1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 int log2_size, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1); 268 269 ret = tcg_temp_new_i64(); 270 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 271 272 return ret; 273 } 274 return clean_data_tbi(s, addr); 275 } 276 277 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 278 bool tag_checked, int log2_size) 279 { 280 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size, 281 false, get_mem_index(s)); 282 } 283 284 /* 285 * For MTE, check multiple logical sequential accesses. 286 */ 287 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 288 bool tag_checked, int size) 289 { 290 if (tag_checked && s->mte_active[0]) { 291 TCGv_i64 ret; 292 int desc = 0; 293 294 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 typedef struct DisasCompare64 { 309 TCGCond cond; 310 TCGv_i64 value; 311 } DisasCompare64; 312 313 static void a64_test_cc(DisasCompare64 *c64, int cc) 314 { 315 DisasCompare c32; 316 317 arm_test_cc(&c32, cc); 318 319 /* 320 * Sign-extend the 32-bit value so that the GE/LT comparisons work 321 * properly. The NE/EQ comparisons are also fine with this choice. 322 */ 323 c64->cond = c32.cond; 324 c64->value = tcg_temp_new_i64(); 325 tcg_gen_ext_i32_i64(c64->value, c32.value); 326 } 327 328 static void gen_rebuild_hflags(DisasContext *s) 329 { 330 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 331 } 332 333 static void gen_exception_internal(int excp) 334 { 335 assert(excp_is_internal(excp)); 336 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 337 } 338 339 static void gen_exception_internal_insn(DisasContext *s, int excp) 340 { 341 gen_a64_update_pc(s, 0); 342 gen_exception_internal(excp); 343 s->base.is_jmp = DISAS_NORETURN; 344 } 345 346 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 347 { 348 gen_a64_update_pc(s, 0); 349 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 350 s->base.is_jmp = DISAS_NORETURN; 351 } 352 353 static void gen_step_complete_exception(DisasContext *s) 354 { 355 /* We just completed step of an insn. Move from Active-not-pending 356 * to Active-pending, and then also take the swstep exception. 357 * This corresponds to making the (IMPDEF) choice to prioritize 358 * swstep exceptions over asynchronous exceptions taken to an exception 359 * level where debug is disabled. This choice has the advantage that 360 * we do not need to maintain internal state corresponding to the 361 * ISV/EX syndrome bits between completion of the step and generation 362 * of the exception, and our syndrome information is always correct. 363 */ 364 gen_ss_advance(s); 365 gen_swstep_exception(s, 1, s->is_ldex); 366 s->base.is_jmp = DISAS_NORETURN; 367 } 368 369 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 370 { 371 if (s->ss_active) { 372 return false; 373 } 374 return translator_use_goto_tb(&s->base, dest); 375 } 376 377 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 378 { 379 if (use_goto_tb(s, s->pc_curr + diff)) { 380 /* 381 * For pcrel, the pc must always be up-to-date on entry to 382 * the linked TB, so that it can use simple additions for all 383 * further adjustments. For !pcrel, the linked TB is compiled 384 * to know its full virtual address, so we can delay the 385 * update to pc to the unlinked path. A long chain of links 386 * can thus avoid many updates to the PC. 387 */ 388 if (tb_cflags(s->base.tb) & CF_PCREL) { 389 gen_a64_update_pc(s, diff); 390 tcg_gen_goto_tb(n); 391 } else { 392 tcg_gen_goto_tb(n); 393 gen_a64_update_pc(s, diff); 394 } 395 tcg_gen_exit_tb(s->base.tb, n); 396 s->base.is_jmp = DISAS_NORETURN; 397 } else { 398 gen_a64_update_pc(s, diff); 399 if (s->ss_active) { 400 gen_step_complete_exception(s); 401 } else { 402 tcg_gen_lookup_and_goto_ptr(); 403 s->base.is_jmp = DISAS_NORETURN; 404 } 405 } 406 } 407 408 /* 409 * Register access functions 410 * 411 * These functions are used for directly accessing a register in where 412 * changes to the final register value are likely to be made. If you 413 * need to use a register for temporary calculation (e.g. index type 414 * operations) use the read_* form. 415 * 416 * B1.2.1 Register mappings 417 * 418 * In instruction register encoding 31 can refer to ZR (zero register) or 419 * the SP (stack pointer) depending on context. In QEMU's case we map SP 420 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 421 * This is the point of the _sp forms. 422 */ 423 TCGv_i64 cpu_reg(DisasContext *s, int reg) 424 { 425 if (reg == 31) { 426 TCGv_i64 t = tcg_temp_new_i64(); 427 tcg_gen_movi_i64(t, 0); 428 return t; 429 } else { 430 return cpu_X[reg]; 431 } 432 } 433 434 /* register access for when 31 == SP */ 435 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 436 { 437 return cpu_X[reg]; 438 } 439 440 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 441 * representing the register contents. This TCGv is an auto-freed 442 * temporary so it need not be explicitly freed, and may be modified. 443 */ 444 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 445 { 446 TCGv_i64 v = tcg_temp_new_i64(); 447 if (reg != 31) { 448 if (sf) { 449 tcg_gen_mov_i64(v, cpu_X[reg]); 450 } else { 451 tcg_gen_ext32u_i64(v, cpu_X[reg]); 452 } 453 } else { 454 tcg_gen_movi_i64(v, 0); 455 } 456 return v; 457 } 458 459 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 460 { 461 TCGv_i64 v = tcg_temp_new_i64(); 462 if (sf) { 463 tcg_gen_mov_i64(v, cpu_X[reg]); 464 } else { 465 tcg_gen_ext32u_i64(v, cpu_X[reg]); 466 } 467 return v; 468 } 469 470 /* Return the offset into CPUARMState of a slice (from 471 * the least significant end) of FP register Qn (ie 472 * Dn, Sn, Hn or Bn). 473 * (Note that this is not the same mapping as for A32; see cpu.h) 474 */ 475 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 476 { 477 return vec_reg_offset(s, regno, 0, size); 478 } 479 480 /* Offset of the high half of the 128 bit vector Qn */ 481 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 482 { 483 return vec_reg_offset(s, regno, 1, MO_64); 484 } 485 486 /* Convenience accessors for reading and writing single and double 487 * FP registers. Writing clears the upper parts of the associated 488 * 128 bit vector register, as required by the architecture. 489 * Note that unlike the GP register accessors, the values returned 490 * by the read functions must be manually freed. 491 */ 492 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 493 { 494 TCGv_i64 v = tcg_temp_new_i64(); 495 496 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 497 return v; 498 } 499 500 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 501 { 502 TCGv_i32 v = tcg_temp_new_i32(); 503 504 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 505 return v; 506 } 507 508 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 509 { 510 TCGv_i32 v = tcg_temp_new_i32(); 511 512 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 513 return v; 514 } 515 516 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 517 * If SVE is not enabled, then there are only 128 bits in the vector. 518 */ 519 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 520 { 521 unsigned ofs = fp_reg_offset(s, rd, MO_64); 522 unsigned vsz = vec_full_reg_size(s); 523 524 /* Nop move, with side effect of clearing the tail. */ 525 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 526 } 527 528 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 529 { 530 unsigned ofs = fp_reg_offset(s, reg, MO_64); 531 532 tcg_gen_st_i64(v, cpu_env, ofs); 533 clear_vec_high(s, false, reg); 534 } 535 536 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 537 { 538 TCGv_i64 tmp = tcg_temp_new_i64(); 539 540 tcg_gen_extu_i32_i64(tmp, v); 541 write_fp_dreg(s, reg, tmp); 542 } 543 544 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 545 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 546 GVecGen2Fn *gvec_fn, int vece) 547 { 548 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 549 is_q ? 16 : 8, vec_full_reg_size(s)); 550 } 551 552 /* Expand a 2-operand + immediate AdvSIMD vector operation using 553 * an expander function. 554 */ 555 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 556 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 557 { 558 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 559 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 560 } 561 562 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 563 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 564 GVecGen3Fn *gvec_fn, int vece) 565 { 566 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 567 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 568 } 569 570 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 571 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 572 int rx, GVecGen4Fn *gvec_fn, int vece) 573 { 574 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 575 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 576 is_q ? 16 : 8, vec_full_reg_size(s)); 577 } 578 579 /* Expand a 2-operand operation using an out-of-line helper. */ 580 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 581 int rn, int data, gen_helper_gvec_2 *fn) 582 { 583 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 584 vec_full_reg_offset(s, rn), 585 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 586 } 587 588 /* Expand a 3-operand operation using an out-of-line helper. */ 589 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 590 int rn, int rm, int data, gen_helper_gvec_3 *fn) 591 { 592 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 593 vec_full_reg_offset(s, rn), 594 vec_full_reg_offset(s, rm), 595 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 596 } 597 598 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 599 * an out-of-line helper. 600 */ 601 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 602 int rm, bool is_fp16, int data, 603 gen_helper_gvec_3_ptr *fn) 604 { 605 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 606 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 607 vec_full_reg_offset(s, rn), 608 vec_full_reg_offset(s, rm), fpst, 609 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 610 } 611 612 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 613 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 614 int rm, gen_helper_gvec_3_ptr *fn) 615 { 616 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 617 618 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 619 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 620 vec_full_reg_offset(s, rn), 621 vec_full_reg_offset(s, rm), qc_ptr, 622 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 623 } 624 625 /* Expand a 4-operand operation using an out-of-line helper. */ 626 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 627 int rm, int ra, int data, gen_helper_gvec_4 *fn) 628 { 629 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 630 vec_full_reg_offset(s, rn), 631 vec_full_reg_offset(s, rm), 632 vec_full_reg_offset(s, ra), 633 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 634 } 635 636 /* 637 * Expand a 4-operand + fpstatus pointer + simd data value operation using 638 * an out-of-line helper. 639 */ 640 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 641 int rm, int ra, bool is_fp16, int data, 642 gen_helper_gvec_4_ptr *fn) 643 { 644 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 645 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 646 vec_full_reg_offset(s, rn), 647 vec_full_reg_offset(s, rm), 648 vec_full_reg_offset(s, ra), fpst, 649 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 650 } 651 652 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 653 * than the 32 bit equivalent. 654 */ 655 static inline void gen_set_NZ64(TCGv_i64 result) 656 { 657 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 658 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 659 } 660 661 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 662 static inline void gen_logic_CC(int sf, TCGv_i64 result) 663 { 664 if (sf) { 665 gen_set_NZ64(result); 666 } else { 667 tcg_gen_extrl_i64_i32(cpu_ZF, result); 668 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 669 } 670 tcg_gen_movi_i32(cpu_CF, 0); 671 tcg_gen_movi_i32(cpu_VF, 0); 672 } 673 674 /* dest = T0 + T1; compute C, N, V and Z flags */ 675 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 676 { 677 TCGv_i64 result, flag, tmp; 678 result = tcg_temp_new_i64(); 679 flag = tcg_temp_new_i64(); 680 tmp = tcg_temp_new_i64(); 681 682 tcg_gen_movi_i64(tmp, 0); 683 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 684 685 tcg_gen_extrl_i64_i32(cpu_CF, flag); 686 687 gen_set_NZ64(result); 688 689 tcg_gen_xor_i64(flag, result, t0); 690 tcg_gen_xor_i64(tmp, t0, t1); 691 tcg_gen_andc_i64(flag, flag, tmp); 692 tcg_gen_extrh_i64_i32(cpu_VF, flag); 693 694 tcg_gen_mov_i64(dest, result); 695 } 696 697 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 698 { 699 TCGv_i32 t0_32 = tcg_temp_new_i32(); 700 TCGv_i32 t1_32 = tcg_temp_new_i32(); 701 TCGv_i32 tmp = tcg_temp_new_i32(); 702 703 tcg_gen_movi_i32(tmp, 0); 704 tcg_gen_extrl_i64_i32(t0_32, t0); 705 tcg_gen_extrl_i64_i32(t1_32, t1); 706 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 707 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 708 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 709 tcg_gen_xor_i32(tmp, t0_32, t1_32); 710 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 711 tcg_gen_extu_i32_i64(dest, cpu_NF); 712 } 713 714 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 715 { 716 if (sf) { 717 gen_add64_CC(dest, t0, t1); 718 } else { 719 gen_add32_CC(dest, t0, t1); 720 } 721 } 722 723 /* dest = T0 - T1; compute C, N, V and Z flags */ 724 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 725 { 726 /* 64 bit arithmetic */ 727 TCGv_i64 result, flag, tmp; 728 729 result = tcg_temp_new_i64(); 730 flag = tcg_temp_new_i64(); 731 tcg_gen_sub_i64(result, t0, t1); 732 733 gen_set_NZ64(result); 734 735 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 736 tcg_gen_extrl_i64_i32(cpu_CF, flag); 737 738 tcg_gen_xor_i64(flag, result, t0); 739 tmp = tcg_temp_new_i64(); 740 tcg_gen_xor_i64(tmp, t0, t1); 741 tcg_gen_and_i64(flag, flag, tmp); 742 tcg_gen_extrh_i64_i32(cpu_VF, flag); 743 tcg_gen_mov_i64(dest, result); 744 } 745 746 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 747 { 748 /* 32 bit arithmetic */ 749 TCGv_i32 t0_32 = tcg_temp_new_i32(); 750 TCGv_i32 t1_32 = tcg_temp_new_i32(); 751 TCGv_i32 tmp; 752 753 tcg_gen_extrl_i64_i32(t0_32, t0); 754 tcg_gen_extrl_i64_i32(t1_32, t1); 755 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 756 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 757 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 758 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 759 tmp = tcg_temp_new_i32(); 760 tcg_gen_xor_i32(tmp, t0_32, t1_32); 761 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 762 tcg_gen_extu_i32_i64(dest, cpu_NF); 763 } 764 765 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 766 { 767 if (sf) { 768 gen_sub64_CC(dest, t0, t1); 769 } else { 770 gen_sub32_CC(dest, t0, t1); 771 } 772 } 773 774 /* dest = T0 + T1 + CF; do not compute flags. */ 775 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 776 { 777 TCGv_i64 flag = tcg_temp_new_i64(); 778 tcg_gen_extu_i32_i64(flag, cpu_CF); 779 tcg_gen_add_i64(dest, t0, t1); 780 tcg_gen_add_i64(dest, dest, flag); 781 782 if (!sf) { 783 tcg_gen_ext32u_i64(dest, dest); 784 } 785 } 786 787 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 788 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 789 { 790 if (sf) { 791 TCGv_i64 result = tcg_temp_new_i64(); 792 TCGv_i64 cf_64 = tcg_temp_new_i64(); 793 TCGv_i64 vf_64 = tcg_temp_new_i64(); 794 TCGv_i64 tmp = tcg_temp_new_i64(); 795 TCGv_i64 zero = tcg_constant_i64(0); 796 797 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 798 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 799 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 800 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 801 gen_set_NZ64(result); 802 803 tcg_gen_xor_i64(vf_64, result, t0); 804 tcg_gen_xor_i64(tmp, t0, t1); 805 tcg_gen_andc_i64(vf_64, vf_64, tmp); 806 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 807 808 tcg_gen_mov_i64(dest, result); 809 } else { 810 TCGv_i32 t0_32 = tcg_temp_new_i32(); 811 TCGv_i32 t1_32 = tcg_temp_new_i32(); 812 TCGv_i32 tmp = tcg_temp_new_i32(); 813 TCGv_i32 zero = tcg_constant_i32(0); 814 815 tcg_gen_extrl_i64_i32(t0_32, t0); 816 tcg_gen_extrl_i64_i32(t1_32, t1); 817 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 818 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 819 820 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 821 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 822 tcg_gen_xor_i32(tmp, t0_32, t1_32); 823 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 824 tcg_gen_extu_i32_i64(dest, cpu_NF); 825 } 826 } 827 828 /* 829 * Load/Store generators 830 */ 831 832 /* 833 * Store from GPR register to memory. 834 */ 835 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 836 TCGv_i64 tcg_addr, MemOp memop, int memidx, 837 bool iss_valid, 838 unsigned int iss_srt, 839 bool iss_sf, bool iss_ar) 840 { 841 memop = finalize_memop(s, memop); 842 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 843 844 if (iss_valid) { 845 uint32_t syn; 846 847 syn = syn_data_abort_with_iss(0, 848 (memop & MO_SIZE), 849 false, 850 iss_srt, 851 iss_sf, 852 iss_ar, 853 0, 0, 0, 0, 0, false); 854 disas_set_insn_syndrome(s, syn); 855 } 856 } 857 858 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 859 TCGv_i64 tcg_addr, MemOp memop, 860 bool iss_valid, 861 unsigned int iss_srt, 862 bool iss_sf, bool iss_ar) 863 { 864 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 865 iss_valid, iss_srt, iss_sf, iss_ar); 866 } 867 868 /* 869 * Load from memory to GPR register 870 */ 871 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 872 MemOp memop, bool extend, int memidx, 873 bool iss_valid, unsigned int iss_srt, 874 bool iss_sf, bool iss_ar) 875 { 876 memop = finalize_memop(s, memop); 877 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 878 879 if (extend && (memop & MO_SIGN)) { 880 g_assert((memop & MO_SIZE) <= MO_32); 881 tcg_gen_ext32u_i64(dest, dest); 882 } 883 884 if (iss_valid) { 885 uint32_t syn; 886 887 syn = syn_data_abort_with_iss(0, 888 (memop & MO_SIZE), 889 (memop & MO_SIGN) != 0, 890 iss_srt, 891 iss_sf, 892 iss_ar, 893 0, 0, 0, 0, 0, false); 894 disas_set_insn_syndrome(s, syn); 895 } 896 } 897 898 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 899 MemOp memop, bool extend, 900 bool iss_valid, unsigned int iss_srt, 901 bool iss_sf, bool iss_ar) 902 { 903 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 904 iss_valid, iss_srt, iss_sf, iss_ar); 905 } 906 907 /* 908 * Store from FP register to memory 909 */ 910 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size) 911 { 912 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 913 TCGv_i64 tmplo = tcg_temp_new_i64(); 914 MemOp mop; 915 916 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 917 918 if (size < 4) { 919 mop = finalize_memop(s, size); 920 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 921 } else { 922 bool be = s->be_data == MO_BE; 923 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64(); 924 TCGv_i64 tmphi = tcg_temp_new_i64(); 925 926 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 927 928 mop = s->be_data | MO_UQ; 929 tcg_gen_qemu_st_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s), 930 mop | (s->align_mem ? MO_ALIGN_16 : 0)); 931 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); 932 tcg_gen_qemu_st_i64(be ? tmplo : tmphi, tcg_hiaddr, 933 get_mem_index(s), mop); 934 } 935 } 936 937 /* 938 * Load from memory to FP register 939 */ 940 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size) 941 { 942 /* This always zero-extends and writes to a full 128 bit wide vector */ 943 TCGv_i64 tmplo = tcg_temp_new_i64(); 944 TCGv_i64 tmphi = NULL; 945 MemOp mop; 946 947 if (size < 4) { 948 mop = finalize_memop(s, size); 949 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 950 } else { 951 bool be = s->be_data == MO_BE; 952 TCGv_i64 tcg_hiaddr; 953 954 tmphi = tcg_temp_new_i64(); 955 tcg_hiaddr = tcg_temp_new_i64(); 956 957 mop = s->be_data | MO_UQ; 958 tcg_gen_qemu_ld_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s), 959 mop | (s->align_mem ? MO_ALIGN_16 : 0)); 960 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); 961 tcg_gen_qemu_ld_i64(be ? tmplo : tmphi, tcg_hiaddr, 962 get_mem_index(s), mop); 963 } 964 965 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 966 967 if (tmphi) { 968 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 969 } 970 clear_vec_high(s, tmphi != NULL, destidx); 971 } 972 973 /* 974 * Vector load/store helpers. 975 * 976 * The principal difference between this and a FP load is that we don't 977 * zero extend as we are filling a partial chunk of the vector register. 978 * These functions don't support 128 bit loads/stores, which would be 979 * normal load/store operations. 980 * 981 * The _i32 versions are useful when operating on 32 bit quantities 982 * (eg for floating point single or using Neon helper functions). 983 */ 984 985 /* Get value of an element within a vector register */ 986 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 987 int element, MemOp memop) 988 { 989 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 990 switch ((unsigned)memop) { 991 case MO_8: 992 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 993 break; 994 case MO_16: 995 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 996 break; 997 case MO_32: 998 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 999 break; 1000 case MO_8|MO_SIGN: 1001 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1002 break; 1003 case MO_16|MO_SIGN: 1004 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1005 break; 1006 case MO_32|MO_SIGN: 1007 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1008 break; 1009 case MO_64: 1010 case MO_64|MO_SIGN: 1011 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1012 break; 1013 default: 1014 g_assert_not_reached(); 1015 } 1016 } 1017 1018 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1019 int element, MemOp memop) 1020 { 1021 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1022 switch (memop) { 1023 case MO_8: 1024 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1025 break; 1026 case MO_16: 1027 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1028 break; 1029 case MO_8|MO_SIGN: 1030 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1031 break; 1032 case MO_16|MO_SIGN: 1033 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1034 break; 1035 case MO_32: 1036 case MO_32|MO_SIGN: 1037 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1038 break; 1039 default: 1040 g_assert_not_reached(); 1041 } 1042 } 1043 1044 /* Set value of an element within a vector register */ 1045 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1046 int element, MemOp memop) 1047 { 1048 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1049 switch (memop) { 1050 case MO_8: 1051 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1052 break; 1053 case MO_16: 1054 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1055 break; 1056 case MO_32: 1057 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1058 break; 1059 case MO_64: 1060 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1061 break; 1062 default: 1063 g_assert_not_reached(); 1064 } 1065 } 1066 1067 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1068 int destidx, int element, MemOp memop) 1069 { 1070 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1071 switch (memop) { 1072 case MO_8: 1073 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1074 break; 1075 case MO_16: 1076 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1077 break; 1078 case MO_32: 1079 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1080 break; 1081 default: 1082 g_assert_not_reached(); 1083 } 1084 } 1085 1086 /* Store from vector register to memory */ 1087 static void do_vec_st(DisasContext *s, int srcidx, int element, 1088 TCGv_i64 tcg_addr, MemOp mop) 1089 { 1090 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1091 1092 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1093 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1094 } 1095 1096 /* Load from memory to vector register */ 1097 static void do_vec_ld(DisasContext *s, int destidx, int element, 1098 TCGv_i64 tcg_addr, MemOp mop) 1099 { 1100 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1101 1102 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1103 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1104 } 1105 1106 /* Check that FP/Neon access is enabled. If it is, return 1107 * true. If not, emit code to generate an appropriate exception, 1108 * and return false; the caller should not emit any code for 1109 * the instruction. Note that this check must happen after all 1110 * unallocated-encoding checks (otherwise the syndrome information 1111 * for the resulting exception will be incorrect). 1112 */ 1113 static bool fp_access_check_only(DisasContext *s) 1114 { 1115 if (s->fp_excp_el) { 1116 assert(!s->fp_access_checked); 1117 s->fp_access_checked = true; 1118 1119 gen_exception_insn_el(s, 0, EXCP_UDEF, 1120 syn_fp_access_trap(1, 0xe, false, 0), 1121 s->fp_excp_el); 1122 return false; 1123 } 1124 s->fp_access_checked = true; 1125 return true; 1126 } 1127 1128 static bool fp_access_check(DisasContext *s) 1129 { 1130 if (!fp_access_check_only(s)) { 1131 return false; 1132 } 1133 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1134 gen_exception_insn(s, 0, EXCP_UDEF, 1135 syn_smetrap(SME_ET_Streaming, false)); 1136 return false; 1137 } 1138 return true; 1139 } 1140 1141 /* 1142 * Check that SVE access is enabled. If it is, return true. 1143 * If not, emit code to generate an appropriate exception and return false. 1144 * This function corresponds to CheckSVEEnabled(). 1145 */ 1146 bool sve_access_check(DisasContext *s) 1147 { 1148 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1149 assert(dc_isar_feature(aa64_sme, s)); 1150 if (!sme_sm_enabled_check(s)) { 1151 goto fail_exit; 1152 } 1153 } else if (s->sve_excp_el) { 1154 gen_exception_insn_el(s, 0, EXCP_UDEF, 1155 syn_sve_access_trap(), s->sve_excp_el); 1156 goto fail_exit; 1157 } 1158 s->sve_access_checked = true; 1159 return fp_access_check(s); 1160 1161 fail_exit: 1162 /* Assert that we only raise one exception per instruction. */ 1163 assert(!s->sve_access_checked); 1164 s->sve_access_checked = true; 1165 return false; 1166 } 1167 1168 /* 1169 * Check that SME access is enabled, raise an exception if not. 1170 * Note that this function corresponds to CheckSMEAccess and is 1171 * only used directly for cpregs. 1172 */ 1173 static bool sme_access_check(DisasContext *s) 1174 { 1175 if (s->sme_excp_el) { 1176 gen_exception_insn_el(s, 0, EXCP_UDEF, 1177 syn_smetrap(SME_ET_AccessTrap, false), 1178 s->sme_excp_el); 1179 return false; 1180 } 1181 return true; 1182 } 1183 1184 /* This function corresponds to CheckSMEEnabled. */ 1185 bool sme_enabled_check(DisasContext *s) 1186 { 1187 /* 1188 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1189 * to be zero when fp_excp_el has priority. This is because we need 1190 * sme_excp_el by itself for cpregs access checks. 1191 */ 1192 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1193 s->fp_access_checked = true; 1194 return sme_access_check(s); 1195 } 1196 return fp_access_check_only(s); 1197 } 1198 1199 /* Common subroutine for CheckSMEAnd*Enabled. */ 1200 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1201 { 1202 if (!sme_enabled_check(s)) { 1203 return false; 1204 } 1205 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1206 gen_exception_insn(s, 0, EXCP_UDEF, 1207 syn_smetrap(SME_ET_NotStreaming, false)); 1208 return false; 1209 } 1210 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1211 gen_exception_insn(s, 0, EXCP_UDEF, 1212 syn_smetrap(SME_ET_InactiveZA, false)); 1213 return false; 1214 } 1215 return true; 1216 } 1217 1218 /* 1219 * This utility function is for doing register extension with an 1220 * optional shift. You will likely want to pass a temporary for the 1221 * destination register. See DecodeRegExtend() in the ARM ARM. 1222 */ 1223 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1224 int option, unsigned int shift) 1225 { 1226 int extsize = extract32(option, 0, 2); 1227 bool is_signed = extract32(option, 2, 1); 1228 1229 if (is_signed) { 1230 switch (extsize) { 1231 case 0: 1232 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1233 break; 1234 case 1: 1235 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1236 break; 1237 case 2: 1238 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1239 break; 1240 case 3: 1241 tcg_gen_mov_i64(tcg_out, tcg_in); 1242 break; 1243 } 1244 } else { 1245 switch (extsize) { 1246 case 0: 1247 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1248 break; 1249 case 1: 1250 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1251 break; 1252 case 2: 1253 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1254 break; 1255 case 3: 1256 tcg_gen_mov_i64(tcg_out, tcg_in); 1257 break; 1258 } 1259 } 1260 1261 if (shift) { 1262 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1263 } 1264 } 1265 1266 static inline void gen_check_sp_alignment(DisasContext *s) 1267 { 1268 /* The AArch64 architecture mandates that (if enabled via PSTATE 1269 * or SCTLR bits) there is a check that SP is 16-aligned on every 1270 * SP-relative load or store (with an exception generated if it is not). 1271 * In line with general QEMU practice regarding misaligned accesses, 1272 * we omit these checks for the sake of guest program performance. 1273 * This function is provided as a hook so we can more easily add these 1274 * checks in future (possibly as a "favour catching guest program bugs 1275 * over speed" user selectable option). 1276 */ 1277 } 1278 1279 /* 1280 * This provides a simple table based table lookup decoder. It is 1281 * intended to be used when the relevant bits for decode are too 1282 * awkwardly placed and switch/if based logic would be confusing and 1283 * deeply nested. Since it's a linear search through the table, tables 1284 * should be kept small. 1285 * 1286 * It returns the first handler where insn & mask == pattern, or 1287 * NULL if there is no match. 1288 * The table is terminated by an empty mask (i.e. 0) 1289 */ 1290 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1291 uint32_t insn) 1292 { 1293 const AArch64DecodeTable *tptr = table; 1294 1295 while (tptr->mask) { 1296 if ((insn & tptr->mask) == tptr->pattern) { 1297 return tptr->disas_fn; 1298 } 1299 tptr++; 1300 } 1301 return NULL; 1302 } 1303 1304 /* 1305 * The instruction disassembly implemented here matches 1306 * the instruction encoding classifications in chapter C4 1307 * of the ARM Architecture Reference Manual (DDI0487B_a); 1308 * classification names and decode diagrams here should generally 1309 * match up with those in the manual. 1310 */ 1311 1312 static bool trans_B(DisasContext *s, arg_i *a) 1313 { 1314 reset_btype(s); 1315 gen_goto_tb(s, 0, a->imm); 1316 return true; 1317 } 1318 1319 static bool trans_BL(DisasContext *s, arg_i *a) 1320 { 1321 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1322 reset_btype(s); 1323 gen_goto_tb(s, 0, a->imm); 1324 return true; 1325 } 1326 1327 1328 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1329 { 1330 DisasLabel match; 1331 TCGv_i64 tcg_cmp; 1332 1333 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1334 reset_btype(s); 1335 1336 match = gen_disas_label(s); 1337 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1338 tcg_cmp, 0, match.label); 1339 gen_goto_tb(s, 0, 4); 1340 set_disas_label(s, match); 1341 gen_goto_tb(s, 1, a->imm); 1342 return true; 1343 } 1344 1345 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1346 { 1347 DisasLabel match; 1348 TCGv_i64 tcg_cmp; 1349 1350 tcg_cmp = tcg_temp_new_i64(); 1351 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1352 1353 reset_btype(s); 1354 1355 match = gen_disas_label(s); 1356 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1357 tcg_cmp, 0, match.label); 1358 gen_goto_tb(s, 0, 4); 1359 set_disas_label(s, match); 1360 gen_goto_tb(s, 1, a->imm); 1361 return true; 1362 } 1363 1364 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1365 { 1366 reset_btype(s); 1367 if (a->cond < 0x0e) { 1368 /* genuinely conditional branches */ 1369 DisasLabel match = gen_disas_label(s); 1370 arm_gen_test_cc(a->cond, match.label); 1371 gen_goto_tb(s, 0, 4); 1372 set_disas_label(s, match); 1373 gen_goto_tb(s, 1, a->imm); 1374 } else { 1375 /* 0xe and 0xf are both "always" conditions */ 1376 gen_goto_tb(s, 0, a->imm); 1377 } 1378 return true; 1379 } 1380 1381 static void set_btype_for_br(DisasContext *s, int rn) 1382 { 1383 if (dc_isar_feature(aa64_bti, s)) { 1384 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1385 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1386 } 1387 } 1388 1389 static void set_btype_for_blr(DisasContext *s) 1390 { 1391 if (dc_isar_feature(aa64_bti, s)) { 1392 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1393 set_btype(s, 2); 1394 } 1395 } 1396 1397 static bool trans_BR(DisasContext *s, arg_r *a) 1398 { 1399 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1400 set_btype_for_br(s, a->rn); 1401 s->base.is_jmp = DISAS_JUMP; 1402 return true; 1403 } 1404 1405 static bool trans_BLR(DisasContext *s, arg_r *a) 1406 { 1407 TCGv_i64 dst = cpu_reg(s, a->rn); 1408 TCGv_i64 lr = cpu_reg(s, 30); 1409 if (dst == lr) { 1410 TCGv_i64 tmp = tcg_temp_new_i64(); 1411 tcg_gen_mov_i64(tmp, dst); 1412 dst = tmp; 1413 } 1414 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1415 gen_a64_set_pc(s, dst); 1416 set_btype_for_blr(s); 1417 s->base.is_jmp = DISAS_JUMP; 1418 return true; 1419 } 1420 1421 static bool trans_RET(DisasContext *s, arg_r *a) 1422 { 1423 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1424 s->base.is_jmp = DISAS_JUMP; 1425 return true; 1426 } 1427 1428 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1429 TCGv_i64 modifier, bool use_key_a) 1430 { 1431 TCGv_i64 truedst; 1432 /* 1433 * Return the branch target for a BRAA/RETA/etc, which is either 1434 * just the destination dst, or that value with the pauth check 1435 * done and the code removed from the high bits. 1436 */ 1437 if (!s->pauth_active) { 1438 return dst; 1439 } 1440 1441 truedst = tcg_temp_new_i64(); 1442 if (use_key_a) { 1443 gen_helper_autia(truedst, cpu_env, dst, modifier); 1444 } else { 1445 gen_helper_autib(truedst, cpu_env, dst, modifier); 1446 } 1447 return truedst; 1448 } 1449 1450 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1451 { 1452 TCGv_i64 dst; 1453 1454 if (!dc_isar_feature(aa64_pauth, s)) { 1455 return false; 1456 } 1457 1458 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1459 gen_a64_set_pc(s, dst); 1460 set_btype_for_br(s, a->rn); 1461 s->base.is_jmp = DISAS_JUMP; 1462 return true; 1463 } 1464 1465 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1466 { 1467 TCGv_i64 dst, lr; 1468 1469 if (!dc_isar_feature(aa64_pauth, s)) { 1470 return false; 1471 } 1472 1473 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1474 lr = cpu_reg(s, 30); 1475 if (dst == lr) { 1476 TCGv_i64 tmp = tcg_temp_new_i64(); 1477 tcg_gen_mov_i64(tmp, dst); 1478 dst = tmp; 1479 } 1480 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1481 gen_a64_set_pc(s, dst); 1482 set_btype_for_blr(s); 1483 s->base.is_jmp = DISAS_JUMP; 1484 return true; 1485 } 1486 1487 static bool trans_RETA(DisasContext *s, arg_reta *a) 1488 { 1489 TCGv_i64 dst; 1490 1491 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1492 gen_a64_set_pc(s, dst); 1493 s->base.is_jmp = DISAS_JUMP; 1494 return true; 1495 } 1496 1497 static bool trans_BRA(DisasContext *s, arg_bra *a) 1498 { 1499 TCGv_i64 dst; 1500 1501 if (!dc_isar_feature(aa64_pauth, s)) { 1502 return false; 1503 } 1504 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1505 gen_a64_set_pc(s, dst); 1506 set_btype_for_br(s, a->rn); 1507 s->base.is_jmp = DISAS_JUMP; 1508 return true; 1509 } 1510 1511 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1512 { 1513 TCGv_i64 dst, lr; 1514 1515 if (!dc_isar_feature(aa64_pauth, s)) { 1516 return false; 1517 } 1518 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1519 lr = cpu_reg(s, 30); 1520 if (dst == lr) { 1521 TCGv_i64 tmp = tcg_temp_new_i64(); 1522 tcg_gen_mov_i64(tmp, dst); 1523 dst = tmp; 1524 } 1525 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1526 gen_a64_set_pc(s, dst); 1527 set_btype_for_blr(s); 1528 s->base.is_jmp = DISAS_JUMP; 1529 return true; 1530 } 1531 1532 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1533 { 1534 TCGv_i64 dst; 1535 1536 if (s->current_el == 0) { 1537 return false; 1538 } 1539 if (s->fgt_eret) { 1540 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1541 return true; 1542 } 1543 dst = tcg_temp_new_i64(); 1544 tcg_gen_ld_i64(dst, cpu_env, 1545 offsetof(CPUARMState, elr_el[s->current_el])); 1546 1547 translator_io_start(&s->base); 1548 1549 gen_helper_exception_return(cpu_env, dst); 1550 /* Must exit loop to check un-masked IRQs */ 1551 s->base.is_jmp = DISAS_EXIT; 1552 return true; 1553 } 1554 1555 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1556 { 1557 TCGv_i64 dst; 1558 1559 if (!dc_isar_feature(aa64_pauth, s)) { 1560 return false; 1561 } 1562 if (s->current_el == 0) { 1563 return false; 1564 } 1565 /* The FGT trap takes precedence over an auth trap. */ 1566 if (s->fgt_eret) { 1567 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1568 return true; 1569 } 1570 dst = tcg_temp_new_i64(); 1571 tcg_gen_ld_i64(dst, cpu_env, 1572 offsetof(CPUARMState, elr_el[s->current_el])); 1573 1574 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1575 1576 translator_io_start(&s->base); 1577 1578 gen_helper_exception_return(cpu_env, dst); 1579 /* Must exit loop to check un-masked IRQs */ 1580 s->base.is_jmp = DISAS_EXIT; 1581 return true; 1582 } 1583 1584 /* HINT instruction group, including various allocated HINTs */ 1585 static void handle_hint(DisasContext *s, uint32_t insn, 1586 unsigned int op1, unsigned int op2, unsigned int crm) 1587 { 1588 unsigned int selector = crm << 3 | op2; 1589 1590 if (op1 != 3) { 1591 unallocated_encoding(s); 1592 return; 1593 } 1594 1595 switch (selector) { 1596 case 0b00000: /* NOP */ 1597 break; 1598 case 0b00011: /* WFI */ 1599 s->base.is_jmp = DISAS_WFI; 1600 break; 1601 case 0b00001: /* YIELD */ 1602 /* When running in MTTCG we don't generate jumps to the yield and 1603 * WFE helpers as it won't affect the scheduling of other vCPUs. 1604 * If we wanted to more completely model WFE/SEV so we don't busy 1605 * spin unnecessarily we would need to do something more involved. 1606 */ 1607 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1608 s->base.is_jmp = DISAS_YIELD; 1609 } 1610 break; 1611 case 0b00010: /* WFE */ 1612 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1613 s->base.is_jmp = DISAS_WFE; 1614 } 1615 break; 1616 case 0b00100: /* SEV */ 1617 case 0b00101: /* SEVL */ 1618 case 0b00110: /* DGH */ 1619 /* we treat all as NOP at least for now */ 1620 break; 1621 case 0b00111: /* XPACLRI */ 1622 if (s->pauth_active) { 1623 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1624 } 1625 break; 1626 case 0b01000: /* PACIA1716 */ 1627 if (s->pauth_active) { 1628 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1629 } 1630 break; 1631 case 0b01010: /* PACIB1716 */ 1632 if (s->pauth_active) { 1633 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1634 } 1635 break; 1636 case 0b01100: /* AUTIA1716 */ 1637 if (s->pauth_active) { 1638 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1639 } 1640 break; 1641 case 0b01110: /* AUTIB1716 */ 1642 if (s->pauth_active) { 1643 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1644 } 1645 break; 1646 case 0b10000: /* ESB */ 1647 /* Without RAS, we must implement this as NOP. */ 1648 if (dc_isar_feature(aa64_ras, s)) { 1649 /* 1650 * QEMU does not have a source of physical SErrors, 1651 * so we are only concerned with virtual SErrors. 1652 * The pseudocode in the ARM for this case is 1653 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1654 * AArch64.vESBOperation(); 1655 * Most of the condition can be evaluated at translation time. 1656 * Test for EL2 present, and defer test for SEL2 to runtime. 1657 */ 1658 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1659 gen_helper_vesb(cpu_env); 1660 } 1661 } 1662 break; 1663 case 0b11000: /* PACIAZ */ 1664 if (s->pauth_active) { 1665 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1666 tcg_constant_i64(0)); 1667 } 1668 break; 1669 case 0b11001: /* PACIASP */ 1670 if (s->pauth_active) { 1671 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1672 } 1673 break; 1674 case 0b11010: /* PACIBZ */ 1675 if (s->pauth_active) { 1676 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1677 tcg_constant_i64(0)); 1678 } 1679 break; 1680 case 0b11011: /* PACIBSP */ 1681 if (s->pauth_active) { 1682 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1683 } 1684 break; 1685 case 0b11100: /* AUTIAZ */ 1686 if (s->pauth_active) { 1687 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1688 tcg_constant_i64(0)); 1689 } 1690 break; 1691 case 0b11101: /* AUTIASP */ 1692 if (s->pauth_active) { 1693 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1694 } 1695 break; 1696 case 0b11110: /* AUTIBZ */ 1697 if (s->pauth_active) { 1698 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1699 tcg_constant_i64(0)); 1700 } 1701 break; 1702 case 0b11111: /* AUTIBSP */ 1703 if (s->pauth_active) { 1704 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1705 } 1706 break; 1707 default: 1708 /* default specified as NOP equivalent */ 1709 break; 1710 } 1711 } 1712 1713 static void gen_clrex(DisasContext *s, uint32_t insn) 1714 { 1715 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1716 } 1717 1718 /* CLREX, DSB, DMB, ISB */ 1719 static void handle_sync(DisasContext *s, uint32_t insn, 1720 unsigned int op1, unsigned int op2, unsigned int crm) 1721 { 1722 TCGBar bar; 1723 1724 if (op1 != 3) { 1725 unallocated_encoding(s); 1726 return; 1727 } 1728 1729 switch (op2) { 1730 case 2: /* CLREX */ 1731 gen_clrex(s, insn); 1732 return; 1733 case 4: /* DSB */ 1734 case 5: /* DMB */ 1735 switch (crm & 3) { 1736 case 1: /* MBReqTypes_Reads */ 1737 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1738 break; 1739 case 2: /* MBReqTypes_Writes */ 1740 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1741 break; 1742 default: /* MBReqTypes_All */ 1743 bar = TCG_BAR_SC | TCG_MO_ALL; 1744 break; 1745 } 1746 tcg_gen_mb(bar); 1747 return; 1748 case 6: /* ISB */ 1749 /* We need to break the TB after this insn to execute 1750 * a self-modified code correctly and also to take 1751 * any pending interrupts immediately. 1752 */ 1753 reset_btype(s); 1754 gen_goto_tb(s, 0, 4); 1755 return; 1756 1757 case 7: /* SB */ 1758 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1759 goto do_unallocated; 1760 } 1761 /* 1762 * TODO: There is no speculation barrier opcode for TCG; 1763 * MB and end the TB instead. 1764 */ 1765 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1766 gen_goto_tb(s, 0, 4); 1767 return; 1768 1769 default: 1770 do_unallocated: 1771 unallocated_encoding(s); 1772 return; 1773 } 1774 } 1775 1776 static void gen_xaflag(void) 1777 { 1778 TCGv_i32 z = tcg_temp_new_i32(); 1779 1780 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1781 1782 /* 1783 * (!C & !Z) << 31 1784 * (!(C | Z)) << 31 1785 * ~((C | Z) << 31) 1786 * ~-(C | Z) 1787 * (C | Z) - 1 1788 */ 1789 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1790 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1791 1792 /* !(Z & C) */ 1793 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1794 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1795 1796 /* (!C & Z) << 31 -> -(Z & ~C) */ 1797 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1798 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1799 1800 /* C | Z */ 1801 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1802 } 1803 1804 static void gen_axflag(void) 1805 { 1806 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1807 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1808 1809 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1810 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1811 1812 tcg_gen_movi_i32(cpu_NF, 0); 1813 tcg_gen_movi_i32(cpu_VF, 0); 1814 } 1815 1816 /* MSR (immediate) - move immediate to processor state field */ 1817 static void handle_msr_i(DisasContext *s, uint32_t insn, 1818 unsigned int op1, unsigned int op2, unsigned int crm) 1819 { 1820 int op = op1 << 3 | op2; 1821 1822 /* End the TB by default, chaining is ok. */ 1823 s->base.is_jmp = DISAS_TOO_MANY; 1824 1825 switch (op) { 1826 case 0x00: /* CFINV */ 1827 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1828 goto do_unallocated; 1829 } 1830 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1831 s->base.is_jmp = DISAS_NEXT; 1832 break; 1833 1834 case 0x01: /* XAFlag */ 1835 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1836 goto do_unallocated; 1837 } 1838 gen_xaflag(); 1839 s->base.is_jmp = DISAS_NEXT; 1840 break; 1841 1842 case 0x02: /* AXFlag */ 1843 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1844 goto do_unallocated; 1845 } 1846 gen_axflag(); 1847 s->base.is_jmp = DISAS_NEXT; 1848 break; 1849 1850 case 0x03: /* UAO */ 1851 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1852 goto do_unallocated; 1853 } 1854 if (crm & 1) { 1855 set_pstate_bits(PSTATE_UAO); 1856 } else { 1857 clear_pstate_bits(PSTATE_UAO); 1858 } 1859 gen_rebuild_hflags(s); 1860 break; 1861 1862 case 0x04: /* PAN */ 1863 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1864 goto do_unallocated; 1865 } 1866 if (crm & 1) { 1867 set_pstate_bits(PSTATE_PAN); 1868 } else { 1869 clear_pstate_bits(PSTATE_PAN); 1870 } 1871 gen_rebuild_hflags(s); 1872 break; 1873 1874 case 0x05: /* SPSel */ 1875 if (s->current_el == 0) { 1876 goto do_unallocated; 1877 } 1878 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1879 break; 1880 1881 case 0x19: /* SSBS */ 1882 if (!dc_isar_feature(aa64_ssbs, s)) { 1883 goto do_unallocated; 1884 } 1885 if (crm & 1) { 1886 set_pstate_bits(PSTATE_SSBS); 1887 } else { 1888 clear_pstate_bits(PSTATE_SSBS); 1889 } 1890 /* Don't need to rebuild hflags since SSBS is a nop */ 1891 break; 1892 1893 case 0x1a: /* DIT */ 1894 if (!dc_isar_feature(aa64_dit, s)) { 1895 goto do_unallocated; 1896 } 1897 if (crm & 1) { 1898 set_pstate_bits(PSTATE_DIT); 1899 } else { 1900 clear_pstate_bits(PSTATE_DIT); 1901 } 1902 /* There's no need to rebuild hflags because DIT is a nop */ 1903 break; 1904 1905 case 0x1e: /* DAIFSet */ 1906 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1907 break; 1908 1909 case 0x1f: /* DAIFClear */ 1910 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1911 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1912 s->base.is_jmp = DISAS_UPDATE_EXIT; 1913 break; 1914 1915 case 0x1c: /* TCO */ 1916 if (dc_isar_feature(aa64_mte, s)) { 1917 /* Full MTE is enabled -- set the TCO bit as directed. */ 1918 if (crm & 1) { 1919 set_pstate_bits(PSTATE_TCO); 1920 } else { 1921 clear_pstate_bits(PSTATE_TCO); 1922 } 1923 gen_rebuild_hflags(s); 1924 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1925 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1926 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1927 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1928 s->base.is_jmp = DISAS_NEXT; 1929 } else { 1930 goto do_unallocated; 1931 } 1932 break; 1933 1934 case 0x1b: /* SVCR* */ 1935 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 1936 goto do_unallocated; 1937 } 1938 if (sme_access_check(s)) { 1939 int old = s->pstate_sm | (s->pstate_za << 1); 1940 int new = (crm & 1) * 3; 1941 int msk = (crm >> 1) & 3; 1942 1943 if ((old ^ new) & msk) { 1944 /* At least one bit changes. */ 1945 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 1946 tcg_constant_i32(msk)); 1947 } else { 1948 s->base.is_jmp = DISAS_NEXT; 1949 } 1950 } 1951 break; 1952 1953 default: 1954 do_unallocated: 1955 unallocated_encoding(s); 1956 return; 1957 } 1958 } 1959 1960 static void gen_get_nzcv(TCGv_i64 tcg_rt) 1961 { 1962 TCGv_i32 tmp = tcg_temp_new_i32(); 1963 TCGv_i32 nzcv = tcg_temp_new_i32(); 1964 1965 /* build bit 31, N */ 1966 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 1967 /* build bit 30, Z */ 1968 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 1969 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 1970 /* build bit 29, C */ 1971 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 1972 /* build bit 28, V */ 1973 tcg_gen_shri_i32(tmp, cpu_VF, 31); 1974 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 1975 /* generate result */ 1976 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 1977 } 1978 1979 static void gen_set_nzcv(TCGv_i64 tcg_rt) 1980 { 1981 TCGv_i32 nzcv = tcg_temp_new_i32(); 1982 1983 /* take NZCV from R[t] */ 1984 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 1985 1986 /* bit 31, N */ 1987 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 1988 /* bit 30, Z */ 1989 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 1990 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 1991 /* bit 29, C */ 1992 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 1993 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 1994 /* bit 28, V */ 1995 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 1996 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 1997 } 1998 1999 static void gen_sysreg_undef(DisasContext *s, bool isread, 2000 uint8_t op0, uint8_t op1, uint8_t op2, 2001 uint8_t crn, uint8_t crm, uint8_t rt) 2002 { 2003 /* 2004 * Generate code to emit an UNDEF with correct syndrome 2005 * information for a failed system register access. 2006 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2007 * but if FEAT_IDST is implemented then read accesses to registers 2008 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2009 * syndrome. 2010 */ 2011 uint32_t syndrome; 2012 2013 if (isread && dc_isar_feature(aa64_ids, s) && 2014 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2015 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2016 } else { 2017 syndrome = syn_uncategorized(); 2018 } 2019 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2020 } 2021 2022 /* MRS - move from system register 2023 * MSR (register) - move to system register 2024 * SYS 2025 * SYSL 2026 * These are all essentially the same insn in 'read' and 'write' 2027 * versions, with varying op0 fields. 