, t_true, rn, 0, sz); 5985 read_vec_element(s, t_false, rm, 0, sz); 5986 5987 a64_test_cc(&c, cond); 5988 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5989 t_true, t_false); 5990 5991 /* Note that sregs & hregs write back zeros to the high bits, 5992 and we've already done the zero-extension. */ 5993 write_fp_dreg(s, rd, t_true); 5994 } 5995 5996 /* Floating-point data-processing (1 source) - half precision */ 5997 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5998 { 5999 TCGv_ptr fpst = NULL; 6000 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6001 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6002 6003 switch (opcode) { 6004 case 0x0: /* FMOV */ 6005 tcg_gen_mov_i32(tcg_res, tcg_op); 6006 break; 6007 case 0x1: /* FABS */ 6008 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6009 break; 6010 case 0x2: /* FNEG */ 6011 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6012 break; 6013 case 0x3: /* FSQRT */ 6014 fpst = fpstatus_ptr(FPST_FPCR_F16); 6015 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6016 break; 6017 case 0x8: /* FRINTN */ 6018 case 0x9: /* FRINTP */ 6019 case 0xa: /* FRINTM */ 6020 case 0xb: /* FRINTZ */ 6021 case 0xc: /* FRINTA */ 6022 { 6023 TCGv_i32 tcg_rmode; 6024 6025 fpst = fpstatus_ptr(FPST_FPCR_F16); 6026 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6027 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6028 gen_restore_rmode(tcg_rmode, fpst); 6029 break; 6030 } 6031 case 0xe: /* FRINTX */ 6032 fpst = fpstatus_ptr(FPST_FPCR_F16); 6033 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6034 break; 6035 case 0xf: /* FRINTI */ 6036 fpst = fpstatus_ptr(FPST_FPCR_F16); 6037 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6038 break; 6039 default: 6040 g_assert_not_reached(); 6041 } 6042 6043 write_fp_sreg(s, rd, tcg_res); 6044 } 6045 6046 /* Floating-point data-processing (1 source) - single precision */ 6047 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6048 { 6049 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6050 TCGv_i32 tcg_op, tcg_res; 6051 TCGv_ptr fpst; 6052 int rmode = -1; 6053 6054 tcg_op = read_fp_sreg(s, rn); 6055 tcg_res = tcg_temp_new_i32(); 6056 6057 switch (opcode) { 6058 case 0x0: /* FMOV */ 6059 tcg_gen_mov_i32(tcg_res, tcg_op); 6060 goto done; 6061 case 0x1: /* FABS */ 6062 gen_helper_vfp_abss(tcg_res, tcg_op); 6063 goto done; 6064 case 0x2: /* FNEG */ 6065 gen_helper_vfp_negs(tcg_res, tcg_op); 6066 goto done; 6067 case 0x3: /* FSQRT */ 6068 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6069 goto done; 6070 case 0x6: /* BFCVT */ 6071 gen_fpst = gen_helper_bfcvt; 6072 break; 6073 case 0x8: /* FRINTN */ 6074 case 0x9: /* FRINTP */ 6075 case 0xa: /* FRINTM */ 6076 case 0xb: /* FRINTZ */ 6077 case 0xc: /* FRINTA */ 6078 rmode = opcode & 7; 6079 gen_fpst = gen_helper_rints; 6080 break; 6081 case 0xe: /* FRINTX */ 6082 gen_fpst = gen_helper_rints_exact; 6083 break; 6084 case 0xf: /* FRINTI */ 6085 gen_fpst = gen_helper_rints; 6086 break; 6087 case 0x10: /* FRINT32Z */ 6088 rmode = FPROUNDING_ZERO; 6089 gen_fpst = gen_helper_frint32_s; 6090 break; 6091 case 0x11: /* FRINT32X */ 6092 gen_fpst = gen_helper_frint32_s; 6093 break; 6094 case 0x12: /* FRINT64Z */ 6095 rmode = FPROUNDING_ZERO; 6096 gen_fpst = gen_helper_frint64_s; 6097 break; 6098 case 0x13: /* FRINT64X */ 6099 gen_fpst = gen_helper_frint64_s; 6100 break; 6101 default: 6102 g_assert_not_reached(); 6103 } 6104 6105 fpst = fpstatus_ptr(FPST_FPCR); 6106 if (rmode >= 0) { 6107 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6108 gen_fpst(tcg_res, tcg_op, fpst); 6109 gen_restore_rmode(tcg_rmode, fpst); 6110 } else { 6111 gen_fpst(tcg_res, tcg_op, fpst); 6112 } 6113 6114 done: 6115 write_fp_sreg(s, rd, tcg_res); 6116 } 6117 6118 /* Floating-point data-processing (1 source) - double precision */ 6119 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6120 { 6121 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6122 TCGv_i64 tcg_op, tcg_res; 6123 TCGv_ptr fpst; 6124 int rmode = -1; 6125 6126 switch (opcode) { 6127 case 0x0: /* FMOV */ 6128 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6129 return; 6130 } 6131 6132 tcg_op = read_fp_dreg(s, rn); 6133 tcg_res = tcg_temp_new_i64(); 6134 6135 switch (opcode) { 6136 case 0x1: /* FABS */ 6137 gen_helper_vfp_absd(tcg_res, tcg_op); 6138 goto done; 6139 case 0x2: /* FNEG */ 6140 gen_helper_vfp_negd(tcg_res, tcg_op); 6141 goto done; 6142 case 0x3: /* FSQRT */ 6143 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6144 goto done; 6145 case 0x8: /* FRINTN */ 6146 case 0x9: /* FRINTP */ 6147 case 0xa: /* FRINTM */ 6148 case 0xb: /* FRINTZ */ 6149 case 0xc: /* FRINTA */ 6150 rmode = opcode & 7; 6151 gen_fpst = gen_helper_rintd; 6152 break; 6153 case 0xe: /* FRINTX */ 6154 gen_fpst = gen_helper_rintd_exact; 6155 break; 6156 case 0xf: /* FRINTI */ 6157 gen_fpst = gen_helper_rintd; 6158 break; 6159 case 0x10: /* FRINT32Z */ 6160 rmode = FPROUNDING_ZERO; 6161 gen_fpst = gen_helper_frint32_d; 6162 break; 6163 case 0x11: /* FRINT32X */ 6164 gen_fpst = gen_helper_frint32_d; 6165 break; 6166 case 0x12: /* FRINT64Z */ 6167 rmode = FPROUNDING_ZERO; 6168 gen_fpst = gen_helper_frint64_d; 6169 break; 6170 case 0x13: /* FRINT64X */ 6171 gen_fpst = gen_helper_frint64_d; 6172 break; 6173 default: 6174 g_assert_not_reached(); 6175 } 6176 6177 fpst = fpstatus_ptr(FPST_FPCR); 6178 if (rmode >= 0) { 6179 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6180 gen_fpst(tcg_res, tcg_op, fpst); 6181 gen_restore_rmode(tcg_rmode, fpst); 6182 } else { 6183 gen_fpst(tcg_res, tcg_op, fpst); 6184 } 6185 6186 done: 6187 write_fp_dreg(s, rd, tcg_res); 6188 } 6189 6190 static void handle_fp_fcvt(DisasContext *s, int opcode, 6191 int rd, int rn, int dtype, int ntype) 6192 { 6193 switch (ntype) { 6194 case 0x0: 6195 { 6196 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6197 if (dtype == 1) { 6198 /* Single to double */ 6199 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6200 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6201 write_fp_dreg(s, rd, tcg_rd); 6202 } else { 6203 /* Single to half */ 6204 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6205 TCGv_i32 ahp = get_ahp_flag(); 6206 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6207 6208 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6209 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6210 write_fp_sreg(s, rd, tcg_rd); 6211 } 6212 break; 6213 } 6214 case 0x1: 6215 { 6216 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6217 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6218 if (dtype == 0) { 6219 /* Double to single */ 6220 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6221 } else { 6222 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6223 TCGv_i32 ahp = get_ahp_flag(); 6224 /* Double to half */ 6225 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6226 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6227 } 6228 write_fp_sreg(s, rd, tcg_rd); 6229 break; 6230 } 6231 case 0x3: 6232 { 6233 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6234 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6235 TCGv_i32 tcg_ahp = get_ahp_flag(); 6236 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6237 if (dtype == 0) { 6238 /* Half to single */ 6239 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6240 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6241 write_fp_sreg(s, rd, tcg_rd); 6242 } else { 6243 /* Half to double */ 6244 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6245 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6246 write_fp_dreg(s, rd, tcg_rd); 6247 } 6248 break; 6249 } 6250 default: 6251 g_assert_not_reached(); 6252 } 6253 } 6254 6255 /* Floating point data-processing (1 source) 6256 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6257 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6258 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6259 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6260 */ 6261 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6262 { 6263 int mos = extract32(insn, 29, 3); 6264 int type = extract32(insn, 22, 2); 6265 int opcode = extract32(insn, 15, 6); 6266 int rn = extract32(insn, 5, 5); 6267 int rd = extract32(insn, 0, 5); 6268 6269 if (mos) { 6270 goto do_unallocated; 6271 } 6272 6273 switch (opcode) { 6274 case 0x4: case 0x5: case 0x7: 6275 { 6276 /* FCVT between half, single and double precision */ 6277 int dtype = extract32(opcode, 0, 2); 6278 if (type == 2 || dtype == type) { 6279 goto do_unallocated; 6280 } 6281 if (!fp_access_check(s)) { 6282 return; 6283 } 6284 6285 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6286 break; 6287 } 6288 6289 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6290 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6291 goto do_unallocated; 6292 } 6293 /* fall through */ 6294 case 0x0 ... 0x3: 6295 case 0x8 ... 0xc: 6296 case 0xe ... 0xf: 6297 /* 32-to-32 and 64-to-64 ops */ 6298 switch (type) { 6299 case 0: 6300 if (!fp_access_check(s)) { 6301 return; 6302 } 6303 handle_fp_1src_single(s, opcode, rd, rn); 6304 break; 6305 case 1: 6306 if (!fp_access_check(s)) { 6307 return; 6308 } 6309 handle_fp_1src_double(s, opcode, rd, rn); 6310 break; 6311 case 3: 6312 if (!dc_isar_feature(aa64_fp16, s)) { 6313 goto do_unallocated; 6314 } 6315 6316 if (!fp_access_check(s)) { 6317 return; 6318 } 6319 handle_fp_1src_half(s, opcode, rd, rn); 6320 break; 6321 default: 6322 goto do_unallocated; 6323 } 6324 break; 6325 6326 case 0x6: 6327 switch (type) { 6328 case 1: /* BFCVT */ 6329 if (!dc_isar_feature(aa64_bf16, s)) { 6330 goto do_unallocated; 6331 } 6332 if (!fp_access_check(s)) { 6333 return; 6334 } 6335 handle_fp_1src_single(s, opcode, rd, rn); 6336 break; 6337 default: 6338 goto do_unallocated; 6339 } 6340 break; 6341 6342 default: 6343 do_unallocated: 6344 unallocated_encoding(s); 6345 break; 6346 } 6347 } 6348 6349 /* Floating-point data-processing (2 source) - single precision */ 6350 static void handle_fp_2src_single(DisasContext *s, int opcode, 6351 int rd, int rn, int rm) 6352 { 6353 TCGv_i32 tcg_op1; 6354 TCGv_i32 tcg_op2; 6355 TCGv_i32 tcg_res; 6356 TCGv_ptr fpst; 6357 6358 tcg_res = tcg_temp_new_i32(); 6359 fpst = fpstatus_ptr(FPST_FPCR); 6360 tcg_op1 = read_fp_sreg(s, rn); 6361 tcg_op2 = read_fp_sreg(s, rm); 6362 6363 switch (opcode) { 6364 case 0x0: /* FMUL */ 6365 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6366 break; 6367 case 0x1: /* FDIV */ 6368 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6369 break; 6370 case 0x2: /* FADD */ 6371 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6372 break; 6373 case 0x3: /* FSUB */ 6374 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6375 break; 6376 case 0x4: /* FMAX */ 6377 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6378 break; 6379 case 0x5: /* FMIN */ 6380 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6381 break; 6382 case 0x6: /* FMAXNM */ 6383 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6384 break; 6385 case 0x7: /* FMINNM */ 6386 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6387 break; 6388 case 0x8: /* FNMUL */ 6389 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6390 gen_helper_vfp_negs(tcg_res, tcg_res); 6391 break; 6392 } 6393 6394 write_fp_sreg(s, rd, tcg_res); 6395 } 6396 6397 /* Floating-point data-processing (2 source) - double precision */ 6398 static void handle_fp_2src_double(DisasContext *s, int opcode, 6399 int rd, int rn, int rm) 6400 { 6401 TCGv_i64 tcg_op1; 6402 TCGv_i64 tcg_op2; 6403 TCGv_i64 tcg_res; 6404 TCGv_ptr fpst; 6405 6406 tcg_res = tcg_temp_new_i64(); 6407 fpst = fpstatus_ptr(FPST_FPCR); 6408 tcg_op1 = read_fp_dreg(s, rn); 6409 tcg_op2 = read_fp_dreg(s, rm); 6410 6411 switch (opcode) { 6412 case 0x0: /* FMUL */ 6413 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6414 break; 6415 case 0x1: /* FDIV */ 6416 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6417 break; 6418 case 0x2: /* FADD */ 6419 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6420 break; 6421 case 0x3: /* FSUB */ 6422 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6423 break; 6424 case 0x4: /* FMAX */ 6425 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6426 break; 6427 case 0x5: /* FMIN */ 6428 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6429 break; 6430 case 0x6: /* FMAXNM */ 6431 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6432 break; 6433 case 0x7: /* FMINNM */ 6434 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6435 break; 6436 case 0x8: /* FNMUL */ 6437 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6438 gen_helper_vfp_negd(tcg_res, tcg_res); 6439 break; 6440 } 6441 6442 write_fp_dreg(s, rd, tcg_res); 6443 } 6444 6445 /* Floating-point data-processing (2 source) - half precision */ 6446 static void handle_fp_2src_half(DisasContext *s, int opcode, 6447 int rd, int rn, int rm) 6448 { 6449 TCGv_i32 tcg_op1; 6450 TCGv_i32 tcg_op2; 6451 TCGv_i32 tcg_res; 6452 TCGv_ptr fpst; 6453 6454 tcg_res = tcg_temp_new_i32(); 6455 fpst = fpstatus_ptr(FPST_FPCR_F16); 6456 tcg_op1 = read_fp_hreg(s, rn); 6457 tcg_op2 = read_fp_hreg(s, rm); 6458 6459 switch (opcode) { 6460 case 0x0: /* FMUL */ 6461 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6462 break; 6463 case 0x1: /* FDIV */ 6464 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6465 break; 6466 case 0x2: /* FADD */ 6467 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6468 break; 6469 case 0x3: /* FSUB */ 6470 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6471 break; 6472 case 0x4: /* FMAX */ 6473 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6474 break; 6475 case 0x5: /* FMIN */ 6476 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6477 break; 6478 case 0x6: /* FMAXNM */ 6479 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6480 break; 6481 case 0x7: /* FMINNM */ 6482 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6483 break; 6484 case 0x8: /* FNMUL */ 6485 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6486 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6487 break; 6488 default: 6489 g_assert_not_reached(); 6490 } 6491 6492 write_fp_sreg(s, rd, tcg_res); 6493 } 6494 6495 /* Floating point data-processing (2 source) 6496 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6497 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6498 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6499 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6500 */ 6501 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6502 { 6503 int mos = extract32(insn, 29, 3); 6504 int type = extract32(insn, 22, 2); 6505 int rd = extract32(insn, 0, 5); 6506 int rn = extract32(insn, 5, 5); 6507 int rm = extract32(insn, 16, 5); 6508 int opcode = extract32(insn, 12, 4); 6509 6510 if (opcode > 8 || mos) { 6511 unallocated_encoding(s); 6512 return; 6513 } 6514 6515 switch (type) { 6516 case 0: 6517 if (!fp_access_check(s)) { 6518 return; 6519 } 6520 handle_fp_2src_single(s, opcode, rd, rn, rm); 6521 break; 6522 case 1: 6523 if (!fp_access_check(s)) { 6524 return; 6525 } 6526 handle_fp_2src_double(s, opcode, rd, rn, rm); 6527 break; 6528 case 3: 6529 if (!dc_isar_feature(aa64_fp16, s)) { 6530 unallocated_encoding(s); 6531 return; 6532 } 6533 if (!fp_access_check(s)) { 6534 return; 6535 } 6536 handle_fp_2src_half(s, opcode, rd, rn, rm); 6537 break; 6538 default: 6539 unallocated_encoding(s); 6540 } 6541 } 6542 6543 /* Floating-point data-processing (3 source) - single precision */ 6544 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6545 int rd, int rn, int rm, int ra) 6546 { 6547 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6548 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6549 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6550 6551 tcg_op1 = read_fp_sreg(s, rn); 6552 tcg_op2 = read_fp_sreg(s, rm); 6553 tcg_op3 = read_fp_sreg(s, ra); 6554 6555 /* These are fused multiply-add, and must be done as one 6556 * floating point operation with no rounding between the 6557 * multiplication and addition steps. 6558 * NB that doing the negations here as separate steps is 6559 * correct : an input NaN should come out with its sign bit 6560 * flipped if it is a negated-input. 6561 */ 6562 if (o1 == true) { 6563 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6564 } 6565 6566 if (o0 != o1) { 6567 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6568 } 6569 6570 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6571 6572 write_fp_sreg(s, rd, tcg_res); 6573 } 6574 6575 /* Floating-point data-processing (3 source) - double precision */ 6576 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6577 int rd, int rn, int rm, int ra) 6578 { 6579 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6580 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6581 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6582 6583 tcg_op1 = read_fp_dreg(s, rn); 6584 tcg_op2 = read_fp_dreg(s, rm); 6585 tcg_op3 = read_fp_dreg(s, ra); 6586 6587 /* These are fused multiply-add, and must be done as one 6588 * floating point operation with no rounding between the 6589 * multiplication and addition steps. 6590 * NB that doing the negations here as separate steps is 6591 * correct : an input NaN should come out with its sign bit 6592 * flipped if it is a negated-input. 6593 */ 6594 if (o1 == true) { 6595 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6596 } 6597 6598 if (o0 != o1) { 6599 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6600 } 6601 6602 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6603 6604 write_fp_dreg(s, rd, tcg_res); 6605 } 6606 6607 /* Floating-point data-processing (3 source) - half precision */ 6608 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6609 int rd, int rn, int rm, int ra) 6610 { 6611 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6612 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6613 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6614 6615 tcg_op1 = read_fp_hreg(s, rn); 6616 tcg_op2 = read_fp_hreg(s, rm); 6617 tcg_op3 = read_fp_hreg(s, ra); 6618 6619 /* These are fused multiply-add, and must be done as one 6620 * floating point operation with no rounding between the 6621 * multiplication and addition steps. 6622 * NB that doing the negations here as separate steps is 6623 * correct : an input NaN should come out with its sign bit 6624 * flipped if it is a negated-input. 6625 */ 6626 if (o1 == true) { 6627 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6628 } 6629 6630 if (o0 != o1) { 6631 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6632 } 6633 6634 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6635 6636 write_fp_sreg(s, rd, tcg_res); 6637 } 6638 6639 /* Floating point data-processing (3 source) 6640 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6641 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6642 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6643 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6644 */ 6645 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6646 { 6647 int mos = extract32(insn, 29, 3); 6648 int type = extract32(insn, 22, 2); 6649 int rd = extract32(insn, 0, 5); 6650 int rn = extract32(insn, 5, 5); 6651 int ra = extract32(insn, 10, 5); 6652 int rm = extract32(insn, 16, 5); 6653 bool o0 = extract32(insn, 15, 1); 6654 bool o1 = extract32(insn, 21, 1); 6655 6656 if (mos) { 6657 unallocated_encoding(s); 6658 return; 6659 } 6660 6661 switch (type) { 6662 case 0: 6663 if (!fp_access_check(s)) { 6664 return; 6665 } 6666 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6667 break; 6668 case 1: 6669 if (!fp_access_check(s)) { 6670 return; 6671 } 6672 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6673 break; 6674 case 3: 6675 if (!dc_isar_feature(aa64_fp16, s)) { 6676 unallocated_encoding(s); 6677 return; 6678 } 6679 if (!fp_access_check(s)) { 6680 return; 6681 } 6682 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6683 break; 6684 default: 6685 unallocated_encoding(s); 6686 } 6687 } 6688 6689 /* Floating point immediate 6690 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6691 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6692 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6693 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6694 */ 6695 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6696 { 6697 int rd = extract32(insn, 0, 5); 6698 int imm5 = extract32(insn, 5, 5); 6699 int imm8 = extract32(insn, 13, 8); 6700 int type = extract32(insn, 22, 2); 6701 int mos = extract32(insn, 29, 3); 6702 uint64_t imm; 6703 MemOp sz; 6704 6705 if (mos || imm5) { 6706 unallocated_encoding(s); 6707 return; 6708 } 6709 6710 switch (type) { 6711 case 0: 6712 sz = MO_32; 6713 break; 6714 case 1: 6715 sz = MO_64; 6716 break; 6717 case 3: 6718 sz = MO_16; 6719 if (dc_isar_feature(aa64_fp16, s)) { 6720 break; 6721 } 6722 /* fallthru */ 6723 default: 6724 unallocated_encoding(s); 6725 return; 6726 } 6727 6728 if (!fp_access_check(s)) { 6729 return; 6730 } 6731 6732 imm = vfp_expand_imm(sz, imm8); 6733 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6734 } 6735 6736 /* Handle floating point <=> fixed point conversions. Note that we can 6737 * also deal with fp <=> integer conversions as a special case (scale == 64) 6738 * OPTME: consider handling that special case specially or at least skipping 6739 * the call to scalbn in the helpers for zero shifts. 6740 */ 6741 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6742 bool itof, int rmode, int scale, int sf, int type) 6743 { 6744 bool is_signed = !(opcode & 1); 6745 TCGv_ptr tcg_fpstatus; 6746 TCGv_i32 tcg_shift, tcg_single; 6747 TCGv_i64 tcg_double; 6748 6749 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6750 6751 tcg_shift = tcg_constant_i32(64 - scale); 6752 6753 if (itof) { 6754 TCGv_i64 tcg_int = cpu_reg(s, rn); 6755 if (!sf) { 6756 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6757 6758 if (is_signed) { 6759 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6760 } else { 6761 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6762 } 6763 6764 tcg_int = tcg_extend; 6765 } 6766 6767 switch (type) { 6768 case 1: /* float64 */ 6769 tcg_double = tcg_temp_new_i64(); 6770 if (is_signed) { 6771 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6772 tcg_shift, tcg_fpstatus); 6773 } else { 6774 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6775 tcg_shift, tcg_fpstatus); 6776 } 6777 write_fp_dreg(s, rd, tcg_double); 6778 break; 6779 6780 case 0: /* float32 */ 6781 tcg_single = tcg_temp_new_i32(); 6782 if (is_signed) { 6783 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6784 tcg_shift, tcg_fpstatus); 6785 } else { 6786 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6787 tcg_shift, tcg_fpstatus); 6788 } 6789 write_fp_sreg(s, rd, tcg_single); 6790 break; 6791 6792 case 3: /* float16 */ 6793 tcg_single = tcg_temp_new_i32(); 6794 if (is_signed) { 6795 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6796 tcg_shift, tcg_fpstatus); 6797 } else { 6798 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6799 tcg_shift, tcg_fpstatus); 6800 } 6801 write_fp_sreg(s, rd, tcg_single); 6802 break; 6803 6804 default: 6805 g_assert_not_reached(); 6806 } 6807 } else { 6808 TCGv_i64 tcg_int = cpu_reg(s, rd); 6809 TCGv_i32 tcg_rmode; 6810 6811 if (extract32(opcode, 2, 1)) { 6812 /* There are too many rounding modes to all fit into rmode, 6813 * so FCVTA[US] is a special case. 6814 */ 6815 rmode = FPROUNDING_TIEAWAY; 6816 } 6817 6818 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6819 6820 switch (type) { 6821 case 1: /* float64 */ 6822 tcg_double = read_fp_dreg(s, rn); 6823 if (is_signed) { 6824 if (!sf) { 6825 gen_helper_vfp_tosld(tcg_int, tcg_double, 6826 tcg_shift, tcg_fpstatus); 6827 } else { 6828 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6829 tcg_shift, tcg_fpstatus); 6830 } 6831 } else { 6832 if (!sf) { 6833 gen_helper_vfp_tould(tcg_int, tcg_double, 6834 tcg_shift, tcg_fpstatus); 6835 } else { 6836 gen_helper_vfp_touqd(tcg_int, tcg_double, 6837 tcg_shift, tcg_fpstatus); 6838 } 6839 } 6840 if (!sf) { 6841 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6842 } 6843 break; 6844 6845 case 0: /* float32 */ 6846 tcg_single = read_fp_sreg(s, rn); 6847 if (sf) { 6848 if (is_signed) { 6849 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6850 tcg_shift, tcg_fpstatus); 6851 } else { 6852 gen_helper_vfp_touqs(tcg_int, tcg_single, 6853 tcg_shift, tcg_fpstatus); 6854 } 6855 } else { 6856 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6857 if (is_signed) { 6858 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6859 tcg_shift, tcg_fpstatus); 6860 } else { 6861 gen_helper_vfp_touls(tcg_dest, tcg_single, 6862 tcg_shift, tcg_fpstatus); 6863 } 6864 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6865 } 6866 break; 6867 6868 case 3: /* float16 */ 6869 tcg_single = read_fp_sreg(s, rn); 6870 if (sf) { 6871 if (is_signed) { 6872 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6873 tcg_shift, tcg_fpstatus); 6874 } else { 6875 gen_helper_vfp_touqh(tcg_int, tcg_single, 6876 tcg_shift, tcg_fpstatus); 6877 } 6878 } else { 6879 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6880 if (is_signed) { 6881 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6882 tcg_shift, tcg_fpstatus); 6883 } else { 6884 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6885 tcg_shift, tcg_fpstatus); 6886 } 6887 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6888 } 6889 break; 6890 6891 default: 6892 g_assert_not_reached(); 6893 } 6894 6895 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6896 } 6897 } 6898 6899 /* Floating point <-> fixed point conversions 6900 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6901 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6902 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6903 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6904 */ 6905 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6906 { 6907 int rd = extract32(insn, 0, 5); 6908 int rn = extract32(insn, 5, 5); 6909 int scale = extract32(insn, 10, 6); 6910 int opcode = extract32(insn, 16, 3); 6911 int rmode = extract32(insn, 19, 2); 6912 int type = extract32(insn, 22, 2); 6913 bool sbit = extract32(insn, 29, 1); 6914 bool sf = extract32(insn, 31, 1); 6915 bool itof; 6916 6917 if (sbit || (!sf && scale < 32)) { 6918 unallocated_encoding(s); 6919 return; 6920 } 6921 6922 switch (type) { 6923 case 0: /* float32 */ 6924 case 1: /* float64 */ 6925 break; 6926 case 3: /* float16 */ 6927 if (dc_isar_feature(aa64_fp16, s)) { 6928 break; 6929 } 6930 /* fallthru */ 6931 default: 6932 unallocated_encoding(s); 6933 return; 6934 } 6935 6936 switch ((rmode << 3) | opcode) { 6937 case 0x2: /* SCVTF */ 6938 case 0x3: /* UCVTF */ 6939 itof = true; 6940 break; 6941 case 0x18: /* FCVTZS */ 6942 case 0x19: /* FCVTZU */ 6943 itof = false; 6944 break; 6945 default: 6946 unallocated_encoding(s); 6947 return; 6948 } 6949 6950 if (!fp_access_check(s)) { 6951 return; 6952 } 6953 6954 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6955 } 6956 6957 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6958 { 6959 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6960 * without conversion. 