1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 int log2_size, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1); 268 269 ret = tcg_temp_new_i64(); 270 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 271 272 return ret; 273 } 274 return clean_data_tbi(s, addr); 275 } 276 277 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 278 bool tag_checked, int log2_size) 279 { 280 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size, 281 false, get_mem_index(s)); 282 } 283 284 /* 285 * For MTE, check multiple logical sequential accesses. 286 */ 287 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 288 bool tag_checked, int size) 289 { 290 if (tag_checked && s->mte_active[0]) { 291 TCGv_i64 ret; 292 int desc = 0; 293 294 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 typedef struct DisasCompare64 { 309 TCGCond cond; 310 TCGv_i64 value; 311 } DisasCompare64; 312 313 static void a64_test_cc(DisasCompare64 *c64, int cc) 314 { 315 DisasCompare c32; 316 317 arm_test_cc(&c32, cc); 318 319 /* 320 * Sign-extend the 32-bit value so that the GE/LT comparisons work 321 * properly. The NE/EQ comparisons are also fine with this choice. 322 */ 323 c64->cond = c32.cond; 324 c64->value = tcg_temp_new_i64(); 325 tcg_gen_ext_i32_i64(c64->value, c32.value); 326 } 327 328 static void gen_rebuild_hflags(DisasContext *s) 329 { 330 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 331 } 332 333 static void gen_exception_internal(int excp) 334 { 335 assert(excp_is_internal(excp)); 336 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 337 } 338 339 static void gen_exception_internal_insn(DisasContext *s, int excp) 340 { 341 gen_a64_update_pc(s, 0); 342 gen_exception_internal(excp); 343 s->base.is_jmp = DISAS_NORETURN; 344 } 345 346 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 347 { 348 gen_a64_update_pc(s, 0); 349 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 350 s->base.is_jmp = DISAS_NORETURN; 351 } 352 353 static void gen_step_complete_exception(DisasContext *s) 354 { 355 /* We just completed step of an insn. Move from Active-not-pending 356 * to Active-pending, and then also take the swstep exception. 357 * This corresponds to making the (IMPDEF) choice to prioritize 358 * swstep exceptions over asynchronous exceptions taken to an exception 359 * level where debug is disabled. This choice has the advantage that 360 * we do not need to maintain internal state corresponding to the 361 * ISV/EX syndrome bits between completion of the step and generation 362 * of the exception, and our syndrome information is always correct. 363 */ 364 gen_ss_advance(s); 365 gen_swstep_exception(s, 1, s->is_ldex); 366 s->base.is_jmp = DISAS_NORETURN; 367 } 368 369 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 370 { 371 if (s->ss_active) { 372 return false; 373 } 374 return translator_use_goto_tb(&s->base, dest); 375 } 376 377 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 378 { 379 if (use_goto_tb(s, s->pc_curr + diff)) { 380 /* 381 * For pcrel, the pc must always be up-to-date on entry to 382 * the linked TB, so that it can use simple additions for all 383 * further adjustments. For !pcrel, the linked TB is compiled 384 * to know its full virtual address, so we can delay the 385 * update to pc to the unlinked path. A long chain of links 386 * can thus avoid many updates to the PC. 387 */ 388 if (tb_cflags(s->base.tb) & CF_PCREL) { 389 gen_a64_update_pc(s, diff); 390 tcg_gen_goto_tb(n); 391 } else { 392 tcg_gen_goto_tb(n); 393 gen_a64_update_pc(s, diff); 394 } 395 tcg_gen_exit_tb(s->base.tb, n); 396 s->base.is_jmp = DISAS_NORETURN; 397 } else { 398 gen_a64_update_pc(s, diff); 399 if (s->ss_active) { 400 gen_step_complete_exception(s); 401 } else { 402 tcg_gen_lookup_and_goto_ptr(); 403 s->base.is_jmp = DISAS_NORETURN; 404 } 405 } 406 } 407 408 /* 409 * Register access functions 410 * 411 * These functions are used for directly accessing a register in where 412 * changes to the final register value are likely to be made. If you 413 * need to use a register for temporary calculation (e.g. index type 414 * operations) use the read_* form. 415 * 416 * B1.2.1 Register mappings 417 * 418 * In instruction register encoding 31 can refer to ZR (zero register) or 419 * the SP (stack pointer) depending on context. In QEMU's case we map SP 420 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 421 * This is the point of the _sp forms. 422 */ 423 TCGv_i64 cpu_reg(DisasContext *s, int reg) 424 { 425 if (reg == 31) { 426 TCGv_i64 t = tcg_temp_new_i64(); 427 tcg_gen_movi_i64(t, 0); 428 return t; 429 } else { 430 return cpu_X[reg]; 431 } 432 } 433 434 /* register access for when 31 == SP */ 435 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 436 { 437 return cpu_X[reg]; 438 } 439 440 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 441 * representing the register contents. This TCGv is an auto-freed 442 * temporary so it need not be explicitly freed, and may be modified. 443 */ 444 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 445 { 446 TCGv_i64 v = tcg_temp_new_i64(); 447 if (reg != 31) { 448 if (sf) { 449 tcg_gen_mov_i64(v, cpu_X[reg]); 450 } else { 451 tcg_gen_ext32u_i64(v, cpu_X[reg]); 452 } 453 } else { 454 tcg_gen_movi_i64(v, 0); 455 } 456 return v; 457 } 458 459 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 460 { 461 TCGv_i64 v = tcg_temp_new_i64(); 462 if (sf) { 463 tcg_gen_mov_i64(v, cpu_X[reg]); 464 } else { 465 tcg_gen_ext32u_i64(v, cpu_X[reg]); 466 } 467 return v; 468 } 469 470 /* Return the offset into CPUARMState of a slice (from 471 * the least significant end) of FP register Qn (ie 472 * Dn, Sn, Hn or Bn). 473 * (Note that this is not the same mapping as for A32; see cpu.h) 474 */ 475 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 476 { 477 return vec_reg_offset(s, regno, 0, size); 478 } 479 480 /* Offset of the high half of the 128 bit vector Qn */ 481 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 482 { 483 return vec_reg_offset(s, regno, 1, MO_64); 484 } 485 486 /* Convenience accessors for reading and writing single and double 487 * FP registers. Writing clears the upper parts of the associated 488 * 128 bit vector register, as required by the architecture. 489 * Note that unlike the GP register accessors, the values returned 490 * by the read functions must be manually freed. 491 */ 492 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 493 { 494 TCGv_i64 v = tcg_temp_new_i64(); 495 496 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 497 return v; 498 } 499 500 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 501 { 502 TCGv_i32 v = tcg_temp_new_i32(); 503 504 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 505 return v; 506 } 507 508 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 509 { 510 TCGv_i32 v = tcg_temp_new_i32(); 511 512 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 513 return v; 514 } 515 516 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 517 * If SVE is not enabled, then there are only 128 bits in the vector. 518 */ 519 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 520 { 521 unsigned ofs = fp_reg_offset(s, rd, MO_64); 522 unsigned vsz = vec_full_reg_size(s); 523 524 /* Nop move, with side effect of clearing the tail. */ 525 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 526 } 527 528 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 529 { 530 unsigned ofs = fp_reg_offset(s, reg, MO_64); 531 532 tcg_gen_st_i64(v, cpu_env, ofs); 533 clear_vec_high(s, false, reg); 534 } 535 536 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 537 { 538 TCGv_i64 tmp = tcg_temp_new_i64(); 539 540 tcg_gen_extu_i32_i64(tmp, v); 541 write_fp_dreg(s, reg, tmp); 542 } 543 544 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 545 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 546 GVecGen2Fn *gvec_fn, int vece) 547 { 548 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 549 is_q ? 16 : 8, vec_full_reg_size(s)); 550 } 551 552 /* Expand a 2-operand + immediate AdvSIMD vector operation using 553 * an expander function. 554 */ 555 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 556 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 557 { 558 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 559 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 560 } 561 562 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 563 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 564 GVecGen3Fn *gvec_fn, int vece) 565 { 566 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 567 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 568 } 569 570 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 571 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 572 int rx, GVecGen4Fn *gvec_fn, int vece) 573 { 574 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 575 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 576 is_q ? 16 : 8, vec_full_reg_size(s)); 577 } 578 579 /* Expand a 2-operand operation using an out-of-line helper. */ 580 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 581 int rn, int data, gen_helper_gvec_2 *fn) 582 { 583 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 584 vec_full_reg_offset(s, rn), 585 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 586 } 587 588 /* Expand a 3-operand operation using an out-of-line helper. */ 589 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 590 int rn, int rm, int data, gen_helper_gvec_3 *fn) 591 { 592 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 593 vec_full_reg_offset(s, rn), 594 vec_full_reg_offset(s, rm), 595 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 596 } 597 598 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 599 * an out-of-line helper. 600 */ 601 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 602 int rm, bool is_fp16, int data, 603 gen_helper_gvec_3_ptr *fn) 604 { 605 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 606 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 607 vec_full_reg_offset(s, rn), 608 vec_full_reg_offset(s, rm), fpst, 609 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 610 } 611 612 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 613 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 614 int rm, gen_helper_gvec_3_ptr *fn) 615 { 616 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 617 618 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 619 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 620 vec_full_reg_offset(s, rn), 621 vec_full_reg_offset(s, rm), qc_ptr, 622 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 623 } 624 625 /* Expand a 4-operand operation using an out-of-line helper. */ 626 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 627 int rm, int ra, int data, gen_helper_gvec_4 *fn) 628 { 629 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 630 vec_full_reg_offset(s, rn), 631 vec_full_reg_offset(s, rm), 632 vec_full_reg_offset(s, ra), 633 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 634 } 635 636 /* 637 * Expand a 4-operand + fpstatus pointer + simd data value operation using 638 * an out-of-line helper. 639 */ 640 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 641 int rm, int ra, bool is_fp16, int data, 642 gen_helper_gvec_4_ptr *fn) 643 { 644 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 645 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 646 vec_full_reg_offset(s, rn), 647 vec_full_reg_offset(s, rm), 648 vec_full_reg_offset(s, ra), fpst, 649 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 650 } 651 652 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 653 * than the 32 bit equivalent. 654 */ 655 static inline void gen_set_NZ64(TCGv_i64 result) 656 { 657 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 658 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 659 } 660 661 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 662 static inline void gen_logic_CC(int sf, TCGv_i64 result) 663 { 664 if (sf) { 665 gen_set_NZ64(result); 666 } else { 667 tcg_gen_extrl_i64_i32(cpu_ZF, result); 668 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 669 } 670 tcg_gen_movi_i32(cpu_CF, 0); 671 tcg_gen_movi_i32(cpu_VF, 0); 672 } 673 674 /* dest = T0 + T1; compute C, N, V and Z flags */ 675 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 676 { 677 TCGv_i64 result, flag, tmp; 678 result = tcg_temp_new_i64(); 679 flag = tcg_temp_new_i64(); 680 tmp = tcg_temp_new_i64(); 681 682 tcg_gen_movi_i64(tmp, 0); 683 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 684 685 tcg_gen_extrl_i64_i32(cpu_CF, flag); 686 687 gen_set_NZ64(result); 688 689 tcg_gen_xor_i64(flag, result, t0); 690 tcg_gen_xor_i64(tmp, t0, t1); 691 tcg_gen_andc_i64(flag, flag, tmp); 692 tcg_gen_extrh_i64_i32(cpu_VF, flag); 693 694 tcg_gen_mov_i64(dest, result); 695 } 696 697 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 698 { 699 TCGv_i32 t0_32 = tcg_temp_new_i32(); 700 TCGv_i32 t1_32 = tcg_temp_new_i32(); 701 TCGv_i32 tmp = tcg_temp_new_i32(); 702 703 tcg_gen_movi_i32(tmp, 0); 704 tcg_gen_extrl_i64_i32(t0_32, t0); 705 tcg_gen_extrl_i64_i32(t1_32, t1); 706 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 707 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 708 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 709 tcg_gen_xor_i32(tmp, t0_32, t1_32); 710 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 711 tcg_gen_extu_i32_i64(dest, cpu_NF); 712 } 713 714 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 715 { 716 if (sf) { 717 gen_add64_CC(dest, t0, t1); 718 } else { 719 gen_add32_CC(dest, t0, t1); 720 } 721 } 722 723 /* dest = T0 - T1; compute C, N, V and Z flags */ 724 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 725 { 726 /* 64 bit arithmetic */ 727 TCGv_i64 result, flag, tmp; 728 729 result = tcg_temp_new_i64(); 730 flag = tcg_temp_new_i64(); 731 tcg_gen_sub_i64(result, t0, t1); 732 733 gen_set_NZ64(result); 734 735 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 736 tcg_gen_extrl_i64_i32(cpu_CF, flag); 737 738 tcg_gen_xor_i64(flag, result, t0); 739 tmp = tcg_temp_new_i64(); 740 tcg_gen_xor_i64(tmp, t0, t1); 741 tcg_gen_and_i64(flag, flag, tmp); 742 tcg_gen_extrh_i64_i32(cpu_VF, flag); 743 tcg_gen_mov_i64(dest, result); 744 } 745 746 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 747 { 748 /* 32 bit arithmetic */ 749 TCGv_i32 t0_32 = tcg_temp_new_i32(); 750 TCGv_i32 t1_32 = tcg_temp_new_i32(); 751 TCGv_i32 tmp; 752 753 tcg_gen_extrl_i64_i32(t0_32, t0); 754 tcg_gen_extrl_i64_i32(t1_32, t1); 755 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 756 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 757 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 758 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 759 tmp = tcg_temp_new_i32(); 760 tcg_gen_xor_i32(tmp, t0_32, t1_32); 761 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 762 tcg_gen_extu_i32_i64(dest, cpu_NF); 763 } 764 765 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 766 { 767 if (sf) { 768 gen_sub64_CC(dest, t0, t1); 769 } else { 770 gen_sub32_CC(dest, t0, t1); 771 } 772 } 773 774 /* dest = T0 + T1 + CF; do not compute flags. */ 775 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 776 { 777 TCGv_i64 flag = tcg_temp_new_i64(); 778 tcg_gen_extu_i32_i64(flag, cpu_CF); 779 tcg_gen_add_i64(dest, t0, t1); 780 tcg_gen_add_i64(dest, dest, flag); 781 782 if (!sf) { 783 tcg_gen_ext32u_i64(dest, dest); 784 } 785 } 786 787 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 788 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 789 { 790 if (sf) { 791 TCGv_i64 result = tcg_temp_new_i64(); 792 TCGv_i64 cf_64 = tcg_temp_new_i64(); 793 TCGv_i64 vf_64 = tcg_temp_new_i64(); 794 TCGv_i64 tmp = tcg_temp_new_i64(); 795 TCGv_i64 zero = tcg_constant_i64(0); 796 797 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 798 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 799 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 800 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 801 gen_set_NZ64(result); 802 803 tcg_gen_xor_i64(vf_64, result, t0); 804 tcg_gen_xor_i64(tmp, t0, t1); 805 tcg_gen_andc_i64(vf_64, vf_64, tmp); 806 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 807 808 tcg_gen_mov_i64(dest, result); 809 } else { 810 TCGv_i32 t0_32 = tcg_temp_new_i32(); 811 TCGv_i32 t1_32 = tcg_temp_new_i32(); 812 TCGv_i32 tmp = tcg_temp_new_i32(); 813 TCGv_i32 zero = tcg_constant_i32(0); 814 815 tcg_gen_extrl_i64_i32(t0_32, t0); 816 tcg_gen_extrl_i64_i32(t1_32, t1); 817 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 818 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 819 820 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 821 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 822 tcg_gen_xor_i32(tmp, t0_32, t1_32); 823 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 824 tcg_gen_extu_i32_i64(dest, cpu_NF); 825 } 826 } 827 828 /* 829 * Load/Store generators 830 */ 831 832 /* 833 * Store from GPR register to memory. 