2028 */ 2029 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2030 unsigned int op0, unsigned int op1, unsigned int op2, 2031 unsigned int crn, unsigned int crm, unsigned int rt) 2032 { 2033 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2034 crn, crm, op0, op1, op2); 2035 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2036 bool need_exit_tb = false; 2037 TCGv_ptr tcg_ri = NULL; 2038 TCGv_i64 tcg_rt; 2039 2040 if (!ri) { 2041 /* Unknown register; this might be a guest error or a QEMU 2042 * unimplemented feature. 2043 */ 2044 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2045 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2046 isread ? "read" : "write", op0, op1, crn, crm, op2); 2047 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2048 return; 2049 } 2050 2051 /* Check access permissions */ 2052 if (!cp_access_ok(s->current_el, ri, isread)) { 2053 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2054 return; 2055 } 2056 2057 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2058 /* Emit code to perform further access permissions checks at 2059 * runtime; this may result in an exception. 2060 */ 2061 uint32_t syndrome; 2062 2063 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2064 gen_a64_update_pc(s, 0); 2065 tcg_ri = tcg_temp_new_ptr(); 2066 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2067 tcg_constant_i32(key), 2068 tcg_constant_i32(syndrome), 2069 tcg_constant_i32(isread)); 2070 } else if (ri->type & ARM_CP_RAISES_EXC) { 2071 /* 2072 * The readfn or writefn might raise an exception; 2073 * synchronize the CPU state in case it does. 2074 */ 2075 gen_a64_update_pc(s, 0); 2076 } 2077 2078 /* Handle special cases first */ 2079 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2080 case 0: 2081 break; 2082 case ARM_CP_NOP: 2083 return; 2084 case ARM_CP_NZCV: 2085 tcg_rt = cpu_reg(s, rt); 2086 if (isread) { 2087 gen_get_nzcv(tcg_rt); 2088 } else { 2089 gen_set_nzcv(tcg_rt); 2090 } 2091 return; 2092 case ARM_CP_CURRENTEL: 2093 /* Reads as current EL value from pstate, which is 2094 * guaranteed to be constant by the tb flags. 2095 */ 2096 tcg_rt = cpu_reg(s, rt); 2097 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2098 return; 2099 case ARM_CP_DC_ZVA: 2100 /* Writes clear the aligned block of memory which rt points into. */ 2101 if (s->mte_active[0]) { 2102 int desc = 0; 2103 2104 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2105 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2106 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2107 2108 tcg_rt = tcg_temp_new_i64(); 2109 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2110 tcg_constant_i32(desc), cpu_reg(s, rt)); 2111 } else { 2112 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2113 } 2114 gen_helper_dc_zva(cpu_env, tcg_rt); 2115 return; 2116 case ARM_CP_DC_GVA: 2117 { 2118 TCGv_i64 clean_addr, tag; 2119 2120 /* 2121 * DC_GVA, like DC_ZVA, requires that we supply the original 2122 * pointer for an invalid page. Probe that address first. 2123 */ 2124 tcg_rt = cpu_reg(s, rt); 2125 clean_addr = clean_data_tbi(s, tcg_rt); 2126 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2127 2128 if (s->ata) { 2129 /* Extract the tag from the register to match STZGM. */ 2130 tag = tcg_temp_new_i64(); 2131 tcg_gen_shri_i64(tag, tcg_rt, 56); 2132 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2133 } 2134 } 2135 return; 2136 case ARM_CP_DC_GZVA: 2137 { 2138 TCGv_i64 clean_addr, tag; 2139 2140 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2141 tcg_rt = cpu_reg(s, rt); 2142 clean_addr = clean_data_tbi(s, tcg_rt); 2143 gen_helper_dc_zva(cpu_env, clean_addr); 2144 2145 if (s->ata) { 2146 /* Extract the tag from the register to match STZGM. */ 2147 tag = tcg_temp_new_i64(); 2148 tcg_gen_shri_i64(tag, tcg_rt, 56); 2149 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2150 } 2151 } 2152 return; 2153 default: 2154 g_assert_not_reached(); 2155 } 2156 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2157 return; 2158 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2159 return; 2160 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2161 return; 2162 } 2163 2164 if (ri->type & ARM_CP_IO) { 2165 /* I/O operations must end the TB here (whether read or write) */ 2166 need_exit_tb = translator_io_start(&s->base); 2167 } 2168 2169 tcg_rt = cpu_reg(s, rt); 2170 2171 if (isread) { 2172 if (ri->type & ARM_CP_CONST) { 2173 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2174 } else if (ri->readfn) { 2175 if (!tcg_ri) { 2176 tcg_ri = gen_lookup_cp_reg(key); 2177 } 2178 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2179 } else { 2180 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2181 } 2182 } else { 2183 if (ri->type & ARM_CP_CONST) { 2184 /* If not forbidden by access permissions, treat as WI */ 2185 return; 2186 } else if (ri->writefn) { 2187 if (!tcg_ri) { 2188 tcg_ri = gen_lookup_cp_reg(key); 2189 } 2190 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2191 } else { 2192 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2193 } 2194 } 2195 2196 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2197 /* 2198 * A write to any coprocessor regiser that ends a TB 2199 * must rebuild the hflags for the next TB. 2200 */ 2201 gen_rebuild_hflags(s); 2202 /* 2203 * We default to ending the TB on a coprocessor register write, 2204 * but allow this to be suppressed by the register definition 2205 * (usually only necessary to work around guest bugs). 2206 */ 2207 need_exit_tb = true; 2208 } 2209 if (need_exit_tb) { 2210 s->base.is_jmp = DISAS_UPDATE_EXIT; 2211 } 2212 } 2213 2214 /* System 2215 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2216 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2217 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2218 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2219 */ 2220 static void disas_system(DisasContext *s, uint32_t insn) 2221 { 2222 unsigned int l, op0, op1, crn, crm, op2, rt; 2223 l = extract32(insn, 21, 1); 2224 op0 = extract32(insn, 19, 2); 2225 op1 = extract32(insn, 16, 3); 2226 crn = extract32(insn, 12, 4); 2227 crm = extract32(insn, 8, 4); 2228 op2 = extract32(insn, 5, 3); 2229 rt = extract32(insn, 0, 5); 2230 2231 if (op0 == 0) { 2232 if (l || rt != 31) { 2233 unallocated_encoding(s); 2234 return; 2235 } 2236 switch (crn) { 2237 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2238 handle_hint(s, insn, op1, op2, crm); 2239 break; 2240 case 3: /* CLREX, DSB, DMB, ISB */ 2241 handle_sync(s, insn, op1, op2, crm); 2242 break; 2243 case 4: /* MSR (immediate) */ 2244 handle_msr_i(s, insn, op1, op2, crm); 2245 break; 2246 default: 2247 unallocated_encoding(s); 2248 break; 2249 } 2250 return; 2251 } 2252 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2253 } 2254 2255 /* Exception generation 2256 * 2257 * 31 24 23 21 20 5 4 2 1 0 2258 * +-----------------+-----+------------------------+-----+----+ 2259 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2260 * +-----------------------+------------------------+----------+ 2261 */ 2262 static void disas_exc(DisasContext *s, uint32_t insn) 2263 { 2264 int opc = extract32(insn, 21, 3); 2265 int op2_ll = extract32(insn, 0, 5); 2266 int imm16 = extract32(insn, 5, 16); 2267 uint32_t syndrome; 2268 2269 switch (opc) { 2270 case 0: 2271 /* For SVC, HVC and SMC we advance the single-step state 2272 * machine before taking the exception. This is architecturally 2273 * mandated, to ensure that single-stepping a system call 2274 * instruction works properly. 2275 */ 2276 switch (op2_ll) { 2277 case 1: /* SVC */ 2278 syndrome = syn_aa64_svc(imm16); 2279 if (s->fgt_svc) { 2280 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2281 break; 2282 } 2283 gen_ss_advance(s); 2284 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2285 break; 2286 case 2: /* HVC */ 2287 if (s->current_el == 0) { 2288 unallocated_encoding(s); 2289 break; 2290 } 2291 /* The pre HVC helper handles cases when HVC gets trapped 2292 * as an undefined insn by runtime configuration. 2293 */ 2294 gen_a64_update_pc(s, 0); 2295 gen_helper_pre_hvc(cpu_env); 2296 gen_ss_advance(s); 2297 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2298 break; 2299 case 3: /* SMC */ 2300 if (s->current_el == 0) { 2301 unallocated_encoding(s); 2302 break; 2303 } 2304 gen_a64_update_pc(s, 0); 2305 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2306 gen_ss_advance(s); 2307 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2308 break; 2309 default: 2310 unallocated_encoding(s); 2311 break; 2312 } 2313 break; 2314 case 1: 2315 if (op2_ll != 0) { 2316 unallocated_encoding(s); 2317 break; 2318 } 2319 /* BRK */ 2320 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2321 break; 2322 case 2: 2323 if (op2_ll != 0) { 2324 unallocated_encoding(s); 2325 break; 2326 } 2327 /* HLT. This has two purposes. 2328 * Architecturally, it is an external halting debug instruction. 2329 * Since QEMU doesn't implement external debug, we treat this as 2330 * it is required for halting debug disabled: it will UNDEF. 2331 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2332 */ 2333 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2334 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2335 } else { 2336 unallocated_encoding(s); 2337 } 2338 break; 2339 case 5: 2340 if (op2_ll < 1 || op2_ll > 3) { 2341 unallocated_encoding(s); 2342 break; 2343 } 2344 /* DCPS1, DCPS2, DCPS3 */ 2345 unallocated_encoding(s); 2346 break; 2347 default: 2348 unallocated_encoding(s); 2349 break; 2350 } 2351 } 2352 2353 /* Branches, exception generating and system instructions */ 2354 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2355 { 2356 switch (extract32(insn, 25, 7)) { 2357 case 0x6a: /* Exception generation / System */ 2358 if (insn & (1 << 24)) { 2359 if (extract32(insn, 22, 2) == 0) { 2360 disas_system(s, insn); 2361 } else { 2362 unallocated_encoding(s); 2363 } 2364 } else { 2365 disas_exc(s, insn); 2366 } 2367 break; 2368 default: 2369 unallocated_encoding(s); 2370 break; 2371 } 2372 } 2373 2374 /* 2375 * Load/Store exclusive instructions are implemented by remembering 2376 * the value/address loaded, and seeing if these are the same 2377 * when the store is performed. This is not actually the architecturally 2378 * mandated semantics, but it works for typical guest code sequences 2379 * and avoids having to monitor regular stores. 2380 * 2381 * The store exclusive uses the atomic cmpxchg primitives to avoid 2382 * races in multi-threaded linux-user and when MTTCG softmmu is 2383 * enabled. 2384 */ 2385 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, 2386 TCGv_i64 addr, int size, bool is_pair) 2387 { 2388 int idx = get_mem_index(s); 2389 MemOp memop = s->be_data; 2390 2391 g_assert(size <= 3); 2392 if (is_pair) { 2393 g_assert(size >= 2); 2394 if (size == 2) { 2395 /* The pair must be single-copy atomic for the doubleword. */ 2396 memop |= MO_64 | MO_ALIGN; 2397 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2398 if (s->be_data == MO_LE) { 2399 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2400 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2401 } else { 2402 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2403 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2404 } 2405 } else { 2406 /* The pair must be single-copy atomic for *each* doubleword, not 2407 the entire quadword, however it must be quadword aligned. */ 2408 memop |= MO_64; 2409 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, 2410 memop | MO_ALIGN_16); 2411 2412 TCGv_i64 addr2 = tcg_temp_new_i64(); 2413 tcg_gen_addi_i64(addr2, addr, 8); 2414 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop); 2415 2416 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2417 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2418 } 2419 } else { 2420 memop |= size | MO_ALIGN; 2421 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2422 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2423 } 2424 tcg_gen_mov_i64(cpu_exclusive_addr, addr); 2425 } 2426 2427 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2428 TCGv_i64 addr, int size, int is_pair) 2429 { 2430 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2431 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2432 * [addr] = {Rt}; 2433 * if (is_pair) { 2434 * [addr + datasize] = {Rt2}; 2435 * } 2436 * {Rd} = 0; 2437 * } else { 2438 * {Rd} = 1; 2439 * } 2440 * env->exclusive_addr = -1; 2441 */ 2442 TCGLabel *fail_label = gen_new_label(); 2443 TCGLabel *done_label = gen_new_label(); 2444 TCGv_i64 tmp; 2445 2446 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label); 2447 2448 tmp = tcg_temp_new_i64(); 2449 if (is_pair) { 2450 if (size == 2) { 2451 if (s->be_data == MO_LE) { 2452 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2453 } else { 2454 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2455 } 2456 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2457 cpu_exclusive_val, tmp, 2458 get_mem_index(s), 2459 MO_64 | MO_ALIGN | s->be_data); 2460 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2461 } else { 2462 TCGv_i128 t16 = tcg_temp_new_i128(); 2463 TCGv_i128 c16 = tcg_temp_new_i128(); 2464 TCGv_i64 a, b; 2465 2466 if (s->be_data == MO_LE) { 2467 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2468 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2469 cpu_exclusive_high); 2470 } else { 2471 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2472 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2473 cpu_exclusive_val); 2474 } 2475 2476 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2477 get_mem_index(s), 2478 MO_128 | MO_ALIGN | s->be_data); 2479 2480 a = tcg_temp_new_i64(); 2481 b = tcg_temp_new_i64(); 2482 if (s->be_data == MO_LE) { 2483 tcg_gen_extr_i128_i64(a, b, t16); 2484 } else { 2485 tcg_gen_extr_i128_i64(b, a, t16); 2486 } 2487 2488 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2489 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2490 tcg_gen_or_i64(tmp, a, b); 2491 2492 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2493 } 2494 } else { 2495 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2496 cpu_reg(s, rt), get_mem_index(s), 2497 size | MO_ALIGN | s->be_data); 2498 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2499 } 2500 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2501 tcg_gen_br(done_label); 2502 2503 gen_set_label(fail_label); 2504 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2505 gen_set_label(done_label); 2506 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2507 } 2508 2509 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2510 int rn, int size) 2511 { 2512 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2513 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2514 int memidx = get_mem_index(s); 2515 TCGv_i64 clean_addr; 2516 2517 if (rn == 31) { 2518 gen_check_sp_alignment(s); 2519 } 2520 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size); 2521 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx, 2522 size | MO_ALIGN | s->be_data); 2523 } 2524 2525 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2526 int rn, int size) 2527 { 2528 TCGv_i64 s1 = cpu_reg(s, rs); 2529 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2530 TCGv_i64 t1 = cpu_reg(s, rt); 2531 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2532 TCGv_i64 clean_addr; 2533 int memidx = get_mem_index(s); 2534 2535 if (rn == 31) { 2536 gen_check_sp_alignment(s); 2537 } 2538 2539 /* This is a single atomic access, despite the "pair". */ 2540 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1); 2541 2542 if (size == 2) { 2543 TCGv_i64 cmp = tcg_temp_new_i64(); 2544 TCGv_i64 val = tcg_temp_new_i64(); 2545 2546 if (s->be_data == MO_LE) { 2547 tcg_gen_concat32_i64(val, t1, t2); 2548 tcg_gen_concat32_i64(cmp, s1, s2); 2549 } else { 2550 tcg_gen_concat32_i64(val, t2, t1); 2551 tcg_gen_concat32_i64(cmp, s2, s1); 2552 } 2553 2554 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, 2555 MO_64 | MO_ALIGN | s->be_data); 2556 2557 if (s->be_data == MO_LE) { 2558 tcg_gen_extr32_i64(s1, s2, cmp); 2559 } else { 2560 tcg_gen_extr32_i64(s2, s1, cmp); 2561 } 2562 } else { 2563 TCGv_i128 cmp = tcg_temp_new_i128(); 2564 TCGv_i128 val = tcg_temp_new_i128(); 2565 2566 if (s->be_data == MO_LE) { 2567 tcg_gen_concat_i64_i128(val, t1, t2); 2568 tcg_gen_concat_i64_i128(cmp, s1, s2); 2569 } else { 2570 tcg_gen_concat_i64_i128(val, t2, t1); 2571 tcg_gen_concat_i64_i128(cmp, s2, s1); 2572 } 2573 2574 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, 2575 MO_128 | MO_ALIGN | s->be_data); 2576 2577 if (s->be_data == MO_LE) { 2578 tcg_gen_extr_i128_i64(s1, s2, cmp); 2579 } else { 2580 tcg_gen_extr_i128_i64(s2, s1, cmp); 2581 } 2582 } 2583 } 2584 2585 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2586 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2587 */ 2588 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2589 { 2590 int opc0 = extract32(opc, 0, 1); 2591 int regsize; 2592 2593 if (is_signed) { 2594 regsize = opc0 ? 32 : 64; 2595 } else { 2596 regsize = size == 3 ? 64 : 32; 2597 } 2598 return regsize == 64; 2599 } 2600 2601 /* Load/store exclusive 2602 * 2603 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2604 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2605 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2606 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2607 * 2608 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2609 * L: 0 -> store, 1 -> load 2610 * o2: 0 -> exclusive, 1 -> not 2611 * o1: 0 -> single register, 1 -> register pair 2612 * o0: 1 -> load-acquire/store-release, 0 -> not 2613 */ 2614 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2615 { 2616 int rt = extract32(insn, 0, 5); 2617 int rn = extract32(insn, 5, 5); 2618 int rt2 = extract32(insn, 10, 5); 2619 int rs = extract32(insn, 16, 5); 2620 int is_lasr = extract32(insn, 15, 1); 2621 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2622 int size = extract32(insn, 30, 2); 2623 TCGv_i64 clean_addr; 2624 2625 switch (o2_L_o1_o0) { 2626 case 0x0: /* STXR */ 2627 case 0x1: /* STLXR */ 2628 if (rn == 31) { 2629 gen_check_sp_alignment(s); 2630 } 2631 if (is_lasr) { 2632 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2633 } 2634 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2635 true, rn != 31, size); 2636 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false); 2637 return; 2638 2639 case 0x4: /* LDXR */ 2640 case 0x5: /* LDAXR */ 2641 if (rn == 31) { 2642 gen_check_sp_alignment(s); 2643 } 2644 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2645 false, rn != 31, size); 2646 s->is_ldex = true; 2647 gen_load_exclusive(s, rt, rt2, clean_addr, size, false); 2648 if (is_lasr) { 2649 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2650 } 2651 return; 2652 2653 case 0x8: /* STLLR */ 2654 if (!dc_isar_feature(aa64_lor, s)) { 2655 break; 2656 } 2657 /* StoreLORelease is the same as Store-Release for QEMU. */ 2658 /* fall through */ 2659 case 0x9: /* STLR */ 2660 /* Generate ISS for non-exclusive accesses including LASR. */ 2661 if (rn == 31) { 2662 gen_check_sp_alignment(s); 2663 } 2664 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2665 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2666 true, rn != 31, size); 2667 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2668 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt, 2669 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2670 return; 2671 2672 case 0xc: /* LDLAR */ 2673 if (!dc_isar_feature(aa64_lor, s)) { 2674 break; 2675 } 2676 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2677 /* fall through */ 2678 case 0xd: /* LDAR */ 2679 /* Generate ISS for non-exclusive accesses including LASR. */ 2680 if (rn == 31) { 2681 gen_check_sp_alignment(s); 2682 } 2683 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2684 false, rn != 31, size); 2685 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2686 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true, 2687 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2688 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2689 return; 2690 2691 case 0x2: case 0x3: /* CASP / STXP */ 2692 if (size & 2) { /* STXP / STLXP */ 2693 if (rn == 31) { 2694 gen_check_sp_alignment(s); 2695 } 2696 if (is_lasr) { 2697 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2698 } 2699 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2700 true, rn != 31, size); 2701 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true); 2702 return; 2703 } 2704 if (rt2 == 31 2705 && ((rt | rs) & 1) == 0 2706 && dc_isar_feature(aa64_atomics, s)) { 2707 /* CASP / CASPL */ 2708 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2709 return; 2710 } 2711 break; 2712 2713 case 0x6: case 0x7: /* CASPA / LDXP */ 2714 if (size & 2) { /* LDXP / LDAXP */ 2715 if (rn == 31) { 2716 gen_check_sp_alignment(s); 2717 } 2718 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2719 false, rn != 31, size); 2720 s->is_ldex = true; 2721 gen_load_exclusive(s, rt, rt2, clean_addr, size, true); 2722 if (is_lasr) { 2723 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2724 } 2725 return; 2726 } 2727 if (rt2 == 31 2728 && ((rt | rs) & 1) == 0 2729 && dc_isar_feature(aa64_atomics, s)) { 2730 /* CASPA / CASPAL */ 2731 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2732 return; 2733 } 2734 break; 2735 2736 case 0xa: /* CAS */ 2737 case 0xb: /* CASL */ 2738 case 0xe: /* CASA */ 2739 case 0xf: /* CASAL */ 2740 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2741 gen_compare_and_swap(s, rs, rt, rn, size); 2742 return; 2743 } 2744 break; 2745 } 2746 unallocated_encoding(s); 2747 } 2748 2749 /* 2750 * Load register (literal) 2751 * 2752 * 31 30 29 27 26 25 24 23 5 4 0 2753 * +-----+-------+---+-----+-------------------+-------+ 2754 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2755 * +-----+-------+---+-----+-------------------+-------+ 2756 * 2757 * V: 1 -> vector (simd/fp) 2758 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2759 * 10-> 32 bit signed, 11 -> prefetch 2760 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2761 */ 2762 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2763 { 2764 int rt = extract32(insn, 0, 5); 2765 int64_t imm = sextract32(insn, 5, 19) << 2; 2766 bool is_vector = extract32(insn, 26, 1); 2767 int opc = extract32(insn, 30, 2); 2768 bool is_signed = false; 2769 int size = 2; 2770 TCGv_i64 tcg_rt, clean_addr; 2771 2772 if (is_vector) { 2773 if (opc == 3) { 2774 unallocated_encoding(s); 2775 return; 2776 } 2777 size = 2 + opc; 2778 if (!fp_access_check(s)) { 2779 return; 2780 } 2781 } else { 2782 if (opc == 3) { 2783 /* PRFM (literal) : prefetch */ 2784 return; 2785 } 2786 size = 2 + extract32(opc, 0, 1); 2787 is_signed = extract32(opc, 1, 1); 2788 } 2789 2790 tcg_rt = cpu_reg(s, rt); 2791 2792 clean_addr = tcg_temp_new_i64(); 2793 gen_pc_plus_diff(s, clean_addr, imm); 2794 if (is_vector) { 2795 do_fp_ld(s, rt, clean_addr, size); 2796 } else { 2797 /* Only unsigned 32bit loads target 32bit registers. */ 2798 bool iss_sf = opc != 0; 2799 2800 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 2801 false, true, rt, iss_sf, false); 2802 } 2803 } 2804 2805 /* 2806 * LDNP (Load Pair - non-temporal hint) 2807 * LDP (Load Pair - non vector) 2808 * LDPSW (Load Pair Signed Word - non vector) 2809 * STNP (Store Pair - non-temporal hint) 2810 * STP (Store Pair - non vector) 2811 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2812 * LDP (Load Pair of SIMD&FP) 2813 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2814 * STP (Store Pair of SIMD&FP) 2815 * 2816 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2817 * +-----+-------+---+---+-------+---+-----------------------------+ 2818 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2819 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2820 * 2821 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2822 * LDPSW/STGP 01 2823 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2824 * V: 0 -> GPR, 1 -> Vector 2825 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2826 * 10 -> signed offset, 11 -> pre-index 2827 * L: 0 -> Store 1 -> Load 2828 * 2829 * Rt, Rt2 = GPR or SIMD registers to be stored 2830 * Rn = general purpose register containing address 2831 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2832 */ 2833 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2834 { 2835 int rt = extract32(insn, 0, 5); 2836 int rn = extract32(insn, 5, 5); 2837 int rt2 = extract32(insn, 10, 5); 2838 uint64_t offset = sextract64(insn, 15, 7); 2839 int index = extract32(insn, 23, 2); 2840 bool is_vector = extract32(insn, 26, 1); 2841 bool is_load = extract32(insn, 22, 1); 2842 int opc = extract32(insn, 30, 2); 2843 2844 bool is_signed = false; 2845 bool postindex = false; 2846 bool wback = false; 2847 bool set_tag = false; 2848 2849 TCGv_i64 clean_addr, dirty_addr; 2850 2851 int size; 2852 2853 if (opc == 3) { 2854 unallocated_encoding(s); 2855 return; 2856 } 2857 2858 if (is_vector) { 2859 size = 2 + opc; 2860 } else if (opc == 1 && !is_load) { 2861 /* STGP */ 2862 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2863 unallocated_encoding(s); 2864 return; 2865 } 2866 size = 3; 2867 set_tag = true; 2868 } else { 2869 size = 2 + extract32(opc, 1, 1); 2870 is_signed = extract32(opc, 0, 1); 2871 if (!is_load && is_signed) { 2872 unallocated_encoding(s); 2873 return; 2874 } 2875 } 2876 2877 switch (index) { 2878 case 1: /* post-index */ 2879 postindex = true; 2880 wback = true; 2881 break; 2882 case 0: 2883 /* signed offset with "non-temporal" hint. Since we don't emulate 2884 * caches we don't care about hints to the cache system about 2885 * data access patterns, and handle this identically to plain 2886 * signed offset. 2887 */ 2888 if (is_signed) { 2889 /* There is no non-temporal-hint version of LDPSW */ 2890 unallocated_encoding(s); 2891 return; 2892 } 2893 postindex = false; 2894 break; 2895 case 2: /* signed offset, rn not updated */ 2896 postindex = false; 2897 break; 2898 case 3: /* pre-index */ 2899 postindex = false; 2900 wback = true; 2901 break; 2902 } 2903 2904 if (is_vector && !fp_access_check(s)) { 2905 return; 2906 } 2907 2908 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2909 2910 if (rn == 31) { 2911 gen_check_sp_alignment(s); 2912 } 2913 2914 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2915 if (!postindex) { 2916 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2917 } 2918 2919 if (set_tag) { 2920 if (!s->ata) { 2921 /* 2922 * TODO: We could rely on the stores below, at least for 2923 * system mode, if we arrange to add MO_ALIGN_16. 2924 */ 2925 gen_helper_stg_stub(cpu_env, dirty_addr); 2926 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 2927 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 2928 } else { 2929 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 2930 } 2931 } 2932 2933 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 2934 (wback || rn != 31) && !set_tag, 2 << size); 2935 2936 if (is_vector) { 2937 if (is_load) { 2938 do_fp_ld(s, rt, clean_addr, size); 2939 } else { 2940 do_fp_st(s, rt, clean_addr, size); 2941 } 2942 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2943 if (is_load) { 2944 do_fp_ld(s, rt2, clean_addr, size); 2945 } else { 2946 do_fp_st(s, rt2, clean_addr, size); 2947 } 2948 } else { 2949 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2950 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 2951 2952 if (is_load) { 2953 TCGv_i64 tmp = tcg_temp_new_i64(); 2954 2955 /* Do not modify tcg_rt before recognizing any exception 2956 * from the second load. 2957 */ 2958 do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN, 2959 false, false, 0, false, false); 2960 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2961 do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN, 2962 false, false, 0, false, false); 2963 2964 tcg_gen_mov_i64(tcg_rt, tmp); 2965 } else { 2966 do_gpr_st(s, tcg_rt, clean_addr, size, 2967 false, 0, false, false); 2968 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2969 do_gpr_st(s, tcg_rt2, clean_addr, size, 2970 false, 0, false, false); 2971 } 2972 } 2973 2974 if (wback) { 2975 if (postindex) { 2976 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2977 } 2978 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 2979 } 2980 } 2981 2982 /* 2983 * Load/store (immediate post-indexed) 2984 * Load/store (immediate pre-indexed) 2985 * Load/store (unscaled immediate) 2986 * 2987 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 2988 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 2989 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 2990 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 2991 * 2992 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 2993 10 -> unprivileged 2994 * V = 0 -> non-vector 2995 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 2996 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 2997 */ 2998 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 2999 int opc, 3000 int size, 3001 int rt, 3002 bool is_vector) 3003 { 3004 int rn = extract32(insn, 5, 5); 3005 int imm9 = sextract32(insn, 12, 9); 3006 int idx = extract32(insn, 10, 2); 3007 bool is_signed = false; 3008 bool is_store = false; 3009 bool is_extended = false; 3010 bool is_unpriv = (idx == 2); 3011 bool iss_valid; 3012 bool post_index; 3013 bool writeback; 3014 int memidx; 3015 3016 TCGv_i64 clean_addr, dirty_addr; 3017 3018 if (is_vector) { 3019 size |= (opc & 2) << 1; 3020 if (size > 4 || is_unpriv) { 3021 unallocated_encoding(s); 3022 return; 3023 } 3024 is_store = ((opc & 1) == 0); 3025 if (!fp_access_check(s)) { 3026 return; 3027 } 3028 } else { 3029 if (size == 3 && opc == 2) { 3030 /* PRFM - prefetch */ 3031 if (idx != 0) { 3032 unallocated_encoding(s); 3033 return; 3034 } 3035 return; 3036 } 3037 if (opc == 3 && size > 1) { 3038 unallocated_encoding(s); 3039 return; 3040 } 3041 is_store = (opc == 0); 3042 is_signed = extract32(opc, 1, 1); 3043 is_extended = (size < 3) && extract32(opc, 0, 1); 3044 } 3045 3046 switch (idx) { 3047 case 0: 3048 case 2: 3049 post_index = false; 3050 writeback = false; 3051 break; 3052 case 1: 3053 post_index = true; 3054 writeback = true; 3055 break; 3056 case 3: 3057 post_index = false; 3058 writeback = true; 3059 break; 3060 default: 3061 g_assert_not_reached(); 3062 } 3063 3064 iss_valid = !is_vector && !writeback; 3065 3066 if (rn == 31) { 3067 gen_check_sp_alignment(s); 3068 } 3069 3070 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3071 if (!post_index) { 3072 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3073 } 3074 3075 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3076 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3077 writeback || rn != 31, 3078 size, is_unpriv, memidx); 3079 3080 if (is_vector) { 3081 if (is_store) { 3082 do_fp_st(s, rt, clean_addr, size); 3083 } else { 3084 do_fp_ld(s, rt, clean_addr, size); 3085 } 3086 } else { 3087 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3088 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3089 3090 if (is_store) { 3091 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx, 3092 iss_valid, rt, iss_sf, false); 3093 } else { 3094 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3095 is_extended, memidx, 3096 iss_valid, rt, iss_sf, false); 3097 } 3098 } 3099 3100 if (writeback) { 3101 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3102 if (post_index) { 3103 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3104 } 3105 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3106 } 3107 } 3108 3109 /* 3110 * Load/store (register offset) 3111 * 3112 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3113 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3114 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3115 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3116 * 3117 * For non-vector: 3118 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3119 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3120 * For vector: 3121 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3122 * opc<0>: 0 -> store, 1 -> load 3123 * V: 1 -> vector/simd 3124 * opt: extend encoding (see DecodeRegExtend) 3125 * S: if S=1 then scale (essentially index by sizeof(size)) 3126 * Rt: register to transfer into/out of 3127 * Rn: address register or SP for base 3128 * Rm: offset register or ZR for offset 3129 */ 3130 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3131 int opc, 3132 int size, 3133 int rt, 3134 bool is_vector) 3135 { 3136 int rn = extract32(insn, 5, 5); 3137 int shift = extract32(insn, 12, 1); 3138 int rm = extract32(insn, 16, 5); 3139 int opt = extract32(insn, 13, 3); 3140 bool is_signed = false; 3141 bool is_store = false; 3142 bool is_extended = false; 3143 3144 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3145 3146 if (extract32(opt, 1, 1) == 0) { 3147 unallocated_encoding(s); 3148 return; 3149 } 3150 3151 if (is_vector) { 3152 size |= (opc & 2) << 1; 3153 if (size > 4) { 3154 unallocated_encoding(s); 3155 return; 3156 } 3157 is_store = !extract32(opc, 0, 1); 3158 if (!fp_access_check(s)) { 3159 return; 3160 } 3161 } else { 3162 if (size == 3 && opc == 2) { 3163 /* PRFM - prefetch */ 3164 return; 3165 } 3166 if (opc == 3 && size > 1) { 3167 unallocated_encoding(s); 3168 return; 3169 } 3170 is_store = (opc == 0); 3171 is_signed = extract32(opc, 1, 1); 3172 is_extended = (size < 3) && extract32(opc, 0, 1); 3173 } 3174 3175 if (rn == 31) { 3176 gen_check_sp_alignment(s); 3177 } 3178 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3179 3180 tcg_rm = read_cpu_reg(s, rm, 1); 3181 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3182 3183 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3184 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size); 3185 3186 if (is_vector) { 3187 if (is_store) { 3188 do_fp_st(s, rt, clean_addr, size); 3189 } else { 3190 do_fp_ld(s, rt, clean_addr, size); 3191 } 3192 } else { 3193 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3194 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3195 if (is_store) { 3196 do_gpr_st(s, tcg_rt, clean_addr, size, 3197 true, rt, iss_sf, false); 3198 } else { 3199 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3200 is_extended, true, rt, iss_sf, false); 3201 } 3202 } 3203 } 3204 3205 /* 3206 * Load/store (unsigned immediate) 3207 * 3208 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3209 * +----+-------+---+-----+-----+------------+-------+------+ 3210 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3211 * +----+-------+---+-----+-----+------------+-------+------+ 3212 * 3213 * For non-vector: 3214 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3215 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3216 * For vector: 3217 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3218 * opc<0>: 0 -> store, 1 -> load 3219 * Rn: base address register (inc SP) 3220 * Rt: target register 3221 */ 3222 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3223 int opc, 3224 int size, 3225 int rt, 3226 bool is_vector) 3227 { 3228 int rn = extract32(insn, 5, 5); 3229 unsigned int imm12 = extract32(insn, 10, 12); 3230 unsigned int offset; 3231 3232 TCGv_i64 clean_addr, dirty_addr; 3233 3234 bool is_store; 3235 bool is_signed = false; 3236 bool is_extended = false; 3237 3238 if (is_vector) { 3239 size |= (opc & 2) << 1; 3240 if (size > 4) { 3241 unallocated_encoding(s); 3242 return; 3243 } 3244 is_store = !extract32(opc, 0, 1); 3245 if (!fp_access_check(s)) { 3246 return; 3247 } 3248 } else { 3249 if (size == 3 && opc == 2) { 3250 /* PRFM - prefetch */ 3251 return; 3252 } 3253 if (opc == 3 && size > 1) { 3254 unallocated_encoding(s); 3255 return; 3256 } 3257 is_store = (opc == 0); 3258 is_signed = extract32(opc, 1, 1); 3259 is_extended = (size < 3) && extract32(opc, 0, 1); 3260 } 3261 3262 if (rn == 31) { 3263 gen_check_sp_alignment(s); 3264 } 3265 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3266 offset = imm12 << size; 3267 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3268 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size); 3269 3270 if (is_vector) { 3271 if (is_store) { 3272 do_fp_st(s, rt, clean_addr, size); 3273 } else { 3274 do_fp_ld(s, rt, clean_addr, size); 3275 } 3276 } else { 3277 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3278 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3279 if (is_store) { 3280 do_gpr_st(s, tcg_rt, clean_addr, size, 3281 true, rt, iss_sf, false); 3282 } else { 3283 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3284 is_extended, true, rt, iss_sf, false); 3285 } 3286 } 3287 } 3288 3289 /* Atomic memory operations 3290 * 3291 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3292 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3293 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3294 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3295 * 3296 * Rt: the result register 3297 * Rn: base address or SP 3298 * Rs: the source register for the operation 3299 * V: vector flag (always 0 as of v8.3) 3300 * A: acquire flag 3301 * R: release flag 3302 */ 3303 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3304 int size, int rt, bool is_vector) 3305 { 3306 int rs = extract32(insn, 16, 5); 3307 int rn = extract32(insn, 5, 5); 3308 int o3_opc = extract32(insn, 12, 4); 3309 bool r = extract32(insn, 22, 1); 3310 bool a = extract32(insn, 23, 1); 3311 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3312 AtomicThreeOpFn *fn = NULL; 3313 MemOp mop = s->be_data | size | MO_ALIGN; 3314 3315 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3316 unallocated_encoding(s); 3317 return; 3318 } 3319 switch (o3_opc) { 3320 case 000: /* LDADD */ 3321 fn = tcg_gen_atomic_fetch_add_i64; 3322 break; 3323 case 001: /* LDCLR */ 3324 fn = tcg_gen_atomic_fetch_and_i64; 3325 break; 3326 case 002: /* LDEOR */ 3327 fn = tcg_gen_atomic_fetch_xor_i64; 3328 break; 3329 case 003: /* LDSET */ 3330 fn = tcg_gen_atomic_fetch_or_i64; 3331 break; 3332 case 004: /* LDSMAX */ 3333 fn = tcg_gen_atomic_fetch_smax_i64; 3334 mop |= MO_SIGN; 3335 break; 3336 case 005: /* LDSMIN */ 3337 fn = tcg_gen_atomic_fetch_smin_i64; 3338 mop |= MO_SIGN; 3339 break; 3340 case 006: /* LDUMAX */ 3341 fn = tcg_gen_atomic_fetch_umax_i64; 3342 break; 3343 case 007: /* LDUMIN */ 3344 fn = tcg_gen_atomic_fetch_umin_i64; 3345 break; 3346 case 010: /* SWP */ 3347 fn = tcg_gen_atomic_xchg_i64; 3348 break; 3349 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3350 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3351 rs != 31 || a != 1 || r != 0) { 3352 unallocated_encoding(s); 3353 return; 3354 } 3355 break; 3356 default: 3357 unallocated_encoding(s); 3358 return; 3359 } 3360 3361 if (rn == 31) { 3362 gen_check_sp_alignment(s); 3363 } 3364 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size); 3365 3366 if (o3_opc == 014) { 3367 /* 3368 * LDAPR* are a special case because they are a simple load, not a 3369 * fetch-and-do-something op. 3370 * The architectural consistency requirements here are weaker than 3371 * full load-acquire (we only need "load-acquire processor consistent"), 3372 * but we choose to implement them as full LDAQ. 3373 */ 3374 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, 3375 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3376 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3377 return; 3378 } 3379 3380 tcg_rs = read_cpu_reg(s, rs, true); 3381 tcg_rt = cpu_reg(s, rt); 3382 3383 if (o3_opc == 1) { /* LDCLR */ 3384 tcg_gen_not_i64(tcg_rs, tcg_rs); 3385 } 3386 3387 /* The tcg atomic primitives are all full barriers. Therefore we 3388 * can ignore the Acquire and Release bits of this instruction. 3389 */ 3390 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3391 3392 if ((mop & MO_SIGN) && size != MO_64) { 3393 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3394 } 3395 } 3396 3397 /* 3398 * PAC memory operations 3399 * 3400 * 31 30 27 26 24 22 21 12 11 10 5 0 3401 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3402 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3403 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3404 * 3405 * Rt: the result register 3406 * Rn: base address or SP 3407 * V: vector flag (always 0 as of v8.3) 3408 * M: clear for key DA, set for key DB 3409 * W: pre-indexing flag 3410 * S: sign for imm9. 3411 */ 3412 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3413 int size, int rt, bool is_vector) 3414 { 3415 int rn = extract32(insn, 5, 5); 3416 bool is_wback = extract32(insn, 11, 1); 3417 bool use_key_a = !extract32(insn, 23, 1); 3418 int offset; 3419 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3420 3421 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3422 unallocated_encoding(s); 3423 return; 3424 } 3425 3426 if (rn == 31) { 3427 gen_check_sp_alignment(s); 3428 } 3429 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3430 3431 if (s->pauth_active) { 3432 if (use_key_a) { 3433 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3434 tcg_constant_i64(0)); 3435 } else { 3436 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3437 tcg_constant_i64(0)); 3438 } 3439 } 3440 3441 /* Form the 10-bit signed, scaled offset. */ 3442 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3443 offset = sextract32(offset << size, 0, 10 + size); 3444 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3445 3446 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3447 clean_addr = gen_mte_check1(s, dirty_addr, false, 3448 is_wback || rn != 31, size); 3449 3450 tcg_rt = cpu_reg(s, rt); 3451 do_gpr_ld(s, tcg_rt, clean_addr, size, 3452 /* extend */ false, /* iss_valid */ !is_wback, 3453 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3454 3455 if (is_wback) { 3456 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3457 } 3458 } 3459 3460 /* 3461 * LDAPR/STLR (unscaled immediate) 3462 * 3463 * 31 30 24 22 21 12 10 5 0 3464 * +------+-------------+-----+---+--------+-----+----+-----+ 3465 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3466 * +------+-------------+-----+---+--------+-----+----+-----+ 3467 * 3468 * Rt: source or destination register 3469 * Rn: base register 3470 * imm9: unscaled immediate offset 3471 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3472 * size: size of load/store 3473 */ 3474 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3475 { 3476 int rt = extract32(insn, 0, 5); 3477 int rn = extract32(insn, 5, 5); 3478 int offset = sextract32(insn, 12, 9); 3479 int opc = extract32(insn, 22, 2); 3480 int size = extract32(insn, 30, 2); 3481 TCGv_i64 clean_addr, dirty_addr; 3482 bool is_store = false; 3483 bool extend = false; 3484 bool iss_sf; 3485 MemOp mop; 3486 3487 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3488 unallocated_encoding(s); 3489 return; 3490 } 3491 3492 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3493 mop = size | MO_ALIGN; 3494 3495 switch (opc) { 3496 case 0: /* STLURB */ 3497 is_store = true; 3498 break; 3499 case 1: /* LDAPUR* */ 3500 break; 3501 case 2: /* LDAPURS* 64-bit variant */ 3502 if (size == 3) { 3503 unallocated_encoding(s); 3504 return; 3505 } 3506 mop |= MO_SIGN; 3507 break; 3508 case 3: /* LDAPURS* 32-bit variant */ 3509 if (size > 1) { 3510 unallocated_encoding(s); 3511 return; 3512 } 3513 mop |= MO_SIGN; 3514 extend = true; /* zero-extend 32->64 after signed load */ 3515 break; 3516 default: 3517 g_assert_not_reached(); 3518 } 3519 3520 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3521 3522 if (rn == 31) { 3523 gen_check_sp_alignment(s); 3524 } 3525 3526 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3527 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3528 clean_addr = clean_data_tbi(s, dirty_addr); 3529 3530 if (is_store) { 3531 /* Store-Release semantics */ 3532 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3533 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3534 } else { 3535 /* 3536 * Load-AcquirePC semantics; we implement as the slightly more 3537 * restrictive Load-Acquire. 3538 */ 3539 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3540 extend, true, rt, iss_sf, true); 3541 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3542 } 3543 } 3544 3545 /* Load/store register (all forms) */ 3546 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3547 { 3548 int rt = extract32(insn, 0, 5); 3549 int opc = extract32(insn, 22, 2); 3550 bool is_vector = extract32(insn, 26, 1); 3551 int size = extract32(insn, 30, 2); 3552 3553 switch (extract32(insn, 24, 2)) { 3554 case 0: 3555 if (extract32(insn, 21, 1) == 0) { 3556 /* Load/store register (unscaled immediate) 3557 * Load/store immediate pre/post-indexed 3558 * Load/store register unprivileged 3559 */ 3560 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3561 return; 3562 } 3563 switch (extract32(insn, 10, 2)) { 3564 case 0: 3565 disas_ldst_atomic(s, insn, size, rt, is_vector); 3566 return; 3567 case 2: 3568 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3569 return; 3570 default: 3571 disas_ldst_pac(s, insn, size, rt, is_vector); 3572 return; 3573 } 3574 break; 3575 case 1: 3576 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3577 return; 3578 } 3579 unallocated_encoding(s); 3580 } 3581 3582 /* AdvSIMD load/store multiple structures 3583 * 3584 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3585 * +---+---+---------------+---+-------------+--------+------+------+------+ 3586 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3587 * +---+---+---------------+---+-------------+--------+------+------+------+ 3588 * 3589 * AdvSIMD load/store multiple structures (post-indexed) 3590 * 3591 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3592 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3593 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3594 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3595 * 3596 * Rt: first (or only) SIMD&FP register to be transferred 3597 * Rn: base address or SP 3598 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3599 */ 3600 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3601 { 3602 int rt = extract32(insn, 0, 5); 3603 int rn = extract32(insn, 5, 5); 3604 int rm = extract32(insn, 16, 5); 3605 int size = extract32(insn, 10, 2); 3606 int opcode = extract32(insn, 12, 4); 3607 bool is_store = !extract32(insn, 22, 1); 3608 bool is_postidx = extract32(insn, 23, 1); 3609 bool is_q = extract32(insn, 30, 1); 3610 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3611 MemOp endian, align, mop; 3612 3613 int total; /* total bytes */ 3614 int elements; /* elements per vector */ 3615 int rpt; /* num iterations */ 3616 int selem; /* structure elements */ 3617 int r; 3618 3619 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3620 unallocated_encoding(s); 3621 return; 3622 } 3623 3624 if (!is_postidx && rm != 0) { 3625 unallocated_encoding(s); 3626 return; 3627 } 3628 3629 /* From the shared decode logic */ 3630 switch (opcode) { 3631 case 0x0: 3632 rpt = 1; 3633 selem = 4; 3634 break; 3635 case 0x2: 3636 rpt = 4; 3637 selem = 1; 3638 break; 3639 case 0x4: 3640 rpt = 1; 3641 selem = 3; 3642 break; 3643 case 0x6: 3644 rpt = 3; 3645 selem = 1; 3646 break; 3647 case 0x7: 3648 rpt = 1; 3649 selem = 1; 3650 break; 3651 case 0x8: 3652 rpt = 1; 3653 selem = 2; 3654 break; 3655 case 0xa: 3656 rpt = 2; 3657 selem = 1; 3658 break; 3659 default: 3660 unallocated_encoding(s); 3661 return; 3662 } 3663 3664 if (size == 3 && !is_q && selem != 1) { 3665 /* reserved */ 3666 unallocated_encoding(s); 3667 return; 3668 } 3669 3670 if (!fp_access_check(s)) { 3671 return; 3672 } 3673 3674 if (rn == 31) { 3675 gen_check_sp_alignment(s); 3676 } 3677 3678 /* For our purposes, bytes are always little-endian. */ 3679 endian = s->be_data; 3680 if (size == 0) { 3681 endian = MO_LE; 3682 } 3683 3684 total = rpt * selem * (is_q ? 16 : 8); 3685 tcg_rn = cpu_reg_sp(s, rn); 3686 3687 /* 3688 * Issue the MTE check vs the logical repeat count, before we 3689 * promote consecutive little-endian elements below. 3690 */ 3691 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3692 total); 3693 3694 /* 3695 * Consecutive little-endian elements from a single register 3696 * can be promoted to a larger little-endian operation. 3697 */ 3698 align = MO_ALIGN; 3699 if (selem == 1 && endian == MO_LE) { 3700 align = pow2_align(size); 3701 size = 3; 3702 } 3703 if (!s->align_mem) { 3704 align = 0; 3705 } 3706 mop = endian | size | align; 3707 3708 elements = (is_q ? 16 : 8) >> size; 3709 tcg_ebytes = tcg_constant_i64(1 << size); 3710 for (r = 0; r < rpt; r++) { 3711 int e; 3712 for (e = 0; e < elements; e++) { 3713 int xs; 3714 for (xs = 0; xs < selem; xs++) { 3715 int tt = (rt + r + xs) % 32; 3716 if (is_store) { 3717 do_vec_st(s, tt, e, clean_addr, mop); 3718 } else { 3719 do_vec_ld(s, tt, e, clean_addr, mop); 3720 } 3721 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3722 } 3723 } 3724 } 3725 3726 if (!is_store) { 3727 /* For non-quad operations, setting a slice of the low 3728 * 64 bits of the register clears the high 64 bits (in 3729 * the ARM ARM pseudocode this is implicit in the fact 3730 * that 'rval' is a 64 bit wide variable). 