6961 */ 6962 6963 if (itof) { 6964 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6965 TCGv_i64 tmp; 6966 6967 switch (type) { 6968 case 0: 6969 /* 32 bit */ 6970 tmp = tcg_temp_new_i64(); 6971 tcg_gen_ext32u_i64(tmp, tcg_rn); 6972 write_fp_dreg(s, rd, tmp); 6973 break; 6974 case 1: 6975 /* 64 bit */ 6976 write_fp_dreg(s, rd, tcg_rn); 6977 break; 6978 case 2: 6979 /* 64 bit to top half. */ 6980 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 6981 clear_vec_high(s, true, rd); 6982 break; 6983 case 3: 6984 /* 16 bit */ 6985 tmp = tcg_temp_new_i64(); 6986 tcg_gen_ext16u_i64(tmp, tcg_rn); 6987 write_fp_dreg(s, rd, tmp); 6988 break; 6989 default: 6990 g_assert_not_reached(); 6991 } 6992 } else { 6993 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6994 6995 switch (type) { 6996 case 0: 6997 /* 32 bit */ 6998 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 6999 break; 7000 case 1: 7001 /* 64 bit */ 7002 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7003 break; 7004 case 2: 7005 /* 64 bits from top half */ 7006 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7007 break; 7008 case 3: 7009 /* 16 bit */ 7010 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7011 break; 7012 default: 7013 g_assert_not_reached(); 7014 } 7015 } 7016 } 7017 7018 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7019 { 7020 TCGv_i64 t = read_fp_dreg(s, rn); 7021 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7022 7023 gen_helper_fjcvtzs(t, t, fpstatus); 7024 7025 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7026 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7027 tcg_gen_movi_i32(cpu_CF, 0); 7028 tcg_gen_movi_i32(cpu_NF, 0); 7029 tcg_gen_movi_i32(cpu_VF, 0); 7030 } 7031 7032 /* Floating point <-> integer conversions 7033 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7034 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7035 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7036 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7037 */ 7038 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7039 { 7040 int rd = extract32(insn, 0, 5); 7041 int rn = extract32(insn, 5, 5); 7042 int opcode = extract32(insn, 16, 3); 7043 int rmode = extract32(insn, 19, 2); 7044 int type = extract32(insn, 22, 2); 7045 bool sbit = extract32(insn, 29, 1); 7046 bool sf = extract32(insn, 31, 1); 7047 bool itof = false; 7048 7049 if (sbit) { 7050 goto do_unallocated; 7051 } 7052 7053 switch (opcode) { 7054 case 2: /* SCVTF */ 7055 case 3: /* UCVTF */ 7056 itof = true; 7057 /* fallthru */ 7058 case 4: /* FCVTAS */ 7059 case 5: /* FCVTAU */ 7060 if (rmode != 0) { 7061 goto do_unallocated; 7062 } 7063 /* fallthru */ 7064 case 0: /* FCVT[NPMZ]S */ 7065 case 1: /* FCVT[NPMZ]U */ 7066 switch (type) { 7067 case 0: /* float32 */ 7068 case 1: /* float64 */ 7069 break; 7070 case 3: /* float16 */ 7071 if (!dc_isar_feature(aa64_fp16, s)) { 7072 goto do_unallocated; 7073 } 7074 break; 7075 default: 7076 goto do_unallocated; 7077 } 7078 if (!fp_access_check(s)) { 7079 return; 7080 } 7081 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7082 break; 7083 7084 default: 7085 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7086 case 0b01100110: /* FMOV half <-> 32-bit int */ 7087 case 0b01100111: 7088 case 0b11100110: /* FMOV half <-> 64-bit int */ 7089 case 0b11100111: 7090 if (!dc_isar_feature(aa64_fp16, s)) { 7091 goto do_unallocated; 7092 } 7093 /* fallthru */ 7094 case 0b00000110: /* FMOV 32-bit */ 7095 case 0b00000111: 7096 case 0b10100110: /* FMOV 64-bit */ 7097 case 0b10100111: 7098 case 0b11001110: /* FMOV top half of 128-bit */ 7099 case 0b11001111: 7100 if (!fp_access_check(s)) { 7101 return; 7102 } 7103 itof = opcode & 1; 7104 handle_fmov(s, rd, rn, type, itof); 7105 break; 7106 7107 case 0b00111110: /* FJCVTZS */ 7108 if (!dc_isar_feature(aa64_jscvt, s)) { 7109 goto do_unallocated; 7110 } else if (fp_access_check(s)) { 7111 handle_fjcvtzs(s, rd, rn); 7112 } 7113 break; 7114 7115 default: 7116 do_unallocated: 7117 unallocated_encoding(s); 7118 return; 7119 } 7120 break; 7121 } 7122 } 7123 7124 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7125 * 31 30 29 28 25 24 0 7126 * +---+---+---+---------+-----------------------------+ 7127 * | | 0 | | 1 1 1 1 | | 7128 * +---+---+---+---------+-----------------------------+ 7129 */ 7130 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7131 { 7132 if (extract32(insn, 24, 1)) { 7133 /* Floating point data-processing (3 source) */ 7134 disas_fp_3src(s, insn); 7135 } else if (extract32(insn, 21, 1) == 0) { 7136 /* Floating point to fixed point conversions */ 7137 disas_fp_fixed_conv(s, insn); 7138 } else { 7139 switch (extract32(insn, 10, 2)) { 7140 case 1: 7141 /* Floating point conditional compare */ 7142 disas_fp_ccomp(s, insn); 7143 break; 7144 case 2: 7145 /* Floating point data-processing (2 source) */ 7146 disas_fp_2src(s, insn); 7147 break; 7148 case 3: 7149 /* Floating point conditional select */ 7150 disas_fp_csel(s, insn); 7151 break; 7152 case 0: 7153 switch (ctz32(extract32(insn, 12, 4))) { 7154 case 0: /* [15:12] == xxx1 */ 7155 /* Floating point immediate */ 7156 disas_fp_imm(s, insn); 7157 break; 7158 case 1: /* [15:12] == xx10 */ 7159 /* Floating point compare */ 7160 disas_fp_compare(s, insn); 7161 break; 7162 case 2: /* [15:12] == x100 */ 7163 /* Floating point data-processing (1 source) */ 7164 disas_fp_1src(s, insn); 7165 break; 7166 case 3: /* [15:12] == 1000 */ 7167 unallocated_encoding(s); 7168 break; 7169 default: /* [15:12] == 0000 */ 7170 /* Floating point <-> integer conversions */ 7171 disas_fp_int_conv(s, insn); 7172 break; 7173 } 7174 break; 7175 } 7176 } 7177 } 7178 7179 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7180 int pos) 7181 { 7182 /* Extract 64 bits from the middle of two concatenated 64 bit 7183 * vector register slices left:right. The extracted bits start 7184 * at 'pos' bits into the right (least significant) side. 7185 * We return the result in tcg_right, and guarantee not to 7186 * trash tcg_left. 7187 */ 7188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7189 assert(pos > 0 && pos < 64); 7190 7191 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7192 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7193 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7194 } 7195 7196 /* EXT 7197 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7198 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7199 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7200 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7201 */ 7202 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7203 { 7204 int is_q = extract32(insn, 30, 1); 7205 int op2 = extract32(insn, 22, 2); 7206 int imm4 = extract32(insn, 11, 4); 7207 int rm = extract32(insn, 16, 5); 7208 int rn = extract32(insn, 5, 5); 7209 int rd = extract32(insn, 0, 5); 7210 int pos = imm4 << 3; 7211 TCGv_i64 tcg_resl, tcg_resh; 7212 7213 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7214 unallocated_encoding(s); 7215 return; 7216 } 7217 7218 if (!fp_access_check(s)) { 7219 return; 7220 } 7221 7222 tcg_resh = tcg_temp_new_i64(); 7223 tcg_resl = tcg_temp_new_i64(); 7224 7225 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7226 * either extracting 128 bits from a 128:128 concatenation, or 7227 * extracting 64 bits from a 64:64 concatenation. 7228 */ 7229 if (!is_q) { 7230 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7231 if (pos != 0) { 7232 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7233 do_ext64(s, tcg_resh, tcg_resl, pos); 7234 } 7235 } else { 7236 TCGv_i64 tcg_hh; 7237 typedef struct { 7238 int reg; 7239 int elt; 7240 } EltPosns; 7241 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7242 EltPosns *elt = eltposns; 7243 7244 if (pos >= 64) { 7245 elt++; 7246 pos -= 64; 7247 } 7248 7249 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7250 elt++; 7251 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7252 elt++; 7253 if (pos != 0) { 7254 do_ext64(s, tcg_resh, tcg_resl, pos); 7255 tcg_hh = tcg_temp_new_i64(); 7256 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7257 do_ext64(s, tcg_hh, tcg_resh, pos); 7258 } 7259 } 7260 7261 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7262 if (is_q) { 7263 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7264 } 7265 clear_vec_high(s, is_q, rd); 7266 } 7267 7268 /* TBL/TBX 7269 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7270 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7271 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7272 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7273 */ 7274 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7275 { 7276 int op2 = extract32(insn, 22, 2); 7277 int is_q = extract32(insn, 30, 1); 7278 int rm = extract32(insn, 16, 5); 7279 int rn = extract32(insn, 5, 5); 7280 int rd = extract32(insn, 0, 5); 7281 int is_tbx = extract32(insn, 12, 1); 7282 int len = (extract32(insn, 13, 2) + 1) * 16; 7283 7284 if (op2 != 0) { 7285 unallocated_encoding(s); 7286 return; 7287 } 7288 7289 if (!fp_access_check(s)) { 7290 return; 7291 } 7292 7293 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7294 vec_full_reg_offset(s, rm), cpu_env, 7295 is_q ? 16 : 8, vec_full_reg_size(s), 7296 (len << 6) | (is_tbx << 5) | rn, 7297 gen_helper_simd_tblx); 7298 } 7299 7300 /* ZIP/UZP/TRN 7301 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7302 * +---+---+-------------+------+---+------+---+------------------+------+ 7303 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7304 * +---+---+-------------+------+---+------+---+------------------+------+ 7305 */ 7306 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7307 { 7308 int rd = extract32(insn, 0, 5); 7309 int rn = extract32(insn, 5, 5); 7310 int rm = extract32(insn, 16, 5); 7311 int size = extract32(insn, 22, 2); 7312 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7313 * bit 2 indicates 1 vs 2 variant of the insn. 7314 */ 7315 int opcode = extract32(insn, 12, 2); 7316 bool part = extract32(insn, 14, 1); 7317 bool is_q = extract32(insn, 30, 1); 7318 int esize = 8 << size; 7319 int i; 7320 int datasize = is_q ? 128 : 64; 7321 int elements = datasize / esize; 7322 TCGv_i64 tcg_res[2], tcg_ele; 7323 7324 if (opcode == 0 || (size == 3 && !is_q)) { 7325 unallocated_encoding(s); 7326 return; 7327 } 7328 7329 if (!fp_access_check(s)) { 7330 return; 7331 } 7332 7333 tcg_res[0] = tcg_temp_new_i64(); 7334 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7335 tcg_ele = tcg_temp_new_i64(); 7336 7337 for (i = 0; i < elements; i++) { 7338 int o, w; 7339 7340 switch (opcode) { 7341 case 1: /* UZP1/2 */ 7342 { 7343 int midpoint = elements / 2; 7344 if (i < midpoint) { 7345 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7346 } else { 7347 read_vec_element(s, tcg_ele, rm, 7348 2 * (i - midpoint) + part, size); 7349 } 7350 break; 7351 } 7352 case 2: /* TRN1/2 */ 7353 if (i & 1) { 7354 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7355 } else { 7356 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7357 } 7358 break; 7359 case 3: /* ZIP1/2 */ 7360 { 7361 int base = part * elements / 2; 7362 if (i & 1) { 7363 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7364 } else { 7365 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7366 } 7367 break; 7368 } 7369 default: 7370 g_assert_not_reached(); 7371 } 7372 7373 w = (i * esize) / 64; 7374 o = (i * esize) % 64; 7375 if (o == 0) { 7376 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7377 } else { 7378 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7379 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7380 } 7381 } 7382 7383 for (i = 0; i <= is_q; ++i) { 7384 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7385 } 7386 clear_vec_high(s, is_q, rd); 7387 } 7388 7389 /* 7390 * do_reduction_op helper 7391 * 7392 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7393 * important for correct NaN propagation that we do these 7394 * operations in exactly the order specified by the pseudocode. 7395 * 7396 * This is a recursive function, TCG temps should be freed by the 7397 * calling function once it is done with the values. 7398 */ 7399 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7400 int esize, int size, int vmap, TCGv_ptr fpst) 7401 { 7402 if (esize == size) { 7403 int element; 7404 MemOp msize = esize == 16 ? MO_16 : MO_32; 7405 TCGv_i32 tcg_elem; 7406 7407 /* We should have one register left here */ 7408 assert(ctpop8(vmap) == 1); 7409 element = ctz32(vmap); 7410 assert(element < 8); 7411 7412 tcg_elem = tcg_temp_new_i32(); 7413 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7414 return tcg_elem; 7415 } else { 7416 int bits = size / 2; 7417 int shift = ctpop8(vmap) / 2; 7418 int vmap_lo = (vmap >> shift) & vmap; 7419 int vmap_hi = (vmap & ~vmap_lo); 7420 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7421 7422 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7423 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7424 tcg_res = tcg_temp_new_i32(); 7425 7426 switch (fpopcode) { 7427 case 0x0c: /* fmaxnmv half-precision */ 7428 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7429 break; 7430 case 0x0f: /* fmaxv half-precision */ 7431 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7432 break; 7433 case 0x1c: /* fminnmv half-precision */ 7434 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7435 break; 7436 case 0x1f: /* fminv half-precision */ 7437 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7438 break; 7439 case 0x2c: /* fmaxnmv */ 7440 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7441 break; 7442 case 0x2f: /* fmaxv */ 7443 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7444 break; 7445 case 0x3c: /* fminnmv */ 7446 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7447 break; 7448 case 0x3f: /* fminv */ 7449 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7450 break; 7451 default: 7452 g_assert_not_reached(); 7453 } 7454 return tcg_res; 7455 } 7456 } 7457 7458 /* AdvSIMD across lanes 7459 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7460 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7461 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7462 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7463 */ 7464 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7465 { 7466 int rd = extract32(insn, 0, 5); 7467 int rn = extract32(insn, 5, 5); 7468 int size = extract32(insn, 22, 2); 7469 int opcode = extract32(insn, 12, 5); 7470 bool is_q = extract32(insn, 30, 1); 7471 bool is_u = extract32(insn, 29, 1); 7472 bool is_fp = false; 7473 bool is_min = false; 7474 int esize; 7475 int elements; 7476 int i; 7477 TCGv_i64 tcg_res, tcg_elt; 7478 7479 switch (opcode) { 7480 case 0x1b: /* ADDV */ 7481 if (is_u) { 7482 unallocated_encoding(s); 7483 return; 7484 } 7485 /* fall through */ 7486 case 0x3: /* SADDLV, UADDLV */ 7487 case 0xa: /* SMAXV, UMAXV */ 7488 case 0x1a: /* SMINV, UMINV */ 7489 if (size == 3 || (size == 2 && !is_q)) { 7490 unallocated_encoding(s); 7491 return; 7492 } 7493 break; 7494 case 0xc: /* FMAXNMV, FMINNMV */ 7495 case 0xf: /* FMAXV, FMINV */ 7496 /* Bit 1 of size field encodes min vs max and the actual size 7497 * depends on the encoding of the U bit. If not set (and FP16 7498 * enabled) then we do half-precision float instead of single 7499 * precision. 7500 */ 7501 is_min = extract32(size, 1, 1); 7502 is_fp = true; 7503 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7504 size = 1; 7505 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7506 unallocated_encoding(s); 7507 return; 7508 } else { 7509 size = 2; 7510 } 7511 break; 7512 default: 7513 unallocated_encoding(s); 7514 return; 7515 } 7516 7517 if (!fp_access_check(s)) { 7518 return; 7519 } 7520 7521 esize = 8 << size; 7522 elements = (is_q ? 128 : 64) / esize; 7523 7524 tcg_res = tcg_temp_new_i64(); 7525 tcg_elt = tcg_temp_new_i64(); 7526 7527 /* These instructions operate across all lanes of a vector 7528 * to produce a single result. We can guarantee that a 64 7529 * bit intermediate is sufficient: 7530 * + for [US]ADDLV the maximum element size is 32 bits, and 7531 * the result type is 64 bits 7532 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7533 * same as the element size, which is 32 bits at most 7534 * For the integer operations we can choose to work at 64 7535 * or 32 bits and truncate at the end; for simplicity 7536 * we use 64 bits always. The floating point 7537 * ops do require 32 bit intermediates, though. 7538 */ 7539 if (!is_fp) { 7540 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7541 7542 for (i = 1; i < elements; i++) { 7543 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7544 7545 switch (opcode) { 7546 case 0x03: /* SADDLV / UADDLV */ 7547 case 0x1b: /* ADDV */ 7548 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7549 break; 7550 case 0x0a: /* SMAXV / UMAXV */ 7551 if (is_u) { 7552 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7553 } else { 7554 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7555 } 7556 break; 7557 case 0x1a: /* SMINV / UMINV */ 7558 if (is_u) { 7559 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7560 } else { 7561 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7562 } 7563 break; 7564 default: 7565 g_assert_not_reached(); 7566 } 7567 7568 } 7569 } else { 7570 /* Floating point vector reduction ops which work across 32 7571 * bit (single) or 16 bit (half-precision) intermediates. 7572 * Note that correct NaN propagation requires that we do these 7573 * operations in exactly the order specified by the pseudocode. 7574 */ 7575 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7576 int fpopcode = opcode | is_min << 4 | is_u << 5; 7577 int vmap = (1 << elements) - 1; 7578 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7579 (is_q ? 128 : 64), vmap, fpst); 7580 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7581 } 7582 7583 /* Now truncate the result to the width required for the final output */ 7584 if (opcode == 0x03) { 7585 /* SADDLV, UADDLV: result is 2*esize */ 7586 size++; 7587 } 7588 7589 switch (size) { 7590 case 0: 7591 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7592 break; 7593 case 1: 7594 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7595 break; 7596 case 2: 7597 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7598 break; 7599 case 3: 7600 break; 7601 default: 7602 g_assert_not_reached(); 7603 } 7604 7605 write_fp_dreg(s, rd, tcg_res); 7606 } 7607 7608 /* DUP (Element, Vector) 7609 * 7610 * 31 30 29 21 20 16 15 10 9 5 4 0 7611 * +---+---+-------------------+--------+-------------+------+------+ 7612 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7613 * +---+---+-------------------+--------+-------------+------+------+ 7614 * 7615 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7616 */ 7617 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7618 int imm5) 7619 { 7620 int size = ctz32(imm5); 7621 int index; 7622 7623 if (size > 3 || (size == 3 && !is_q)) { 7624 unallocated_encoding(s); 7625 return; 7626 } 7627 7628 if (!fp_access_check(s)) { 7629 return; 7630 } 7631 7632 index = imm5 >> (size + 1); 7633 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7634 vec_reg_offset(s, rn, index, size), 7635 is_q ? 16 : 8, vec_full_reg_size(s)); 7636 } 7637 7638 /* DUP (element, scalar) 7639 * 31 21 20 16 15 10 9 5 4 0 7640 * +-----------------------+--------+-------------+------+------+ 7641 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7642 * +-----------------------+--------+-------------+------+------+ 7643 */ 7644 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7645 int imm5) 7646 { 7647 int size = ctz32(imm5); 7648 int index; 7649 TCGv_i64 tmp; 7650 7651 if (size > 3) { 7652 unallocated_encoding(s); 7653 return; 7654 } 7655 7656 if (!fp_access_check(s)) { 7657 return; 7658 } 7659 7660 index = imm5 >> (size + 1); 7661 7662 /* This instruction just extracts the specified element and 7663 * zero-extends it into the bottom of the destination register. 7664 */ 7665 tmp = tcg_temp_new_i64(); 7666 read_vec_element(s, tmp, rn, index, size); 7667 write_fp_dreg(s, rd, tmp); 7668 } 7669 7670 /* DUP (General) 7671 * 7672 * 31 30 29 21 20 16 15 10 9 5 4 0 7673 * +---+---+-------------------+--------+-------------+------+------+ 7674 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7675 * +---+---+-------------------+--------+-------------+------+------+ 7676 * 7677 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7678 */ 7679 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7680 int imm5) 7681 { 7682 int size = ctz32(imm5); 7683 uint32_t dofs, oprsz, maxsz; 7684 7685 if (size > 3 || ((size == 3) && !is_q)) { 7686 unallocated_encoding(s); 7687 return; 7688 } 7689 7690 if (!fp_access_check(s)) { 7691 return; 7692 } 7693 7694 dofs = vec_full_reg_offset(s, rd); 7695 oprsz = is_q ? 16 : 8; 7696 maxsz = vec_full_reg_size(s); 7697 7698 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7699 } 7700 7701 /* INS (Element) 7702 * 7703 * 31 21 20 16 15 14 11 10 9 5 4 0 7704 * +-----------------------+--------+------------+---+------+------+ 7705 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7706 * +-----------------------+--------+------------+---+------+------+ 7707 * 7708 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7709 * index: encoded in imm5<4:size+1> 7710 */ 7711 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7712 int imm4, int imm5) 7713 { 7714 int size = ctz32(imm5); 7715 int src_index, dst_index; 7716 TCGv_i64 tmp; 7717 7718 if (size > 3) { 7719 unallocated_encoding(s); 7720 return; 7721 } 7722 7723 if (!fp_access_check(s)) { 7724 return; 7725 } 7726 7727 dst_index = extract32(imm5, 1+size, 5); 7728 src_index = extract32(imm4, size, 4); 7729 7730 tmp = tcg_temp_new_i64(); 7731 7732 read_vec_element(s, tmp, rn, src_index, size); 7733 write_vec_element(s, tmp, rd, dst_index, size); 7734 7735 /* INS is considered a 128-bit write for SVE. */ 7736 clear_vec_high(s, true, rd); 7737 } 7738 7739 7740 /* INS (General) 7741 * 7742 * 31 21 20 16 15 10 9 5 4 0 7743 * +-----------------------+--------+-------------+------+------+ 7744 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7745 * +-----------------------+--------+-------------+------+------+ 7746 * 7747 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7748 * index: encoded in imm5<4:size+1> 7749 */ 7750 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7751 { 7752 int size = ctz32(imm5); 7753 int idx; 7754 7755 if (size > 3) { 7756 unallocated_encoding(s); 7757 return; 7758 } 7759 7760 if (!fp_access_check(s)) { 7761 return; 7762 } 7763 7764 idx = extract32(imm5, 1 + size, 4 - size); 7765 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7766 7767 /* INS is considered a 128-bit write for SVE. */ 7768 clear_vec_high(s, true, rd); 7769 } 7770 7771 /* 7772 * UMOV (General) 7773 * SMOV (General) 7774 * 7775 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7776 * +---+---+-------------------+--------+-------------+------+------+ 7777 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7778 * +---+---+-------------------+--------+-------------+------+------+ 7779 * 7780 * U: unsigned when set 7781 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7782 */ 7783 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7784 int rn, int rd, int imm5) 7785 { 7786 int size = ctz32(imm5); 7787 int element; 7788 TCGv_i64 tcg_rd; 7789 7790 /* Check for UnallocatedEncodings */ 7791 if (is_signed) { 7792 if (size > 2 || (size == 2 && !is_q)) { 7793 unallocated_encoding(s); 7794 return; 7795 } 7796 } else { 7797 if (size > 3 7798 || (size < 3 && is_q) 7799 || (size == 3 && !is_q)) { 7800 unallocated_encoding(s); 7801 return; 7802 } 7803 } 7804 7805 if (!fp_access_check(s)) { 7806 return; 7807 } 7808 7809 element = extract32(imm5, 1+size, 4); 7810 7811 tcg_rd = cpu_reg(s, rd); 7812 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7813 if (is_signed && !is_q) { 7814 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7815 } 7816 } 7817 7818 /* AdvSIMD copy 7819 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7820 * +---+---+----+-----------------+------+---+------+---+------+------+ 7821 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7822 * +---+---+----+-----------------+------+---+------+---+------+------+ 7823 */ 7824 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7825 { 7826 int rd = extract32(insn, 0, 5); 7827 int rn = extract32(insn, 5, 5); 7828 int imm4 = extract32(insn, 11, 4); 7829 int op = extract32(insn, 29, 1); 7830 int is_q = extract32(insn, 30, 1); 7831 int imm5 = extract32(insn, 16, 5); 7832 7833 if (op) { 7834 if (is_q) { 7835 /* INS (element) */ 7836 handle_simd_inse(s, rd, rn, imm4, imm5); 7837 } else { 7838 unallocated_encoding(s); 7839 } 7840 } else { 7841 switch (imm4) { 7842 case 0: 7843 /* DUP (element - vector) */ 7844 handle_simd_dupe(s, is_q, rd, rn, imm5); 7845 break; 7846 case 1: 7847 /* DUP (general) */ 7848 handle_simd_dupg(s, is_q, rd, rn, imm5); 7849 break; 7850 case 3: 7851 if (is_q) { 7852 /* INS (general) */ 7853 handle_simd_insg(s, rd, rn, imm5); 7854 } else { 7855 unallocated_encoding(s); 7856 } 7857 break; 7858 case 5: 7859 case 7: 7860 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7861 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7862 break; 7863 default: 7864 unallocated_encoding(s); 7865 break; 7866 } 7867 } 7868 } 7869 7870 /* AdvSIMD modified immediate 7871 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7872 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7873 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7874 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7875 * 7876 * There are a number of operations that can be carried out here: 7877 * MOVI - move (shifted) imm into register 7878 * MVNI - move inverted (shifted) imm into register 7879 * ORR - bitwise OR of (shifted) imm with register 7880 * BIC - bitwise clear of (shifted) imm with register 7881 * With ARMv8.2 we also have: 7882 * FMOV half-precision 7883 */ 7884 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7885 { 7886 int rd = extract32(insn, 0, 5); 7887 int cmode = extract32(insn, 12, 4); 7888 int o2 = extract32(insn, 11, 1); 7889 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7890 bool is_neg = extract32(insn, 29, 1); 7891 bool is_q = extract32(insn, 30, 1); 7892 uint64_t imm = 0; 7893 7894 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7895 /* Check for FMOV (vector, immediate) - half-precision */ 7896 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7897 unallocated_encoding(s); 7898 return; 7899 } 7900 } 7901 7902 if (!fp_access_check(s)) { 7903 return; 7904 } 7905 7906 if (cmode == 15 && o2 && !is_neg) { 7907 /* FMOV (vector, immediate) - half-precision */ 7908 imm = vfp_expand_imm(MO_16, abcdefgh); 7909 /* now duplicate across the lanes */ 7910 imm = dup_const(MO_16, imm); 7911 } else { 7912 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7913 } 7914 7915 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7916 /* MOVI or MVNI, with MVNI negation handled above. */ 7917 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7918 vec_full_reg_size(s), imm); 7919 } else { 7920 /* ORR or BIC, with BIC negation to AND handled above. */ 7921 if (is_neg) { 7922 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7923 } else { 7924 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7925 } 7926 } 7927 } 7928 7929 /* AdvSIMD scalar copy 7930 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7931 * +-----+----+-----------------+------+---+------+---+------+------+ 7932 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7933 * +-----+----+-----------------+------+---+------+---+------+------+ 7934 */ 7935 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7936 { 7937 int rd = extract32(insn, 0, 5); 7938 int rn = extract32(insn, 5, 5); 7939 int imm4 = extract32(insn, 11, 4); 7940 int imm5 = extract32(insn, 16, 5); 7941 int op = extract32(insn, 29, 1); 7942 7943 if (op != 0 || imm4 != 0) { 7944 unallocated_encoding(s); 7945 return; 7946 } 7947 7948 /* DUP (element, scalar) */ 7949 handle_simd_dupes(s, rd, rn, imm5); 7950 } 7951 7952 /* AdvSIMD scalar pairwise 7953 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7954 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7955 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7956 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7957 */ 7958 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7959 { 7960 int u = extract32(insn, 29, 1); 7961 int size = extract32(insn, 22, 2); 7962 int opcode = extract32(insn, 12, 5); 7963 int rn = extract32(insn, 5, 5); 7964 int rd = extract32(insn, 0, 5); 7965 TCGv_ptr fpst; 7966 7967 /* For some ops (the FP ones), size[1] is part of the encoding. 7968 * For ADDP strictly it is not but size[1] is always 1 for valid 7969 * encodings. 7970 */ 7971 opcode |= (extract32(size, 1, 1) << 5); 7972 7973 switch (opcode) { 7974 case 0x3b: /* ADDP */ 7975 if (u || size != 3) { 7976 unallocated_encoding(s); 7977 return; 7978 } 7979 if (!fp_access_check(s)) { 7980 return; 7981 } 7982 7983 fpst = NULL; 7984 break; 7985 case 0xc: /* FMAXNMP */ 7986 case 0xd: /* FADDP */ 7987 case 0xf: /* FMAXP */ 7988 case 0x2c: /* FMINNMP */ 7989 case 0x2f: /* FMINP */ 7990 /* FP op, size[0] is 32 or 64 bit*/ 7991 if (!u) { 7992 if (!dc_isar_feature(aa64_fp16, s)) { 7993 unallocated_encoding(s); 7994 return; 7995 } else { 7996 size = MO_16; 7997 } 7998 } else { 7999 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8000 } 8001 8002 if (!fp_access_check(s)) { 8003 return; 8004 } 8005 8006 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8007 break; 8008 default: 8009 unallocated_encoding(s); 8010 return; 8011 } 8012 8013 if (size == MO_64) { 8014 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8015 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8016 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8017 8018 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8019 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8020 8021 switch (opcode) { 8022 case 0x3b: /* ADDP */ 8023 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8024 break; 8025 case 0xc: /* FMAXNMP */ 8026 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8027 break; 8028 case 0xd: /* FADDP */ 8029 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8030 break; 8031 case 0xf: /* FMAXP */ 8032 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8033 break; 8034 case 0x2c: /* FMINNMP */ 8035 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8036 break; 8037 case 0x2f: /* FMINP */ 8038 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8039 break; 8040 default: 8041 g_assert_not_reached(); 8042 } 8043 8044 write_fp_dreg(s, rd, tcg_res); 8045 } else { 8046 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8047 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8048 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8049 8050 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8051 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8052 8053 if (size == MO_16) { 8054 switch (opcode) { 8055 case 0xc: /* FMAXNMP */ 8056 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8057 break; 8058 case 0xd: /* FADDP */ 8059 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8060 break; 8061 case 0xf: /* FMAXP */ 8062 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8063 break; 8064 case 0x2c: /* FMINNMP */ 8065 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8066 break; 8067 case 0x2f: /* FMINP */ 8068 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8069 break; 8070 default: 8071 g_assert_not_reached(); 8072 } 8073 } else { 8074 switch (opcode) { 8075 case 0xc: /* FMAXNMP */ 8076 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8077 break; 8078 case 0xd: /* FADDP */ 8079 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8080 break; 8081 case 0xf: /* FMAXP */ 8082 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8083 break; 8084 case 0x2c: /* FMINNMP */ 8085 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8086 break; 8087 case 0x2f: /* FMINP */ 8088 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8089 break; 8090 default: 8091 g_assert_not_reached(); 8092 } 8093 } 8094 8095 write_fp_sreg(s, rd, tcg_res); 8096 } 8097 } 8098 8099 /* 8100 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8101 * 8102 * This code is handles the common shifting code and is used by both 8103 * the vector and scalar code. 8104 */ 8105 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8106 TCGv_i64 tcg_rnd, bool accumulate, 8107 bool is_u, int size, int shift) 8108 { 8109 bool extended_result = false; 8110 bool round = tcg_rnd != NULL; 8111 int ext_lshift = 0; 8112 TCGv_i64 tcg_src_hi; 8113 8114 if (round && size == 3) { 8115 extended_result = true; 8116 ext_lshift = 64 - shift; 8117 tcg_src_hi = tcg_temp_new_i64(); 8118 } else if (shift == 64) { 8119 if (!accumulate && is_u) { 8120 /* result is zero */ 8121 tcg_gen_movi_i64(tcg_res, 0); 8122 return; 8123 } 8124 } 8125 8126 /* Deal with the rounding step */ 8127 if (round) { 8128 if (extended_result) { 8129 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8130 if (!is_u) { 8131 /* take care of sign extending tcg_res */ 8132 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8133 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8134 tcg_src, tcg_src_hi, 8135 tcg_rnd, tcg_zero); 8136 } else { 8137 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8138 tcg_src, tcg_zero, 8139 tcg_rnd, tcg_zero); 8140 } 8141 } else { 8142 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8143 } 8144 } 8145 8146 /* Now do the shift right */ 8147 if (round && extended_result) { 8148 /* extended case, >64 bit precision required */ 8149 if (ext_lshift == 0) { 8150 /* special case, only high bits matter */ 8151 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8152 } else { 8153 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8154 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8155 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8156 } 8157 } else { 8158 if (is_u) { 8159 if (shift == 64) { 8160 /* essentially shifting in 64 zeros */ 8161 tcg_gen_movi_i64(tcg_src, 0); 8162 } else { 8163 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8164 } 8165 } else { 8166 if (shift == 64) { 8167 /* effectively extending the sign-bit */ 8168 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8169 } else { 8170 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8171 } 8172 } 8173 } 8174 8175 if (accumulate) { 8176 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8177 } else { 8178 tcg_gen_mov_i64(tcg_res, tcg_src); 8179 } 8180 } 8181 8182 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8183 static void handle_scalar_simd_shri(DisasContext *s, 8184 bool is_u, int immh, int immb, 8185 int opcode, int rn, int rd) 8186 { 8187 const int size = 3; 8188 int immhb = immh << 3 | immb; 8189 int shift = 2 * (8 << size) - immhb; 8190 bool accumulate = false; 8191 bool round = false; 8192 bool insert = false; 8193 TCGv_i64 tcg_rn; 8194 TCGv_i64 tcg_rd; 8195 TCGv_i64 tcg_round; 8196 8197 if (!extract32(immh, 3, 1)) { 8198 unallocated_encoding(s); 8199 return; 8200 } 8201 8202 if (!fp_access_check(s)) { 8203 return; 8204 } 8205 8206 switch (opcode) { 8207 case 0x02: /* SSRA / USRA (accumulate) */ 8208 accumulate = true; 8209 break; 8210 case 0x04: /* SRSHR / URSHR (rounding) */ 8211 round = true; 8212 break; 8213 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8214 accumulate = round = true; 8215 break; 8216 case 0x08: /* SRI */ 8217 insert = true; 8218 break; 8219 } 8220 8221 if (round) { 8222 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8223 } else { 8224 tcg_round = NULL; 8225 } 8226 8227 tcg_rn = read_fp_dreg(s, rn); 8228 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8229 8230 if (insert) { 8231 /* shift count same as element size is valid but does nothing; 8232 * special case to avoid potential shift by 64. 