834 */ 835 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 836 TCGv_i64 tcg_addr, MemOp memop, int memidx, 837 bool iss_valid, 838 unsigned int iss_srt, 839 bool iss_sf, bool iss_ar) 840 { 841 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 842 843 if (iss_valid) { 844 uint32_t syn; 845 846 syn = syn_data_abort_with_iss(0, 847 (memop & MO_SIZE), 848 false, 849 iss_srt, 850 iss_sf, 851 iss_ar, 852 0, 0, 0, 0, 0, false); 853 disas_set_insn_syndrome(s, syn); 854 } 855 } 856 857 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 858 TCGv_i64 tcg_addr, MemOp memop, 859 bool iss_valid, 860 unsigned int iss_srt, 861 bool iss_sf, bool iss_ar) 862 { 863 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 864 iss_valid, iss_srt, iss_sf, iss_ar); 865 } 866 867 /* 868 * Load from memory to GPR register 869 */ 870 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 871 MemOp memop, bool extend, int memidx, 872 bool iss_valid, unsigned int iss_srt, 873 bool iss_sf, bool iss_ar) 874 { 875 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 876 877 if (extend && (memop & MO_SIGN)) { 878 g_assert((memop & MO_SIZE) <= MO_32); 879 tcg_gen_ext32u_i64(dest, dest); 880 } 881 882 if (iss_valid) { 883 uint32_t syn; 884 885 syn = syn_data_abort_with_iss(0, 886 (memop & MO_SIZE), 887 (memop & MO_SIGN) != 0, 888 iss_srt, 889 iss_sf, 890 iss_ar, 891 0, 0, 0, 0, 0, false); 892 disas_set_insn_syndrome(s, syn); 893 } 894 } 895 896 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 897 MemOp memop, bool extend, 898 bool iss_valid, unsigned int iss_srt, 899 bool iss_sf, bool iss_ar) 900 { 901 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 902 iss_valid, iss_srt, iss_sf, iss_ar); 903 } 904 905 /* 906 * Store from FP register to memory 907 */ 908 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 909 { 910 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 911 TCGv_i64 tmplo = tcg_temp_new_i64(); 912 913 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 914 915 if ((mop & MO_SIZE) < MO_128) { 916 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 917 } else { 918 TCGv_i64 tmphi = tcg_temp_new_i64(); 919 TCGv_i128 t16 = tcg_temp_new_i128(); 920 921 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 922 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 923 924 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 925 } 926 } 927 928 /* 929 * Load from memory to FP register 930 */ 931 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 932 { 933 /* This always zero-extends and writes to a full 128 bit wide vector */ 934 TCGv_i64 tmplo = tcg_temp_new_i64(); 935 TCGv_i64 tmphi = NULL; 936 937 if ((mop & MO_SIZE) < MO_128) { 938 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 939 } else { 940 TCGv_i128 t16 = tcg_temp_new_i128(); 941 942 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 943 944 tmphi = tcg_temp_new_i64(); 945 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 946 } 947 948 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 949 950 if (tmphi) { 951 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 952 } 953 clear_vec_high(s, tmphi != NULL, destidx); 954 } 955 956 /* 957 * Vector load/store helpers. 958 * 959 * The principal difference between this and a FP load is that we don't 960 * zero extend as we are filling a partial chunk of the vector register. 961 * These functions don't support 128 bit loads/stores, which would be 962 * normal load/store operations. 963 * 964 * The _i32 versions are useful when operating on 32 bit quantities 965 * (eg for floating point single or using Neon helper functions). 966 */ 967 968 /* Get value of an element within a vector register */ 969 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 970 int element, MemOp memop) 971 { 972 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 973 switch ((unsigned)memop) { 974 case MO_8: 975 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 976 break; 977 case MO_16: 978 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 979 break; 980 case MO_32: 981 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 982 break; 983 case MO_8|MO_SIGN: 984 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 985 break; 986 case MO_16|MO_SIGN: 987 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 988 break; 989 case MO_32|MO_SIGN: 990 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 991 break; 992 case MO_64: 993 case MO_64|MO_SIGN: 994 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 995 break; 996 default: 997 g_assert_not_reached(); 998 } 999 } 1000 1001 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1002 int element, MemOp memop) 1003 { 1004 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1005 switch (memop) { 1006 case MO_8: 1007 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1008 break; 1009 case MO_16: 1010 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1011 break; 1012 case MO_8|MO_SIGN: 1013 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1014 break; 1015 case MO_16|MO_SIGN: 1016 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1017 break; 1018 case MO_32: 1019 case MO_32|MO_SIGN: 1020 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1021 break; 1022 default: 1023 g_assert_not_reached(); 1024 } 1025 } 1026 1027 /* Set value of an element within a vector register */ 1028 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1029 int element, MemOp memop) 1030 { 1031 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1032 switch (memop) { 1033 case MO_8: 1034 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1035 break; 1036 case MO_16: 1037 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1038 break; 1039 case MO_32: 1040 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1041 break; 1042 case MO_64: 1043 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1044 break; 1045 default: 1046 g_assert_not_reached(); 1047 } 1048 } 1049 1050 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1051 int destidx, int element, MemOp memop) 1052 { 1053 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1054 switch (memop) { 1055 case MO_8: 1056 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1057 break; 1058 case MO_16: 1059 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1060 break; 1061 case MO_32: 1062 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1063 break; 1064 default: 1065 g_assert_not_reached(); 1066 } 1067 } 1068 1069 /* Store from vector register to memory */ 1070 static void do_vec_st(DisasContext *s, int srcidx, int element, 1071 TCGv_i64 tcg_addr, MemOp mop) 1072 { 1073 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1074 1075 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1076 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1077 } 1078 1079 /* Load from memory to vector register */ 1080 static void do_vec_ld(DisasContext *s, int destidx, int element, 1081 TCGv_i64 tcg_addr, MemOp mop) 1082 { 1083 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1084 1085 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1086 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1087 } 1088 1089 /* Check that FP/Neon access is enabled. If it is, return 1090 * true. If not, emit code to generate an appropriate exception, 1091 * and return false; the caller should not emit any code for 1092 * the instruction. Note that this check must happen after all 1093 * unallocated-encoding checks (otherwise the syndrome information 1094 * for the resulting exception will be incorrect). 1095 */ 1096 static bool fp_access_check_only(DisasContext *s) 1097 { 1098 if (s->fp_excp_el) { 1099 assert(!s->fp_access_checked); 1100 s->fp_access_checked = true; 1101 1102 gen_exception_insn_el(s, 0, EXCP_UDEF, 1103 syn_fp_access_trap(1, 0xe, false, 0), 1104 s->fp_excp_el); 1105 return false; 1106 } 1107 s->fp_access_checked = true; 1108 return true; 1109 } 1110 1111 static bool fp_access_check(DisasContext *s) 1112 { 1113 if (!fp_access_check_only(s)) { 1114 return false; 1115 } 1116 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1117 gen_exception_insn(s, 0, EXCP_UDEF, 1118 syn_smetrap(SME_ET_Streaming, false)); 1119 return false; 1120 } 1121 return true; 1122 } 1123 1124 /* 1125 * Check that SVE access is enabled. If it is, return true. 1126 * If not, emit code to generate an appropriate exception and return false. 1127 * This function corresponds to CheckSVEEnabled(). 1128 */ 1129 bool sve_access_check(DisasContext *s) 1130 { 1131 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1132 assert(dc_isar_feature(aa64_sme, s)); 1133 if (!sme_sm_enabled_check(s)) { 1134 goto fail_exit; 1135 } 1136 } else if (s->sve_excp_el) { 1137 gen_exception_insn_el(s, 0, EXCP_UDEF, 1138 syn_sve_access_trap(), s->sve_excp_el); 1139 goto fail_exit; 1140 } 1141 s->sve_access_checked = true; 1142 return fp_access_check(s); 1143 1144 fail_exit: 1145 /* Assert that we only raise one exception per instruction. */ 1146 assert(!s->sve_access_checked); 1147 s->sve_access_checked = true; 1148 return false; 1149 } 1150 1151 /* 1152 * Check that SME access is enabled, raise an exception if not. 1153 * Note that this function corresponds to CheckSMEAccess and is 1154 * only used directly for cpregs. 1155 */ 1156 static bool sme_access_check(DisasContext *s) 1157 { 1158 if (s->sme_excp_el) { 1159 gen_exception_insn_el(s, 0, EXCP_UDEF, 1160 syn_smetrap(SME_ET_AccessTrap, false), 1161 s->sme_excp_el); 1162 return false; 1163 } 1164 return true; 1165 } 1166 1167 /* This function corresponds to CheckSMEEnabled. */ 1168 bool sme_enabled_check(DisasContext *s) 1169 { 1170 /* 1171 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1172 * to be zero when fp_excp_el has priority. This is because we need 1173 * sme_excp_el by itself for cpregs access checks. 1174 */ 1175 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1176 s->fp_access_checked = true; 1177 return sme_access_check(s); 1178 } 1179 return fp_access_check_only(s); 1180 } 1181 1182 /* Common subroutine for CheckSMEAnd*Enabled. */ 1183 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1184 { 1185 if (!sme_enabled_check(s)) { 1186 return false; 1187 } 1188 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1189 gen_exception_insn(s, 0, EXCP_UDEF, 1190 syn_smetrap(SME_ET_NotStreaming, false)); 1191 return false; 1192 } 1193 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1194 gen_exception_insn(s, 0, EXCP_UDEF, 1195 syn_smetrap(SME_ET_InactiveZA, false)); 1196 return false; 1197 } 1198 return true; 1199 } 1200 1201 /* 1202 * This utility function is for doing register extension with an 1203 * optional shift. You will likely want to pass a temporary for the 1204 * destination register. See DecodeRegExtend() in the ARM ARM. 1205 */ 1206 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1207 int option, unsigned int shift) 1208 { 1209 int extsize = extract32(option, 0, 2); 1210 bool is_signed = extract32(option, 2, 1); 1211 1212 if (is_signed) { 1213 switch (extsize) { 1214 case 0: 1215 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1216 break; 1217 case 1: 1218 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1219 break; 1220 case 2: 1221 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1222 break; 1223 case 3: 1224 tcg_gen_mov_i64(tcg_out, tcg_in); 1225 break; 1226 } 1227 } else { 1228 switch (extsize) { 1229 case 0: 1230 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1231 break; 1232 case 1: 1233 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1234 break; 1235 case 2: 1236 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1237 break; 1238 case 3: 1239 tcg_gen_mov_i64(tcg_out, tcg_in); 1240 break; 1241 } 1242 } 1243 1244 if (shift) { 1245 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1246 } 1247 } 1248 1249 static inline void gen_check_sp_alignment(DisasContext *s) 1250 { 1251 /* The AArch64 architecture mandates that (if enabled via PSTATE 1252 * or SCTLR bits) there is a check that SP is 16-aligned on every 1253 * SP-relative load or store (with an exception generated if it is not). 1254 * In line with general QEMU practice regarding misaligned accesses, 1255 * we omit these checks for the sake of guest program performance. 1256 * This function is provided as a hook so we can more easily add these 1257 * checks in future (possibly as a "favour catching guest program bugs 1258 * over speed" user selectable option). 1259 */ 1260 } 1261 1262 /* 1263 * This provides a simple table based table lookup decoder. It is 1264 * intended to be used when the relevant bits for decode are too 1265 * awkwardly placed and switch/if based logic would be confusing and 1266 * deeply nested. Since it's a linear search through the table, tables 1267 * should be kept small. 1268 * 1269 * It returns the first handler where insn & mask == pattern, or 1270 * NULL if there is no match. 1271 * The table is terminated by an empty mask (i.e. 0) 1272 */ 1273 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1274 uint32_t insn) 1275 { 1276 const AArch64DecodeTable *tptr = table; 1277 1278 while (tptr->mask) { 1279 if ((insn & tptr->mask) == tptr->pattern) { 1280 return tptr->disas_fn; 1281 } 1282 tptr++; 1283 } 1284 return NULL; 1285 } 1286 1287 /* 1288 * The instruction disassembly implemented here matches 1289 * the instruction encoding classifications in chapter C4 1290 * of the ARM Architecture Reference Manual (DDI0487B_a); 1291 * classification names and decode diagrams here should generally 1292 * match up with those in the manual. 