3731 * For quad operations, we might still need to zero the 3732 * high bits of SVE. 3733 */ 3734 for (r = 0; r < rpt * selem; r++) { 3735 int tt = (rt + r) % 32; 3736 clear_vec_high(s, is_q, tt); 3737 } 3738 } 3739 3740 if (is_postidx) { 3741 if (rm == 31) { 3742 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3743 } else { 3744 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3745 } 3746 } 3747 } 3748 3749 /* AdvSIMD load/store single structure 3750 * 3751 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3752 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3753 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3754 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3755 * 3756 * AdvSIMD load/store single structure (post-indexed) 3757 * 3758 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3759 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3760 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3761 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3762 * 3763 * Rt: first (or only) SIMD&FP register to be transferred 3764 * Rn: base address or SP 3765 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3766 * index = encoded in Q:S:size dependent on size 3767 * 3768 * lane_size = encoded in R, opc 3769 * transfer width = encoded in opc, S, size 3770 */ 3771 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3772 { 3773 int rt = extract32(insn, 0, 5); 3774 int rn = extract32(insn, 5, 5); 3775 int rm = extract32(insn, 16, 5); 3776 int size = extract32(insn, 10, 2); 3777 int S = extract32(insn, 12, 1); 3778 int opc = extract32(insn, 13, 3); 3779 int R = extract32(insn, 21, 1); 3780 int is_load = extract32(insn, 22, 1); 3781 int is_postidx = extract32(insn, 23, 1); 3782 int is_q = extract32(insn, 30, 1); 3783 3784 int scale = extract32(opc, 1, 2); 3785 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3786 bool replicate = false; 3787 int index = is_q << 3 | S << 2 | size; 3788 int xs, total; 3789 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3790 MemOp mop; 3791 3792 if (extract32(insn, 31, 1)) { 3793 unallocated_encoding(s); 3794 return; 3795 } 3796 if (!is_postidx && rm != 0) { 3797 unallocated_encoding(s); 3798 return; 3799 } 3800 3801 switch (scale) { 3802 case 3: 3803 if (!is_load || S) { 3804 unallocated_encoding(s); 3805 return; 3806 } 3807 scale = size; 3808 replicate = true; 3809 break; 3810 case 0: 3811 break; 3812 case 1: 3813 if (extract32(size, 0, 1)) { 3814 unallocated_encoding(s); 3815 return; 3816 } 3817 index >>= 1; 3818 break; 3819 case 2: 3820 if (extract32(size, 1, 1)) { 3821 unallocated_encoding(s); 3822 return; 3823 } 3824 if (!extract32(size, 0, 1)) { 3825 index >>= 2; 3826 } else { 3827 if (S) { 3828 unallocated_encoding(s); 3829 return; 3830 } 3831 index >>= 3; 3832 scale = 3; 3833 } 3834 break; 3835 default: 3836 g_assert_not_reached(); 3837 } 3838 3839 if (!fp_access_check(s)) { 3840 return; 3841 } 3842 3843 if (rn == 31) { 3844 gen_check_sp_alignment(s); 3845 } 3846 3847 total = selem << scale; 3848 tcg_rn = cpu_reg_sp(s, rn); 3849 3850 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3851 total); 3852 mop = finalize_memop(s, scale); 3853 3854 tcg_ebytes = tcg_constant_i64(1 << scale); 3855 for (xs = 0; xs < selem; xs++) { 3856 if (replicate) { 3857 /* Load and replicate to all elements */ 3858 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3859 3860 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3861 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3862 (is_q + 1) * 8, vec_full_reg_size(s), 3863 tcg_tmp); 3864 } else { 3865 /* Load/store one element per register */ 3866 if (is_load) { 3867 do_vec_ld(s, rt, index, clean_addr, mop); 3868 } else { 3869 do_vec_st(s, rt, index, clean_addr, mop); 3870 } 3871 } 3872 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3873 rt = (rt + 1) % 32; 3874 } 3875 3876 if (is_postidx) { 3877 if (rm == 31) { 3878 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3879 } else { 3880 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3881 } 3882 } 3883 } 3884 3885 /* 3886 * Load/Store memory tags 3887 * 3888 * 31 30 29 24 22 21 12 10 5 0 3889 * +-----+-------------+-----+---+------+-----+------+------+ 3890 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 3891 * +-----+-------------+-----+---+------+-----+------+------+ 3892 */ 3893 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 3894 { 3895 int rt = extract32(insn, 0, 5); 3896 int rn = extract32(insn, 5, 5); 3897 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 3898 int op2 = extract32(insn, 10, 2); 3899 int op1 = extract32(insn, 22, 2); 3900 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 3901 int index = 0; 3902 TCGv_i64 addr, clean_addr, tcg_rt; 3903 3904 /* We checked insn bits [29:24,21] in the caller. */ 3905 if (extract32(insn, 30, 2) != 3) { 3906 goto do_unallocated; 3907 } 3908 3909 /* 3910 * @index is a tri-state variable which has 3 states: 3911 * < 0 : post-index, writeback 3912 * = 0 : signed offset 3913 * > 0 : pre-index, writeback 3914 */ 3915 switch (op1) { 3916 case 0: 3917 if (op2 != 0) { 3918 /* STG */ 3919 index = op2 - 2; 3920 } else { 3921 /* STZGM */ 3922 if (s->current_el == 0 || offset != 0) { 3923 goto do_unallocated; 3924 } 3925 is_mult = is_zero = true; 3926 } 3927 break; 3928 case 1: 3929 if (op2 != 0) { 3930 /* STZG */ 3931 is_zero = true; 3932 index = op2 - 2; 3933 } else { 3934 /* LDG */ 3935 is_load = true; 3936 } 3937 break; 3938 case 2: 3939 if (op2 != 0) { 3940 /* ST2G */ 3941 is_pair = true; 3942 index = op2 - 2; 3943 } else { 3944 /* STGM */ 3945 if (s->current_el == 0 || offset != 0) { 3946 goto do_unallocated; 3947 } 3948 is_mult = true; 3949 } 3950 break; 3951 case 3: 3952 if (op2 != 0) { 3953 /* STZ2G */ 3954 is_pair = is_zero = true; 3955 index = op2 - 2; 3956 } else { 3957 /* LDGM */ 3958 if (s->current_el == 0 || offset != 0) { 3959 goto do_unallocated; 3960 } 3961 is_mult = is_load = true; 3962 } 3963 break; 3964 3965 default: 3966 do_unallocated: 3967 unallocated_encoding(s); 3968 return; 3969 } 3970 3971 if (is_mult 3972 ? !dc_isar_feature(aa64_mte, s) 3973 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 3974 goto do_unallocated; 3975 } 3976 3977 if (rn == 31) { 3978 gen_check_sp_alignment(s); 3979 } 3980 3981 addr = read_cpu_reg_sp(s, rn, true); 3982 if (index >= 0) { 3983 /* pre-index or signed offset */ 3984 tcg_gen_addi_i64(addr, addr, offset); 3985 } 3986 3987 if (is_mult) { 3988 tcg_rt = cpu_reg(s, rt); 3989 3990 if (is_zero) { 3991 int size = 4 << s->dcz_blocksize; 3992 3993 if (s->ata) { 3994 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 3995 } 3996 /* 3997 * The non-tags portion of STZGM is mostly like DC_ZVA, 3998 * except the alignment happens before the access. 3999 */ 4000 clean_addr = clean_data_tbi(s, addr); 4001 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4002 gen_helper_dc_zva(cpu_env, clean_addr); 4003 } else if (s->ata) { 4004 if (is_load) { 4005 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4006 } else { 4007 gen_helper_stgm(cpu_env, addr, tcg_rt); 4008 } 4009 } else { 4010 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4011 int size = 4 << GMID_EL1_BS; 4012 4013 clean_addr = clean_data_tbi(s, addr); 4014 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4015 gen_probe_access(s, clean_addr, acc, size); 4016 4017 if (is_load) { 4018 /* The result tags are zeros. */ 4019 tcg_gen_movi_i64(tcg_rt, 0); 4020 } 4021 } 4022 return; 4023 } 4024 4025 if (is_load) { 4026 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4027 tcg_rt = cpu_reg(s, rt); 4028 if (s->ata) { 4029 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4030 } else { 4031 clean_addr = clean_data_tbi(s, addr); 4032 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4033 gen_address_with_allocation_tag0(tcg_rt, addr); 4034 } 4035 } else { 4036 tcg_rt = cpu_reg_sp(s, rt); 4037 if (!s->ata) { 4038 /* 4039 * For STG and ST2G, we need to check alignment and probe memory. 4040 * TODO: For STZG and STZ2G, we could rely on the stores below, 4041 * at least for system mode; user-only won't enforce alignment. 4042 */ 4043 if (is_pair) { 4044 gen_helper_st2g_stub(cpu_env, addr); 4045 } else { 4046 gen_helper_stg_stub(cpu_env, addr); 4047 } 4048 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4049 if (is_pair) { 4050 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4051 } else { 4052 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4053 } 4054 } else { 4055 if (is_pair) { 4056 gen_helper_st2g(cpu_env, addr, tcg_rt); 4057 } else { 4058 gen_helper_stg(cpu_env, addr, tcg_rt); 4059 } 4060 } 4061 } 4062 4063 if (is_zero) { 4064 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4065 TCGv_i64 tcg_zero = tcg_constant_i64(0); 4066 int mem_index = get_mem_index(s); 4067 int i, n = (1 + is_pair) << LOG2_TAG_GRANULE; 4068 4069 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, 4070 MO_UQ | MO_ALIGN_16); 4071 for (i = 8; i < n; i += 8) { 4072 tcg_gen_addi_i64(clean_addr, clean_addr, 8); 4073 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ); 4074 } 4075 } 4076 4077 if (index != 0) { 4078 /* pre-index or post-index */ 4079 if (index < 0) { 4080 /* post-index */ 4081 tcg_gen_addi_i64(addr, addr, offset); 4082 } 4083 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4084 } 4085 } 4086 4087 /* Loads and stores */ 4088 static void disas_ldst(DisasContext *s, uint32_t insn) 4089 { 4090 switch (extract32(insn, 24, 6)) { 4091 case 0x08: /* Load/store exclusive */ 4092 disas_ldst_excl(s, insn); 4093 break; 4094 case 0x18: case 0x1c: /* Load register (literal) */ 4095 disas_ld_lit(s, insn); 4096 break; 4097 case 0x28: case 0x29: 4098 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4099 disas_ldst_pair(s, insn); 4100 break; 4101 case 0x38: case 0x39: 4102 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4103 disas_ldst_reg(s, insn); 4104 break; 4105 case 0x0c: /* AdvSIMD load/store multiple structures */ 4106 disas_ldst_multiple_struct(s, insn); 4107 break; 4108 case 0x0d: /* AdvSIMD load/store single structure */ 4109 disas_ldst_single_struct(s, insn); 4110 break; 4111 case 0x19: 4112 if (extract32(insn, 21, 1) != 0) { 4113 disas_ldst_tag(s, insn); 4114 } else if (extract32(insn, 10, 2) == 0) { 4115 disas_ldst_ldapr_stlr(s, insn); 4116 } else { 4117 unallocated_encoding(s); 4118 } 4119 break; 4120 default: 4121 unallocated_encoding(s); 4122 break; 4123 } 4124 } 4125 4126 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4127 4128 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4129 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4130 { 4131 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4132 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4133 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4134 4135 fn(tcg_rd, tcg_rn, tcg_imm); 4136 if (!a->sf) { 4137 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4138 } 4139 return true; 4140 } 4141 4142 /* 4143 * PC-rel. addressing 4144 */ 4145 4146 static bool trans_ADR(DisasContext *s, arg_ri *a) 4147 { 4148 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4149 return true; 4150 } 4151 4152 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4153 { 4154 int64_t offset = (int64_t)a->imm << 12; 4155 4156 /* The page offset is ok for CF_PCREL. */ 4157 offset -= s->pc_curr & 0xfff; 4158 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4159 return true; 4160 } 4161 4162 /* 4163 * Add/subtract (immediate) 4164 */ 4165 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4166 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4167 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4168 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4169 4170 /* 4171 * Add/subtract (immediate, with tags) 4172 */ 4173 4174 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4175 bool sub_op) 4176 { 4177 TCGv_i64 tcg_rn, tcg_rd; 4178 int imm; 4179 4180 imm = a->uimm6 << LOG2_TAG_GRANULE; 4181 if (sub_op) { 4182 imm = -imm; 4183 } 4184 4185 tcg_rn = cpu_reg_sp(s, a->rn); 4186 tcg_rd = cpu_reg_sp(s, a->rd); 4187 4188 if (s->ata) { 4189 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4190 tcg_constant_i32(imm), 4191 tcg_constant_i32(a->uimm4)); 4192 } else { 4193 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4194 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4195 } 4196 return true; 4197 } 4198 4199 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4200 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4201 4202 /* The input should be a value in the bottom e bits (with higher 4203 * bits zero); returns that value replicated into every element 4204 * of size e in a 64 bit integer. 4205 */ 4206 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4207 { 4208 assert(e != 0); 4209 while (e < 64) { 4210 mask |= mask << e; 4211 e *= 2; 4212 } 4213 return mask; 4214 } 4215 4216 /* 4217 * Logical (immediate) 4218 */ 4219 4220 /* 4221 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4222 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4223 * value (ie should cause a guest UNDEF exception), and true if they are 4224 * valid, in which case the decoded bit pattern is written to result. 4225 */ 4226 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4227 unsigned int imms, unsigned int immr) 4228 { 4229 uint64_t mask; 4230 unsigned e, levels, s, r; 4231 int len; 4232 4233 assert(immn < 2 && imms < 64 && immr < 64); 4234 4235 /* The bit patterns we create here are 64 bit patterns which 4236 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4237 * 64 bits each. Each element contains the same value: a run 4238 * of between 1 and e-1 non-zero bits, rotated within the 4239 * element by between 0 and e-1 bits. 4240 * 4241 * The element size and run length are encoded into immn (1 bit) 4242 * and imms (6 bits) as follows: 4243 * 64 bit elements: immn = 1, imms = <length of run - 1> 4244 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4245 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4246 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4247 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4248 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4249 * Notice that immn = 0, imms = 11111x is the only combination 4250 * not covered by one of the above options; this is reserved. 4251 * Further, <length of run - 1> all-ones is a reserved pattern. 4252 * 4253 * In all cases the rotation is by immr % e (and immr is 6 bits). 4254 */ 4255 4256 /* First determine the element size */ 4257 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4258 if (len < 1) { 4259 /* This is the immn == 0, imms == 0x11111x case */ 4260 return false; 4261 } 4262 e = 1 << len; 4263 4264 levels = e - 1; 4265 s = imms & levels; 4266 r = immr & levels; 4267 4268 if (s == levels) { 4269 /* <length of run - 1> mustn't be all-ones. */ 4270 return false; 4271 } 4272 4273 /* Create the value of one element: s+1 set bits rotated 4274 * by r within the element (which is e bits wide)... 4275 */ 4276 mask = MAKE_64BIT_MASK(0, s + 1); 4277 if (r) { 4278 mask = (mask >> r) | (mask << (e - r)); 4279 mask &= MAKE_64BIT_MASK(0, e); 4280 } 4281 /* ...then replicate the element over the whole 64 bit value */ 4282 mask = bitfield_replicate(mask, e); 4283 *result = mask; 4284 return true; 4285 } 4286 4287 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4288 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4289 { 4290 TCGv_i64 tcg_rd, tcg_rn; 4291 uint64_t imm; 4292 4293 /* Some immediate field values are reserved. */ 4294 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4295 extract32(a->dbm, 0, 6), 4296 extract32(a->dbm, 6, 6))) { 4297 return false; 4298 } 4299 if (!a->sf) { 4300 imm &= 0xffffffffull; 4301 } 4302 4303 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4304 tcg_rn = cpu_reg(s, a->rn); 4305 4306 fn(tcg_rd, tcg_rn, imm); 4307 if (set_cc) { 4308 gen_logic_CC(a->sf, tcg_rd); 4309 } 4310 if (!a->sf) { 4311 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4312 } 4313 return true; 4314 } 4315 4316 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4317 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4318 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4319 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4320 4321 /* 4322 * Move wide (immediate) 4323 */ 4324 4325 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4326 { 4327 int pos = a->hw << 4; 4328 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4329 return true; 4330 } 4331 4332 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4333 { 4334 int pos = a->hw << 4; 4335 uint64_t imm = a->imm; 4336 4337 imm = ~(imm << pos); 4338 if (!a->sf) { 4339 imm = (uint32_t)imm; 4340 } 4341 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4342 return true; 4343 } 4344 4345 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4346 { 4347 int pos = a->hw << 4; 4348 TCGv_i64 tcg_rd, tcg_im; 4349 4350 tcg_rd = cpu_reg(s, a->rd); 4351 tcg_im = tcg_constant_i64(a->imm); 4352 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4353 if (!a->sf) { 4354 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4355 } 4356 return true; 4357 } 4358 4359 /* 4360 * Bitfield 4361 */ 4362 4363 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4364 { 4365 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4366 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4367 unsigned int bitsize = a->sf ? 64 : 32; 4368 unsigned int ri = a->immr; 4369 unsigned int si = a->imms; 4370 unsigned int pos, len; 4371 4372 if (si >= ri) { 4373 /* Wd<s-r:0> = Wn<s:r> */ 4374 len = (si - ri) + 1; 4375 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4376 if (!a->sf) { 4377 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4378 } 4379 } else { 4380 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4381 len = si + 1; 4382 pos = (bitsize - ri) & (bitsize - 1); 4383 4384 if (len < ri) { 4385 /* 4386 * Sign extend the destination field from len to fill the 4387 * balance of the word. Let the deposit below insert all 4388 * of those sign bits. 4389 */ 4390 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4391 len = ri; 4392 } 4393 4394 /* 4395 * We start with zero, and we haven't modified any bits outside 4396 * bitsize, therefore no final zero-extension is unneeded for !sf. 4397 */ 4398 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4399 } 4400 return true; 4401 } 4402 4403 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4404 { 4405 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4406 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4407 unsigned int bitsize = a->sf ? 64 : 32; 4408 unsigned int ri = a->immr; 4409 unsigned int si = a->imms; 4410 unsigned int pos, len; 4411 4412 tcg_rd = cpu_reg(s, a->rd); 4413 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4414 4415 if (si >= ri) { 4416 /* Wd<s-r:0> = Wn<s:r> */ 4417 len = (si - ri) + 1; 4418 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4419 } else { 4420 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4421 len = si + 1; 4422 pos = (bitsize - ri) & (bitsize - 1); 4423 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4424 } 4425 return true; 4426 } 4427 4428 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4429 { 4430 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4431 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4432 unsigned int bitsize = a->sf ? 64 : 32; 4433 unsigned int ri = a->immr; 4434 unsigned int si = a->imms; 4435 unsigned int pos, len; 4436 4437 tcg_rd = cpu_reg(s, a->rd); 4438 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4439 4440 if (si >= ri) { 4441 /* Wd<s-r:0> = Wn<s:r> */ 4442 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4443 len = (si - ri) + 1; 4444 pos = 0; 4445 } else { 4446 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4447 len = si + 1; 4448 pos = (bitsize - ri) & (bitsize - 1); 4449 } 4450 4451 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4452 if (!a->sf) { 4453 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4454 } 4455 return true; 4456 } 4457 4458 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4459 { 4460 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4461 4462 tcg_rd = cpu_reg(s, a->rd); 4463 4464 if (unlikely(a->imm == 0)) { 4465 /* 4466 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4467 * so an extract from bit 0 is a special case. 4468 */ 4469 if (a->sf) { 4470 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4471 } else { 4472 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4473 } 4474 } else { 4475 tcg_rm = cpu_reg(s, a->rm); 4476 tcg_rn = cpu_reg(s, a->rn); 4477 4478 if (a->sf) { 4479 /* Specialization to ROR happens in EXTRACT2. */ 4480 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4481 } else { 4482 TCGv_i32 t0 = tcg_temp_new_i32(); 4483 4484 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4485 if (a->rm == a->rn) { 4486 tcg_gen_rotri_i32(t0, t0, a->imm); 4487 } else { 4488 TCGv_i32 t1 = tcg_temp_new_i32(); 4489 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4490 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4491 } 4492 tcg_gen_extu_i32_i64(tcg_rd, t0); 4493 } 4494 } 4495 return true; 4496 } 4497 4498 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4499 * Note that it is the caller's responsibility to ensure that the 4500 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4501 * mandated semantics for out of range shifts. 4502 */ 4503 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4504 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4505 { 4506 switch (shift_type) { 4507 case A64_SHIFT_TYPE_LSL: 4508 tcg_gen_shl_i64(dst, src, shift_amount); 4509 break; 4510 case A64_SHIFT_TYPE_LSR: 4511 tcg_gen_shr_i64(dst, src, shift_amount); 4512 break; 4513 case A64_SHIFT_TYPE_ASR: 4514 if (!sf) { 4515 tcg_gen_ext32s_i64(dst, src); 4516 } 4517 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4518 break; 4519 case A64_SHIFT_TYPE_ROR: 4520 if (sf) { 4521 tcg_gen_rotr_i64(dst, src, shift_amount); 4522 } else { 4523 TCGv_i32 t0, t1; 4524 t0 = tcg_temp_new_i32(); 4525 t1 = tcg_temp_new_i32(); 4526 tcg_gen_extrl_i64_i32(t0, src); 4527 tcg_gen_extrl_i64_i32(t1, shift_amount); 4528 tcg_gen_rotr_i32(t0, t0, t1); 4529 tcg_gen_extu_i32_i64(dst, t0); 4530 } 4531 break; 4532 default: 4533 assert(FALSE); /* all shift types should be handled */ 4534 break; 4535 } 4536 4537 if (!sf) { /* zero extend final result */ 4538 tcg_gen_ext32u_i64(dst, dst); 4539 } 4540 } 4541 4542 /* Shift a TCGv src by immediate, put result in dst. 4543 * The shift amount must be in range (this should always be true as the 4544 * relevant instructions will UNDEF on bad shift immediates). 4545 */ 4546 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4547 enum a64_shift_type shift_type, unsigned int shift_i) 4548 { 4549 assert(shift_i < (sf ? 64 : 32)); 4550 4551 if (shift_i == 0) { 4552 tcg_gen_mov_i64(dst, src); 4553 } else { 4554 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4555 } 4556 } 4557 4558 /* Logical (shifted register) 4559 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4560 * +----+-----+-----------+-------+---+------+--------+------+------+ 4561 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4562 * +----+-----+-----------+-------+---+------+--------+------+------+ 4563 */ 4564 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4565 { 4566 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4567 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4568 4569 sf = extract32(insn, 31, 1); 4570 opc = extract32(insn, 29, 2); 4571 shift_type = extract32(insn, 22, 2); 4572 invert = extract32(insn, 21, 1); 4573 rm = extract32(insn, 16, 5); 4574 shift_amount = extract32(insn, 10, 6); 4575 rn = extract32(insn, 5, 5); 4576 rd = extract32(insn, 0, 5); 4577 4578 if (!sf && (shift_amount & (1 << 5))) { 4579 unallocated_encoding(s); 4580 return; 4581 } 4582 4583 tcg_rd = cpu_reg(s, rd); 4584 4585 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4586 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4587 * register-register MOV and MVN, so it is worth special casing. 4588 */ 4589 tcg_rm = cpu_reg(s, rm); 4590 if (invert) { 4591 tcg_gen_not_i64(tcg_rd, tcg_rm); 4592 if (!sf) { 4593 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4594 } 4595 } else { 4596 if (sf) { 4597 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4598 } else { 4599 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4600 } 4601 } 4602 return; 4603 } 4604 4605 tcg_rm = read_cpu_reg(s, rm, sf); 4606 4607 if (shift_amount) { 4608 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4609 } 4610 4611 tcg_rn = cpu_reg(s, rn); 4612 4613 switch (opc | (invert << 2)) { 4614 case 0: /* AND */ 4615 case 3: /* ANDS */ 4616 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4617 break; 4618 case 1: /* ORR */ 4619 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4620 break; 4621 case 2: /* EOR */ 4622 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4623 break; 4624 case 4: /* BIC */ 4625 case 7: /* BICS */ 4626 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4627 break; 4628 case 5: /* ORN */ 4629 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4630 break; 4631 case 6: /* EON */ 4632 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4633 break; 4634 default: 4635 assert(FALSE); 4636 break; 4637 } 4638 4639 if (!sf) { 4640 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4641 } 4642 4643 if (opc == 3) { 4644 gen_logic_CC(sf, tcg_rd); 4645 } 4646 } 4647 4648 /* 4649 * Add/subtract (extended register) 4650 * 4651 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4652 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4653 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4654 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4655 * 4656 * sf: 0 -> 32bit, 1 -> 64bit 4657 * op: 0 -> add , 1 -> sub 4658 * S: 1 -> set flags 4659 * opt: 00 4660 * option: extension type (see DecodeRegExtend) 4661 * imm3: optional shift to Rm 4662 * 4663 * Rd = Rn + LSL(extend(Rm), amount) 4664 */ 4665 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4666 { 4667 int rd = extract32(insn, 0, 5); 4668 int rn = extract32(insn, 5, 5); 4669 int imm3 = extract32(insn, 10, 3); 4670 int option = extract32(insn, 13, 3); 4671 int rm = extract32(insn, 16, 5); 4672 int opt = extract32(insn, 22, 2); 4673 bool setflags = extract32(insn, 29, 1); 4674 bool sub_op = extract32(insn, 30, 1); 4675 bool sf = extract32(insn, 31, 1); 4676 4677 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4678 TCGv_i64 tcg_rd; 4679 TCGv_i64 tcg_result; 4680 4681 if (imm3 > 4 || opt != 0) { 4682 unallocated_encoding(s); 4683 return; 4684 } 4685 4686 /* non-flag setting ops may use SP */ 4687 if (!setflags) { 4688 tcg_rd = cpu_reg_sp(s, rd); 4689 } else { 4690 tcg_rd = cpu_reg(s, rd); 4691 } 4692 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4693 4694 tcg_rm = read_cpu_reg(s, rm, sf); 4695 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4696 4697 tcg_result = tcg_temp_new_i64(); 4698 4699 if (!setflags) { 4700 if (sub_op) { 4701 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4702 } else { 4703 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4704 } 4705 } else { 4706 if (sub_op) { 4707 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4708 } else { 4709 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4710 } 4711 } 4712 4713 if (sf) { 4714 tcg_gen_mov_i64(tcg_rd, tcg_result); 4715 } else { 4716 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4717 } 4718 } 4719 4720 /* 4721 * Add/subtract (shifted register) 4722 * 4723 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4724 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4725 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4726 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4727 * 4728 * sf: 0 -> 32bit, 1 -> 64bit 4729 * op: 0 -> add , 1 -> sub 4730 * S: 1 -> set flags 4731 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4732 * imm6: Shift amount to apply to Rm before the add/sub 4733 */ 4734 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4735 { 4736 int rd = extract32(insn, 0, 5); 4737 int rn = extract32(insn, 5, 5); 4738 int imm6 = extract32(insn, 10, 6); 4739 int rm = extract32(insn, 16, 5); 4740 int shift_type = extract32(insn, 22, 2); 4741 bool setflags = extract32(insn, 29, 1); 4742 bool sub_op = extract32(insn, 30, 1); 4743 bool sf = extract32(insn, 31, 1); 4744 4745 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4746 TCGv_i64 tcg_rn, tcg_rm; 4747 TCGv_i64 tcg_result; 4748 4749 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4750 unallocated_encoding(s); 4751 return; 4752 } 4753 4754 tcg_rn = read_cpu_reg(s, rn, sf); 4755 tcg_rm = read_cpu_reg(s, rm, sf); 4756 4757 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4758 4759 tcg_result = tcg_temp_new_i64(); 4760 4761 if (!setflags) { 4762 if (sub_op) { 4763 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4764 } else { 4765 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4766 } 4767 } else { 4768 if (sub_op) { 4769 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4770 } else { 4771 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4772 } 4773 } 4774 4775 if (sf) { 4776 tcg_gen_mov_i64(tcg_rd, tcg_result); 4777 } else { 4778 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4779 } 4780 } 4781 4782 /* Data-processing (3 source) 4783 * 4784 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4785 * +--+------+-----------+------+------+----+------+------+------+ 4786 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4787 * +--+------+-----------+------+------+----+------+------+------+ 4788 */ 4789 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4790 { 4791 int rd = extract32(insn, 0, 5); 4792 int rn = extract32(insn, 5, 5); 4793 int ra = extract32(insn, 10, 5); 4794 int rm = extract32(insn, 16, 5); 4795 int op_id = (extract32(insn, 29, 3) << 4) | 4796 (extract32(insn, 21, 3) << 1) | 4797 extract32(insn, 15, 1); 4798 bool sf = extract32(insn, 31, 1); 4799 bool is_sub = extract32(op_id, 0, 1); 4800 bool is_high = extract32(op_id, 2, 1); 4801 bool is_signed = false; 4802 TCGv_i64 tcg_op1; 4803 TCGv_i64 tcg_op2; 4804 TCGv_i64 tcg_tmp; 4805 4806 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4807 switch (op_id) { 4808 case 0x42: /* SMADDL */ 4809 case 0x43: /* SMSUBL */ 4810 case 0x44: /* SMULH */ 4811 is_signed = true; 4812 break; 4813 case 0x0: /* MADD (32bit) */ 4814 case 0x1: /* MSUB (32bit) */ 4815 case 0x40: /* MADD (64bit) */ 4816 case 0x41: /* MSUB (64bit) */ 4817 case 0x4a: /* UMADDL */ 4818 case 0x4b: /* UMSUBL */ 4819 case 0x4c: /* UMULH */ 4820 break; 4821 default: 4822 unallocated_encoding(s); 4823 return; 4824 } 4825 4826 if (is_high) { 4827 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4828 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4829 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4830 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4831 4832 if (is_signed) { 4833 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4834 } else { 4835 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4836 } 4837 return; 4838 } 4839 4840 tcg_op1 = tcg_temp_new_i64(); 4841 tcg_op2 = tcg_temp_new_i64(); 4842 tcg_tmp = tcg_temp_new_i64(); 4843 4844 if (op_id < 0x42) { 4845 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4846 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4847 } else { 4848 if (is_signed) { 4849 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4850 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4851 } else { 4852 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4853 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4854 } 4855 } 4856 4857 if (ra == 31 && !is_sub) { 4858 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4859 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4860 } else { 4861 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4862 if (is_sub) { 4863 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4864 } else { 4865 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4866 } 4867 } 4868 4869 if (!sf) { 4870 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4871 } 4872 } 4873 4874 /* Add/subtract (with carry) 4875 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4876 * +--+--+--+------------------------+------+-------------+------+-----+ 4877 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4878 * +--+--+--+------------------------+------+-------------+------+-----+ 4879 */ 4880 4881 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4882 { 4883 unsigned int sf, op, setflags, rm, rn, rd; 4884 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4885 4886 sf = extract32(insn, 31, 1); 4887 op = extract32(insn, 30, 1); 4888 setflags = extract32(insn, 29, 1); 4889 rm = extract32(insn, 16, 5); 4890 rn = extract32(insn, 5, 5); 4891 rd = extract32(insn, 0, 5); 4892 4893 tcg_rd = cpu_reg(s, rd); 4894 tcg_rn = cpu_reg(s, rn); 4895 4896 if (op) { 4897 tcg_y = tcg_temp_new_i64(); 4898 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4899 } else { 4900 tcg_y = cpu_reg(s, rm); 4901 } 4902 4903 if (setflags) { 4904 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4905 } else { 4906 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4907 } 4908 } 4909 4910 /* 4911 * Rotate right into flags 4912 * 31 30 29 21 15 10 5 4 0 4913 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4914 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4915 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4916 */ 4917 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4918 { 4919 int mask = extract32(insn, 0, 4); 4920 int o2 = extract32(insn, 4, 1); 4921 int rn = extract32(insn, 5, 5); 4922 int imm6 = extract32(insn, 15, 6); 4923 int sf_op_s = extract32(insn, 29, 3); 4924 TCGv_i64 tcg_rn; 4925 TCGv_i32 nzcv; 4926 4927 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4928 unallocated_encoding(s); 4929 return; 4930 } 4931 4932 tcg_rn = read_cpu_reg(s, rn, 1); 4933 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4934 4935 nzcv = tcg_temp_new_i32(); 4936 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4937 4938 if (mask & 8) { /* N */ 4939 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4940 } 4941 if (mask & 4) { /* Z */ 4942 tcg_gen_not_i32(cpu_ZF, nzcv); 4943 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4944 } 4945 if (mask & 2) { /* C */ 4946 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4947 } 4948 if (mask & 1) { /* V */ 4949 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4950 } 4951 } 4952 4953 /* 4954 * Evaluate into flags 4955 * 31 30 29 21 15 14 10 5 4 0 4956 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4957 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 4958 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4959 */ 4960 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 4961 { 4962 int o3_mask = extract32(insn, 0, 5); 4963 int rn = extract32(insn, 5, 5); 4964 int o2 = extract32(insn, 15, 6); 4965 int sz = extract32(insn, 14, 1); 4966 int sf_op_s = extract32(insn, 29, 3); 4967 TCGv_i32 tmp; 4968 int shift; 4969 4970 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 4971 !dc_isar_feature(aa64_condm_4, s)) { 4972 unallocated_encoding(s); 4973 return; 4974 } 4975 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 4976 4977 tmp = tcg_temp_new_i32(); 4978 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 4979 tcg_gen_shli_i32(cpu_NF, tmp, shift); 4980 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 4981 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 4982 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 4983 } 4984 4985 /* Conditional compare (immediate / register) 4986 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 4987 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4988 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 4989 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4990 * [1] y [0] [0] 4991 */ 4992 static void disas_cc(DisasContext *s, uint32_t insn) 4993 { 4994 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 4995 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 4996 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 4997 DisasCompare c; 4998 4999 if (!extract32(insn, 29, 1)) { 5000 unallocated_encoding(s); 5001 return; 5002 } 5003 if (insn & (1 << 10 | 1 << 4)) { 5004 unallocated_encoding(s); 5005 return; 5006 } 5007 sf = extract32(insn, 31, 1); 5008 op = extract32(insn, 30, 1); 5009 is_imm = extract32(insn, 11, 1); 5010 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5011 cond = extract32(insn, 12, 4); 5012 rn = extract32(insn, 5, 5); 5013 nzcv = extract32(insn, 0, 4); 5014 5015 /* Set T0 = !COND. */ 5016 tcg_t0 = tcg_temp_new_i32(); 5017 arm_test_cc(&c, cond); 5018 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5019 5020 /* Load the arguments for the new comparison. */ 5021 if (is_imm) { 5022 tcg_y = tcg_temp_new_i64(); 5023 tcg_gen_movi_i64(tcg_y, y); 5024 } else { 5025 tcg_y = cpu_reg(s, y); 5026 } 5027 tcg_rn = cpu_reg(s, rn); 5028 5029 /* Set the flags for the new comparison. */ 5030 tcg_tmp = tcg_temp_new_i64(); 5031 if (op) { 5032 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5033 } else { 5034 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5035 } 5036 5037 /* If COND was false, force the flags to #nzcv. Compute two masks 5038 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5039 * For tcg hosts that support ANDC, we can make do with just T1. 5040 * In either case, allow the tcg optimizer to delete any unused mask. 5041 */ 5042 tcg_t1 = tcg_temp_new_i32(); 5043 tcg_t2 = tcg_temp_new_i32(); 5044 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5045 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5046 5047 if (nzcv & 8) { /* N */ 5048 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5049 } else { 5050 if (TCG_TARGET_HAS_andc_i32) { 5051 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5052 } else { 5053 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5054 } 5055 } 5056 if (nzcv & 4) { /* Z */ 5057 if (TCG_TARGET_HAS_andc_i32) { 5058 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5059 } else { 5060 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5061 } 5062 } else { 5063 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5064 } 5065 if (nzcv & 2) { /* C */ 5066 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5067 } else { 5068 if (TCG_TARGET_HAS_andc_i32) { 5069 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5070 } else { 5071 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5072 } 5073 } 5074 if (nzcv & 1) { /* V */ 5075 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5076 } else { 5077 if (TCG_TARGET_HAS_andc_i32) { 5078 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5079 } else { 5080 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5081 } 5082 } 5083 } 5084 5085 /* Conditional select 5086 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5087 * +----+----+---+-----------------+------+------+-----+------+------+ 5088 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5089 * +----+----+---+-----------------+------+------+-----+------+------+ 5090 */ 5091 static void disas_cond_select(DisasContext *s, uint32_t insn) 5092 { 5093 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5094 TCGv_i64 tcg_rd, zero; 5095 DisasCompare64 c; 5096 5097 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5098 /* S == 1 or op2<1> == 1 */ 5099 unallocated_encoding(s); 5100 return; 5101 } 5102 sf = extract32(insn, 31, 1); 5103 else_inv = extract32(insn, 30, 1); 5104 rm = extract32(insn, 16, 5); 5105 cond = extract32(insn, 12, 4); 5106 else_inc = extract32(insn, 10, 1); 5107 rn = extract32(insn, 5, 5); 5108 rd = extract32(insn, 0, 5); 5109 5110 tcg_rd = cpu_reg(s, rd); 5111 5112 a64_test_cc(&c, cond); 5113 zero = tcg_constant_i64(0); 5114 5115 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5116 /* CSET & CSETM. */ 5117 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5118 if (else_inv) { 5119 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5120 } 5121 } else { 5122 TCGv_i64 t_true = cpu_reg(s, rn); 5123 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5124 if (else_inv && else_inc) { 5125 tcg_gen_neg_i64(t_false, t_false); 5126 } else if (else_inv) { 5127 tcg_gen_not_i64(t_false, t_false); 5128 } else if (else_inc) { 5129 tcg_gen_addi_i64(t_false, t_false, 1); 5130 } 5131 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5132 } 5133 5134 if (!sf) { 5135 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5136 } 5137 } 5138 5139 static void handle_clz(DisasContext *s, unsigned int sf, 5140 unsigned int rn, unsigned int rd) 5141 { 5142 TCGv_i64 tcg_rd, tcg_rn; 5143 tcg_rd = cpu_reg(s, rd); 5144 tcg_rn = cpu_reg(s, rn); 5145 5146 if (sf) { 5147 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5148 } else { 5149 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5150 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5151 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5152 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5153 } 5154 } 5155 5156 static void handle_cls(DisasContext *s, unsigned int sf, 5157 unsigned int rn, unsigned int rd) 5158 { 5159 TCGv_i64 tcg_rd, tcg_rn; 5160 tcg_rd = cpu_reg(s, rd); 5161 tcg_rn = cpu_reg(s, rn); 5162 5163 if (sf) { 5164 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5165 } else { 5166 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5167 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5168 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5169 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5170 } 5171 } 5172 5173 static void handle_rbit(DisasContext *s, unsigned int sf, 5174 unsigned int rn, unsigned int rd) 5175 { 5176 TCGv_i64 tcg_rd, tcg_rn; 5177 tcg_rd = cpu_reg(s, rd); 5178 tcg_rn = cpu_reg(s, rn); 5179 5180 if (sf) { 5181 gen_helper_rbit64(tcg_rd, tcg_rn); 5182 } else { 5183 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5184 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5185 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5186 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5187 } 5188 } 5189 5190 /* REV with sf==1, opcode==3 ("REV64") */ 5191 static void handle_rev64(DisasContext *s, unsigned int sf, 5192 unsigned int rn, unsigned int rd) 5193 { 5194 if (!sf) { 5195 unallocated_encoding(s); 5196 return; 5197 } 5198 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5199 } 5200 5201 /* REV with sf==0, opcode==2 5202 * REV32 (sf==1, opcode==2) 5203 */ 5204 static void handle_rev32(DisasContext *s, unsigned int sf, 5205 unsigned int rn, unsigned int rd) 5206 { 5207 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5208 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5209 5210 if (sf) { 5211 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5212 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5213 } else { 5214 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5215 } 5216 } 5217 5218 /* REV16 (opcode==1) */ 5219 static void handle_rev16(DisasContext *s, unsigned int sf, 5220 unsigned int rn, unsigned int rd) 5221 { 5222 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5223 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5224 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5225 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5226 5227 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5228 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5229 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5230 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5231 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5232 } 5233 5234 /* Data-processing (1 source) 5235 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5236 * +----+---+---+-----------------+---------+--------+------+------+ 5237 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5238 * +----+---+---+-----------------+---------+--------+------+------+ 5239 */ 5240 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5241 { 5242 unsigned int sf, opcode, opcode2, rn, rd; 5243 TCGv_i64 tcg_rd; 5244 5245 if (extract32(insn, 29, 1)) { 5246 unallocated_encoding(s); 5247 return; 5248 } 5249 5250 sf = extract32(insn, 31, 1); 5251 opcode = extract32(insn, 10, 6); 5252 opcode2 = extract32(insn, 16, 5); 5253 rn = extract32(insn, 5, 5); 5254 rd = extract32(insn, 0, 5); 5255 5256 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5257 5258 switch (MAP(sf, opcode2, opcode)) { 5259 case MAP(0, 0x00, 0x00): /* RBIT */ 5260 case MAP(1, 0x00, 0x00): 5261 handle_rbit(s, sf, rn, rd); 5262 break; 5263 case MAP(0, 0x00, 0x01): /* REV16 */ 5264 case MAP(1, 0x00, 0x01): 5265 handle_rev16(s, sf, rn, rd); 5266 break; 5267 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5268 case MAP(1, 0x00, 0x02): 5269 handle_rev32(s, sf, rn, rd); 5270 break; 5271 case MAP(1, 0x00, 0x03): /* REV64 */ 5272 handle_rev64(s, sf, rn, rd); 5273 break; 5274 case MAP(0, 0x00, 0x04): /* CLZ */ 5275 case MAP(1, 0x00, 0x04): 5276 handle_clz(s, sf, rn, rd); 5277 break; 5278 case MAP(0, 0x00, 0x05): /* CLS */ 5279 case MAP(1, 0x00, 0x05): 5280 handle_cls(s, sf, rn, rd); 5281 break; 5282 case MAP(1, 0x01, 0x00): /* PACIA */ 5283 if (s->pauth_active) { 5284 tcg_rd = cpu_reg(s, rd); 5285 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5286 } else if (!dc_isar_feature(aa64_pauth, s)) { 5287 goto do_unallocated; 5288 } 5289 break; 5290 case MAP(1, 0x01, 0x01): /* PACIB */ 5291 if (s->pauth_active) { 5292 tcg_rd = cpu_reg(s, rd); 5293 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5294 } else if (!dc_isar_feature(aa64_pauth, s)) { 5295 goto do_unallocated; 5296 } 5297 break; 5298 case MAP(1, 0x01, 0x02): /* PACDA */ 5299 if (s->pauth_active) { 5300 tcg_rd = cpu_reg(s, rd); 5301 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5302 } else if (!dc_isar_feature(aa64_pauth, s)) { 5303 goto do_unallocated; 5304 } 5305 break; 5306 case MAP(1, 0x01, 0x03): /* PACDB */ 5307 if (s->pauth_active) { 5308 tcg_rd = cpu_reg(s, rd); 5309 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5310 } else if (!dc_isar_feature(aa64_pauth, s)) { 5311 goto do_unallocated; 5312 } 5313 break; 5314 case MAP(1, 0x01, 0x04): /* AUTIA */ 5315 if (s->pauth_active) { 5316 tcg_rd = cpu_reg(s, rd); 5317 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5318 } else if (!dc_isar_feature(aa64_pauth, s)) { 5319 goto do_unallocated; 5320 } 5321 break; 5322 case MAP(1, 0x01, 0x05): /* AUTIB */ 5323 if (s->pauth_active) { 5324 tcg_rd = cpu_reg(s, rd); 5325 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5326 } else if (!dc_isar_feature(aa64_pauth, s)) { 5327 goto do_unallocated; 5328 } 5329 break; 5330 case MAP(1, 0x01, 0x06): /* AUTDA */ 5331 if (s->pauth_active) { 5332 tcg_rd = cpu_reg(s, rd); 5333 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5334 } else if (!dc_isar_feature(aa64_pauth, s)) { 5335 goto do_unallocated; 5336 } 5337 break; 5338 case MAP(1, 0x01, 0x07): /* AUTDB */ 5339 if (s->pauth_active) { 5340 tcg_rd = cpu_reg(s, rd); 5341 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5342 } else if (!dc_isar_feature(aa64_pauth, s)) { 5343 goto do_unallocated; 5344 } 5345 break; 5346 case MAP(1, 0x01, 0x08): /* PACIZA */ 5347 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5348 goto do_unallocated; 5349 } else if (s->pauth_active) { 5350 tcg_rd = cpu_reg(s, rd); 5351 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5352 } 5353 break; 5354 case MAP(1, 0x01, 0x09): /* PACIZB */ 5355 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5356 goto do_unallocated; 5357 } else if (s->pauth_active) { 5358 tcg_rd = cpu_reg(s, rd); 5359 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5360 } 5361 break; 5362 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5363 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5364 goto do_unallocated; 5365 } else if (s->pauth_active) { 5366 tcg_rd = cpu_reg(s, rd); 5367 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5368 } 5369 break; 5370 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5371 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5372 goto do_unallocated; 5373 } else if (s->pauth_active) { 5374 tcg_rd = cpu_reg(s, rd); 5375 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5376 } 5377 break; 5378 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5379 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5380 goto do_unallocated; 5381 } else if (s->pauth_active) { 5382 tcg_rd = cpu_reg(s, rd); 5383 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5384 } 5385 break; 5386 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5387 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5388 goto do_unallocated; 5389 } else if (s->pauth_active) { 5390 tcg_rd = cpu_reg(s, rd); 5391 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5392 } 5393 break; 5394 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5395 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5396 goto do_unallocated; 5397 } else if (s->pauth_active) { 5398 tcg_rd = cpu_reg(s, rd); 5399 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5400 } 5401 break; 5402 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5403 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5404 goto do_unallocated; 5405 } else if (s->pauth_active) { 5406 tcg_rd = cpu_reg(s, rd); 5407 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5408 } 5409 break; 5410 case MAP(1, 0x01, 0x10): /* XPACI */ 5411 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5412 goto do_unallocated; 5413 } else if (s->pauth_active) { 5414 tcg_rd = cpu_reg(s, rd); 5415 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5416 } 5417 break; 5418 case MAP(1, 0x01, 0x11): /* XPACD */ 5419 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5420 goto do_unallocated; 5421 } else if (s->pauth_active) { 5422 tcg_rd = cpu_reg(s, rd); 5423 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5424 } 5425 break; 5426 default: 5427 do_unallocated: 5428 unallocated_encoding(s); 5429 break; 5430 } 5431 5432 #undef MAP 5433 } 5434 5435 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5436 unsigned int rm, unsigned int rn, unsigned int rd) 5437 { 5438 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5439 tcg_rd = cpu_reg(s, rd); 5440 5441 if (!sf && is_signed) { 5442 tcg_n = tcg_temp_new_i64(); 5443 tcg_m = tcg_temp_new_i64(); 5444 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5445 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5446 } else { 5447 tcg_n = read_cpu_reg(s, rn, sf); 5448 tcg_m = read_cpu_reg(s, rm, sf); 5449 } 5450 5451 if (is_signed) { 5452 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5453 } else { 5454 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5455 } 5456 5457 if (!sf) { /* zero extend final result */ 5458 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5459 } 5460 } 5461 5462 /* LSLV, LSRV, ASRV, RORV */ 5463 static void handle_shift_reg(DisasContext *s, 5464 enum a64_shift_type shift_type, unsigned int sf, 5465 unsigned int rm, unsigned int rn, unsigned int rd) 5466 { 5467 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5468 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5469 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5470 5471 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5472 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5473 } 5474 5475 /* CRC32[BHWX], CRC32C[BHWX] */ 5476 static void handle_crc32(DisasContext *s, 5477 unsigned int sf, unsigned int sz, bool crc32c, 5478 unsigned int rm, unsigned int rn, unsigned int rd) 5479 { 5480 TCGv_i64 tcg_acc, tcg_val; 5481 TCGv_i32 tcg_bytes; 5482 5483 if (!dc_isar_feature(aa64_crc32, s) 5484 || (sf == 1 && sz != 3) 5485 || (sf == 0 && sz == 3)) { 5486 unallocated_encoding(s); 5487 return; 5488 } 5489 5490 if (sz == 3) { 5491 tcg_val = cpu_reg(s, rm); 5492 } else { 5493 uint64_t mask; 5494 switch (sz) { 5495 case 0: 5496 mask = 0xFF; 5497 break; 5498 case 1: 5499 mask = 0xFFFF; 5500 break; 5501 case 2: 5502 mask = 0xFFFFFFFF; 5503 break; 5504 default: 5505 g_assert_not_reached(); 5506 } 5507 tcg_val = tcg_temp_new_i64(); 5508 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5509 } 5510 5511 tcg_acc = cpu_reg(s, rn); 5512 tcg_bytes = tcg_constant_i32(1 << sz); 5513 5514 if (crc32c) { 5515 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5516 } else { 5517 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5518 } 5519 } 5520 5521 /* Data-processing (2 source) 5522 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5523 * +----+---+---+-----------------+------+--------+------+------+ 5524 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5525 * +----+---+---+-----------------+------+--------+------+------+ 5526 */ 5527 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5528 { 5529 unsigned int sf, rm, opcode, rn, rd, setflag; 5530 sf = extract32(insn, 31, 1); 5531 setflag = extract32(insn, 29, 1); 5532 rm = extract32(insn, 16, 5); 5533 opcode = extract32(insn, 10, 6); 5534 rn = extract32(insn, 5, 5); 5535 rd = extract32(insn, 0, 5); 5536 5537 if (setflag && opcode != 0) { 5538 unallocated_encoding(s); 5539 return; 5540 } 5541 5542 switch (opcode) { 5543 case 0: /* SUBP(S) */ 5544 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5545 goto do_unallocated; 5546 } else { 5547 TCGv_i64 tcg_n, tcg_m, tcg_d; 5548 5549 tcg_n = read_cpu_reg_sp(s, rn, true); 5550 tcg_m = read_cpu_reg_sp(s, rm, true); 5551 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5552 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5553 tcg_d = cpu_reg(s, rd); 5554 5555 if (setflag) { 5556 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5557 } else { 5558 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5559 } 5560 } 5561 break; 5562 case 2: /* UDIV */ 5563 handle_div(s, false, sf, rm, rn, rd); 5564 break; 5565 case 3: /* SDIV */ 5566 handle_div(s, true, sf, rm, rn, rd); 5567 break; 5568 case 4: /* IRG */ 5569 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5570 goto do_unallocated; 5571 } 5572 if (s->ata) { 5573 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5574 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5575 } else { 5576 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5577 cpu_reg_sp(s, rn)); 5578 } 5579 break; 5580 case 5: /* GMI */ 5581 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5582 goto do_unallocated; 5583 } else { 5584 TCGv_i64 t = tcg_temp_new_i64(); 5585 5586 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5587 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5588 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5589 } 5590 break; 5591 case 8: /* LSLV */ 5592 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5593 break; 5594 case 9: /* LSRV */ 5595 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5596 break; 5597 case 10: /* ASRV */ 5598 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5599 break; 5600 case 11: /* RORV */ 5601 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5602 break; 5603 case 12: /* PACGA */ 5604 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5605 goto do_unallocated; 5606 } 5607 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5608 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5609 break; 5610 case 16: 5611 case 17: 5612 case 18: 5613 case 19: 5614 case 20: 5615 case 21: 5616 case 22: 5617 case 23: /* CRC32 */ 5618 { 5619 int sz = extract32(opcode, 0, 2); 5620 bool crc32c = extract32(opcode, 2, 1); 5621 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5622 break; 5623 } 5624 default: 5625 do_unallocated: 5626 unallocated_encoding(s); 5627 break; 5628 } 5629 } 5630 5631 /* 5632 * Data processing - register 5633 * 31 30 29 28 25 21 20 16 10 0 5634 * +--+---+--+---+-------+-----+-------+-------+---------+ 5635 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5636 * +--+---+--+---+-------+-----+-------+-------+---------+ 5637 */ 5638 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5639 { 5640 int op0 = extract32(insn, 30, 1); 5641 int op1 = extract32(insn, 28, 1); 5642 int op2 = extract32(insn, 21, 4); 5643 int op3 = extract32(insn, 10, 6); 5644 5645 if (!op1) { 5646 if (op2 & 8) { 5647 if (op2 & 1) { 5648 /* Add/sub (extended register) */ 5649 disas_add_sub_ext_reg(s, insn); 5650 } else { 5651 /* Add/sub (shifted register) */ 5652 disas_add_sub_reg(s, insn); 5653 } 5654 } else { 5655 /* Logical (shifted register) */ 5656 disas_logic_reg(s, insn); 5657 } 5658 return; 5659 } 5660 5661 switch (op2) { 5662 case 0x0: 5663 switch (op3) { 5664 case 0x00: /* Add/subtract (with carry) */ 5665 disas_adc_sbc(s, insn); 5666 break; 5667 5668 case 0x01: /* Rotate right into flags */ 5669 case 0x21: 5670 disas_rotate_right_into_flags(s, insn); 5671 break; 5672 5673 case 0x02: /* Evaluate into flags */ 5674 case 0x12: 5675 case 0x22: 5676 case 0x32: 5677 disas_evaluate_into_flags(s, insn); 5678 break; 5679 5680 default: 5681 goto do_unallocated; 5682 } 5683 break; 5684 5685 case 0x2: /* Conditional compare */ 5686 disas_cc(s, insn); /* both imm and reg forms */ 5687 break; 5688 5689 case 0x4: /* Conditional select */ 5690 disas_cond_select(s, insn); 5691 break; 5692 5693 case 0x6: /* Data-processing */ 5694 if (op0) { /* (1 source) */ 5695 disas_data_proc_1src(s, insn); 5696 } else { /* (2 source) */ 5697 disas_data_proc_2src(s, insn); 5698 } 5699 break; 5700 case 0x8 ... 