8233 */ 8234 int esize = 8 << size; 8235 if (shift != esize) { 8236 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8237 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8238 } 8239 } else { 8240 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8241 accumulate, is_u, size, shift); 8242 } 8243 8244 write_fp_dreg(s, rd, tcg_rd); 8245 } 8246 8247 /* SHL/SLI - Scalar shift left */ 8248 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8249 int immh, int immb, int opcode, 8250 int rn, int rd) 8251 { 8252 int size = 32 - clz32(immh) - 1; 8253 int immhb = immh << 3 | immb; 8254 int shift = immhb - (8 << size); 8255 TCGv_i64 tcg_rn; 8256 TCGv_i64 tcg_rd; 8257 8258 if (!extract32(immh, 3, 1)) { 8259 unallocated_encoding(s); 8260 return; 8261 } 8262 8263 if (!fp_access_check(s)) { 8264 return; 8265 } 8266 8267 tcg_rn = read_fp_dreg(s, rn); 8268 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8269 8270 if (insert) { 8271 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8272 } else { 8273 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8274 } 8275 8276 write_fp_dreg(s, rd, tcg_rd); 8277 } 8278 8279 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8280 * (signed/unsigned) narrowing */ 8281 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8282 bool is_u_shift, bool is_u_narrow, 8283 int immh, int immb, int opcode, 8284 int rn, int rd) 8285 { 8286 int immhb = immh << 3 | immb; 8287 int size = 32 - clz32(immh) - 1; 8288 int esize = 8 << size; 8289 int shift = (2 * esize) - immhb; 8290 int elements = is_scalar ? 1 : (64 / esize); 8291 bool round = extract32(opcode, 0, 1); 8292 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8293 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8294 TCGv_i32 tcg_rd_narrowed; 8295 TCGv_i64 tcg_final; 8296 8297 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8298 { gen_helper_neon_narrow_sat_s8, 8299 gen_helper_neon_unarrow_sat8 }, 8300 { gen_helper_neon_narrow_sat_s16, 8301 gen_helper_neon_unarrow_sat16 }, 8302 { gen_helper_neon_narrow_sat_s32, 8303 gen_helper_neon_unarrow_sat32 }, 8304 { NULL, NULL }, 8305 }; 8306 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8307 gen_helper_neon_narrow_sat_u8, 8308 gen_helper_neon_narrow_sat_u16, 8309 gen_helper_neon_narrow_sat_u32, 8310 NULL 8311 }; 8312 NeonGenNarrowEnvFn *narrowfn; 8313 8314 int i; 8315 8316 assert(size < 4); 8317 8318 if (extract32(immh, 3, 1)) { 8319 unallocated_encoding(s); 8320 return; 8321 } 8322 8323 if (!fp_access_check(s)) { 8324 return; 8325 } 8326 8327 if (is_u_shift) { 8328 narrowfn = unsigned_narrow_fns[size]; 8329 } else { 8330 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8331 } 8332 8333 tcg_rn = tcg_temp_new_i64(); 8334 tcg_rd = tcg_temp_new_i64(); 8335 tcg_rd_narrowed = tcg_temp_new_i32(); 8336 tcg_final = tcg_temp_new_i64(); 8337 8338 if (round) { 8339 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8340 } else { 8341 tcg_round = NULL; 8342 } 8343 8344 for (i = 0; i < elements; i++) { 8345 read_vec_element(s, tcg_rn, rn, i, ldop); 8346 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8347 false, is_u_shift, size+1, shift); 8348 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8349 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8350 if (i == 0) { 8351 tcg_gen_mov_i64(tcg_final, tcg_rd); 8352 } else { 8353 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8354 } 8355 } 8356 8357 if (!is_q) { 8358 write_vec_element(s, tcg_final, rd, 0, MO_64); 8359 } else { 8360 write_vec_element(s, tcg_final, rd, 1, MO_64); 8361 } 8362 clear_vec_high(s, is_q, rd); 8363 } 8364 8365 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8366 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8367 bool src_unsigned, bool dst_unsigned, 8368 int immh, int immb, int rn, int rd) 8369 { 8370 int immhb = immh << 3 | immb; 8371 int size = 32 - clz32(immh) - 1; 8372 int shift = immhb - (8 << size); 8373 int pass; 8374 8375 assert(immh != 0); 8376 assert(!(scalar && is_q)); 8377 8378 if (!scalar) { 8379 if (!is_q && extract32(immh, 3, 1)) { 8380 unallocated_encoding(s); 8381 return; 8382 } 8383 8384 /* Since we use the variable-shift helpers we must 8385 * replicate the shift count into each element of 8386 * the tcg_shift value. 8387 */ 8388 switch (size) { 8389 case 0: 8390 shift |= shift << 8; 8391 /* fall through */ 8392 case 1: 8393 shift |= shift << 16; 8394 break; 8395 case 2: 8396 case 3: 8397 break; 8398 default: 8399 g_assert_not_reached(); 8400 } 8401 } 8402 8403 if (!fp_access_check(s)) { 8404 return; 8405 } 8406 8407 if (size == 3) { 8408 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8409 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8410 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8411 { NULL, gen_helper_neon_qshl_u64 }, 8412 }; 8413 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8414 int maxpass = is_q ? 2 : 1; 8415 8416 for (pass = 0; pass < maxpass; pass++) { 8417 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8418 8419 read_vec_element(s, tcg_op, rn, pass, MO_64); 8420 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8421 write_vec_element(s, tcg_op, rd, pass, MO_64); 8422 } 8423 clear_vec_high(s, is_q, rd); 8424 } else { 8425 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8426 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8427 { 8428 { gen_helper_neon_qshl_s8, 8429 gen_helper_neon_qshl_s16, 8430 gen_helper_neon_qshl_s32 }, 8431 { gen_helper_neon_qshlu_s8, 8432 gen_helper_neon_qshlu_s16, 8433 gen_helper_neon_qshlu_s32 } 8434 }, { 8435 { NULL, NULL, NULL }, 8436 { gen_helper_neon_qshl_u8, 8437 gen_helper_neon_qshl_u16, 8438 gen_helper_neon_qshl_u32 } 8439 } 8440 }; 8441 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8442 MemOp memop = scalar ? size : MO_32; 8443 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8444 8445 for (pass = 0; pass < maxpass; pass++) { 8446 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8447 8448 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8449 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8450 if (scalar) { 8451 switch (size) { 8452 case 0: 8453 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8454 break; 8455 case 1: 8456 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8457 break; 8458 case 2: 8459 break; 8460 default: 8461 g_assert_not_reached(); 8462 } 8463 write_fp_sreg(s, rd, tcg_op); 8464 } else { 8465 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8466 } 8467 } 8468 8469 if (!scalar) { 8470 clear_vec_high(s, is_q, rd); 8471 } 8472 } 8473 } 8474 8475 /* Common vector code for handling integer to FP conversion */ 8476 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8477 int elements, int is_signed, 8478 int fracbits, int size) 8479 { 8480 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8481 TCGv_i32 tcg_shift = NULL; 8482 8483 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8484 int pass; 8485 8486 if (fracbits || size == MO_64) { 8487 tcg_shift = tcg_constant_i32(fracbits); 8488 } 8489 8490 if (size == MO_64) { 8491 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8492 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8493 8494 for (pass = 0; pass < elements; pass++) { 8495 read_vec_element(s, tcg_int64, rn, pass, mop); 8496 8497 if (is_signed) { 8498 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8499 tcg_shift, tcg_fpst); 8500 } else { 8501 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8502 tcg_shift, tcg_fpst); 8503 } 8504 if (elements == 1) { 8505 write_fp_dreg(s, rd, tcg_double); 8506 } else { 8507 write_vec_element(s, tcg_double, rd, pass, MO_64); 8508 } 8509 } 8510 } else { 8511 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8512 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8513 8514 for (pass = 0; pass < elements; pass++) { 8515 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8516 8517 switch (size) { 8518 case MO_32: 8519 if (fracbits) { 8520 if (is_signed) { 8521 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8522 tcg_shift, tcg_fpst); 8523 } else { 8524 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8525 tcg_shift, tcg_fpst); 8526 } 8527 } else { 8528 if (is_signed) { 8529 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8530 } else { 8531 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8532 } 8533 } 8534 break; 8535 case MO_16: 8536 if (fracbits) { 8537 if (is_signed) { 8538 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8539 tcg_shift, tcg_fpst); 8540 } else { 8541 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8542 tcg_shift, tcg_fpst); 8543 } 8544 } else { 8545 if (is_signed) { 8546 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8547 } else { 8548 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8549 } 8550 } 8551 break; 8552 default: 8553 g_assert_not_reached(); 8554 } 8555 8556 if (elements == 1) { 8557 write_fp_sreg(s, rd, tcg_float); 8558 } else { 8559 write_vec_element_i32(s, tcg_float, rd, pass, size); 8560 } 8561 } 8562 } 8563 8564 clear_vec_high(s, elements << size == 16, rd); 8565 } 8566 8567 /* UCVTF/SCVTF - Integer to FP conversion */ 8568 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8569 bool is_q, bool is_u, 8570 int immh, int immb, int opcode, 8571 int rn, int rd) 8572 { 8573 int size, elements, fracbits; 8574 int immhb = immh << 3 | immb; 8575 8576 if (immh & 8) { 8577 size = MO_64; 8578 if (!is_scalar && !is_q) { 8579 unallocated_encoding(s); 8580 return; 8581 } 8582 } else if (immh & 4) { 8583 size = MO_32; 8584 } else if (immh & 2) { 8585 size = MO_16; 8586 if (!dc_isar_feature(aa64_fp16, s)) { 8587 unallocated_encoding(s); 8588 return; 8589 } 8590 } else { 8591 /* immh == 0 would be a failure of the decode logic */ 8592 g_assert(immh == 1); 8593 unallocated_encoding(s); 8594 return; 8595 } 8596 8597 if (is_scalar) { 8598 elements = 1; 8599 } else { 8600 elements = (8 << is_q) >> size; 8601 } 8602 fracbits = (16 << size) - immhb; 8603 8604 if (!fp_access_check(s)) { 8605 return; 8606 } 8607 8608 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8609 } 8610 8611 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8612 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8613 bool is_q, bool is_u, 8614 int immh, int immb, int rn, int rd) 8615 { 8616 int immhb = immh << 3 | immb; 8617 int pass, size, fracbits; 8618 TCGv_ptr tcg_fpstatus; 8619 TCGv_i32 tcg_rmode, tcg_shift; 8620 8621 if (immh & 0x8) { 8622 size = MO_64; 8623 if (!is_scalar && !is_q) { 8624 unallocated_encoding(s); 8625 return; 8626 } 8627 } else if (immh & 0x4) { 8628 size = MO_32; 8629 } else if (immh & 0x2) { 8630 size = MO_16; 8631 if (!dc_isar_feature(aa64_fp16, s)) { 8632 unallocated_encoding(s); 8633 return; 8634 } 8635 } else { 8636 /* Should have split out AdvSIMD modified immediate earlier. */ 8637 assert(immh == 1); 8638 unallocated_encoding(s); 8639 return; 8640 } 8641 8642 if (!fp_access_check(s)) { 8643 return; 8644 } 8645 8646 assert(!(is_scalar && is_q)); 8647 8648 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8649 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8650 fracbits = (16 << size) - immhb; 8651 tcg_shift = tcg_constant_i32(fracbits); 8652 8653 if (size == MO_64) { 8654 int maxpass = is_scalar ? 1 : 2; 8655 8656 for (pass = 0; pass < maxpass; pass++) { 8657 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8658 8659 read_vec_element(s, tcg_op, rn, pass, MO_64); 8660 if (is_u) { 8661 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8662 } else { 8663 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8664 } 8665 write_vec_element(s, tcg_op, rd, pass, MO_64); 8666 } 8667 clear_vec_high(s, is_q, rd); 8668 } else { 8669 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8670 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8671 8672 switch (size) { 8673 case MO_16: 8674 if (is_u) { 8675 fn = gen_helper_vfp_touhh; 8676 } else { 8677 fn = gen_helper_vfp_toshh; 8678 } 8679 break; 8680 case MO_32: 8681 if (is_u) { 8682 fn = gen_helper_vfp_touls; 8683 } else { 8684 fn = gen_helper_vfp_tosls; 8685 } 8686 break; 8687 default: 8688 g_assert_not_reached(); 8689 } 8690 8691 for (pass = 0; pass < maxpass; pass++) { 8692 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8693 8694 read_vec_element_i32(s, tcg_op, rn, pass, size); 8695 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8696 if (is_scalar) { 8697 write_fp_sreg(s, rd, tcg_op); 8698 } else { 8699 write_vec_element_i32(s, tcg_op, rd, pass, size); 8700 } 8701 } 8702 if (!is_scalar) { 8703 clear_vec_high(s, is_q, rd); 8704 } 8705 } 8706 8707 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8708 } 8709 8710 /* AdvSIMD scalar shift by immediate 8711 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8712 * +-----+---+-------------+------+------+--------+---+------+------+ 8713 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8714 * +-----+---+-------------+------+------+--------+---+------+------+ 8715 * 8716 * This is the scalar version so it works on a fixed sized registers 8717 */ 8718 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8719 { 8720 int rd = extract32(insn, 0, 5); 8721 int rn = extract32(insn, 5, 5); 8722 int opcode = extract32(insn, 11, 5); 8723 int immb = extract32(insn, 16, 3); 8724 int immh = extract32(insn, 19, 4); 8725 bool is_u = extract32(insn, 29, 1); 8726 8727 if (immh == 0) { 8728 unallocated_encoding(s); 8729 return; 8730 } 8731 8732 switch (opcode) { 8733 case 0x08: /* SRI */ 8734 if (!is_u) { 8735 unallocated_encoding(s); 8736 return; 8737 } 8738 /* fall through */ 8739 case 0x00: /* SSHR / USHR */ 8740 case 0x02: /* SSRA / USRA */ 8741 case 0x04: /* SRSHR / URSHR */ 8742 case 0x06: /* SRSRA / URSRA */ 8743 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8744 break; 8745 case 0x0a: /* SHL / SLI */ 8746 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8747 break; 8748 case 0x1c: /* SCVTF, UCVTF */ 8749 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8750 opcode, rn, rd); 8751 break; 8752 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8753 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8754 if (!is_u) { 8755 unallocated_encoding(s); 8756 return; 8757 } 8758 handle_vec_simd_sqshrn(s, true, false, false, true, 8759 immh, immb, opcode, rn, rd); 8760 break; 8761 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8762 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8763 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8764 immh, immb, opcode, rn, rd); 8765 break; 8766 case 0xc: /* SQSHLU */ 8767 if (!is_u) { 8768 unallocated_encoding(s); 8769 return; 8770 } 8771 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8772 break; 8773 case 0xe: /* SQSHL, UQSHL */ 8774 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8775 break; 8776 case 0x1f: /* FCVTZS, FCVTZU */ 8777 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8778 break; 8779 default: 8780 unallocated_encoding(s); 8781 break; 8782 } 8783 } 8784 8785 /* AdvSIMD scalar three different 8786 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8787 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8788 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8789 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8790 */ 8791 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8792 { 8793 bool is_u = extract32(insn, 29, 1); 8794 int size = extract32(insn, 22, 2); 8795 int opcode = extract32(insn, 12, 4); 8796 int rm = extract32(insn, 16, 5); 8797 int rn = extract32(insn, 5, 5); 8798 int rd = extract32(insn, 0, 5); 8799 8800 if (is_u) { 8801 unallocated_encoding(s); 8802 return; 8803 } 8804 8805 switch (opcode) { 8806 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8807 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8808 case 0xd: /* SQDMULL, SQDMULL2 */ 8809 if (size == 0 || size == 3) { 8810 unallocated_encoding(s); 8811 return; 8812 } 8813 break; 8814 default: 8815 unallocated_encoding(s); 8816 return; 8817 } 8818 8819 if (!fp_access_check(s)) { 8820 return; 8821 } 8822 8823 if (size == 2) { 8824 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8825 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8826 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8827 8828 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8829 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8830 8831 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8832 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8833 8834 switch (opcode) { 8835 case 0xd: /* SQDMULL, SQDMULL2 */ 8836 break; 8837 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8838 tcg_gen_neg_i64(tcg_res, tcg_res); 8839 /* fall through */ 8840 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8841 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8842 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8843 tcg_res, tcg_op1); 8844 break; 8845 default: 8846 g_assert_not_reached(); 8847 } 8848 8849 write_fp_dreg(s, rd, tcg_res); 8850 } else { 8851 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8852 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8853 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8854 8855 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8856 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8857 8858 switch (opcode) { 8859 case 0xd: /* SQDMULL, SQDMULL2 */ 8860 break; 8861 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8862 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8863 /* fall through */ 8864 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8865 { 8866 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8867 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8868 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8869 tcg_res, tcg_op3); 8870 break; 8871 } 8872 default: 8873 g_assert_not_reached(); 8874 } 8875 8876 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8877 write_fp_dreg(s, rd, tcg_res); 8878 } 8879 } 8880 8881 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8882 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8883 { 8884 /* Handle 64x64->64 opcodes which are shared between the scalar 8885 * and vector 3-same groups. We cover every opcode where size == 3 8886 * is valid in either the three-reg-same (integer, not pairwise) 8887 * or scalar-three-reg-same groups. 8888 */ 8889 TCGCond cond; 8890 8891 switch (opcode) { 8892 case 0x1: /* SQADD */ 8893 if (u) { 8894 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8895 } else { 8896 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8897 } 8898 break; 8899 case 0x5: /* SQSUB */ 8900 if (u) { 8901 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8902 } else { 8903 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8904 } 8905 break; 8906 case 0x6: /* CMGT, CMHI */ 8907 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 8908 * We implement this using setcond (test) and then negating. 8909 */ 8910 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8911 do_cmop: 8912 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8913 tcg_gen_neg_i64(tcg_rd, tcg_rd); 8914 break; 8915 case 0x7: /* CMGE, CMHS */ 8916 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8917 goto do_cmop; 8918 case 0x11: /* CMTST, CMEQ */ 8919 if (u) { 8920 cond = TCG_COND_EQ; 8921 goto do_cmop; 8922 } 8923 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8924 break; 8925 case 0x8: /* SSHL, USHL */ 8926 if (u) { 8927 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8928 } else { 8929 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8930 } 8931 break; 8932 case 0x9: /* SQSHL, UQSHL */ 8933 if (u) { 8934 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8935 } else { 8936 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8937 } 8938 break; 8939 case 0xa: /* SRSHL, URSHL */ 8940 if (u) { 8941 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8942 } else { 8943 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8944 } 8945 break; 8946 case 0xb: /* SQRSHL, UQRSHL */ 8947 if (u) { 8948 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8949 } else { 8950 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8951 } 8952 break; 8953 case 0x10: /* ADD, SUB */ 8954 if (u) { 8955 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8956 } else { 8957 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8958 } 8959 break; 8960 default: 8961 g_assert_not_reached(); 8962 } 8963 } 8964 8965 /* Handle the 3-same-operands float operations; shared by the scalar 8966 * and vector encodings. The caller must filter out any encodings 8967 * not allocated for the encoding it is dealing with. 8968 */ 8969 static void handle_3same_float(DisasContext *s, int size, int elements, 8970 int fpopcode, int rd, int rn, int rm) 8971 { 8972 int pass; 8973 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8974 8975 for (pass = 0; pass < elements; pass++) { 8976 if (size) { 8977 /* Double */ 8978 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8979 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8980 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8981 8982 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8983 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8984 8985 switch (fpopcode) { 8986 case 0x39: /* FMLS */ 8987 /* As usual for ARM, separate negation for fused multiply-add */ 8988 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8989 /* fall through */ 8990 case 0x19: /* FMLA */ 8991 read_vec_element(s, tcg_res, rd, pass, MO_64); 8992 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8993 tcg_res, fpst); 8994 break; 8995 case 0x18: /* FMAXNM */ 8996 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8997 break; 8998 case 0x1a: /* FADD */ 8999 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9000 break; 9001 case 0x1b: /* FMULX */ 9002 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9003 break; 9004 case 0x1c: /* FCMEQ */ 9005 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9006 break; 9007 case 0x1e: /* FMAX */ 9008 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9009 break; 9010 case 0x1f: /* FRECPS */ 9011 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9012 break; 9013 case 0x38: /* FMINNM */ 9014 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9015 break; 9016 case 0x3a: /* FSUB */ 9017 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9018 break; 9019 case 0x3e: /* FMIN */ 9020 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9021 break; 9022 case 0x3f: /* FRSQRTS */ 9023 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9024 break; 9025 case 0x5b: /* FMUL */ 9026 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9027 break; 9028 case 0x5c: /* FCMGE */ 9029 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9030 break; 9031 case 0x5d: /* FACGE */ 9032 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9033 break; 9034 case 0x5f: /* FDIV */ 9035 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9036 break; 9037 case 0x7a: /* FABD */ 9038 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9039 gen_helper_vfp_absd(tcg_res, tcg_res); 9040 break; 9041 case 0x7c: /* FCMGT */ 9042 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9043 break; 9044 case 0x7d: /* FACGT */ 9045 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9046 break; 9047 default: 9048 g_assert_not_reached(); 9049 } 9050 9051 write_vec_element(s, tcg_res, rd, pass, MO_64); 9052 } else { 9053 /* Single */ 9054 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9055 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9056 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9057 9058 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9059 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9060 9061 switch (fpopcode) { 9062 case 0x39: /* FMLS */ 9063 /* As usual for ARM, separate negation for fused multiply-add */ 9064 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9065 /* fall through */ 9066 case 0x19: /* FMLA */ 9067 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9068 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9069 tcg_res, fpst); 9070 break; 9071 case 0x1a: /* FADD */ 9072 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9073 break; 9074 case 0x1b: /* FMULX */ 9075 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9076 break; 9077 case 0x1c: /* FCMEQ */ 9078 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9079 break; 9080 case 0x1e: /* FMAX */ 9081 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9082 break; 9083 case 0x1f: /* FRECPS */ 9084 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9085 break; 9086 case 0x18: /* FMAXNM */ 9087 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9088 break; 9089 case 0x38: /* FMINNM */ 9090 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9091 break; 9092 case 0x3a: /* FSUB */ 9093 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9094 break; 9095 case 0x3e: /* FMIN */ 9096 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9097 break; 9098 case 0x3f: /* FRSQRTS */ 9099 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9100 break; 9101 case 0x5b: /* FMUL */ 9102 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9103 break; 9104 case 0x5c: /* FCMGE */ 9105 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9106 break; 9107 case 0x5d: /* FACGE */ 9108 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9109 break; 9110 case 0x5f: /* FDIV */ 9111 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9112 break; 9113 case 0x7a: /* FABD */ 9114 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9115 gen_helper_vfp_abss(tcg_res, tcg_res); 9116 break; 9117 case 0x7c: /* FCMGT */ 9118 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9119 break; 9120 case 0x7d: /* FACGT */ 9121 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9122 break; 9123 default: 9124 g_assert_not_reached(); 9125 } 9126 9127 if (elements == 1) { 9128 /* scalar single so clear high part */ 9129 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9130 9131 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9132 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9133 } else { 9134 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9135 } 9136 } 9137 } 9138 9139 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9140 } 9141 9142 /* AdvSIMD scalar three same 9143 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9144 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9145 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9146 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9147 */ 9148 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9149 { 9150 int rd = extract32(insn, 0, 5); 9151 int rn = extract32(insn, 5, 5); 9152 int opcode = extract32(insn, 11, 5); 9153 int rm = extract32(insn, 16, 5); 9154 int size = extract32(insn, 22, 2); 9155 bool u = extract32(insn, 29, 1); 9156 TCGv_i64 tcg_rd; 9157 9158 if (opcode >= 0x18) { 9159 /* Floating point: U, size[1] and opcode indicate operation */ 9160 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9161 switch (fpopcode) { 9162 case 0x1b: /* FMULX */ 9163 case 0x1f: /* FRECPS */ 9164 case 0x3f: /* FRSQRTS */ 9165 case 0x5d: /* FACGE */ 9166 case 0x7d: /* FACGT */ 9167 case 0x1c: /* FCMEQ */ 9168 case 0x5c: /* FCMGE */ 9169 case 0x7c: /* FCMGT */ 9170 case 0x7a: /* FABD */ 9171 break; 9172 default: 9173 unallocated_encoding(s); 9174 return; 9175 } 9176 9177 if (!fp_access_check(s)) { 9178 return; 9179 } 9180 9181 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9182 return; 9183 } 9184 9185 switch (opcode) { 9186 case 0x1: /* SQADD, UQADD */ 9187 case 0x5: /* SQSUB, UQSUB */ 9188 case 0x9: /* SQSHL, UQSHL */ 9189 case 0xb: /* SQRSHL, UQRSHL */ 9190 break; 9191 case 0x8: /* SSHL, USHL */ 9192 case 0xa: /* SRSHL, URSHL */ 9193 case 0x6: /* CMGT, CMHI */ 9194 case 0x7: /* CMGE, CMHS */ 9195 case 0x11: /* CMTST, CMEQ */ 9196 case 0x10: /* ADD, SUB (vector) */ 9197 if (size != 3) { 9198 unallocated_encoding(s); 9199 return; 9200 } 9201 break; 9202 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9203 if (size != 1 && size != 2) { 9204 unallocated_encoding(s); 9205 return; 9206 } 9207 break; 9208 default: 9209 unallocated_encoding(s); 9210 return; 9211 } 9212 9213 if (!fp_access_check(s)) { 9214 return; 9215 } 9216 9217 tcg_rd = tcg_temp_new_i64(); 9218 9219 if (size == 3) { 9220 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9221 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9222 9223 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9224 } else { 9225 /* Do a single operation on the lowest element in the vector. 9226 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9227 * no side effects for all these operations. 9228 * OPTME: special-purpose helpers would avoid doing some 9229 * unnecessary work in the helper for the 8 and 16 bit cases. 