1293 */ 1294 1295 static bool trans_B(DisasContext *s, arg_i *a) 1296 { 1297 reset_btype(s); 1298 gen_goto_tb(s, 0, a->imm); 1299 return true; 1300 } 1301 1302 static bool trans_BL(DisasContext *s, arg_i *a) 1303 { 1304 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1305 reset_btype(s); 1306 gen_goto_tb(s, 0, a->imm); 1307 return true; 1308 } 1309 1310 1311 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1312 { 1313 DisasLabel match; 1314 TCGv_i64 tcg_cmp; 1315 1316 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1317 reset_btype(s); 1318 1319 match = gen_disas_label(s); 1320 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1321 tcg_cmp, 0, match.label); 1322 gen_goto_tb(s, 0, 4); 1323 set_disas_label(s, match); 1324 gen_goto_tb(s, 1, a->imm); 1325 return true; 1326 } 1327 1328 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1329 { 1330 DisasLabel match; 1331 TCGv_i64 tcg_cmp; 1332 1333 tcg_cmp = tcg_temp_new_i64(); 1334 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1335 1336 reset_btype(s); 1337 1338 match = gen_disas_label(s); 1339 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1340 tcg_cmp, 0, match.label); 1341 gen_goto_tb(s, 0, 4); 1342 set_disas_label(s, match); 1343 gen_goto_tb(s, 1, a->imm); 1344 return true; 1345 } 1346 1347 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1348 { 1349 reset_btype(s); 1350 if (a->cond < 0x0e) { 1351 /* genuinely conditional branches */ 1352 DisasLabel match = gen_disas_label(s); 1353 arm_gen_test_cc(a->cond, match.label); 1354 gen_goto_tb(s, 0, 4); 1355 set_disas_label(s, match); 1356 gen_goto_tb(s, 1, a->imm); 1357 } else { 1358 /* 0xe and 0xf are both "always" conditions */ 1359 gen_goto_tb(s, 0, a->imm); 1360 } 1361 return true; 1362 } 1363 1364 static void set_btype_for_br(DisasContext *s, int rn) 1365 { 1366 if (dc_isar_feature(aa64_bti, s)) { 1367 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1368 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1369 } 1370 } 1371 1372 static void set_btype_for_blr(DisasContext *s) 1373 { 1374 if (dc_isar_feature(aa64_bti, s)) { 1375 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1376 set_btype(s, 2); 1377 } 1378 } 1379 1380 static bool trans_BR(DisasContext *s, arg_r *a) 1381 { 1382 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1383 set_btype_for_br(s, a->rn); 1384 s->base.is_jmp = DISAS_JUMP; 1385 return true; 1386 } 1387 1388 static bool trans_BLR(DisasContext *s, arg_r *a) 1389 { 1390 TCGv_i64 dst = cpu_reg(s, a->rn); 1391 TCGv_i64 lr = cpu_reg(s, 30); 1392 if (dst == lr) { 1393 TCGv_i64 tmp = tcg_temp_new_i64(); 1394 tcg_gen_mov_i64(tmp, dst); 1395 dst = tmp; 1396 } 1397 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1398 gen_a64_set_pc(s, dst); 1399 set_btype_for_blr(s); 1400 s->base.is_jmp = DISAS_JUMP; 1401 return true; 1402 } 1403 1404 static bool trans_RET(DisasContext *s, arg_r *a) 1405 { 1406 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1407 s->base.is_jmp = DISAS_JUMP; 1408 return true; 1409 } 1410 1411 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1412 TCGv_i64 modifier, bool use_key_a) 1413 { 1414 TCGv_i64 truedst; 1415 /* 1416 * Return the branch target for a BRAA/RETA/etc, which is either 1417 * just the destination dst, or that value with the pauth check 1418 * done and the code removed from the high bits. 1419 */ 1420 if (!s->pauth_active) { 1421 return dst; 1422 } 1423 1424 truedst = tcg_temp_new_i64(); 1425 if (use_key_a) { 1426 gen_helper_autia(truedst, cpu_env, dst, modifier); 1427 } else { 1428 gen_helper_autib(truedst, cpu_env, dst, modifier); 1429 } 1430 return truedst; 1431 } 1432 1433 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1434 { 1435 TCGv_i64 dst; 1436 1437 if (!dc_isar_feature(aa64_pauth, s)) { 1438 return false; 1439 } 1440 1441 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1442 gen_a64_set_pc(s, dst); 1443 set_btype_for_br(s, a->rn); 1444 s->base.is_jmp = DISAS_JUMP; 1445 return true; 1446 } 1447 1448 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1449 { 1450 TCGv_i64 dst, lr; 1451 1452 if (!dc_isar_feature(aa64_pauth, s)) { 1453 return false; 1454 } 1455 1456 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1457 lr = cpu_reg(s, 30); 1458 if (dst == lr) { 1459 TCGv_i64 tmp = tcg_temp_new_i64(); 1460 tcg_gen_mov_i64(tmp, dst); 1461 dst = tmp; 1462 } 1463 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1464 gen_a64_set_pc(s, dst); 1465 set_btype_for_blr(s); 1466 s->base.is_jmp = DISAS_JUMP; 1467 return true; 1468 } 1469 1470 static bool trans_RETA(DisasContext *s, arg_reta *a) 1471 { 1472 TCGv_i64 dst; 1473 1474 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1475 gen_a64_set_pc(s, dst); 1476 s->base.is_jmp = DISAS_JUMP; 1477 return true; 1478 } 1479 1480 static bool trans_BRA(DisasContext *s, arg_bra *a) 1481 { 1482 TCGv_i64 dst; 1483 1484 if (!dc_isar_feature(aa64_pauth, s)) { 1485 return false; 1486 } 1487 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1488 gen_a64_set_pc(s, dst); 1489 set_btype_for_br(s, a->rn); 1490 s->base.is_jmp = DISAS_JUMP; 1491 return true; 1492 } 1493 1494 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1495 { 1496 TCGv_i64 dst, lr; 1497 1498 if (!dc_isar_feature(aa64_pauth, s)) { 1499 return false; 1500 } 1501 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1502 lr = cpu_reg(s, 30); 1503 if (dst == lr) { 1504 TCGv_i64 tmp = tcg_temp_new_i64(); 1505 tcg_gen_mov_i64(tmp, dst); 1506 dst = tmp; 1507 } 1508 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1509 gen_a64_set_pc(s, dst); 1510 set_btype_for_blr(s); 1511 s->base.is_jmp = DISAS_JUMP; 1512 return true; 1513 } 1514 1515 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1516 { 1517 TCGv_i64 dst; 1518 1519 if (s->current_el == 0) { 1520 return false; 1521 } 1522 if (s->fgt_eret) { 1523 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1524 return true; 1525 } 1526 dst = tcg_temp_new_i64(); 1527 tcg_gen_ld_i64(dst, cpu_env, 1528 offsetof(CPUARMState, elr_el[s->current_el])); 1529 1530 translator_io_start(&s->base); 1531 1532 gen_helper_exception_return(cpu_env, dst); 1533 /* Must exit loop to check un-masked IRQs */ 1534 s->base.is_jmp = DISAS_EXIT; 1535 return true; 1536 } 1537 1538 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1539 { 1540 TCGv_i64 dst; 1541 1542 if (!dc_isar_feature(aa64_pauth, s)) { 1543 return false; 1544 } 1545 if (s->current_el == 0) { 1546 return false; 1547 } 1548 /* The FGT trap takes precedence over an auth trap. */ 1549 if (s->fgt_eret) { 1550 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1551 return true; 1552 } 1553 dst = tcg_temp_new_i64(); 1554 tcg_gen_ld_i64(dst, cpu_env, 1555 offsetof(CPUARMState, elr_el[s->current_el])); 1556 1557 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1558 1559 translator_io_start(&s->base); 1560 1561 gen_helper_exception_return(cpu_env, dst); 1562 /* Must exit loop to check un-masked IRQs */ 1563 s->base.is_jmp = DISAS_EXIT; 1564 return true; 1565 } 1566 1567 /* HINT instruction group, including various allocated HINTs */ 1568 static void handle_hint(DisasContext *s, uint32_t insn, 1569 unsigned int op1, unsigned int op2, unsigned int crm) 1570 { 1571 unsigned int selector = crm << 3 | op2; 1572 1573 if (op1 != 3) { 1574 unallocated_encoding(s); 1575 return; 1576 } 1577 1578 switch (selector) { 1579 case 0b00000: /* NOP */ 1580 break; 1581 case 0b00011: /* WFI */ 1582 s->base.is_jmp = DISAS_WFI; 1583 break; 1584 case 0b00001: /* YIELD */ 1585 /* When running in MTTCG we don't generate jumps to the yield and 1586 * WFE helpers as it won't affect the scheduling of other vCPUs. 1587 * If we wanted to more completely model WFE/SEV so we don't busy 1588 * spin unnecessarily we would need to do something more involved. 1589 */ 1590 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1591 s->base.is_jmp = DISAS_YIELD; 1592 } 1593 break; 1594 case 0b00010: /* WFE */ 1595 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1596 s->base.is_jmp = DISAS_WFE; 1597 } 1598 break; 1599 case 0b00100: /* SEV */ 1600 case 0b00101: /* SEVL */ 1601 case 0b00110: /* DGH */ 1602 /* we treat all as NOP at least for now */ 1603 break; 1604 case 0b00111: /* XPACLRI */ 1605 if (s->pauth_active) { 1606 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1607 } 1608 break; 1609 case 0b01000: /* PACIA1716 */ 1610 if (s->pauth_active) { 1611 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1612 } 1613 break; 1614 case 0b01010: /* PACIB1716 */ 1615 if (s->pauth_active) { 1616 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1617 } 1618 break; 1619 case 0b01100: /* AUTIA1716 */ 1620 if (s->pauth_active) { 1621 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1622 } 1623 break; 1624 case 0b01110: /* AUTIB1716 */ 1625 if (s->pauth_active) { 1626 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1627 } 1628 break; 1629 case 0b10000: /* ESB */ 1630 /* Without RAS, we must implement this as NOP. */ 1631 if (dc_isar_feature(aa64_ras, s)) { 1632 /* 1633 * QEMU does not have a source of physical SErrors, 1634 * so we are only concerned with virtual SErrors. 1635 * The pseudocode in the ARM for this case is 1636 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1637 * AArch64.vESBOperation(); 1638 * Most of the condition can be evaluated at translation time. 1639 * Test for EL2 present, and defer test for SEL2 to runtime. 1640 */ 1641 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1642 gen_helper_vesb(cpu_env); 1643 } 1644 } 1645 break; 1646 case 0b11000: /* PACIAZ */ 1647 if (s->pauth_active) { 1648 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1649 tcg_constant_i64(0)); 1650 } 1651 break; 1652 case 0b11001: /* PACIASP */ 1653 if (s->pauth_active) { 1654 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1655 } 1656 break; 1657 case 0b11010: /* PACIBZ */ 1658 if (s->pauth_active) { 1659 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1660 tcg_constant_i64(0)); 1661 } 1662 break; 1663 case 0b11011: /* PACIBSP */ 1664 if (s->pauth_active) { 1665 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1666 } 1667 break; 1668 case 0b11100: /* AUTIAZ */ 1669 if (s->pauth_active) { 1670 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1671 tcg_constant_i64(0)); 1672 } 1673 break; 1674 case 0b11101: /* AUTIASP */ 1675 if (s->pauth_active) { 1676 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1677 } 1678 break; 1679 case 0b11110: /* AUTIBZ */ 1680 if (s->pauth_active) { 1681 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1682 tcg_constant_i64(0)); 1683 } 1684 break; 1685 case 0b11111: /* AUTIBSP */ 1686 if (s->pauth_active) { 1687 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1688 } 1689 break; 1690 default: 1691 /* default specified as NOP equivalent */ 1692 break; 1693 } 1694 } 1695 1696 static void gen_clrex(DisasContext *s, uint32_t insn) 1697 { 1698 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1699 } 1700 1701 /* CLREX, DSB, DMB, ISB */ 1702 static void handle_sync(DisasContext *s, uint32_t insn, 1703 unsigned int op1, unsigned int op2, unsigned int crm) 1704 { 1705 TCGBar bar; 1706 1707 if (op1 != 3) { 1708 unallocated_encoding(s); 1709 return; 1710 } 1711 1712 switch (op2) { 1713 case 2: /* CLREX */ 1714 gen_clrex(s, insn); 1715 return; 1716 case 4: /* DSB */ 1717 case 5: /* DMB */ 1718 switch (crm & 3) { 1719 case 1: /* MBReqTypes_Reads */ 1720 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1721 break; 1722 case 2: /* MBReqTypes_Writes */ 1723 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1724 break; 1725 default: /* MBReqTypes_All */ 1726 bar = TCG_BAR_SC | TCG_MO_ALL; 1727 break; 1728 } 1729 tcg_gen_mb(bar); 1730 return; 1731 case 6: /* ISB */ 1732 /* We need to break the TB after this insn to execute 1733 * a self-modified code correctly and also to take 1734 * any pending interrupts immediately. 1735 */ 1736 reset_btype(s); 1737 gen_goto_tb(s, 0, 4); 1738 return; 1739 1740 case 7: /* SB */ 1741 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1742 goto do_unallocated; 1743 } 1744 /* 1745 * TODO: There is no speculation barrier opcode for TCG; 1746 * MB and end the TB instead. 1747 */ 1748 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1749 gen_goto_tb(s, 0, 4); 1750 return; 1751 1752 default: 1753 do_unallocated: 1754 unallocated_encoding(s); 1755 return; 1756 } 1757 } 1758 1759 static void gen_xaflag(void) 1760 { 1761 TCGv_i32 z = tcg_temp_new_i32(); 1762 1763 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1764 1765 /* 1766 * (!C & !Z) << 31 1767 * (!(C | Z)) << 31 1768 * ~((C | Z) << 31) 1769 * ~-(C | Z) 1770 * (C | Z) - 1 1771 */ 1772 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1773 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1774 1775 /* !(Z & C) */ 1776 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1777 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1778 1779 /* (!C & Z) << 31 -> -(Z & ~C) */ 1780 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1781 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1782 1783 /* C | Z */ 1784 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1785 } 1786 1787 static void gen_axflag(void) 1788 { 1789 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1790 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1791 1792 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1793 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1794 1795 tcg_gen_movi_i32(cpu_NF, 0); 1796 tcg_gen_movi_i32(cpu_VF, 0); 1797 } 1798 1799 /* MSR (immediate) - move immediate to processor state field */ 1800 static void handle_msr_i(DisasContext *s, uint32_t insn, 1801 unsigned int op1, unsigned int op2, unsigned int crm) 1802 { 1803 int op = op1 << 3 | op2; 1804 1805 /* End the TB by default, chaining is ok. */ 1806 s->base.is_jmp = DISAS_TOO_MANY; 1807 1808 switch (op) { 1809 case 0x00: /* CFINV */ 1810 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1811 goto do_unallocated; 1812 } 1813 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1814 s->base.is_jmp = DISAS_NEXT; 1815 break; 1816 1817 case 0x01: /* XAFlag */ 1818 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1819 goto do_unallocated; 1820 } 1821 gen_xaflag(); 1822 s->base.is_jmp = DISAS_NEXT; 1823 break; 1824 1825 case 0x02: /* AXFlag */ 1826 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1827 goto do_unallocated; 1828 } 1829 gen_axflag(); 1830 s->base.is_jmp = DISAS_NEXT; 1831 break; 1832 1833 case 0x03: /* UAO */ 1834 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1835 goto do_unallocated; 1836 } 1837 if (crm & 1) { 1838 set_pstate_bits(PSTATE_UAO); 1839 } else { 1840 clear_pstate_bits(PSTATE_UAO); 1841 } 1842 gen_rebuild_hflags(s); 1843 break; 1844 1845 case 0x04: /* PAN */ 1846 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1847 goto do_unallocated; 1848 } 1849 if (crm & 1) { 1850 set_pstate_bits(PSTATE_PAN); 1851 } else { 1852 clear_pstate_bits(PSTATE_PAN); 1853 } 1854 gen_rebuild_hflags(s); 1855 break; 1856 1857 case 0x05: /* SPSel */ 1858 if (s->current_el == 0) { 1859 goto do_unallocated; 1860 } 1861 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1862 break; 1863 1864 case 0x19: /* SSBS */ 1865 if (!dc_isar_feature(aa64_ssbs, s)) { 1866 goto do_unallocated; 1867 } 1868 if (crm & 1) { 1869 set_pstate_bits(PSTATE_SSBS); 1870 } else { 1871 clear_pstate_bits(PSTATE_SSBS); 1872 } 1873 /* Don't need to rebuild hflags since SSBS is a nop */ 1874 break; 1875 1876 case 0x1a: /* DIT */ 1877 if (!dc_isar_feature(aa64_dit, s)) { 1878 goto do_unallocated; 1879 } 1880 if (crm & 1) { 1881 set_pstate_bits(PSTATE_DIT); 1882 } else { 1883 clear_pstate_bits(PSTATE_DIT); 1884 } 1885 /* There's no need to rebuild hflags because DIT is a nop */ 1886 break; 1887 1888 case 0x1e: /* DAIFSet */ 