0xf: /* (3 source) */ 5701 disas_data_proc_3src(s, insn); 5702 break; 5703 5704 default: 5705 do_unallocated: 5706 unallocated_encoding(s); 5707 break; 5708 } 5709 } 5710 5711 static void handle_fp_compare(DisasContext *s, int size, 5712 unsigned int rn, unsigned int rm, 5713 bool cmp_with_zero, bool signal_all_nans) 5714 { 5715 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5716 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5717 5718 if (size == MO_64) { 5719 TCGv_i64 tcg_vn, tcg_vm; 5720 5721 tcg_vn = read_fp_dreg(s, rn); 5722 if (cmp_with_zero) { 5723 tcg_vm = tcg_constant_i64(0); 5724 } else { 5725 tcg_vm = read_fp_dreg(s, rm); 5726 } 5727 if (signal_all_nans) { 5728 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5729 } else { 5730 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5731 } 5732 } else { 5733 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5734 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5735 5736 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5737 if (cmp_with_zero) { 5738 tcg_gen_movi_i32(tcg_vm, 0); 5739 } else { 5740 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5741 } 5742 5743 switch (size) { 5744 case MO_32: 5745 if (signal_all_nans) { 5746 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5747 } else { 5748 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5749 } 5750 break; 5751 case MO_16: 5752 if (signal_all_nans) { 5753 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5754 } else { 5755 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5756 } 5757 break; 5758 default: 5759 g_assert_not_reached(); 5760 } 5761 } 5762 5763 gen_set_nzcv(tcg_flags); 5764 } 5765 5766 /* Floating point compare 5767 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5768 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5769 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5770 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5771 */ 5772 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5773 { 5774 unsigned int mos, type, rm, op, rn, opc, op2r; 5775 int size; 5776 5777 mos = extract32(insn, 29, 3); 5778 type = extract32(insn, 22, 2); 5779 rm = extract32(insn, 16, 5); 5780 op = extract32(insn, 14, 2); 5781 rn = extract32(insn, 5, 5); 5782 opc = extract32(insn, 3, 2); 5783 op2r = extract32(insn, 0, 3); 5784 5785 if (mos || op || op2r) { 5786 unallocated_encoding(s); 5787 return; 5788 } 5789 5790 switch (type) { 5791 case 0: 5792 size = MO_32; 5793 break; 5794 case 1: 5795 size = MO_64; 5796 break; 5797 case 3: 5798 size = MO_16; 5799 if (dc_isar_feature(aa64_fp16, s)) { 5800 break; 5801 } 5802 /* fallthru */ 5803 default: 5804 unallocated_encoding(s); 5805 return; 5806 } 5807 5808 if (!fp_access_check(s)) { 5809 return; 5810 } 5811 5812 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5813 } 5814 5815 /* Floating point conditional compare 5816 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5817 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5818 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5819 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5820 */ 5821 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5822 { 5823 unsigned int mos, type, rm, cond, rn, op, nzcv; 5824 TCGLabel *label_continue = NULL; 5825 int size; 5826 5827 mos = extract32(insn, 29, 3); 5828 type = extract32(insn, 22, 2); 5829 rm = extract32(insn, 16, 5); 5830 cond = extract32(insn, 12, 4); 5831 rn = extract32(insn, 5, 5); 5832 op = extract32(insn, 4, 1); 5833 nzcv = extract32(insn, 0, 4); 5834 5835 if (mos) { 5836 unallocated_encoding(s); 5837 return; 5838 } 5839 5840 switch (type) { 5841 case 0: 5842 size = MO_32; 5843 break; 5844 case 1: 5845 size = MO_64; 5846 break; 5847 case 3: 5848 size = MO_16; 5849 if (dc_isar_feature(aa64_fp16, s)) { 5850 break; 5851 } 5852 /* fallthru */ 5853 default: 5854 unallocated_encoding(s); 5855 return; 5856 } 5857 5858 if (!fp_access_check(s)) { 5859 return; 5860 } 5861 5862 if (cond < 0x0e) { /* not always */ 5863 TCGLabel *label_match = gen_new_label(); 5864 label_continue = gen_new_label(); 5865 arm_gen_test_cc(cond, label_match); 5866 /* nomatch: */ 5867 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5868 tcg_gen_br(label_continue); 5869 gen_set_label(label_match); 5870 } 5871 5872 handle_fp_compare(s, size, rn, rm, false, op); 5873 5874 if (cond < 0x0e) { 5875 gen_set_label(label_continue); 5876 } 5877 } 5878 5879 /* Floating point conditional select 5880 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5881 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5882 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5883 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5884 */ 5885 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5886 { 5887 unsigned int mos, type, rm, cond, rn, rd; 5888 TCGv_i64 t_true, t_false; 5889 DisasCompare64 c; 5890 MemOp sz; 5891 5892 mos = extract32(insn, 29, 3); 5893 type = extract32(insn, 22, 2); 5894 rm = extract32(insn, 16, 5); 5895 cond = extract32(insn, 12, 4); 5896 rn = extract32(insn, 5, 5); 5897 rd = extract32(insn, 0, 5); 5898 5899 if (mos) { 5900 unallocated_encoding(s); 5901 return; 5902 } 5903 5904 switch (type) { 5905 case 0: 5906 sz = MO_32; 5907 break; 5908 case 1: 5909 sz = MO_64; 5910 break; 5911 case 3: 5912 sz = MO_16; 5913 if (dc_isar_feature(aa64_fp16, s)) { 5914 break; 5915 } 5916 /* fallthru */ 5917 default: 5918 unallocated_encoding(s); 5919 return; 5920 } 5921 5922 if (!fp_access_check(s)) { 5923 return; 5924 } 5925 5926 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5927 t_true = tcg_temp_new_i64(); 5928 t_false = tcg_temp_new_i64(); 5929 read_vec_element(s, t_true, rn, 0, sz); 5930 read_vec_element(s, t_false, rm, 0, sz); 5931 5932 a64_test_cc(&c, cond); 5933 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5934 t_true, t_false); 5935 5936 /* Note that sregs & hregs write back zeros to the high bits, 5937 and we've already done the zero-extension. */ 5938 write_fp_dreg(s, rd, t_true); 5939 } 5940 5941 /* Floating-point data-processing (1 source) - half precision */ 5942 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5943 { 5944 TCGv_ptr fpst = NULL; 5945 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5946 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5947 5948 switch (opcode) { 5949 case 0x0: /* FMOV */ 5950 tcg_gen_mov_i32(tcg_res, tcg_op); 5951 break; 5952 case 0x1: /* FABS */ 5953 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 5954 break; 5955 case 0x2: /* FNEG */ 5956 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 5957 break; 5958 case 0x3: /* FSQRT */ 5959 fpst = fpstatus_ptr(FPST_FPCR_F16); 5960 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 5961 break; 5962 case 0x8: /* FRINTN */ 5963 case 0x9: /* FRINTP */ 5964 case 0xa: /* FRINTM */ 5965 case 0xb: /* FRINTZ */ 5966 case 0xc: /* FRINTA */ 5967 { 5968 TCGv_i32 tcg_rmode; 5969 5970 fpst = fpstatus_ptr(FPST_FPCR_F16); 5971 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 5972 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5973 gen_restore_rmode(tcg_rmode, fpst); 5974 break; 5975 } 5976 case 0xe: /* FRINTX */ 5977 fpst = fpstatus_ptr(FPST_FPCR_F16); 5978 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 5979 break; 5980 case 0xf: /* FRINTI */ 5981 fpst = fpstatus_ptr(FPST_FPCR_F16); 5982 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5983 break; 5984 default: 5985 g_assert_not_reached(); 5986 } 5987 5988 write_fp_sreg(s, rd, tcg_res); 5989 } 5990 5991 /* Floating-point data-processing (1 source) - single precision */ 5992 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 5993 { 5994 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 5995 TCGv_i32 tcg_op, tcg_res; 5996 TCGv_ptr fpst; 5997 int rmode = -1; 5998 5999 tcg_op = read_fp_sreg(s, rn); 6000 tcg_res = tcg_temp_new_i32(); 6001 6002 switch (opcode) { 6003 case 0x0: /* FMOV */ 6004 tcg_gen_mov_i32(tcg_res, tcg_op); 6005 goto done; 6006 case 0x1: /* FABS */ 6007 gen_helper_vfp_abss(tcg_res, tcg_op); 6008 goto done; 6009 case 0x2: /* FNEG */ 6010 gen_helper_vfp_negs(tcg_res, tcg_op); 6011 goto done; 6012 case 0x3: /* FSQRT */ 6013 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6014 goto done; 6015 case 0x6: /* BFCVT */ 6016 gen_fpst = gen_helper_bfcvt; 6017 break; 6018 case 0x8: /* FRINTN */ 6019 case 0x9: /* FRINTP */ 6020 case 0xa: /* FRINTM */ 6021 case 0xb: /* FRINTZ */ 6022 case 0xc: /* FRINTA */ 6023 rmode = opcode & 7; 6024 gen_fpst = gen_helper_rints; 6025 break; 6026 case 0xe: /* FRINTX */ 6027 gen_fpst = gen_helper_rints_exact; 6028 break; 6029 case 0xf: /* FRINTI */ 6030 gen_fpst = gen_helper_rints; 6031 break; 6032 case 0x10: /* FRINT32Z */ 6033 rmode = FPROUNDING_ZERO; 6034 gen_fpst = gen_helper_frint32_s; 6035 break; 6036 case 0x11: /* FRINT32X */ 6037 gen_fpst = gen_helper_frint32_s; 6038 break; 6039 case 0x12: /* FRINT64Z */ 6040 rmode = FPROUNDING_ZERO; 6041 gen_fpst = gen_helper_frint64_s; 6042 break; 6043 case 0x13: /* FRINT64X */ 6044 gen_fpst = gen_helper_frint64_s; 6045 break; 6046 default: 6047 g_assert_not_reached(); 6048 } 6049 6050 fpst = fpstatus_ptr(FPST_FPCR); 6051 if (rmode >= 0) { 6052 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6053 gen_fpst(tcg_res, tcg_op, fpst); 6054 gen_restore_rmode(tcg_rmode, fpst); 6055 } else { 6056 gen_fpst(tcg_res, tcg_op, fpst); 6057 } 6058 6059 done: 6060 write_fp_sreg(s, rd, tcg_res); 6061 } 6062 6063 /* Floating-point data-processing (1 source) - double precision */ 6064 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6065 { 6066 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6067 TCGv_i64 tcg_op, tcg_res; 6068 TCGv_ptr fpst; 6069 int rmode = -1; 6070 6071 switch (opcode) { 6072 case 0x0: /* FMOV */ 6073 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6074 return; 6075 } 6076 6077 tcg_op = read_fp_dreg(s, rn); 6078 tcg_res = tcg_temp_new_i64(); 6079 6080 switch (opcode) { 6081 case 0x1: /* FABS */ 6082 gen_helper_vfp_absd(tcg_res, tcg_op); 6083 goto done; 6084 case 0x2: /* FNEG */ 6085 gen_helper_vfp_negd(tcg_res, tcg_op); 6086 goto done; 6087 case 0x3: /* FSQRT */ 6088 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6089 goto done; 6090 case 0x8: /* FRINTN */ 6091 case 0x9: /* FRINTP */ 6092 case 0xa: /* FRINTM */ 6093 case 0xb: /* FRINTZ */ 6094 case 0xc: /* FRINTA */ 6095 rmode = opcode & 7; 6096 gen_fpst = gen_helper_rintd; 6097 break; 6098 case 0xe: /* FRINTX */ 6099 gen_fpst = gen_helper_rintd_exact; 6100 break; 6101 case 0xf: /* FRINTI */ 6102 gen_fpst = gen_helper_rintd; 6103 break; 6104 case 0x10: /* FRINT32Z */ 6105 rmode = FPROUNDING_ZERO; 6106 gen_fpst = gen_helper_frint32_d; 6107 break; 6108 case 0x11: /* FRINT32X */ 6109 gen_fpst = gen_helper_frint32_d; 6110 break; 6111 case 0x12: /* FRINT64Z */ 6112 rmode = FPROUNDING_ZERO; 6113 gen_fpst = gen_helper_frint64_d; 6114 break; 6115 case 0x13: /* FRINT64X */ 6116 gen_fpst = gen_helper_frint64_d; 6117 break; 6118 default: 6119 g_assert_not_reached(); 6120 } 6121 6122 fpst = fpstatus_ptr(FPST_FPCR); 6123 if (rmode >= 0) { 6124 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6125 gen_fpst(tcg_res, tcg_op, fpst); 6126 gen_restore_rmode(tcg_rmode, fpst); 6127 } else { 6128 gen_fpst(tcg_res, tcg_op, fpst); 6129 } 6130 6131 done: 6132 write_fp_dreg(s, rd, tcg_res); 6133 } 6134 6135 static void handle_fp_fcvt(DisasContext *s, int opcode, 6136 int rd, int rn, int dtype, int ntype) 6137 { 6138 switch (ntype) { 6139 case 0x0: 6140 { 6141 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6142 if (dtype == 1) { 6143 /* Single to double */ 6144 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6145 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6146 write_fp_dreg(s, rd, tcg_rd); 6147 } else { 6148 /* Single to half */ 6149 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6150 TCGv_i32 ahp = get_ahp_flag(); 6151 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6152 6153 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6154 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6155 write_fp_sreg(s, rd, tcg_rd); 6156 } 6157 break; 6158 } 6159 case 0x1: 6160 { 6161 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6162 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6163 if (dtype == 0) { 6164 /* Double to single */ 6165 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6166 } else { 6167 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6168 TCGv_i32 ahp = get_ahp_flag(); 6169 /* Double to half */ 6170 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6171 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6172 } 6173 write_fp_sreg(s, rd, tcg_rd); 6174 break; 6175 } 6176 case 0x3: 6177 { 6178 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6179 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6180 TCGv_i32 tcg_ahp = get_ahp_flag(); 6181 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6182 if (dtype == 0) { 6183 /* Half to single */ 6184 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6185 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6186 write_fp_sreg(s, rd, tcg_rd); 6187 } else { 6188 /* Half to double */ 6189 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6190 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6191 write_fp_dreg(s, rd, tcg_rd); 6192 } 6193 break; 6194 } 6195 default: 6196 g_assert_not_reached(); 6197 } 6198 } 6199 6200 /* Floating point data-processing (1 source) 6201 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6202 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6203 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6204 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6205 */ 6206 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6207 { 6208 int mos = extract32(insn, 29, 3); 6209 int type = extract32(insn, 22, 2); 6210 int opcode = extract32(insn, 15, 6); 6211 int rn = extract32(insn, 5, 5); 6212 int rd = extract32(insn, 0, 5); 6213 6214 if (mos) { 6215 goto do_unallocated; 6216 } 6217 6218 switch (opcode) { 6219 case 0x4: case 0x5: case 0x7: 6220 { 6221 /* FCVT between half, single and double precision */ 6222 int dtype = extract32(opcode, 0, 2); 6223 if (type == 2 || dtype == type) { 6224 goto do_unallocated; 6225 } 6226 if (!fp_access_check(s)) { 6227 return; 6228 } 6229 6230 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6231 break; 6232 } 6233 6234 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6235 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6236 goto do_unallocated; 6237 } 6238 /* fall through */ 6239 case 0x0 ... 0x3: 6240 case 0x8 ... 0xc: 6241 case 0xe ... 0xf: 6242 /* 32-to-32 and 64-to-64 ops */ 6243 switch (type) { 6244 case 0: 6245 if (!fp_access_check(s)) { 6246 return; 6247 } 6248 handle_fp_1src_single(s, opcode, rd, rn); 6249 break; 6250 case 1: 6251 if (!fp_access_check(s)) { 6252 return; 6253 } 6254 handle_fp_1src_double(s, opcode, rd, rn); 6255 break; 6256 case 3: 6257 if (!dc_isar_feature(aa64_fp16, s)) { 6258 goto do_unallocated; 6259 } 6260 6261 if (!fp_access_check(s)) { 6262 return; 6263 } 6264 handle_fp_1src_half(s, opcode, rd, rn); 6265 break; 6266 default: 6267 goto do_unallocated; 6268 } 6269 break; 6270 6271 case 0x6: 6272 switch (type) { 6273 case 1: /* BFCVT */ 6274 if (!dc_isar_feature(aa64_bf16, s)) { 6275 goto do_unallocated; 6276 } 6277 if (!fp_access_check(s)) { 6278 return; 6279 } 6280 handle_fp_1src_single(s, opcode, rd, rn); 6281 break; 6282 default: 6283 goto do_unallocated; 6284 } 6285 break; 6286 6287 default: 6288 do_unallocated: 6289 unallocated_encoding(s); 6290 break; 6291 } 6292 } 6293 6294 /* Floating-point data-processing (2 source) - single precision */ 6295 static void handle_fp_2src_single(DisasContext *s, int opcode, 6296 int rd, int rn, int rm) 6297 { 6298 TCGv_i32 tcg_op1; 6299 TCGv_i32 tcg_op2; 6300 TCGv_i32 tcg_res; 6301 TCGv_ptr fpst; 6302 6303 tcg_res = tcg_temp_new_i32(); 6304 fpst = fpstatus_ptr(FPST_FPCR); 6305 tcg_op1 = read_fp_sreg(s, rn); 6306 tcg_op2 = read_fp_sreg(s, rm); 6307 6308 switch (opcode) { 6309 case 0x0: /* FMUL */ 6310 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6311 break; 6312 case 0x1: /* FDIV */ 6313 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6314 break; 6315 case 0x2: /* FADD */ 6316 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6317 break; 6318 case 0x3: /* FSUB */ 6319 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6320 break; 6321 case 0x4: /* FMAX */ 6322 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6323 break; 6324 case 0x5: /* FMIN */ 6325 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6326 break; 6327 case 0x6: /* FMAXNM */ 6328 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6329 break; 6330 case 0x7: /* FMINNM */ 6331 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6332 break; 6333 case 0x8: /* FNMUL */ 6334 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6335 gen_helper_vfp_negs(tcg_res, tcg_res); 6336 break; 6337 } 6338 6339 write_fp_sreg(s, rd, tcg_res); 6340 } 6341 6342 /* Floating-point data-processing (2 source) - double precision */ 6343 static void handle_fp_2src_double(DisasContext *s, int opcode, 6344 int rd, int rn, int rm) 6345 { 6346 TCGv_i64 tcg_op1; 6347 TCGv_i64 tcg_op2; 6348 TCGv_i64 tcg_res; 6349 TCGv_ptr fpst; 6350 6351 tcg_res = tcg_temp_new_i64(); 6352 fpst = fpstatus_ptr(FPST_FPCR); 6353 tcg_op1 = read_fp_dreg(s, rn); 6354 tcg_op2 = read_fp_dreg(s, rm); 6355 6356 switch (opcode) { 6357 case 0x0: /* FMUL */ 6358 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6359 break; 6360 case 0x1: /* FDIV */ 6361 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6362 break; 6363 case 0x2: /* FADD */ 6364 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6365 break; 6366 case 0x3: /* FSUB */ 6367 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6368 break; 6369 case 0x4: /* FMAX */ 6370 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6371 break; 6372 case 0x5: /* FMIN */ 6373 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6374 break; 6375 case 0x6: /* FMAXNM */ 6376 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6377 break; 6378 case 0x7: /* FMINNM */ 6379 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6380 break; 6381 case 0x8: /* FNMUL */ 6382 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6383 gen_helper_vfp_negd(tcg_res, tcg_res); 6384 break; 6385 } 6386 6387 write_fp_dreg(s, rd, tcg_res); 6388 } 6389 6390 /* Floating-point data-processing (2 source) - half precision */ 6391 static void handle_fp_2src_half(DisasContext *s, int opcode, 6392 int rd, int rn, int rm) 6393 { 6394 TCGv_i32 tcg_op1; 6395 TCGv_i32 tcg_op2; 6396 TCGv_i32 tcg_res; 6397 TCGv_ptr fpst; 6398 6399 tcg_res = tcg_temp_new_i32(); 6400 fpst = fpstatus_ptr(FPST_FPCR_F16); 6401 tcg_op1 = read_fp_hreg(s, rn); 6402 tcg_op2 = read_fp_hreg(s, rm); 6403 6404 switch (opcode) { 6405 case 0x0: /* FMUL */ 6406 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6407 break; 6408 case 0x1: /* FDIV */ 6409 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6410 break; 6411 case 0x2: /* FADD */ 6412 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6413 break; 6414 case 0x3: /* FSUB */ 6415 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6416 break; 6417 case 0x4: /* FMAX */ 6418 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6419 break; 6420 case 0x5: /* FMIN */ 6421 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6422 break; 6423 case 0x6: /* FMAXNM */ 6424 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6425 break; 6426 case 0x7: /* FMINNM */ 6427 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6428 break; 6429 case 0x8: /* FNMUL */ 6430 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6431 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6432 break; 6433 default: 6434 g_assert_not_reached(); 6435 } 6436 6437 write_fp_sreg(s, rd, tcg_res); 6438 } 6439 6440 /* Floating point data-processing (2 source) 6441 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6442 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6443 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6444 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6445 */ 6446 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6447 { 6448 int mos = extract32(insn, 29, 3); 6449 int type = extract32(insn, 22, 2); 6450 int rd = extract32(insn, 0, 5); 6451 int rn = extract32(insn, 5, 5); 6452 int rm = extract32(insn, 16, 5); 6453 int opcode = extract32(insn, 12, 4); 6454 6455 if (opcode > 8 || mos) { 6456 unallocated_encoding(s); 6457 return; 6458 } 6459 6460 switch (type) { 6461 case 0: 6462 if (!fp_access_check(s)) { 6463 return; 6464 } 6465 handle_fp_2src_single(s, opcode, rd, rn, rm); 6466 break; 6467 case 1: 6468 if (!fp_access_check(s)) { 6469 return; 6470 } 6471 handle_fp_2src_double(s, opcode, rd, rn, rm); 6472 break; 6473 case 3: 6474 if (!dc_isar_feature(aa64_fp16, s)) { 6475 unallocated_encoding(s); 6476 return; 6477 } 6478 if (!fp_access_check(s)) { 6479 return; 6480 } 6481 handle_fp_2src_half(s, opcode, rd, rn, rm); 6482 break; 6483 default: 6484 unallocated_encoding(s); 6485 } 6486 } 6487 6488 /* Floating-point data-processing (3 source) - single precision */ 6489 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6490 int rd, int rn, int rm, int ra) 6491 { 6492 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6493 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6494 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6495 6496 tcg_op1 = read_fp_sreg(s, rn); 6497 tcg_op2 = read_fp_sreg(s, rm); 6498 tcg_op3 = read_fp_sreg(s, ra); 6499 6500 /* These are fused multiply-add, and must be done as one 6501 * floating point operation with no rounding between the 6502 * multiplication and addition steps. 6503 * NB that doing the negations here as separate steps is 6504 * correct : an input NaN should come out with its sign bit 6505 * flipped if it is a negated-input. 6506 */ 6507 if (o1 == true) { 6508 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6509 } 6510 6511 if (o0 != o1) { 6512 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6513 } 6514 6515 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6516 6517 write_fp_sreg(s, rd, tcg_res); 6518 } 6519 6520 /* Floating-point data-processing (3 source) - double precision */ 6521 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6522 int rd, int rn, int rm, int ra) 6523 { 6524 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6525 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6526 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6527 6528 tcg_op1 = read_fp_dreg(s, rn); 6529 tcg_op2 = read_fp_dreg(s, rm); 6530 tcg_op3 = read_fp_dreg(s, ra); 6531 6532 /* These are fused multiply-add, and must be done as one 6533 * floating point operation with no rounding between the 6534 * multiplication and addition steps. 6535 * NB that doing the negations here as separate steps is 6536 * correct : an input NaN should come out with its sign bit 6537 * flipped if it is a negated-input. 6538 */ 6539 if (o1 == true) { 6540 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6541 } 6542 6543 if (o0 != o1) { 6544 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6545 } 6546 6547 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6548 6549 write_fp_dreg(s, rd, tcg_res); 6550 } 6551 6552 /* Floating-point data-processing (3 source) - half precision */ 6553 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6554 int rd, int rn, int rm, int ra) 6555 { 6556 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6557 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6558 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6559 6560 tcg_op1 = read_fp_hreg(s, rn); 6561 tcg_op2 = read_fp_hreg(s, rm); 6562 tcg_op3 = read_fp_hreg(s, ra); 6563 6564 /* These are fused multiply-add, and must be done as one 6565 * floating point operation with no rounding between the 6566 * multiplication and addition steps. 6567 * NB that doing the negations here as separate steps is 6568 * correct : an input NaN should come out with its sign bit 6569 * flipped if it is a negated-input. 6570 */ 6571 if (o1 == true) { 6572 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6573 } 6574 6575 if (o0 != o1) { 6576 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6577 } 6578 6579 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6580 6581 write_fp_sreg(s, rd, tcg_res); 6582 } 6583 6584 /* Floating point data-processing (3 source) 6585 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6586 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6587 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6588 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6589 */ 6590 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6591 { 6592 int mos = extract32(insn, 29, 3); 6593 int type = extract32(insn, 22, 2); 6594 int rd = extract32(insn, 0, 5); 6595 int rn = extract32(insn, 5, 5); 6596 int ra = extract32(insn, 10, 5); 6597 int rm = extract32(insn, 16, 5); 6598 bool o0 = extract32(insn, 15, 1); 6599 bool o1 = extract32(insn, 21, 1); 6600 6601 if (mos) { 6602 unallocated_encoding(s); 6603 return; 6604 } 6605 6606 switch (type) { 6607 case 0: 6608 if (!fp_access_check(s)) { 6609 return; 6610 } 6611 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6612 break; 6613 case 1: 6614 if (!fp_access_check(s)) { 6615 return; 6616 } 6617 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6618 break; 6619 case 3: 6620 if (!dc_isar_feature(aa64_fp16, s)) { 6621 unallocated_encoding(s); 6622 return; 6623 } 6624 if (!fp_access_check(s)) { 6625 return; 6626 } 6627 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6628 break; 6629 default: 6630 unallocated_encoding(s); 6631 } 6632 } 6633 6634 /* Floating point immediate 6635 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6636 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6637 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6638 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6639 */ 6640 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6641 { 6642 int rd = extract32(insn, 0, 5); 6643 int imm5 = extract32(insn, 5, 5); 6644 int imm8 = extract32(insn, 13, 8); 6645 int type = extract32(insn, 22, 2); 6646 int mos = extract32(insn, 29, 3); 6647 uint64_t imm; 6648 MemOp sz; 6649 6650 if (mos || imm5) { 6651 unallocated_encoding(s); 6652 return; 6653 } 6654 6655 switch (type) { 6656 case 0: 6657 sz = MO_32; 6658 break; 6659 case 1: 6660 sz = MO_64; 6661 break; 6662 case 3: 6663 sz = MO_16; 6664 if (dc_isar_feature(aa64_fp16, s)) { 6665 break; 6666 } 6667 /* fallthru */ 6668 default: 6669 unallocated_encoding(s); 6670 return; 6671 } 6672 6673 if (!fp_access_check(s)) { 6674 return; 6675 } 6676 6677 imm = vfp_expand_imm(sz, imm8); 6678 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6679 } 6680 6681 /* Handle floating point <=> fixed point conversions. Note that we can 6682 * also deal with fp <=> integer conversions as a special case (scale == 64) 6683 * OPTME: consider handling that special case specially or at least skipping 6684 * the call to scalbn in the helpers for zero shifts. 6685 */ 6686 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6687 bool itof, int rmode, int scale, int sf, int type) 6688 { 6689 bool is_signed = !(opcode & 1); 6690 TCGv_ptr tcg_fpstatus; 6691 TCGv_i32 tcg_shift, tcg_single; 6692 TCGv_i64 tcg_double; 6693 6694 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6695 6696 tcg_shift = tcg_constant_i32(64 - scale); 6697 6698 if (itof) { 6699 TCGv_i64 tcg_int = cpu_reg(s, rn); 6700 if (!sf) { 6701 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6702 6703 if (is_signed) { 6704 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6705 } else { 6706 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6707 } 6708 6709 tcg_int = tcg_extend; 6710 } 6711 6712 switch (type) { 6713 case 1: /* float64 */ 6714 tcg_double = tcg_temp_new_i64(); 6715 if (is_signed) { 6716 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6717 tcg_shift, tcg_fpstatus); 6718 } else { 6719 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6720 tcg_shift, tcg_fpstatus); 6721 } 6722 write_fp_dreg(s, rd, tcg_double); 6723 break; 6724 6725 case 0: /* float32 */ 6726 tcg_single = tcg_temp_new_i32(); 6727 if (is_signed) { 6728 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6729 tcg_shift, tcg_fpstatus); 6730 } else { 6731 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6732 tcg_shift, tcg_fpstatus); 6733 } 6734 write_fp_sreg(s, rd, tcg_single); 6735 break; 6736 6737 case 3: /* float16 */ 6738 tcg_single = tcg_temp_new_i32(); 6739 if (is_signed) { 6740 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6741 tcg_shift, tcg_fpstatus); 6742 } else { 6743 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6744 tcg_shift, tcg_fpstatus); 6745 } 6746 write_fp_sreg(s, rd, tcg_single); 6747 break; 6748 6749 default: 6750 g_assert_not_reached(); 6751 } 6752 } else { 6753 TCGv_i64 tcg_int = cpu_reg(s, rd); 6754 TCGv_i32 tcg_rmode; 6755 6756 if (extract32(opcode, 2, 1)) { 6757 /* There are too many rounding modes to all fit into rmode, 6758 * so FCVTA[US] is a special case. 6759 */ 6760 rmode = FPROUNDING_TIEAWAY; 6761 } 6762 6763 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6764 6765 switch (type) { 6766 case 1: /* float64 */ 6767 tcg_double = read_fp_dreg(s, rn); 6768 if (is_signed) { 6769 if (!sf) { 6770 gen_helper_vfp_tosld(tcg_int, tcg_double, 6771 tcg_shift, tcg_fpstatus); 6772 } else { 6773 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6774 tcg_shift, tcg_fpstatus); 6775 } 6776 } else { 6777 if (!sf) { 6778 gen_helper_vfp_tould(tcg_int, tcg_double, 6779 tcg_shift, tcg_fpstatus); 6780 } else { 6781 gen_helper_vfp_touqd(tcg_int, tcg_double, 6782 tcg_shift, tcg_fpstatus); 6783 } 6784 } 6785 if (!sf) { 6786 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6787 } 6788 break; 6789 6790 case 0: /* float32 */ 6791 tcg_single = read_fp_sreg(s, rn); 6792 if (sf) { 6793 if (is_signed) { 6794 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6795 tcg_shift, tcg_fpstatus); 6796 } else { 6797 gen_helper_vfp_touqs(tcg_int, tcg_single, 6798 tcg_shift, tcg_fpstatus); 6799 } 6800 } else { 6801 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6802 if (is_signed) { 6803 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6804 tcg_shift, tcg_fpstatus); 6805 } else { 6806 gen_helper_vfp_touls(tcg_dest, tcg_single, 6807 tcg_shift, tcg_fpstatus); 6808 } 6809 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6810 } 6811 break; 6812 6813 case 3: /* float16 */ 6814 tcg_single = read_fp_sreg(s, rn); 6815 if (sf) { 6816 if (is_signed) { 6817 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6818 tcg_shift, tcg_fpstatus); 6819 } else { 6820 gen_helper_vfp_touqh(tcg_int, tcg_single, 6821 tcg_shift, tcg_fpstatus); 6822 } 6823 } else { 6824 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6825 if (is_signed) { 6826 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6827 tcg_shift, tcg_fpstatus); 6828 } else { 6829 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6830 tcg_shift, tcg_fpstatus); 6831 } 6832 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6833 } 6834 break; 6835 6836 default: 6837 g_assert_not_reached(); 6838 } 6839 6840 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6841 } 6842 } 6843 6844 /* Floating point <-> fixed point conversions 6845 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6846 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6847 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6848 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6849 */ 6850 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6851 { 6852 int rd = extract32(insn, 0, 5); 6853 int rn = extract32(insn, 5, 5); 6854 int scale = extract32(insn, 10, 6); 6855 int opcode = extract32(insn, 16, 3); 6856 int rmode = extract32(insn, 19, 2); 6857 int type = extract32(insn, 22, 2); 6858 bool sbit = extract32(insn, 29, 1); 6859 bool sf = extract32(insn, 31, 1); 6860 bool itof; 6861 6862 if (sbit || (!sf && scale < 32)) { 6863 unallocated_encoding(s); 6864 return; 6865 } 6866 6867 switch (type) { 6868 case 0: /* float32 */ 6869 case 1: /* float64 */ 6870 break; 6871 case 3: /* float16 */ 6872 if (dc_isar_feature(aa64_fp16, s)) { 6873 break; 6874 } 6875 /* fallthru */ 6876 default: 6877 unallocated_encoding(s); 6878 return; 6879 } 6880 6881 switch ((rmode << 3) | opcode) { 6882 case 0x2: /* SCVTF */ 6883 case 0x3: /* UCVTF */ 6884 itof = true; 6885 break; 6886 case 0x18: /* FCVTZS */ 6887 case 0x19: /* FCVTZU */ 6888 itof = false; 6889 break; 6890 default: 6891 unallocated_encoding(s); 6892 return; 6893 } 6894 6895 if (!fp_access_check(s)) { 6896 return; 6897 } 6898 6899 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6900 } 6901 6902 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6903 { 6904 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6905 * without conversion. 6906 */ 6907 6908 if (itof) { 6909 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6910 TCGv_i64 tmp; 6911 6912 switch (type) { 6913 case 0: 6914 /* 32 bit */ 6915 tmp = tcg_temp_new_i64(); 6916 tcg_gen_ext32u_i64(tmp, tcg_rn); 6917 write_fp_dreg(s, rd, tmp); 6918 break; 6919 case 1: 6920 /* 64 bit */ 6921 write_fp_dreg(s, rd, tcg_rn); 6922 break; 6923 case 2: 6924 /* 64 bit to top half. */ 6925 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 6926 clear_vec_high(s, true, rd); 6927 break; 6928 case 3: 6929 /* 16 bit */ 6930 tmp = tcg_temp_new_i64(); 6931 tcg_gen_ext16u_i64(tmp, tcg_rn); 6932 write_fp_dreg(s, rd, tmp); 6933 break; 6934 default: 6935 g_assert_not_reached(); 6936 } 6937 } else { 6938 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6939 6940 switch (type) { 6941 case 0: 6942 /* 32 bit */ 6943 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 6944 break; 6945 case 1: 6946 /* 64 bit */ 6947 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 6948 break; 6949 case 2: 6950 /* 64 bits from top half */ 6951 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 6952 break; 6953 case 3: 6954 /* 16 bit */ 6955 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 6956 break; 6957 default: 6958 g_assert_not_reached(); 6959 } 6960 } 6961 } 6962 6963 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 6964 { 6965 TCGv_i64 t = read_fp_dreg(s, rn); 6966 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 6967 6968 gen_helper_fjcvtzs(t, t, fpstatus); 6969 6970 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 6971 tcg_gen_extrh_i64_i32(cpu_ZF, t); 6972 tcg_gen_movi_i32(cpu_CF, 0); 6973 tcg_gen_movi_i32(cpu_NF, 0); 6974 tcg_gen_movi_i32(cpu_VF, 0); 6975 } 6976 6977 /* Floating point <-> integer conversions 6978 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6979 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6980 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 6981 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6982 */ 6983 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 6984 { 6985 int rd = extract32(insn, 0, 5); 6986 int rn = extract32(insn, 5, 5); 6987 int opcode = extract32(insn, 16, 3); 6988 int rmode = extract32(insn, 19, 2); 6989 int type = extract32(insn, 22, 2); 6990 bool sbit = extract32(insn, 29, 1); 6991 bool sf = extract32(insn, 31, 1); 6992 bool itof = false; 6993 6994 if (sbit) { 6995 goto do_unallocated; 6996 } 6997 6998 switch (opcode) { 6999 case 2: /* SCVTF */ 7000 case 3: /* UCVTF */ 7001 itof = true; 7002 /* fallthru */ 7003 case 4: /* FCVTAS */ 7004 case 5: /* FCVTAU */ 7005 if (rmode != 0) { 7006 goto do_unallocated; 7007 } 7008 /* fallthru */ 7009 case 0: /* FCVT[NPMZ]S */ 7010 case 1: /* FCVT[NPMZ]U */ 7011 switch (type) { 7012 case 0: /* float32 */ 7013 case 1: /* float64 */ 7014 break; 7015 case 3: /* float16 */ 7016 if (!dc_isar_feature(aa64_fp16, s)) { 7017 goto do_unallocated; 7018 } 7019 break; 7020 default: 7021 goto do_unallocated; 7022 } 7023 if (!fp_access_check(s)) { 7024 return; 7025 } 7026 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7027 break; 7028 7029 default: 7030 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7031 case 0b01100110: /* FMOV half <-> 32-bit int */ 7032 case 0b01100111: 7033 case 0b11100110: /* FMOV half <-> 64-bit int */ 7034 case 0b11100111: 7035 if (!dc_isar_feature(aa64_fp16, s)) { 7036 goto do_unallocated; 7037 } 7038 /* fallthru */ 7039 case 0b00000110: /* FMOV 32-bit */ 7040 case 0b00000111: 7041 case 0b10100110: /* FMOV 64-bit */ 7042 case 0b10100111: 7043 case 0b11001110: /* FMOV top half of 128-bit */ 7044 case 0b11001111: 7045 if (!fp_access_check(s)) { 7046 return; 7047 } 7048 itof = opcode & 1; 7049 handle_fmov(s, rd, rn, type, itof); 7050 break; 7051 7052 case 0b00111110: /* FJCVTZS */ 7053 if (!dc_isar_feature(aa64_jscvt, s)) { 7054 goto do_unallocated; 7055 } else if (fp_access_check(s)) { 7056 handle_fjcvtzs(s, rd, rn); 7057 } 7058 break; 7059 7060 default: 7061 do_unallocated: 7062 unallocated_encoding(s); 7063 return; 7064 } 7065 break; 7066 } 7067 } 7068 7069 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7070 * 31 30 29 28 25 24 0 7071 * +---+---+---+---------+-----------------------------+ 7072 * | | 0 | | 1 1 1 1 | | 7073 * +---+---+---+---------+-----------------------------+ 7074 */ 7075 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7076 { 7077 if (extract32(insn, 24, 1)) { 7078 /* Floating point data-processing (3 source) */ 7079 disas_fp_3src(s, insn); 7080 } else if (extract32(insn, 21, 1) == 0) { 7081 /* Floating point to fixed point conversions */ 7082 disas_fp_fixed_conv(s, insn); 7083 } else { 7084 switch (extract32(insn, 10, 2)) { 7085 case 1: 7086 /* Floating point conditional compare */ 7087 disas_fp_ccomp(s, insn); 7088 break; 7089 case 2: 7090 /* Floating point data-processing (2 source) */ 7091 disas_fp_2src(s, insn); 7092 break; 7093 case 3: 7094 /* Floating point conditional select */ 7095 disas_fp_csel(s, insn); 7096 break; 7097 case 0: 7098 switch (ctz32(extract32(insn, 12, 4))) { 7099 case 0: /* [15:12] == xxx1 */ 7100 /* Floating point immediate */ 7101 disas_fp_imm(s, insn); 7102 break; 7103 case 1: /* [15:12] == xx10 */ 7104 /* Floating point compare */ 7105 disas_fp_compare(s, insn); 7106 break; 7107 case 2: /* [15:12] == x100 */ 7108 /* Floating point data-processing (1 source) */ 7109 disas_fp_1src(s, insn); 7110 break; 7111 case 3: /* [15:12] == 1000 */ 7112 unallocated_encoding(s); 7113 break; 7114 default: /* [15:12] == 0000 */ 7115 /* Floating point <-> integer conversions */ 7116 disas_fp_int_conv(s, insn); 7117 break; 7118 } 7119 break; 7120 } 7121 } 7122 } 7123 7124 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7125 int pos) 7126 { 7127 /* Extract 64 bits from the middle of two concatenated 64 bit 7128 * vector register slices left:right. The extracted bits start 7129 * at 'pos' bits into the right (least significant) side. 7130 * We return the result in tcg_right, and guarantee not to 7131 * trash tcg_left. 7132 */ 7133 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7134 assert(pos > 0 && pos < 64); 7135 7136 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7137 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7138 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7139 } 7140 7141 /* EXT 7142 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7143 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7144 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7145 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7146 */ 7147 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7148 { 7149 int is_q = extract32(insn, 30, 1); 7150 int op2 = extract32(insn, 22, 2); 7151 int imm4 = extract32(insn, 11, 4); 7152 int rm = extract32(insn, 16, 5); 7153 int rn = extract32(insn, 5, 5); 7154 int rd = extract32(insn, 0, 5); 7155 int pos = imm4 << 3; 7156 TCGv_i64 tcg_resl, tcg_resh; 7157 7158 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7159 unallocated_encoding(s); 7160 return; 7161 } 7162 7163 if (!fp_access_check(s)) { 7164 return; 7165 } 7166 7167 tcg_resh = tcg_temp_new_i64(); 7168 tcg_resl = tcg_temp_new_i64(); 7169 7170 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7171 * either extracting 128 bits from a 128:128 concatenation, or 7172 * extracting 64 bits from a 64:64 concatenation. 7173 */ 7174 if (!is_q) { 7175 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7176 if (pos != 0) { 7177 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7178 do_ext64(s, tcg_resh, tcg_resl, pos); 7179 } 7180 } else { 7181 TCGv_i64 tcg_hh; 7182 typedef struct { 7183 int reg; 7184 int elt; 7185 } EltPosns; 7186 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7187 EltPosns *elt = eltposns; 7188 7189 if (pos >= 64) { 7190 elt++; 7191 pos -= 64; 7192 } 7193 7194 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7195 elt++; 7196 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7197 elt++; 7198 if (pos != 0) { 7199 do_ext64(s, tcg_resh, tcg_resl, pos); 7200 tcg_hh = tcg_temp_new_i64(); 7201 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7202 do_ext64(s, tcg_hh, tcg_resh, pos); 7203 } 7204 } 7205 7206 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7207 if (is_q) { 7208 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7209 } 7210 clear_vec_high(s, is_q, rd); 7211 } 7212 7213 /* TBL/TBX 7214 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7215 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7216 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7217 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7218 */ 7219 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7220 { 7221 int op2 = extract32(insn, 22, 2); 7222 int is_q = extract32(insn, 30, 1); 7223 int rm = extract32(insn, 16, 5); 7224 int rn = extract32(insn, 5, 5); 7225 int rd = extract32(insn, 0, 5); 7226 int is_tbx = extract32(insn, 12, 1); 7227 int len = (extract32(insn, 13, 2) + 1) * 16; 7228 7229 if (op2 != 0) { 7230 unallocated_encoding(s); 7231 return; 7232 } 7233 7234 if (!fp_access_check(s)) { 7235 return; 7236 } 7237 7238 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7239 vec_full_reg_offset(s, rm), cpu_env, 7240 is_q ? 16 : 8, vec_full_reg_size(s), 7241 (len << 6) | (is_tbx << 5) | rn, 7242 gen_helper_simd_tblx); 7243 } 7244 7245 /* ZIP/UZP/TRN 7246 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7247 * +---+---+-------------+------+---+------+---+------------------+------+ 7248 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7249 * +---+---+-------------+------+---+------+---+------------------+------+ 7250 */ 7251 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7252 { 7253 int rd = extract32(insn, 0, 5); 7254 int rn = extract32(insn, 5, 5); 7255 int rm = extract32(insn, 16, 5); 7256 int size = extract32(insn, 22, 2); 7257 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7258 * bit 2 indicates 1 vs 2 variant of the insn. 7259 */ 7260 int opcode = extract32(insn, 12, 2); 7261 bool part = extract32(insn, 14, 1); 7262 bool is_q = extract32(insn, 30, 1); 7263 int esize = 8 << size; 7264 int i; 7265 int datasize = is_q ? 128 : 64; 7266 int elements = datasize / esize; 7267 TCGv_i64 tcg_res[2], tcg_ele; 7268 7269 if (opcode == 0 || (size == 3 && !is_q)) { 7270 unallocated_encoding(s); 7271 return; 7272 } 7273 7274 if (!fp_access_check(s)) { 7275 return; 7276 } 7277 7278 tcg_res[0] = tcg_temp_new_i64(); 7279 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7280 tcg_ele = tcg_temp_new_i64(); 7281 7282 for (i = 0; i < elements; i++) { 7283 int o, w; 7284 7285 switch (opcode) { 7286 case 1: /* UZP1/2 */ 7287 { 7288 int midpoint = elements / 2; 7289 if (i < midpoint) { 7290 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7291 } else { 7292 read_vec_element(s, tcg_ele, rm, 7293 2 * (i - midpoint) + part, size); 7294 } 7295 break; 7296 } 7297 case 2: /* TRN1/2 */ 7298 if (i & 1) { 7299 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7300 } else { 7301 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7302 } 7303 break; 7304 case 3: /* ZIP1/2 */ 7305 { 7306 int base = part * elements / 2; 7307 if (i & 1) { 7308 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7309 } else { 7310 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7311 } 7312 break; 7313 } 7314 default: 7315 g_assert_not_reached(); 7316 } 7317 7318 w = (i * esize) / 64; 7319 o = (i * esize) % 64; 7320 if (o == 0) { 7321 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7322 } else { 7323 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7324 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7325 } 7326 } 7327 7328 for (i = 0; i <= is_q; ++i) { 7329 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7330 } 7331 clear_vec_high(s, is_q, rd); 7332 } 7333 7334 /* 7335 * do_reduction_op helper 7336 * 7337 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7338 * important for correct NaN propagation that we do these 7339 * operations in exactly the order specified by the pseudocode. 7340 * 7341 * This is a recursive function, TCG temps should be freed by the 7342 * calling function once it is done with the values. 7343 */ 7344 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7345 int esize, int size, int vmap, TCGv_ptr fpst) 7346 { 7347 if (esize == size) { 7348 int element; 7349 MemOp msize = esize == 16 ? MO_16 : MO_32; 7350 TCGv_i32 tcg_elem; 7351 7352 /* We should have one register left here */ 7353 assert(ctpop8(vmap) == 1); 7354 element = ctz32(vmap); 7355 assert(element < 8); 7356 7357 tcg_elem = tcg_temp_new_i32(); 7358 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7359 return tcg_elem; 7360 } else { 7361 int bits = size / 2; 7362 int shift = ctpop8(vmap) / 2; 7363 int vmap_lo = (vmap >> shift) & vmap; 7364 int vmap_hi = (vmap & ~vmap_lo); 7365 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7366 7367 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7368 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7369 tcg_res = tcg_temp_new_i32(); 7370 7371 switch (fpopcode) { 7372 case 0x0c: /* fmaxnmv half-precision */ 7373 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7374 break; 7375 case 0x0f: /* fmaxv half-precision */ 7376 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7377 break; 7378 case 0x1c: /* fminnmv half-precision */ 7379 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7380 break; 7381 case 0x1f: /* fminv half-precision */ 7382 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7383 break; 7384 case 0x2c: /* fmaxnmv */ 7385 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7386 break; 7387 case 0x2f: /* fmaxv */ 7388 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7389 break; 7390 case 0x3c: /* fminnmv */ 7391 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7392 break; 7393 case 0x3f: /* fminv */ 7394 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7395 break; 7396 default: 7397 g_assert_not_reached(); 7398 } 7399 return tcg_res; 7400 } 7401 } 7402 7403 /* AdvSIMD across lanes 7404 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7405 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7406 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7407 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7408 */ 7409 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7410 { 7411 int rd = extract32(insn, 0, 5); 7412 int rn = extract32(insn, 5, 5); 7413 int size = extract32(insn, 22, 2); 7414 int opcode = extract32(insn, 12, 5); 7415 bool is_q = extract32(insn, 30, 1); 7416 bool is_u = extract32(insn, 29, 1); 7417 bool is_fp = false; 7418 bool is_min = false; 7419 int esize; 7420 int elements; 7421 int i; 7422 TCGv_i64 tcg_res, tcg_elt; 7423 7424 switch (opcode) { 7425 case 0x1b: /* ADDV */ 7426 if (is_u) { 7427 unallocated_encoding(s); 7428 return; 7429 } 7430 /* fall through */ 7431 case 0x3: /* SADDLV, UADDLV */ 7432 case 0xa: /* SMAXV, UMAXV */ 7433 case 0x1a: /* SMINV, UMINV */ 7434 if (size == 3 || (size == 2 && !is_q)) { 7435 unallocated_encoding(s); 7436 return; 7437 } 7438 break; 7439 case 0xc: /* FMAXNMV, FMINNMV */ 7440 case 0xf: /* FMAXV, FMINV */ 7441 /* Bit 1 of size field encodes min vs max and the actual size 7442 * depends on the encoding of the U bit. If not set (and FP16 7443 * enabled) then we do half-precision float instead of single 7444 * precision. 