9230 */ 9231 NeonGenTwoOpEnvFn *genenvfn; 9232 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9233 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9234 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9235 9236 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9237 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9238 9239 switch (opcode) { 9240 case 0x1: /* SQADD, UQADD */ 9241 { 9242 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9243 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9244 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9245 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9246 }; 9247 genenvfn = fns[size][u]; 9248 break; 9249 } 9250 case 0x5: /* SQSUB, UQSUB */ 9251 { 9252 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9253 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9254 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9255 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9256 }; 9257 genenvfn = fns[size][u]; 9258 break; 9259 } 9260 case 0x9: /* SQSHL, UQSHL */ 9261 { 9262 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9263 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9264 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9265 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9266 }; 9267 genenvfn = fns[size][u]; 9268 break; 9269 } 9270 case 0xb: /* SQRSHL, UQRSHL */ 9271 { 9272 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9273 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9274 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9275 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9276 }; 9277 genenvfn = fns[size][u]; 9278 break; 9279 } 9280 case 0x16: /* SQDMULH, SQRDMULH */ 9281 { 9282 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9283 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9284 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9285 }; 9286 assert(size == 1 || size == 2); 9287 genenvfn = fns[size - 1][u]; 9288 break; 9289 } 9290 default: 9291 g_assert_not_reached(); 9292 } 9293 9294 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9295 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9296 } 9297 9298 write_fp_dreg(s, rd, tcg_rd); 9299 } 9300 9301 /* AdvSIMD scalar three same FP16 9302 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9303 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9304 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9305 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9306 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9307 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9308 */ 9309 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9310 uint32_t insn) 9311 { 9312 int rd = extract32(insn, 0, 5); 9313 int rn = extract32(insn, 5, 5); 9314 int opcode = extract32(insn, 11, 3); 9315 int rm = extract32(insn, 16, 5); 9316 bool u = extract32(insn, 29, 1); 9317 bool a = extract32(insn, 23, 1); 9318 int fpopcode = opcode | (a << 3) | (u << 4); 9319 TCGv_ptr fpst; 9320 TCGv_i32 tcg_op1; 9321 TCGv_i32 tcg_op2; 9322 TCGv_i32 tcg_res; 9323 9324 switch (fpopcode) { 9325 case 0x03: /* FMULX */ 9326 case 0x04: /* FCMEQ (reg) */ 9327 case 0x07: /* FRECPS */ 9328 case 0x0f: /* FRSQRTS */ 9329 case 0x14: /* FCMGE (reg) */ 9330 case 0x15: /* FACGE */ 9331 case 0x1a: /* FABD */ 9332 case 0x1c: /* FCMGT (reg) */ 9333 case 0x1d: /* FACGT */ 9334 break; 9335 default: 9336 unallocated_encoding(s); 9337 return; 9338 } 9339 9340 if (!dc_isar_feature(aa64_fp16, s)) { 9341 unallocated_encoding(s); 9342 } 9343 9344 if (!fp_access_check(s)) { 9345 return; 9346 } 9347 9348 fpst = fpstatus_ptr(FPST_FPCR_F16); 9349 9350 tcg_op1 = read_fp_hreg(s, rn); 9351 tcg_op2 = read_fp_hreg(s, rm); 9352 tcg_res = tcg_temp_new_i32(); 9353 9354 switch (fpopcode) { 9355 case 0x03: /* FMULX */ 9356 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9357 break; 9358 case 0x04: /* FCMEQ (reg) */ 9359 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9360 break; 9361 case 0x07: /* FRECPS */ 9362 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9363 break; 9364 case 0x0f: /* FRSQRTS */ 9365 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9366 break; 9367 case 0x14: /* FCMGE (reg) */ 9368 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9369 break; 9370 case 0x15: /* FACGE */ 9371 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9372 break; 9373 case 0x1a: /* FABD */ 9374 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9375 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9376 break; 9377 case 0x1c: /* FCMGT (reg) */ 9378 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9379 break; 9380 case 0x1d: /* FACGT */ 9381 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9382 break; 9383 default: 9384 g_assert_not_reached(); 9385 } 9386 9387 write_fp_sreg(s, rd, tcg_res); 9388 } 9389 9390 /* AdvSIMD scalar three same extra 9391 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9392 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9393 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9394 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9395 */ 9396 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9397 uint32_t insn) 9398 { 9399 int rd = extract32(insn, 0, 5); 9400 int rn = extract32(insn, 5, 5); 9401 int opcode = extract32(insn, 11, 4); 9402 int rm = extract32(insn, 16, 5); 9403 int size = extract32(insn, 22, 2); 9404 bool u = extract32(insn, 29, 1); 9405 TCGv_i32 ele1, ele2, ele3; 9406 TCGv_i64 res; 9407 bool feature; 9408 9409 switch (u * 16 + opcode) { 9410 case 0x10: /* SQRDMLAH (vector) */ 9411 case 0x11: /* SQRDMLSH (vector) */ 9412 if (size != 1 && size != 2) { 9413 unallocated_encoding(s); 9414 return; 9415 } 9416 feature = dc_isar_feature(aa64_rdm, s); 9417 break; 9418 default: 9419 unallocated_encoding(s); 9420 return; 9421 } 9422 if (!feature) { 9423 unallocated_encoding(s); 9424 return; 9425 } 9426 if (!fp_access_check(s)) { 9427 return; 9428 } 9429 9430 /* Do a single operation on the lowest element in the vector. 9431 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9432 * with no side effects for all these operations. 9433 * OPTME: special-purpose helpers would avoid doing some 9434 * unnecessary work in the helper for the 16 bit cases. 9435 */ 9436 ele1 = tcg_temp_new_i32(); 9437 ele2 = tcg_temp_new_i32(); 9438 ele3 = tcg_temp_new_i32(); 9439 9440 read_vec_element_i32(s, ele1, rn, 0, size); 9441 read_vec_element_i32(s, ele2, rm, 0, size); 9442 read_vec_element_i32(s, ele3, rd, 0, size); 9443 9444 switch (opcode) { 9445 case 0x0: /* SQRDMLAH */ 9446 if (size == 1) { 9447 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9448 } else { 9449 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9450 } 9451 break; 9452 case 0x1: /* SQRDMLSH */ 9453 if (size == 1) { 9454 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9455 } else { 9456 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9457 } 9458 break; 9459 default: 9460 g_assert_not_reached(); 9461 } 9462 9463 res = tcg_temp_new_i64(); 9464 tcg_gen_extu_i32_i64(res, ele3); 9465 write_fp_dreg(s, rd, res); 9466 } 9467 9468 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9469 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9470 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9471 { 9472 /* Handle 64->64 opcodes which are shared between the scalar and 9473 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9474 * is valid in either group and also the double-precision fp ops. 9475 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9476 * requires them. 9477 */ 9478 TCGCond cond; 9479 9480 switch (opcode) { 9481 case 0x4: /* CLS, CLZ */ 9482 if (u) { 9483 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9484 } else { 9485 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9486 } 9487 break; 9488 case 0x5: /* NOT */ 9489 /* This opcode is shared with CNT and RBIT but we have earlier 9490 * enforced that size == 3 if and only if this is the NOT insn. 9491 */ 9492 tcg_gen_not_i64(tcg_rd, tcg_rn); 9493 break; 9494 case 0x7: /* SQABS, SQNEG */ 9495 if (u) { 9496 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9497 } else { 9498 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9499 } 9500 break; 9501 case 0xa: /* CMLT */ 9502 /* 64 bit integer comparison against zero, result is 9503 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9504 * subtracting 1. 9505 */ 9506 cond = TCG_COND_LT; 9507 do_cmop: 9508 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9509 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9510 break; 9511 case 0x8: /* CMGT, CMGE */ 9512 cond = u ? TCG_COND_GE : TCG_COND_GT; 9513 goto do_cmop; 9514 case 0x9: /* CMEQ, CMLE */ 9515 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9516 goto do_cmop; 9517 case 0xb: /* ABS, NEG */ 9518 if (u) { 9519 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9520 } else { 9521 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9522 } 9523 break; 9524 case 0x2f: /* FABS */ 9525 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9526 break; 9527 case 0x6f: /* FNEG */ 9528 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9529 break; 9530 case 0x7f: /* FSQRT */ 9531 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9532 break; 9533 case 0x1a: /* FCVTNS */ 9534 case 0x1b: /* FCVTMS */ 9535 case 0x1c: /* FCVTAS */ 9536 case 0x3a: /* FCVTPS */ 9537 case 0x3b: /* FCVTZS */ 9538 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9539 break; 9540 case 0x5a: /* FCVTNU */ 9541 case 0x5b: /* FCVTMU */ 9542 case 0x5c: /* FCVTAU */ 9543 case 0x7a: /* FCVTPU */ 9544 case 0x7b: /* FCVTZU */ 9545 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9546 break; 9547 case 0x18: /* FRINTN */ 9548 case 0x19: /* FRINTM */ 9549 case 0x38: /* FRINTP */ 9550 case 0x39: /* FRINTZ */ 9551 case 0x58: /* FRINTA */ 9552 case 0x79: /* FRINTI */ 9553 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9554 break; 9555 case 0x59: /* FRINTX */ 9556 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9557 break; 9558 case 0x1e: /* FRINT32Z */ 9559 case 0x5e: /* FRINT32X */ 9560 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9561 break; 9562 case 0x1f: /* FRINT64Z */ 9563 case 0x5f: /* FRINT64X */ 9564 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9565 break; 9566 default: 9567 g_assert_not_reached(); 9568 } 9569 } 9570 9571 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9572 bool is_scalar, bool is_u, bool is_q, 9573 int size, int rn, int rd) 9574 { 9575 bool is_double = (size == MO_64); 9576 TCGv_ptr fpst; 9577 9578 if (!fp_access_check(s)) { 9579 return; 9580 } 9581 9582 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9583 9584 if (is_double) { 9585 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9586 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9587 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9588 NeonGenTwoDoubleOpFn *genfn; 9589 bool swap = false; 9590 int pass; 9591 9592 switch (opcode) { 9593 case 0x2e: /* FCMLT (zero) */ 9594 swap = true; 9595 /* fallthrough */ 9596 case 0x2c: /* FCMGT (zero) */ 9597 genfn = gen_helper_neon_cgt_f64; 9598 break; 9599 case 0x2d: /* FCMEQ (zero) */ 9600 genfn = gen_helper_neon_ceq_f64; 9601 break; 9602 case 0x6d: /* FCMLE (zero) */ 9603 swap = true; 9604 /* fall through */ 9605 case 0x6c: /* FCMGE (zero) */ 9606 genfn = gen_helper_neon_cge_f64; 9607 break; 9608 default: 9609 g_assert_not_reached(); 9610 } 9611 9612 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9613 read_vec_element(s, tcg_op, rn, pass, MO_64); 9614 if (swap) { 9615 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9616 } else { 9617 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9618 } 9619 write_vec_element(s, tcg_res, rd, pass, MO_64); 9620 } 9621 9622 clear_vec_high(s, !is_scalar, rd); 9623 } else { 9624 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9625 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9626 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9627 NeonGenTwoSingleOpFn *genfn; 9628 bool swap = false; 9629 int pass, maxpasses; 9630 9631 if (size == MO_16) { 9632 switch (opcode) { 9633 case 0x2e: /* FCMLT (zero) */ 9634 swap = true; 9635 /* fall through */ 9636 case 0x2c: /* FCMGT (zero) */ 9637 genfn = gen_helper_advsimd_cgt_f16; 9638 break; 9639 case 0x2d: /* FCMEQ (zero) */ 9640 genfn = gen_helper_advsimd_ceq_f16; 9641 break; 9642 case 0x6d: /* FCMLE (zero) */ 9643 swap = true; 9644 /* fall through */ 9645 case 0x6c: /* FCMGE (zero) */ 9646 genfn = gen_helper_advsimd_cge_f16; 9647 break; 9648 default: 9649 g_assert_not_reached(); 9650 } 9651 } else { 9652 switch (opcode) { 9653 case 0x2e: /* FCMLT (zero) */ 9654 swap = true; 9655 /* fall through */ 9656 case 0x2c: /* FCMGT (zero) */ 9657 genfn = gen_helper_neon_cgt_f32; 9658 break; 9659 case 0x2d: /* FCMEQ (zero) */ 9660 genfn = gen_helper_neon_ceq_f32; 9661 break; 9662 case 0x6d: /* FCMLE (zero) */ 9663 swap = true; 9664 /* fall through */ 9665 case 0x6c: /* FCMGE (zero) */ 9666 genfn = gen_helper_neon_cge_f32; 9667 break; 9668 default: 9669 g_assert_not_reached(); 9670 } 9671 } 9672 9673 if (is_scalar) { 9674 maxpasses = 1; 9675 } else { 9676 int vector_size = 8 << is_q; 9677 maxpasses = vector_size >> size; 9678 } 9679 9680 for (pass = 0; pass < maxpasses; pass++) { 9681 read_vec_element_i32(s, tcg_op, rn, pass, size); 9682 if (swap) { 9683 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9684 } else { 9685 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9686 } 9687 if (is_scalar) { 9688 write_fp_sreg(s, rd, tcg_res); 9689 } else { 9690 write_vec_element_i32(s, tcg_res, rd, pass, size); 9691 } 9692 } 9693 9694 if (!is_scalar) { 9695 clear_vec_high(s, is_q, rd); 9696 } 9697 } 9698 } 9699 9700 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9701 bool is_scalar, bool is_u, bool is_q, 9702 int size, int rn, int rd) 9703 { 9704 bool is_double = (size == 3); 9705 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9706 9707 if (is_double) { 9708 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9709 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9710 int pass; 9711 9712 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9713 read_vec_element(s, tcg_op, rn, pass, MO_64); 9714 switch (opcode) { 9715 case 0x3d: /* FRECPE */ 9716 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9717 break; 9718 case 0x3f: /* FRECPX */ 9719 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9720 break; 9721 case 0x7d: /* FRSQRTE */ 9722 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9723 break; 9724 default: 9725 g_assert_not_reached(); 9726 } 9727 write_vec_element(s, tcg_res, rd, pass, MO_64); 9728 } 9729 clear_vec_high(s, !is_scalar, rd); 9730 } else { 9731 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9732 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9733 int pass, maxpasses; 9734 9735 if (is_scalar) { 9736 maxpasses = 1; 9737 } else { 9738 maxpasses = is_q ? 4 : 2; 9739 } 9740 9741 for (pass = 0; pass < maxpasses; pass++) { 9742 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9743 9744 switch (opcode) { 9745 case 0x3c: /* URECPE */ 9746 gen_helper_recpe_u32(tcg_res, tcg_op); 9747 break; 9748 case 0x3d: /* FRECPE */ 9749 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9750 break; 9751 case 0x3f: /* FRECPX */ 9752 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9753 break; 9754 case 0x7d: /* FRSQRTE */ 9755 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9756 break; 9757 default: 9758 g_assert_not_reached(); 9759 } 9760 9761 if (is_scalar) { 9762 write_fp_sreg(s, rd, tcg_res); 9763 } else { 9764 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9765 } 9766 } 9767 if (!is_scalar) { 9768 clear_vec_high(s, is_q, rd); 9769 } 9770 } 9771 } 9772 9773 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9774 int opcode, bool u, bool is_q, 9775 int size, int rn, int rd) 9776 { 9777 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9778 * in the source becomes a size element in the destination). 9779 */ 9780 int pass; 9781 TCGv_i32 tcg_res[2]; 9782 int destelt = is_q ? 2 : 0; 9783 int passes = scalar ? 1 : 2; 9784 9785 if (scalar) { 9786 tcg_res[1] = tcg_constant_i32(0); 9787 } 9788 9789 for (pass = 0; pass < passes; pass++) { 9790 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9791 NeonGenNarrowFn *genfn = NULL; 9792 NeonGenNarrowEnvFn *genenvfn = NULL; 9793 9794 if (scalar) { 9795 read_vec_element(s, tcg_op, rn, pass, size + 1); 9796 } else { 9797 read_vec_element(s, tcg_op, rn, pass, MO_64); 9798 } 9799 tcg_res[pass] = tcg_temp_new_i32(); 9800 9801 switch (opcode) { 9802 case 0x12: /* XTN, SQXTUN */ 9803 { 9804 static NeonGenNarrowFn * const xtnfns[3] = { 9805 gen_helper_neon_narrow_u8, 9806 gen_helper_neon_narrow_u16, 9807 tcg_gen_extrl_i64_i32, 9808 }; 9809 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9810 gen_helper_neon_unarrow_sat8, 9811 gen_helper_neon_unarrow_sat16, 9812 gen_helper_neon_unarrow_sat32, 9813 }; 9814 if (u) { 9815 genenvfn = sqxtunfns[size]; 9816 } else { 9817 genfn = xtnfns[size]; 9818 } 9819 break; 9820 } 9821 case 0x14: /* SQXTN, UQXTN */ 9822 { 9823 static NeonGenNarrowEnvFn * const fns[3][2] = { 9824 { gen_helper_neon_narrow_sat_s8, 9825 gen_helper_neon_narrow_sat_u8 }, 9826 { gen_helper_neon_narrow_sat_s16, 9827 gen_helper_neon_narrow_sat_u16 }, 9828 { gen_helper_neon_narrow_sat_s32, 9829 gen_helper_neon_narrow_sat_u32 }, 9830 }; 9831 genenvfn = fns[size][u]; 9832 break; 9833 } 9834 case 0x16: /* FCVTN, FCVTN2 */ 9835 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9836 if (size == 2) { 9837 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9838 } else { 9839 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9840 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9841 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9842 TCGv_i32 ahp = get_ahp_flag(); 9843 9844 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9845 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9846 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9847 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9848 } 9849 break; 9850 case 0x36: /* BFCVTN, BFCVTN2 */ 9851 { 9852 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9853 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9854 } 9855 break; 9856 case 0x56: /* FCVTXN, FCVTXN2 */ 9857 /* 64 bit to 32 bit float conversion 9858 * with von Neumann rounding (round to odd) 9859 */ 9860 assert(size == 2); 9861 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9862 break; 9863 default: 9864 g_assert_not_reached(); 9865 } 9866 9867 if (genfn) { 9868 genfn(tcg_res[pass], tcg_op); 9869 } else if (genenvfn) { 9870 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9871 } 9872 } 9873 9874 for (pass = 0; pass < 2; pass++) { 9875 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9876 } 9877 clear_vec_high(s, is_q, rd); 9878 } 9879 9880 /* Remaining saturating accumulating ops */ 9881 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9882 bool is_q, int size, int rn, int rd) 9883 { 9884 bool is_double = (size == 3); 9885 9886 if (is_double) { 9887 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9888 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9889 int pass; 9890 9891 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9892 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9893 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9894 9895 if (is_u) { /* USQADD */ 9896 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9897 } else { /* SUQADD */ 9898 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9899 } 9900 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9901 } 9902 clear_vec_high(s, !is_scalar, rd); 9903 } else { 9904 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9905 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9906 int pass, maxpasses; 9907 9908 if (is_scalar) { 9909 maxpasses = 1; 9910 } else { 9911 maxpasses = is_q ? 4 : 2; 9912 } 9913 9914 for (pass = 0; pass < maxpasses; pass++) { 9915 if (is_scalar) { 9916 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9917 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9918 } else { 9919 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9920 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9921 } 9922 9923 if (is_u) { /* USQADD */ 9924 switch (size) { 9925 case 0: 9926 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9927 break; 9928 case 1: 9929 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9930 break; 9931 case 2: 9932 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9933 break; 9934 default: 9935 g_assert_not_reached(); 9936 } 9937 } else { /* SUQADD */ 9938 switch (size) { 9939 case 0: 9940 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9941 break; 9942 case 1: 9943 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9944 break; 9945 case 2: 9946 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9947 break; 9948 default: 9949 g_assert_not_reached(); 9950 } 9951 } 9952 9953 if (is_scalar) { 9954 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9955 } 9956 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9957 } 9958 clear_vec_high(s, is_q, rd); 9959 } 9960 } 9961 9962 /* AdvSIMD scalar two reg misc 9963 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9964 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9965 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9966 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9967 */ 9968 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9969 { 9970 int rd = extract32(insn, 0, 5); 9971 int rn = extract32(insn, 5, 5); 9972 int opcode = extract32(insn, 12, 5); 9973 int size = extract32(insn, 22, 2); 9974 bool u = extract32(insn, 29, 1); 9975 bool is_fcvt = false; 9976 int rmode; 9977 TCGv_i32 tcg_rmode; 9978 TCGv_ptr tcg_fpstatus; 9979 9980 switch (opcode) { 9981 case 0x3: /* USQADD / SUQADD*/ 9982 if (!fp_access_check(s)) { 9983 return; 9984 } 9985 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9986 return; 9987 case 0x7: /* SQABS / SQNEG */ 9988 break; 9989 case 0xa: /* CMLT */ 9990 if (u) { 9991 unallocated_encoding(s); 9992 return; 9993 } 9994 /* fall through */ 9995 case 0x8: /* CMGT, CMGE */ 9996 case 0x9: /* CMEQ, CMLE */ 9997 case 0xb: /* ABS, NEG */ 9998 if (size != 3) { 9999 unallocated_encoding(s); 10000 return; 10001 } 10002 break; 10003 case 0x12: /* SQXTUN */ 10004 if (!u) { 10005 unallocated_encoding(s); 10006 return; 10007 } 10008 /* fall through */ 10009 case 0x14: /* SQXTN, UQXTN */ 10010 if (size == 3) { 10011 unallocated_encoding(s); 10012 return; 10013 } 10014 if (!fp_access_check(s)) { 10015 return; 10016 } 10017 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10018 return; 10019 case 0xc ... 0xf: 10020 case 0x16 ... 0x1d: 10021 case 0x1f: 10022 /* Floating point: U, size[1] and opcode indicate operation; 10023 * size[0] indicates single or double precision. 10024 */ 10025 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10026 size = extract32(size, 0, 1) ? 3 : 2; 10027 switch (opcode) { 10028 case 0x2c: /* FCMGT (zero) */ 10029 case 0x2d: /* FCMEQ (zero) */ 10030 case 0x2e: /* FCMLT (zero) */ 10031 case 0x6c: /* FCMGE (zero) */ 10032 case 0x6d: /* FCMLE (zero) */ 10033 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10034 return; 10035 case 0x1d: /* SCVTF */ 10036 case 0x5d: /* UCVTF */ 10037 { 10038 bool is_signed = (opcode == 0x1d); 10039 if (!fp_access_check(s)) { 10040 return; 10041 } 10042 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10043 return; 10044 } 10045 case 0x3d: /* FRECPE */ 10046 case 0x3f: /* FRECPX */ 10047 case 0x7d: /* FRSQRTE */ 10048 if (!fp_access_check(s)) { 10049 return; 10050 } 10051 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10052 return; 10053 case 0x1a: /* FCVTNS */ 10054 case 0x1b: /* FCVTMS */ 10055 case 0x3a: /* FCVTPS */ 10056 case 0x3b: /* FCVTZS */ 10057 case 0x5a: /* FCVTNU */ 10058 case 0x5b: /* FCVTMU */ 10059 case 0x7a: /* FCVTPU */ 10060 case 0x7b: /* FCVTZU */ 10061 is_fcvt = true; 10062 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10063 break; 10064 case 0x1c: /* FCVTAS */ 10065 case 0x5c: /* FCVTAU */ 10066 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10067 is_fcvt = true; 10068 rmode = FPROUNDING_TIEAWAY; 10069 break; 10070 case 0x56: /* FCVTXN, FCVTXN2 */ 10071 if (size == 2) { 10072 unallocated_encoding(s); 10073 return; 10074 } 10075 if (!fp_access_check(s)) { 10076 return; 10077 } 10078 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10079 return; 10080 default: 10081 unallocated_encoding(s); 10082 return; 10083 } 10084 break; 10085 default: 10086 unallocated_encoding(s); 10087 return; 10088 } 10089 10090 if (!fp_access_check(s)) { 10091 return; 10092 } 10093 10094 if (is_fcvt) { 10095 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10096 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10097 } else { 10098 tcg_fpstatus = NULL; 10099 tcg_rmode = NULL; 10100 } 10101 10102 if (size == 3) { 10103 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10104 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10105 10106 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10107 write_fp_dreg(s, rd, tcg_rd); 10108 } else { 10109 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10110 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10111 10112 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10113 10114 switch (opcode) { 10115 case 0x7: /* SQABS, SQNEG */ 10116 { 10117 NeonGenOneOpEnvFn *genfn; 10118 static NeonGenOneOpEnvFn * const fns[3][2] = { 10119 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10120 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10121 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10122 }; 10123 genfn = fns[size][u]; 10124 genfn(tcg_rd, cpu_env, tcg_rn); 10125 break; 10126 } 10127 case 0x1a: /* FCVTNS */ 10128 case 0x1b: /* FCVTMS */ 10129 case 0x1c: /* FCVTAS */ 10130 case 0x3a: /* FCVTPS */ 10131 case 0x3b: /* FCVTZS */ 10132 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10133 tcg_fpstatus); 10134 break; 10135 case 0x5a: /* FCVTNU */ 10136 case 0x5b: /* FCVTMU */ 10137 case 0x5c: /* FCVTAU */ 10138 case 0x7a: /* FCVTPU */ 10139 case 0x7b: /* FCVTZU */ 10140 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10141 tcg_fpstatus); 10142 break; 10143 default: 10144 g_assert_not_reached(); 10145 } 10146 10147 write_fp_sreg(s, rd, tcg_rd); 10148 } 10149 10150 if (is_fcvt) { 10151 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10152 } 10153 } 10154 10155 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10156 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10157 int immh, int immb, int opcode, int rn, int rd) 10158 { 10159 int size = 32 - clz32(immh) - 1; 10160 int immhb = immh << 3 | immb; 10161 int shift = 2 * (8 << size) - immhb; 10162 GVecGen2iFn *gvec_fn; 10163 10164 if (extract32(immh, 3, 1) && !is_q) { 10165 unallocated_encoding(s); 10166 return; 10167 } 10168 tcg_debug_assert(size <= 3); 10169 10170 if (!fp_access_check(s)) { 10171 return; 10172 } 10173 10174 switch (opcode) { 10175 case 0x02: /* SSRA / USRA (accumulate) */ 10176 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10177 break; 10178 10179 case 0x08: /* SRI */ 10180 gvec_fn = gen_gvec_sri; 10181 break; 10182 10183 case 0x00: /* SSHR / USHR */ 10184 if (is_u) { 10185 if (shift == 8 << size) { 10186 /* Shift count the same size as element size produces zero. */ 10187 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10188 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10189 return; 10190 } 10191 gvec_fn = tcg_gen_gvec_shri; 10192 } else { 10193 /* Shift count the same size as element size produces all sign. */ 10194 if (shift == 8 << size) { 10195 shift -= 1; 10196 } 10197 gvec_fn = tcg_gen_gvec_sari; 10198 } 10199 break; 10200 10201 case 0x04: /* SRSHR / URSHR (rounding) */ 10202 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10203 break; 10204 10205 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10206 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10207 break; 10208 10209 default: 10210 g_assert_not_reached(); 10211 } 10212 10213 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10214 } 10215 10216 /* SHL/SLI - Vector shift left */ 10217 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10218 int immh, int immb, int opcode, int rn, int rd) 10219 { 10220 int size = 32 - clz32(immh) - 1; 10221 int immhb = immh << 3 | immb; 10222 int shift = immhb - (8 << size); 10223 10224 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10225 assert(size >= 0 && size <= 3); 10226 10227 if (extract32(immh, 3, 1) && !is_q) { 10228 unallocated_encoding(s); 10229 return; 10230 } 10231 10232 if (!fp_access_check(s)) { 10233 return; 10234 } 10235 10236 if (insert) { 10237 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10238 } else { 10239 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10240 } 10241 } 10242 10243 /* USHLL/SHLL - Vector shift left with widening */ 10244 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10245 int immh, int immb, int opcode, int rn, int rd) 10246 { 10247 int size = 32 - clz32(immh) - 1; 10248 int immhb = immh << 3 | immb; 10249 int shift = immhb - (8 << size); 10250 int dsize = 64; 10251 int esize = 8 << size; 10252 int elements = dsize/esize; 10253 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10254 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10255 int i; 10256 10257 if (size >= 3) { 10258 unallocated_encoding(s); 10259 return; 10260 } 10261 10262 if (!fp_access_check(s)) { 10263 return; 10264 } 10265 10266 /* For the LL variants the store is larger than the load, 10267 * so if rd == rn we would overwrite parts of our input. 