1889 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1890 break; 1891 1892 case 0x1f: /* DAIFClear */ 1893 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1894 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1895 s->base.is_jmp = DISAS_UPDATE_EXIT; 1896 break; 1897 1898 case 0x1c: /* TCO */ 1899 if (dc_isar_feature(aa64_mte, s)) { 1900 /* Full MTE is enabled -- set the TCO bit as directed. */ 1901 if (crm & 1) { 1902 set_pstate_bits(PSTATE_TCO); 1903 } else { 1904 clear_pstate_bits(PSTATE_TCO); 1905 } 1906 gen_rebuild_hflags(s); 1907 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1908 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1909 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1910 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1911 s->base.is_jmp = DISAS_NEXT; 1912 } else { 1913 goto do_unallocated; 1914 } 1915 break; 1916 1917 case 0x1b: /* SVCR* */ 1918 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 1919 goto do_unallocated; 1920 } 1921 if (sme_access_check(s)) { 1922 int old = s->pstate_sm | (s->pstate_za << 1); 1923 int new = (crm & 1) * 3; 1924 int msk = (crm >> 1) & 3; 1925 1926 if ((old ^ new) & msk) { 1927 /* At least one bit changes. */ 1928 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 1929 tcg_constant_i32(msk)); 1930 } else { 1931 s->base.is_jmp = DISAS_NEXT; 1932 } 1933 } 1934 break; 1935 1936 default: 1937 do_unallocated: 1938 unallocated_encoding(s); 1939 return; 1940 } 1941 } 1942 1943 static void gen_get_nzcv(TCGv_i64 tcg_rt) 1944 { 1945 TCGv_i32 tmp = tcg_temp_new_i32(); 1946 TCGv_i32 nzcv = tcg_temp_new_i32(); 1947 1948 /* build bit 31, N */ 1949 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 1950 /* build bit 30, Z */ 1951 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 1952 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 1953 /* build bit 29, C */ 1954 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 1955 /* build bit 28, V */ 1956 tcg_gen_shri_i32(tmp, cpu_VF, 31); 1957 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 1958 /* generate result */ 1959 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 1960 } 1961 1962 static void gen_set_nzcv(TCGv_i64 tcg_rt) 1963 { 1964 TCGv_i32 nzcv = tcg_temp_new_i32(); 1965 1966 /* take NZCV from R[t] */ 1967 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 1968 1969 /* bit 31, N */ 1970 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 1971 /* bit 30, Z */ 1972 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 1973 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 1974 /* bit 29, C */ 1975 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 1976 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 1977 /* bit 28, V */ 1978 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 1979 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 1980 } 1981 1982 static void gen_sysreg_undef(DisasContext *s, bool isread, 1983 uint8_t op0, uint8_t op1, uint8_t op2, 1984 uint8_t crn, uint8_t crm, uint8_t rt) 1985 { 1986 /* 1987 * Generate code to emit an UNDEF with correct syndrome 1988 * information for a failed system register access. 1989 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 1990 * but if FEAT_IDST is implemented then read accesses to registers 1991 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 1992 * syndrome. 1993 */ 1994 uint32_t syndrome; 1995 1996 if (isread && dc_isar_feature(aa64_ids, s) && 1997 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 1998 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 1999 } else { 2000 syndrome = syn_uncategorized(); 2001 } 2002 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2003 } 2004 2005 /* MRS - move from system register 2006 * MSR (register) - move to system register 2007 * SYS 2008 * SYSL 2009 * These are all essentially the same insn in 'read' and 'write' 2010 * versions, with varying op0 fields. 2011 */ 2012 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2013 unsigned int op0, unsigned int op1, unsigned int op2, 2014 unsigned int crn, unsigned int crm, unsigned int rt) 2015 { 2016 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2017 crn, crm, op0, op1, op2); 2018 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2019 bool need_exit_tb = false; 2020 TCGv_ptr tcg_ri = NULL; 2021 TCGv_i64 tcg_rt; 2022 2023 if (!ri) { 2024 /* Unknown register; this might be a guest error or a QEMU 2025 * unimplemented feature. 2026 */ 2027 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2028 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2029 isread ? "read" : "write", op0, op1, crn, crm, op2); 2030 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2031 return; 2032 } 2033 2034 /* Check access permissions */ 2035 if (!cp_access_ok(s->current_el, ri, isread)) { 2036 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2037 return; 2038 } 2039 2040 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2041 /* Emit code to perform further access permissions checks at 2042 * runtime; this may result in an exception. 2043 */ 2044 uint32_t syndrome; 2045 2046 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2047 gen_a64_update_pc(s, 0); 2048 tcg_ri = tcg_temp_new_ptr(); 2049 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2050 tcg_constant_i32(key), 2051 tcg_constant_i32(syndrome), 2052 tcg_constant_i32(isread)); 2053 } else if (ri->type & ARM_CP_RAISES_EXC) { 2054 /* 2055 * The readfn or writefn might raise an exception; 2056 * synchronize the CPU state in case it does. 2057 */ 2058 gen_a64_update_pc(s, 0); 2059 } 2060 2061 /* Handle special cases first */ 2062 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2063 case 0: 2064 break; 2065 case ARM_CP_NOP: 2066 return; 2067 case ARM_CP_NZCV: 2068 tcg_rt = cpu_reg(s, rt); 2069 if (isread) { 2070 gen_get_nzcv(tcg_rt); 2071 } else { 2072 gen_set_nzcv(tcg_rt); 2073 } 2074 return; 2075 case ARM_CP_CURRENTEL: 2076 /* Reads as current EL value from pstate, which is 2077 * guaranteed to be constant by the tb flags. 2078 */ 2079 tcg_rt = cpu_reg(s, rt); 2080 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2081 return; 2082 case ARM_CP_DC_ZVA: 2083 /* Writes clear the aligned block of memory which rt points into. */ 2084 if (s->mte_active[0]) { 2085 int desc = 0; 2086 2087 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2088 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2089 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2090 2091 tcg_rt = tcg_temp_new_i64(); 2092 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2093 tcg_constant_i32(desc), cpu_reg(s, rt)); 2094 } else { 2095 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2096 } 2097 gen_helper_dc_zva(cpu_env, tcg_rt); 2098 return; 2099 case ARM_CP_DC_GVA: 2100 { 2101 TCGv_i64 clean_addr, tag; 2102 2103 /* 2104 * DC_GVA, like DC_ZVA, requires that we supply the original 2105 * pointer for an invalid page. Probe that address first. 2106 */ 2107 tcg_rt = cpu_reg(s, rt); 2108 clean_addr = clean_data_tbi(s, tcg_rt); 2109 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2110 2111 if (s->ata) { 2112 /* Extract the tag from the register to match STZGM. */ 2113 tag = tcg_temp_new_i64(); 2114 tcg_gen_shri_i64(tag, tcg_rt, 56); 2115 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2116 } 2117 } 2118 return; 2119 case ARM_CP_DC_GZVA: 2120 { 2121 TCGv_i64 clean_addr, tag; 2122 2123 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2124 tcg_rt = cpu_reg(s, rt); 2125 clean_addr = clean_data_tbi(s, tcg_rt); 2126 gen_helper_dc_zva(cpu_env, clean_addr); 2127 2128 if (s->ata) { 2129 /* Extract the tag from the register to match STZGM. */ 2130 tag = tcg_temp_new_i64(); 2131 tcg_gen_shri_i64(tag, tcg_rt, 56); 2132 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2133 } 2134 } 2135 return; 2136 default: 2137 g_assert_not_reached(); 2138 } 2139 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2140 return; 2141 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2142 return; 2143 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2144 return; 2145 } 2146 2147 if (ri->type & ARM_CP_IO) { 2148 /* I/O operations must end the TB here (whether read or write) */ 2149 need_exit_tb = translator_io_start(&s->base); 2150 } 2151 2152 tcg_rt = cpu_reg(s, rt); 2153 2154 if (isread) { 2155 if (ri->type & ARM_CP_CONST) { 2156 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2157 } else if (ri->readfn) { 2158 if (!tcg_ri) { 2159 tcg_ri = gen_lookup_cp_reg(key); 2160 } 2161 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2162 } else { 2163 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2164 } 2165 } else { 2166 if (ri->type & ARM_CP_CONST) { 2167 /* If not forbidden by access permissions, treat as WI */ 2168 return; 2169 } else if (ri->writefn) { 2170 if (!tcg_ri) { 2171 tcg_ri = gen_lookup_cp_reg(key); 2172 } 2173 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2174 } else { 2175 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2176 } 2177 } 2178 2179 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2180 /* 2181 * A write to any coprocessor regiser that ends a TB 2182 * must rebuild the hflags for the next TB. 2183 */ 2184 gen_rebuild_hflags(s); 2185 /* 2186 * We default to ending the TB on a coprocessor register write, 2187 * but allow this to be suppressed by the register definition 2188 * (usually only necessary to work around guest bugs). 2189 */ 2190 need_exit_tb = true; 2191 } 2192 if (need_exit_tb) { 2193 s->base.is_jmp = DISAS_UPDATE_EXIT; 2194 } 2195 } 2196 2197 /* System 2198 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2199 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2200 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2201 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2202 */ 2203 static void disas_system(DisasContext *s, uint32_t insn) 2204 { 2205 unsigned int l, op0, op1, crn, crm, op2, rt; 2206 l = extract32(insn, 21, 1); 2207 op0 = extract32(insn, 19, 2); 2208 op1 = extract32(insn, 16, 3); 2209 crn = extract32(insn, 12, 4); 2210 crm = extract32(insn, 8, 4); 2211 op2 = extract32(insn, 5, 3); 2212 rt = extract32(insn, 0, 5); 2213 2214 if (op0 == 0) { 2215 if (l || rt != 31) { 2216 unallocated_encoding(s); 2217 return; 2218 } 2219 switch (crn) { 2220 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2221 handle_hint(s, insn, op1, op2, crm); 2222 break; 2223 case 3: /* CLREX, DSB, DMB, ISB */ 2224 handle_sync(s, insn, op1, op2, crm); 2225 break; 2226 case 4: /* MSR (immediate) */ 2227 handle_msr_i(s, insn, op1, op2, crm); 2228 break; 2229 default: 2230 unallocated_encoding(s); 2231 break; 2232 } 2233 return; 2234 } 2235 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2236 } 2237 2238 /* Exception generation 2239 * 2240 * 31 24 23 21 20 5 4 2 1 0 2241 * +-----------------+-----+------------------------+-----+----+ 2242 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2243 * +-----------------------+------------------------+----------+ 2244 */ 2245 static void disas_exc(DisasContext *s, uint32_t insn) 2246 { 2247 int opc = extract32(insn, 21, 3); 2248 int op2_ll = extract32(insn, 0, 5); 2249 int imm16 = extract32(insn, 5, 16); 2250 uint32_t syndrome; 2251 2252 switch (opc) { 2253 case 0: 2254 /* For SVC, HVC and SMC we advance the single-step state 2255 * machine before taking the exception. This is architecturally 2256 * mandated, to ensure that single-stepping a system call 2257 * instruction works properly. 2258 */ 2259 switch (op2_ll) { 2260 case 1: /* SVC */ 2261 syndrome = syn_aa64_svc(imm16); 2262 if (s->fgt_svc) { 2263 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2264 break; 2265 } 2266 gen_ss_advance(s); 2267 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2268 break; 2269 case 2: /* HVC */ 2270 if (s->current_el == 0) { 2271 unallocated_encoding(s); 2272 break; 2273 } 2274 /* The pre HVC helper handles cases when HVC gets trapped 2275 * as an undefined insn by runtime configuration. 2276 */ 2277 gen_a64_update_pc(s, 0); 2278 gen_helper_pre_hvc(cpu_env); 2279 gen_ss_advance(s); 2280 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2281 break; 2282 case 3: /* SMC */ 2283 if (s->current_el == 0) { 2284 unallocated_encoding(s); 2285 break; 2286 } 2287 gen_a64_update_pc(s, 0); 2288 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2289 gen_ss_advance(s); 2290 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2291 break; 2292 default: 2293 unallocated_encoding(s); 2294 break; 2295 } 2296 break; 2297 case 1: 2298 if (op2_ll != 0) { 2299 unallocated_encoding(s); 2300 break; 2301 } 2302 /* BRK */ 2303 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2304 break; 2305 case 2: 2306 if (op2_ll != 0) { 2307 unallocated_encoding(s); 2308 break; 2309 } 2310 /* HLT. This has two purposes. 2311 * Architecturally, it is an external halting debug instruction. 2312 * Since QEMU doesn't implement external debug, we treat this as 2313 * it is required for halting debug disabled: it will UNDEF. 2314 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2315 */ 2316 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2317 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2318 } else { 2319 unallocated_encoding(s); 2320 } 2321 break; 2322 case 5: 2323 if (op2_ll < 1 || op2_ll > 3) { 2324 unallocated_encoding(s); 2325 break; 2326 } 2327 /* DCPS1, DCPS2, DCPS3 */ 2328 unallocated_encoding(s); 2329 break; 2330 default: 2331 unallocated_encoding(s); 2332 break; 2333 } 2334 } 2335 2336 /* Branches, exception generating and system instructions */ 2337 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2338 { 2339 switch (extract32(insn, 25, 7)) { 2340 case 0x6a: /* Exception generation / System */ 2341 if (insn & (1 << 24)) { 2342 if (extract32(insn, 22, 2) == 0) { 2343 disas_system(s, insn); 2344 } else { 2345 unallocated_encoding(s); 2346 } 2347 } else { 2348 disas_exc(s, insn); 2349 } 2350 break; 2351 default: 2352 unallocated_encoding(s); 2353 break; 2354 } 2355 } 2356 2357 /* 2358 * Load/Store exclusive instructions are implemented by remembering 2359 * the value/address loaded, and seeing if these are the same 2360 * when the store is performed. This is not actually the architecturally 2361 * mandated semantics, but it works for typical guest code sequences 2362 * and avoids having to monitor regular stores. 2363 * 2364 * The store exclusive uses the atomic cmpxchg primitives to avoid 2365 * races in multi-threaded linux-user and when MTTCG softmmu is 2366 * enabled. 2367 */ 2368 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2369 int size, bool is_pair) 2370 { 2371 int idx = get_mem_index(s); 2372 MemOp memop; 2373 TCGv_i64 dirty_addr, clean_addr; 2374 2375 s->is_ldex = true; 2376 dirty_addr = cpu_reg_sp(s, rn); 2377 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, size); 2378 2379 g_assert(size <= 3); 2380 if (is_pair) { 2381 g_assert(size >= 2); 2382 if (size == 2) { 2383 /* The pair must be single-copy atomic for the doubleword. */ 2384 memop = finalize_memop(s, MO_64 | MO_ALIGN); 2385 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2386 if (s->be_data == MO_LE) { 2387 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2388 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2389 } else { 2390 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2391 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2392 } 2393 } else { 2394 /* 2395 * The pair must be single-copy atomic for *each* doubleword, not 2396 * the entire quadword, however it must be quadword aligned. 