7445 */ 7446 is_min = extract32(size, 1, 1); 7447 is_fp = true; 7448 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7449 size = 1; 7450 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7451 unallocated_encoding(s); 7452 return; 7453 } else { 7454 size = 2; 7455 } 7456 break; 7457 default: 7458 unallocated_encoding(s); 7459 return; 7460 } 7461 7462 if (!fp_access_check(s)) { 7463 return; 7464 } 7465 7466 esize = 8 << size; 7467 elements = (is_q ? 128 : 64) / esize; 7468 7469 tcg_res = tcg_temp_new_i64(); 7470 tcg_elt = tcg_temp_new_i64(); 7471 7472 /* These instructions operate across all lanes of a vector 7473 * to produce a single result. We can guarantee that a 64 7474 * bit intermediate is sufficient: 7475 * + for [US]ADDLV the maximum element size is 32 bits, and 7476 * the result type is 64 bits 7477 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7478 * same as the element size, which is 32 bits at most 7479 * For the integer operations we can choose to work at 64 7480 * or 32 bits and truncate at the end; for simplicity 7481 * we use 64 bits always. The floating point 7482 * ops do require 32 bit intermediates, though. 7483 */ 7484 if (!is_fp) { 7485 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7486 7487 for (i = 1; i < elements; i++) { 7488 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7489 7490 switch (opcode) { 7491 case 0x03: /* SADDLV / UADDLV */ 7492 case 0x1b: /* ADDV */ 7493 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7494 break; 7495 case 0x0a: /* SMAXV / UMAXV */ 7496 if (is_u) { 7497 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7498 } else { 7499 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7500 } 7501 break; 7502 case 0x1a: /* SMINV / UMINV */ 7503 if (is_u) { 7504 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7505 } else { 7506 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7507 } 7508 break; 7509 default: 7510 g_assert_not_reached(); 7511 } 7512 7513 } 7514 } else { 7515 /* Floating point vector reduction ops which work across 32 7516 * bit (single) or 16 bit (half-precision) intermediates. 7517 * Note that correct NaN propagation requires that we do these 7518 * operations in exactly the order specified by the pseudocode. 7519 */ 7520 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7521 int fpopcode = opcode | is_min << 4 | is_u << 5; 7522 int vmap = (1 << elements) - 1; 7523 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7524 (is_q ? 128 : 64), vmap, fpst); 7525 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7526 } 7527 7528 /* Now truncate the result to the width required for the final output */ 7529 if (opcode == 0x03) { 7530 /* SADDLV, UADDLV: result is 2*esize */ 7531 size++; 7532 } 7533 7534 switch (size) { 7535 case 0: 7536 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7537 break; 7538 case 1: 7539 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7540 break; 7541 case 2: 7542 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7543 break; 7544 case 3: 7545 break; 7546 default: 7547 g_assert_not_reached(); 7548 } 7549 7550 write_fp_dreg(s, rd, tcg_res); 7551 } 7552 7553 /* DUP (Element, Vector) 7554 * 7555 * 31 30 29 21 20 16 15 10 9 5 4 0 7556 * +---+---+-------------------+--------+-------------+------+------+ 7557 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7558 * +---+---+-------------------+--------+-------------+------+------+ 7559 * 7560 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7561 */ 7562 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7563 int imm5) 7564 { 7565 int size = ctz32(imm5); 7566 int index; 7567 7568 if (size > 3 || (size == 3 && !is_q)) { 7569 unallocated_encoding(s); 7570 return; 7571 } 7572 7573 if (!fp_access_check(s)) { 7574 return; 7575 } 7576 7577 index = imm5 >> (size + 1); 7578 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7579 vec_reg_offset(s, rn, index, size), 7580 is_q ? 16 : 8, vec_full_reg_size(s)); 7581 } 7582 7583 /* DUP (element, scalar) 7584 * 31 21 20 16 15 10 9 5 4 0 7585 * +-----------------------+--------+-------------+------+------+ 7586 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7587 * +-----------------------+--------+-------------+------+------+ 7588 */ 7589 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7590 int imm5) 7591 { 7592 int size = ctz32(imm5); 7593 int index; 7594 TCGv_i64 tmp; 7595 7596 if (size > 3) { 7597 unallocated_encoding(s); 7598 return; 7599 } 7600 7601 if (!fp_access_check(s)) { 7602 return; 7603 } 7604 7605 index = imm5 >> (size + 1); 7606 7607 /* This instruction just extracts the specified element and 7608 * zero-extends it into the bottom of the destination register. 7609 */ 7610 tmp = tcg_temp_new_i64(); 7611 read_vec_element(s, tmp, rn, index, size); 7612 write_fp_dreg(s, rd, tmp); 7613 } 7614 7615 /* DUP (General) 7616 * 7617 * 31 30 29 21 20 16 15 10 9 5 4 0 7618 * +---+---+-------------------+--------+-------------+------+------+ 7619 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7620 * +---+---+-------------------+--------+-------------+------+------+ 7621 * 7622 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7623 */ 7624 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7625 int imm5) 7626 { 7627 int size = ctz32(imm5); 7628 uint32_t dofs, oprsz, maxsz; 7629 7630 if (size > 3 || ((size == 3) && !is_q)) { 7631 unallocated_encoding(s); 7632 return; 7633 } 7634 7635 if (!fp_access_check(s)) { 7636 return; 7637 } 7638 7639 dofs = vec_full_reg_offset(s, rd); 7640 oprsz = is_q ? 16 : 8; 7641 maxsz = vec_full_reg_size(s); 7642 7643 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7644 } 7645 7646 /* INS (Element) 7647 * 7648 * 31 21 20 16 15 14 11 10 9 5 4 0 7649 * +-----------------------+--------+------------+---+------+------+ 7650 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7651 * +-----------------------+--------+------------+---+------+------+ 7652 * 7653 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7654 * index: encoded in imm5<4:size+1> 7655 */ 7656 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7657 int imm4, int imm5) 7658 { 7659 int size = ctz32(imm5); 7660 int src_index, dst_index; 7661 TCGv_i64 tmp; 7662 7663 if (size > 3) { 7664 unallocated_encoding(s); 7665 return; 7666 } 7667 7668 if (!fp_access_check(s)) { 7669 return; 7670 } 7671 7672 dst_index = extract32(imm5, 1+size, 5); 7673 src_index = extract32(imm4, size, 4); 7674 7675 tmp = tcg_temp_new_i64(); 7676 7677 read_vec_element(s, tmp, rn, src_index, size); 7678 write_vec_element(s, tmp, rd, dst_index, size); 7679 7680 /* INS is considered a 128-bit write for SVE. */ 7681 clear_vec_high(s, true, rd); 7682 } 7683 7684 7685 /* INS (General) 7686 * 7687 * 31 21 20 16 15 10 9 5 4 0 7688 * +-----------------------+--------+-------------+------+------+ 7689 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7690 * +-----------------------+--------+-------------+------+------+ 7691 * 7692 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7693 * index: encoded in imm5<4:size+1> 7694 */ 7695 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7696 { 7697 int size = ctz32(imm5); 7698 int idx; 7699 7700 if (size > 3) { 7701 unallocated_encoding(s); 7702 return; 7703 } 7704 7705 if (!fp_access_check(s)) { 7706 return; 7707 } 7708 7709 idx = extract32(imm5, 1 + size, 4 - size); 7710 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7711 7712 /* INS is considered a 128-bit write for SVE. */ 7713 clear_vec_high(s, true, rd); 7714 } 7715 7716 /* 7717 * UMOV (General) 7718 * SMOV (General) 7719 * 7720 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7721 * +---+---+-------------------+--------+-------------+------+------+ 7722 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7723 * +---+---+-------------------+--------+-------------+------+------+ 7724 * 7725 * U: unsigned when set 7726 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7727 */ 7728 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7729 int rn, int rd, int imm5) 7730 { 7731 int size = ctz32(imm5); 7732 int element; 7733 TCGv_i64 tcg_rd; 7734 7735 /* Check for UnallocatedEncodings */ 7736 if (is_signed) { 7737 if (size > 2 || (size == 2 && !is_q)) { 7738 unallocated_encoding(s); 7739 return; 7740 } 7741 } else { 7742 if (size > 3 7743 || (size < 3 && is_q) 7744 || (size == 3 && !is_q)) { 7745 unallocated_encoding(s); 7746 return; 7747 } 7748 } 7749 7750 if (!fp_access_check(s)) { 7751 return; 7752 } 7753 7754 element = extract32(imm5, 1+size, 4); 7755 7756 tcg_rd = cpu_reg(s, rd); 7757 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7758 if (is_signed && !is_q) { 7759 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7760 } 7761 } 7762 7763 /* AdvSIMD copy 7764 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7765 * +---+---+----+-----------------+------+---+------+---+------+------+ 7766 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7767 * +---+---+----+-----------------+------+---+------+---+------+------+ 7768 */ 7769 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7770 { 7771 int rd = extract32(insn, 0, 5); 7772 int rn = extract32(insn, 5, 5); 7773 int imm4 = extract32(insn, 11, 4); 7774 int op = extract32(insn, 29, 1); 7775 int is_q = extract32(insn, 30, 1); 7776 int imm5 = extract32(insn, 16, 5); 7777 7778 if (op) { 7779 if (is_q) { 7780 /* INS (element) */ 7781 handle_simd_inse(s, rd, rn, imm4, imm5); 7782 } else { 7783 unallocated_encoding(s); 7784 } 7785 } else { 7786 switch (imm4) { 7787 case 0: 7788 /* DUP (element - vector) */ 7789 handle_simd_dupe(s, is_q, rd, rn, imm5); 7790 break; 7791 case 1: 7792 /* DUP (general) */ 7793 handle_simd_dupg(s, is_q, rd, rn, imm5); 7794 break; 7795 case 3: 7796 if (is_q) { 7797 /* INS (general) */ 7798 handle_simd_insg(s, rd, rn, imm5); 7799 } else { 7800 unallocated_encoding(s); 7801 } 7802 break; 7803 case 5: 7804 case 7: 7805 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7806 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7807 break; 7808 default: 7809 unallocated_encoding(s); 7810 break; 7811 } 7812 } 7813 } 7814 7815 /* AdvSIMD modified immediate 7816 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7817 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7818 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7819 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7820 * 7821 * There are a number of operations that can be carried out here: 7822 * MOVI - move (shifted) imm into register 7823 * MVNI - move inverted (shifted) imm into register 7824 * ORR - bitwise OR of (shifted) imm with register 7825 * BIC - bitwise clear of (shifted) imm with register 7826 * With ARMv8.2 we also have: 7827 * FMOV half-precision 7828 */ 7829 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7830 { 7831 int rd = extract32(insn, 0, 5); 7832 int cmode = extract32(insn, 12, 4); 7833 int o2 = extract32(insn, 11, 1); 7834 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7835 bool is_neg = extract32(insn, 29, 1); 7836 bool is_q = extract32(insn, 30, 1); 7837 uint64_t imm = 0; 7838 7839 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7840 /* Check for FMOV (vector, immediate) - half-precision */ 7841 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7842 unallocated_encoding(s); 7843 return; 7844 } 7845 } 7846 7847 if (!fp_access_check(s)) { 7848 return; 7849 } 7850 7851 if (cmode == 15 && o2 && !is_neg) { 7852 /* FMOV (vector, immediate) - half-precision */ 7853 imm = vfp_expand_imm(MO_16, abcdefgh); 7854 /* now duplicate across the lanes */ 7855 imm = dup_const(MO_16, imm); 7856 } else { 7857 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7858 } 7859 7860 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7861 /* MOVI or MVNI, with MVNI negation handled above. */ 7862 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7863 vec_full_reg_size(s), imm); 7864 } else { 7865 /* ORR or BIC, with BIC negation to AND handled above. */ 7866 if (is_neg) { 7867 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7868 } else { 7869 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7870 } 7871 } 7872 } 7873 7874 /* AdvSIMD scalar copy 7875 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7876 * +-----+----+-----------------+------+---+------+---+------+------+ 7877 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7878 * +-----+----+-----------------+------+---+------+---+------+------+ 7879 */ 7880 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7881 { 7882 int rd = extract32(insn, 0, 5); 7883 int rn = extract32(insn, 5, 5); 7884 int imm4 = extract32(insn, 11, 4); 7885 int imm5 = extract32(insn, 16, 5); 7886 int op = extract32(insn, 29, 1); 7887 7888 if (op != 0 || imm4 != 0) { 7889 unallocated_encoding(s); 7890 return; 7891 } 7892 7893 /* DUP (element, scalar) */ 7894 handle_simd_dupes(s, rd, rn, imm5); 7895 } 7896 7897 /* AdvSIMD scalar pairwise 7898 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7899 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7900 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7901 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7902 */ 7903 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7904 { 7905 int u = extract32(insn, 29, 1); 7906 int size = extract32(insn, 22, 2); 7907 int opcode = extract32(insn, 12, 5); 7908 int rn = extract32(insn, 5, 5); 7909 int rd = extract32(insn, 0, 5); 7910 TCGv_ptr fpst; 7911 7912 /* For some ops (the FP ones), size[1] is part of the encoding. 7913 * For ADDP strictly it is not but size[1] is always 1 for valid 7914 * encodings. 7915 */ 7916 opcode |= (extract32(size, 1, 1) << 5); 7917 7918 switch (opcode) { 7919 case 0x3b: /* ADDP */ 7920 if (u || size != 3) { 7921 unallocated_encoding(s); 7922 return; 7923 } 7924 if (!fp_access_check(s)) { 7925 return; 7926 } 7927 7928 fpst = NULL; 7929 break; 7930 case 0xc: /* FMAXNMP */ 7931 case 0xd: /* FADDP */ 7932 case 0xf: /* FMAXP */ 7933 case 0x2c: /* FMINNMP */ 7934 case 0x2f: /* FMINP */ 7935 /* FP op, size[0] is 32 or 64 bit*/ 7936 if (!u) { 7937 if (!dc_isar_feature(aa64_fp16, s)) { 7938 unallocated_encoding(s); 7939 return; 7940 } else { 7941 size = MO_16; 7942 } 7943 } else { 7944 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7945 } 7946 7947 if (!fp_access_check(s)) { 7948 return; 7949 } 7950 7951 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7952 break; 7953 default: 7954 unallocated_encoding(s); 7955 return; 7956 } 7957 7958 if (size == MO_64) { 7959 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 7960 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 7961 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7962 7963 read_vec_element(s, tcg_op1, rn, 0, MO_64); 7964 read_vec_element(s, tcg_op2, rn, 1, MO_64); 7965 7966 switch (opcode) { 7967 case 0x3b: /* ADDP */ 7968 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 7969 break; 7970 case 0xc: /* FMAXNMP */ 7971 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7972 break; 7973 case 0xd: /* FADDP */ 7974 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 7975 break; 7976 case 0xf: /* FMAXP */ 7977 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 7978 break; 7979 case 0x2c: /* FMINNMP */ 7980 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7981 break; 7982 case 0x2f: /* FMINP */ 7983 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 7984 break; 7985 default: 7986 g_assert_not_reached(); 7987 } 7988 7989 write_fp_dreg(s, rd, tcg_res); 7990 } else { 7991 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 7992 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 7993 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7994 7995 read_vec_element_i32(s, tcg_op1, rn, 0, size); 7996 read_vec_element_i32(s, tcg_op2, rn, 1, size); 7997 7998 if (size == MO_16) { 7999 switch (opcode) { 8000 case 0xc: /* FMAXNMP */ 8001 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8002 break; 8003 case 0xd: /* FADDP */ 8004 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8005 break; 8006 case 0xf: /* FMAXP */ 8007 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8008 break; 8009 case 0x2c: /* FMINNMP */ 8010 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8011 break; 8012 case 0x2f: /* FMINP */ 8013 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8014 break; 8015 default: 8016 g_assert_not_reached(); 8017 } 8018 } else { 8019 switch (opcode) { 8020 case 0xc: /* FMAXNMP */ 8021 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8022 break; 8023 case 0xd: /* FADDP */ 8024 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8025 break; 8026 case 0xf: /* FMAXP */ 8027 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8028 break; 8029 case 0x2c: /* FMINNMP */ 8030 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8031 break; 8032 case 0x2f: /* FMINP */ 8033 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8034 break; 8035 default: 8036 g_assert_not_reached(); 8037 } 8038 } 8039 8040 write_fp_sreg(s, rd, tcg_res); 8041 } 8042 } 8043 8044 /* 8045 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8046 * 8047 * This code is handles the common shifting code and is used by both 8048 * the vector and scalar code. 8049 */ 8050 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8051 TCGv_i64 tcg_rnd, bool accumulate, 8052 bool is_u, int size, int shift) 8053 { 8054 bool extended_result = false; 8055 bool round = tcg_rnd != NULL; 8056 int ext_lshift = 0; 8057 TCGv_i64 tcg_src_hi; 8058 8059 if (round && size == 3) { 8060 extended_result = true; 8061 ext_lshift = 64 - shift; 8062 tcg_src_hi = tcg_temp_new_i64(); 8063 } else if (shift == 64) { 8064 if (!accumulate && is_u) { 8065 /* result is zero */ 8066 tcg_gen_movi_i64(tcg_res, 0); 8067 return; 8068 } 8069 } 8070 8071 /* Deal with the rounding step */ 8072 if (round) { 8073 if (extended_result) { 8074 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8075 if (!is_u) { 8076 /* take care of sign extending tcg_res */ 8077 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8078 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8079 tcg_src, tcg_src_hi, 8080 tcg_rnd, tcg_zero); 8081 } else { 8082 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8083 tcg_src, tcg_zero, 8084 tcg_rnd, tcg_zero); 8085 } 8086 } else { 8087 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8088 } 8089 } 8090 8091 /* Now do the shift right */ 8092 if (round && extended_result) { 8093 /* extended case, >64 bit precision required */ 8094 if (ext_lshift == 0) { 8095 /* special case, only high bits matter */ 8096 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8097 } else { 8098 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8099 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8100 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8101 } 8102 } else { 8103 if (is_u) { 8104 if (shift == 64) { 8105 /* essentially shifting in 64 zeros */ 8106 tcg_gen_movi_i64(tcg_src, 0); 8107 } else { 8108 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8109 } 8110 } else { 8111 if (shift == 64) { 8112 /* effectively extending the sign-bit */ 8113 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8114 } else { 8115 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8116 } 8117 } 8118 } 8119 8120 if (accumulate) { 8121 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8122 } else { 8123 tcg_gen_mov_i64(tcg_res, tcg_src); 8124 } 8125 } 8126 8127 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8128 static void handle_scalar_simd_shri(DisasContext *s, 8129 bool is_u, int immh, int immb, 8130 int opcode, int rn, int rd) 8131 { 8132 const int size = 3; 8133 int immhb = immh << 3 | immb; 8134 int shift = 2 * (8 << size) - immhb; 8135 bool accumulate = false; 8136 bool round = false; 8137 bool insert = false; 8138 TCGv_i64 tcg_rn; 8139 TCGv_i64 tcg_rd; 8140 TCGv_i64 tcg_round; 8141 8142 if (!extract32(immh, 3, 1)) { 8143 unallocated_encoding(s); 8144 return; 8145 } 8146 8147 if (!fp_access_check(s)) { 8148 return; 8149 } 8150 8151 switch (opcode) { 8152 case 0x02: /* SSRA / USRA (accumulate) */ 8153 accumulate = true; 8154 break; 8155 case 0x04: /* SRSHR / URSHR (rounding) */ 8156 round = true; 8157 break; 8158 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8159 accumulate = round = true; 8160 break; 8161 case 0x08: /* SRI */ 8162 insert = true; 8163 break; 8164 } 8165 8166 if (round) { 8167 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8168 } else { 8169 tcg_round = NULL; 8170 } 8171 8172 tcg_rn = read_fp_dreg(s, rn); 8173 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8174 8175 if (insert) { 8176 /* shift count same as element size is valid but does nothing; 8177 * special case to avoid potential shift by 64. 8178 */ 8179 int esize = 8 << size; 8180 if (shift != esize) { 8181 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8182 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8183 } 8184 } else { 8185 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8186 accumulate, is_u, size, shift); 8187 } 8188 8189 write_fp_dreg(s, rd, tcg_rd); 8190 } 8191 8192 /* SHL/SLI - Scalar shift left */ 8193 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8194 int immh, int immb, int opcode, 8195 int rn, int rd) 8196 { 8197 int size = 32 - clz32(immh) - 1; 8198 int immhb = immh << 3 | immb; 8199 int shift = immhb - (8 << size); 8200 TCGv_i64 tcg_rn; 8201 TCGv_i64 tcg_rd; 8202 8203 if (!extract32(immh, 3, 1)) { 8204 unallocated_encoding(s); 8205 return; 8206 } 8207 8208 if (!fp_access_check(s)) { 8209 return; 8210 } 8211 8212 tcg_rn = read_fp_dreg(s, rn); 8213 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8214 8215 if (insert) { 8216 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8217 } else { 8218 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8219 } 8220 8221 write_fp_dreg(s, rd, tcg_rd); 8222 } 8223 8224 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8225 * (signed/unsigned) narrowing */ 8226 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8227 bool is_u_shift, bool is_u_narrow, 8228 int immh, int immb, int opcode, 8229 int rn, int rd) 8230 { 8231 int immhb = immh << 3 | immb; 8232 int size = 32 - clz32(immh) - 1; 8233 int esize = 8 << size; 8234 int shift = (2 * esize) - immhb; 8235 int elements = is_scalar ? 1 : (64 / esize); 8236 bool round = extract32(opcode, 0, 1); 8237 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8238 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8239 TCGv_i32 tcg_rd_narrowed; 8240 TCGv_i64 tcg_final; 8241 8242 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8243 { gen_helper_neon_narrow_sat_s8, 8244 gen_helper_neon_unarrow_sat8 }, 8245 { gen_helper_neon_narrow_sat_s16, 8246 gen_helper_neon_unarrow_sat16 }, 8247 { gen_helper_neon_narrow_sat_s32, 8248 gen_helper_neon_unarrow_sat32 }, 8249 { NULL, NULL }, 8250 }; 8251 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8252 gen_helper_neon_narrow_sat_u8, 8253 gen_helper_neon_narrow_sat_u16, 8254 gen_helper_neon_narrow_sat_u32, 8255 NULL 8256 }; 8257 NeonGenNarrowEnvFn *narrowfn; 8258 8259 int i; 8260 8261 assert(size < 4); 8262 8263 if (extract32(immh, 3, 1)) { 8264 unallocated_encoding(s); 8265 return; 8266 } 8267 8268 if (!fp_access_check(s)) { 8269 return; 8270 } 8271 8272 if (is_u_shift) { 8273 narrowfn = unsigned_narrow_fns[size]; 8274 } else { 8275 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8276 } 8277 8278 tcg_rn = tcg_temp_new_i64(); 8279 tcg_rd = tcg_temp_new_i64(); 8280 tcg_rd_narrowed = tcg_temp_new_i32(); 8281 tcg_final = tcg_temp_new_i64(); 8282 8283 if (round) { 8284 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8285 } else { 8286 tcg_round = NULL; 8287 } 8288 8289 for (i = 0; i < elements; i++) { 8290 read_vec_element(s, tcg_rn, rn, i, ldop); 8291 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8292 false, is_u_shift, size+1, shift); 8293 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8294 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8295 if (i == 0) { 8296 tcg_gen_mov_i64(tcg_final, tcg_rd); 8297 } else { 8298 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8299 } 8300 } 8301 8302 if (!is_q) { 8303 write_vec_element(s, tcg_final, rd, 0, MO_64); 8304 } else { 8305 write_vec_element(s, tcg_final, rd, 1, MO_64); 8306 } 8307 clear_vec_high(s, is_q, rd); 8308 } 8309 8310 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8311 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8312 bool src_unsigned, bool dst_unsigned, 8313 int immh, int immb, int rn, int rd) 8314 { 8315 int immhb = immh << 3 | immb; 8316 int size = 32 - clz32(immh) - 1; 8317 int shift = immhb - (8 << size); 8318 int pass; 8319 8320 assert(immh != 0); 8321 assert(!(scalar && is_q)); 8322 8323 if (!scalar) { 8324 if (!is_q && extract32(immh, 3, 1)) { 8325 unallocated_encoding(s); 8326 return; 8327 } 8328 8329 /* Since we use the variable-shift helpers we must 8330 * replicate the shift count into each element of 8331 * the tcg_shift value. 8332 */ 8333 switch (size) { 8334 case 0: 8335 shift |= shift << 8; 8336 /* fall through */ 8337 case 1: 8338 shift |= shift << 16; 8339 break; 8340 case 2: 8341 case 3: 8342 break; 8343 default: 8344 g_assert_not_reached(); 8345 } 8346 } 8347 8348 if (!fp_access_check(s)) { 8349 return; 8350 } 8351 8352 if (size == 3) { 8353 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8354 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8355 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8356 { NULL, gen_helper_neon_qshl_u64 }, 8357 }; 8358 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8359 int maxpass = is_q ? 2 : 1; 8360 8361 for (pass = 0; pass < maxpass; pass++) { 8362 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8363 8364 read_vec_element(s, tcg_op, rn, pass, MO_64); 8365 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8366 write_vec_element(s, tcg_op, rd, pass, MO_64); 8367 } 8368 clear_vec_high(s, is_q, rd); 8369 } else { 8370 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8371 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8372 { 8373 { gen_helper_neon_qshl_s8, 8374 gen_helper_neon_qshl_s16, 8375 gen_helper_neon_qshl_s32 }, 8376 { gen_helper_neon_qshlu_s8, 8377 gen_helper_neon_qshlu_s16, 8378 gen_helper_neon_qshlu_s32 } 8379 }, { 8380 { NULL, NULL, NULL }, 8381 { gen_helper_neon_qshl_u8, 8382 gen_helper_neon_qshl_u16, 8383 gen_helper_neon_qshl_u32 } 8384 } 8385 }; 8386 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8387 MemOp memop = scalar ? size : MO_32; 8388 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8389 8390 for (pass = 0; pass < maxpass; pass++) { 8391 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8392 8393 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8394 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8395 if (scalar) { 8396 switch (size) { 8397 case 0: 8398 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8399 break; 8400 case 1: 8401 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8402 break; 8403 case 2: 8404 break; 8405 default: 8406 g_assert_not_reached(); 8407 } 8408 write_fp_sreg(s, rd, tcg_op); 8409 } else { 8410 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8411 } 8412 } 8413 8414 if (!scalar) { 8415 clear_vec_high(s, is_q, rd); 8416 } 8417 } 8418 } 8419 8420 /* Common vector code for handling integer to FP conversion */ 8421 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8422 int elements, int is_signed, 8423 int fracbits, int size) 8424 { 8425 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8426 TCGv_i32 tcg_shift = NULL; 8427 8428 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8429 int pass; 8430 8431 if (fracbits || size == MO_64) { 8432 tcg_shift = tcg_constant_i32(fracbits); 8433 } 8434 8435 if (size == MO_64) { 8436 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8437 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8438 8439 for (pass = 0; pass < elements; pass++) { 8440 read_vec_element(s, tcg_int64, rn, pass, mop); 8441 8442 if (is_signed) { 8443 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8444 tcg_shift, tcg_fpst); 8445 } else { 8446 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8447 tcg_shift, tcg_fpst); 8448 } 8449 if (elements == 1) { 8450 write_fp_dreg(s, rd, tcg_double); 8451 } else { 8452 write_vec_element(s, tcg_double, rd, pass, MO_64); 8453 } 8454 } 8455 } else { 8456 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8457 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8458 8459 for (pass = 0; pass < elements; pass++) { 8460 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8461 8462 switch (size) { 8463 case MO_32: 8464 if (fracbits) { 8465 if (is_signed) { 8466 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8467 tcg_shift, tcg_fpst); 8468 } else { 8469 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8470 tcg_shift, tcg_fpst); 8471 } 8472 } else { 8473 if (is_signed) { 8474 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8475 } else { 8476 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8477 } 8478 } 8479 break; 8480 case MO_16: 8481 if (fracbits) { 8482 if (is_signed) { 8483 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8484 tcg_shift, tcg_fpst); 8485 } else { 8486 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8487 tcg_shift, tcg_fpst); 8488 } 8489 } else { 8490 if (is_signed) { 8491 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8492 } else { 8493 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8494 } 8495 } 8496 break; 8497 default: 8498 g_assert_not_reached(); 8499 } 8500 8501 if (elements == 1) { 8502 write_fp_sreg(s, rd, tcg_float); 8503 } else { 8504 write_vec_element_i32(s, tcg_float, rd, pass, size); 8505 } 8506 } 8507 } 8508 8509 clear_vec_high(s, elements << size == 16, rd); 8510 } 8511 8512 /* UCVTF/SCVTF - Integer to FP conversion */ 8513 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8514 bool is_q, bool is_u, 8515 int immh, int immb, int opcode, 8516 int rn, int rd) 8517 { 8518 int size, elements, fracbits; 8519 int immhb = immh << 3 | immb; 8520 8521 if (immh & 8) { 8522 size = MO_64; 8523 if (!is_scalar && !is_q) { 8524 unallocated_encoding(s); 8525 return; 8526 } 8527 } else if (immh & 4) { 8528 size = MO_32; 8529 } else if (immh & 2) { 8530 size = MO_16; 8531 if (!dc_isar_feature(aa64_fp16, s)) { 8532 unallocated_encoding(s); 8533 return; 8534 } 8535 } else { 8536 /* immh == 0 would be a failure of the decode logic */ 8537 g_assert(immh == 1); 8538 unallocated_encoding(s); 8539 return; 8540 } 8541 8542 if (is_scalar) { 8543 elements = 1; 8544 } else { 8545 elements = (8 << is_q) >> size; 8546 } 8547 fracbits = (16 << size) - immhb; 8548 8549 if (!fp_access_check(s)) { 8550 return; 8551 } 8552 8553 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8554 } 8555 8556 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8557 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8558 bool is_q, bool is_u, 8559 int immh, int immb, int rn, int rd) 8560 { 8561 int immhb = immh << 3 | immb; 8562 int pass, size, fracbits; 8563 TCGv_ptr tcg_fpstatus; 8564 TCGv_i32 tcg_rmode, tcg_shift; 8565 8566 if (immh & 0x8) { 8567 size = MO_64; 8568 if (!is_scalar && !is_q) { 8569 unallocated_encoding(s); 8570 return; 8571 } 8572 } else if (immh & 0x4) { 8573 size = MO_32; 8574 } else if (immh & 0x2) { 8575 size = MO_16; 8576 if (!dc_isar_feature(aa64_fp16, s)) { 8577 unallocated_encoding(s); 8578 return; 8579 } 8580 } else { 8581 /* Should have split out AdvSIMD modified immediate earlier. */ 8582 assert(immh == 1); 8583 unallocated_encoding(s); 8584 return; 8585 } 8586 8587 if (!fp_access_check(s)) { 8588 return; 8589 } 8590 8591 assert(!(is_scalar && is_q)); 8592 8593 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8594 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8595 fracbits = (16 << size) - immhb; 8596 tcg_shift = tcg_constant_i32(fracbits); 8597 8598 if (size == MO_64) { 8599 int maxpass = is_scalar ? 1 : 2; 8600 8601 for (pass = 0; pass < maxpass; pass++) { 8602 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8603 8604 read_vec_element(s, tcg_op, rn, pass, MO_64); 8605 if (is_u) { 8606 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8607 } else { 8608 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8609 } 8610 write_vec_element(s, tcg_op, rd, pass, MO_64); 8611 } 8612 clear_vec_high(s, is_q, rd); 8613 } else { 8614 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8615 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8616 8617 switch (size) { 8618 case MO_16: 8619 if (is_u) { 8620 fn = gen_helper_vfp_touhh; 8621 } else { 8622 fn = gen_helper_vfp_toshh; 8623 } 8624 break; 8625 case MO_32: 8626 if (is_u) { 8627 fn = gen_helper_vfp_touls; 8628 } else { 8629 fn = gen_helper_vfp_tosls; 8630 } 8631 break; 8632 default: 8633 g_assert_not_reached(); 8634 } 8635 8636 for (pass = 0; pass < maxpass; pass++) { 8637 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8638 8639 read_vec_element_i32(s, tcg_op, rn, pass, size); 8640 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8641 if (is_scalar) { 8642 write_fp_sreg(s, rd, tcg_op); 8643 } else { 8644 write_vec_element_i32(s, tcg_op, rd, pass, size); 8645 } 8646 } 8647 if (!is_scalar) { 8648 clear_vec_high(s, is_q, rd); 8649 } 8650 } 8651 8652 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8653 } 8654 8655 /* AdvSIMD scalar shift by immediate 8656 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8657 * +-----+---+-------------+------+------+--------+---+------+------+ 8658 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8659 * +-----+---+-------------+------+------+--------+---+------+------+ 8660 * 8661 * This is the scalar version so it works on a fixed sized registers 8662 */ 8663 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8664 { 8665 int rd = extract32(insn, 0, 5); 8666 int rn = extract32(insn, 5, 5); 8667 int opcode = extract32(insn, 11, 5); 8668 int immb = extract32(insn, 16, 3); 8669 int immh = extract32(insn, 19, 4); 8670 bool is_u = extract32(insn, 29, 1); 8671 8672 if (immh == 0) { 8673 unallocated_encoding(s); 8674 return; 8675 } 8676 8677 switch (opcode) { 8678 case 0x08: /* SRI */ 8679 if (!is_u) { 8680 unallocated_encoding(s); 8681 return; 8682 } 8683 /* fall through */ 8684 case 0x00: /* SSHR / USHR */ 8685 case 0x02: /* SSRA / USRA */ 8686 case 0x04: /* SRSHR / URSHR */ 8687 case 0x06: /* SRSRA / URSRA */ 8688 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8689 break; 8690 case 0x0a: /* SHL / SLI */ 8691 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8692 break; 8693 case 0x1c: /* SCVTF, UCVTF */ 8694 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8695 opcode, rn, rd); 8696 break; 8697 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8698 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8699 if (!is_u) { 8700 unallocated_encoding(s); 8701 return; 8702 } 8703 handle_vec_simd_sqshrn(s, true, false, false, true, 8704 immh, immb, opcode, rn, rd); 8705 break; 8706 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8707 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8708 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8709 immh, immb, opcode, rn, rd); 8710 break; 8711 case 0xc: /* SQSHLU */ 8712 if (!is_u) { 8713 unallocated_encoding(s); 8714 return; 8715 } 8716 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8717 break; 8718 case 0xe: /* SQSHL, UQSHL */ 8719 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8720 break; 8721 case 0x1f: /* FCVTZS, FCVTZU */ 8722 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8723 break; 8724 default: 8725 unallocated_encoding(s); 8726 break; 8727 } 8728 } 8729 8730 /* AdvSIMD scalar three different 8731 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8732 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8733 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8734 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8735 */ 8736 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8737 { 8738 bool is_u = extract32(insn, 29, 1); 8739 int size = extract32(insn, 22, 2); 8740 int opcode = extract32(insn, 12, 4); 8741 int rm = extract32(insn, 16, 5); 8742 int rn = extract32(insn, 5, 5); 8743 int rd = extract32(insn, 0, 5); 8744 8745 if (is_u) { 8746 unallocated_encoding(s); 8747 return; 8748 } 8749 8750 switch (opcode) { 8751 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8752 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8753 case 0xd: /* SQDMULL, SQDMULL2 */ 8754 if (size == 0 || size == 3) { 8755 unallocated_encoding(s); 8756 return; 8757 } 8758 break; 8759 default: 8760 unallocated_encoding(s); 8761 return; 8762 } 8763 8764 if (!fp_access_check(s)) { 8765 return; 8766 } 8767 8768 if (size == 2) { 8769 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8770 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8771 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8772 8773 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8774 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8775 8776 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8777 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8778 8779 switch (opcode) { 8780 case 0xd: /* SQDMULL, SQDMULL2 */ 8781 break; 8782 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8783 tcg_gen_neg_i64(tcg_res, tcg_res); 8784 /* fall through */ 8785 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8786 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8787 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8788 tcg_res, tcg_op1); 8789 break; 8790 default: 8791 g_assert_not_reached(); 8792 } 8793 8794 write_fp_dreg(s, rd, tcg_res); 8795 } else { 8796 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8797 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8798 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8799 8800 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8801 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8802 8803 switch (opcode) { 8804 case 0xd: /* SQDMULL, SQDMULL2 */ 8805 break; 8806 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8807 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8808 /* fall through */ 8809 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8810 { 8811 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8812 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8813 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8814 tcg_res, tcg_op3); 8815 break; 8816 } 8817 default: 8818 g_assert_not_reached(); 8819 } 8820 8821 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8822 write_fp_dreg(s, rd, tcg_res); 8823 } 8824 } 8825 8826 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8827 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8828 { 8829 /* Handle 64x64->64 opcodes which are shared between the scalar 8830 * and vector 3-same groups. We cover every opcode where size == 3 8831 * is valid in either the three-reg-same (integer, not pairwise) 8832 * or scalar-three-reg-same groups. 8833 */ 8834 TCGCond cond; 8835 8836 switch (opcode) { 8837 case 0x1: /* SQADD */ 8838 if (u) { 8839 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8840 } else { 8841 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8842 } 8843 break; 8844 case 0x5: /* SQSUB */ 8845 if (u) { 8846 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8847 } else { 8848 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8849 } 8850 break; 8851 case 0x6: /* CMGT, CMHI */ 8852 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 8853 * We implement this using setcond (test) and then negating. 8854 */ 8855 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8856 do_cmop: 8857 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8858 tcg_gen_neg_i64(tcg_rd, tcg_rd); 8859 break; 8860 case 0x7: /* CMGE, CMHS */ 8861 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8862 goto do_cmop; 8863 case 0x11: /* CMTST, CMEQ */ 8864 if (u) { 8865 cond = TCG_COND_EQ; 8866 goto do_cmop; 8867 } 8868 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8869 break; 8870 case 0x8: /* SSHL, USHL */ 8871 if (u) { 8872 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8873 } else { 8874 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8875 } 8876 break; 8877 case 0x9: /* SQSHL, UQSHL */ 8878 if (u) { 8879 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8880 } else { 8881 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8882 } 8883 break; 8884 case 0xa: /* SRSHL, URSHL */ 8885 if (u) { 8886 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8887 } else { 8888 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8889 } 8890 break; 8891 case 0xb: /* SQRSHL, UQRSHL */ 8892 if (u) { 8893 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8894 } else { 8895 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8896 } 8897 break; 8898 case 0x10: /* ADD, SUB */ 8899 if (u) { 8900 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8901 } else { 8902 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8903 } 8904 break; 8905 default: 8906 g_assert_not_reached(); 8907 } 8908 } 8909 8910 /* Handle the 3-same-operands float operations; shared by the scalar 8911 * and vector encodings. The caller must filter out any encodings 8912 * not allocated for the encoding it is dealing with. 8913 */ 8914 static void handle_3same_float(DisasContext *s, int size, int elements, 8915 int fpopcode, int rd, int rn, int rm) 8916 { 8917 int pass; 8918 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8919 8920 for (pass = 0; pass < elements; pass++) { 8921 if (size) { 8922 /* Double */ 8923 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8924 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8925 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8926 8927 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8928 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8929 8930 switch (fpopcode) { 8931 case 0x39: /* FMLS */ 8932 /* As usual for ARM, separate negation for fused multiply-add */ 8933 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8934 /* fall through */ 8935 case 0x19: /* FMLA */ 8936 read_vec_element(s, tcg_res, rd, pass, MO_64); 8937 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8938 tcg_res, fpst); 8939 break; 8940 case 0x18: /* FMAXNM */ 8941 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8942 break; 8943 case 0x1a: /* FADD */ 8944 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8945 break; 8946 case 0x1b: /* FMULX */ 8947 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8948 break; 8949 case 0x1c: /* FCMEQ */ 8950 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8951 break; 8952 case 0x1e: /* FMAX */ 8953 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8954 break; 8955 case 0x1f: /* FRECPS */ 8956 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8957 break; 8958 case 0x38: /* FMINNM */ 8959 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8960 break; 8961 case 0x3a: /* FSUB */ 8962 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8963 break; 8964 case 0x3e: /* FMIN */ 8965 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8966 break; 8967 case 0x3f: /* FRSQRTS */ 8968 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8969 break; 8970 case 0x5b: /* FMUL */ 8971 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 8972 break; 8973 case 0x5c: /* FCMGE */ 8974 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8975 break; 8976 case 0x5d: /* FACGE */ 8977 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8978 break; 8979 case 0x5f: /* FDIV */ 8980 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 8981 break; 8982 case 0x7a: /* FABD */ 8983 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8984 gen_helper_vfp_absd(tcg_res, tcg_res); 8985 break; 8986 case 0x7c: /* FCMGT */ 8987 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8988 break; 8989 case 0x7d: /* FACGT */ 8990 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8991 break; 8992 default: 8993 g_assert_not_reached(); 8994 } 8995 8996 write_vec_element(s, tcg_res, rd, pass, MO_64); 8997 } else { 8998 /* Single */ 8999 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9000 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9001 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9002 9003 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9004 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9005 9006 switch (fpopcode) { 9007 case 0x39: /* FMLS */ 9008 /* As usual for ARM, separate negation for fused multiply-add */ 9009 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9010 /* fall through */ 9011 case 0x19: /* FMLA */ 9012 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9013 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9014 tcg_res, fpst); 9015 break; 9016 case 0x1a: /* FADD */ 9017 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9018 break; 9019 case 0x1b: /* FMULX */ 9020 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9021 break; 9022 case 0x1c: /* FCMEQ */ 9023 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9024 break; 9025 case 0x1e: /* FMAX */ 9026 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9027 break; 9028 case 0x1f: /* FRECPS */ 9029 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9030 break; 9031 case 0x18: /* FMAXNM */ 9032 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9033 break; 9034 case 0x38: /* FMINNM */ 9035 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9036 break; 9037 case 0x3a: /* FSUB */ 9038 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9039 break; 9040 case 0x3e: /* FMIN */ 9041 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9042 break; 9043 case 0x3f: /* FRSQRTS */ 9044 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9045 break; 9046 case 0x5b: /* FMUL */ 9047 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9048 break; 9049 case 0x5c: /* FCMGE */ 9050 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9051 break; 9052 case 0x5d: /* FACGE */ 9053 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9054 break; 9055 case 0x5f: /* FDIV */ 9056 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9057 break; 9058 case 0x7a: /* FABD */ 9059 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9060 gen_helper_vfp_abss(tcg_res, tcg_res); 9061 break; 9062 case 0x7c: /* FCMGT */ 9063 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9064 break; 9065 case 0x7d: /* FACGT */ 9066 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9067 break; 9068 default: 9069 g_assert_not_reached(); 9070 } 9071 9072 if (elements == 1) { 9073 /* scalar single so clear high part */ 9074 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9075 9076 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9077 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9078 } else { 9079 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9080 } 9081 } 9082 } 9083 9084 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9085 } 9086 9087 /* AdvSIMD scalar three same 9088 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9089 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9090 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9091 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9092 */ 9093 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9094 { 9095 int rd = extract32(insn, 0, 5); 9096 int rn = extract32(insn, 5, 5); 9097 int opcode = extract32(insn, 11, 5); 9098 int rm = extract32(insn, 16, 5); 9099 int size = extract32(insn, 22, 2); 9100 bool u = extract32(insn, 29, 1); 9101 TCGv_i64 tcg_rd; 9102 9103 if (opcode >= 0x18) { 9104 /* Floating point: U, size[1] and opcode indicate operation */ 9105 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9106 switch (fpopcode) { 9107 case 0x1b: /* FMULX */ 9108 case 0x1f: /* FRECPS */ 9109 case 0x3f: /* FRSQRTS */ 9110 case 0x5d: /* FACGE */ 9111 case 0x7d: /* FACGT */ 9112 case 0x1c: /* FCMEQ */ 9113 case 0x5c: /* FCMGE */ 9114 case 0x7c: /* FCMGT */ 9115 case 0x7a: /* FABD */ 9116 break; 9117 default: 9118 unallocated_encoding(s); 9119 return; 9120 } 9121 9122 if (!fp_access_check(s)) { 9123 return; 9124 } 9125 9126 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9127 return; 9128 } 9129 9130 switch (opcode) { 9131 case 0x1: /* SQADD, UQADD */ 9132 case 0x5: /* SQSUB, UQSUB */ 9133 case 0x9: /* SQSHL, UQSHL */ 9134 case 0xb: /* SQRSHL, UQRSHL */ 9135 break; 9136 case 0x8: /* SSHL, USHL */ 9137 case 0xa: /* SRSHL, URSHL */ 9138 case 0x6: /* CMGT, CMHI */ 9139 case 0x7: /* CMGE, CMHS */ 9140 case 0x11: /* CMTST, CMEQ */ 9141 case 0x10: /* ADD, SUB (vector) */ 9142 if (size != 3) { 9143 unallocated_encoding(s); 9144 return; 9145 } 9146 break; 9147 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9148 if (size != 1 && size != 2) { 9149 unallocated_encoding(s); 9150 return; 9151 } 9152 break; 9153 default: 9154 unallocated_encoding(s); 9155 return; 9156 } 9157 9158 if (!fp_access_check(s)) { 9159 return; 9160 } 9161 9162 tcg_rd = tcg_temp_new_i64(); 9163 9164 if (size == 3) { 9165 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9166 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9167 9168 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9169 } else { 9170 /* Do a single operation on the lowest element in the vector. 9171 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9172 * no side effects for all these operations. 9173 * OPTME: special-purpose helpers would avoid doing some 9174 * unnecessary work in the helper for the 8 and 16 bit cases. 