10268 * So load everything right now and use shifts in the main loop. 10269 */ 10270 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10271 10272 for (i = 0; i < elements; i++) { 10273 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10274 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10275 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10276 write_vec_element(s, tcg_rd, rd, i, size + 1); 10277 } 10278 } 10279 10280 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10281 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10282 int immh, int immb, int opcode, int rn, int rd) 10283 { 10284 int immhb = immh << 3 | immb; 10285 int size = 32 - clz32(immh) - 1; 10286 int dsize = 64; 10287 int esize = 8 << size; 10288 int elements = dsize/esize; 10289 int shift = (2 * esize) - immhb; 10290 bool round = extract32(opcode, 0, 1); 10291 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10292 TCGv_i64 tcg_round; 10293 int i; 10294 10295 if (extract32(immh, 3, 1)) { 10296 unallocated_encoding(s); 10297 return; 10298 } 10299 10300 if (!fp_access_check(s)) { 10301 return; 10302 } 10303 10304 tcg_rn = tcg_temp_new_i64(); 10305 tcg_rd = tcg_temp_new_i64(); 10306 tcg_final = tcg_temp_new_i64(); 10307 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10308 10309 if (round) { 10310 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10311 } else { 10312 tcg_round = NULL; 10313 } 10314 10315 for (i = 0; i < elements; i++) { 10316 read_vec_element(s, tcg_rn, rn, i, size+1); 10317 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10318 false, true, size+1, shift); 10319 10320 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10321 } 10322 10323 if (!is_q) { 10324 write_vec_element(s, tcg_final, rd, 0, MO_64); 10325 } else { 10326 write_vec_element(s, tcg_final, rd, 1, MO_64); 10327 } 10328 10329 clear_vec_high(s, is_q, rd); 10330 } 10331 10332 10333 /* AdvSIMD shift by immediate 10334 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10335 * +---+---+---+-------------+------+------+--------+---+------+------+ 10336 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10337 * +---+---+---+-------------+------+------+--------+---+------+------+ 10338 */ 10339 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10340 { 10341 int rd = extract32(insn, 0, 5); 10342 int rn = extract32(insn, 5, 5); 10343 int opcode = extract32(insn, 11, 5); 10344 int immb = extract32(insn, 16, 3); 10345 int immh = extract32(insn, 19, 4); 10346 bool is_u = extract32(insn, 29, 1); 10347 bool is_q = extract32(insn, 30, 1); 10348 10349 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10350 assert(immh != 0); 10351 10352 switch (opcode) { 10353 case 0x08: /* SRI */ 10354 if (!is_u) { 10355 unallocated_encoding(s); 10356 return; 10357 } 10358 /* fall through */ 10359 case 0x00: /* SSHR / USHR */ 10360 case 0x02: /* SSRA / USRA (accumulate) */ 10361 case 0x04: /* SRSHR / URSHR (rounding) */ 10362 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10363 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10364 break; 10365 case 0x0a: /* SHL / SLI */ 10366 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10367 break; 10368 case 0x10: /* SHRN */ 10369 case 0x11: /* RSHRN / SQRSHRUN */ 10370 if (is_u) { 10371 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10372 opcode, rn, rd); 10373 } else { 10374 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10375 } 10376 break; 10377 case 0x12: /* SQSHRN / UQSHRN */ 10378 case 0x13: /* SQRSHRN / UQRSHRN */ 10379 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10380 opcode, rn, rd); 10381 break; 10382 case 0x14: /* SSHLL / USHLL */ 10383 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10384 break; 10385 case 0x1c: /* SCVTF / UCVTF */ 10386 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10387 opcode, rn, rd); 10388 break; 10389 case 0xc: /* SQSHLU */ 10390 if (!is_u) { 10391 unallocated_encoding(s); 10392 return; 10393 } 10394 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10395 break; 10396 case 0xe: /* SQSHL, UQSHL */ 10397 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10398 break; 10399 case 0x1f: /* FCVTZS/ FCVTZU */ 10400 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10401 return; 10402 default: 10403 unallocated_encoding(s); 10404 return; 10405 } 10406 } 10407 10408 /* Generate code to do a "long" addition or subtraction, ie one done in 10409 * TCGv_i64 on vector lanes twice the width specified by size. 10410 */ 10411 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10412 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10413 { 10414 static NeonGenTwo64OpFn * const fns[3][2] = { 10415 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10416 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10417 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10418 }; 10419 NeonGenTwo64OpFn *genfn; 10420 assert(size < 3); 10421 10422 genfn = fns[size][is_sub]; 10423 genfn(tcg_res, tcg_op1, tcg_op2); 10424 } 10425 10426 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10427 int opcode, int rd, int rn, int rm) 10428 { 10429 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10430 TCGv_i64 tcg_res[2]; 10431 int pass, accop; 10432 10433 tcg_res[0] = tcg_temp_new_i64(); 10434 tcg_res[1] = tcg_temp_new_i64(); 10435 10436 /* Does this op do an adding accumulate, a subtracting accumulate, 10437 * or no accumulate at all? 10438 */ 10439 switch (opcode) { 10440 case 5: 10441 case 8: 10442 case 9: 10443 accop = 1; 10444 break; 10445 case 10: 10446 case 11: 10447 accop = -1; 10448 break; 10449 default: 10450 accop = 0; 10451 break; 10452 } 10453 10454 if (accop != 0) { 10455 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10456 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10457 } 10458 10459 /* size == 2 means two 32x32->64 operations; this is worth special 10460 * casing because we can generally handle it inline. 10461 */ 10462 if (size == 2) { 10463 for (pass = 0; pass < 2; pass++) { 10464 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10465 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10466 TCGv_i64 tcg_passres; 10467 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10468 10469 int elt = pass + is_q * 2; 10470 10471 read_vec_element(s, tcg_op1, rn, elt, memop); 10472 read_vec_element(s, tcg_op2, rm, elt, memop); 10473 10474 if (accop == 0) { 10475 tcg_passres = tcg_res[pass]; 10476 } else { 10477 tcg_passres = tcg_temp_new_i64(); 10478 } 10479 10480 switch (opcode) { 10481 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10482 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10483 break; 10484 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10485 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10486 break; 10487 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10488 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10489 { 10490 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10491 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10492 10493 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10494 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10495 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10496 tcg_passres, 10497 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10498 break; 10499 } 10500 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10501 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10502 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10503 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10504 break; 10505 case 9: /* SQDMLAL, SQDMLAL2 */ 10506 case 11: /* SQDMLSL, SQDMLSL2 */ 10507 case 13: /* SQDMULL, SQDMULL2 */ 10508 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10509 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10510 tcg_passres, tcg_passres); 10511 break; 10512 default: 10513 g_assert_not_reached(); 10514 } 10515 10516 if (opcode == 9 || opcode == 11) { 10517 /* saturating accumulate ops */ 10518 if (accop < 0) { 10519 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10520 } 10521 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10522 tcg_res[pass], tcg_passres); 10523 } else if (accop > 0) { 10524 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10525 } else if (accop < 0) { 10526 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10527 } 10528 } 10529 } else { 10530 /* size 0 or 1, generally helper functions */ 10531 for (pass = 0; pass < 2; pass++) { 10532 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10533 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10534 TCGv_i64 tcg_passres; 10535 int elt = pass + is_q * 2; 10536 10537 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10538 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10539 10540 if (accop == 0) { 10541 tcg_passres = tcg_res[pass]; 10542 } else { 10543 tcg_passres = tcg_temp_new_i64(); 10544 } 10545 10546 switch (opcode) { 10547 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10548 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10549 { 10550 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10551 static NeonGenWidenFn * const widenfns[2][2] = { 10552 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10553 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10554 }; 10555 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10556 10557 widenfn(tcg_op2_64, tcg_op2); 10558 widenfn(tcg_passres, tcg_op1); 10559 gen_neon_addl(size, (opcode == 2), tcg_passres, 10560 tcg_passres, tcg_op2_64); 10561 break; 10562 } 10563 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10564 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10565 if (size == 0) { 10566 if (is_u) { 10567 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10568 } else { 10569 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10570 } 10571 } else { 10572 if (is_u) { 10573 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10574 } else { 10575 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10576 } 10577 } 10578 break; 10579 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10580 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10581 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10582 if (size == 0) { 10583 if (is_u) { 10584 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10585 } else { 10586 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10587 } 10588 } else { 10589 if (is_u) { 10590 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10591 } else { 10592 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10593 } 10594 } 10595 break; 10596 case 9: /* SQDMLAL, SQDMLAL2 */ 10597 case 11: /* SQDMLSL, SQDMLSL2 */ 10598 case 13: /* SQDMULL, SQDMULL2 */ 10599 assert(size == 1); 10600 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10601 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10602 tcg_passres, tcg_passres); 10603 break; 10604 default: 10605 g_assert_not_reached(); 10606 } 10607 10608 if (accop != 0) { 10609 if (opcode == 9 || opcode == 11) { 10610 /* saturating accumulate ops */ 10611 if (accop < 0) { 10612 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10613 } 10614 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10615 tcg_res[pass], 10616 tcg_passres); 10617 } else { 10618 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10619 tcg_res[pass], tcg_passres); 10620 } 10621 } 10622 } 10623 } 10624 10625 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10626 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10627 } 10628 10629 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10630 int opcode, int rd, int rn, int rm) 10631 { 10632 TCGv_i64 tcg_res[2]; 10633 int part = is_q ? 2 : 0; 10634 int pass; 10635 10636 for (pass = 0; pass < 2; pass++) { 10637 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10638 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10639 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10640 static NeonGenWidenFn * const widenfns[3][2] = { 10641 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10642 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10643 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10644 }; 10645 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10646 10647 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10648 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10649 widenfn(tcg_op2_wide, tcg_op2); 10650 tcg_res[pass] = tcg_temp_new_i64(); 10651 gen_neon_addl(size, (opcode == 3), 10652 tcg_res[pass], tcg_op1, tcg_op2_wide); 10653 } 10654 10655 for (pass = 0; pass < 2; pass++) { 10656 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10657 } 10658 } 10659 10660 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10661 { 10662 tcg_gen_addi_i64(in, in, 1U << 31); 10663 tcg_gen_extrh_i64_i32(res, in); 10664 } 10665 10666 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10667 int opcode, int rd, int rn, int rm) 10668 { 10669 TCGv_i32 tcg_res[2]; 10670 int part = is_q ? 2 : 0; 10671 int pass; 10672 10673 for (pass = 0; pass < 2; pass++) { 10674 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10675 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10676 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10677 static NeonGenNarrowFn * const narrowfns[3][2] = { 10678 { gen_helper_neon_narrow_high_u8, 10679 gen_helper_neon_narrow_round_high_u8 }, 10680 { gen_helper_neon_narrow_high_u16, 10681 gen_helper_neon_narrow_round_high_u16 }, 10682 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10683 }; 10684 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10685 10686 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10687 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10688 10689 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10690 10691 tcg_res[pass] = tcg_temp_new_i32(); 10692 gennarrow(tcg_res[pass], tcg_wideres); 10693 } 10694 10695 for (pass = 0; pass < 2; pass++) { 10696 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10697 } 10698 clear_vec_high(s, is_q, rd); 10699 } 10700 10701 /* AdvSIMD three different 10702 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10703 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10704 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10705 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10706 */ 10707 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10708 { 10709 /* Instructions in this group fall into three basic classes 10710 * (in each case with the operation working on each element in 10711 * the input vectors): 10712 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10713 * 128 bit input) 10714 * (2) wide 64 x 128 -> 128 10715 * (3) narrowing 128 x 128 -> 64 10716 * Here we do initial decode, catch unallocated cases and 10717 * dispatch to separate functions for each class. 10718 */ 10719 int is_q = extract32(insn, 30, 1); 10720 int is_u = extract32(insn, 29, 1); 10721 int size = extract32(insn, 22, 2); 10722 int opcode = extract32(insn, 12, 4); 10723 int rm = extract32(insn, 16, 5); 10724 int rn = extract32(insn, 5, 5); 10725 int rd = extract32(insn, 0, 5); 10726 10727 switch (opcode) { 10728 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10729 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10730 /* 64 x 128 -> 128 */ 10731 if (size == 3) { 10732 unallocated_encoding(s); 10733 return; 10734 } 10735 if (!fp_access_check(s)) { 10736 return; 10737 } 10738 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10739 break; 10740 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10741 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10742 /* 128 x 128 -> 64 */ 10743 if (size == 3) { 10744 unallocated_encoding(s); 10745 return; 10746 } 10747 if (!fp_access_check(s)) { 10748 return; 10749 } 10750 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10751 break; 10752 case 14: /* PMULL, PMULL2 */ 10753 if (is_u) { 10754 unallocated_encoding(s); 10755 return; 10756 } 10757 switch (size) { 10758 case 0: /* PMULL.P8 */ 10759 if (!fp_access_check(s)) { 10760 return; 10761 } 10762 /* The Q field specifies lo/hi half input for this insn. */ 10763 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10764 gen_helper_neon_pmull_h); 10765 break; 10766 10767 case 3: /* PMULL.P64 */ 10768 if (!dc_isar_feature(aa64_pmull, s)) { 10769 unallocated_encoding(s); 10770 return; 10771 } 10772 if (!fp_access_check(s)) { 10773 return; 10774 } 10775 /* The Q field specifies lo/hi half input for this insn. */ 10776 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10777 gen_helper_gvec_pmull_q); 10778 break; 10779 10780 default: 10781 unallocated_encoding(s); 10782 break; 10783 } 10784 return; 10785 case 9: /* SQDMLAL, SQDMLAL2 */ 10786 case 11: /* SQDMLSL, SQDMLSL2 */ 10787 case 13: /* SQDMULL, SQDMULL2 */ 10788 if (is_u || size == 0) { 10789 unallocated_encoding(s); 10790 return; 10791 } 10792 /* fall through */ 10793 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10794 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10795 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10796 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10797 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10798 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10799 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10800 /* 64 x 64 -> 128 */ 10801 if (size == 3) { 10802 unallocated_encoding(s); 10803 return; 10804 } 10805 if (!fp_access_check(s)) { 10806 return; 10807 } 10808 10809 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10810 break; 10811 default: 10812 /* opcode 15 not allocated */ 10813 unallocated_encoding(s); 10814 break; 10815 } 10816 } 10817 10818 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10819 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10820 { 10821 int rd = extract32(insn, 0, 5); 10822 int rn = extract32(insn, 5, 5); 10823 int rm = extract32(insn, 16, 5); 10824 int size = extract32(insn, 22, 2); 10825 bool is_u = extract32(insn, 29, 1); 10826 bool is_q = extract32(insn, 30, 1); 10827 10828 if (!fp_access_check(s)) { 10829 return; 10830 } 10831 10832 switch (size + 4 * is_u) { 10833 case 0: /* AND */ 10834 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10835 return; 10836 case 1: /* BIC */ 10837 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10838 return; 10839 case 2: /* ORR */ 10840 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10841 return; 10842 case 3: /* ORN */ 10843 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10844 return; 10845 case 4: /* EOR */ 10846 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10847 return; 10848 10849 case 5: /* BSL bitwise select */ 10850 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10851 return; 10852 case 6: /* BIT, bitwise insert if true */ 10853 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10854 return; 10855 case 7: /* BIF, bitwise insert if false */ 10856 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10857 return; 10858 10859 default: 10860 g_assert_not_reached(); 10861 } 10862 } 10863 10864 /* Pairwise op subgroup of C3.6.16. 10865 * 10866 * This is called directly or via the handle_3same_float for float pairwise 10867 * operations where the opcode and size are calculated differently. 10868 */ 10869 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10870 int size, int rn, int rm, int rd) 10871 { 10872 TCGv_ptr fpst; 10873 int pass; 10874 10875 /* Floating point operations need fpst */ 10876 if (opcode >= 0x58) { 10877 fpst = fpstatus_ptr(FPST_FPCR); 10878 } else { 10879 fpst = NULL; 10880 } 10881 10882 if (!fp_access_check(s)) { 10883 return; 10884 } 10885 10886 /* These operations work on the concatenated rm:rn, with each pair of 10887 * adjacent elements being operated on to produce an element in the result. 10888 */ 10889 if (size == 3) { 10890 TCGv_i64 tcg_res[2]; 10891 10892 for (pass = 0; pass < 2; pass++) { 10893 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10894 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10895 int passreg = (pass == 0) ? rn : rm; 10896 10897 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10898 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10899 tcg_res[pass] = tcg_temp_new_i64(); 10900 10901 switch (opcode) { 10902 case 0x17: /* ADDP */ 10903 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10904 break; 10905 case 0x58: /* FMAXNMP */ 10906 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10907 break; 10908 case 0x5a: /* FADDP */ 10909 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10910 break; 10911 case 0x5e: /* FMAXP */ 10912 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10913 break; 10914 case 0x78: /* FMINNMP */ 10915 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10916 break; 10917 case 0x7e: /* FMINP */ 10918 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10919 break; 10920 default: 10921 g_assert_not_reached(); 10922 } 10923 } 10924 10925 for (pass = 0; pass < 2; pass++) { 10926 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10927 } 10928 } else { 10929 int maxpass = is_q ? 4 : 2; 10930 TCGv_i32 tcg_res[4]; 10931 10932 for (pass = 0; pass < maxpass; pass++) { 10933 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10934 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10935 NeonGenTwoOpFn *genfn = NULL; 10936 int passreg = pass < (maxpass / 2) ? rn : rm; 10937 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10938 10939 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10940 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10941 tcg_res[pass] = tcg_temp_new_i32(); 10942 10943 switch (opcode) { 10944 case 0x17: /* ADDP */ 10945 { 10946 static NeonGenTwoOpFn * const fns[3] = { 10947 gen_helper_neon_padd_u8, 10948 gen_helper_neon_padd_u16, 10949 tcg_gen_add_i32, 10950 }; 10951 genfn = fns[size]; 10952 break; 10953 } 10954 case 0x14: /* SMAXP, UMAXP */ 10955 { 10956 static NeonGenTwoOpFn * const fns[3][2] = { 10957 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10958 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10959 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10960 }; 10961 genfn = fns[size][u]; 10962 break; 10963 } 10964 case 0x15: /* SMINP, UMINP */ 10965 { 10966 static NeonGenTwoOpFn * const fns[3][2] = { 10967 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10968 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10969 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10970 }; 10971 genfn = fns[size][u]; 10972 break; 10973 } 10974 /* The FP operations are all on single floats (32 bit) */ 10975 case 0x58: /* FMAXNMP */ 10976 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10977 break; 10978 case 0x5a: /* FADDP */ 10979 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10980 break; 10981 case 0x5e: /* FMAXP */ 10982 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10983 break; 10984 case 0x78: /* FMINNMP */ 10985 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10986 break; 10987 case 0x7e: /* FMINP */ 10988 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10989 break; 10990 default: 10991 g_assert_not_reached(); 10992 } 10993 10994 /* FP ops called directly, otherwise call now */ 10995 if (genfn) { 10996 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10997 } 10998 } 10999 11000 for (pass = 0; pass < maxpass; pass++) { 11001 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11002 } 11003 clear_vec_high(s, is_q, rd); 11004 } 11005 } 11006 11007 /* Floating point op subgroup of C3.6.16. */ 11008 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11009 { 11010 /* For floating point ops, the U, size[1] and opcode bits 11011 * together indicate the operation. size[0] indicates single 11012 * or double. 11013 */ 11014 int fpopcode = extract32(insn, 11, 5) 11015 | (extract32(insn, 23, 1) << 5) 11016 | (extract32(insn, 29, 1) << 6); 11017 int is_q = extract32(insn, 30, 1); 11018 int size = extract32(insn, 22, 1); 11019 int rm = extract32(insn, 16, 5); 11020 int rn = extract32(insn, 5, 5); 11021 int rd = extract32(insn, 0, 5); 11022 11023 int datasize = is_q ? 128 : 64; 11024 int esize = 32 << size; 11025 int elements = datasize / esize; 11026 11027 if (size == 1 && !is_q) { 11028 unallocated_encoding(s); 11029 return; 11030 } 11031 11032 switch (fpopcode) { 11033 case 0x58: /* FMAXNMP */ 11034 case 0x5a: /* FADDP */ 11035 case 0x5e: /* FMAXP */ 11036 case 0x78: /* FMINNMP */ 11037 case 0x7e: /* FMINP */ 11038 if (size && !is_q) { 11039 unallocated_encoding(s); 11040 return; 11041 } 11042 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11043 rn, rm, rd); 11044 return; 11045 case 0x1b: /* FMULX */ 11046 case 0x1f: /* FRECPS */ 11047 case 0x3f: /* FRSQRTS */ 11048 case 0x5d: /* FACGE */ 11049 case 0x7d: /* FACGT */ 11050 case 0x19: /* FMLA */ 11051 case 0x39: /* FMLS */ 11052 case 0x18: /* FMAXNM */ 11053 case 0x1a: /* FADD */ 11054 case 0x1c: /* FCMEQ */ 11055 case 0x1e: /* FMAX */ 11056 case 0x38: /* FMINNM */ 11057 case 0x3a: /* FSUB */ 11058 case 0x3e: /* FMIN */ 11059 case 0x5b: /* FMUL */ 11060 case 0x5c: /* FCMGE */ 11061 case 0x5f: /* FDIV */ 11062 case 0x7a: /* FABD */ 11063 case 0x7c: /* FCMGT */ 11064 if (!fp_access_check(s)) { 11065 return; 11066 } 11067 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11068 return; 11069 11070 case 0x1d: /* FMLAL */ 11071 case 0x3d: /* FMLSL */ 11072 case 0x59: /* FMLAL2 */ 11073 case 0x79: /* FMLSL2 */ 11074 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11075 unallocated_encoding(s); 11076 return; 11077 } 11078 if (fp_access_check(s)) { 11079 int is_s = extract32(insn, 23, 1); 11080 int is_2 = extract32(insn, 29, 1); 11081 int data = (is_2 << 1) | is_s; 11082 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11083 vec_full_reg_offset(s, rn), 11084 vec_full_reg_offset(s, rm), cpu_env, 11085 is_q ? 16 : 8, vec_full_reg_size(s), 11086 data, gen_helper_gvec_fmlal_a64); 11087 } 11088 return; 11089 11090 default: 11091 unallocated_encoding(s); 11092 return; 11093 } 11094 } 11095 11096 /* Integer op subgroup of C3.6.16. */ 11097 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11098 { 11099 int is_q = extract32(insn, 30, 1); 11100 int u = extract32(insn, 29, 1); 11101 int size = extract32(insn, 22, 2); 11102 int opcode = extract32(insn, 11, 5); 11103 int rm = extract32(insn, 16, 5); 11104 int rn = extract32(insn, 5, 5); 11105 int rd = extract32(insn, 0, 5); 11106 int pass; 11107 TCGCond cond; 11108 11109 switch (opcode) { 11110 case 0x13: /* MUL, PMUL */ 11111 if (u && size != 0) { 11112 unallocated_encoding(s); 11113 return; 11114 } 11115 /* fall through */ 11116 case 0x0: /* SHADD, UHADD */ 11117 case 0x2: /* SRHADD, URHADD */ 11118 case 0x4: /* SHSUB, UHSUB */ 11119 case 0xc: /* SMAX, UMAX */ 11120 case 0xd: /* SMIN, UMIN */ 11121 case 0xe: /* SABD, UABD */ 11122 case 0xf: /* SABA, UABA */ 11123 case 0x12: /* MLA, MLS */ 11124 if (size == 3) { 11125 unallocated_encoding(s); 11126 return; 11127 } 11128 break; 11129 case 0x16: /* SQDMULH, SQRDMULH */ 11130 if (size == 0 || size == 3) { 11131 unallocated_encoding(s); 11132 return; 11133 } 11134 break; 11135 default: 11136 if (size == 3 && !is_q) { 11137 unallocated_encoding(s); 11138 return; 11139 } 11140 break; 11141 } 11142 11143 if (!fp_access_check(s)) { 11144 return; 11145 } 11146 11147 switch (opcode) { 11148 case 0x01: /* SQADD, UQADD */ 11149 if (u) { 11150 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11151 } else { 11152 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11153 } 11154 return; 11155 case 0x05: /* SQSUB, UQSUB */ 11156 if (u) { 11157 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11158 } else { 11159 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11160 } 11161 return; 11162 case 0x08: /* SSHL, USHL */ 11163 if (u) { 11164 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11165 } else { 11166 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11167 } 11168 return; 11169 case 0x0c: /* SMAX, UMAX */ 11170 if (u) { 11171 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11172 } else { 11173 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11174 } 11175 return; 11176 case 0x0d: /* SMIN, UMIN */ 11177 if (u) { 11178 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11179 } else { 11180 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11181 } 11182 return; 11183 case 0xe: /* SABD, UABD */ 11184 if (u) { 11185 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11186 } else { 11187 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11188 } 11189 return; 11190 case 0xf: /* SABA, UABA */ 11191 if (u) { 11192 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11193 } else { 11194 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11195 } 11196 return; 11197 case 0x10: /* ADD, SUB */ 11198 if (u) { 11199 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11200 } else { 11201 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11202 } 11203 return; 11204 case 0x13: /* MUL, PMUL */ 11205 if (!u) { /* MUL */ 11206 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11207 } else { /* PMUL */ 11208 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11209 } 11210 return; 11211 case 0x12: /* MLA, MLS */ 11212 if (u) { 11213 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11214 } else { 11215 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11216 } 11217 return; 11218 case 0x16: /* SQDMULH, SQRDMULH */ 11219 { 11220 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11221 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11222 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11223 }; 11224 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11225 } 11226 return; 11227 case 0x11: 11228 if (!u) { /* CMTST */ 11229 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11230 return; 11231 } 11232 /* else CMEQ */ 11233 cond = TCG_COND_EQ; 11234 goto do_gvec_cmp; 11235 case 0x06: /* CMGT, CMHI */ 11236 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11237 goto do_gvec_cmp; 11238 case 0x07: /* CMGE, CMHS */ 11239 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11240 do_gvec_cmp: 11241 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11242 vec_full_reg_offset(s, rn), 11243 vec_full_reg_offset(s, rm), 11244 is_q ? 