2397 * Expose the complete load to tcg, for ease of tlb lookup, 2398 * but indicate that only 8-byte atomicity is required. 2399 */ 2400 TCGv_i128 t16 = tcg_temp_new_i128(); 2401 2402 memop = finalize_memop_atom(s, MO_128 | MO_ALIGN_16, 2403 MO_ATOM_IFALIGN_PAIR); 2404 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2405 2406 if (s->be_data == MO_LE) { 2407 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2408 cpu_exclusive_high, t16); 2409 } else { 2410 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2411 cpu_exclusive_val, t16); 2412 } 2413 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2414 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2415 } 2416 } else { 2417 memop = finalize_memop(s, size | MO_ALIGN); 2418 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2419 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2420 } 2421 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2422 } 2423 2424 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2425 int rn, int size, int is_pair) 2426 { 2427 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2428 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2429 * [addr] = {Rt}; 2430 * if (is_pair) { 2431 * [addr + datasize] = {Rt2}; 2432 * } 2433 * {Rd} = 0; 2434 * } else { 2435 * {Rd} = 1; 2436 * } 2437 * env->exclusive_addr = -1; 2438 */ 2439 TCGLabel *fail_label = gen_new_label(); 2440 TCGLabel *done_label = gen_new_label(); 2441 TCGv_i64 tmp, dirty_addr, clean_addr; 2442 2443 dirty_addr = cpu_reg_sp(s, rn); 2444 clean_addr = gen_mte_check1(s, dirty_addr, true, rn != 31, size); 2445 2446 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2447 2448 tmp = tcg_temp_new_i64(); 2449 if (is_pair) { 2450 if (size == 2) { 2451 if (s->be_data == MO_LE) { 2452 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2453 } else { 2454 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2455 } 2456 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2457 cpu_exclusive_val, tmp, 2458 get_mem_index(s), 2459 MO_64 | MO_ALIGN | s->be_data); 2460 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2461 } else { 2462 TCGv_i128 t16 = tcg_temp_new_i128(); 2463 TCGv_i128 c16 = tcg_temp_new_i128(); 2464 TCGv_i64 a, b; 2465 2466 if (s->be_data == MO_LE) { 2467 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2468 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2469 cpu_exclusive_high); 2470 } else { 2471 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2472 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2473 cpu_exclusive_val); 2474 } 2475 2476 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2477 get_mem_index(s), 2478 MO_128 | MO_ALIGN | s->be_data); 2479 2480 a = tcg_temp_new_i64(); 2481 b = tcg_temp_new_i64(); 2482 if (s->be_data == MO_LE) { 2483 tcg_gen_extr_i128_i64(a, b, t16); 2484 } else { 2485 tcg_gen_extr_i128_i64(b, a, t16); 2486 } 2487 2488 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2489 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2490 tcg_gen_or_i64(tmp, a, b); 2491 2492 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2493 } 2494 } else { 2495 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2496 cpu_reg(s, rt), get_mem_index(s), 2497 size | MO_ALIGN | s->be_data); 2498 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2499 } 2500 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2501 tcg_gen_br(done_label); 2502 2503 gen_set_label(fail_label); 2504 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2505 gen_set_label(done_label); 2506 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2507 } 2508 2509 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2510 int rn, int size) 2511 { 2512 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2513 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2514 int memidx = get_mem_index(s); 2515 TCGv_i64 clean_addr; 2516 2517 if (rn == 31) { 2518 gen_check_sp_alignment(s); 2519 } 2520 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size); 2521 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx, 2522 size | MO_ALIGN | s->be_data); 2523 } 2524 2525 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2526 int rn, int size) 2527 { 2528 TCGv_i64 s1 = cpu_reg(s, rs); 2529 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2530 TCGv_i64 t1 = cpu_reg(s, rt); 2531 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2532 TCGv_i64 clean_addr; 2533 int memidx = get_mem_index(s); 2534 2535 if (rn == 31) { 2536 gen_check_sp_alignment(s); 2537 } 2538 2539 /* This is a single atomic access, despite the "pair". */ 2540 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1); 2541 2542 if (size == 2) { 2543 TCGv_i64 cmp = tcg_temp_new_i64(); 2544 TCGv_i64 val = tcg_temp_new_i64(); 2545 2546 if (s->be_data == MO_LE) { 2547 tcg_gen_concat32_i64(val, t1, t2); 2548 tcg_gen_concat32_i64(cmp, s1, s2); 2549 } else { 2550 tcg_gen_concat32_i64(val, t2, t1); 2551 tcg_gen_concat32_i64(cmp, s2, s1); 2552 } 2553 2554 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, 2555 MO_64 | MO_ALIGN | s->be_data); 2556 2557 if (s->be_data == MO_LE) { 2558 tcg_gen_extr32_i64(s1, s2, cmp); 2559 } else { 2560 tcg_gen_extr32_i64(s2, s1, cmp); 2561 } 2562 } else { 2563 TCGv_i128 cmp = tcg_temp_new_i128(); 2564 TCGv_i128 val = tcg_temp_new_i128(); 2565 2566 if (s->be_data == MO_LE) { 2567 tcg_gen_concat_i64_i128(val, t1, t2); 2568 tcg_gen_concat_i64_i128(cmp, s1, s2); 2569 } else { 2570 tcg_gen_concat_i64_i128(val, t2, t1); 2571 tcg_gen_concat_i64_i128(cmp, s2, s1); 2572 } 2573 2574 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, 2575 MO_128 | MO_ALIGN | s->be_data); 2576 2577 if (s->be_data == MO_LE) { 2578 tcg_gen_extr_i128_i64(s1, s2, cmp); 2579 } else { 2580 tcg_gen_extr_i128_i64(s2, s1, cmp); 2581 } 2582 } 2583 } 2584 2585 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2586 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2587 */ 2588 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2589 { 2590 int opc0 = extract32(opc, 0, 1); 2591 int regsize; 2592 2593 if (is_signed) { 2594 regsize = opc0 ? 32 : 64; 2595 } else { 2596 regsize = size == 3 ? 64 : 32; 2597 } 2598 return regsize == 64; 2599 } 2600 2601 /* Load/store exclusive 2602 * 2603 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2604 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2605 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2606 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2607 * 2608 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2609 * L: 0 -> store, 1 -> load 2610 * o2: 0 -> exclusive, 1 -> not 2611 * o1: 0 -> single register, 1 -> register pair 2612 * o0: 1 -> load-acquire/store-release, 0 -> not 2613 */ 2614 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2615 { 2616 int rt = extract32(insn, 0, 5); 2617 int rn = extract32(insn, 5, 5); 2618 int rt2 = extract32(insn, 10, 5); 2619 int rs = extract32(insn, 16, 5); 2620 int is_lasr = extract32(insn, 15, 1); 2621 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2622 int size = extract32(insn, 30, 2); 2623 TCGv_i64 clean_addr; 2624 MemOp memop; 2625 2626 switch (o2_L_o1_o0) { 2627 case 0x0: /* STXR */ 2628 case 0x1: /* STLXR */ 2629 if (rn == 31) { 2630 gen_check_sp_alignment(s); 2631 } 2632 if (is_lasr) { 2633 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2634 } 2635 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2636 return; 2637 2638 case 0x4: /* LDXR */ 2639 case 0x5: /* LDAXR */ 2640 if (rn == 31) { 2641 gen_check_sp_alignment(s); 2642 } 2643 gen_load_exclusive(s, rt, rt2, rn, size, false); 2644 if (is_lasr) { 2645 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2646 } 2647 return; 2648 2649 case 0x8: /* STLLR */ 2650 if (!dc_isar_feature(aa64_lor, s)) { 2651 break; 2652 } 2653 /* StoreLORelease is the same as Store-Release for QEMU. */ 2654 /* fall through */ 2655 case 0x9: /* STLR */ 2656 /* Generate ISS for non-exclusive accesses including LASR. */ 2657 if (rn == 31) { 2658 gen_check_sp_alignment(s); 2659 } 2660 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2661 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2662 memop = finalize_memop(s, size | MO_ALIGN); 2663 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2664 true, rn != 31, size); 2665 do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt, 2666 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2667 return; 2668 2669 case 0xc: /* LDLAR */ 2670 if (!dc_isar_feature(aa64_lor, s)) { 2671 break; 2672 } 2673 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2674 /* fall through */ 2675 case 0xd: /* LDAR */ 2676 /* Generate ISS for non-exclusive accesses including LASR. */ 2677 if (rn == 31) { 2678 gen_check_sp_alignment(s); 2679 } 2680 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2681 memop = finalize_memop(s, size | MO_ALIGN); 2682 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2683 false, rn != 31, size); 2684 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true, 2685 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2686 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2687 return; 2688 2689 case 0x2: case 0x3: /* CASP / STXP */ 2690 if (size & 2) { /* STXP / STLXP */ 2691 if (rn == 31) { 2692 gen_check_sp_alignment(s); 2693 } 2694 if (is_lasr) { 2695 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2696 } 2697 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2698 return; 2699 } 2700 if (rt2 == 31 2701 && ((rt | rs) & 1) == 0 2702 && dc_isar_feature(aa64_atomics, s)) { 2703 /* CASP / CASPL */ 2704 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2705 return; 2706 } 2707 break; 2708 2709 case 0x6: case 0x7: /* CASPA / LDXP */ 2710 if (size & 2) { /* LDXP / LDAXP */ 2711 if (rn == 31) { 2712 gen_check_sp_alignment(s); 2713 } 2714 gen_load_exclusive(s, rt, rt2, rn, size, true); 2715 if (is_lasr) { 2716 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2717 } 2718 return; 2719 } 2720 if (rt2 == 31 2721 && ((rt | rs) & 1) == 0 2722 && dc_isar_feature(aa64_atomics, s)) { 2723 /* CASPA / CASPAL */ 2724 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2725 return; 2726 } 2727 break; 2728 2729 case 0xa: /* CAS */ 2730 case 0xb: /* CASL */ 2731 case 0xe: /* CASA */ 2732 case 0xf: /* CASAL */ 2733 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2734 gen_compare_and_swap(s, rs, rt, rn, size); 2735 return; 2736 } 2737 break; 2738 } 2739 unallocated_encoding(s); 2740 } 2741 2742 /* 2743 * Load register (literal) 2744 * 2745 * 31 30 29 27 26 25 24 23 5 4 0 2746 * +-----+-------+---+-----+-------------------+-------+ 2747 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2748 * +-----+-------+---+-----+-------------------+-------+ 2749 * 2750 * V: 1 -> vector (simd/fp) 2751 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2752 * 10-> 32 bit signed, 11 -> prefetch 2753 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2754 */ 2755 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2756 { 2757 int rt = extract32(insn, 0, 5); 2758 int64_t imm = sextract32(insn, 5, 19) << 2; 2759 bool is_vector = extract32(insn, 26, 1); 2760 int opc = extract32(insn, 30, 2); 2761 bool is_signed = false; 2762 int size = 2; 2763 TCGv_i64 tcg_rt, clean_addr; 2764 MemOp memop; 2765 2766 if (is_vector) { 2767 if (opc == 3) { 2768 unallocated_encoding(s); 2769 return; 2770 } 2771 size = 2 + opc; 2772 if (!fp_access_check(s)) { 2773 return; 2774 } 2775 memop = finalize_memop_asimd(s, size); 2776 } else { 2777 if (opc == 3) { 2778 /* PRFM (literal) : prefetch */ 2779 return; 2780 } 2781 size = 2 + extract32(opc, 0, 1); 2782 is_signed = extract32(opc, 1, 1); 2783 memop = finalize_memop(s, size + is_signed * MO_SIGN); 2784 } 2785 2786 tcg_rt = cpu_reg(s, rt); 2787 2788 clean_addr = tcg_temp_new_i64(); 2789 gen_pc_plus_diff(s, clean_addr, imm); 2790 2791 if (is_vector) { 2792 do_fp_ld(s, rt, clean_addr, memop); 2793 } else { 2794 /* Only unsigned 32bit loads target 32bit registers. */ 2795 bool iss_sf = opc != 0; 2796 do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false); 2797 } 2798 } 2799 2800 /* 2801 * LDNP (Load Pair - non-temporal hint) 2802 * LDP (Load Pair - non vector) 2803 * LDPSW (Load Pair Signed Word - non vector) 2804 * STNP (Store Pair - non-temporal hint) 2805 * STP (Store Pair - non vector) 2806 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2807 * LDP (Load Pair of SIMD&FP) 2808 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2809 * STP (Store Pair of SIMD&FP) 2810 * 2811 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2812 * +-----+-------+---+---+-------+---+-----------------------------+ 2813 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2814 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2815 * 2816 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2817 * LDPSW/STGP 01 2818 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2819 * V: 0 -> GPR, 1 -> Vector 2820 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2821 * 10 -> signed offset, 11 -> pre-index 2822 * L: 0 -> Store 1 -> Load 2823 * 2824 * Rt, Rt2 = GPR or SIMD registers to be stored 2825 * Rn = general purpose register containing address 2826 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2827 */ 2828 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2829 { 2830 int rt = extract32(insn, 0, 5); 2831 int rn = extract32(insn, 5, 5); 2832 int rt2 = extract32(insn, 10, 5); 2833 uint64_t offset = sextract64(insn, 15, 7); 2834 int index = extract32(insn, 23, 2); 2835 bool is_vector = extract32(insn, 26, 1); 2836 bool is_load = extract32(insn, 22, 1); 2837 int opc = extract32(insn, 30, 2); 2838 2839 bool is_signed = false; 2840 bool postindex = false; 2841 bool wback = false; 2842 bool set_tag = false; 2843 2844 TCGv_i64 clean_addr, dirty_addr; 2845 2846 int size; 2847 2848 if (opc == 3) { 2849 unallocated_encoding(s); 2850 return; 2851 } 2852 2853 if (is_vector) { 2854 size = 2 + opc; 2855 } else if (opc == 1 && !is_load) { 2856 /* STGP */ 2857 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2858 unallocated_encoding(s); 2859 return; 2860 } 2861 size = 3; 2862 set_tag = true; 2863 } else { 2864 size = 2 + extract32(opc, 1, 1); 2865 is_signed = extract32(opc, 0, 1); 2866 if (!is_load && is_signed) { 2867 unallocated_encoding(s); 2868 return; 2869 } 2870 } 2871 2872 switch (index) { 2873 case 1: /* post-index */ 2874 postindex = true; 2875 wback = true; 2876 break; 2877 case 0: 2878 /* signed offset with "non-temporal" hint. Since we don't emulate 2879 * caches we don't care about hints to the cache system about 2880 * data access patterns, and handle this identically to plain 2881 * signed offset. 2882 */ 2883 if (is_signed) { 2884 /* There is no non-temporal-hint version of LDPSW */ 2885 unallocated_encoding(s); 2886 return; 2887 } 2888 postindex = false; 2889 break; 2890 case 2: /* signed offset, rn not updated */ 2891 postindex = false; 2892 break; 2893 case 3: /* pre-index */ 2894 postindex = false; 2895 wback = true; 2896 break; 2897 } 2898 2899 if (is_vector && !fp_access_check(s)) { 2900 return; 2901 } 2902 2903 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2904 2905 if (rn == 31) { 2906 gen_check_sp_alignment(s); 2907 } 2908 2909 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2910 if (!postindex) { 2911 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2912 } 2913 2914 if (set_tag) { 2915 if (!s->ata) { 2916 /* 2917 * TODO: We could rely on the stores below, at least for 2918 * system mode, if we arrange to add MO_ALIGN_16. 