9175 */ 9176 NeonGenTwoOpEnvFn *genenvfn; 9177 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9178 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9179 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9180 9181 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9182 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9183 9184 switch (opcode) { 9185 case 0x1: /* SQADD, UQADD */ 9186 { 9187 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9188 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9189 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9190 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9191 }; 9192 genenvfn = fns[size][u]; 9193 break; 9194 } 9195 case 0x5: /* SQSUB, UQSUB */ 9196 { 9197 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9198 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9199 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9200 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9201 }; 9202 genenvfn = fns[size][u]; 9203 break; 9204 } 9205 case 0x9: /* SQSHL, UQSHL */ 9206 { 9207 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9208 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9209 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9210 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9211 }; 9212 genenvfn = fns[size][u]; 9213 break; 9214 } 9215 case 0xb: /* SQRSHL, UQRSHL */ 9216 { 9217 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9218 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9219 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9220 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9221 }; 9222 genenvfn = fns[size][u]; 9223 break; 9224 } 9225 case 0x16: /* SQDMULH, SQRDMULH */ 9226 { 9227 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9228 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9229 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9230 }; 9231 assert(size == 1 || size == 2); 9232 genenvfn = fns[size - 1][u]; 9233 break; 9234 } 9235 default: 9236 g_assert_not_reached(); 9237 } 9238 9239 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9240 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9241 } 9242 9243 write_fp_dreg(s, rd, tcg_rd); 9244 } 9245 9246 /* AdvSIMD scalar three same FP16 9247 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9248 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9249 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9250 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9251 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9252 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9253 */ 9254 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9255 uint32_t insn) 9256 { 9257 int rd = extract32(insn, 0, 5); 9258 int rn = extract32(insn, 5, 5); 9259 int opcode = extract32(insn, 11, 3); 9260 int rm = extract32(insn, 16, 5); 9261 bool u = extract32(insn, 29, 1); 9262 bool a = extract32(insn, 23, 1); 9263 int fpopcode = opcode | (a << 3) | (u << 4); 9264 TCGv_ptr fpst; 9265 TCGv_i32 tcg_op1; 9266 TCGv_i32 tcg_op2; 9267 TCGv_i32 tcg_res; 9268 9269 switch (fpopcode) { 9270 case 0x03: /* FMULX */ 9271 case 0x04: /* FCMEQ (reg) */ 9272 case 0x07: /* FRECPS */ 9273 case 0x0f: /* FRSQRTS */ 9274 case 0x14: /* FCMGE (reg) */ 9275 case 0x15: /* FACGE */ 9276 case 0x1a: /* FABD */ 9277 case 0x1c: /* FCMGT (reg) */ 9278 case 0x1d: /* FACGT */ 9279 break; 9280 default: 9281 unallocated_encoding(s); 9282 return; 9283 } 9284 9285 if (!dc_isar_feature(aa64_fp16, s)) { 9286 unallocated_encoding(s); 9287 } 9288 9289 if (!fp_access_check(s)) { 9290 return; 9291 } 9292 9293 fpst = fpstatus_ptr(FPST_FPCR_F16); 9294 9295 tcg_op1 = read_fp_hreg(s, rn); 9296 tcg_op2 = read_fp_hreg(s, rm); 9297 tcg_res = tcg_temp_new_i32(); 9298 9299 switch (fpopcode) { 9300 case 0x03: /* FMULX */ 9301 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9302 break; 9303 case 0x04: /* FCMEQ (reg) */ 9304 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9305 break; 9306 case 0x07: /* FRECPS */ 9307 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9308 break; 9309 case 0x0f: /* FRSQRTS */ 9310 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9311 break; 9312 case 0x14: /* FCMGE (reg) */ 9313 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9314 break; 9315 case 0x15: /* FACGE */ 9316 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9317 break; 9318 case 0x1a: /* FABD */ 9319 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9320 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9321 break; 9322 case 0x1c: /* FCMGT (reg) */ 9323 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9324 break; 9325 case 0x1d: /* FACGT */ 9326 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9327 break; 9328 default: 9329 g_assert_not_reached(); 9330 } 9331 9332 write_fp_sreg(s, rd, tcg_res); 9333 } 9334 9335 /* AdvSIMD scalar three same extra 9336 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9337 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9338 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9339 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9340 */ 9341 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9342 uint32_t insn) 9343 { 9344 int rd = extract32(insn, 0, 5); 9345 int rn = extract32(insn, 5, 5); 9346 int opcode = extract32(insn, 11, 4); 9347 int rm = extract32(insn, 16, 5); 9348 int size = extract32(insn, 22, 2); 9349 bool u = extract32(insn, 29, 1); 9350 TCGv_i32 ele1, ele2, ele3; 9351 TCGv_i64 res; 9352 bool feature; 9353 9354 switch (u * 16 + opcode) { 9355 case 0x10: /* SQRDMLAH (vector) */ 9356 case 0x11: /* SQRDMLSH (vector) */ 9357 if (size != 1 && size != 2) { 9358 unallocated_encoding(s); 9359 return; 9360 } 9361 feature = dc_isar_feature(aa64_rdm, s); 9362 break; 9363 default: 9364 unallocated_encoding(s); 9365 return; 9366 } 9367 if (!feature) { 9368 unallocated_encoding(s); 9369 return; 9370 } 9371 if (!fp_access_check(s)) { 9372 return; 9373 } 9374 9375 /* Do a single operation on the lowest element in the vector. 9376 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9377 * with no side effects for all these operations. 9378 * OPTME: special-purpose helpers would avoid doing some 9379 * unnecessary work in the helper for the 16 bit cases. 9380 */ 9381 ele1 = tcg_temp_new_i32(); 9382 ele2 = tcg_temp_new_i32(); 9383 ele3 = tcg_temp_new_i32(); 9384 9385 read_vec_element_i32(s, ele1, rn, 0, size); 9386 read_vec_element_i32(s, ele2, rm, 0, size); 9387 read_vec_element_i32(s, ele3, rd, 0, size); 9388 9389 switch (opcode) { 9390 case 0x0: /* SQRDMLAH */ 9391 if (size == 1) { 9392 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9393 } else { 9394 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9395 } 9396 break; 9397 case 0x1: /* SQRDMLSH */ 9398 if (size == 1) { 9399 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9400 } else { 9401 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9402 } 9403 break; 9404 default: 9405 g_assert_not_reached(); 9406 } 9407 9408 res = tcg_temp_new_i64(); 9409 tcg_gen_extu_i32_i64(res, ele3); 9410 write_fp_dreg(s, rd, res); 9411 } 9412 9413 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9414 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9415 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9416 { 9417 /* Handle 64->64 opcodes which are shared between the scalar and 9418 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9419 * is valid in either group and also the double-precision fp ops. 9420 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9421 * requires them. 9422 */ 9423 TCGCond cond; 9424 9425 switch (opcode) { 9426 case 0x4: /* CLS, CLZ */ 9427 if (u) { 9428 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9429 } else { 9430 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9431 } 9432 break; 9433 case 0x5: /* NOT */ 9434 /* This opcode is shared with CNT and RBIT but we have earlier 9435 * enforced that size == 3 if and only if this is the NOT insn. 9436 */ 9437 tcg_gen_not_i64(tcg_rd, tcg_rn); 9438 break; 9439 case 0x7: /* SQABS, SQNEG */ 9440 if (u) { 9441 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9442 } else { 9443 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9444 } 9445 break; 9446 case 0xa: /* CMLT */ 9447 /* 64 bit integer comparison against zero, result is 9448 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9449 * subtracting 1. 9450 */ 9451 cond = TCG_COND_LT; 9452 do_cmop: 9453 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9454 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9455 break; 9456 case 0x8: /* CMGT, CMGE */ 9457 cond = u ? TCG_COND_GE : TCG_COND_GT; 9458 goto do_cmop; 9459 case 0x9: /* CMEQ, CMLE */ 9460 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9461 goto do_cmop; 9462 case 0xb: /* ABS, NEG */ 9463 if (u) { 9464 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9465 } else { 9466 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9467 } 9468 break; 9469 case 0x2f: /* FABS */ 9470 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9471 break; 9472 case 0x6f: /* FNEG */ 9473 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9474 break; 9475 case 0x7f: /* FSQRT */ 9476 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9477 break; 9478 case 0x1a: /* FCVTNS */ 9479 case 0x1b: /* FCVTMS */ 9480 case 0x1c: /* FCVTAS */ 9481 case 0x3a: /* FCVTPS */ 9482 case 0x3b: /* FCVTZS */ 9483 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9484 break; 9485 case 0x5a: /* FCVTNU */ 9486 case 0x5b: /* FCVTMU */ 9487 case 0x5c: /* FCVTAU */ 9488 case 0x7a: /* FCVTPU */ 9489 case 0x7b: /* FCVTZU */ 9490 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9491 break; 9492 case 0x18: /* FRINTN */ 9493 case 0x19: /* FRINTM */ 9494 case 0x38: /* FRINTP */ 9495 case 0x39: /* FRINTZ */ 9496 case 0x58: /* FRINTA */ 9497 case 0x79: /* FRINTI */ 9498 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9499 break; 9500 case 0x59: /* FRINTX */ 9501 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9502 break; 9503 case 0x1e: /* FRINT32Z */ 9504 case 0x5e: /* FRINT32X */ 9505 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9506 break; 9507 case 0x1f: /* FRINT64Z */ 9508 case 0x5f: /* FRINT64X */ 9509 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9510 break; 9511 default: 9512 g_assert_not_reached(); 9513 } 9514 } 9515 9516 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9517 bool is_scalar, bool is_u, bool is_q, 9518 int size, int rn, int rd) 9519 { 9520 bool is_double = (size == MO_64); 9521 TCGv_ptr fpst; 9522 9523 if (!fp_access_check(s)) { 9524 return; 9525 } 9526 9527 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9528 9529 if (is_double) { 9530 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9531 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9532 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9533 NeonGenTwoDoubleOpFn *genfn; 9534 bool swap = false; 9535 int pass; 9536 9537 switch (opcode) { 9538 case 0x2e: /* FCMLT (zero) */ 9539 swap = true; 9540 /* fallthrough */ 9541 case 0x2c: /* FCMGT (zero) */ 9542 genfn = gen_helper_neon_cgt_f64; 9543 break; 9544 case 0x2d: /* FCMEQ (zero) */ 9545 genfn = gen_helper_neon_ceq_f64; 9546 break; 9547 case 0x6d: /* FCMLE (zero) */ 9548 swap = true; 9549 /* fall through */ 9550 case 0x6c: /* FCMGE (zero) */ 9551 genfn = gen_helper_neon_cge_f64; 9552 break; 9553 default: 9554 g_assert_not_reached(); 9555 } 9556 9557 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9558 read_vec_element(s, tcg_op, rn, pass, MO_64); 9559 if (swap) { 9560 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9561 } else { 9562 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9563 } 9564 write_vec_element(s, tcg_res, rd, pass, MO_64); 9565 } 9566 9567 clear_vec_high(s, !is_scalar, rd); 9568 } else { 9569 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9570 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9571 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9572 NeonGenTwoSingleOpFn *genfn; 9573 bool swap = false; 9574 int pass, maxpasses; 9575 9576 if (size == MO_16) { 9577 switch (opcode) { 9578 case 0x2e: /* FCMLT (zero) */ 9579 swap = true; 9580 /* fall through */ 9581 case 0x2c: /* FCMGT (zero) */ 9582 genfn = gen_helper_advsimd_cgt_f16; 9583 break; 9584 case 0x2d: /* FCMEQ (zero) */ 9585 genfn = gen_helper_advsimd_ceq_f16; 9586 break; 9587 case 0x6d: /* FCMLE (zero) */ 9588 swap = true; 9589 /* fall through */ 9590 case 0x6c: /* FCMGE (zero) */ 9591 genfn = gen_helper_advsimd_cge_f16; 9592 break; 9593 default: 9594 g_assert_not_reached(); 9595 } 9596 } else { 9597 switch (opcode) { 9598 case 0x2e: /* FCMLT (zero) */ 9599 swap = true; 9600 /* fall through */ 9601 case 0x2c: /* FCMGT (zero) */ 9602 genfn = gen_helper_neon_cgt_f32; 9603 break; 9604 case 0x2d: /* FCMEQ (zero) */ 9605 genfn = gen_helper_neon_ceq_f32; 9606 break; 9607 case 0x6d: /* FCMLE (zero) */ 9608 swap = true; 9609 /* fall through */ 9610 case 0x6c: /* FCMGE (zero) */ 9611 genfn = gen_helper_neon_cge_f32; 9612 break; 9613 default: 9614 g_assert_not_reached(); 9615 } 9616 } 9617 9618 if (is_scalar) { 9619 maxpasses = 1; 9620 } else { 9621 int vector_size = 8 << is_q; 9622 maxpasses = vector_size >> size; 9623 } 9624 9625 for (pass = 0; pass < maxpasses; pass++) { 9626 read_vec_element_i32(s, tcg_op, rn, pass, size); 9627 if (swap) { 9628 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9629 } else { 9630 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9631 } 9632 if (is_scalar) { 9633 write_fp_sreg(s, rd, tcg_res); 9634 } else { 9635 write_vec_element_i32(s, tcg_res, rd, pass, size); 9636 } 9637 } 9638 9639 if (!is_scalar) { 9640 clear_vec_high(s, is_q, rd); 9641 } 9642 } 9643 } 9644 9645 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9646 bool is_scalar, bool is_u, bool is_q, 9647 int size, int rn, int rd) 9648 { 9649 bool is_double = (size == 3); 9650 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9651 9652 if (is_double) { 9653 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9654 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9655 int pass; 9656 9657 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9658 read_vec_element(s, tcg_op, rn, pass, MO_64); 9659 switch (opcode) { 9660 case 0x3d: /* FRECPE */ 9661 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9662 break; 9663 case 0x3f: /* FRECPX */ 9664 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9665 break; 9666 case 0x7d: /* FRSQRTE */ 9667 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9668 break; 9669 default: 9670 g_assert_not_reached(); 9671 } 9672 write_vec_element(s, tcg_res, rd, pass, MO_64); 9673 } 9674 clear_vec_high(s, !is_scalar, rd); 9675 } else { 9676 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9677 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9678 int pass, maxpasses; 9679 9680 if (is_scalar) { 9681 maxpasses = 1; 9682 } else { 9683 maxpasses = is_q ? 4 : 2; 9684 } 9685 9686 for (pass = 0; pass < maxpasses; pass++) { 9687 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9688 9689 switch (opcode) { 9690 case 0x3c: /* URECPE */ 9691 gen_helper_recpe_u32(tcg_res, tcg_op); 9692 break; 9693 case 0x3d: /* FRECPE */ 9694 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9695 break; 9696 case 0x3f: /* FRECPX */ 9697 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9698 break; 9699 case 0x7d: /* FRSQRTE */ 9700 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9701 break; 9702 default: 9703 g_assert_not_reached(); 9704 } 9705 9706 if (is_scalar) { 9707 write_fp_sreg(s, rd, tcg_res); 9708 } else { 9709 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9710 } 9711 } 9712 if (!is_scalar) { 9713 clear_vec_high(s, is_q, rd); 9714 } 9715 } 9716 } 9717 9718 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9719 int opcode, bool u, bool is_q, 9720 int size, int rn, int rd) 9721 { 9722 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9723 * in the source becomes a size element in the destination). 9724 */ 9725 int pass; 9726 TCGv_i32 tcg_res[2]; 9727 int destelt = is_q ? 2 : 0; 9728 int passes = scalar ? 1 : 2; 9729 9730 if (scalar) { 9731 tcg_res[1] = tcg_constant_i32(0); 9732 } 9733 9734 for (pass = 0; pass < passes; pass++) { 9735 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9736 NeonGenNarrowFn *genfn = NULL; 9737 NeonGenNarrowEnvFn *genenvfn = NULL; 9738 9739 if (scalar) { 9740 read_vec_element(s, tcg_op, rn, pass, size + 1); 9741 } else { 9742 read_vec_element(s, tcg_op, rn, pass, MO_64); 9743 } 9744 tcg_res[pass] = tcg_temp_new_i32(); 9745 9746 switch (opcode) { 9747 case 0x12: /* XTN, SQXTUN */ 9748 { 9749 static NeonGenNarrowFn * const xtnfns[3] = { 9750 gen_helper_neon_narrow_u8, 9751 gen_helper_neon_narrow_u16, 9752 tcg_gen_extrl_i64_i32, 9753 }; 9754 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9755 gen_helper_neon_unarrow_sat8, 9756 gen_helper_neon_unarrow_sat16, 9757 gen_helper_neon_unarrow_sat32, 9758 }; 9759 if (u) { 9760 genenvfn = sqxtunfns[size]; 9761 } else { 9762 genfn = xtnfns[size]; 9763 } 9764 break; 9765 } 9766 case 0x14: /* SQXTN, UQXTN */ 9767 { 9768 static NeonGenNarrowEnvFn * const fns[3][2] = { 9769 { gen_helper_neon_narrow_sat_s8, 9770 gen_helper_neon_narrow_sat_u8 }, 9771 { gen_helper_neon_narrow_sat_s16, 9772 gen_helper_neon_narrow_sat_u16 }, 9773 { gen_helper_neon_narrow_sat_s32, 9774 gen_helper_neon_narrow_sat_u32 }, 9775 }; 9776 genenvfn = fns[size][u]; 9777 break; 9778 } 9779 case 0x16: /* FCVTN, FCVTN2 */ 9780 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9781 if (size == 2) { 9782 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9783 } else { 9784 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9785 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9786 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9787 TCGv_i32 ahp = get_ahp_flag(); 9788 9789 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9790 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9791 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9792 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9793 } 9794 break; 9795 case 0x36: /* BFCVTN, BFCVTN2 */ 9796 { 9797 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9798 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9799 } 9800 break; 9801 case 0x56: /* FCVTXN, FCVTXN2 */ 9802 /* 64 bit to 32 bit float conversion 9803 * with von Neumann rounding (round to odd) 9804 */ 9805 assert(size == 2); 9806 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9807 break; 9808 default: 9809 g_assert_not_reached(); 9810 } 9811 9812 if (genfn) { 9813 genfn(tcg_res[pass], tcg_op); 9814 } else if (genenvfn) { 9815 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9816 } 9817 } 9818 9819 for (pass = 0; pass < 2; pass++) { 9820 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9821 } 9822 clear_vec_high(s, is_q, rd); 9823 } 9824 9825 /* Remaining saturating accumulating ops */ 9826 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9827 bool is_q, int size, int rn, int rd) 9828 { 9829 bool is_double = (size == 3); 9830 9831 if (is_double) { 9832 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9833 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9834 int pass; 9835 9836 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9837 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9838 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9839 9840 if (is_u) { /* USQADD */ 9841 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9842 } else { /* SUQADD */ 9843 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9844 } 9845 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9846 } 9847 clear_vec_high(s, !is_scalar, rd); 9848 } else { 9849 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9850 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9851 int pass, maxpasses; 9852 9853 if (is_scalar) { 9854 maxpasses = 1; 9855 } else { 9856 maxpasses = is_q ? 4 : 2; 9857 } 9858 9859 for (pass = 0; pass < maxpasses; pass++) { 9860 if (is_scalar) { 9861 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9862 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9863 } else { 9864 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9865 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9866 } 9867 9868 if (is_u) { /* USQADD */ 9869 switch (size) { 9870 case 0: 9871 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9872 break; 9873 case 1: 9874 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9875 break; 9876 case 2: 9877 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9878 break; 9879 default: 9880 g_assert_not_reached(); 9881 } 9882 } else { /* SUQADD */ 9883 switch (size) { 9884 case 0: 9885 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9886 break; 9887 case 1: 9888 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9889 break; 9890 case 2: 9891 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9892 break; 9893 default: 9894 g_assert_not_reached(); 9895 } 9896 } 9897 9898 if (is_scalar) { 9899 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9900 } 9901 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9902 } 9903 clear_vec_high(s, is_q, rd); 9904 } 9905 } 9906 9907 /* AdvSIMD scalar two reg misc 9908 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9909 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9910 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9911 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9912 */ 9913 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9914 { 9915 int rd = extract32(insn, 0, 5); 9916 int rn = extract32(insn, 5, 5); 9917 int opcode = extract32(insn, 12, 5); 9918 int size = extract32(insn, 22, 2); 9919 bool u = extract32(insn, 29, 1); 9920 bool is_fcvt = false; 9921 int rmode; 9922 TCGv_i32 tcg_rmode; 9923 TCGv_ptr tcg_fpstatus; 9924 9925 switch (opcode) { 9926 case 0x3: /* USQADD / SUQADD*/ 9927 if (!fp_access_check(s)) { 9928 return; 9929 } 9930 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9931 return; 9932 case 0x7: /* SQABS / SQNEG */ 9933 break; 9934 case 0xa: /* CMLT */ 9935 if (u) { 9936 unallocated_encoding(s); 9937 return; 9938 } 9939 /* fall through */ 9940 case 0x8: /* CMGT, CMGE */ 9941 case 0x9: /* CMEQ, CMLE */ 9942 case 0xb: /* ABS, NEG */ 9943 if (size != 3) { 9944 unallocated_encoding(s); 9945 return; 9946 } 9947 break; 9948 case 0x12: /* SQXTUN */ 9949 if (!u) { 9950 unallocated_encoding(s); 9951 return; 9952 } 9953 /* fall through */ 9954 case 0x14: /* SQXTN, UQXTN */ 9955 if (size == 3) { 9956 unallocated_encoding(s); 9957 return; 9958 } 9959 if (!fp_access_check(s)) { 9960 return; 9961 } 9962 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 9963 return; 9964 case 0xc ... 0xf: 9965 case 0x16 ... 0x1d: 9966 case 0x1f: 9967 /* Floating point: U, size[1] and opcode indicate operation; 9968 * size[0] indicates single or double precision. 9969 */ 9970 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 9971 size = extract32(size, 0, 1) ? 3 : 2; 9972 switch (opcode) { 9973 case 0x2c: /* FCMGT (zero) */ 9974 case 0x2d: /* FCMEQ (zero) */ 9975 case 0x2e: /* FCMLT (zero) */ 9976 case 0x6c: /* FCMGE (zero) */ 9977 case 0x6d: /* FCMLE (zero) */ 9978 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 9979 return; 9980 case 0x1d: /* SCVTF */ 9981 case 0x5d: /* UCVTF */ 9982 { 9983 bool is_signed = (opcode == 0x1d); 9984 if (!fp_access_check(s)) { 9985 return; 9986 } 9987 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 9988 return; 9989 } 9990 case 0x3d: /* FRECPE */ 9991 case 0x3f: /* FRECPX */ 9992 case 0x7d: /* FRSQRTE */ 9993 if (!fp_access_check(s)) { 9994 return; 9995 } 9996 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 9997 return; 9998 case 0x1a: /* FCVTNS */ 9999 case 0x1b: /* FCVTMS */ 10000 case 0x3a: /* FCVTPS */ 10001 case 0x3b: /* FCVTZS */ 10002 case 0x5a: /* FCVTNU */ 10003 case 0x5b: /* FCVTMU */ 10004 case 0x7a: /* FCVTPU */ 10005 case 0x7b: /* FCVTZU */ 10006 is_fcvt = true; 10007 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10008 break; 10009 case 0x1c: /* FCVTAS */ 10010 case 0x5c: /* FCVTAU */ 10011 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10012 is_fcvt = true; 10013 rmode = FPROUNDING_TIEAWAY; 10014 break; 10015 case 0x56: /* FCVTXN, FCVTXN2 */ 10016 if (size == 2) { 10017 unallocated_encoding(s); 10018 return; 10019 } 10020 if (!fp_access_check(s)) { 10021 return; 10022 } 10023 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10024 return; 10025 default: 10026 unallocated_encoding(s); 10027 return; 10028 } 10029 break; 10030 default: 10031 unallocated_encoding(s); 10032 return; 10033 } 10034 10035 if (!fp_access_check(s)) { 10036 return; 10037 } 10038 10039 if (is_fcvt) { 10040 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10041 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10042 } else { 10043 tcg_fpstatus = NULL; 10044 tcg_rmode = NULL; 10045 } 10046 10047 if (size == 3) { 10048 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10049 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10050 10051 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10052 write_fp_dreg(s, rd, tcg_rd); 10053 } else { 10054 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10055 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10056 10057 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10058 10059 switch (opcode) { 10060 case 0x7: /* SQABS, SQNEG */ 10061 { 10062 NeonGenOneOpEnvFn *genfn; 10063 static NeonGenOneOpEnvFn * const fns[3][2] = { 10064 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10065 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10066 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10067 }; 10068 genfn = fns[size][u]; 10069 genfn(tcg_rd, cpu_env, tcg_rn); 10070 break; 10071 } 10072 case 0x1a: /* FCVTNS */ 10073 case 0x1b: /* FCVTMS */ 10074 case 0x1c: /* FCVTAS */ 10075 case 0x3a: /* FCVTPS */ 10076 case 0x3b: /* FCVTZS */ 10077 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10078 tcg_fpstatus); 10079 break; 10080 case 0x5a: /* FCVTNU */ 10081 case 0x5b: /* FCVTMU */ 10082 case 0x5c: /* FCVTAU */ 10083 case 0x7a: /* FCVTPU */ 10084 case 0x7b: /* FCVTZU */ 10085 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10086 tcg_fpstatus); 10087 break; 10088 default: 10089 g_assert_not_reached(); 10090 } 10091 10092 write_fp_sreg(s, rd, tcg_rd); 10093 } 10094 10095 if (is_fcvt) { 10096 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10097 } 10098 } 10099 10100 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10101 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10102 int immh, int immb, int opcode, int rn, int rd) 10103 { 10104 int size = 32 - clz32(immh) - 1; 10105 int immhb = immh << 3 | immb; 10106 int shift = 2 * (8 << size) - immhb; 10107 GVecGen2iFn *gvec_fn; 10108 10109 if (extract32(immh, 3, 1) && !is_q) { 10110 unallocated_encoding(s); 10111 return; 10112 } 10113 tcg_debug_assert(size <= 3); 10114 10115 if (!fp_access_check(s)) { 10116 return; 10117 } 10118 10119 switch (opcode) { 10120 case 0x02: /* SSRA / USRA (accumulate) */ 10121 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10122 break; 10123 10124 case 0x08: /* SRI */ 10125 gvec_fn = gen_gvec_sri; 10126 break; 10127 10128 case 0x00: /* SSHR / USHR */ 10129 if (is_u) { 10130 if (shift == 8 << size) { 10131 /* Shift count the same size as element size produces zero. */ 10132 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10133 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10134 return; 10135 } 10136 gvec_fn = tcg_gen_gvec_shri; 10137 } else { 10138 /* Shift count the same size as element size produces all sign. */ 10139 if (shift == 8 << size) { 10140 shift -= 1; 10141 } 10142 gvec_fn = tcg_gen_gvec_sari; 10143 } 10144 break; 10145 10146 case 0x04: /* SRSHR / URSHR (rounding) */ 10147 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10148 break; 10149 10150 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10151 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10152 break; 10153 10154 default: 10155 g_assert_not_reached(); 10156 } 10157 10158 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10159 } 10160 10161 /* SHL/SLI - Vector shift left */ 10162 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10163 int immh, int immb, int opcode, int rn, int rd) 10164 { 10165 int size = 32 - clz32(immh) - 1; 10166 int immhb = immh << 3 | immb; 10167 int shift = immhb - (8 << size); 10168 10169 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10170 assert(size >= 0 && size <= 3); 10171 10172 if (extract32(immh, 3, 1) && !is_q) { 10173 unallocated_encoding(s); 10174 return; 10175 } 10176 10177 if (!fp_access_check(s)) { 10178 return; 10179 } 10180 10181 if (insert) { 10182 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10183 } else { 10184 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10185 } 10186 } 10187 10188 /* USHLL/SHLL - Vector shift left with widening */ 10189 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10190 int immh, int immb, int opcode, int rn, int rd) 10191 { 10192 int size = 32 - clz32(immh) - 1; 10193 int immhb = immh << 3 | immb; 10194 int shift = immhb - (8 << size); 10195 int dsize = 64; 10196 int esize = 8 << size; 10197 int elements = dsize/esize; 10198 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10199 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10200 int i; 10201 10202 if (size >= 3) { 10203 unallocated_encoding(s); 10204 return; 10205 } 10206 10207 if (!fp_access_check(s)) { 10208 return; 10209 } 10210 10211 /* For the LL variants the store is larger than the load, 10212 * so if rd == rn we would overwrite parts of our input. 10213 * So load everything right now and use shifts in the main loop. 10214 */ 10215 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10216 10217 for (i = 0; i < elements; i++) { 10218 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10219 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10220 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10221 write_vec_element(s, tcg_rd, rd, i, size + 1); 10222 } 10223 } 10224 10225 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10226 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10227 int immh, int immb, int opcode, int rn, int rd) 10228 { 10229 int immhb = immh << 3 | immb; 10230 int size = 32 - clz32(immh) - 1; 10231 int dsize = 64; 10232 int esize = 8 << size; 10233 int elements = dsize/esize; 10234 int shift = (2 * esize) - immhb; 10235 bool round = extract32(opcode, 0, 1); 10236 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10237 TCGv_i64 tcg_round; 10238 int i; 10239 10240 if (extract32(immh, 3, 1)) { 10241 unallocated_encoding(s); 10242 return; 10243 } 10244 10245 if (!fp_access_check(s)) { 10246 return; 10247 } 10248 10249 tcg_rn = tcg_temp_new_i64(); 10250 tcg_rd = tcg_temp_new_i64(); 10251 tcg_final = tcg_temp_new_i64(); 10252 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10253 10254 if (round) { 10255 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10256 } else { 10257 tcg_round = NULL; 10258 } 10259 10260 for (i = 0; i < elements; i++) { 10261 read_vec_element(s, tcg_rn, rn, i, size+1); 10262 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10263 false, true, size+1, shift); 10264 10265 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10266 } 10267 10268 if (!is_q) { 10269 write_vec_element(s, tcg_final, rd, 0, MO_64); 10270 } else { 10271 write_vec_element(s, tcg_final, rd, 1, MO_64); 10272 } 10273 10274 clear_vec_high(s, is_q, rd); 10275 } 10276 10277 10278 /* AdvSIMD shift by immediate 10279 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10280 * +---+---+---+-------------+------+------+--------+---+------+------+ 10281 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10282 * +---+---+---+-------------+------+------+--------+---+------+------+ 10283 */ 10284 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10285 { 10286 int rd = extract32(insn, 0, 5); 10287 int rn = extract32(insn, 5, 5); 10288 int opcode = extract32(insn, 11, 5); 10289 int immb = extract32(insn, 16, 3); 10290 int immh = extract32(insn, 19, 4); 10291 bool is_u = extract32(insn, 29, 1); 10292 bool is_q = extract32(insn, 30, 1); 10293 10294 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10295 assert(immh != 0); 10296 10297 switch (opcode) { 10298 case 0x08: /* SRI */ 10299 if (!is_u) { 10300 unallocated_encoding(s); 10301 return; 10302 } 10303 /* fall through */ 10304 case 0x00: /* SSHR / USHR */ 10305 case 0x02: /* SSRA / USRA (accumulate) */ 10306 case 0x04: /* SRSHR / URSHR (rounding) */ 10307 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10308 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10309 break; 10310 case 0x0a: /* SHL / SLI */ 10311 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10312 break; 10313 case 0x10: /* SHRN */ 10314 case 0x11: /* RSHRN / SQRSHRUN */ 10315 if (is_u) { 10316 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10317 opcode, rn, rd); 10318 } else { 10319 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10320 } 10321 break; 10322 case 0x12: /* SQSHRN / UQSHRN */ 10323 case 0x13: /* SQRSHRN / UQRSHRN */ 10324 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10325 opcode, rn, rd); 10326 break; 10327 case 0x14: /* SSHLL / USHLL */ 10328 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10329 break; 10330 case 0x1c: /* SCVTF / UCVTF */ 10331 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10332 opcode, rn, rd); 10333 break; 10334 case 0xc: /* SQSHLU */ 10335 if (!is_u) { 10336 unallocated_encoding(s); 10337 return; 10338 } 10339 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10340 break; 10341 case 0xe: /* SQSHL, UQSHL */ 10342 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10343 break; 10344 case 0x1f: /* FCVTZS/ FCVTZU */ 10345 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10346 return; 10347 default: 10348 unallocated_encoding(s); 10349 return; 10350 } 10351 } 10352 10353 /* Generate code to do a "long" addition or subtraction, ie one done in 10354 * TCGv_i64 on vector lanes twice the width specified by size. 10355 */ 10356 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10357 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10358 { 10359 static NeonGenTwo64OpFn * const fns[3][2] = { 10360 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10361 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10362 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10363 }; 10364 NeonGenTwo64OpFn *genfn; 10365 assert(size < 3); 10366 10367 genfn = fns[size][is_sub]; 10368 genfn(tcg_res, tcg_op1, tcg_op2); 10369 } 10370 10371 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10372 int opcode, int rd, int rn, int rm) 10373 { 10374 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10375 TCGv_i64 tcg_res[2]; 10376 int pass, accop; 10377 10378 tcg_res[0] = tcg_temp_new_i64(); 10379 tcg_res[1] = tcg_temp_new_i64(); 10380 10381 /* Does this op do an adding accumulate, a subtracting accumulate, 10382 * or no accumulate at all? 10383 */ 10384 switch (opcode) { 10385 case 5: 10386 case 8: 10387 case 9: 10388 accop = 1; 10389 break; 10390 case 10: 10391 case 11: 10392 accop = -1; 10393 break; 10394 default: 10395 accop = 0; 10396 break; 10397 } 10398 10399 if (accop != 0) { 10400 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10401 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10402 } 10403 10404 /* size == 2 means two 32x32->64 operations; this is worth special 10405 * casing because we can generally handle it inline. 10406 */ 10407 if (size == 2) { 10408 for (pass = 0; pass < 2; pass++) { 10409 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10410 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10411 TCGv_i64 tcg_passres; 10412 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10413 10414 int elt = pass + is_q * 2; 10415 10416 read_vec_element(s, tcg_op1, rn, elt, memop); 10417 read_vec_element(s, tcg_op2, rm, elt, memop); 10418 10419 if (accop == 0) { 10420 tcg_passres = tcg_res[pass]; 10421 } else { 10422 tcg_passres = tcg_temp_new_i64(); 10423 } 10424 10425 switch (opcode) { 10426 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10427 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10428 break; 10429 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10430 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10431 break; 10432 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10433 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10434 { 10435 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10436 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10437 10438 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10439 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10440 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10441 tcg_passres, 10442 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10443 break; 10444 } 10445 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10446 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10447 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10448 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10449 break; 10450 case 9: /* SQDMLAL, SQDMLAL2 */ 10451 case 11: /* SQDMLSL, SQDMLSL2 */ 10452 case 13: /* SQDMULL, SQDMULL2 */ 10453 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10454 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10455 tcg_passres, tcg_passres); 10456 break; 10457 default: 10458 g_assert_not_reached(); 10459 } 10460 10461 if (opcode == 9 || opcode == 11) { 10462 /* saturating accumulate ops */ 10463 if (accop < 0) { 10464 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10465 } 10466 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10467 tcg_res[pass], tcg_passres); 10468 } else if (accop > 0) { 10469 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10470 } else if (accop < 0) { 10471 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10472 } 10473 } 10474 } else { 10475 /* size 0 or 1, generally helper functions */ 10476 for (pass = 0; pass < 2; pass++) { 10477 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10478 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10479 TCGv_i64 tcg_passres; 10480 int elt = pass + is_q * 2; 10481 10482 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10483 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10484 10485 if (accop == 0) { 10486 tcg_passres = tcg_res[pass]; 10487 } else { 10488 tcg_passres = tcg_temp_new_i64(); 10489 } 10490 10491 switch (opcode) { 10492 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10493 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10494 { 10495 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10496 static NeonGenWidenFn * const widenfns[2][2] = { 10497 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10498 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10499 }; 10500 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10501 10502 widenfn(tcg_op2_64, tcg_op2); 10503 widenfn(tcg_passres, tcg_op1); 10504 gen_neon_addl(size, (opcode == 2), tcg_passres, 10505 tcg_passres, tcg_op2_64); 10506 break; 10507 } 10508 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10509 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10510 if (size == 0) { 10511 if (is_u) { 10512 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10513 } else { 10514 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10515 } 10516 } else { 10517 if (is_u) { 10518 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10519 } else { 10520 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10521 } 10522 } 10523 break; 10524 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10525 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10526 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10527 if (size == 0) { 10528 if (is_u) { 10529 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10530 } else { 10531 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10532 } 10533 } else { 10534 if (is_u) { 10535 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10536 } else { 10537 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10538 } 10539 } 10540 break; 10541 case 9: /* SQDMLAL, SQDMLAL2 */ 10542 case 11: /* SQDMLSL, SQDMLSL2 */ 10543 case 13: /* SQDMULL, SQDMULL2 */ 10544 assert(size == 1); 10545 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10546 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10547 tcg_passres, tcg_passres); 10548 break; 10549 default: 10550 g_assert_not_reached(); 10551 } 10552 10553 if (accop != 0) { 10554 if (opcode == 9 || opcode == 11) { 10555 /* saturating accumulate ops */ 10556 if (accop < 0) { 10557 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10558 } 10559 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10560 tcg_res[pass], 10561 tcg_passres); 10562 } else { 10563 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10564 tcg_res[pass], tcg_passres); 10565 } 10566 } 10567 } 10568 } 10569 10570 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10571 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10572 } 10573 10574 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10575 int opcode, int rd, int rn, int rm) 10576 { 10577 TCGv_i64 tcg_res[2]; 10578 int part = is_q ? 2 : 0; 10579 int pass; 10580 10581 for (pass = 0; pass < 2; pass++) { 10582 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10583 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10584 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10585 static NeonGenWidenFn * const widenfns[3][2] = { 10586 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10587 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10588 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10589 }; 10590 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10591 10592 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10593 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10594 widenfn(tcg_op2_wide, tcg_op2); 10595 tcg_res[pass] = tcg_temp_new_i64(); 10596 gen_neon_addl(size, (opcode == 3), 10597 tcg_res[pass], tcg_op1, tcg_op2_wide); 10598 } 10599 10600 for (pass = 0; pass < 2; pass++) { 10601 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10602 } 10603 } 10604 10605 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10606 { 10607 tcg_gen_addi_i64(in, in, 1U << 31); 10608 tcg_gen_extrh_i64_i32(res, in); 10609 } 10610 10611 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10612 int opcode, int rd, int rn, int rm) 10613 { 10614 TCGv_i32 tcg_res[2]; 10615 int part = is_q ? 2 : 0; 10616 int pass; 10617 10618 for (pass = 0; pass < 2; pass++) { 10619 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10620 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10621 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10622 static NeonGenNarrowFn * const narrowfns[3][2] = { 10623 { gen_helper_neon_narrow_high_u8, 10624 gen_helper_neon_narrow_round_high_u8 }, 10625 { gen_helper_neon_narrow_high_u16, 10626 gen_helper_neon_narrow_round_high_u16 }, 10627 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10628 }; 10629 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10630 10631 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10632 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10633 10634 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10635 10636 tcg_res[pass] = tcg_temp_new_i32(); 10637 gennarrow(tcg_res[pass], tcg_wideres); 10638 } 10639 10640 for (pass = 0; pass < 2; pass++) { 10641 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10642 } 10643 clear_vec_high(s, is_q, rd); 10644 } 10645 10646 /* AdvSIMD three different 10647 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10648 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10649 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10650 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10651 */ 10652 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10653 { 10654 /* Instructions in this group fall into three basic classes 10655 * (in each case with the operation working on each element in 10656 * the input vectors): 10657 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10658 * 128 bit input) 10659 * (2) wide 64 x 128 -> 128 10660 * (3) narrowing 128 x 128 -> 64 10661 * Here we do initial decode, catch unallocated cases and 10662 * dispatch to separate functions for each class. 10663 */ 10664 int is_q = extract32(insn, 30, 1); 10665 int is_u = extract32(insn, 29, 1); 10666 int size = extract32(insn, 22, 2); 10667 int opcode = extract32(insn, 12, 4); 10668 int rm = extract32(insn, 16, 5); 10669 int rn = extract32(insn, 5, 5); 10670 int rd = extract32(insn, 0, 5); 10671 10672 switch (opcode) { 10673 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10674 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10675 /* 64 x 128 -> 128 */ 10676 if (size == 3) { 10677 unallocated_encoding(s); 10678 return; 10679 } 10680 if (!fp_access_check(s)) { 10681 return; 10682 } 10683 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10684 break; 10685 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10686 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10687 /* 128 x 128 -> 64 */ 10688 if (size == 3) { 10689 unallocated_encoding(s); 10690 return; 10691 } 10692 if (!fp_access_check(s)) { 10693 return; 10694 } 10695 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10696 break; 10697 case 14: /* PMULL, PMULL2 */ 10698 if (is_u) { 10699 unallocated_encoding(s); 10700 return; 10701 } 10702 switch (size) { 10703 case 0: /* PMULL.P8 */ 10704 if (!fp_access_check(s)) { 10705 return; 10706 } 10707 /* The Q field specifies lo/hi half input for this insn. */ 10708 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10709 gen_helper_neon_pmull_h); 10710 break; 10711 10712 case 3: /* PMULL.P64 */ 10713 if (!dc_isar_feature(aa64_pmull, s)) { 10714 unallocated_encoding(s); 10715 return; 10716 } 10717 if (!fp_access_check(s)) { 10718 return; 10719 } 10720 /* The Q field specifies lo/hi half input for this insn. */ 10721 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10722 gen_helper_gvec_pmull_q); 10723 break; 10724 10725 default: 10726 unallocated_encoding(s); 10727 break; 10728 } 10729 return; 10730 case 9: /* SQDMLAL, SQDMLAL2 */ 10731 case 11: /* SQDMLSL, SQDMLSL2 */ 10732 case 13: /* SQDMULL, SQDMULL2 */ 10733 if (is_u || size == 0) { 10734 unallocated_encoding(s); 10735 return; 10736 } 10737 /* fall through */ 10738 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10739 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10740 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10741 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10742 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10743 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10744 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10745 /* 64 x 64 -> 128 */ 10746 if (size == 3) { 10747 unallocated_encoding(s); 10748 return; 10749 } 10750 if (!fp_access_check(s)) { 10751 return; 10752 } 10753 10754 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10755 break; 10756 default: 10757 /* opcode 15 not allocated */ 10758 unallocated_encoding(s); 10759 break; 10760 } 10761 } 10762 10763 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10764 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10765 { 10766 int rd = extract32(insn, 0, 5); 10767 int rn = extract32(insn, 5, 5); 10768 int rm = extract32(insn, 16, 5); 10769 int size = extract32(insn, 22, 2); 10770 bool is_u = extract32(insn, 29, 1); 10771 bool is_q = extract32(insn, 30, 1); 10772 10773 if (!fp_access_check(s)) { 10774 return; 10775 } 10776 10777 switch (size + 4 * is_u) { 10778 case 0: /* AND */ 10779 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10780 return; 10781 case 1: /* BIC */ 10782 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10783 return; 10784 case 2: /* ORR */ 10785 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10786 return; 10787 case 3: /* ORN */ 10788 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10789 return; 10790 case 4: /* EOR */ 10791 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10792 return; 10793 10794 case 5: /* BSL bitwise select */ 10795 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10796 return; 10797 case 6: /* BIT, bitwise insert if true */ 10798 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10799 return; 10800 case 7: /* BIF, bitwise insert if false */ 10801 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10802 return; 10803 10804 default: 10805 g_assert_not_reached(); 10806 } 10807 } 10808 10809 /* Pairwise op subgroup of C3.6.16. 10810 * 10811 * This is called directly or via the handle_3same_float for float pairwise 10812 * operations where the opcode and size are calculated differently. 10813 */ 10814 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10815 int size, int rn, int rm, int rd) 10816 { 10817 TCGv_ptr fpst; 10818 int pass; 10819 10820 /* Floating point operations need fpst */ 10821 if (opcode >= 0x58) { 10822 fpst = fpstatus_ptr(FPST_FPCR); 10823 } else { 10824 fpst = NULL; 10825 } 10826 10827 if (!fp_access_check(s)) { 10828 return; 10829 } 10830 10831 /* These operations work on the concatenated rm:rn, with each pair of 10832 * adjacent elements being operated on to produce an element in the result. 10833 */ 10834 if (size == 3) { 10835 TCGv_i64 tcg_res[2]; 10836 10837 for (pass = 0; pass < 2; pass++) { 10838 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10839 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10840 int passreg = (pass == 0) ? rn : rm; 10841 10842 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10843 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10844 tcg_res[pass] = tcg_temp_new_i64(); 10845 10846 switch (opcode) { 10847 case 0x17: /* ADDP */ 10848 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10849 break; 10850 case 0x58: /* FMAXNMP */ 10851 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10852 break; 10853 case 0x5a: /* FADDP */ 10854 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10855 break; 10856 case 0x5e: /* FMAXP */ 10857 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10858 break; 10859 case 0x78: /* FMINNMP */ 10860 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10861 break; 10862 case 0x7e: /* FMINP */ 10863 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10864 break; 10865 default: 10866 g_assert_not_reached(); 10867 } 10868 } 10869 10870 for (pass = 0; pass < 2; pass++) { 10871 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10872 } 10873 } else { 10874 int maxpass = is_q ? 