16 : 8, vec_full_reg_size(s)); 11245 return; 11246 } 11247 11248 if (size == 3) { 11249 assert(is_q); 11250 for (pass = 0; pass < 2; pass++) { 11251 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11252 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11253 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11254 11255 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11256 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11257 11258 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11259 11260 write_vec_element(s, tcg_res, rd, pass, MO_64); 11261 } 11262 } else { 11263 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11264 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11265 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11266 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11267 NeonGenTwoOpFn *genfn = NULL; 11268 NeonGenTwoOpEnvFn *genenvfn = NULL; 11269 11270 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11271 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11272 11273 switch (opcode) { 11274 case 0x0: /* SHADD, UHADD */ 11275 { 11276 static NeonGenTwoOpFn * const fns[3][2] = { 11277 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11278 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11279 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11280 }; 11281 genfn = fns[size][u]; 11282 break; 11283 } 11284 case 0x2: /* SRHADD, URHADD */ 11285 { 11286 static NeonGenTwoOpFn * const fns[3][2] = { 11287 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11288 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11289 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11290 }; 11291 genfn = fns[size][u]; 11292 break; 11293 } 11294 case 0x4: /* SHSUB, UHSUB */ 11295 { 11296 static NeonGenTwoOpFn * const fns[3][2] = { 11297 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11298 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11299 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11300 }; 11301 genfn = fns[size][u]; 11302 break; 11303 } 11304 case 0x9: /* SQSHL, UQSHL */ 11305 { 11306 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11307 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11308 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11309 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11310 }; 11311 genenvfn = fns[size][u]; 11312 break; 11313 } 11314 case 0xa: /* SRSHL, URSHL */ 11315 { 11316 static NeonGenTwoOpFn * const fns[3][2] = { 11317 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11318 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11319 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11320 }; 11321 genfn = fns[size][u]; 11322 break; 11323 } 11324 case 0xb: /* SQRSHL, UQRSHL */ 11325 { 11326 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11327 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11328 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11329 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11330 }; 11331 genenvfn = fns[size][u]; 11332 break; 11333 } 11334 default: 11335 g_assert_not_reached(); 11336 } 11337 11338 if (genenvfn) { 11339 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11340 } else { 11341 genfn(tcg_res, tcg_op1, tcg_op2); 11342 } 11343 11344 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11345 } 11346 } 11347 clear_vec_high(s, is_q, rd); 11348 } 11349 11350 /* AdvSIMD three same 11351 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11352 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11353 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11354 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11355 */ 11356 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11357 { 11358 int opcode = extract32(insn, 11, 5); 11359 11360 switch (opcode) { 11361 case 0x3: /* logic ops */ 11362 disas_simd_3same_logic(s, insn); 11363 break; 11364 case 0x17: /* ADDP */ 11365 case 0x14: /* SMAXP, UMAXP */ 11366 case 0x15: /* SMINP, UMINP */ 11367 { 11368 /* Pairwise operations */ 11369 int is_q = extract32(insn, 30, 1); 11370 int u = extract32(insn, 29, 1); 11371 int size = extract32(insn, 22, 2); 11372 int rm = extract32(insn, 16, 5); 11373 int rn = extract32(insn, 5, 5); 11374 int rd = extract32(insn, 0, 5); 11375 if (opcode == 0x17) { 11376 if (u || (size == 3 && !is_q)) { 11377 unallocated_encoding(s); 11378 return; 11379 } 11380 } else { 11381 if (size == 3) { 11382 unallocated_encoding(s); 11383 return; 11384 } 11385 } 11386 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11387 break; 11388 } 11389 case 0x18 ... 0x31: 11390 /* floating point ops, sz[1] and U are part of opcode */ 11391 disas_simd_3same_float(s, insn); 11392 break; 11393 default: 11394 disas_simd_3same_int(s, insn); 11395 break; 11396 } 11397 } 11398 11399 /* 11400 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11401 * 11402 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11403 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11404 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11405 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11406 * 11407 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11408 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11409 * 11410 */ 11411 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11412 { 11413 int opcode = extract32(insn, 11, 3); 11414 int u = extract32(insn, 29, 1); 11415 int a = extract32(insn, 23, 1); 11416 int is_q = extract32(insn, 30, 1); 11417 int rm = extract32(insn, 16, 5); 11418 int rn = extract32(insn, 5, 5); 11419 int rd = extract32(insn, 0, 5); 11420 /* 11421 * For these floating point ops, the U, a and opcode bits 11422 * together indicate the operation. 11423 */ 11424 int fpopcode = opcode | (a << 3) | (u << 4); 11425 int datasize = is_q ? 128 : 64; 11426 int elements = datasize / 16; 11427 bool pairwise; 11428 TCGv_ptr fpst; 11429 int pass; 11430 11431 switch (fpopcode) { 11432 case 0x0: /* FMAXNM */ 11433 case 0x1: /* FMLA */ 11434 case 0x2: /* FADD */ 11435 case 0x3: /* FMULX */ 11436 case 0x4: /* FCMEQ */ 11437 case 0x6: /* FMAX */ 11438 case 0x7: /* FRECPS */ 11439 case 0x8: /* FMINNM */ 11440 case 0x9: /* FMLS */ 11441 case 0xa: /* FSUB */ 11442 case 0xe: /* FMIN */ 11443 case 0xf: /* FRSQRTS */ 11444 case 0x13: /* FMUL */ 11445 case 0x14: /* FCMGE */ 11446 case 0x15: /* FACGE */ 11447 case 0x17: /* FDIV */ 11448 case 0x1a: /* FABD */ 11449 case 0x1c: /* FCMGT */ 11450 case 0x1d: /* FACGT */ 11451 pairwise = false; 11452 break; 11453 case 0x10: /* FMAXNMP */ 11454 case 0x12: /* FADDP */ 11455 case 0x16: /* FMAXP */ 11456 case 0x18: /* FMINNMP */ 11457 case 0x1e: /* FMINP */ 11458 pairwise = true; 11459 break; 11460 default: 11461 unallocated_encoding(s); 11462 return; 11463 } 11464 11465 if (!dc_isar_feature(aa64_fp16, s)) { 11466 unallocated_encoding(s); 11467 return; 11468 } 11469 11470 if (!fp_access_check(s)) { 11471 return; 11472 } 11473 11474 fpst = fpstatus_ptr(FPST_FPCR_F16); 11475 11476 if (pairwise) { 11477 int maxpass = is_q ? 8 : 4; 11478 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11479 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11480 TCGv_i32 tcg_res[8]; 11481 11482 for (pass = 0; pass < maxpass; pass++) { 11483 int passreg = pass < (maxpass / 2) ? rn : rm; 11484 int passelt = (pass << 1) & (maxpass - 1); 11485 11486 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11487 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11488 tcg_res[pass] = tcg_temp_new_i32(); 11489 11490 switch (fpopcode) { 11491 case 0x10: /* FMAXNMP */ 11492 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11493 fpst); 11494 break; 11495 case 0x12: /* FADDP */ 11496 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11497 break; 11498 case 0x16: /* FMAXP */ 11499 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11500 break; 11501 case 0x18: /* FMINNMP */ 11502 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11503 fpst); 11504 break; 11505 case 0x1e: /* FMINP */ 11506 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11507 break; 11508 default: 11509 g_assert_not_reached(); 11510 } 11511 } 11512 11513 for (pass = 0; pass < maxpass; pass++) { 11514 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11515 } 11516 } else { 11517 for (pass = 0; pass < elements; pass++) { 11518 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11519 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11520 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11521 11522 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11523 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11524 11525 switch (fpopcode) { 11526 case 0x0: /* FMAXNM */ 11527 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11528 break; 11529 case 0x1: /* FMLA */ 11530 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11531 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11532 fpst); 11533 break; 11534 case 0x2: /* FADD */ 11535 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11536 break; 11537 case 0x3: /* FMULX */ 11538 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11539 break; 11540 case 0x4: /* FCMEQ */ 11541 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11542 break; 11543 case 0x6: /* FMAX */ 11544 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11545 break; 11546 case 0x7: /* FRECPS */ 11547 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11548 break; 11549 case 0x8: /* FMINNM */ 11550 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11551 break; 11552 case 0x9: /* FMLS */ 11553 /* As usual for ARM, separate negation for fused multiply-add */ 11554 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11555 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11556 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11557 fpst); 11558 break; 11559 case 0xa: /* FSUB */ 11560 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11561 break; 11562 case 0xe: /* FMIN */ 11563 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11564 break; 11565 case 0xf: /* FRSQRTS */ 11566 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11567 break; 11568 case 0x13: /* FMUL */ 11569 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11570 break; 11571 case 0x14: /* FCMGE */ 11572 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11573 break; 11574 case 0x15: /* FACGE */ 11575 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11576 break; 11577 case 0x17: /* FDIV */ 11578 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11579 break; 11580 case 0x1a: /* FABD */ 11581 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11582 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11583 break; 11584 case 0x1c: /* FCMGT */ 11585 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11586 break; 11587 case 0x1d: /* FACGT */ 11588 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11589 break; 11590 default: 11591 g_assert_not_reached(); 11592 } 11593 11594 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11595 } 11596 } 11597 11598 clear_vec_high(s, is_q, rd); 11599 } 11600 11601 /* AdvSIMD three same extra 11602 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11603 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11604 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11605 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11606 */ 11607 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11608 { 11609 int rd = extract32(insn, 0, 5); 11610 int rn = extract32(insn, 5, 5); 11611 int opcode = extract32(insn, 11, 4); 11612 int rm = extract32(insn, 16, 5); 11613 int size = extract32(insn, 22, 2); 11614 bool u = extract32(insn, 29, 1); 11615 bool is_q = extract32(insn, 30, 1); 11616 bool feature; 11617 int rot; 11618 11619 switch (u * 16 + opcode) { 11620 case 0x10: /* SQRDMLAH (vector) */ 11621 case 0x11: /* SQRDMLSH (vector) */ 11622 if (size != 1 && size != 2) { 11623 unallocated_encoding(s); 11624 return; 11625 } 11626 feature = dc_isar_feature(aa64_rdm, s); 11627 break; 11628 case 0x02: /* SDOT (vector) */ 11629 case 0x12: /* UDOT (vector) */ 11630 if (size != MO_32) { 11631 unallocated_encoding(s); 11632 return; 11633 } 11634 feature = dc_isar_feature(aa64_dp, s); 11635 break; 11636 case 0x03: /* USDOT */ 11637 if (size != MO_32) { 11638 unallocated_encoding(s); 11639 return; 11640 } 11641 feature = dc_isar_feature(aa64_i8mm, s); 11642 break; 11643 case 0x04: /* SMMLA */ 11644 case 0x14: /* UMMLA */ 11645 case 0x05: /* USMMLA */ 11646 if (!is_q || size != MO_32) { 11647 unallocated_encoding(s); 11648 return; 11649 } 11650 feature = dc_isar_feature(aa64_i8mm, s); 11651 break; 11652 case 0x18: /* FCMLA, #0 */ 11653 case 0x19: /* FCMLA, #90 */ 11654 case 0x1a: /* FCMLA, #180 */ 11655 case 0x1b: /* FCMLA, #270 */ 11656 case 0x1c: /* FCADD, #90 */ 11657 case 0x1e: /* FCADD, #270 */ 11658 if (size == 0 11659 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11660 || (size == 3 && !is_q)) { 11661 unallocated_encoding(s); 11662 return; 11663 } 11664 feature = dc_isar_feature(aa64_fcma, s); 11665 break; 11666 case 0x1d: /* BFMMLA */ 11667 if (size != MO_16 || !is_q) { 11668 unallocated_encoding(s); 11669 return; 11670 } 11671 feature = dc_isar_feature(aa64_bf16, s); 11672 break; 11673 case 0x1f: 11674 switch (size) { 11675 case 1: /* BFDOT */ 11676 case 3: /* BFMLAL{B,T} */ 11677 feature = dc_isar_feature(aa64_bf16, s); 11678 break; 11679 default: 11680 unallocated_encoding(s); 11681 return; 11682 } 11683 break; 11684 default: 11685 unallocated_encoding(s); 11686 return; 11687 } 11688 if (!feature) { 11689 unallocated_encoding(s); 11690 return; 11691 } 11692 if (!fp_access_check(s)) { 11693 return; 11694 } 11695 11696 switch (opcode) { 11697 case 0x0: /* SQRDMLAH (vector) */ 11698 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11699 return; 11700 11701 case 0x1: /* SQRDMLSH (vector) */ 11702 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11703 return; 11704 11705 case 0x2: /* SDOT / UDOT */ 11706 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11707 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11708 return; 11709 11710 case 0x3: /* USDOT */ 11711 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11712 return; 11713 11714 case 0x04: /* SMMLA, UMMLA */ 11715 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11716 u ? gen_helper_gvec_ummla_b 11717 : gen_helper_gvec_smmla_b); 11718 return; 11719 case 0x05: /* USMMLA */ 11720 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11721 return; 11722 11723 case 0x8: /* FCMLA, #0 */ 11724 case 0x9: /* FCMLA, #90 */ 11725 case 0xa: /* FCMLA, #180 */ 11726 case 0xb: /* FCMLA, #270 */ 11727 rot = extract32(opcode, 0, 2); 11728 switch (size) { 11729 case 1: 11730 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11731 gen_helper_gvec_fcmlah); 11732 break; 11733 case 2: 11734 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11735 gen_helper_gvec_fcmlas); 11736 break; 11737 case 3: 11738 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11739 gen_helper_gvec_fcmlad); 11740 break; 11741 default: 11742 g_assert_not_reached(); 11743 } 11744 return; 11745 11746 case 0xc: /* FCADD, #90 */ 11747 case 0xe: /* FCADD, #270 */ 11748 rot = extract32(opcode, 1, 1); 11749 switch (size) { 11750 case 1: 11751 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11752 gen_helper_gvec_fcaddh); 11753 break; 11754 case 2: 11755 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11756 gen_helper_gvec_fcadds); 11757 break; 11758 case 3: 11759 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11760 gen_helper_gvec_fcaddd); 11761 break; 11762 default: 11763 g_assert_not_reached(); 11764 } 11765 return; 11766 11767 case 0xd: /* BFMMLA */ 11768 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11769 return; 11770 case 0xf: 11771 switch (size) { 11772 case 1: /* BFDOT */ 11773 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11774 break; 11775 case 3: /* BFMLAL{B,T} */ 11776 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11777 gen_helper_gvec_bfmlal); 11778 break; 11779 default: 11780 g_assert_not_reached(); 11781 } 11782 return; 11783 11784 default: 11785 g_assert_not_reached(); 11786 } 11787 } 11788 11789 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11790 int size, int rn, int rd) 11791 { 11792 /* Handle 2-reg-misc ops which are widening (so each size element 11793 * in the source becomes a 2*size element in the destination. 11794 * The only instruction like this is FCVTL. 11795 */ 11796 int pass; 11797 11798 if (size == 3) { 11799 /* 32 -> 64 bit fp conversion */ 11800 TCGv_i64 tcg_res[2]; 11801 int srcelt = is_q ? 2 : 0; 11802 11803 for (pass = 0; pass < 2; pass++) { 11804 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11805 tcg_res[pass] = tcg_temp_new_i64(); 11806 11807 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11808 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11809 } 11810 for (pass = 0; pass < 2; pass++) { 11811 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11812 } 11813 } else { 11814 /* 16 -> 32 bit fp conversion */ 11815 int srcelt = is_q ? 4 : 0; 11816 TCGv_i32 tcg_res[4]; 11817 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11818 TCGv_i32 ahp = get_ahp_flag(); 11819 11820 for (pass = 0; pass < 4; pass++) { 11821 tcg_res[pass] = tcg_temp_new_i32(); 11822 11823 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11824 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11825 fpst, ahp); 11826 } 11827 for (pass = 0; pass < 4; pass++) { 11828 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11829 } 11830 } 11831 } 11832 11833 static void handle_rev(DisasContext *s, int opcode, bool u, 11834 bool is_q, int size, int rn, int rd) 11835 { 11836 int op = (opcode << 1) | u; 11837 int opsz = op + size; 11838 int grp_size = 3 - opsz; 11839 int dsize = is_q ? 128 : 64; 11840 int i; 11841 11842 if (opsz >= 3) { 11843 unallocated_encoding(s); 11844 return; 11845 } 11846 11847 if (!fp_access_check(s)) { 11848 return; 11849 } 11850 11851 if (size == 0) { 11852 /* Special case bytes, use bswap op on each group of elements */ 11853 int groups = dsize / (8 << grp_size); 11854 11855 for (i = 0; i < groups; i++) { 11856 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11857 11858 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11859 switch (grp_size) { 11860 case MO_16: 11861 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11862 break; 11863 case MO_32: 11864 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11865 break; 11866 case MO_64: 11867 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11868 break; 11869 default: 11870 g_assert_not_reached(); 11871 } 11872 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11873 } 11874 clear_vec_high(s, is_q, rd); 11875 } else { 11876 int revmask = (1 << grp_size) - 1; 11877 int esize = 8 << size; 11878 int elements = dsize / esize; 11879 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11880 TCGv_i64 tcg_rd[2]; 11881 11882 for (i = 0; i < 2; i++) { 11883 tcg_rd[i] = tcg_temp_new_i64(); 11884 tcg_gen_movi_i64(tcg_rd[i], 0); 11885 } 11886 11887 for (i = 0; i < elements; i++) { 11888 int e_rev = (i & 0xf) ^ revmask; 11889 int w = (e_rev * esize) / 64; 11890 int o = (e_rev * esize) % 64; 11891 11892 read_vec_element(s, tcg_rn, rn, i, size); 11893 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11894 } 11895 11896 for (i = 0; i < 2; i++) { 11897 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11898 } 11899 clear_vec_high(s, true, rd); 11900 } 11901 } 11902 11903 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11904 bool is_q, int size, int rn, int rd) 11905 { 11906 /* Implement the pairwise operations from 2-misc: 11907 * SADDLP, UADDLP, SADALP, UADALP. 11908 * These all add pairs of elements in the input to produce a 11909 * double-width result element in the output (possibly accumulating). 11910 */ 11911 bool accum = (opcode == 0x6); 11912 int maxpass = is_q ? 2 : 1; 11913 int pass; 11914 TCGv_i64 tcg_res[2]; 11915 11916 if (size == 2) { 11917 /* 32 + 32 -> 64 op */ 11918 MemOp memop = size + (u ? 0 : MO_SIGN); 11919 11920 for (pass = 0; pass < maxpass; pass++) { 11921 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11922 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11923 11924 tcg_res[pass] = tcg_temp_new_i64(); 11925 11926 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11927 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11928 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11929 if (accum) { 11930 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11931 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11932 } 11933 } 11934 } else { 11935 for (pass = 0; pass < maxpass; pass++) { 11936 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11937 NeonGenOne64OpFn *genfn; 11938 static NeonGenOne64OpFn * const fns[2][2] = { 11939 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11940 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11941 }; 11942 11943 genfn = fns[size][u]; 11944 11945 tcg_res[pass] = tcg_temp_new_i64(); 11946 11947 read_vec_element(s, tcg_op, rn, pass, MO_64); 11948 genfn(tcg_res[pass], tcg_op); 11949 11950 if (accum) { 11951 read_vec_element(s, tcg_op, rd, pass, MO_64); 11952 if (size == 0) { 11953 gen_helper_neon_addl_u16(tcg_res[pass], 11954 tcg_res[pass], tcg_op); 11955 } else { 11956 gen_helper_neon_addl_u32(tcg_res[pass], 11957 tcg_res[pass], tcg_op); 11958 } 11959 } 11960 } 11961 } 11962 if (!is_q) { 11963 tcg_res[1] = tcg_constant_i64(0); 11964 } 11965 for (pass = 0; pass < 2; pass++) { 11966 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11967 } 11968 } 11969 11970 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11971 { 11972 /* Implement SHLL and SHLL2 */ 11973 int pass; 11974 int part = is_q ? 2 : 0; 11975 TCGv_i64 tcg_res[2]; 11976 11977 for (pass = 0; pass < 2; pass++) { 11978 static NeonGenWidenFn * const widenfns[3] = { 11979 gen_helper_neon_widen_u8, 11980 gen_helper_neon_widen_u16, 11981 tcg_gen_extu_i32_i64, 11982 }; 11983 NeonGenWidenFn *widenfn = widenfns[size]; 11984 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11985 11986 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11987 tcg_res[pass] = tcg_temp_new_i64(); 11988 widenfn(tcg_res[pass], tcg_op); 11989 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11990 } 11991 11992 for (pass = 0; pass < 2; pass++) { 11993 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11994 } 11995 } 11996 11997 /* AdvSIMD two reg misc 11998 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11999 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12000 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12001 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12002 */ 12003 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12004 { 12005 int size = extract32(insn, 22, 2); 12006 int opcode = extract32(insn, 12, 5); 12007 bool u = extract32(insn, 29, 1); 12008 bool is_q = extract32(insn, 30, 1); 12009 int rn = extract32(insn, 5, 5); 12010 int rd = extract32(insn, 0, 5); 12011 bool need_fpstatus = false; 12012 int rmode = -1; 12013 TCGv_i32 tcg_rmode; 12014 TCGv_ptr tcg_fpstatus; 12015 12016 switch (opcode) { 12017 case 0x0: /* REV64, REV32 */ 12018 case 0x1: /* REV16 */ 12019 handle_rev(s, opcode, u, is_q, size, rn, rd); 12020 return; 12021 case 0x5: /* CNT, NOT, RBIT */ 12022 if (u && size == 0) { 12023 /* NOT */ 12024 break; 12025 } else if (u && size == 1) { 12026 /* RBIT */ 12027 break; 12028 } else if (!u && size == 0) { 12029 /* CNT */ 12030 break; 12031 } 12032 unallocated_encoding(s); 12033 return; 12034 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12035 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12036 if (size == 3) { 12037 unallocated_encoding(s); 12038 return; 12039 } 12040 if (!fp_access_check(s)) { 12041 return; 12042 } 12043 12044 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12045 return; 12046 case 0x4: /* CLS, CLZ */ 12047 if (size == 3) { 12048 unallocated_encoding(s); 12049 return; 12050 } 12051 break; 12052 case 0x2: /* SADDLP, UADDLP */ 12053 case 0x6: /* SADALP, UADALP */ 12054 if (size == 3) { 12055 unallocated_encoding(s); 12056 return; 12057 } 12058 if (!fp_access_check(s)) { 12059 return; 12060 } 12061 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12062 return; 12063 case 0x13: /* SHLL, SHLL2 */ 12064 if (u == 0 || size == 3) { 12065 unallocated_encoding(s); 12066 return; 12067 } 12068 if (!fp_access_check(s)) { 12069 return; 12070 } 12071 handle_shll(s, is_q, size, rn, rd); 12072 return; 12073 case 0xa: /* CMLT */ 12074 if (u == 1) { 12075 unallocated_encoding(s); 12076 return; 12077 } 12078 /* fall through */ 12079 case 0x8: /* CMGT, CMGE */ 12080 case 0x9: /* CMEQ, CMLE */ 12081 case 0xb: /* ABS, NEG */ 12082 if (size == 3 && !is_q) { 12083 unallocated_encoding(s); 12084 return; 12085 } 12086 break; 12087 case 0x3: /* SUQADD, USQADD */ 12088 if (size == 3 && !is_q) { 12089 unallocated_encoding(s); 12090 return; 12091 } 12092 if (!fp_access_check(s)) { 12093 return; 12094 } 12095 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12096 return; 12097 case 0x7: /* SQABS, SQNEG */ 12098 if (size == 3 && !is_q) { 12099 unallocated_encoding(s); 12100 return; 12101 } 12102 break; 12103 case 0xc ... 0xf: 12104 case 0x16 ... 0x1f: 12105 { 12106 /* Floating point: U, size[1] and opcode indicate operation; 12107 * size[0] indicates single or double precision. 12108 */ 12109 int is_double = extract32(size, 0, 1); 12110 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12111 size = is_double ? 3 : 2; 12112 switch (opcode) { 12113 case 0x2f: /* FABS */ 12114 case 0x6f: /* FNEG */ 12115 if (size == 3 && !is_q) { 12116 unallocated_encoding(s); 12117 return; 12118 } 12119 break; 12120 case 0x1d: /* SCVTF */ 12121 case 0x5d: /* UCVTF */ 12122 { 12123 bool is_signed = (opcode == 0x1d) ? true : false; 12124 int elements = is_double ? 2 : is_q ? 4 : 2; 12125 if (is_double && !is_q) { 12126 unallocated_encoding(s); 12127 return; 12128 } 12129 if (!fp_access_check(s)) { 12130 return; 12131 } 12132 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12133 return; 12134 } 12135 case 0x2c: /* FCMGT (zero) */ 12136 case 0x2d: /* FCMEQ (zero) */ 12137 case 0x2e: /* FCMLT (zero) */ 12138 case 0x6c: /* FCMGE (zero) */ 12139 case 0x6d: /* FCMLE (zero) */ 12140 if (size == 3 && !is_q) { 12141 unallocated_encoding(s); 12142 return; 12143 } 12144 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12145 return; 12146 case 0x7f: /* FSQRT */ 12147 if (size == 3 && !is_q) { 12148 unallocated_encoding(s); 12149 return; 12150 } 12151 break; 12152 case 0x1a: /* FCVTNS */ 12153 case 0x1b: /* FCVTMS */ 12154 case 0x3a: /* FCVTPS */ 12155 case 0x3b: /* FCVTZS */ 12156 case 0x5a: /* FCVTNU */ 12157 case 0x5b: /* FCVTMU */ 12158 case 0x7a: /* FCVTPU */ 12159 case 0x7b: /* FCVTZU */ 12160 need_fpstatus = true; 12161 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12162 if (size == 3 && !is_q) { 12163 unallocated_encoding(s); 12164 return; 12165 } 12166 break; 12167 case 0x5c: /* FCVTAU */ 12168 case 0x1c: /* FCVTAS */ 12169 need_fpstatus = true; 12170 rmode = FPROUNDING_TIEAWAY; 12171 if (size == 3 && !is_q) { 12172 unallocated_encoding(s); 12173 return; 12174 } 12175 break; 12176 case 0x3c: /* URECPE */ 12177 if (size == 3) { 12178 unallocated_encoding(s); 12179 return; 12180 } 12181 /* fall through */ 12182 case 0x3d: /* FRECPE */ 12183 case 0x7d: /* FRSQRTE */ 12184 if (size == 3 && !is_q) { 12185 unallocated_encoding(s); 12186 return; 12187 } 12188 if (!fp_access_check(s)) { 12189 return; 12190 } 12191 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12192 return; 12193 case 0x56: /* FCVTXN, FCVTXN2 */ 12194 if (size == 2) { 12195 unallocated_encoding(s); 12196 return; 12197 } 12198 /* fall through */ 12199 case 0x16: /* FCVTN, FCVTN2 */ 12200 /* handle_2misc_narrow does a 2*size -> size operation, but these 12201 * instructions encode the source size rather than dest size. 12202 */ 12203 if (!fp_access_check(s)) { 12204 return; 12205 } 12206 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12207 return; 12208 case 0x36: /* BFCVTN, BFCVTN2 */ 12209 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12210 unallocated_encoding(s); 12211 return; 12212 } 12213 if (!fp_access_check(s)) { 12214 return; 12215 } 12216 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12217 return; 12218 case 0x17: /* FCVTL, FCVTL2 */ 12219 if (!fp_access_check(s)) { 12220 return; 12221 } 12222 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12223 return; 12224 case 0x18: /* FRINTN */ 12225 case 0x19: /* FRINTM */ 12226 case 0x38: /* FRINTP */ 12227 case 0x39: /* FRINTZ */ 12228 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12229 /* fall through */ 12230 case 0x59: /* FRINTX */ 12231 case 0x79: /* FRINTI */ 12232 need_fpstatus = true; 12233 if (size == 3 && !is_q) { 12234 unallocated_encoding(s); 12235 return; 12236 } 12237 break; 12238 case 0x58: /* FRINTA */ 12239 rmode = FPROUNDING_TIEAWAY; 12240 need_fpstatus = true; 12241 if (size == 3 && !is_q) { 12242 unallocated_encoding(s); 12243 return; 12244 } 12245 break; 12246 case 0x7c: /* URSQRTE */ 12247 if (size == 3) { 12248 unallocated_encoding(s); 12249 return; 12250 } 12251 break; 12252 case 0x1e: /* FRINT32Z */ 12253 case 0x1f: /* FRINT64Z */ 12254 rmode = FPROUNDING_ZERO; 12255 /* fall through */ 12256 case 0x5e: /* FRINT32X */ 12257 case 0x5f: /* FRINT64X */ 12258 need_fpstatus = true; 12259 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12260 unallocated_encoding(s); 12261 return; 12262 } 12263 break; 12264 default: 12265 unallocated_encoding(s); 12266 return; 12267 } 12268 break; 12269 } 12270 default: 12271 unallocated_encoding(s); 12272 return; 12273 } 12274 12275 if (!fp_access_check(s)) { 12276 return; 12277 } 12278 12279 if (need_fpstatus || rmode >= 0) { 12280 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12281 } else { 12282 tcg_fpstatus = NULL; 12283 } 12284 if (rmode >= 0) { 12285 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12286 } else { 12287 tcg_rmode = NULL; 12288 } 12289 12290 switch (opcode) { 12291 case 0x5: 12292 if (u && size == 0) { /* NOT */ 12293 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12294 return; 12295 } 12296 break; 12297 case 0x8: /* CMGT, CMGE */ 12298 if (u) { 12299 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12300 } else { 12301 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12302 } 12303 return; 12304 case 0x9: /* CMEQ, CMLE */ 12305 if (u) { 12306 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12307 } else { 12308 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12309 } 12310 return; 12311 case 0xa: /* CMLT */ 12312 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12313 return; 12314 case 0xb: 12315 if (u) { /* ABS, NEG */ 12316 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12317 } else { 12318 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12319 } 12320 return; 12321 } 12322 12323 if (size == 3) { 12324 /* All 64-bit element operations can be shared with scalar 2misc */ 12325 int pass; 12326 12327 /* Coverity claims (size == 3 && !is_q) has been eliminated 12328 * from all paths leading to here. 12329 */ 12330 tcg_debug_assert(is_q); 12331 for (pass = 0; pass < 2; pass++) { 12332 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12333 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12334 12335 read_vec_element(s, tcg_op, rn, pass, MO_64); 12336 12337 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12338 tcg_rmode, tcg_fpstatus); 12339 12340 write_vec_element(s, tcg_res, rd, pass, MO_64); 12341 } 12342 } else { 12343 int pass; 12344 12345 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12346 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12347 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12348 12349 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12350 12351 if (size == 2) { 12352 /* Special cases for 32 bit elements */ 12353 switch (opcode) { 12354 case 0x4: /* CLS */ 12355 if (u) { 12356 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12357 } else { 12358 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12359 } 12360 break; 12361 case 0x7: /* SQABS, SQNEG */ 12362 if (u) { 12363 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12364 } else { 12365 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12366 } 12367 break; 12368 case 0x2f: /* FABS */ 12369 gen_helper_vfp_abss(tcg_res, tcg_op); 12370 break; 12371 case 0x6f: /* FNEG */ 12372 gen_helper_vfp_negs(tcg_res, tcg_op); 12373 break; 12374 case 0x7f: /* FSQRT */ 12375 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12376 break; 12377 case 0x1a: /* FCVTNS */ 12378 case 0x1b: /* FCVTMS */ 12379 case 0x1c: /* FCVTAS */ 12380 case 0x3a: /* FCVTPS */ 12381 case 0x3b: /* FCVTZS */ 12382 gen_helper_vfp_tosls(tcg_res, tcg_op, 12383 tcg_constant_i32(0), tcg_fpstatus); 12384 break; 12385 case 0x5a: /* FCVTNU */ 12386 case 0x5b: /* FCVTMU */ 12387 case 0x5c: /* FCVTAU */ 12388 case 0x7a: /* FCVTPU */ 12389 case 0x7b: /* FCVTZU */ 12390 gen_helper_vfp_touls(tcg_res, tcg_op, 12391 tcg_constant_i32(0), tcg_fpstatus); 12392 break; 12393 case 0x18: /* FRINTN */ 12394 case 0x19: /* FRINTM */ 12395 case 0x38: /* FRINTP */ 12396 case 0x39: /* FRINTZ */ 12397 case 0x58: /* FRINTA */ 12398 case 0x79: /* FRINTI */ 12399 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12400 break; 12401 case 0x59: /* FRINTX */ 12402 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12403 break; 12404 case 0x7c: /* URSQRTE */ 12405 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12406 break; 12407 case 0x1e: /* FRINT32Z */ 12408 case 0x5e: /* FRINT32X */ 12409 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12410 break; 12411 case 0x1f: /* FRINT64Z */ 12412 case 0x5f: /* FRINT64X */ 12413 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12414 break; 12415 default: 12416 g_assert_not_reached(); 12417 } 12418 } else { 12419 /* Use helpers for 8 and 16 bit elements */ 12420 switch (opcode) { 12421 case 0x5: /* CNT, RBIT */ 12422 /* For these two insns size is part of the opcode specifier 12423 * (handled earlier); they always operate on byte elements. 