2919 */ 2920 gen_helper_stg_stub(cpu_env, dirty_addr); 2921 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 2922 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 2923 } else { 2924 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 2925 } 2926 } 2927 2928 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 2929 (wback || rn != 31) && !set_tag, 2 << size); 2930 2931 if (is_vector) { 2932 MemOp mop = finalize_memop_asimd(s, size); 2933 2934 if (is_load) { 2935 do_fp_ld(s, rt, clean_addr, mop); 2936 } else { 2937 do_fp_st(s, rt, clean_addr, mop); 2938 } 2939 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2940 if (is_load) { 2941 do_fp_ld(s, rt2, clean_addr, mop); 2942 } else { 2943 do_fp_st(s, rt2, clean_addr, mop); 2944 } 2945 } else { 2946 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2947 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 2948 MemOp mop = size + 1; 2949 2950 /* 2951 * With LSE2, non-sign-extending pairs are treated atomically if 2952 * aligned, and if unaligned one of the pair will be completely 2953 * within a 16-byte block and that element will be atomic. 2954 * Otherwise each element is separately atomic. 2955 * In all cases, issue one operation with the correct atomicity. 2956 * 2957 * This treats sign-extending loads like zero-extending loads, 2958 * since that reuses the most code below. 2959 */ 2960 if (s->align_mem) { 2961 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2962 } 2963 mop = finalize_memop_pair(s, mop); 2964 2965 if (is_load) { 2966 if (size == 2) { 2967 int o2 = s->be_data == MO_LE ? 32 : 0; 2968 int o1 = o2 ^ 32; 2969 2970 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 2971 if (is_signed) { 2972 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 2973 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 2974 } else { 2975 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 2976 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 2977 } 2978 } else { 2979 TCGv_i128 tmp = tcg_temp_new_i128(); 2980 2981 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 2982 if (s->be_data == MO_LE) { 2983 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 2984 } else { 2985 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 2986 } 2987 } 2988 } else { 2989 if (size == 2) { 2990 TCGv_i64 tmp = tcg_temp_new_i64(); 2991 2992 if (s->be_data == MO_LE) { 2993 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 2994 } else { 2995 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 2996 } 2997 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 2998 } else { 2999 TCGv_i128 tmp = tcg_temp_new_i128(); 3000 3001 if (s->be_data == MO_LE) { 3002 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3003 } else { 3004 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3005 } 3006 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3007 } 3008 } 3009 } 3010 3011 if (wback) { 3012 if (postindex) { 3013 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3014 } 3015 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3016 } 3017 } 3018 3019 /* 3020 * Load/store (immediate post-indexed) 3021 * Load/store (immediate pre-indexed) 3022 * Load/store (unscaled immediate) 3023 * 3024 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3025 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3026 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3027 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3028 * 3029 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3030 10 -> unprivileged 3031 * V = 0 -> non-vector 3032 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3033 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3034 */ 3035 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3036 int opc, 3037 int size, 3038 int rt, 3039 bool is_vector) 3040 { 3041 int rn = extract32(insn, 5, 5); 3042 int imm9 = sextract32(insn, 12, 9); 3043 int idx = extract32(insn, 10, 2); 3044 bool is_signed = false; 3045 bool is_store = false; 3046 bool is_extended = false; 3047 bool is_unpriv = (idx == 2); 3048 bool iss_valid; 3049 bool post_index; 3050 bool writeback; 3051 int memidx; 3052 MemOp memop; 3053 TCGv_i64 clean_addr, dirty_addr; 3054 3055 if (is_vector) { 3056 size |= (opc & 2) << 1; 3057 if (size > 4 || is_unpriv) { 3058 unallocated_encoding(s); 3059 return; 3060 } 3061 is_store = ((opc & 1) == 0); 3062 if (!fp_access_check(s)) { 3063 return; 3064 } 3065 memop = finalize_memop_asimd(s, size); 3066 } else { 3067 if (size == 3 && opc == 2) { 3068 /* PRFM - prefetch */ 3069 if (idx != 0) { 3070 unallocated_encoding(s); 3071 return; 3072 } 3073 return; 3074 } 3075 if (opc == 3 && size > 1) { 3076 unallocated_encoding(s); 3077 return; 3078 } 3079 is_store = (opc == 0); 3080 is_signed = !is_store && extract32(opc, 1, 1); 3081 is_extended = (size < 3) && extract32(opc, 0, 1); 3082 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3083 } 3084 3085 switch (idx) { 3086 case 0: 3087 case 2: 3088 post_index = false; 3089 writeback = false; 3090 break; 3091 case 1: 3092 post_index = true; 3093 writeback = true; 3094 break; 3095 case 3: 3096 post_index = false; 3097 writeback = true; 3098 break; 3099 default: 3100 g_assert_not_reached(); 3101 } 3102 3103 iss_valid = !is_vector && !writeback; 3104 3105 if (rn == 31) { 3106 gen_check_sp_alignment(s); 3107 } 3108 3109 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3110 if (!post_index) { 3111 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3112 } 3113 3114 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3115 3116 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3117 writeback || rn != 31, 3118 size, is_unpriv, memidx); 3119 3120 if (is_vector) { 3121 if (is_store) { 3122 do_fp_st(s, rt, clean_addr, memop); 3123 } else { 3124 do_fp_ld(s, rt, clean_addr, memop); 3125 } 3126 } else { 3127 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3128 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3129 3130 if (is_store) { 3131 do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx, 3132 iss_valid, rt, iss_sf, false); 3133 } else { 3134 do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop, 3135 is_extended, memidx, 3136 iss_valid, rt, iss_sf, false); 3137 } 3138 } 3139 3140 if (writeback) { 3141 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3142 if (post_index) { 3143 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3144 } 3145 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3146 } 3147 } 3148 3149 /* 3150 * Load/store (register offset) 3151 * 3152 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3153 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3154 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3155 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3156 * 3157 * For non-vector: 3158 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3159 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3160 * For vector: 3161 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3162 * opc<0>: 0 -> store, 1 -> load 3163 * V: 1 -> vector/simd 3164 * opt: extend encoding (see DecodeRegExtend) 3165 * S: if S=1 then scale (essentially index by sizeof(size)) 3166 * Rt: register to transfer into/out of 3167 * Rn: address register or SP for base 3168 * Rm: offset register or ZR for offset 3169 */ 3170 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3171 int opc, 3172 int size, 3173 int rt, 3174 bool is_vector) 3175 { 3176 int rn = extract32(insn, 5, 5); 3177 int shift = extract32(insn, 12, 1); 3178 int rm = extract32(insn, 16, 5); 3179 int opt = extract32(insn, 13, 3); 3180 bool is_signed = false; 3181 bool is_store = false; 3182 bool is_extended = false; 3183 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3184 MemOp memop; 3185 3186 if (extract32(opt, 1, 1) == 0) { 3187 unallocated_encoding(s); 3188 return; 3189 } 3190 3191 if (is_vector) { 3192 size |= (opc & 2) << 1; 3193 if (size > 4) { 3194 unallocated_encoding(s); 3195 return; 3196 } 3197 is_store = !extract32(opc, 0, 1); 3198 if (!fp_access_check(s)) { 3199 return; 3200 } 3201 } else { 3202 if (size == 3 && opc == 2) { 3203 /* PRFM - prefetch */ 3204 return; 3205 } 3206 if (opc == 3 && size > 1) { 3207 unallocated_encoding(s); 3208 return; 3209 } 3210 is_store = (opc == 0); 3211 is_signed = !is_store && extract32(opc, 1, 1); 3212 is_extended = (size < 3) && extract32(opc, 0, 1); 3213 } 3214 3215 if (rn == 31) { 3216 gen_check_sp_alignment(s); 3217 } 3218 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3219 3220 tcg_rm = read_cpu_reg(s, rm, 1); 3221 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3222 3223 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3224 3225 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3226 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size); 3227 3228 if (is_vector) { 3229 if (is_store) { 3230 do_fp_st(s, rt, clean_addr, memop); 3231 } else { 3232 do_fp_ld(s, rt, clean_addr, memop); 3233 } 3234 } else { 3235 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3236 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3237 3238 if (is_store) { 3239 do_gpr_st(s, tcg_rt, clean_addr, memop, 3240 true, rt, iss_sf, false); 3241 } else { 3242 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3243 is_extended, true, rt, iss_sf, false); 3244 } 3245 } 3246 } 3247 3248 /* 3249 * Load/store (unsigned immediate) 3250 * 3251 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3252 * +----+-------+---+-----+-----+------------+-------+------+ 3253 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3254 * +----+-------+---+-----+-----+------------+-------+------+ 3255 * 3256 * For non-vector: 3257 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3258 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3259 * For vector: 3260 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3261 * opc<0>: 0 -> store, 1 -> load 3262 * Rn: base address register (inc SP) 3263 * Rt: target register 3264 */ 3265 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3266 int opc, 3267 int size, 3268 int rt, 3269 bool is_vector) 3270 { 3271 int rn = extract32(insn, 5, 5); 3272 unsigned int imm12 = extract32(insn, 10, 12); 3273 unsigned int offset; 3274 TCGv_i64 clean_addr, dirty_addr; 3275 bool is_store; 3276 bool is_signed = false; 3277 bool is_extended = false; 3278 MemOp memop; 3279 3280 if (is_vector) { 3281 size |= (opc & 2) << 1; 3282 if (size > 4) { 3283 unallocated_encoding(s); 3284 return; 3285 } 3286 is_store = !extract32(opc, 0, 1); 3287 if (!fp_access_check(s)) { 3288 return; 3289 } 3290 } else { 3291 if (size == 3 && opc == 2) { 3292 /* PRFM - prefetch */ 3293 return; 3294 } 3295 if (opc == 3 && size > 1) { 3296 unallocated_encoding(s); 3297 return; 3298 } 3299 is_store = (opc == 0); 3300 is_signed = !is_store && extract32(opc, 1, 1); 3301 is_extended = (size < 3) && extract32(opc, 0, 1); 3302 } 3303 3304 if (rn == 31) { 3305 gen_check_sp_alignment(s); 3306 } 3307 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3308 offset = imm12 << size; 3309 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3310 3311 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3312 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size); 3313 3314 if (is_vector) { 3315 if (is_store) { 3316 do_fp_st(s, rt, clean_addr, memop); 3317 } else { 3318 do_fp_ld(s, rt, clean_addr, memop); 3319 } 3320 } else { 3321 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3322 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3323 if (is_store) { 3324 do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false); 3325 } else { 3326 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3327 is_extended, true, rt, iss_sf, false); 3328 } 3329 } 3330 } 3331 3332 /* Atomic memory operations 3333 * 3334 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3335 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3336 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3337 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3338 * 3339 * Rt: the result register 3340 * Rn: base address or SP 3341 * Rs: the source register for the operation 3342 * V: vector flag (always 0 as of v8.3) 3343 * A: acquire flag 3344 * R: release flag 3345 */ 3346 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3347 int size, int rt, bool is_vector) 3348 { 3349 int rs = extract32(insn, 16, 5); 3350 int rn = extract32(insn, 5, 5); 3351 int o3_opc = extract32(insn, 12, 4); 3352 bool r = extract32(insn, 22, 1); 3353 bool a = extract32(insn, 23, 1); 3354 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3355 AtomicThreeOpFn *fn = NULL; 3356 MemOp mop = finalize_memop(s, size | MO_ALIGN); 3357 3358 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3359 unallocated_encoding(s); 3360 return; 3361 } 3362 switch (o3_opc) { 3363 case 000: /* LDADD */ 3364 fn = tcg_gen_atomic_fetch_add_i64; 3365 break; 3366 case 001: /* LDCLR */ 3367 fn = tcg_gen_atomic_fetch_and_i64; 3368 break; 3369 case 002: /* LDEOR */ 3370 fn = tcg_gen_atomic_fetch_xor_i64; 3371 break; 3372 case 003: /* LDSET */ 3373 fn = tcg_gen_atomic_fetch_or_i64; 3374 break; 3375 case 004: /* LDSMAX */ 3376 fn = tcg_gen_atomic_fetch_smax_i64; 3377 mop |= MO_SIGN; 3378 break; 3379 case 005: /* LDSMIN */ 3380 fn = tcg_gen_atomic_fetch_smin_i64; 3381 mop |= MO_SIGN; 3382 break; 3383 case 006: /* LDUMAX */ 3384 fn = tcg_gen_atomic_fetch_umax_i64; 3385 break; 3386 case 007: /* LDUMIN */ 3387 fn = tcg_gen_atomic_fetch_umin_i64; 3388 break; 3389 case 010: /* SWP */ 3390 fn = tcg_gen_atomic_xchg_i64; 3391 break; 3392 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3393 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3394 rs != 31 || a != 1 || r != 0) { 3395 unallocated_encoding(s); 3396 return; 3397 } 3398 break; 3399 default: 3400 unallocated_encoding(s); 3401 return; 3402 } 3403 3404 if (rn == 31) { 3405 gen_check_sp_alignment(s); 3406 } 3407 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size); 3408 3409 if (o3_opc == 014) { 3410 /* 3411 * LDAPR* are a special case because they are a simple load, not a 3412 * fetch-and-do-something op. 3413 * The architectural consistency requirements here are weaker than 3414 * full load-acquire (we only need "load-acquire processor consistent"), 3415 * but we choose to implement them as full LDAQ. 3416 */ 3417 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false, 3418 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3419 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3420 return; 3421 } 3422 3423 tcg_rs = read_cpu_reg(s, rs, true); 3424 tcg_rt = cpu_reg(s, rt); 3425 3426 if (o3_opc == 1) { /* LDCLR */ 3427 tcg_gen_not_i64(tcg_rs, tcg_rs); 3428 } 3429 3430 /* The tcg atomic primitives are all full barriers. Therefore we 3431 * can ignore the Acquire and Release bits of this instruction. 3432 */ 3433 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3434 3435 if ((mop & MO_SIGN) && size != MO_64) { 3436 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3437 } 3438 } 3439 3440 /* 3441 * PAC memory operations 3442 * 3443 * 31 30 27 26 24 22 21 12 11 10 5 0 3444 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3445 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3446 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3447 * 3448 * Rt: the result register 3449 * Rn: base address or SP 3450 * V: vector flag (always 0 as of v8.3) 3451 * M: clear for key DA, set for key DB 3452 * W: pre-indexing flag 3453 * S: sign for imm9. 