4 : 2; 10875 TCGv_i32 tcg_res[4]; 10876 10877 for (pass = 0; pass < maxpass; pass++) { 10878 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10879 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10880 NeonGenTwoOpFn *genfn = NULL; 10881 int passreg = pass < (maxpass / 2) ? rn : rm; 10882 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10883 10884 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10885 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10886 tcg_res[pass] = tcg_temp_new_i32(); 10887 10888 switch (opcode) { 10889 case 0x17: /* ADDP */ 10890 { 10891 static NeonGenTwoOpFn * const fns[3] = { 10892 gen_helper_neon_padd_u8, 10893 gen_helper_neon_padd_u16, 10894 tcg_gen_add_i32, 10895 }; 10896 genfn = fns[size]; 10897 break; 10898 } 10899 case 0x14: /* SMAXP, UMAXP */ 10900 { 10901 static NeonGenTwoOpFn * const fns[3][2] = { 10902 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10903 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10904 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10905 }; 10906 genfn = fns[size][u]; 10907 break; 10908 } 10909 case 0x15: /* SMINP, UMINP */ 10910 { 10911 static NeonGenTwoOpFn * const fns[3][2] = { 10912 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10913 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10914 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10915 }; 10916 genfn = fns[size][u]; 10917 break; 10918 } 10919 /* The FP operations are all on single floats (32 bit) */ 10920 case 0x58: /* FMAXNMP */ 10921 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10922 break; 10923 case 0x5a: /* FADDP */ 10924 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10925 break; 10926 case 0x5e: /* FMAXP */ 10927 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10928 break; 10929 case 0x78: /* FMINNMP */ 10930 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10931 break; 10932 case 0x7e: /* FMINP */ 10933 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10934 break; 10935 default: 10936 g_assert_not_reached(); 10937 } 10938 10939 /* FP ops called directly, otherwise call now */ 10940 if (genfn) { 10941 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10942 } 10943 } 10944 10945 for (pass = 0; pass < maxpass; pass++) { 10946 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10947 } 10948 clear_vec_high(s, is_q, rd); 10949 } 10950 } 10951 10952 /* Floating point op subgroup of C3.6.16. */ 10953 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10954 { 10955 /* For floating point ops, the U, size[1] and opcode bits 10956 * together indicate the operation. size[0] indicates single 10957 * or double. 10958 */ 10959 int fpopcode = extract32(insn, 11, 5) 10960 | (extract32(insn, 23, 1) << 5) 10961 | (extract32(insn, 29, 1) << 6); 10962 int is_q = extract32(insn, 30, 1); 10963 int size = extract32(insn, 22, 1); 10964 int rm = extract32(insn, 16, 5); 10965 int rn = extract32(insn, 5, 5); 10966 int rd = extract32(insn, 0, 5); 10967 10968 int datasize = is_q ? 128 : 64; 10969 int esize = 32 << size; 10970 int elements = datasize / esize; 10971 10972 if (size == 1 && !is_q) { 10973 unallocated_encoding(s); 10974 return; 10975 } 10976 10977 switch (fpopcode) { 10978 case 0x58: /* FMAXNMP */ 10979 case 0x5a: /* FADDP */ 10980 case 0x5e: /* FMAXP */ 10981 case 0x78: /* FMINNMP */ 10982 case 0x7e: /* FMINP */ 10983 if (size && !is_q) { 10984 unallocated_encoding(s); 10985 return; 10986 } 10987 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 10988 rn, rm, rd); 10989 return; 10990 case 0x1b: /* FMULX */ 10991 case 0x1f: /* FRECPS */ 10992 case 0x3f: /* FRSQRTS */ 10993 case 0x5d: /* FACGE */ 10994 case 0x7d: /* FACGT */ 10995 case 0x19: /* FMLA */ 10996 case 0x39: /* FMLS */ 10997 case 0x18: /* FMAXNM */ 10998 case 0x1a: /* FADD */ 10999 case 0x1c: /* FCMEQ */ 11000 case 0x1e: /* FMAX */ 11001 case 0x38: /* FMINNM */ 11002 case 0x3a: /* FSUB */ 11003 case 0x3e: /* FMIN */ 11004 case 0x5b: /* FMUL */ 11005 case 0x5c: /* FCMGE */ 11006 case 0x5f: /* FDIV */ 11007 case 0x7a: /* FABD */ 11008 case 0x7c: /* FCMGT */ 11009 if (!fp_access_check(s)) { 11010 return; 11011 } 11012 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11013 return; 11014 11015 case 0x1d: /* FMLAL */ 11016 case 0x3d: /* FMLSL */ 11017 case 0x59: /* FMLAL2 */ 11018 case 0x79: /* FMLSL2 */ 11019 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11020 unallocated_encoding(s); 11021 return; 11022 } 11023 if (fp_access_check(s)) { 11024 int is_s = extract32(insn, 23, 1); 11025 int is_2 = extract32(insn, 29, 1); 11026 int data = (is_2 << 1) | is_s; 11027 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11028 vec_full_reg_offset(s, rn), 11029 vec_full_reg_offset(s, rm), cpu_env, 11030 is_q ? 16 : 8, vec_full_reg_size(s), 11031 data, gen_helper_gvec_fmlal_a64); 11032 } 11033 return; 11034 11035 default: 11036 unallocated_encoding(s); 11037 return; 11038 } 11039 } 11040 11041 /* Integer op subgroup of C3.6.16. */ 11042 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11043 { 11044 int is_q = extract32(insn, 30, 1); 11045 int u = extract32(insn, 29, 1); 11046 int size = extract32(insn, 22, 2); 11047 int opcode = extract32(insn, 11, 5); 11048 int rm = extract32(insn, 16, 5); 11049 int rn = extract32(insn, 5, 5); 11050 int rd = extract32(insn, 0, 5); 11051 int pass; 11052 TCGCond cond; 11053 11054 switch (opcode) { 11055 case 0x13: /* MUL, PMUL */ 11056 if (u && size != 0) { 11057 unallocated_encoding(s); 11058 return; 11059 } 11060 /* fall through */ 11061 case 0x0: /* SHADD, UHADD */ 11062 case 0x2: /* SRHADD, URHADD */ 11063 case 0x4: /* SHSUB, UHSUB */ 11064 case 0xc: /* SMAX, UMAX */ 11065 case 0xd: /* SMIN, UMIN */ 11066 case 0xe: /* SABD, UABD */ 11067 case 0xf: /* SABA, UABA */ 11068 case 0x12: /* MLA, MLS */ 11069 if (size == 3) { 11070 unallocated_encoding(s); 11071 return; 11072 } 11073 break; 11074 case 0x16: /* SQDMULH, SQRDMULH */ 11075 if (size == 0 || size == 3) { 11076 unallocated_encoding(s); 11077 return; 11078 } 11079 break; 11080 default: 11081 if (size == 3 && !is_q) { 11082 unallocated_encoding(s); 11083 return; 11084 } 11085 break; 11086 } 11087 11088 if (!fp_access_check(s)) { 11089 return; 11090 } 11091 11092 switch (opcode) { 11093 case 0x01: /* SQADD, UQADD */ 11094 if (u) { 11095 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11096 } else { 11097 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11098 } 11099 return; 11100 case 0x05: /* SQSUB, UQSUB */ 11101 if (u) { 11102 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11103 } else { 11104 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11105 } 11106 return; 11107 case 0x08: /* SSHL, USHL */ 11108 if (u) { 11109 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11110 } else { 11111 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11112 } 11113 return; 11114 case 0x0c: /* SMAX, UMAX */ 11115 if (u) { 11116 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11117 } else { 11118 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11119 } 11120 return; 11121 case 0x0d: /* SMIN, UMIN */ 11122 if (u) { 11123 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11124 } else { 11125 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11126 } 11127 return; 11128 case 0xe: /* SABD, UABD */ 11129 if (u) { 11130 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11131 } else { 11132 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11133 } 11134 return; 11135 case 0xf: /* SABA, UABA */ 11136 if (u) { 11137 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11138 } else { 11139 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11140 } 11141 return; 11142 case 0x10: /* ADD, SUB */ 11143 if (u) { 11144 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11145 } else { 11146 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11147 } 11148 return; 11149 case 0x13: /* MUL, PMUL */ 11150 if (!u) { /* MUL */ 11151 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11152 } else { /* PMUL */ 11153 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11154 } 11155 return; 11156 case 0x12: /* MLA, MLS */ 11157 if (u) { 11158 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11159 } else { 11160 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11161 } 11162 return; 11163 case 0x16: /* SQDMULH, SQRDMULH */ 11164 { 11165 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11166 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11167 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11168 }; 11169 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11170 } 11171 return; 11172 case 0x11: 11173 if (!u) { /* CMTST */ 11174 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11175 return; 11176 } 11177 /* else CMEQ */ 11178 cond = TCG_COND_EQ; 11179 goto do_gvec_cmp; 11180 case 0x06: /* CMGT, CMHI */ 11181 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11182 goto do_gvec_cmp; 11183 case 0x07: /* CMGE, CMHS */ 11184 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11185 do_gvec_cmp: 11186 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11187 vec_full_reg_offset(s, rn), 11188 vec_full_reg_offset(s, rm), 11189 is_q ? 16 : 8, vec_full_reg_size(s)); 11190 return; 11191 } 11192 11193 if (size == 3) { 11194 assert(is_q); 11195 for (pass = 0; pass < 2; pass++) { 11196 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11197 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11198 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11199 11200 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11201 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11202 11203 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11204 11205 write_vec_element(s, tcg_res, rd, pass, MO_64); 11206 } 11207 } else { 11208 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11209 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11210 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11211 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11212 NeonGenTwoOpFn *genfn = NULL; 11213 NeonGenTwoOpEnvFn *genenvfn = NULL; 11214 11215 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11216 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11217 11218 switch (opcode) { 11219 case 0x0: /* SHADD, UHADD */ 11220 { 11221 static NeonGenTwoOpFn * const fns[3][2] = { 11222 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11223 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11224 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11225 }; 11226 genfn = fns[size][u]; 11227 break; 11228 } 11229 case 0x2: /* SRHADD, URHADD */ 11230 { 11231 static NeonGenTwoOpFn * const fns[3][2] = { 11232 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11233 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11234 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11235 }; 11236 genfn = fns[size][u]; 11237 break; 11238 } 11239 case 0x4: /* SHSUB, UHSUB */ 11240 { 11241 static NeonGenTwoOpFn * const fns[3][2] = { 11242 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11243 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11244 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11245 }; 11246 genfn = fns[size][u]; 11247 break; 11248 } 11249 case 0x9: /* SQSHL, UQSHL */ 11250 { 11251 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11252 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11253 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11254 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11255 }; 11256 genenvfn = fns[size][u]; 11257 break; 11258 } 11259 case 0xa: /* SRSHL, URSHL */ 11260 { 11261 static NeonGenTwoOpFn * const fns[3][2] = { 11262 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11263 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11264 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11265 }; 11266 genfn = fns[size][u]; 11267 break; 11268 } 11269 case 0xb: /* SQRSHL, UQRSHL */ 11270 { 11271 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11272 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11273 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11274 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11275 }; 11276 genenvfn = fns[size][u]; 11277 break; 11278 } 11279 default: 11280 g_assert_not_reached(); 11281 } 11282 11283 if (genenvfn) { 11284 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11285 } else { 11286 genfn(tcg_res, tcg_op1, tcg_op2); 11287 } 11288 11289 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11290 } 11291 } 11292 clear_vec_high(s, is_q, rd); 11293 } 11294 11295 /* AdvSIMD three same 11296 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11297 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11298 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11299 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11300 */ 11301 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11302 { 11303 int opcode = extract32(insn, 11, 5); 11304 11305 switch (opcode) { 11306 case 0x3: /* logic ops */ 11307 disas_simd_3same_logic(s, insn); 11308 break; 11309 case 0x17: /* ADDP */ 11310 case 0x14: /* SMAXP, UMAXP */ 11311 case 0x15: /* SMINP, UMINP */ 11312 { 11313 /* Pairwise operations */ 11314 int is_q = extract32(insn, 30, 1); 11315 int u = extract32(insn, 29, 1); 11316 int size = extract32(insn, 22, 2); 11317 int rm = extract32(insn, 16, 5); 11318 int rn = extract32(insn, 5, 5); 11319 int rd = extract32(insn, 0, 5); 11320 if (opcode == 0x17) { 11321 if (u || (size == 3 && !is_q)) { 11322 unallocated_encoding(s); 11323 return; 11324 } 11325 } else { 11326 if (size == 3) { 11327 unallocated_encoding(s); 11328 return; 11329 } 11330 } 11331 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11332 break; 11333 } 11334 case 0x18 ... 0x31: 11335 /* floating point ops, sz[1] and U are part of opcode */ 11336 disas_simd_3same_float(s, insn); 11337 break; 11338 default: 11339 disas_simd_3same_int(s, insn); 11340 break; 11341 } 11342 } 11343 11344 /* 11345 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11346 * 11347 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11348 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11349 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11350 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11351 * 11352 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11353 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11354 * 11355 */ 11356 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11357 { 11358 int opcode = extract32(insn, 11, 3); 11359 int u = extract32(insn, 29, 1); 11360 int a = extract32(insn, 23, 1); 11361 int is_q = extract32(insn, 30, 1); 11362 int rm = extract32(insn, 16, 5); 11363 int rn = extract32(insn, 5, 5); 11364 int rd = extract32(insn, 0, 5); 11365 /* 11366 * For these floating point ops, the U, a and opcode bits 11367 * together indicate the operation. 11368 */ 11369 int fpopcode = opcode | (a << 3) | (u << 4); 11370 int datasize = is_q ? 128 : 64; 11371 int elements = datasize / 16; 11372 bool pairwise; 11373 TCGv_ptr fpst; 11374 int pass; 11375 11376 switch (fpopcode) { 11377 case 0x0: /* FMAXNM */ 11378 case 0x1: /* FMLA */ 11379 case 0x2: /* FADD */ 11380 case 0x3: /* FMULX */ 11381 case 0x4: /* FCMEQ */ 11382 case 0x6: /* FMAX */ 11383 case 0x7: /* FRECPS */ 11384 case 0x8: /* FMINNM */ 11385 case 0x9: /* FMLS */ 11386 case 0xa: /* FSUB */ 11387 case 0xe: /* FMIN */ 11388 case 0xf: /* FRSQRTS */ 11389 case 0x13: /* FMUL */ 11390 case 0x14: /* FCMGE */ 11391 case 0x15: /* FACGE */ 11392 case 0x17: /* FDIV */ 11393 case 0x1a: /* FABD */ 11394 case 0x1c: /* FCMGT */ 11395 case 0x1d: /* FACGT */ 11396 pairwise = false; 11397 break; 11398 case 0x10: /* FMAXNMP */ 11399 case 0x12: /* FADDP */ 11400 case 0x16: /* FMAXP */ 11401 case 0x18: /* FMINNMP */ 11402 case 0x1e: /* FMINP */ 11403 pairwise = true; 11404 break; 11405 default: 11406 unallocated_encoding(s); 11407 return; 11408 } 11409 11410 if (!dc_isar_feature(aa64_fp16, s)) { 11411 unallocated_encoding(s); 11412 return; 11413 } 11414 11415 if (!fp_access_check(s)) { 11416 return; 11417 } 11418 11419 fpst = fpstatus_ptr(FPST_FPCR_F16); 11420 11421 if (pairwise) { 11422 int maxpass = is_q ? 8 : 4; 11423 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11424 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11425 TCGv_i32 tcg_res[8]; 11426 11427 for (pass = 0; pass < maxpass; pass++) { 11428 int passreg = pass < (maxpass / 2) ? rn : rm; 11429 int passelt = (pass << 1) & (maxpass - 1); 11430 11431 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11432 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11433 tcg_res[pass] = tcg_temp_new_i32(); 11434 11435 switch (fpopcode) { 11436 case 0x10: /* FMAXNMP */ 11437 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11438 fpst); 11439 break; 11440 case 0x12: /* FADDP */ 11441 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11442 break; 11443 case 0x16: /* FMAXP */ 11444 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11445 break; 11446 case 0x18: /* FMINNMP */ 11447 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11448 fpst); 11449 break; 11450 case 0x1e: /* FMINP */ 11451 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11452 break; 11453 default: 11454 g_assert_not_reached(); 11455 } 11456 } 11457 11458 for (pass = 0; pass < maxpass; pass++) { 11459 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11460 } 11461 } else { 11462 for (pass = 0; pass < elements; pass++) { 11463 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11464 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11465 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11466 11467 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11468 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11469 11470 switch (fpopcode) { 11471 case 0x0: /* FMAXNM */ 11472 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11473 break; 11474 case 0x1: /* FMLA */ 11475 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11476 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11477 fpst); 11478 break; 11479 case 0x2: /* FADD */ 11480 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11481 break; 11482 case 0x3: /* FMULX */ 11483 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11484 break; 11485 case 0x4: /* FCMEQ */ 11486 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11487 break; 11488 case 0x6: /* FMAX */ 11489 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11490 break; 11491 case 0x7: /* FRECPS */ 11492 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11493 break; 11494 case 0x8: /* FMINNM */ 11495 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11496 break; 11497 case 0x9: /* FMLS */ 11498 /* As usual for ARM, separate negation for fused multiply-add */ 11499 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11500 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11501 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11502 fpst); 11503 break; 11504 case 0xa: /* FSUB */ 11505 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11506 break; 11507 case 0xe: /* FMIN */ 11508 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11509 break; 11510 case 0xf: /* FRSQRTS */ 11511 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11512 break; 11513 case 0x13: /* FMUL */ 11514 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11515 break; 11516 case 0x14: /* FCMGE */ 11517 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11518 break; 11519 case 0x15: /* FACGE */ 11520 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11521 break; 11522 case 0x17: /* FDIV */ 11523 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11524 break; 11525 case 0x1a: /* FABD */ 11526 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11527 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11528 break; 11529 case 0x1c: /* FCMGT */ 11530 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11531 break; 11532 case 0x1d: /* FACGT */ 11533 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11534 break; 11535 default: 11536 g_assert_not_reached(); 11537 } 11538 11539 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11540 } 11541 } 11542 11543 clear_vec_high(s, is_q, rd); 11544 } 11545 11546 /* AdvSIMD three same extra 11547 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11548 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11549 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11550 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11551 */ 11552 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11553 { 11554 int rd = extract32(insn, 0, 5); 11555 int rn = extract32(insn, 5, 5); 11556 int opcode = extract32(insn, 11, 4); 11557 int rm = extract32(insn, 16, 5); 11558 int size = extract32(insn, 22, 2); 11559 bool u = extract32(insn, 29, 1); 11560 bool is_q = extract32(insn, 30, 1); 11561 bool feature; 11562 int rot; 11563 11564 switch (u * 16 + opcode) { 11565 case 0x10: /* SQRDMLAH (vector) */ 11566 case 0x11: /* SQRDMLSH (vector) */ 11567 if (size != 1 && size != 2) { 11568 unallocated_encoding(s); 11569 return; 11570 } 11571 feature = dc_isar_feature(aa64_rdm, s); 11572 break; 11573 case 0x02: /* SDOT (vector) */ 11574 case 0x12: /* UDOT (vector) */ 11575 if (size != MO_32) { 11576 unallocated_encoding(s); 11577 return; 11578 } 11579 feature = dc_isar_feature(aa64_dp, s); 11580 break; 11581 case 0x03: /* USDOT */ 11582 if (size != MO_32) { 11583 unallocated_encoding(s); 11584 return; 11585 } 11586 feature = dc_isar_feature(aa64_i8mm, s); 11587 break; 11588 case 0x04: /* SMMLA */ 11589 case 0x14: /* UMMLA */ 11590 case 0x05: /* USMMLA */ 11591 if (!is_q || size != MO_32) { 11592 unallocated_encoding(s); 11593 return; 11594 } 11595 feature = dc_isar_feature(aa64_i8mm, s); 11596 break; 11597 case 0x18: /* FCMLA, #0 */ 11598 case 0x19: /* FCMLA, #90 */ 11599 case 0x1a: /* FCMLA, #180 */ 11600 case 0x1b: /* FCMLA, #270 */ 11601 case 0x1c: /* FCADD, #90 */ 11602 case 0x1e: /* FCADD, #270 */ 11603 if (size == 0 11604 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11605 || (size == 3 && !is_q)) { 11606 unallocated_encoding(s); 11607 return; 11608 } 11609 feature = dc_isar_feature(aa64_fcma, s); 11610 break; 11611 case 0x1d: /* BFMMLA */ 11612 if (size != MO_16 || !is_q) { 11613 unallocated_encoding(s); 11614 return; 11615 } 11616 feature = dc_isar_feature(aa64_bf16, s); 11617 break; 11618 case 0x1f: 11619 switch (size) { 11620 case 1: /* BFDOT */ 11621 case 3: /* BFMLAL{B,T} */ 11622 feature = dc_isar_feature(aa64_bf16, s); 11623 break; 11624 default: 11625 unallocated_encoding(s); 11626 return; 11627 } 11628 break; 11629 default: 11630 unallocated_encoding(s); 11631 return; 11632 } 11633 if (!feature) { 11634 unallocated_encoding(s); 11635 return; 11636 } 11637 if (!fp_access_check(s)) { 11638 return; 11639 } 11640 11641 switch (opcode) { 11642 case 0x0: /* SQRDMLAH (vector) */ 11643 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11644 return; 11645 11646 case 0x1: /* SQRDMLSH (vector) */ 11647 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11648 return; 11649 11650 case 0x2: /* SDOT / UDOT */ 11651 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11652 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11653 return; 11654 11655 case 0x3: /* USDOT */ 11656 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11657 return; 11658 11659 case 0x04: /* SMMLA, UMMLA */ 11660 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11661 u ? gen_helper_gvec_ummla_b 11662 : gen_helper_gvec_smmla_b); 11663 return; 11664 case 0x05: /* USMMLA */ 11665 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11666 return; 11667 11668 case 0x8: /* FCMLA, #0 */ 11669 case 0x9: /* FCMLA, #90 */ 11670 case 0xa: /* FCMLA, #180 */ 11671 case 0xb: /* FCMLA, #270 */ 11672 rot = extract32(opcode, 0, 2); 11673 switch (size) { 11674 case 1: 11675 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11676 gen_helper_gvec_fcmlah); 11677 break; 11678 case 2: 11679 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11680 gen_helper_gvec_fcmlas); 11681 break; 11682 case 3: 11683 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11684 gen_helper_gvec_fcmlad); 11685 break; 11686 default: 11687 g_assert_not_reached(); 11688 } 11689 return; 11690 11691 case 0xc: /* FCADD, #90 */ 11692 case 0xe: /* FCADD, #270 */ 11693 rot = extract32(opcode, 1, 1); 11694 switch (size) { 11695 case 1: 11696 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11697 gen_helper_gvec_fcaddh); 11698 break; 11699 case 2: 11700 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11701 gen_helper_gvec_fcadds); 11702 break; 11703 case 3: 11704 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11705 gen_helper_gvec_fcaddd); 11706 break; 11707 default: 11708 g_assert_not_reached(); 11709 } 11710 return; 11711 11712 case 0xd: /* BFMMLA */ 11713 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11714 return; 11715 case 0xf: 11716 switch (size) { 11717 case 1: /* BFDOT */ 11718 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11719 break; 11720 case 3: /* BFMLAL{B,T} */ 11721 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11722 gen_helper_gvec_bfmlal); 11723 break; 11724 default: 11725 g_assert_not_reached(); 11726 } 11727 return; 11728 11729 default: 11730 g_assert_not_reached(); 11731 } 11732 } 11733 11734 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11735 int size, int rn, int rd) 11736 { 11737 /* Handle 2-reg-misc ops which are widening (so each size element 11738 * in the source becomes a 2*size element in the destination. 11739 * The only instruction like this is FCVTL. 11740 */ 11741 int pass; 11742 11743 if (size == 3) { 11744 /* 32 -> 64 bit fp conversion */ 11745 TCGv_i64 tcg_res[2]; 11746 int srcelt = is_q ? 2 : 0; 11747 11748 for (pass = 0; pass < 2; pass++) { 11749 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11750 tcg_res[pass] = tcg_temp_new_i64(); 11751 11752 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11753 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11754 } 11755 for (pass = 0; pass < 2; pass++) { 11756 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11757 } 11758 } else { 11759 /* 16 -> 32 bit fp conversion */ 11760 int srcelt = is_q ? 4 : 0; 11761 TCGv_i32 tcg_res[4]; 11762 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11763 TCGv_i32 ahp = get_ahp_flag(); 11764 11765 for (pass = 0; pass < 4; pass++) { 11766 tcg_res[pass] = tcg_temp_new_i32(); 11767 11768 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11769 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11770 fpst, ahp); 11771 } 11772 for (pass = 0; pass < 4; pass++) { 11773 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11774 } 11775 } 11776 } 11777 11778 static void handle_rev(DisasContext *s, int opcode, bool u, 11779 bool is_q, int size, int rn, int rd) 11780 { 11781 int op = (opcode << 1) | u; 11782 int opsz = op + size; 11783 int grp_size = 3 - opsz; 11784 int dsize = is_q ? 128 : 64; 11785 int i; 11786 11787 if (opsz >= 3) { 11788 unallocated_encoding(s); 11789 return; 11790 } 11791 11792 if (!fp_access_check(s)) { 11793 return; 11794 } 11795 11796 if (size == 0) { 11797 /* Special case bytes, use bswap op on each group of elements */ 11798 int groups = dsize / (8 << grp_size); 11799 11800 for (i = 0; i < groups; i++) { 11801 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11802 11803 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11804 switch (grp_size) { 11805 case MO_16: 11806 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11807 break; 11808 case MO_32: 11809 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11810 break; 11811 case MO_64: 11812 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11813 break; 11814 default: 11815 g_assert_not_reached(); 11816 } 11817 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11818 } 11819 clear_vec_high(s, is_q, rd); 11820 } else { 11821 int revmask = (1 << grp_size) - 1; 11822 int esize = 8 << size; 11823 int elements = dsize / esize; 11824 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11825 TCGv_i64 tcg_rd[2]; 11826 11827 for (i = 0; i < 2; i++) { 11828 tcg_rd[i] = tcg_temp_new_i64(); 11829 tcg_gen_movi_i64(tcg_rd[i], 0); 11830 } 11831 11832 for (i = 0; i < elements; i++) { 11833 int e_rev = (i & 0xf) ^ revmask; 11834 int w = (e_rev * esize) / 64; 11835 int o = (e_rev * esize) % 64; 11836 11837 read_vec_element(s, tcg_rn, rn, i, size); 11838 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11839 } 11840 11841 for (i = 0; i < 2; i++) { 11842 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11843 } 11844 clear_vec_high(s, true, rd); 11845 } 11846 } 11847 11848 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11849 bool is_q, int size, int rn, int rd) 11850 { 11851 /* Implement the pairwise operations from 2-misc: 11852 * SADDLP, UADDLP, SADALP, UADALP. 11853 * These all add pairs of elements in the input to produce a 11854 * double-width result element in the output (possibly accumulating). 11855 */ 11856 bool accum = (opcode == 0x6); 11857 int maxpass = is_q ? 2 : 1; 11858 int pass; 11859 TCGv_i64 tcg_res[2]; 11860 11861 if (size == 2) { 11862 /* 32 + 32 -> 64 op */ 11863 MemOp memop = size + (u ? 0 : MO_SIGN); 11864 11865 for (pass = 0; pass < maxpass; pass++) { 11866 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11867 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11868 11869 tcg_res[pass] = tcg_temp_new_i64(); 11870 11871 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11872 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11873 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11874 if (accum) { 11875 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11876 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11877 } 11878 } 11879 } else { 11880 for (pass = 0; pass < maxpass; pass++) { 11881 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11882 NeonGenOne64OpFn *genfn; 11883 static NeonGenOne64OpFn * const fns[2][2] = { 11884 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11885 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11886 }; 11887 11888 genfn = fns[size][u]; 11889 11890 tcg_res[pass] = tcg_temp_new_i64(); 11891 11892 read_vec_element(s, tcg_op, rn, pass, MO_64); 11893 genfn(tcg_res[pass], tcg_op); 11894 11895 if (accum) { 11896 read_vec_element(s, tcg_op, rd, pass, MO_64); 11897 if (size == 0) { 11898 gen_helper_neon_addl_u16(tcg_res[pass], 11899 tcg_res[pass], tcg_op); 11900 } else { 11901 gen_helper_neon_addl_u32(tcg_res[pass], 11902 tcg_res[pass], tcg_op); 11903 } 11904 } 11905 } 11906 } 11907 if (!is_q) { 11908 tcg_res[1] = tcg_constant_i64(0); 11909 } 11910 for (pass = 0; pass < 2; pass++) { 11911 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11912 } 11913 } 11914 11915 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11916 { 11917 /* Implement SHLL and SHLL2 */ 11918 int pass; 11919 int part = is_q ? 2 : 0; 11920 TCGv_i64 tcg_res[2]; 11921 11922 for (pass = 0; pass < 2; pass++) { 11923 static NeonGenWidenFn * const widenfns[3] = { 11924 gen_helper_neon_widen_u8, 11925 gen_helper_neon_widen_u16, 11926 tcg_gen_extu_i32_i64, 11927 }; 11928 NeonGenWidenFn *widenfn = widenfns[size]; 11929 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11930 11931 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11932 tcg_res[pass] = tcg_temp_new_i64(); 11933 widenfn(tcg_res[pass], tcg_op); 11934 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11935 } 11936 11937 for (pass = 0; pass < 2; pass++) { 11938 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11939 } 11940 } 11941 11942 /* AdvSIMD two reg misc 11943 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11944 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11945 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11946 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11947 */ 11948 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11949 { 11950 int size = extract32(insn, 22, 2); 11951 int opcode = extract32(insn, 12, 5); 11952 bool u = extract32(insn, 29, 1); 11953 bool is_q = extract32(insn, 30, 1); 11954 int rn = extract32(insn, 5, 5); 11955 int rd = extract32(insn, 0, 5); 11956 bool need_fpstatus = false; 11957 int rmode = -1; 11958 TCGv_i32 tcg_rmode; 11959 TCGv_ptr tcg_fpstatus; 11960 11961 switch (opcode) { 11962 case 0x0: /* REV64, REV32 */ 11963 case 0x1: /* REV16 */ 11964 handle_rev(s, opcode, u, is_q, size, rn, rd); 11965 return; 11966 case 0x5: /* CNT, NOT, RBIT */ 11967 if (u && size == 0) { 11968 /* NOT */ 11969 break; 11970 } else if (u && size == 1) { 11971 /* RBIT */ 11972 break; 11973 } else if (!u && size == 0) { 11974 /* CNT */ 11975 break; 11976 } 11977 unallocated_encoding(s); 11978 return; 11979 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11980 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11981 if (size == 3) { 11982 unallocated_encoding(s); 11983 return; 11984 } 11985 if (!fp_access_check(s)) { 11986 return; 11987 } 11988 11989 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11990 return; 11991 case 0x4: /* CLS, CLZ */ 11992 if (size == 3) { 11993 unallocated_encoding(s); 11994 return; 11995 } 11996 break; 11997 case 0x2: /* SADDLP, UADDLP */ 11998 case 0x6: /* SADALP, UADALP */ 11999 if (size == 3) { 12000 unallocated_encoding(s); 12001 return; 12002 } 12003 if (!fp_access_check(s)) { 12004 return; 12005 } 12006 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12007 return; 12008 case 0x13: /* SHLL, SHLL2 */ 12009 if (u == 0 || size == 3) { 12010 unallocated_encoding(s); 12011 return; 12012 } 12013 if (!fp_access_check(s)) { 12014 return; 12015 } 12016 handle_shll(s, is_q, size, rn, rd); 12017 return; 12018 case 0xa: /* CMLT */ 12019 if (u == 1) { 12020 unallocated_encoding(s); 12021 return; 12022 } 12023 /* fall through */ 12024 case 0x8: /* CMGT, CMGE */ 12025 case 0x9: /* CMEQ, CMLE */ 12026 case 0xb: /* ABS, NEG */ 12027 if (size == 3 && !is_q) { 12028 unallocated_encoding(s); 12029 return; 12030 } 12031 break; 12032 case 0x3: /* SUQADD, USQADD */ 12033 if (size == 3 && !is_q) { 12034 unallocated_encoding(s); 12035 return; 12036 } 12037 if (!fp_access_check(s)) { 12038 return; 12039 } 12040 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12041 return; 12042 case 0x7: /* SQABS, SQNEG */ 12043 if (size == 3 && !is_q) { 12044 unallocated_encoding(s); 12045 return; 12046 } 12047 break; 12048 case 0xc ... 0xf: 12049 case 0x16 ... 0x1f: 12050 { 12051 /* Floating point: U, size[1] and opcode indicate operation; 12052 * size[0] indicates single or double precision. 12053 */ 12054 int is_double = extract32(size, 0, 1); 12055 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12056 size = is_double ? 3 : 2; 12057 switch (opcode) { 12058 case 0x2f: /* FABS */ 12059 case 0x6f: /* FNEG */ 12060 if (size == 3 && !is_q) { 12061 unallocated_encoding(s); 12062 return; 12063 } 12064 break; 12065 case 0x1d: /* SCVTF */ 12066 case 0x5d: /* UCVTF */ 12067 { 12068 bool is_signed = (opcode == 0x1d) ? true : false; 12069 int elements = is_double ? 2 : is_q ? 4 : 2; 12070 if (is_double && !is_q) { 12071 unallocated_encoding(s); 12072 return; 12073 } 12074 if (!fp_access_check(s)) { 12075 return; 12076 } 12077 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12078 return; 12079 } 12080 case 0x2c: /* FCMGT (zero) */ 12081 case 0x2d: /* FCMEQ (zero) */ 12082 case 0x2e: /* FCMLT (zero) */ 12083 case 0x6c: /* FCMGE (zero) */ 12084 case 0x6d: /* FCMLE (zero) */ 12085 if (size == 3 && !is_q) { 12086 unallocated_encoding(s); 12087 return; 12088 } 12089 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12090 return; 12091 case 0x7f: /* FSQRT */ 12092 if (size == 3 && !is_q) { 12093 unallocated_encoding(s); 12094 return; 12095 } 12096 break; 12097 case 0x1a: /* FCVTNS */ 12098 case 0x1b: /* FCVTMS */ 12099 case 0x3a: /* FCVTPS */ 12100 case 0x3b: /* FCVTZS */ 12101 case 0x5a: /* FCVTNU */ 12102 case 0x5b: /* FCVTMU */ 12103 case 0x7a: /* FCVTPU */ 12104 case 0x7b: /* FCVTZU */ 12105 need_fpstatus = true; 12106 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12107 if (size == 3 && !is_q) { 12108 unallocated_encoding(s); 12109 return; 12110 } 12111 break; 12112 case 0x5c: /* FCVTAU */ 12113 case 0x1c: /* FCVTAS */ 12114 need_fpstatus = true; 12115 rmode = FPROUNDING_TIEAWAY; 12116 if (size == 3 && !is_q) { 12117 unallocated_encoding(s); 12118 return; 12119 } 12120 break; 12121 case 0x3c: /* URECPE */ 12122 if (size == 3) { 12123 unallocated_encoding(s); 12124 return; 12125 } 12126 /* fall through */ 12127 case 0x3d: /* FRECPE */ 12128 case 0x7d: /* FRSQRTE */ 12129 if (size == 3 && !is_q) { 12130 unallocated_encoding(s); 12131 return; 12132 } 12133 if (!fp_access_check(s)) { 12134 return; 12135 } 12136 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12137 return; 12138 case 0x56: /* FCVTXN, FCVTXN2 */ 12139 if (size == 2) { 12140 unallocated_encoding(s); 12141 return; 12142 } 12143 /* fall through */ 12144 case 0x16: /* FCVTN, FCVTN2 */ 12145 /* handle_2misc_narrow does a 2*size -> size operation, but these 12146 * instructions encode the source size rather than dest size. 12147 */ 12148 if (!fp_access_check(s)) { 12149 return; 12150 } 12151 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12152 return; 12153 case 0x36: /* BFCVTN, BFCVTN2 */ 12154 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12155 unallocated_encoding(s); 12156 return; 12157 } 12158 if (!fp_access_check(s)) { 12159 return; 12160 } 12161 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12162 return; 12163 case 0x17: /* FCVTL, FCVTL2 */ 12164 if (!fp_access_check(s)) { 12165 return; 12166 } 12167 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12168 return; 12169 case 0x18: /* FRINTN */ 12170 case 0x19: /* FRINTM */ 12171 case 0x38: /* FRINTP */ 12172 case 0x39: /* FRINTZ */ 12173 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12174 /* fall through */ 12175 case 0x59: /* FRINTX */ 12176 case 0x79: /* FRINTI */ 12177 need_fpstatus = true; 12178 if (size == 3 && !is_q) { 12179 unallocated_encoding(s); 12180 return; 12181 } 12182 break; 12183 case 0x58: /* FRINTA */ 12184 rmode = FPROUNDING_TIEAWAY; 12185 need_fpstatus = true; 12186 if (size == 3 && !is_q) { 12187 unallocated_encoding(s); 12188 return; 12189 } 12190 break; 12191 case 0x7c: /* URSQRTE */ 12192 if (size == 3) { 12193 unallocated_encoding(s); 12194 return; 12195 } 12196 break; 12197 case 0x1e: /* FRINT32Z */ 12198 case 0x1f: /* FRINT64Z */ 12199 rmode = FPROUNDING_ZERO; 12200 /* fall through */ 12201 case 0x5e: /* FRINT32X */ 12202 case 0x5f: /* FRINT64X */ 12203 need_fpstatus = true; 12204 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12205 unallocated_encoding(s); 12206 return; 12207 } 12208 break; 12209 default: 12210 unallocated_encoding(s); 12211 return; 12212 } 12213 break; 12214 } 12215 default: 12216 unallocated_encoding(s); 12217 return; 12218 } 12219 12220 if (!fp_access_check(s)) { 12221 return; 12222 } 12223 12224 if (need_fpstatus || rmode >= 0) { 12225 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12226 } else { 12227 tcg_fpstatus = NULL; 12228 } 12229 if (rmode >= 0) { 12230 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12231 } else { 12232 tcg_rmode = NULL; 12233 } 12234 12235 switch (opcode) { 12236 case 0x5: 12237 if (u && size == 0) { /* NOT */ 12238 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12239 return; 12240 } 12241 break; 12242 case 0x8: /* CMGT, CMGE */ 12243 if (u) { 12244 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12245 } else { 12246 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12247 } 12248 return; 12249 case 0x9: /* CMEQ, CMLE */ 12250 if (u) { 12251 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12252 } else { 12253 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12254 } 12255 return; 12256 case 0xa: /* CMLT */ 12257 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12258 return; 12259 case 0xb: 12260 if (u) { /* ABS, NEG */ 12261 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12262 } else { 12263 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12264 } 12265 return; 12266 } 12267 12268 if (size == 3) { 12269 /* All 64-bit element operations can be shared with scalar 2misc */ 12270 int pass; 12271 12272 /* Coverity claims (size == 3 && !is_q) has been eliminated 12273 * from all paths leading to here. 12274 */ 12275 tcg_debug_assert(is_q); 12276 for (pass = 0; pass < 2; pass++) { 12277 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12278 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12279 12280 read_vec_element(s, tcg_op, rn, pass, MO_64); 12281 12282 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12283 tcg_rmode, tcg_fpstatus); 12284 12285 write_vec_element(s, tcg_res, rd, pass, MO_64); 12286 } 12287 } else { 12288 int pass; 12289 12290 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12291 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12292 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12293 12294 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12295 12296 if (size == 2) { 12297 /* Special cases for 32 bit elements */ 12298 switch (opcode) { 12299 case 0x4: /* CLS */ 12300 if (u) { 12301 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12302 } else { 12303 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12304 } 12305 break; 12306 case 0x7: /* SQABS, SQNEG */ 12307 if (u) { 12308 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12309 } else { 12310 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12311 } 12312 break; 12313 case 0x2f: /* FABS */ 12314 gen_helper_vfp_abss(tcg_res, tcg_op); 12315 break; 12316 case 0x6f: /* FNEG */ 12317 gen_helper_vfp_negs(tcg_res, tcg_op); 12318 break; 12319 case 0x7f: /* FSQRT */ 12320 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12321 break; 12322 case 0x1a: /* FCVTNS */ 12323 case 0x1b: /* FCVTMS */ 12324 case 0x1c: /* FCVTAS */ 12325 case 0x3a: /* FCVTPS */ 12326 case 0x3b: /* FCVTZS */ 12327 gen_helper_vfp_tosls(tcg_res, tcg_op, 12328 tcg_constant_i32(0), tcg_fpstatus); 12329 break; 12330 case 0x5a: /* FCVTNU */ 12331 case 0x5b: /* FCVTMU */ 12332 case 0x5c: /* FCVTAU */ 12333 case 0x7a: /* FCVTPU */ 12334 case 0x7b: /* FCVTZU */ 12335 gen_helper_vfp_touls(tcg_res, tcg_op, 12336 tcg_constant_i32(0), tcg_fpstatus); 12337 break; 12338 case 0x18: /* FRINTN */ 12339 case 0x19: /* FRINTM */ 12340 case 0x38: /* FRINTP */ 12341 case 0x39: /* FRINTZ */ 12342 case 0x58: /* FRINTA */ 12343 case 0x79: /* FRINTI */ 12344 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12345 break; 12346 case 0x59: /* FRINTX */ 12347 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12348 break; 12349 case 0x7c: /* URSQRTE */ 12350 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12351 break; 12352 case 0x1e: /* FRINT32Z */ 12353 case 0x5e: /* FRINT32X */ 12354 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12355 break; 12356 case 0x1f: /* FRINT64Z */ 12357 case 0x5f: /* FRINT64X */ 12358 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12359 break; 12360 default: 12361 g_assert_not_reached(); 12362 } 12363 } else { 12364 /* Use helpers for 8 and 16 bit elements */ 12365 switch (opcode) { 12366 case 0x5: /* CNT, RBIT */ 12367 /* For these two insns size is part of the opcode specifier 12368 * (handled earlier); they always operate on byte elements. 12369 */ 12370 if (u) { 12371 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12372 } else { 12373 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12374 } 12375 break; 12376 case 0x7: /* SQABS, SQNEG */ 12377 { 12378 NeonGenOneOpEnvFn *genfn; 12379 static NeonGenOneOpEnvFn * const fns[2][2] = { 12380 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12381 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12382 }; 12383 genfn = fns[size][u]; 12384 genfn(tcg_res, cpu_env, tcg_op); 12385 break; 12386 } 12387 case 0x4: /* CLS, CLZ */ 12388 if (u) { 12389 if (size == 0) { 12390 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12391 } else { 12392 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12393 } 12394 } else { 12395 if (size == 0) { 12396 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12397 } else { 12398 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12399 } 12400 } 12401 break; 12402 default: 12403 g_assert_not_reached(); 12404 } 12405 } 12406 12407 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12408 } 12409 } 12410 clear_vec_high(s, is_q, rd); 12411 12412 if (tcg_rmode) { 12413 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12414 } 12415 } 12416 12417 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12418 * 12419 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12420 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12421 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12422 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12423 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12424 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12425 * 12426 * This actually covers two groups where scalar access is governed by 12427 * bit 28. A bunch of the instructions (float to integral) only exist 12428 * in the vector form and are un-allocated for the scalar decode. Also 12429 * in the scalar decode Q is always 1. 12430 */ 12431 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12432 { 12433 int fpop, opcode, a, u; 12434 int rn, rd; 12435 bool is_q; 12436 bool is_scalar; 12437 bool only_in_vector = false; 12438 12439 int pass; 12440 TCGv_i32 tcg_rmode = NULL; 12441 TCGv_ptr tcg_fpstatus = NULL; 12442 bool need_fpst = true; 12443 int rmode = -1; 12444 12445 if (!dc_isar_feature(aa64_fp16, s)) { 12446 unallocated_encoding(s); 12447 return; 12448 } 12449 12450 rd = extract32(insn, 0, 5); 12451 rn = extract32(insn, 5, 5); 12452 12453 a = extract32(insn, 23, 1); 12454 u = extract32(insn, 29, 1); 12455 is_scalar = extract32(insn, 28, 1); 12456 is_q = extract32(insn, 30, 1); 12457 12458 opcode = extract32(insn, 12, 5); 12459 fpop = deposit32(opcode, 5, 1, a); 12460 fpop = deposit32(fpop, 6, 1, u); 12461 12462 switch (fpop) { 12463 case 0x1d: /* SCVTF */ 12464 case 0x5d: /* UCVTF */ 12465 { 12466 int elements; 12467 12468 if (is_scalar) { 12469 elements = 1; 12470 } else { 12471 elements = (is_q ? 