12424 */ 12425 if (u) { 12426 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12427 } else { 12428 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12429 } 12430 break; 12431 case 0x7: /* SQABS, SQNEG */ 12432 { 12433 NeonGenOneOpEnvFn *genfn; 12434 static NeonGenOneOpEnvFn * const fns[2][2] = { 12435 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12436 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12437 }; 12438 genfn = fns[size][u]; 12439 genfn(tcg_res, cpu_env, tcg_op); 12440 break; 12441 } 12442 case 0x4: /* CLS, CLZ */ 12443 if (u) { 12444 if (size == 0) { 12445 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12446 } else { 12447 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12448 } 12449 } else { 12450 if (size == 0) { 12451 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12452 } else { 12453 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12454 } 12455 } 12456 break; 12457 default: 12458 g_assert_not_reached(); 12459 } 12460 } 12461 12462 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12463 } 12464 } 12465 clear_vec_high(s, is_q, rd); 12466 12467 if (tcg_rmode) { 12468 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12469 } 12470 } 12471 12472 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12473 * 12474 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12475 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12476 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12477 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12478 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12479 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12480 * 12481 * This actually covers two groups where scalar access is governed by 12482 * bit 28. A bunch of the instructions (float to integral) only exist 12483 * in the vector form and are un-allocated for the scalar decode. Also 12484 * in the scalar decode Q is always 1. 12485 */ 12486 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12487 { 12488 int fpop, opcode, a, u; 12489 int rn, rd; 12490 bool is_q; 12491 bool is_scalar; 12492 bool only_in_vector = false; 12493 12494 int pass; 12495 TCGv_i32 tcg_rmode = NULL; 12496 TCGv_ptr tcg_fpstatus = NULL; 12497 bool need_fpst = true; 12498 int rmode = -1; 12499 12500 if (!dc_isar_feature(aa64_fp16, s)) { 12501 unallocated_encoding(s); 12502 return; 12503 } 12504 12505 rd = extract32(insn, 0, 5); 12506 rn = extract32(insn, 5, 5); 12507 12508 a = extract32(insn, 23, 1); 12509 u = extract32(insn, 29, 1); 12510 is_scalar = extract32(insn, 28, 1); 12511 is_q = extract32(insn, 30, 1); 12512 12513 opcode = extract32(insn, 12, 5); 12514 fpop = deposit32(opcode, 5, 1, a); 12515 fpop = deposit32(fpop, 6, 1, u); 12516 12517 switch (fpop) { 12518 case 0x1d: /* SCVTF */ 12519 case 0x5d: /* UCVTF */ 12520 { 12521 int elements; 12522 12523 if (is_scalar) { 12524 elements = 1; 12525 } else { 12526 elements = (is_q ? 8 : 4); 12527 } 12528 12529 if (!fp_access_check(s)) { 12530 return; 12531 } 12532 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12533 return; 12534 } 12535 break; 12536 case 0x2c: /* FCMGT (zero) */ 12537 case 0x2d: /* FCMEQ (zero) */ 12538 case 0x2e: /* FCMLT (zero) */ 12539 case 0x6c: /* FCMGE (zero) */ 12540 case 0x6d: /* FCMLE (zero) */ 12541 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12542 return; 12543 case 0x3d: /* FRECPE */ 12544 case 0x3f: /* FRECPX */ 12545 break; 12546 case 0x18: /* FRINTN */ 12547 only_in_vector = true; 12548 rmode = FPROUNDING_TIEEVEN; 12549 break; 12550 case 0x19: /* FRINTM */ 12551 only_in_vector = true; 12552 rmode = FPROUNDING_NEGINF; 12553 break; 12554 case 0x38: /* FRINTP */ 12555 only_in_vector = true; 12556 rmode = FPROUNDING_POSINF; 12557 break; 12558 case 0x39: /* FRINTZ */ 12559 only_in_vector = true; 12560 rmode = FPROUNDING_ZERO; 12561 break; 12562 case 0x58: /* FRINTA */ 12563 only_in_vector = true; 12564 rmode = FPROUNDING_TIEAWAY; 12565 break; 12566 case 0x59: /* FRINTX */ 12567 case 0x79: /* FRINTI */ 12568 only_in_vector = true; 12569 /* current rounding mode */ 12570 break; 12571 case 0x1a: /* FCVTNS */ 12572 rmode = FPROUNDING_TIEEVEN; 12573 break; 12574 case 0x1b: /* FCVTMS */ 12575 rmode = FPROUNDING_NEGINF; 12576 break; 12577 case 0x1c: /* FCVTAS */ 12578 rmode = FPROUNDING_TIEAWAY; 12579 break; 12580 case 0x3a: /* FCVTPS */ 12581 rmode = FPROUNDING_POSINF; 12582 break; 12583 case 0x3b: /* FCVTZS */ 12584 rmode = FPROUNDING_ZERO; 12585 break; 12586 case 0x5a: /* FCVTNU */ 12587 rmode = FPROUNDING_TIEEVEN; 12588 break; 12589 case 0x5b: /* FCVTMU */ 12590 rmode = FPROUNDING_NEGINF; 12591 break; 12592 case 0x5c: /* FCVTAU */ 12593 rmode = FPROUNDING_TIEAWAY; 12594 break; 12595 case 0x7a: /* FCVTPU */ 12596 rmode = FPROUNDING_POSINF; 12597 break; 12598 case 0x7b: /* FCVTZU */ 12599 rmode = FPROUNDING_ZERO; 12600 break; 12601 case 0x2f: /* FABS */ 12602 case 0x6f: /* FNEG */ 12603 need_fpst = false; 12604 break; 12605 case 0x7d: /* FRSQRTE */ 12606 case 0x7f: /* FSQRT (vector) */ 12607 break; 12608 default: 12609 unallocated_encoding(s); 12610 return; 12611 } 12612 12613 12614 /* Check additional constraints for the scalar encoding */ 12615 if (is_scalar) { 12616 if (!is_q) { 12617 unallocated_encoding(s); 12618 return; 12619 } 12620 /* FRINTxx is only in the vector form */ 12621 if (only_in_vector) { 12622 unallocated_encoding(s); 12623 return; 12624 } 12625 } 12626 12627 if (!fp_access_check(s)) { 12628 return; 12629 } 12630 12631 if (rmode >= 0 || need_fpst) { 12632 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12633 } 12634 12635 if (rmode >= 0) { 12636 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12637 } 12638 12639 if (is_scalar) { 12640 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12641 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12642 12643 switch (fpop) { 12644 case 0x1a: /* FCVTNS */ 12645 case 0x1b: /* FCVTMS */ 12646 case 0x1c: /* FCVTAS */ 12647 case 0x3a: /* FCVTPS */ 12648 case 0x3b: /* FCVTZS */ 12649 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12650 break; 12651 case 0x3d: /* FRECPE */ 12652 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12653 break; 12654 case 0x3f: /* FRECPX */ 12655 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12656 break; 12657 case 0x5a: /* FCVTNU */ 12658 case 0x5b: /* FCVTMU */ 12659 case 0x5c: /* FCVTAU */ 12660 case 0x7a: /* FCVTPU */ 12661 case 0x7b: /* FCVTZU */ 12662 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12663 break; 12664 case 0x6f: /* FNEG */ 12665 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12666 break; 12667 case 0x7d: /* FRSQRTE */ 12668 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12669 break; 12670 default: 12671 g_assert_not_reached(); 12672 } 12673 12674 /* limit any sign extension going on */ 12675 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12676 write_fp_sreg(s, rd, tcg_res); 12677 } else { 12678 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12679 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12680 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12681 12682 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12683 12684 switch (fpop) { 12685 case 0x1a: /* FCVTNS */ 12686 case 0x1b: /* FCVTMS */ 12687 case 0x1c: /* FCVTAS */ 12688 case 0x3a: /* FCVTPS */ 12689 case 0x3b: /* FCVTZS */ 12690 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12691 break; 12692 case 0x3d: /* FRECPE */ 12693 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12694 break; 12695 case 0x5a: /* FCVTNU */ 12696 case 0x5b: /* FCVTMU */ 12697 case 0x5c: /* FCVTAU */ 12698 case 0x7a: /* FCVTPU */ 12699 case 0x7b: /* FCVTZU */ 12700 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12701 break; 12702 case 0x18: /* FRINTN */ 12703 case 0x19: /* FRINTM */ 12704 case 0x38: /* FRINTP */ 12705 case 0x39: /* FRINTZ */ 12706 case 0x58: /* FRINTA */ 12707 case 0x79: /* FRINTI */ 12708 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12709 break; 12710 case 0x59: /* FRINTX */ 12711 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12712 break; 12713 case 0x2f: /* FABS */ 12714 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12715 break; 12716 case 0x6f: /* FNEG */ 12717 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12718 break; 12719 case 0x7d: /* FRSQRTE */ 12720 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12721 break; 12722 case 0x7f: /* FSQRT */ 12723 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12724 break; 12725 default: 12726 g_assert_not_reached(); 12727 } 12728 12729 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12730 } 12731 12732 clear_vec_high(s, is_q, rd); 12733 } 12734 12735 if (tcg_rmode) { 12736 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12737 } 12738 } 12739 12740 /* AdvSIMD scalar x indexed element 12741 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12742 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12743 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12744 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12745 * AdvSIMD vector x indexed element 12746 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12747 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12748 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12749 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12750 */ 12751 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12752 { 12753 /* This encoding has two kinds of instruction: 12754 * normal, where we perform elt x idxelt => elt for each 12755 * element in the vector 12756 * long, where we perform elt x idxelt and generate a result of 12757 * double the width of the input element 12758 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12759 */ 12760 bool is_scalar = extract32(insn, 28, 1); 12761 bool is_q = extract32(insn, 30, 1); 12762 bool u = extract32(insn, 29, 1); 12763 int size = extract32(insn, 22, 2); 12764 int l = extract32(insn, 21, 1); 12765 int m = extract32(insn, 20, 1); 12766 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12767 int rm = extract32(insn, 16, 4); 12768 int opcode = extract32(insn, 12, 4); 12769 int h = extract32(insn, 11, 1); 12770 int rn = extract32(insn, 5, 5); 12771 int rd = extract32(insn, 0, 5); 12772 bool is_long = false; 12773 int is_fp = 0; 12774 bool is_fp16 = false; 12775 int index; 12776 TCGv_ptr fpst; 12777 12778 switch (16 * u + opcode) { 12779 case 0x08: /* MUL */ 12780 case 0x10: /* MLA */ 12781 case 0x14: /* MLS */ 12782 if (is_scalar) { 12783 unallocated_encoding(s); 12784 return; 12785 } 12786 break; 12787 case 0x02: /* SMLAL, SMLAL2 */ 12788 case 0x12: /* UMLAL, UMLAL2 */ 12789 case 0x06: /* SMLSL, SMLSL2 */ 12790 case 0x16: /* UMLSL, UMLSL2 */ 12791 case 0x0a: /* SMULL, SMULL2 */ 12792 case 0x1a: /* UMULL, UMULL2 */ 12793 if (is_scalar) { 12794 unallocated_encoding(s); 12795 return; 12796 } 12797 is_long = true; 12798 break; 12799 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12800 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12801 case 0x0b: /* SQDMULL, SQDMULL2 */ 12802 is_long = true; 12803 break; 12804 case 0x0c: /* SQDMULH */ 12805 case 0x0d: /* SQRDMULH */ 12806 break; 12807 case 0x01: /* FMLA */ 12808 case 0x05: /* FMLS */ 12809 case 0x09: /* FMUL */ 12810 case 0x19: /* FMULX */ 12811 is_fp = 1; 12812 break; 12813 case 0x1d: /* SQRDMLAH */ 12814 case 0x1f: /* SQRDMLSH */ 12815 if (!dc_isar_feature(aa64_rdm, s)) { 12816 unallocated_encoding(s); 12817 return; 12818 } 12819 break; 12820 case 0x0e: /* SDOT */ 12821 case 0x1e: /* UDOT */ 12822 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12823 unallocated_encoding(s); 12824 return; 12825 } 12826 break; 12827 case 0x0f: 12828 switch (size) { 12829 case 0: /* SUDOT */ 12830 case 2: /* USDOT */ 12831 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12832 unallocated_encoding(s); 12833 return; 12834 } 12835 size = MO_32; 12836 break; 12837 case 1: /* BFDOT */ 12838 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12839 unallocated_encoding(s); 12840 return; 12841 } 12842 size = MO_32; 12843 break; 12844 case 3: /* BFMLAL{B,T} */ 12845 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12846 unallocated_encoding(s); 12847 return; 12848 } 12849 /* can't set is_fp without other incorrect size checks */ 12850 size = MO_16; 12851 break; 12852 default: 12853 unallocated_encoding(s); 12854 return; 12855 } 12856 break; 12857 case 0x11: /* FCMLA #0 */ 12858 case 0x13: /* FCMLA #90 */ 12859 case 0x15: /* FCMLA #180 */ 12860 case 0x17: /* FCMLA #270 */ 12861 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12862 unallocated_encoding(s); 12863 return; 12864 } 12865 is_fp = 2; 12866 break; 12867 case 0x00: /* FMLAL */ 12868 case 0x04: /* FMLSL */ 12869 case 0x18: /* FMLAL2 */ 12870 case 0x1c: /* FMLSL2 */ 12871 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12872 unallocated_encoding(s); 12873 return; 12874 } 12875 size = MO_16; 12876 /* is_fp, but we pass cpu_env not fp_status. */ 12877 break; 12878 default: 12879 unallocated_encoding(s); 12880 return; 12881 } 12882 12883 switch (is_fp) { 12884 case 1: /* normal fp */ 12885 /* convert insn encoded size to MemOp size */ 12886 switch (size) { 12887 case 0: /* half-precision */ 12888 size = MO_16; 12889 is_fp16 = true; 12890 break; 12891 case MO_32: /* single precision */ 12892 case MO_64: /* double precision */ 12893 break; 12894 default: 12895 unallocated_encoding(s); 12896 return; 12897 } 12898 break; 12899 12900 case 2: /* complex fp */ 12901 /* Each indexable element is a complex pair. */ 12902 size += 1; 12903 switch (size) { 12904 case MO_32: 12905 if (h && !is_q) { 12906 unallocated_encoding(s); 12907 return; 12908 } 12909 is_fp16 = true; 12910 break; 12911 case MO_64: 12912 break; 12913 default: 12914 unallocated_encoding(s); 12915 return; 12916 } 12917 break; 12918 12919 default: /* integer */ 12920 switch (size) { 12921 case MO_8: 12922 case MO_64: 12923 unallocated_encoding(s); 12924 return; 12925 } 12926 break; 12927 } 12928 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12929 unallocated_encoding(s); 12930 return; 12931 } 12932 12933 /* Given MemOp size, adjust register and indexing. */ 12934 switch (size) { 12935 case MO_16: 12936 index = h << 2 | l << 1 | m; 12937 break; 12938 case MO_32: 12939 index = h << 1 | l; 12940 rm |= m << 4; 12941 break; 12942 case MO_64: 12943 if (l || !is_q) { 12944 unallocated_encoding(s); 12945 return; 12946 } 12947 index = h; 12948 rm |= m << 4; 12949 break; 12950 default: 12951 g_assert_not_reached(); 12952 } 12953 12954 if (!fp_access_check(s)) { 12955 return; 12956 } 12957 12958 if (is_fp) { 12959 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12960 } else { 12961 fpst = NULL; 12962 } 12963 12964 switch (16 * u + opcode) { 12965 case 0x0e: /* SDOT */ 12966 case 0x1e: /* UDOT */ 12967 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12968 u ? gen_helper_gvec_udot_idx_b 12969 : gen_helper_gvec_sdot_idx_b); 12970 return; 12971 case 0x0f: 12972 switch (extract32(insn, 22, 2)) { 12973 case 0: /* SUDOT */ 12974 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12975 gen_helper_gvec_sudot_idx_b); 12976 return; 12977 case 1: /* BFDOT */ 12978 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12979 gen_helper_gvec_bfdot_idx); 12980 return; 12981 case 2: /* USDOT */ 12982 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12983 gen_helper_gvec_usdot_idx_b); 12984 return; 12985 case 3: /* BFMLAL{B,T} */ 12986 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12987 gen_helper_gvec_bfmlal_idx); 12988 return; 12989 } 12990 g_assert_not_reached(); 12991 case 0x11: /* FCMLA #0 */ 12992 case 0x13: /* FCMLA #90 */ 12993 case 0x15: /* FCMLA #180 */ 12994 case 0x17: /* FCMLA #270 */ 12995 { 12996 int rot = extract32(insn, 13, 2); 12997 int data = (index << 2) | rot; 12998 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12999 vec_full_reg_offset(s, rn), 13000 vec_full_reg_offset(s, rm), 13001 vec_full_reg_offset(s, rd), fpst, 13002 is_q ? 16 : 8, vec_full_reg_size(s), data, 13003 size == MO_64 13004 ? gen_helper_gvec_fcmlas_idx 13005 : gen_helper_gvec_fcmlah_idx); 13006 } 13007 return; 13008 13009 case 0x00: /* FMLAL */ 13010 case 0x04: /* FMLSL */ 13011 case 0x18: /* FMLAL2 */ 13012 case 0x1c: /* FMLSL2 */ 13013 { 13014 int is_s = extract32(opcode, 2, 1); 13015 int is_2 = u; 13016 int data = (index << 2) | (is_2 << 1) | is_s; 13017 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13018 vec_full_reg_offset(s, rn), 13019 vec_full_reg_offset(s, rm), cpu_env, 13020 is_q ? 16 : 8, vec_full_reg_size(s), 13021 data, gen_helper_gvec_fmlal_idx_a64); 13022 } 13023 return; 13024 13025 case 0x08: /* MUL */ 13026 if (!is_long && !is_scalar) { 13027 static gen_helper_gvec_3 * const fns[3] = { 13028 gen_helper_gvec_mul_idx_h, 13029 gen_helper_gvec_mul_idx_s, 13030 gen_helper_gvec_mul_idx_d, 13031 }; 13032 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13033 vec_full_reg_offset(s, rn), 13034 vec_full_reg_offset(s, rm), 13035 is_q ? 16 : 8, vec_full_reg_size(s), 13036 index, fns[size - 1]); 13037 return; 13038 } 13039 break; 13040 13041 case 0x10: /* MLA */ 13042 if (!is_long && !is_scalar) { 13043 static gen_helper_gvec_4 * const fns[3] = { 13044 gen_helper_gvec_mla_idx_h, 13045 gen_helper_gvec_mla_idx_s, 13046 gen_helper_gvec_mla_idx_d, 13047 }; 13048 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13049 vec_full_reg_offset(s, rn), 13050 vec_full_reg_offset(s, rm), 13051 vec_full_reg_offset(s, rd), 13052 is_q ? 16 : 8, vec_full_reg_size(s), 13053 index, fns[size - 1]); 13054 return; 13055 } 13056 break; 13057 13058 case 0x14: /* MLS */ 13059 if (!is_long && !is_scalar) { 13060 static gen_helper_gvec_4 * const fns[3] = { 13061 gen_helper_gvec_mls_idx_h, 13062 gen_helper_gvec_mls_idx_s, 13063 gen_helper_gvec_mls_idx_d, 13064 }; 13065 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13066 vec_full_reg_offset(s, rn), 13067 vec_full_reg_offset(s, rm), 13068 vec_full_reg_offset(s, rd), 13069 is_q ? 16 : 8, vec_full_reg_size(s), 13070 index, fns[size - 1]); 13071 return; 13072 } 13073 break; 13074 } 13075 13076 if (size == 3) { 13077 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13078 int pass; 13079 13080 assert(is_fp && is_q && !is_long); 13081 13082 read_vec_element(s, tcg_idx, rm, index, MO_64); 13083 13084 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13085 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13086 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13087 13088 read_vec_element(s, tcg_op, rn, pass, MO_64); 13089 13090 switch (16 * u + opcode) { 13091 case 0x05: /* FMLS */ 13092 /* As usual for ARM, separate negation for fused multiply-add */ 13093 gen_helper_vfp_negd(tcg_op, tcg_op); 13094 /* fall through */ 13095 case 0x01: /* FMLA */ 13096 read_vec_element(s, tcg_res, rd, pass, MO_64); 13097 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13098 break; 13099 case 0x09: /* FMUL */ 13100 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13101 break; 13102 case 0x19: /* FMULX */ 13103 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13104 break; 13105 default: 13106 g_assert_not_reached(); 13107 } 13108 13109 write_vec_element(s, tcg_res, rd, pass, MO_64); 13110 } 13111 13112 clear_vec_high(s, !is_scalar, rd); 13113 } else if (!is_long) { 13114 /* 32 bit floating point, or 16 or 32 bit integer. 13115 * For the 16 bit scalar case we use the usual Neon helpers and 13116 * rely on the fact that 0 op 0 == 0 with no side effects. 13117 */ 13118 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13119 int pass, maxpasses; 13120 13121 if (is_scalar) { 13122 maxpasses = 1; 13123 } else { 13124 maxpasses = is_q ? 4 : 2; 13125 } 13126 13127 read_vec_element_i32(s, tcg_idx, rm, index, size); 13128 13129 if (size == 1 && !is_scalar) { 13130 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13131 * the index into both halves of the 32 bit tcg_idx and then use 13132 * the usual Neon helpers. 13133 */ 13134 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13135 } 13136 13137 for (pass = 0; pass < maxpasses; pass++) { 13138 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13139 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13140 13141 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13142 13143 switch (16 * u + opcode) { 13144 case 0x08: /* MUL */ 13145 case 0x10: /* MLA */ 13146 case 0x14: /* MLS */ 13147 { 13148 static NeonGenTwoOpFn * const fns[2][2] = { 13149 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13150 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13151 }; 13152 NeonGenTwoOpFn *genfn; 13153 bool is_sub = opcode == 0x4; 13154 13155 if (size == 1) { 13156 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13157 } else { 13158 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13159 } 13160 if (opcode == 0x8) { 13161 break; 13162 } 13163 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13164 genfn = fns[size - 1][is_sub]; 13165 genfn(tcg_res, tcg_op, tcg_res); 13166 break; 13167 } 13168 case 0x05: /* FMLS */ 13169 case 0x01: /* FMLA */ 13170 read_vec_element_i32(s, tcg_res, rd, pass, 13171 is_scalar ? size : MO_32); 13172 switch (size) { 13173 case 1: 13174 if (opcode == 0x5) { 13175 /* As usual for ARM, separate negation for fused 13176 * multiply-add */ 13177 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13178 } 13179 if (is_scalar) { 13180 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13181 tcg_res, fpst); 13182 } else { 13183 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13184 tcg_res, fpst); 13185 } 13186 break; 13187 case 2: 13188 if (opcode == 0x5) { 13189 /* As usual for ARM, separate negation for 13190 * fused multiply-add */ 13191 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13192 } 13193 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13194 tcg_res, fpst); 13195 break; 13196 default: 13197 g_assert_not_reached(); 13198 } 13199 break; 13200 case 0x09: /* FMUL */ 13201 switch (size) { 13202 case 1: 13203 if (is_scalar) { 13204 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13205 tcg_idx, fpst); 13206 } else { 13207 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13208 tcg_idx, fpst); 13209 } 13210 break; 13211 case 2: 13212 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13213 break; 13214 default: 13215 g_assert_not_reached(); 13216 } 13217 break; 13218 case 0x19: /* FMULX */ 13219 switch (size) { 13220 case 1: 13221 if (is_scalar) { 13222 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13223 tcg_idx, fpst); 13224 } else { 13225 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13226 tcg_idx, fpst); 13227 } 13228 break; 13229 case 2: 13230 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13231 break; 13232 default: 13233 g_assert_not_reached(); 13234 } 13235 break; 13236 case 0x0c: /* SQDMULH */ 13237 if (size == 1) { 13238 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13239 tcg_op, tcg_idx); 13240 } else { 13241 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13242 tcg_op, tcg_idx); 13243 } 13244 break; 13245 case 0x0d: /* SQRDMULH */ 13246 if (size == 1) { 13247 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13248 tcg_op, tcg_idx); 13249 } else { 13250 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13251 tcg_op, tcg_idx); 13252 } 13253 break; 13254 case 0x1d: /* SQRDMLAH */ 13255 read_vec_element_i32(s, tcg_res, rd, pass, 13256 is_scalar ? size : MO_32); 13257 if (size == 1) { 13258 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13259 tcg_op, tcg_idx, tcg_res); 13260 } else { 13261 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13262 tcg_op, tcg_idx, tcg_res); 13263 } 13264 break; 13265 case 0x1f: /* SQRDMLSH */ 13266 read_vec_element_i32(s, tcg_res, rd, pass, 13267 is_scalar ? size : MO_32); 13268 if (size == 1) { 13269 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13270 tcg_op, tcg_idx, tcg_res); 13271 } else { 13272 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13273 tcg_op, tcg_idx, tcg_res); 13274 } 13275 break; 13276 default: 13277 g_assert_not_reached(); 13278 } 13279 13280 if (is_scalar) { 13281 write_fp_sreg(s, rd, tcg_res); 13282 } else { 13283 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13284 } 13285 } 13286 13287 clear_vec_high(s, is_q, rd); 13288 } else { 13289 /* long ops: 16x16->32 or 32x32->64 */ 13290 TCGv_i64 tcg_res[2]; 13291 int pass; 13292 bool satop = extract32(opcode, 0, 1); 13293 MemOp memop = MO_32; 13294 13295 if (satop || !u) { 13296 memop |= MO_SIGN; 13297 } 13298 13299 if (size == 2) { 13300 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13301 13302 read_vec_element(s, tcg_idx, rm, index, memop); 13303 13304 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13305 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13306 TCGv_i64 tcg_passres; 13307 int passelt; 13308 13309 if (is_scalar) { 13310 passelt = 0; 13311 } else { 13312 passelt = pass + (is_q * 2); 13313 } 13314 13315 read_vec_element(s, tcg_op, rn, passelt, memop); 13316 13317 tcg_res[pass] = tcg_temp_new_i64(); 13318 13319 if (opcode == 0xa || opcode == 0xb) { 13320 /* Non-accumulating ops */ 13321 tcg_passres = tcg_res[pass]; 13322 } else { 13323 tcg_passres = tcg_temp_new_i64(); 13324 } 13325 13326 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13327 13328 if (satop) { 13329 /* saturating, doubling */ 13330 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13331 tcg_passres, tcg_passres); 13332 } 13333 13334 if (opcode == 0xa || opcode == 0xb) { 13335 continue; 13336 } 13337 13338 /* Accumulating op: handle accumulate step */ 13339 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13340 13341 switch (opcode) { 13342 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13343 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13344 break; 13345 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13346 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13347 break; 13348 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13349 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13350 /* fall through */ 13351 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13352 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13353 tcg_res[pass], 13354 tcg_passres); 13355 break; 13356 default: 13357 g_assert_not_reached(); 13358 } 13359 } 13360 13361 clear_vec_high(s, !is_scalar, rd); 13362 } else { 13363 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13364 13365 assert(size == 1); 13366 read_vec_element_i32(s, tcg_idx, rm, index, size); 13367 13368 if (!is_scalar) { 13369 /* The simplest way to handle the 16x16 indexed ops is to 13370 * duplicate the index into both halves of the 32 bit tcg_idx 13371 * and then use the usual Neon helpers. 