3454 */ 3455 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3456 int size, int rt, bool is_vector) 3457 { 3458 int rn = extract32(insn, 5, 5); 3459 bool is_wback = extract32(insn, 11, 1); 3460 bool use_key_a = !extract32(insn, 23, 1); 3461 int offset; 3462 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3463 MemOp memop; 3464 3465 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3466 unallocated_encoding(s); 3467 return; 3468 } 3469 3470 if (rn == 31) { 3471 gen_check_sp_alignment(s); 3472 } 3473 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3474 3475 if (s->pauth_active) { 3476 if (use_key_a) { 3477 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3478 tcg_constant_i64(0)); 3479 } else { 3480 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3481 tcg_constant_i64(0)); 3482 } 3483 } 3484 3485 /* Form the 10-bit signed, scaled offset. */ 3486 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3487 offset = sextract32(offset << size, 0, 10 + size); 3488 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3489 3490 memop = finalize_memop(s, size); 3491 3492 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3493 clean_addr = gen_mte_check1(s, dirty_addr, false, 3494 is_wback || rn != 31, size); 3495 3496 tcg_rt = cpu_reg(s, rt); 3497 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3498 /* extend */ false, /* iss_valid */ !is_wback, 3499 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3500 3501 if (is_wback) { 3502 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3503 } 3504 } 3505 3506 /* 3507 * LDAPR/STLR (unscaled immediate) 3508 * 3509 * 31 30 24 22 21 12 10 5 0 3510 * +------+-------------+-----+---+--------+-----+----+-----+ 3511 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3512 * +------+-------------+-----+---+--------+-----+----+-----+ 3513 * 3514 * Rt: source or destination register 3515 * Rn: base register 3516 * imm9: unscaled immediate offset 3517 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3518 * size: size of load/store 3519 */ 3520 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3521 { 3522 int rt = extract32(insn, 0, 5); 3523 int rn = extract32(insn, 5, 5); 3524 int offset = sextract32(insn, 12, 9); 3525 int opc = extract32(insn, 22, 2); 3526 int size = extract32(insn, 30, 2); 3527 TCGv_i64 clean_addr, dirty_addr; 3528 bool is_store = false; 3529 bool extend = false; 3530 bool iss_sf; 3531 MemOp mop; 3532 3533 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3534 unallocated_encoding(s); 3535 return; 3536 } 3537 3538 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3539 mop = finalize_memop(s, size | MO_ALIGN); 3540 3541 switch (opc) { 3542 case 0: /* STLURB */ 3543 is_store = true; 3544 break; 3545 case 1: /* LDAPUR* */ 3546 break; 3547 case 2: /* LDAPURS* 64-bit variant */ 3548 if (size == 3) { 3549 unallocated_encoding(s); 3550 return; 3551 } 3552 mop |= MO_SIGN; 3553 break; 3554 case 3: /* LDAPURS* 32-bit variant */ 3555 if (size > 1) { 3556 unallocated_encoding(s); 3557 return; 3558 } 3559 mop |= MO_SIGN; 3560 extend = true; /* zero-extend 32->64 after signed load */ 3561 break; 3562 default: 3563 g_assert_not_reached(); 3564 } 3565 3566 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3567 3568 if (rn == 31) { 3569 gen_check_sp_alignment(s); 3570 } 3571 3572 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3573 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3574 clean_addr = clean_data_tbi(s, dirty_addr); 3575 3576 if (is_store) { 3577 /* Store-Release semantics */ 3578 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3579 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3580 } else { 3581 /* 3582 * Load-AcquirePC semantics; we implement as the slightly more 3583 * restrictive Load-Acquire. 3584 */ 3585 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3586 extend, true, rt, iss_sf, true); 3587 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3588 } 3589 } 3590 3591 /* Load/store register (all forms) */ 3592 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3593 { 3594 int rt = extract32(insn, 0, 5); 3595 int opc = extract32(insn, 22, 2); 3596 bool is_vector = extract32(insn, 26, 1); 3597 int size = extract32(insn, 30, 2); 3598 3599 switch (extract32(insn, 24, 2)) { 3600 case 0: 3601 if (extract32(insn, 21, 1) == 0) { 3602 /* Load/store register (unscaled immediate) 3603 * Load/store immediate pre/post-indexed 3604 * Load/store register unprivileged 3605 */ 3606 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3607 return; 3608 } 3609 switch (extract32(insn, 10, 2)) { 3610 case 0: 3611 disas_ldst_atomic(s, insn, size, rt, is_vector); 3612 return; 3613 case 2: 3614 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3615 return; 3616 default: 3617 disas_ldst_pac(s, insn, size, rt, is_vector); 3618 return; 3619 } 3620 break; 3621 case 1: 3622 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3623 return; 3624 } 3625 unallocated_encoding(s); 3626 } 3627 3628 /* AdvSIMD load/store multiple structures 3629 * 3630 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3631 * +---+---+---------------+---+-------------+--------+------+------+------+ 3632 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3633 * +---+---+---------------+---+-------------+--------+------+------+------+ 3634 * 3635 * AdvSIMD load/store multiple structures (post-indexed) 3636 * 3637 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3638 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3639 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3640 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3641 * 3642 * Rt: first (or only) SIMD&FP register to be transferred 3643 * Rn: base address or SP 3644 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3645 */ 3646 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3647 { 3648 int rt = extract32(insn, 0, 5); 3649 int rn = extract32(insn, 5, 5); 3650 int rm = extract32(insn, 16, 5); 3651 int size = extract32(insn, 10, 2); 3652 int opcode = extract32(insn, 12, 4); 3653 bool is_store = !extract32(insn, 22, 1); 3654 bool is_postidx = extract32(insn, 23, 1); 3655 bool is_q = extract32(insn, 30, 1); 3656 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3657 MemOp endian, align, mop; 3658 3659 int total; /* total bytes */ 3660 int elements; /* elements per vector */ 3661 int rpt; /* num iterations */ 3662 int selem; /* structure elements */ 3663 int r; 3664 3665 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3666 unallocated_encoding(s); 3667 return; 3668 } 3669 3670 if (!is_postidx && rm != 0) { 3671 unallocated_encoding(s); 3672 return; 3673 } 3674 3675 /* From the shared decode logic */ 3676 switch (opcode) { 3677 case 0x0: 3678 rpt = 1; 3679 selem = 4; 3680 break; 3681 case 0x2: 3682 rpt = 4; 3683 selem = 1; 3684 break; 3685 case 0x4: 3686 rpt = 1; 3687 selem = 3; 3688 break; 3689 case 0x6: 3690 rpt = 3; 3691 selem = 1; 3692 break; 3693 case 0x7: 3694 rpt = 1; 3695 selem = 1; 3696 break; 3697 case 0x8: 3698 rpt = 1; 3699 selem = 2; 3700 break; 3701 case 0xa: 3702 rpt = 2; 3703 selem = 1; 3704 break; 3705 default: 3706 unallocated_encoding(s); 3707 return; 3708 } 3709 3710 if (size == 3 && !is_q && selem != 1) { 3711 /* reserved */ 3712 unallocated_encoding(s); 3713 return; 3714 } 3715 3716 if (!fp_access_check(s)) { 3717 return; 3718 } 3719 3720 if (rn == 31) { 3721 gen_check_sp_alignment(s); 3722 } 3723 3724 /* For our purposes, bytes are always little-endian. */ 3725 endian = s->be_data; 3726 if (size == 0) { 3727 endian = MO_LE; 3728 } 3729 3730 total = rpt * selem * (is_q ? 16 : 8); 3731 tcg_rn = cpu_reg_sp(s, rn); 3732 3733 /* 3734 * Issue the MTE check vs the logical repeat count, before we 3735 * promote consecutive little-endian elements below. 3736 */ 3737 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3738 total); 3739 3740 /* 3741 * Consecutive little-endian elements from a single register 3742 * can be promoted to a larger little-endian operation. 3743 */ 3744 align = MO_ALIGN; 3745 if (selem == 1 && endian == MO_LE) { 3746 align = pow2_align(size); 3747 size = 3; 3748 } 3749 if (!s->align_mem) { 3750 align = 0; 3751 } 3752 mop = endian | size | align; 3753 3754 elements = (is_q ? 16 : 8) >> size; 3755 tcg_ebytes = tcg_constant_i64(1 << size); 3756 for (r = 0; r < rpt; r++) { 3757 int e; 3758 for (e = 0; e < elements; e++) { 3759 int xs; 3760 for (xs = 0; xs < selem; xs++) { 3761 int tt = (rt + r + xs) % 32; 3762 if (is_store) { 3763 do_vec_st(s, tt, e, clean_addr, mop); 3764 } else { 3765 do_vec_ld(s, tt, e, clean_addr, mop); 3766 } 3767 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3768 } 3769 } 3770 } 3771 3772 if (!is_store) { 3773 /* For non-quad operations, setting a slice of the low 3774 * 64 bits of the register clears the high 64 bits (in 3775 * the ARM ARM pseudocode this is implicit in the fact 3776 * that 'rval' is a 64 bit wide variable). 3777 * For quad operations, we might still need to zero the 3778 * high bits of SVE. 3779 */ 3780 for (r = 0; r < rpt * selem; r++) { 3781 int tt = (rt + r) % 32; 3782 clear_vec_high(s, is_q, tt); 3783 } 3784 } 3785 3786 if (is_postidx) { 3787 if (rm == 31) { 3788 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3789 } else { 3790 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3791 } 3792 } 3793 } 3794 3795 /* AdvSIMD load/store single structure 3796 * 3797 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3798 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3799 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3800 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3801 * 3802 * AdvSIMD load/store single structure (post-indexed) 3803 * 3804 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3805 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3806 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3807 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3808 * 3809 * Rt: first (or only) SIMD&FP register to be transferred 3810 * Rn: base address or SP 3811 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3812 * index = encoded in Q:S:size dependent on size 3813 * 3814 * lane_size = encoded in R, opc 3815 * transfer width = encoded in opc, S, size 3816 */ 3817 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3818 { 3819 int rt = extract32(insn, 0, 5); 3820 int rn = extract32(insn, 5, 5); 3821 int rm = extract32(insn, 16, 5); 3822 int size = extract32(insn, 10, 2); 3823 int S = extract32(insn, 12, 1); 3824 int opc = extract32(insn, 13, 3); 3825 int R = extract32(insn, 21, 1); 3826 int is_load = extract32(insn, 22, 1); 3827 int is_postidx = extract32(insn, 23, 1); 3828 int is_q = extract32(insn, 30, 1); 3829 3830 int scale = extract32(opc, 1, 2); 3831 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3832 bool replicate = false; 3833 int index = is_q << 3 | S << 2 | size; 3834 int xs, total; 3835 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3836 MemOp mop; 3837 3838 if (extract32(insn, 31, 1)) { 3839 unallocated_encoding(s); 3840 return; 3841 } 3842 if (!is_postidx && rm != 0) { 3843 unallocated_encoding(s); 3844 return; 3845 } 3846 3847 switch (scale) { 3848 case 3: 3849 if (!is_load || S) { 3850 unallocated_encoding(s); 3851 return; 3852 } 3853 scale = size; 3854 replicate = true; 3855 break; 3856 case 0: 3857 break; 3858 case 1: 3859 if (extract32(size, 0, 1)) { 3860 unallocated_encoding(s); 3861 return; 3862 } 3863 index >>= 1; 3864 break; 3865 case 2: 3866 if (extract32(size, 1, 1)) { 3867 unallocated_encoding(s); 3868 return; 3869 } 3870 if (!extract32(size, 0, 1)) { 3871 index >>= 2; 3872 } else { 3873 if (S) { 3874 unallocated_encoding(s); 3875 return; 3876 } 3877 index >>= 3; 3878 scale = 3; 3879 } 3880 break; 3881 default: 3882 g_assert_not_reached(); 3883 } 3884 3885 if (!fp_access_check(s)) { 3886 return; 3887 } 3888 3889 if (rn == 31) { 3890 gen_check_sp_alignment(s); 3891 } 3892 3893 total = selem << scale; 3894 tcg_rn = cpu_reg_sp(s, rn); 3895 3896 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3897 total); 3898 mop = finalize_memop(s, scale); 3899 3900 tcg_ebytes = tcg_constant_i64(1 << scale); 3901 for (xs = 0; xs < selem; xs++) { 3902 if (replicate) { 3903 /* Load and replicate to all elements */ 3904 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3905 3906 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3907 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3908 (is_q + 1) * 8, vec_full_reg_size(s), 3909 tcg_tmp); 3910 } else { 3911 /* Load/store one element per register */ 3912 if (is_load) { 3913 do_vec_ld(s, rt, index, clean_addr, mop); 3914 } else { 3915 do_vec_st(s, rt, index, clean_addr, mop); 3916 } 3917 } 3918 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3919 rt = (rt + 1) % 32; 3920 } 3921 3922 if (is_postidx) { 3923 if (rm == 31) { 3924 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3925 } else { 3926 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3927 } 3928 } 3929 } 3930 3931 /* 3932 * Load/Store memory tags 3933 * 3934 * 31 30 29 24 22 21 12 10 5 0 3935 * +-----+-------------+-----+---+------+-----+------+------+ 3936 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 3937 * +-----+-------------+-----+---+------+-----+------+------+ 3938 */ 3939 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 3940 { 3941 int rt = extract32(insn, 0, 5); 3942 int rn = extract32(insn, 5, 5); 3943 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 3944 int op2 = extract32(insn, 10, 2); 3945 int op1 = extract32(insn, 22, 2); 3946 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 3947 int index = 0; 3948 TCGv_i64 addr, clean_addr, tcg_rt; 3949 3950 /* We checked insn bits [29:24,21] in the caller. */ 3951 if (extract32(insn, 30, 2) != 3) { 3952 goto do_unallocated; 3953 } 3954 3955 /* 3956 * @index is a tri-state variable which has 3 states: 3957 * < 0 : post-index, writeback 3958 * = 0 : signed offset 3959 * > 0 : pre-index, writeback 3960 */ 3961 switch (op1) { 3962 case 0: 3963 if (op2 != 0) { 3964 /* STG */ 3965 index = op2 - 2; 3966 } else { 3967 /* STZGM */ 3968 if (s->current_el == 0 || offset != 0) { 3969 goto do_unallocated; 3970 } 3971 is_mult = is_zero = true; 3972 } 3973 break; 3974 case 1: 3975 if (op2 != 0) { 3976 /* STZG */ 3977 is_zero = true; 3978 index = op2 - 2; 3979 } else { 3980 /* LDG */ 3981 is_load = true; 3982 } 3983 break; 3984 case 2: 3985 if (op2 != 0) { 3986 /* ST2G */ 3987 is_pair = true; 3988 index = op2 - 2; 3989 } else { 3990 /* STGM */ 3991 if (s->current_el == 0 || offset != 0) { 3992 goto do_unallocated; 3993 } 3994 is_mult = true; 3995 } 3996 break; 3997 case 3: 3998 if (op2 != 0) { 3999 /* STZ2G */ 4000 is_pair = is_zero = true; 4001 index = op2 - 2; 4002 } else { 4003 /* LDGM */ 4004 if (s->current_el == 0 || offset != 0) { 4005 goto do_unallocated; 4006 } 4007 is_mult = is_load = true; 4008 } 4009 break; 4010 4011 default: 4012 do_unallocated: 4013 unallocated_encoding(s); 4014 return; 4015 } 4016 4017 if (is_mult 4018 ? !dc_isar_feature(aa64_mte, s) 4019 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4020 goto do_unallocated; 4021 } 4022 4023 if (rn == 31) { 4024 gen_check_sp_alignment(s); 4025 } 4026 4027 addr = read_cpu_reg_sp(s, rn, true); 4028 if (index >= 0) { 4029 /* pre-index or signed offset */ 4030 tcg_gen_addi_i64(addr, addr, offset); 4031 } 4032 4033 if (is_mult) { 4034 tcg_rt = cpu_reg(s, rt); 4035 4036 if (is_zero) { 4037 int size = 4 << s->dcz_blocksize; 4038 4039 if (s->ata) { 4040 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4041 } 4042 /* 4043 * The non-tags portion of STZGM is mostly like DC_ZVA, 4044 * except the alignment happens before the access. 