8 : 4); 12472 } 12473 12474 if (!fp_access_check(s)) { 12475 return; 12476 } 12477 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12478 return; 12479 } 12480 break; 12481 case 0x2c: /* FCMGT (zero) */ 12482 case 0x2d: /* FCMEQ (zero) */ 12483 case 0x2e: /* FCMLT (zero) */ 12484 case 0x6c: /* FCMGE (zero) */ 12485 case 0x6d: /* FCMLE (zero) */ 12486 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12487 return; 12488 case 0x3d: /* FRECPE */ 12489 case 0x3f: /* FRECPX */ 12490 break; 12491 case 0x18: /* FRINTN */ 12492 only_in_vector = true; 12493 rmode = FPROUNDING_TIEEVEN; 12494 break; 12495 case 0x19: /* FRINTM */ 12496 only_in_vector = true; 12497 rmode = FPROUNDING_NEGINF; 12498 break; 12499 case 0x38: /* FRINTP */ 12500 only_in_vector = true; 12501 rmode = FPROUNDING_POSINF; 12502 break; 12503 case 0x39: /* FRINTZ */ 12504 only_in_vector = true; 12505 rmode = FPROUNDING_ZERO; 12506 break; 12507 case 0x58: /* FRINTA */ 12508 only_in_vector = true; 12509 rmode = FPROUNDING_TIEAWAY; 12510 break; 12511 case 0x59: /* FRINTX */ 12512 case 0x79: /* FRINTI */ 12513 only_in_vector = true; 12514 /* current rounding mode */ 12515 break; 12516 case 0x1a: /* FCVTNS */ 12517 rmode = FPROUNDING_TIEEVEN; 12518 break; 12519 case 0x1b: /* FCVTMS */ 12520 rmode = FPROUNDING_NEGINF; 12521 break; 12522 case 0x1c: /* FCVTAS */ 12523 rmode = FPROUNDING_TIEAWAY; 12524 break; 12525 case 0x3a: /* FCVTPS */ 12526 rmode = FPROUNDING_POSINF; 12527 break; 12528 case 0x3b: /* FCVTZS */ 12529 rmode = FPROUNDING_ZERO; 12530 break; 12531 case 0x5a: /* FCVTNU */ 12532 rmode = FPROUNDING_TIEEVEN; 12533 break; 12534 case 0x5b: /* FCVTMU */ 12535 rmode = FPROUNDING_NEGINF; 12536 break; 12537 case 0x5c: /* FCVTAU */ 12538 rmode = FPROUNDING_TIEAWAY; 12539 break; 12540 case 0x7a: /* FCVTPU */ 12541 rmode = FPROUNDING_POSINF; 12542 break; 12543 case 0x7b: /* FCVTZU */ 12544 rmode = FPROUNDING_ZERO; 12545 break; 12546 case 0x2f: /* FABS */ 12547 case 0x6f: /* FNEG */ 12548 need_fpst = false; 12549 break; 12550 case 0x7d: /* FRSQRTE */ 12551 case 0x7f: /* FSQRT (vector) */ 12552 break; 12553 default: 12554 unallocated_encoding(s); 12555 return; 12556 } 12557 12558 12559 /* Check additional constraints for the scalar encoding */ 12560 if (is_scalar) { 12561 if (!is_q) { 12562 unallocated_encoding(s); 12563 return; 12564 } 12565 /* FRINTxx is only in the vector form */ 12566 if (only_in_vector) { 12567 unallocated_encoding(s); 12568 return; 12569 } 12570 } 12571 12572 if (!fp_access_check(s)) { 12573 return; 12574 } 12575 12576 if (rmode >= 0 || need_fpst) { 12577 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12578 } 12579 12580 if (rmode >= 0) { 12581 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12582 } 12583 12584 if (is_scalar) { 12585 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12586 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12587 12588 switch (fpop) { 12589 case 0x1a: /* FCVTNS */ 12590 case 0x1b: /* FCVTMS */ 12591 case 0x1c: /* FCVTAS */ 12592 case 0x3a: /* FCVTPS */ 12593 case 0x3b: /* FCVTZS */ 12594 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12595 break; 12596 case 0x3d: /* FRECPE */ 12597 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12598 break; 12599 case 0x3f: /* FRECPX */ 12600 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12601 break; 12602 case 0x5a: /* FCVTNU */ 12603 case 0x5b: /* FCVTMU */ 12604 case 0x5c: /* FCVTAU */ 12605 case 0x7a: /* FCVTPU */ 12606 case 0x7b: /* FCVTZU */ 12607 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12608 break; 12609 case 0x6f: /* FNEG */ 12610 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12611 break; 12612 case 0x7d: /* FRSQRTE */ 12613 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12614 break; 12615 default: 12616 g_assert_not_reached(); 12617 } 12618 12619 /* limit any sign extension going on */ 12620 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12621 write_fp_sreg(s, rd, tcg_res); 12622 } else { 12623 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12624 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12625 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12626 12627 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12628 12629 switch (fpop) { 12630 case 0x1a: /* FCVTNS */ 12631 case 0x1b: /* FCVTMS */ 12632 case 0x1c: /* FCVTAS */ 12633 case 0x3a: /* FCVTPS */ 12634 case 0x3b: /* FCVTZS */ 12635 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12636 break; 12637 case 0x3d: /* FRECPE */ 12638 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12639 break; 12640 case 0x5a: /* FCVTNU */ 12641 case 0x5b: /* FCVTMU */ 12642 case 0x5c: /* FCVTAU */ 12643 case 0x7a: /* FCVTPU */ 12644 case 0x7b: /* FCVTZU */ 12645 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12646 break; 12647 case 0x18: /* FRINTN */ 12648 case 0x19: /* FRINTM */ 12649 case 0x38: /* FRINTP */ 12650 case 0x39: /* FRINTZ */ 12651 case 0x58: /* FRINTA */ 12652 case 0x79: /* FRINTI */ 12653 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12654 break; 12655 case 0x59: /* FRINTX */ 12656 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12657 break; 12658 case 0x2f: /* FABS */ 12659 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12660 break; 12661 case 0x6f: /* FNEG */ 12662 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12663 break; 12664 case 0x7d: /* FRSQRTE */ 12665 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12666 break; 12667 case 0x7f: /* FSQRT */ 12668 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12669 break; 12670 default: 12671 g_assert_not_reached(); 12672 } 12673 12674 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12675 } 12676 12677 clear_vec_high(s, is_q, rd); 12678 } 12679 12680 if (tcg_rmode) { 12681 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12682 } 12683 } 12684 12685 /* AdvSIMD scalar x indexed element 12686 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12687 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12688 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12689 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12690 * AdvSIMD vector x indexed element 12691 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12692 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12693 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12694 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12695 */ 12696 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12697 { 12698 /* This encoding has two kinds of instruction: 12699 * normal, where we perform elt x idxelt => elt for each 12700 * element in the vector 12701 * long, where we perform elt x idxelt and generate a result of 12702 * double the width of the input element 12703 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12704 */ 12705 bool is_scalar = extract32(insn, 28, 1); 12706 bool is_q = extract32(insn, 30, 1); 12707 bool u = extract32(insn, 29, 1); 12708 int size = extract32(insn, 22, 2); 12709 int l = extract32(insn, 21, 1); 12710 int m = extract32(insn, 20, 1); 12711 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12712 int rm = extract32(insn, 16, 4); 12713 int opcode = extract32(insn, 12, 4); 12714 int h = extract32(insn, 11, 1); 12715 int rn = extract32(insn, 5, 5); 12716 int rd = extract32(insn, 0, 5); 12717 bool is_long = false; 12718 int is_fp = 0; 12719 bool is_fp16 = false; 12720 int index; 12721 TCGv_ptr fpst; 12722 12723 switch (16 * u + opcode) { 12724 case 0x08: /* MUL */ 12725 case 0x10: /* MLA */ 12726 case 0x14: /* MLS */ 12727 if (is_scalar) { 12728 unallocated_encoding(s); 12729 return; 12730 } 12731 break; 12732 case 0x02: /* SMLAL, SMLAL2 */ 12733 case 0x12: /* UMLAL, UMLAL2 */ 12734 case 0x06: /* SMLSL, SMLSL2 */ 12735 case 0x16: /* UMLSL, UMLSL2 */ 12736 case 0x0a: /* SMULL, SMULL2 */ 12737 case 0x1a: /* UMULL, UMULL2 */ 12738 if (is_scalar) { 12739 unallocated_encoding(s); 12740 return; 12741 } 12742 is_long = true; 12743 break; 12744 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12745 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12746 case 0x0b: /* SQDMULL, SQDMULL2 */ 12747 is_long = true; 12748 break; 12749 case 0x0c: /* SQDMULH */ 12750 case 0x0d: /* SQRDMULH */ 12751 break; 12752 case 0x01: /* FMLA */ 12753 case 0x05: /* FMLS */ 12754 case 0x09: /* FMUL */ 12755 case 0x19: /* FMULX */ 12756 is_fp = 1; 12757 break; 12758 case 0x1d: /* SQRDMLAH */ 12759 case 0x1f: /* SQRDMLSH */ 12760 if (!dc_isar_feature(aa64_rdm, s)) { 12761 unallocated_encoding(s); 12762 return; 12763 } 12764 break; 12765 case 0x0e: /* SDOT */ 12766 case 0x1e: /* UDOT */ 12767 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12768 unallocated_encoding(s); 12769 return; 12770 } 12771 break; 12772 case 0x0f: 12773 switch (size) { 12774 case 0: /* SUDOT */ 12775 case 2: /* USDOT */ 12776 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12777 unallocated_encoding(s); 12778 return; 12779 } 12780 size = MO_32; 12781 break; 12782 case 1: /* BFDOT */ 12783 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12784 unallocated_encoding(s); 12785 return; 12786 } 12787 size = MO_32; 12788 break; 12789 case 3: /* BFMLAL{B,T} */ 12790 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12791 unallocated_encoding(s); 12792 return; 12793 } 12794 /* can't set is_fp without other incorrect size checks */ 12795 size = MO_16; 12796 break; 12797 default: 12798 unallocated_encoding(s); 12799 return; 12800 } 12801 break; 12802 case 0x11: /* FCMLA #0 */ 12803 case 0x13: /* FCMLA #90 */ 12804 case 0x15: /* FCMLA #180 */ 12805 case 0x17: /* FCMLA #270 */ 12806 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12807 unallocated_encoding(s); 12808 return; 12809 } 12810 is_fp = 2; 12811 break; 12812 case 0x00: /* FMLAL */ 12813 case 0x04: /* FMLSL */ 12814 case 0x18: /* FMLAL2 */ 12815 case 0x1c: /* FMLSL2 */ 12816 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12817 unallocated_encoding(s); 12818 return; 12819 } 12820 size = MO_16; 12821 /* is_fp, but we pass cpu_env not fp_status. */ 12822 break; 12823 default: 12824 unallocated_encoding(s); 12825 return; 12826 } 12827 12828 switch (is_fp) { 12829 case 1: /* normal fp */ 12830 /* convert insn encoded size to MemOp size */ 12831 switch (size) { 12832 case 0: /* half-precision */ 12833 size = MO_16; 12834 is_fp16 = true; 12835 break; 12836 case MO_32: /* single precision */ 12837 case MO_64: /* double precision */ 12838 break; 12839 default: 12840 unallocated_encoding(s); 12841 return; 12842 } 12843 break; 12844 12845 case 2: /* complex fp */ 12846 /* Each indexable element is a complex pair. */ 12847 size += 1; 12848 switch (size) { 12849 case MO_32: 12850 if (h && !is_q) { 12851 unallocated_encoding(s); 12852 return; 12853 } 12854 is_fp16 = true; 12855 break; 12856 case MO_64: 12857 break; 12858 default: 12859 unallocated_encoding(s); 12860 return; 12861 } 12862 break; 12863 12864 default: /* integer */ 12865 switch (size) { 12866 case MO_8: 12867 case MO_64: 12868 unallocated_encoding(s); 12869 return; 12870 } 12871 break; 12872 } 12873 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12874 unallocated_encoding(s); 12875 return; 12876 } 12877 12878 /* Given MemOp size, adjust register and indexing. */ 12879 switch (size) { 12880 case MO_16: 12881 index = h << 2 | l << 1 | m; 12882 break; 12883 case MO_32: 12884 index = h << 1 | l; 12885 rm |= m << 4; 12886 break; 12887 case MO_64: 12888 if (l || !is_q) { 12889 unallocated_encoding(s); 12890 return; 12891 } 12892 index = h; 12893 rm |= m << 4; 12894 break; 12895 default: 12896 g_assert_not_reached(); 12897 } 12898 12899 if (!fp_access_check(s)) { 12900 return; 12901 } 12902 12903 if (is_fp) { 12904 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12905 } else { 12906 fpst = NULL; 12907 } 12908 12909 switch (16 * u + opcode) { 12910 case 0x0e: /* SDOT */ 12911 case 0x1e: /* UDOT */ 12912 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12913 u ? gen_helper_gvec_udot_idx_b 12914 : gen_helper_gvec_sdot_idx_b); 12915 return; 12916 case 0x0f: 12917 switch (extract32(insn, 22, 2)) { 12918 case 0: /* SUDOT */ 12919 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12920 gen_helper_gvec_sudot_idx_b); 12921 return; 12922 case 1: /* BFDOT */ 12923 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12924 gen_helper_gvec_bfdot_idx); 12925 return; 12926 case 2: /* USDOT */ 12927 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12928 gen_helper_gvec_usdot_idx_b); 12929 return; 12930 case 3: /* BFMLAL{B,T} */ 12931 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12932 gen_helper_gvec_bfmlal_idx); 12933 return; 12934 } 12935 g_assert_not_reached(); 12936 case 0x11: /* FCMLA #0 */ 12937 case 0x13: /* FCMLA #90 */ 12938 case 0x15: /* FCMLA #180 */ 12939 case 0x17: /* FCMLA #270 */ 12940 { 12941 int rot = extract32(insn, 13, 2); 12942 int data = (index << 2) | rot; 12943 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12944 vec_full_reg_offset(s, rn), 12945 vec_full_reg_offset(s, rm), 12946 vec_full_reg_offset(s, rd), fpst, 12947 is_q ? 16 : 8, vec_full_reg_size(s), data, 12948 size == MO_64 12949 ? gen_helper_gvec_fcmlas_idx 12950 : gen_helper_gvec_fcmlah_idx); 12951 } 12952 return; 12953 12954 case 0x00: /* FMLAL */ 12955 case 0x04: /* FMLSL */ 12956 case 0x18: /* FMLAL2 */ 12957 case 0x1c: /* FMLSL2 */ 12958 { 12959 int is_s = extract32(opcode, 2, 1); 12960 int is_2 = u; 12961 int data = (index << 2) | (is_2 << 1) | is_s; 12962 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12963 vec_full_reg_offset(s, rn), 12964 vec_full_reg_offset(s, rm), cpu_env, 12965 is_q ? 16 : 8, vec_full_reg_size(s), 12966 data, gen_helper_gvec_fmlal_idx_a64); 12967 } 12968 return; 12969 12970 case 0x08: /* MUL */ 12971 if (!is_long && !is_scalar) { 12972 static gen_helper_gvec_3 * const fns[3] = { 12973 gen_helper_gvec_mul_idx_h, 12974 gen_helper_gvec_mul_idx_s, 12975 gen_helper_gvec_mul_idx_d, 12976 }; 12977 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12978 vec_full_reg_offset(s, rn), 12979 vec_full_reg_offset(s, rm), 12980 is_q ? 16 : 8, vec_full_reg_size(s), 12981 index, fns[size - 1]); 12982 return; 12983 } 12984 break; 12985 12986 case 0x10: /* MLA */ 12987 if (!is_long && !is_scalar) { 12988 static gen_helper_gvec_4 * const fns[3] = { 12989 gen_helper_gvec_mla_idx_h, 12990 gen_helper_gvec_mla_idx_s, 12991 gen_helper_gvec_mla_idx_d, 12992 }; 12993 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12994 vec_full_reg_offset(s, rn), 12995 vec_full_reg_offset(s, rm), 12996 vec_full_reg_offset(s, rd), 12997 is_q ? 16 : 8, vec_full_reg_size(s), 12998 index, fns[size - 1]); 12999 return; 13000 } 13001 break; 13002 13003 case 0x14: /* MLS */ 13004 if (!is_long && !is_scalar) { 13005 static gen_helper_gvec_4 * const fns[3] = { 13006 gen_helper_gvec_mls_idx_h, 13007 gen_helper_gvec_mls_idx_s, 13008 gen_helper_gvec_mls_idx_d, 13009 }; 13010 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13011 vec_full_reg_offset(s, rn), 13012 vec_full_reg_offset(s, rm), 13013 vec_full_reg_offset(s, rd), 13014 is_q ? 16 : 8, vec_full_reg_size(s), 13015 index, fns[size - 1]); 13016 return; 13017 } 13018 break; 13019 } 13020 13021 if (size == 3) { 13022 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13023 int pass; 13024 13025 assert(is_fp && is_q && !is_long); 13026 13027 read_vec_element(s, tcg_idx, rm, index, MO_64); 13028 13029 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13030 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13031 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13032 13033 read_vec_element(s, tcg_op, rn, pass, MO_64); 13034 13035 switch (16 * u + opcode) { 13036 case 0x05: /* FMLS */ 13037 /* As usual for ARM, separate negation for fused multiply-add */ 13038 gen_helper_vfp_negd(tcg_op, tcg_op); 13039 /* fall through */ 13040 case 0x01: /* FMLA */ 13041 read_vec_element(s, tcg_res, rd, pass, MO_64); 13042 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13043 break; 13044 case 0x09: /* FMUL */ 13045 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13046 break; 13047 case 0x19: /* FMULX */ 13048 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13049 break; 13050 default: 13051 g_assert_not_reached(); 13052 } 13053 13054 write_vec_element(s, tcg_res, rd, pass, MO_64); 13055 } 13056 13057 clear_vec_high(s, !is_scalar, rd); 13058 } else if (!is_long) { 13059 /* 32 bit floating point, or 16 or 32 bit integer. 13060 * For the 16 bit scalar case we use the usual Neon helpers and 13061 * rely on the fact that 0 op 0 == 0 with no side effects. 13062 */ 13063 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13064 int pass, maxpasses; 13065 13066 if (is_scalar) { 13067 maxpasses = 1; 13068 } else { 13069 maxpasses = is_q ? 4 : 2; 13070 } 13071 13072 read_vec_element_i32(s, tcg_idx, rm, index, size); 13073 13074 if (size == 1 && !is_scalar) { 13075 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13076 * the index into both halves of the 32 bit tcg_idx and then use 13077 * the usual Neon helpers. 13078 */ 13079 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13080 } 13081 13082 for (pass = 0; pass < maxpasses; pass++) { 13083 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13084 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13085 13086 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13087 13088 switch (16 * u + opcode) { 13089 case 0x08: /* MUL */ 13090 case 0x10: /* MLA */ 13091 case 0x14: /* MLS */ 13092 { 13093 static NeonGenTwoOpFn * const fns[2][2] = { 13094 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13095 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13096 }; 13097 NeonGenTwoOpFn *genfn; 13098 bool is_sub = opcode == 0x4; 13099 13100 if (size == 1) { 13101 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13102 } else { 13103 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13104 } 13105 if (opcode == 0x8) { 13106 break; 13107 } 13108 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13109 genfn = fns[size - 1][is_sub]; 13110 genfn(tcg_res, tcg_op, tcg_res); 13111 break; 13112 } 13113 case 0x05: /* FMLS */ 13114 case 0x01: /* FMLA */ 13115 read_vec_element_i32(s, tcg_res, rd, pass, 13116 is_scalar ? size : MO_32); 13117 switch (size) { 13118 case 1: 13119 if (opcode == 0x5) { 13120 /* As usual for ARM, separate negation for fused 13121 * multiply-add */ 13122 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13123 } 13124 if (is_scalar) { 13125 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13126 tcg_res, fpst); 13127 } else { 13128 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13129 tcg_res, fpst); 13130 } 13131 break; 13132 case 2: 13133 if (opcode == 0x5) { 13134 /* As usual for ARM, separate negation for 13135 * fused multiply-add */ 13136 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13137 } 13138 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13139 tcg_res, fpst); 13140 break; 13141 default: 13142 g_assert_not_reached(); 13143 } 13144 break; 13145 case 0x09: /* FMUL */ 13146 switch (size) { 13147 case 1: 13148 if (is_scalar) { 13149 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13150 tcg_idx, fpst); 13151 } else { 13152 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13153 tcg_idx, fpst); 13154 } 13155 break; 13156 case 2: 13157 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13158 break; 13159 default: 13160 g_assert_not_reached(); 13161 } 13162 break; 13163 case 0x19: /* FMULX */ 13164 switch (size) { 13165 case 1: 13166 if (is_scalar) { 13167 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13168 tcg_idx, fpst); 13169 } else { 13170 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13171 tcg_idx, fpst); 13172 } 13173 break; 13174 case 2: 13175 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13176 break; 13177 default: 13178 g_assert_not_reached(); 13179 } 13180 break; 13181 case 0x0c: /* SQDMULH */ 13182 if (size == 1) { 13183 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13184 tcg_op, tcg_idx); 13185 } else { 13186 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13187 tcg_op, tcg_idx); 13188 } 13189 break; 13190 case 0x0d: /* SQRDMULH */ 13191 if (size == 1) { 13192 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13193 tcg_op, tcg_idx); 13194 } else { 13195 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13196 tcg_op, tcg_idx); 13197 } 13198 break; 13199 case 0x1d: /* SQRDMLAH */ 13200 read_vec_element_i32(s, tcg_res, rd, pass, 13201 is_scalar ? size : MO_32); 13202 if (size == 1) { 13203 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13204 tcg_op, tcg_idx, tcg_res); 13205 } else { 13206 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13207 tcg_op, tcg_idx, tcg_res); 13208 } 13209 break; 13210 case 0x1f: /* SQRDMLSH */ 13211 read_vec_element_i32(s, tcg_res, rd, pass, 13212 is_scalar ? size : MO_32); 13213 if (size == 1) { 13214 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13215 tcg_op, tcg_idx, tcg_res); 13216 } else { 13217 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13218 tcg_op, tcg_idx, tcg_res); 13219 } 13220 break; 13221 default: 13222 g_assert_not_reached(); 13223 } 13224 13225 if (is_scalar) { 13226 write_fp_sreg(s, rd, tcg_res); 13227 } else { 13228 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13229 } 13230 } 13231 13232 clear_vec_high(s, is_q, rd); 13233 } else { 13234 /* long ops: 16x16->32 or 32x32->64 */ 13235 TCGv_i64 tcg_res[2]; 13236 int pass; 13237 bool satop = extract32(opcode, 0, 1); 13238 MemOp memop = MO_32; 13239 13240 if (satop || !u) { 13241 memop |= MO_SIGN; 13242 } 13243 13244 if (size == 2) { 13245 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13246 13247 read_vec_element(s, tcg_idx, rm, index, memop); 13248 13249 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13250 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13251 TCGv_i64 tcg_passres; 13252 int passelt; 13253 13254 if (is_scalar) { 13255 passelt = 0; 13256 } else { 13257 passelt = pass + (is_q * 2); 13258 } 13259 13260 read_vec_element(s, tcg_op, rn, passelt, memop); 13261 13262 tcg_res[pass] = tcg_temp_new_i64(); 13263 13264 if (opcode == 0xa || opcode == 0xb) { 13265 /* Non-accumulating ops */ 13266 tcg_passres = tcg_res[pass]; 13267 } else { 13268 tcg_passres = tcg_temp_new_i64(); 13269 } 13270 13271 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13272 13273 if (satop) { 13274 /* saturating, doubling */ 13275 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13276 tcg_passres, tcg_passres); 13277 } 13278 13279 if (opcode == 0xa || opcode == 0xb) { 13280 continue; 13281 } 13282 13283 /* Accumulating op: handle accumulate step */ 13284 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13285 13286 switch (opcode) { 13287 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13288 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13289 break; 13290 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13291 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13292 break; 13293 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13294 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13295 /* fall through */ 13296 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13297 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13298 tcg_res[pass], 13299 tcg_passres); 13300 break; 13301 default: 13302 g_assert_not_reached(); 13303 } 13304 } 13305 13306 clear_vec_high(s, !is_scalar, rd); 13307 } else { 13308 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13309 13310 assert(size == 1); 13311 read_vec_element_i32(s, tcg_idx, rm, index, size); 13312 13313 if (!is_scalar) { 13314 /* The simplest way to handle the 16x16 indexed ops is to 13315 * duplicate the index into both halves of the 32 bit tcg_idx 13316 * and then use the usual Neon helpers. 13317 */ 13318 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13319 } 13320 13321 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13322 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13323 TCGv_i64 tcg_passres; 13324 13325 if (is_scalar) { 13326 read_vec_element_i32(s, tcg_op, rn, pass, size); 13327 } else { 13328 read_vec_element_i32(s, tcg_op, rn, 13329 pass + (is_q * 2), MO_32); 13330 } 13331 13332 tcg_res[pass] = tcg_temp_new_i64(); 13333 13334 if (opcode == 0xa || opcode == 0xb) { 13335 /* Non-accumulating ops */ 13336 tcg_passres = tcg_res[pass]; 13337 } else { 13338 tcg_passres = tcg_temp_new_i64(); 13339 } 13340 13341 if (memop & MO_SIGN) { 13342 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13343 } else { 13344 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13345 } 13346 if (satop) { 13347 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13348 tcg_passres, tcg_passres); 13349 } 13350 13351 if (opcode == 0xa || opcode == 0xb) { 13352 continue; 13353 } 13354 13355 /* Accumulating op: handle accumulate step */ 13356 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13357 13358 switch (opcode) { 13359 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13360 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13361 tcg_passres); 13362 break; 13363 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13364 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13365 tcg_passres); 13366 break; 13367 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13368 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13369 /* fall through */ 13370 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13371 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13372 tcg_res[pass], 13373 tcg_passres); 13374 break; 13375 default: 13376 g_assert_not_reached(); 13377 } 13378 } 13379 13380 if (is_scalar) { 13381 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13382 } 13383 } 13384 13385 if (is_scalar) { 13386 tcg_res[1] = tcg_constant_i64(0); 13387 } 13388 13389 for (pass = 0; pass < 2; pass++) { 13390 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13391 } 13392 } 13393 } 13394 13395 /* Crypto AES 13396 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13397 * +-----------------+------+-----------+--------+-----+------+------+ 13398 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13399 * +-----------------+------+-----------+--------+-----+------+------+ 13400 */ 13401 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13402 { 13403 int size = extract32(insn, 22, 2); 13404 int opcode = extract32(insn, 12, 5); 13405 int rn = extract32(insn, 5, 5); 13406 int rd = extract32(insn, 0, 5); 13407 int decrypt; 13408 gen_helper_gvec_2 *genfn2 = NULL; 13409 gen_helper_gvec_3 *genfn3 = NULL; 13410 13411 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13412 unallocated_encoding(s); 13413 return; 13414 } 13415 13416 switch (opcode) { 13417 case 0x4: /* AESE */ 13418 decrypt = 0; 13419 genfn3 = gen_helper_crypto_aese; 13420 break; 13421 case 0x6: /* AESMC */ 13422 decrypt = 0; 13423 genfn2 = gen_helper_crypto_aesmc; 13424 break; 13425 case 0x5: /* AESD */ 13426 decrypt = 1; 13427 genfn3 = gen_helper_crypto_aese; 13428 break; 13429 case 0x7: /* AESIMC */ 13430 decrypt = 1; 13431 genfn2 = gen_helper_crypto_aesmc; 13432 break; 13433 default: 13434 unallocated_encoding(s); 13435 return; 13436 } 13437 13438 if (!fp_access_check(s)) { 13439 return; 13440 } 13441 if (genfn2) { 13442 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13443 } else { 13444 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13445 } 13446 } 13447 13448 /* Crypto three-reg SHA 13449 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13450 * +-----------------+------+---+------+---+--------+-----+------+------+ 13451 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13452 * +-----------------+------+---+------+---+--------+-----+------+------+ 13453 */ 13454 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13455 { 13456 int size = extract32(insn, 22, 2); 13457 int opcode = extract32(insn, 12, 3); 13458 int rm = extract32(insn, 16, 5); 13459 int rn = extract32(insn, 5, 5); 13460 int rd = extract32(insn, 0, 5); 13461 gen_helper_gvec_3 *genfn; 13462 bool feature; 13463 13464 if (size != 0) { 13465 unallocated_encoding(s); 13466 return; 13467 } 13468 13469 switch (opcode) { 13470 case 0: /* SHA1C */ 13471 genfn = gen_helper_crypto_sha1c; 13472 feature = dc_isar_feature(aa64_sha1, s); 13473 break; 13474 case 1: /* SHA1P */ 13475 genfn = gen_helper_crypto_sha1p; 13476 feature = dc_isar_feature(aa64_sha1, s); 13477 break; 13478 case 2: /* SHA1M */ 13479 genfn = gen_helper_crypto_sha1m; 13480 feature = dc_isar_feature(aa64_sha1, s); 13481 break; 13482 case 3: /* SHA1SU0 */ 13483 genfn = gen_helper_crypto_sha1su0; 13484 feature = dc_isar_feature(aa64_sha1, s); 13485 break; 13486 case 4: /* SHA256H */ 13487 genfn = gen_helper_crypto_sha256h; 13488 feature = dc_isar_feature(aa64_sha256, s); 13489 break; 13490 case 5: /* SHA256H2 */ 13491 genfn = gen_helper_crypto_sha256h2; 13492 feature = dc_isar_feature(aa64_sha256, s); 13493 break; 13494 case 6: /* SHA256SU1 */ 13495 genfn = gen_helper_crypto_sha256su1; 13496 feature = dc_isar_feature(aa64_sha256, s); 13497 break; 13498 default: 13499 unallocated_encoding(s); 13500 return; 13501 } 13502 13503 if (!feature) { 13504 unallocated_encoding(s); 13505 return; 13506 } 13507 13508 if (!fp_access_check(s)) { 13509 return; 13510 } 13511 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13512 } 13513 13514 /* Crypto two-reg SHA 13515 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13516 * +-----------------+------+-----------+--------+-----+------+------+ 13517 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13518 * +-----------------+------+-----------+--------+-----+------+------+ 13519 */ 13520 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13521 { 13522 int size = extract32(insn, 22, 2); 13523 int opcode = extract32(insn, 12, 5); 13524 int rn = extract32(insn, 5, 5); 13525 int rd = extract32(insn, 0, 5); 13526 gen_helper_gvec_2 *genfn; 13527 bool feature; 13528 13529 if (size != 0) { 13530 unallocated_encoding(s); 13531 return; 13532 } 13533 13534 switch (opcode) { 13535 case 0: /* SHA1H */ 13536 feature = dc_isar_feature(aa64_sha1, s); 13537 genfn = gen_helper_crypto_sha1h; 13538 break; 13539 case 1: /* SHA1SU1 */ 13540 feature = dc_isar_feature(aa64_sha1, s); 13541 genfn = gen_helper_crypto_sha1su1; 13542 break; 13543 case 2: /* SHA256SU0 */ 13544 feature = dc_isar_feature(aa64_sha256, s); 13545 genfn = gen_helper_crypto_sha256su0; 13546 break; 13547 default: 13548 unallocated_encoding(s); 13549 return; 13550 } 13551 13552 if (!feature) { 13553 unallocated_encoding(s); 13554 return; 13555 } 13556 13557 if (!fp_access_check(s)) { 13558 return; 13559 } 13560 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13561 } 13562 13563 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13564 { 13565 tcg_gen_rotli_i64(d, m, 1); 13566 tcg_gen_xor_i64(d, d, n); 13567 } 13568 13569 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13570 { 13571 tcg_gen_rotli_vec(vece, d, m, 1); 13572 tcg_gen_xor_vec(vece, d, d, n); 13573 } 13574 13575 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13576 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13577 { 13578 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13579 static const GVecGen3 op = { 13580 .fni8 = gen_rax1_i64, 13581 .fniv = gen_rax1_vec, 13582 .opt_opc = vecop_list, 13583 .fno = gen_helper_crypto_rax1, 13584 .vece = MO_64, 13585 }; 13586 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13587 } 13588 13589 /* Crypto three-reg SHA512 13590 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13591 * +-----------------------+------+---+---+-----+--------+------+------+ 13592 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13593 * +-----------------------+------+---+---+-----+--------+------+------+ 13594 */ 13595 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13596 { 13597 int opcode = extract32(insn, 10, 2); 13598 int o = extract32(insn, 14, 1); 13599 int rm = extract32(insn, 16, 5); 13600 int rn = extract32(insn, 5, 5); 13601 int rd = extract32(insn, 0, 5); 13602 bool feature; 13603 gen_helper_gvec_3 *oolfn = NULL; 13604 GVecGen3Fn *gvecfn = NULL; 13605 13606 if (o == 0) { 13607 switch (opcode) { 13608 case 0: /* SHA512H */ 13609 feature = dc_isar_feature(aa64_sha512, s); 13610 oolfn = gen_helper_crypto_sha512h; 13611 break; 13612 case 1: /* SHA512H2 */ 13613 feature = dc_isar_feature(aa64_sha512, s); 13614 oolfn = gen_helper_crypto_sha512h2; 13615 break; 13616 case 2: /* SHA512SU1 */ 13617 feature = dc_isar_feature(aa64_sha512, s); 13618 oolfn = gen_helper_crypto_sha512su1; 13619 break; 13620 case 3: /* RAX1 */ 13621 feature = dc_isar_feature(aa64_sha3, s); 13622 gvecfn = gen_gvec_rax1; 13623 break; 13624 default: 13625 g_assert_not_reached(); 13626 } 13627 } else { 13628 switch (opcode) { 13629 case 0: /* SM3PARTW1 */ 13630 feature = dc_isar_feature(aa64_sm3, s); 13631 oolfn = gen_helper_crypto_sm3partw1; 13632 break; 13633 case 1: /* SM3PARTW2 */ 13634 feature = dc_isar_feature(aa64_sm3, s); 13635 oolfn = gen_helper_crypto_sm3partw2; 13636 break; 13637 case 2: /* SM4EKEY */ 13638 feature = dc_isar_feature(aa64_sm4, s); 13639 oolfn = gen_helper_crypto_sm4ekey; 13640 break; 13641 default: 13642 unallocated_encoding(s); 13643 return; 13644 } 13645 } 13646 13647 if (!feature) { 13648 unallocated_encoding(s); 13649 return; 13650 } 13651 13652 if (!fp_access_check(s)) { 13653 return; 13654 } 13655 13656 if (oolfn) { 13657 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13658 } else { 13659 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13660 } 13661 } 13662 13663 /* Crypto two-reg SHA512 13664 * 31 12 11 10 9 5 4 0 13665 * +-----------------------------------------+--------+------+------+ 13666 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13667 * +-----------------------------------------+--------+------+------+ 13668 */ 13669 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13670 { 13671 int opcode = extract32(insn, 10, 2); 13672 int rn = extract32(insn, 5, 5); 13673 int rd = extract32(insn, 0, 5); 13674 bool feature; 13675 13676 switch (opcode) { 13677 case 0: /* SHA512SU0 */ 13678 feature = dc_isar_feature(aa64_sha512, s); 13679 break; 13680 case 1: /* SM4E */ 13681 feature = dc_isar_feature(aa64_sm4, s); 13682 break; 13683 default: 13684 unallocated_encoding(s); 13685 return; 13686 } 13687 13688 if (!feature) { 13689 unallocated_encoding(s); 13690 return; 13691 } 13692 13693 if (!fp_access_check(s)) { 13694 return; 13695 } 13696 13697 switch (opcode) { 13698 case 0: /* SHA512SU0 */ 13699 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13700 break; 13701 case 1: /* SM4E */ 13702 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13703 break; 13704 default: 13705 g_assert_not_reached(); 13706 } 13707 } 13708 13709 /* Crypto four-register 13710 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13711 * +-------------------+-----+------+---+------+------+------+ 13712 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13713 * +-------------------+-----+------+---+------+------+------+ 13714 */ 13715 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13716 { 13717 int op0 = extract32(insn, 21, 2); 13718 int rm = extract32(insn, 16, 5); 13719 int ra = extract32(insn, 10, 5); 13720 int rn = extract32(insn, 5, 5); 13721 int rd = extract32(insn, 0, 5); 13722 bool feature; 13723 13724 switch (op0) { 13725 case 0: /* EOR3 */ 13726 case 1: /* BCAX */ 13727 feature = dc_isar_feature(aa64_sha3, s); 13728 break; 13729 case 2: /* SM3SS1 */ 13730 feature = dc_isar_feature(aa64_sm3, s); 13731 break; 13732 default: 13733 unallocated_encoding(s); 13734 return; 13735 } 13736 13737 if (!feature) { 13738 unallocated_encoding(s); 13739 return; 13740 } 13741 13742 if (!fp_access_check(s)) { 13743 return; 13744 } 13745 13746 if (op0 < 2) { 13747 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13748 int pass; 13749 13750 tcg_op1 = tcg_temp_new_i64(); 13751 tcg_op2 = tcg_temp_new_i64(); 13752 tcg_op3 = tcg_temp_new_i64(); 13753 tcg_res[0] = tcg_temp_new_i64(); 13754 tcg_res[1] = tcg_temp_new_i64(); 13755 13756 for (pass = 0; pass < 2; pass++) { 13757 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13758 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13759 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13760 13761 if (op0 == 0) { 13762 /* EOR3 */ 13763 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13764 } else { 13765 /* BCAX */ 13766 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13767 } 13768 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13769 } 13770 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13771 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13772 } else { 13773 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13774 13775 tcg_op1 = tcg_temp_new_i32(); 13776 tcg_op2 = tcg_temp_new_i32(); 13777 tcg_op3 = tcg_temp_new_i32(); 13778 tcg_res = tcg_temp_new_i32(); 13779 tcg_zero = tcg_constant_i32(0); 13780 13781 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13782 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13783 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13784 13785 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13786 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13787 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13788 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13789 13790 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13791 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13792 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13793 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13794 } 13795 } 13796 13797 /* Crypto XAR 13798 * 31 21 20 16 15 10 9 5 4 0 13799 * +-----------------------+------+--------+------+------+ 13800 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13801 * +-----------------------+------+--------+------+------+ 13802 */ 13803 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13804 { 13805 int rm = extract32(insn, 16, 5); 13806 int imm6 = extract32(insn, 10, 6); 13807 int rn = extract32(insn, 5, 5); 13808 int rd = extract32(insn, 0, 5); 13809 13810 if (!dc_isar_feature(aa64_sha3, s)) { 13811 unallocated_encoding(s); 13812 return; 13813 } 13814 13815 if (!fp_access_check(s)) { 13816 return; 13817 } 13818 13819 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13820 vec_full_reg_offset(s, rn), 13821 vec_full_reg_offset(s, rm), imm6, 16, 13822 vec_full_reg_size(s)); 13823 } 13824 13825 /* Crypto three-reg imm2 13826 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13827 * +-----------------------+------+-----+------+--------+------+------+ 13828 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13829 * +-----------------------+------+-----+------+--------+------+------+ 13830 */ 13831 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13832 { 13833 static gen_helper_gvec_3 * const fns[4] = { 13834 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13835 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13836 }; 13837 int opcode = extract32(insn, 10, 2); 13838 int imm2 = extract32(insn, 12, 2); 13839 int rm = extract32(insn, 16, 5); 13840 int rn = extract32(insn, 5, 5); 13841 int rd = extract32(insn, 0, 5); 13842 13843 if (!dc_isar_feature(aa64_sm3, s)) { 13844 unallocated_encoding(s); 13845 return; 13846 } 13847 13848 if (!fp_access_check(s)) { 13849 return; 13850 } 13851 13852 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13853 } 13854 13855 /* C3.6 Data processing - SIMD, inc Crypto 13856 * 13857 * As the decode gets a little complex we are using a table based 13858 * approach for this part of the decode. 13859 */ 13860 static const AArch64DecodeTable data_proc_simd[] = { 13861 /* pattern , mask , fn */ 13862 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13863 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13864 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13865 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13866 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13867 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13868 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13869 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13870 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13871 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13872 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13873 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13874 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13875 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13876 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13877 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13878 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13879 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13880 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13881 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13882 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13883 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13884 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13885 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13886 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13887 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13888 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13889 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13890 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13891 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13892 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13893 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13894 { 0x00000000, 0x00000000, NULL } 13895 }; 13896 13897 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13898 { 13899 /* Note that this is called with all non-FP cases from 13900 * table C3-6 so it must UNDEF for entries not specifically 13901 * allocated to instructions in that table. 13902 */ 13903 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13904 if (fn) { 13905 fn(s, insn); 13906 } else { 13907 unallocated_encoding(s); 13908 } 13909 } 13910 13911 /* C3.6 Data processing - SIMD and floating point */ 13912 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13913 { 13914 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13915 disas_data_proc_fp(s, insn); 13916 } else { 13917 /* SIMD, including crypto */ 13918 disas_data_proc_simd(s, insn); 13919 } 13920 } 13921 13922 static bool trans_OK(DisasContext *s, arg_OK *a) 13923 { 13924 return true; 13925 } 13926 13927 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13928 { 13929 s->is_nonstreaming = true; 13930 return true; 13931 } 13932 13933 /** 13934 * is_guarded_page: 13935 * @env: The cpu environment 13936 * @s: The DisasContext 13937 * 13938 * Return true if the page is guarded. 13939 */ 13940 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13941 { 13942 uint64_t addr = s->base.pc_first; 13943 #ifdef CONFIG_USER_ONLY 13944 return page_get_flags(addr) & PAGE_BTI; 13945 #else 13946 CPUTLBEntryFull *full; 13947 void *host; 13948 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13949 int flags; 13950 13951 /* 13952 * We test this immediately after reading an insn, which means 13953 * that the TLB entry must be present and valid, and thus this 13954 * access will never raise an exception. 13955 */ 13956 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13957 false, &host, &full, 0); 13958 assert(!(flags & TLB_INVALID_MASK)); 13959 13960 return full->guarded; 13961 #endif 13962 } 13963 13964 /** 13965 * btype_destination_ok: 13966 * @insn: The instruction at the branch destination 13967 * @bt: SCTLR_ELx.BT 13968 * @btype: PSTATE.BTYPE, and is non-zero 13969 * 13970 * On a guarded page, there are a limited number of insns 13971 * that may be present at the branch target: 13972 * - branch target identifiers, 13973 * - paciasp, pacibsp, 13974 * - BRK insn 13975 * - HLT insn 13976 * Anything else causes a Branch Target Exception. 13977 * 13978 * Return true if the branch is compatible, false to raise BTITRAP. 13979 */ 13980 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13981 { 13982 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13983 /* HINT space */ 13984 switch (extract32(insn, 5, 7)) { 13985 case 0b011001: /* PACIASP */ 13986 case 0b011011: /* PACIBSP */ 13987 /* 13988 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13989 * with btype == 3. Otherwise all btype are ok. 13990 */ 13991 return !bt || btype != 3; 13992 case 0b100000: /* BTI */ 13993 /* Not compatible with any btype. */ 13994 return false; 13995 case 0b100010: /* BTI c */ 13996 /* Not compatible with btype == 3 */ 13997 return btype != 3; 13998 case 0b100100: /* BTI j */ 13999 /* Not compatible with btype == 2 */ 14000 return btype != 2; 14001 case 0b100110: /* BTI jc */ 14002 /* Compatible with any btype. */ 14003 return true; 14004 } 14005 } else { 14006 switch (insn & 0xffe0001fu) { 14007 case 0xd4200000u: /* BRK */ 14008 case 0xd4400000u: /* HLT */ 14009 /* Give priority to the breakpoint exception. */ 14010 return true; 14011 } 14012 } 14013 return false; 14014 } 14015 14016 /* C3.1 A64 instruction index by encoding */ 14017 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14018 { 14019 switch (extract32(insn, 25, 4)) { 14020 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14021 disas_b_exc_sys(s, insn); 14022 break; 14023 case 0x4: 14024 case 0x6: 14025 case 0xc: 14026 case 0xe: /* Loads and stores */ 14027 disas_ldst(s, insn); 14028 break; 14029 case 0x5: 14030 case 0xd: /* Data processing - register */ 14031 disas_data_proc_reg(s, insn); 14032 break; 14033 case 0x7: 14034 case 0xf: /* Data processing - SIMD and floating point */ 14035 disas_data_proc_simd_fp(s, insn); 14036 break; 14037 default: 14038 unallocated_encoding(s); 14039 break; 14040 } 14041 } 14042 14043 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14044 CPUState *cpu) 14045 { 14046 DisasContext *dc = container_of(dcbase, DisasContext, base); 14047 CPUARMState *env = cpu->env_ptr; 14048 ARMCPU *arm_cpu = env_archcpu(env); 14049 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14050 int bound, core_mmu_idx; 14051 14052 dc->isar = &arm_cpu->isar; 14053 dc->condjmp = 0; 14054 dc->pc_save = dc->base.pc_first; 14055 dc->aarch64 = true; 14056 dc->thumb = false; 14057 dc->sctlr_b = 0; 14058 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14059 dc->condexec_mask = 0; 14060 dc->condexec_cond = 0; 14061 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14062 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14063 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14064 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14065 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14066 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14067 #if !defined(CONFIG_USER_ONLY) 14068 dc->user = (dc->current_el == 0); 14069 #endif 14070 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14071 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14072 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14073 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14074 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14075 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14076 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14077 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14078 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14079 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14080 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14081 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14082 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14083 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14084 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14085 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14086 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14087 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14088 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14089 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14090 dc->vec_len = 0; 14091 dc->vec_stride = 0; 14092 dc->cp_regs = arm_cpu->cp_regs; 14093 dc->features = env->features; 14094 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14095 14096 #ifdef CONFIG_USER_ONLY 14097 /* In sve_probe_page, we assume TBI is enabled. */ 14098 tcg_debug_assert(dc->tbid & 1); 14099 #endif 14100 14101 /* Single step state. The code-generation logic here is: 14102 * SS_ACTIVE == 0: 14103 * generate code with no special handling for single-stepping (except 14104 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14105 * this happens anyway because those changes are all system register or 14106 * PSTATE writes). 14107 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14108 * emit code for one insn 14109 * emit code to clear PSTATE.SS 14110 * emit code to generate software step exception for completed step 14111 * end TB (as usual for having generated an exception) 14112 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14113 * emit code to generate a software step exception 14114 * end the TB 14115 */ 14116 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14117 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14118 dc->is_ldex = false; 14119 14120 /* Bound the number of insns to execute to those left on the page. */ 14121 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14122 14123 /* If architectural single step active, limit to 1. */ 14124 if (dc->ss_active) { 14125 bound = 1; 14126 } 14127 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14128 } 14129 14130 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14131 { 14132 } 14133 14134 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14135 { 14136 DisasContext *dc = container_of(dcbase, DisasContext, base); 14137 target_ulong pc_arg = dc->base.pc_next; 14138 14139 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14140 pc_arg &= ~TARGET_PAGE_MASK; 14141 } 14142 tcg_gen_insn_start(pc_arg, 0, 0); 14143 dc->insn_start = tcg_last_op(); 14144 } 14145 14146 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14147 { 14148 DisasContext *s = container_of(dcbase, DisasContext, base); 14149 CPUARMState *env = cpu->env_ptr; 14150 uint64_t pc = s->base.pc_next; 14151 uint32_t insn; 14152 14153 /* Singlestep exceptions have the highest priority. */ 14154 if (s->ss_active && !s->pstate_ss) { 14155 /* Singlestep state is Active-pending. 14156 * If we're in this state at the start of a TB then either 14157 * a) we just took an exception to an EL which is being debugged 14158 * and this is the first insn in the exception handler 14159 * b) debug exceptions were masked and we just unmasked them 14160 * without changing EL (eg by clearing PSTATE.D) 14161 * In either case we're going to take a swstep exception in the 14162 * "did not step an insn" case, and so the syndrome ISV and EX 14163 * bits should be zero. 14164 */ 14165 assert(s->base.num_insns == 1); 14166 gen_swstep_exception(s, 0, 0); 14167 s->base.is_jmp = DISAS_NORETURN; 14168 s->base.pc_next = pc + 4; 14169 return; 14170 } 14171 14172 if (pc & 3) { 14173 /* 14174 * PC alignment fault. This has priority over the instruction abort 14175 * that we would receive from a translation fault via arm_ldl_code. 14176 * This should only be possible after an indirect branch, at the 14177 * start of the TB. 14178 */ 14179 assert(s->base.num_insns == 1); 14180 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14181 s->base.is_jmp = DISAS_NORETURN; 14182 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14183 return; 14184 } 14185 14186 s->pc_curr = pc; 14187 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14188 s->insn = insn; 14189 s->base.pc_next = pc + 4; 14190 14191 s->fp_access_checked = false; 14192 s->sve_access_checked = false; 14193 14194 if (s->pstate_il) { 14195 /* 14196 * Illegal execution state. This has priority over BTI 14197 * exceptions, but comes after instruction abort exceptions. 14198 */ 14199 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14200 return; 14201 } 14202 14203 if (dc_isar_feature(aa64_bti, s)) { 14204 if (s->base.num_insns == 1) { 14205 /* 14206 * At the first insn of the TB, compute s->guarded_page. 14207 * We delayed computing this until successfully reading 14208 * the first insn of the TB, above. This (mostly) ensures 14209 * that the softmmu tlb entry has been populated, and the 14210 * page table GP bit is available. 14211 * 14212 * Note that we need to compute this even if btype == 0, 14213 * because this value is used for BR instructions later 14214 * where ENV is not available. 14215 */ 14216 s->guarded_page = is_guarded_page(env, s); 14217 14218 /* First insn can have btype set to non-zero. */ 14219 tcg_debug_assert(s->btype >= 0); 14220 14221 /* 14222 * Note that the Branch Target Exception has fairly high 14223 * priority -- below debugging exceptions but above most 14224 * everything else. This allows us to handle this now 14225 * instead of waiting until the insn is otherwise decoded. 14226 */ 14227 if (s->btype != 0 14228 && s->guarded_page 14229 && !btype_destination_ok(insn, s->bt, s->btype)) { 14230 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14231 return; 14232 } 14233 } else { 14234 /* Not the first insn: btype must be 0. */ 14235 tcg_debug_assert(s->btype == 0); 14236 } 14237 } 14238 14239 s->is_nonstreaming = false; 14240 if (s->sme_trap_nonstreaming) { 14241 disas_sme_fa64(s, insn); 14242 } 14243 14244 if (!disas_a64(s, insn) && 14245 !disas_sme(s, insn) && 14246 !disas_sve(s, insn)) { 14247 disas_a64_legacy(s, insn); 14248 } 14249 14250 /* 14251 * After execution of most insns, btype is reset to 0. 14252 * Note that we set btype == -1 when the insn sets btype. 14253 */ 14254 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14255 reset_btype(s); 14256 } 14257 } 14258 14259 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14260 { 14261 DisasContext *dc = container_of(dcbase, DisasContext, base); 14262 14263 if (unlikely(dc->ss_active)) { 14264 /* Note that this means single stepping WFI doesn't halt the CPU. 14265 * For conditional branch insns this is harmless unreachable code as 14266 * gen_goto_tb() has already handled emitting the debug exception 14267 * (and thus a tb-jump is not possible when singlestepping). 14268 */ 14269 switch (dc->base.is_jmp) { 14270 default: 14271 gen_a64_update_pc(dc, 4); 14272 /* fall through */ 14273 case DISAS_EXIT: 14274 case DISAS_JUMP: 14275 gen_step_complete_exception(dc); 14276 break; 14277 case DISAS_NORETURN: 14278 break; 14279 } 14280 } else { 14281 switch (dc->base.is_jmp) { 14282 case DISAS_NEXT: 14283 case DISAS_TOO_MANY: 14284 gen_goto_tb(dc, 1, 4); 14285 break; 14286 default: 14287 case DISAS_UPDATE_EXIT: 14288 gen_a64_update_pc(dc, 4); 14289 /* fall through */ 14290 case DISAS_EXIT: 14291 tcg_gen_exit_tb(NULL, 0); 14292 break; 14293 case DISAS_UPDATE_NOCHAIN: 14294 gen_a64_update_pc(dc, 4); 14295 /* fall through */ 14296 case DISAS_JUMP: 14297 tcg_gen_lookup_and_goto_ptr(); 14298 break; 14299 case DISAS_NORETURN: 14300 case DISAS_SWI: 14301 break; 14302 case DISAS_WFE: 14303 gen_a64_update_pc(dc, 4); 14304 gen_helper_wfe(cpu_env); 14305 break; 14306 case DISAS_YIELD: 14307 gen_a64_update_pc(dc, 4); 14308 gen_helper_yield(cpu_env); 14309 break; 14310 case DISAS_WFI: 14311 /* 14312 * This is a special case because we don't want to just halt 14313 * the CPU if trying to debug across a WFI. 14314 */ 14315 gen_a64_update_pc(dc, 4); 14316 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14317 /* 14318 * The helper doesn't necessarily throw an exception, but we 14319 * must go back to the main loop to check for interrupts anyway. 14320 */ 14321 tcg_gen_exit_tb(NULL, 0); 14322 break; 14323 } 14324 } 14325 } 14326 14327 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14328 CPUState *cpu, FILE *logfile) 14329 { 14330 DisasContext *dc = container_of(dcbase, DisasContext, base); 14331 14332 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14333 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14334 } 14335 14336 const TranslatorOps aarch64_translator_ops = { 14337 .init_disas_context = aarch64_tr_init_disas_context, 14338 .tb_start = aarch64_tr_tb_start, 14339 .insn_start = aarch64_tr_insn_start, 14340 .translate_insn = aarch64_tr_translate_insn, 14341 .tb_stop = aarch64_tr_tb_stop, 14342 .disas_log = aarch64_tr_disas_log, 14343 }; 14344