13372 */ 13373 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13374 } 13375 13376 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13377 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13378 TCGv_i64 tcg_passres; 13379 13380 if (is_scalar) { 13381 read_vec_element_i32(s, tcg_op, rn, pass, size); 13382 } else { 13383 read_vec_element_i32(s, tcg_op, rn, 13384 pass + (is_q * 2), MO_32); 13385 } 13386 13387 tcg_res[pass] = tcg_temp_new_i64(); 13388 13389 if (opcode == 0xa || opcode == 0xb) { 13390 /* Non-accumulating ops */ 13391 tcg_passres = tcg_res[pass]; 13392 } else { 13393 tcg_passres = tcg_temp_new_i64(); 13394 } 13395 13396 if (memop & MO_SIGN) { 13397 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13398 } else { 13399 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13400 } 13401 if (satop) { 13402 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13403 tcg_passres, tcg_passres); 13404 } 13405 13406 if (opcode == 0xa || opcode == 0xb) { 13407 continue; 13408 } 13409 13410 /* Accumulating op: handle accumulate step */ 13411 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13412 13413 switch (opcode) { 13414 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13415 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13416 tcg_passres); 13417 break; 13418 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13419 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13420 tcg_passres); 13421 break; 13422 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13423 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13424 /* fall through */ 13425 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13426 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13427 tcg_res[pass], 13428 tcg_passres); 13429 break; 13430 default: 13431 g_assert_not_reached(); 13432 } 13433 } 13434 13435 if (is_scalar) { 13436 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13437 } 13438 } 13439 13440 if (is_scalar) { 13441 tcg_res[1] = tcg_constant_i64(0); 13442 } 13443 13444 for (pass = 0; pass < 2; pass++) { 13445 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13446 } 13447 } 13448 } 13449 13450 /* Crypto AES 13451 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13452 * +-----------------+------+-----------+--------+-----+------+------+ 13453 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13454 * +-----------------+------+-----------+--------+-----+------+------+ 13455 */ 13456 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13457 { 13458 int size = extract32(insn, 22, 2); 13459 int opcode = extract32(insn, 12, 5); 13460 int rn = extract32(insn, 5, 5); 13461 int rd = extract32(insn, 0, 5); 13462 int decrypt; 13463 gen_helper_gvec_2 *genfn2 = NULL; 13464 gen_helper_gvec_3 *genfn3 = NULL; 13465 13466 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13467 unallocated_encoding(s); 13468 return; 13469 } 13470 13471 switch (opcode) { 13472 case 0x4: /* AESE */ 13473 decrypt = 0; 13474 genfn3 = gen_helper_crypto_aese; 13475 break; 13476 case 0x6: /* AESMC */ 13477 decrypt = 0; 13478 genfn2 = gen_helper_crypto_aesmc; 13479 break; 13480 case 0x5: /* AESD */ 13481 decrypt = 1; 13482 genfn3 = gen_helper_crypto_aese; 13483 break; 13484 case 0x7: /* AESIMC */ 13485 decrypt = 1; 13486 genfn2 = gen_helper_crypto_aesmc; 13487 break; 13488 default: 13489 unallocated_encoding(s); 13490 return; 13491 } 13492 13493 if (!fp_access_check(s)) { 13494 return; 13495 } 13496 if (genfn2) { 13497 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13498 } else { 13499 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13500 } 13501 } 13502 13503 /* Crypto three-reg SHA 13504 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13505 * +-----------------+------+---+------+---+--------+-----+------+------+ 13506 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13507 * +-----------------+------+---+------+---+--------+-----+------+------+ 13508 */ 13509 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13510 { 13511 int size = extract32(insn, 22, 2); 13512 int opcode = extract32(insn, 12, 3); 13513 int rm = extract32(insn, 16, 5); 13514 int rn = extract32(insn, 5, 5); 13515 int rd = extract32(insn, 0, 5); 13516 gen_helper_gvec_3 *genfn; 13517 bool feature; 13518 13519 if (size != 0) { 13520 unallocated_encoding(s); 13521 return; 13522 } 13523 13524 switch (opcode) { 13525 case 0: /* SHA1C */ 13526 genfn = gen_helper_crypto_sha1c; 13527 feature = dc_isar_feature(aa64_sha1, s); 13528 break; 13529 case 1: /* SHA1P */ 13530 genfn = gen_helper_crypto_sha1p; 13531 feature = dc_isar_feature(aa64_sha1, s); 13532 break; 13533 case 2: /* SHA1M */ 13534 genfn = gen_helper_crypto_sha1m; 13535 feature = dc_isar_feature(aa64_sha1, s); 13536 break; 13537 case 3: /* SHA1SU0 */ 13538 genfn = gen_helper_crypto_sha1su0; 13539 feature = dc_isar_feature(aa64_sha1, s); 13540 break; 13541 case 4: /* SHA256H */ 13542 genfn = gen_helper_crypto_sha256h; 13543 feature = dc_isar_feature(aa64_sha256, s); 13544 break; 13545 case 5: /* SHA256H2 */ 13546 genfn = gen_helper_crypto_sha256h2; 13547 feature = dc_isar_feature(aa64_sha256, s); 13548 break; 13549 case 6: /* SHA256SU1 */ 13550 genfn = gen_helper_crypto_sha256su1; 13551 feature = dc_isar_feature(aa64_sha256, s); 13552 break; 13553 default: 13554 unallocated_encoding(s); 13555 return; 13556 } 13557 13558 if (!feature) { 13559 unallocated_encoding(s); 13560 return; 13561 } 13562 13563 if (!fp_access_check(s)) { 13564 return; 13565 } 13566 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13567 } 13568 13569 /* Crypto two-reg SHA 13570 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13571 * +-----------------+------+-----------+--------+-----+------+------+ 13572 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13573 * +-----------------+------+-----------+--------+-----+------+------+ 13574 */ 13575 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13576 { 13577 int size = extract32(insn, 22, 2); 13578 int opcode = extract32(insn, 12, 5); 13579 int rn = extract32(insn, 5, 5); 13580 int rd = extract32(insn, 0, 5); 13581 gen_helper_gvec_2 *genfn; 13582 bool feature; 13583 13584 if (size != 0) { 13585 unallocated_encoding(s); 13586 return; 13587 } 13588 13589 switch (opcode) { 13590 case 0: /* SHA1H */ 13591 feature = dc_isar_feature(aa64_sha1, s); 13592 genfn = gen_helper_crypto_sha1h; 13593 break; 13594 case 1: /* SHA1SU1 */ 13595 feature = dc_isar_feature(aa64_sha1, s); 13596 genfn = gen_helper_crypto_sha1su1; 13597 break; 13598 case 2: /* SHA256SU0 */ 13599 feature = dc_isar_feature(aa64_sha256, s); 13600 genfn = gen_helper_crypto_sha256su0; 13601 break; 13602 default: 13603 unallocated_encoding(s); 13604 return; 13605 } 13606 13607 if (!feature) { 13608 unallocated_encoding(s); 13609 return; 13610 } 13611 13612 if (!fp_access_check(s)) { 13613 return; 13614 } 13615 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13616 } 13617 13618 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13619 { 13620 tcg_gen_rotli_i64(d, m, 1); 13621 tcg_gen_xor_i64(d, d, n); 13622 } 13623 13624 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13625 { 13626 tcg_gen_rotli_vec(vece, d, m, 1); 13627 tcg_gen_xor_vec(vece, d, d, n); 13628 } 13629 13630 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13631 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13632 { 13633 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13634 static const GVecGen3 op = { 13635 .fni8 = gen_rax1_i64, 13636 .fniv = gen_rax1_vec, 13637 .opt_opc = vecop_list, 13638 .fno = gen_helper_crypto_rax1, 13639 .vece = MO_64, 13640 }; 13641 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13642 } 13643 13644 /* Crypto three-reg SHA512 13645 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13646 * +-----------------------+------+---+---+-----+--------+------+------+ 13647 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13648 * +-----------------------+------+---+---+-----+--------+------+------+ 13649 */ 13650 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13651 { 13652 int opcode = extract32(insn, 10, 2); 13653 int o = extract32(insn, 14, 1); 13654 int rm = extract32(insn, 16, 5); 13655 int rn = extract32(insn, 5, 5); 13656 int rd = extract32(insn, 0, 5); 13657 bool feature; 13658 gen_helper_gvec_3 *oolfn = NULL; 13659 GVecGen3Fn *gvecfn = NULL; 13660 13661 if (o == 0) { 13662 switch (opcode) { 13663 case 0: /* SHA512H */ 13664 feature = dc_isar_feature(aa64_sha512, s); 13665 oolfn = gen_helper_crypto_sha512h; 13666 break; 13667 case 1: /* SHA512H2 */ 13668 feature = dc_isar_feature(aa64_sha512, s); 13669 oolfn = gen_helper_crypto_sha512h2; 13670 break; 13671 case 2: /* SHA512SU1 */ 13672 feature = dc_isar_feature(aa64_sha512, s); 13673 oolfn = gen_helper_crypto_sha512su1; 13674 break; 13675 case 3: /* RAX1 */ 13676 feature = dc_isar_feature(aa64_sha3, s); 13677 gvecfn = gen_gvec_rax1; 13678 break; 13679 default: 13680 g_assert_not_reached(); 13681 } 13682 } else { 13683 switch (opcode) { 13684 case 0: /* SM3PARTW1 */ 13685 feature = dc_isar_feature(aa64_sm3, s); 13686 oolfn = gen_helper_crypto_sm3partw1; 13687 break; 13688 case 1: /* SM3PARTW2 */ 13689 feature = dc_isar_feature(aa64_sm3, s); 13690 oolfn = gen_helper_crypto_sm3partw2; 13691 break; 13692 case 2: /* SM4EKEY */ 13693 feature = dc_isar_feature(aa64_sm4, s); 13694 oolfn = gen_helper_crypto_sm4ekey; 13695 break; 13696 default: 13697 unallocated_encoding(s); 13698 return; 13699 } 13700 } 13701 13702 if (!feature) { 13703 unallocated_encoding(s); 13704 return; 13705 } 13706 13707 if (!fp_access_check(s)) { 13708 return; 13709 } 13710 13711 if (oolfn) { 13712 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13713 } else { 13714 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13715 } 13716 } 13717 13718 /* Crypto two-reg SHA512 13719 * 31 12 11 10 9 5 4 0 13720 * +-----------------------------------------+--------+------+------+ 13721 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13722 * +-----------------------------------------+--------+------+------+ 13723 */ 13724 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13725 { 13726 int opcode = extract32(insn, 10, 2); 13727 int rn = extract32(insn, 5, 5); 13728 int rd = extract32(insn, 0, 5); 13729 bool feature; 13730 13731 switch (opcode) { 13732 case 0: /* SHA512SU0 */ 13733 feature = dc_isar_feature(aa64_sha512, s); 13734 break; 13735 case 1: /* SM4E */ 13736 feature = dc_isar_feature(aa64_sm4, s); 13737 break; 13738 default: 13739 unallocated_encoding(s); 13740 return; 13741 } 13742 13743 if (!feature) { 13744 unallocated_encoding(s); 13745 return; 13746 } 13747 13748 if (!fp_access_check(s)) { 13749 return; 13750 } 13751 13752 switch (opcode) { 13753 case 0: /* SHA512SU0 */ 13754 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13755 break; 13756 case 1: /* SM4E */ 13757 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13758 break; 13759 default: 13760 g_assert_not_reached(); 13761 } 13762 } 13763 13764 /* Crypto four-register 13765 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13766 * +-------------------+-----+------+---+------+------+------+ 13767 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13768 * +-------------------+-----+------+---+------+------+------+ 13769 */ 13770 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13771 { 13772 int op0 = extract32(insn, 21, 2); 13773 int rm = extract32(insn, 16, 5); 13774 int ra = extract32(insn, 10, 5); 13775 int rn = extract32(insn, 5, 5); 13776 int rd = extract32(insn, 0, 5); 13777 bool feature; 13778 13779 switch (op0) { 13780 case 0: /* EOR3 */ 13781 case 1: /* BCAX */ 13782 feature = dc_isar_feature(aa64_sha3, s); 13783 break; 13784 case 2: /* SM3SS1 */ 13785 feature = dc_isar_feature(aa64_sm3, s); 13786 break; 13787 default: 13788 unallocated_encoding(s); 13789 return; 13790 } 13791 13792 if (!feature) { 13793 unallocated_encoding(s); 13794 return; 13795 } 13796 13797 if (!fp_access_check(s)) { 13798 return; 13799 } 13800 13801 if (op0 < 2) { 13802 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13803 int pass; 13804 13805 tcg_op1 = tcg_temp_new_i64(); 13806 tcg_op2 = tcg_temp_new_i64(); 13807 tcg_op3 = tcg_temp_new_i64(); 13808 tcg_res[0] = tcg_temp_new_i64(); 13809 tcg_res[1] = tcg_temp_new_i64(); 13810 13811 for (pass = 0; pass < 2; pass++) { 13812 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13813 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13814 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13815 13816 if (op0 == 0) { 13817 /* EOR3 */ 13818 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13819 } else { 13820 /* BCAX */ 13821 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13822 } 13823 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13824 } 13825 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13826 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13827 } else { 13828 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13829 13830 tcg_op1 = tcg_temp_new_i32(); 13831 tcg_op2 = tcg_temp_new_i32(); 13832 tcg_op3 = tcg_temp_new_i32(); 13833 tcg_res = tcg_temp_new_i32(); 13834 tcg_zero = tcg_constant_i32(0); 13835 13836 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13837 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13838 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13839 13840 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13841 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13842 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13843 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13844 13845 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13846 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13847 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13848 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13849 } 13850 } 13851 13852 /* Crypto XAR 13853 * 31 21 20 16 15 10 9 5 4 0 13854 * +-----------------------+------+--------+------+------+ 13855 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13856 * +-----------------------+------+--------+------+------+ 13857 */ 13858 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13859 { 13860 int rm = extract32(insn, 16, 5); 13861 int imm6 = extract32(insn, 10, 6); 13862 int rn = extract32(insn, 5, 5); 13863 int rd = extract32(insn, 0, 5); 13864 13865 if (!dc_isar_feature(aa64_sha3, s)) { 13866 unallocated_encoding(s); 13867 return; 13868 } 13869 13870 if (!fp_access_check(s)) { 13871 return; 13872 } 13873 13874 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13875 vec_full_reg_offset(s, rn), 13876 vec_full_reg_offset(s, rm), imm6, 16, 13877 vec_full_reg_size(s)); 13878 } 13879 13880 /* Crypto three-reg imm2 13881 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13882 * +-----------------------+------+-----+------+--------+------+------+ 13883 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13884 * +-----------------------+------+-----+------+--------+------+------+ 13885 */ 13886 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13887 { 13888 static gen_helper_gvec_3 * const fns[4] = { 13889 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13890 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13891 }; 13892 int opcode = extract32(insn, 10, 2); 13893 int imm2 = extract32(insn, 12, 2); 13894 int rm = extract32(insn, 16, 5); 13895 int rn = extract32(insn, 5, 5); 13896 int rd = extract32(insn, 0, 5); 13897 13898 if (!dc_isar_feature(aa64_sm3, s)) { 13899 unallocated_encoding(s); 13900 return; 13901 } 13902 13903 if (!fp_access_check(s)) { 13904 return; 13905 } 13906 13907 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13908 } 13909 13910 /* C3.6 Data processing - SIMD, inc Crypto 13911 * 13912 * As the decode gets a little complex we are using a table based 13913 * approach for this part of the decode. 13914 */ 13915 static const AArch64DecodeTable data_proc_simd[] = { 13916 /* pattern , mask , fn */ 13917 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13918 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13919 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13920 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13921 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13922 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13923 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13924 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13925 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13926 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13927 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13928 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13929 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13930 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13931 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13932 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13933 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13934 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13935 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13936 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13937 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13938 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13939 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13940 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13941 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13942 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13943 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13944 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13945 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13946 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13947 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13948 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13949 { 0x00000000, 0x00000000, NULL } 13950 }; 13951 13952 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13953 { 13954 /* Note that this is called with all non-FP cases from 13955 * table C3-6 so it must UNDEF for entries not specifically 13956 * allocated to instructions in that table. 13957 */ 13958 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13959 if (fn) { 13960 fn(s, insn); 13961 } else { 13962 unallocated_encoding(s); 13963 } 13964 } 13965 13966 /* C3.6 Data processing - SIMD and floating point */ 13967 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13968 { 13969 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13970 disas_data_proc_fp(s, insn); 13971 } else { 13972 /* SIMD, including crypto */ 13973 disas_data_proc_simd(s, insn); 13974 } 13975 } 13976 13977 static bool trans_OK(DisasContext *s, arg_OK *a) 13978 { 13979 return true; 13980 } 13981 13982 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13983 { 13984 s->is_nonstreaming = true; 13985 return true; 13986 } 13987 13988 /** 13989 * is_guarded_page: 13990 * @env: The cpu environment 13991 * @s: The DisasContext 13992 * 13993 * Return true if the page is guarded. 13994 */ 13995 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13996 { 13997 uint64_t addr = s->base.pc_first; 13998 #ifdef CONFIG_USER_ONLY 13999 return page_get_flags(addr) & PAGE_BTI; 14000 #else 14001 CPUTLBEntryFull *full; 14002 void *host; 14003 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14004 int flags; 14005 14006 /* 14007 * We test this immediately after reading an insn, which means 14008 * that the TLB entry must be present and valid, and thus this 14009 * access will never raise an exception. 14010 */ 14011 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14012 false, &host, &full, 0); 14013 assert(!(flags & TLB_INVALID_MASK)); 14014 14015 return full->guarded; 14016 #endif 14017 } 14018 14019 /** 14020 * btype_destination_ok: 14021 * @insn: The instruction at the branch destination 14022 * @bt: SCTLR_ELx.BT 14023 * @btype: PSTATE.BTYPE, and is non-zero 14024 * 14025 * On a guarded page, there are a limited number of insns 14026 * that may be present at the branch target: 14027 * - branch target identifiers, 14028 * - paciasp, pacibsp, 14029 * - BRK insn 14030 * - HLT insn 14031 * Anything else causes a Branch Target Exception. 14032 * 14033 * Return true if the branch is compatible, false to raise BTITRAP. 14034 */ 14035 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14036 { 14037 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14038 /* HINT space */ 14039 switch (extract32(insn, 5, 7)) { 14040 case 0b011001: /* PACIASP */ 14041 case 0b011011: /* PACIBSP */ 14042 /* 14043 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14044 * with btype == 3. Otherwise all btype are ok. 14045 */ 14046 return !bt || btype != 3; 14047 case 0b100000: /* BTI */ 14048 /* Not compatible with any btype. */ 14049 return false; 14050 case 0b100010: /* BTI c */ 14051 /* Not compatible with btype == 3 */ 14052 return btype != 3; 14053 case 0b100100: /* BTI j */ 14054 /* Not compatible with btype == 2 */ 14055 return btype != 2; 14056 case 0b100110: /* BTI jc */ 14057 /* Compatible with any btype. */ 14058 return true; 14059 } 14060 } else { 14061 switch (insn & 0xffe0001fu) { 14062 case 0xd4200000u: /* BRK */ 14063 case 0xd4400000u: /* HLT */ 14064 /* Give priority to the breakpoint exception. */ 14065 return true; 14066 } 14067 } 14068 return false; 14069 } 14070 14071 /* C3.1 A64 instruction index by encoding */ 14072 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14073 { 14074 switch (extract32(insn, 25, 4)) { 14075 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14076 disas_b_exc_sys(s, insn); 14077 break; 14078 case 0x4: 14079 case 0x6: 14080 case 0xc: 14081 case 0xe: /* Loads and stores */ 14082 disas_ldst(s, insn); 14083 break; 14084 case 0x5: 14085 case 0xd: /* Data processing - register */ 14086 disas_data_proc_reg(s, insn); 14087 break; 14088 case 0x7: 14089 case 0xf: /* Data processing - SIMD and floating point */ 14090 disas_data_proc_simd_fp(s, insn); 14091 break; 14092 default: 14093 unallocated_encoding(s); 14094 break; 14095 } 14096 } 14097 14098 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14099 CPUState *cpu) 14100 { 14101 DisasContext *dc = container_of(dcbase, DisasContext, base); 14102 CPUARMState *env = cpu->env_ptr; 14103 ARMCPU *arm_cpu = env_archcpu(env); 14104 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14105 int bound, core_mmu_idx; 14106 14107 dc->isar = &arm_cpu->isar; 14108 dc->condjmp = 0; 14109 dc->pc_save = dc->base.pc_first; 14110 dc->aarch64 = true; 14111 dc->thumb = false; 14112 dc->sctlr_b = 0; 14113 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14114 dc->condexec_mask = 0; 14115 dc->condexec_cond = 0; 14116 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14117 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14118 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14119 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14120 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14121 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14122 #if !defined(CONFIG_USER_ONLY) 14123 dc->user = (dc->current_el == 0); 14124 #endif 14125 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14126 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14127 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14128 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14129 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14130 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14131 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14132 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14133 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14134 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14135 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14136 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14137 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14138 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14139 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14140 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14141 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14142 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14143 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14144 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14145 dc->vec_len = 0; 14146 dc->vec_stride = 0; 14147 dc->cp_regs = arm_cpu->cp_regs; 14148 dc->features = env->features; 14149 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14150 14151 #ifdef CONFIG_USER_ONLY 14152 /* In sve_probe_page, we assume TBI is enabled. */ 14153 tcg_debug_assert(dc->tbid & 1); 14154 #endif 14155 14156 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14157 14158 /* Single step state. The code-generation logic here is: 14159 * SS_ACTIVE == 0: 14160 * generate code with no special handling for single-stepping (except 14161 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14162 * this happens anyway because those changes are all system register or 14163 * PSTATE writes). 14164 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14165 * emit code for one insn 14166 * emit code to clear PSTATE.SS 14167 * emit code to generate software step exception for completed step 14168 * end TB (as usual for having generated an exception) 14169 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14170 * emit code to generate a software step exception 14171 * end the TB 14172 */ 14173 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14174 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14175 dc->is_ldex = false; 14176 14177 /* Bound the number of insns to execute to those left on the page. */ 14178 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14179 14180 /* If architectural single step active, limit to 1. */ 14181 if (dc->ss_active) { 14182 bound = 1; 14183 } 14184 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14185 } 14186 14187 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14188 { 14189 } 14190 14191 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14192 { 14193 DisasContext *dc = container_of(dcbase, DisasContext, base); 14194 target_ulong pc_arg = dc->base.pc_next; 14195 14196 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14197 pc_arg &= ~TARGET_PAGE_MASK; 14198 } 14199 tcg_gen_insn_start(pc_arg, 0, 0); 14200 dc->insn_start = tcg_last_op(); 14201 } 14202 14203 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14204 { 14205 DisasContext *s = container_of(dcbase, DisasContext, base); 14206 CPUARMState *env = cpu->env_ptr; 14207 uint64_t pc = s->base.pc_next; 14208 uint32_t insn; 14209 14210 /* Singlestep exceptions have the highest priority. */ 14211 if (s->ss_active && !s->pstate_ss) { 14212 /* Singlestep state is Active-pending. 14213 * If we're in this state at the start of a TB then either 14214 * a) we just took an exception to an EL which is being debugged 14215 * and this is the first insn in the exception handler 14216 * b) debug exceptions were masked and we just unmasked them 14217 * without changing EL (eg by clearing PSTATE.D) 14218 * In either case we're going to take a swstep exception in the 14219 * "did not step an insn" case, and so the syndrome ISV and EX 14220 * bits should be zero. 14221 */ 14222 assert(s->base.num_insns == 1); 14223 gen_swstep_exception(s, 0, 0); 14224 s->base.is_jmp = DISAS_NORETURN; 14225 s->base.pc_next = pc + 4; 14226 return; 14227 } 14228 14229 if (pc & 3) { 14230 /* 14231 * PC alignment fault. This has priority over the instruction abort 14232 * that we would receive from a translation fault via arm_ldl_code. 14233 * This should only be possible after an indirect branch, at the 14234 * start of the TB. 14235 */ 14236 assert(s->base.num_insns == 1); 14237 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14238 s->base.is_jmp = DISAS_NORETURN; 14239 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14240 return; 14241 } 14242 14243 s->pc_curr = pc; 14244 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14245 s->insn = insn; 14246 s->base.pc_next = pc + 4; 14247 14248 s->fp_access_checked = false; 14249 s->sve_access_checked = false; 14250 14251 if (s->pstate_il) { 14252 /* 14253 * Illegal execution state. This has priority over BTI 14254 * exceptions, but comes after instruction abort exceptions. 14255 */ 14256 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14257 return; 14258 } 14259 14260 if (dc_isar_feature(aa64_bti, s)) { 14261 if (s->base.num_insns == 1) { 14262 /* 14263 * At the first insn of the TB, compute s->guarded_page. 14264 * We delayed computing this until successfully reading 14265 * the first insn of the TB, above. This (mostly) ensures 14266 * that the softmmu tlb entry has been populated, and the 14267 * page table GP bit is available. 14268 * 14269 * Note that we need to compute this even if btype == 0, 14270 * because this value is used for BR instructions later 14271 * where ENV is not available. 14272 */ 14273 s->guarded_page = is_guarded_page(env, s); 14274 14275 /* First insn can have btype set to non-zero. */ 14276 tcg_debug_assert(s->btype >= 0); 14277 14278 /* 14279 * Note that the Branch Target Exception has fairly high 14280 * priority -- below debugging exceptions but above most 14281 * everything else. This allows us to handle this now 14282 * instead of waiting until the insn is otherwise decoded. 14283 */ 14284 if (s->btype != 0 14285 && s->guarded_page 14286 && !btype_destination_ok(insn, s->bt, s->btype)) { 14287 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14288 return; 14289 } 14290 } else { 14291 /* Not the first insn: btype must be 0. */ 14292 tcg_debug_assert(s->btype == 0); 14293 } 14294 } 14295 14296 s->is_nonstreaming = false; 14297 if (s->sme_trap_nonstreaming) { 14298 disas_sme_fa64(s, insn); 14299 } 14300 14301 if (!disas_a64(s, insn) && 14302 !disas_sme(s, insn) && 14303 !disas_sve(s, insn)) { 14304 disas_a64_legacy(s, insn); 14305 } 14306 14307 /* 14308 * After execution of most insns, btype is reset to 0. 14309 * Note that we set btype == -1 when the insn sets btype. 14310 */ 14311 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14312 reset_btype(s); 14313 } 14314 } 14315 14316 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14317 { 14318 DisasContext *dc = container_of(dcbase, DisasContext, base); 14319 14320 if (unlikely(dc->ss_active)) { 14321 /* Note that this means single stepping WFI doesn't halt the CPU. 14322 * For conditional branch insns this is harmless unreachable code as 14323 * gen_goto_tb() has already handled emitting the debug exception 14324 * (and thus a tb-jump is not possible when singlestepping). 14325 */ 14326 switch (dc->base.is_jmp) { 14327 default: 14328 gen_a64_update_pc(dc, 4); 14329 /* fall through */ 14330 case DISAS_EXIT: 14331 case DISAS_JUMP: 14332 gen_step_complete_exception(dc); 14333 break; 14334 case DISAS_NORETURN: 14335 break; 14336 } 14337 } else { 14338 switch (dc->base.is_jmp) { 14339 case DISAS_NEXT: 14340 case DISAS_TOO_MANY: 14341 gen_goto_tb(dc, 1, 4); 14342 break; 14343 default: 14344 case DISAS_UPDATE_EXIT: 14345 gen_a64_update_pc(dc, 4); 14346 /* fall through */ 14347 case DISAS_EXIT: 14348 tcg_gen_exit_tb(NULL, 0); 14349 break; 14350 case DISAS_UPDATE_NOCHAIN: 14351 gen_a64_update_pc(dc, 4); 14352 /* fall through */ 14353 case DISAS_JUMP: 14354 tcg_gen_lookup_and_goto_ptr(); 14355 break; 14356 case DISAS_NORETURN: 14357 case DISAS_SWI: 14358 break; 14359 case DISAS_WFE: 14360 gen_a64_update_pc(dc, 4); 14361 gen_helper_wfe(cpu_env); 14362 break; 14363 case DISAS_YIELD: 14364 gen_a64_update_pc(dc, 4); 14365 gen_helper_yield(cpu_env); 14366 break; 14367 case DISAS_WFI: 14368 /* 14369 * This is a special case because we don't want to just halt 14370 * the CPU if trying to debug across a WFI. 14371 */ 14372 gen_a64_update_pc(dc, 4); 14373 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14374 /* 14375 * The helper doesn't necessarily throw an exception, but we 14376 * must go back to the main loop to check for interrupts anyway. 14377 */ 14378 tcg_gen_exit_tb(NULL, 0); 14379 break; 14380 } 14381 } 14382 } 14383 14384 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14385 CPUState *cpu, FILE *logfile) 14386 { 14387 DisasContext *dc = container_of(dcbase, DisasContext, base); 14388 14389 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14390 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14391 } 14392 14393 const TranslatorOps aarch64_translator_ops = { 14394 .init_disas_context = aarch64_tr_init_disas_context, 14395 .tb_start = aarch64_tr_tb_start, 14396 .insn_start = aarch64_tr_insn_start, 14397 .translate_insn = aarch64_tr_translate_insn, 14398 .tb_stop = aarch64_tr_tb_stop, 14399 .disas_log = aarch64_tr_disas_log, 14400 }; 14401