4045 */ 4046 clean_addr = clean_data_tbi(s, addr); 4047 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4048 gen_helper_dc_zva(cpu_env, clean_addr); 4049 } else if (s->ata) { 4050 if (is_load) { 4051 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4052 } else { 4053 gen_helper_stgm(cpu_env, addr, tcg_rt); 4054 } 4055 } else { 4056 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4057 int size = 4 << GMID_EL1_BS; 4058 4059 clean_addr = clean_data_tbi(s, addr); 4060 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4061 gen_probe_access(s, clean_addr, acc, size); 4062 4063 if (is_load) { 4064 /* The result tags are zeros. */ 4065 tcg_gen_movi_i64(tcg_rt, 0); 4066 } 4067 } 4068 return; 4069 } 4070 4071 if (is_load) { 4072 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4073 tcg_rt = cpu_reg(s, rt); 4074 if (s->ata) { 4075 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4076 } else { 4077 clean_addr = clean_data_tbi(s, addr); 4078 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4079 gen_address_with_allocation_tag0(tcg_rt, addr); 4080 } 4081 } else { 4082 tcg_rt = cpu_reg_sp(s, rt); 4083 if (!s->ata) { 4084 /* 4085 * For STG and ST2G, we need to check alignment and probe memory. 4086 * TODO: For STZG and STZ2G, we could rely on the stores below, 4087 * at least for system mode; user-only won't enforce alignment. 4088 */ 4089 if (is_pair) { 4090 gen_helper_st2g_stub(cpu_env, addr); 4091 } else { 4092 gen_helper_stg_stub(cpu_env, addr); 4093 } 4094 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4095 if (is_pair) { 4096 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4097 } else { 4098 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4099 } 4100 } else { 4101 if (is_pair) { 4102 gen_helper_st2g(cpu_env, addr, tcg_rt); 4103 } else { 4104 gen_helper_stg(cpu_env, addr, tcg_rt); 4105 } 4106 } 4107 } 4108 4109 if (is_zero) { 4110 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4111 TCGv_i64 zero64 = tcg_constant_i64(0); 4112 TCGv_i128 zero128 = tcg_temp_new_i128(); 4113 int mem_index = get_mem_index(s); 4114 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4115 4116 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4117 4118 /* This is 1 or 2 atomic 16-byte operations. */ 4119 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4120 if (is_pair) { 4121 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4122 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4123 } 4124 } 4125 4126 if (index != 0) { 4127 /* pre-index or post-index */ 4128 if (index < 0) { 4129 /* post-index */ 4130 tcg_gen_addi_i64(addr, addr, offset); 4131 } 4132 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4133 } 4134 } 4135 4136 /* Loads and stores */ 4137 static void disas_ldst(DisasContext *s, uint32_t insn) 4138 { 4139 switch (extract32(insn, 24, 6)) { 4140 case 0x08: /* Load/store exclusive */ 4141 disas_ldst_excl(s, insn); 4142 break; 4143 case 0x18: case 0x1c: /* Load register (literal) */ 4144 disas_ld_lit(s, insn); 4145 break; 4146 case 0x28: case 0x29: 4147 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4148 disas_ldst_pair(s, insn); 4149 break; 4150 case 0x38: case 0x39: 4151 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4152 disas_ldst_reg(s, insn); 4153 break; 4154 case 0x0c: /* AdvSIMD load/store multiple structures */ 4155 disas_ldst_multiple_struct(s, insn); 4156 break; 4157 case 0x0d: /* AdvSIMD load/store single structure */ 4158 disas_ldst_single_struct(s, insn); 4159 break; 4160 case 0x19: 4161 if (extract32(insn, 21, 1) != 0) { 4162 disas_ldst_tag(s, insn); 4163 } else if (extract32(insn, 10, 2) == 0) { 4164 disas_ldst_ldapr_stlr(s, insn); 4165 } else { 4166 unallocated_encoding(s); 4167 } 4168 break; 4169 default: 4170 unallocated_encoding(s); 4171 break; 4172 } 4173 } 4174 4175 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4176 4177 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4178 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4179 { 4180 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4181 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4182 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4183 4184 fn(tcg_rd, tcg_rn, tcg_imm); 4185 if (!a->sf) { 4186 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4187 } 4188 return true; 4189 } 4190 4191 /* 4192 * PC-rel. addressing 4193 */ 4194 4195 static bool trans_ADR(DisasContext *s, arg_ri *a) 4196 { 4197 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4198 return true; 4199 } 4200 4201 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4202 { 4203 int64_t offset = (int64_t)a->imm << 12; 4204 4205 /* The page offset is ok for CF_PCREL. */ 4206 offset -= s->pc_curr & 0xfff; 4207 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4208 return true; 4209 } 4210 4211 /* 4212 * Add/subtract (immediate) 4213 */ 4214 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4215 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4216 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4217 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4218 4219 /* 4220 * Add/subtract (immediate, with tags) 4221 */ 4222 4223 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4224 bool sub_op) 4225 { 4226 TCGv_i64 tcg_rn, tcg_rd; 4227 int imm; 4228 4229 imm = a->uimm6 << LOG2_TAG_GRANULE; 4230 if (sub_op) { 4231 imm = -imm; 4232 } 4233 4234 tcg_rn = cpu_reg_sp(s, a->rn); 4235 tcg_rd = cpu_reg_sp(s, a->rd); 4236 4237 if (s->ata) { 4238 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4239 tcg_constant_i32(imm), 4240 tcg_constant_i32(a->uimm4)); 4241 } else { 4242 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4243 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4244 } 4245 return true; 4246 } 4247 4248 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4249 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4250 4251 /* The input should be a value in the bottom e bits (with higher 4252 * bits zero); returns that value replicated into every element 4253 * of size e in a 64 bit integer. 4254 */ 4255 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4256 { 4257 assert(e != 0); 4258 while (e < 64) { 4259 mask |= mask << e; 4260 e *= 2; 4261 } 4262 return mask; 4263 } 4264 4265 /* 4266 * Logical (immediate) 4267 */ 4268 4269 /* 4270 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4271 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4272 * value (ie should cause a guest UNDEF exception), and true if they are 4273 * valid, in which case the decoded bit pattern is written to result. 4274 */ 4275 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4276 unsigned int imms, unsigned int immr) 4277 { 4278 uint64_t mask; 4279 unsigned e, levels, s, r; 4280 int len; 4281 4282 assert(immn < 2 && imms < 64 && immr < 64); 4283 4284 /* The bit patterns we create here are 64 bit patterns which 4285 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4286 * 64 bits each. Each element contains the same value: a run 4287 * of between 1 and e-1 non-zero bits, rotated within the 4288 * element by between 0 and e-1 bits. 4289 * 4290 * The element size and run length are encoded into immn (1 bit) 4291 * and imms (6 bits) as follows: 4292 * 64 bit elements: immn = 1, imms = <length of run - 1> 4293 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4294 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4295 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4296 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4297 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4298 * Notice that immn = 0, imms = 11111x is the only combination 4299 * not covered by one of the above options; this is reserved. 4300 * Further, <length of run - 1> all-ones is a reserved pattern. 4301 * 4302 * In all cases the rotation is by immr % e (and immr is 6 bits). 4303 */ 4304 4305 /* First determine the element size */ 4306 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4307 if (len < 1) { 4308 /* This is the immn == 0, imms == 0x11111x case */ 4309 return false; 4310 } 4311 e = 1 << len; 4312 4313 levels = e - 1; 4314 s = imms & levels; 4315 r = immr & levels; 4316 4317 if (s == levels) { 4318 /* <length of run - 1> mustn't be all-ones. */ 4319 return false; 4320 } 4321 4322 /* Create the value of one element: s+1 set bits rotated 4323 * by r within the element (which is e bits wide)... 4324 */ 4325 mask = MAKE_64BIT_MASK(0, s + 1); 4326 if (r) { 4327 mask = (mask >> r) | (mask << (e - r)); 4328 mask &= MAKE_64BIT_MASK(0, e); 4329 } 4330 /* ...then replicate the element over the whole 64 bit value */ 4331 mask = bitfield_replicate(mask, e); 4332 *result = mask; 4333 return true; 4334 } 4335 4336 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4337 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4338 { 4339 TCGv_i64 tcg_rd, tcg_rn; 4340 uint64_t imm; 4341 4342 /* Some immediate field values are reserved. */ 4343 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4344 extract32(a->dbm, 0, 6), 4345 extract32(a->dbm, 6, 6))) { 4346 return false; 4347 } 4348 if (!a->sf) { 4349 imm &= 0xffffffffull; 4350 } 4351 4352 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4353 tcg_rn = cpu_reg(s, a->rn); 4354 4355 fn(tcg_rd, tcg_rn, imm); 4356 if (set_cc) { 4357 gen_logic_CC(a->sf, tcg_rd); 4358 } 4359 if (!a->sf) { 4360 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4361 } 4362 return true; 4363 } 4364 4365 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4366 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4367 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4368 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4369 4370 /* 4371 * Move wide (immediate) 4372 */ 4373 4374 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4375 { 4376 int pos = a->hw << 4; 4377 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4378 return true; 4379 } 4380 4381 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4382 { 4383 int pos = a->hw << 4; 4384 uint64_t imm = a->imm; 4385 4386 imm = ~(imm << pos); 4387 if (!a->sf) { 4388 imm = (uint32_t)imm; 4389 } 4390 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4391 return true; 4392 } 4393 4394 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4395 { 4396 int pos = a->hw << 4; 4397 TCGv_i64 tcg_rd, tcg_im; 4398 4399 tcg_rd = cpu_reg(s, a->rd); 4400 tcg_im = tcg_constant_i64(a->imm); 4401 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4402 if (!a->sf) { 4403 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4404 } 4405 return true; 4406 } 4407 4408 /* 4409 * Bitfield 4410 */ 4411 4412 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4413 { 4414 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4415 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4416 unsigned int bitsize = a->sf ? 64 : 32; 4417 unsigned int ri = a->immr; 4418 unsigned int si = a->imms; 4419 unsigned int pos, len; 4420 4421 if (si >= ri) { 4422 /* Wd<s-r:0> = Wn<s:r> */ 4423 len = (si - ri) + 1; 4424 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4425 if (!a->sf) { 4426 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4427 } 4428 } else { 4429 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4430 len = si + 1; 4431 pos = (bitsize - ri) & (bitsize - 1); 4432 4433 if (len < ri) { 4434 /* 4435 * Sign extend the destination field from len to fill the 4436 * balance of the word. Let the deposit below insert all 4437 * of those sign bits. 4438 */ 4439 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4440 len = ri; 4441 } 4442 4443 /* 4444 * We start with zero, and we haven't modified any bits outside 4445 * bitsize, therefore no final zero-extension is unneeded for !sf. 4446 */ 4447 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4448 } 4449 return true; 4450 } 4451 4452 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4453 { 4454 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4455 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4456 unsigned int bitsize = a->sf ? 64 : 32; 4457 unsigned int ri = a->immr; 4458 unsigned int si = a->imms; 4459 unsigned int pos, len; 4460 4461 tcg_rd = cpu_reg(s, a->rd); 4462 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4463 4464 if (si >= ri) { 4465 /* Wd<s-r:0> = Wn<s:r> */ 4466 len = (si - ri) + 1; 4467 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4468 } else { 4469 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4470 len = si + 1; 4471 pos = (bitsize - ri) & (bitsize - 1); 4472 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4473 } 4474 return true; 4475 } 4476 4477 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4478 { 4479 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4480 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4481 unsigned int bitsize = a->sf ? 64 : 32; 4482 unsigned int ri = a->immr; 4483 unsigned int si = a->imms; 4484 unsigned int pos, len; 4485 4486 tcg_rd = cpu_reg(s, a->rd); 4487 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4488 4489 if (si >= ri) { 4490 /* Wd<s-r:0> = Wn<s:r> */ 4491 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4492 len = (si - ri) + 1; 4493 pos = 0; 4494 } else { 4495 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4496 len = si + 1; 4497 pos = (bitsize - ri) & (bitsize - 1); 4498 } 4499 4500 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4501 if (!a->sf) { 4502 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4503 } 4504 return true; 4505 } 4506 4507 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4508 { 4509 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4510 4511 tcg_rd = cpu_reg(s, a->rd); 4512 4513 if (unlikely(a->imm == 0)) { 4514 /* 4515 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4516 * so an extract from bit 0 is a special case. 4517 */ 4518 if (a->sf) { 4519 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4520 } else { 4521 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4522 } 4523 } else { 4524 tcg_rm = cpu_reg(s, a->rm); 4525 tcg_rn = cpu_reg(s, a->rn); 4526 4527 if (a->sf) { 4528 /* Specialization to ROR happens in EXTRACT2. */ 4529 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4530 } else { 4531 TCGv_i32 t0 = tcg_temp_new_i32(); 4532 4533 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4534 if (a->rm == a->rn) { 4535 tcg_gen_rotri_i32(t0, t0, a->imm); 4536 } else { 4537 TCGv_i32 t1 = tcg_temp_new_i32(); 4538 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4539 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4540 } 4541 tcg_gen_extu_i32_i64(tcg_rd, t0); 4542 } 4543 } 4544 return true; 4545 } 4546 4547 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4548 * Note that it is the caller's responsibility to ensure that the 4549 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4550 * mandated semantics for out of range shifts. 4551 */ 4552 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4553 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4554 { 4555 switch (shift_type) { 4556 case A64_SHIFT_TYPE_LSL: 4557 tcg_gen_shl_i64(dst, src, shift_amount); 4558 break; 4559 case A64_SHIFT_TYPE_LSR: 4560 tcg_gen_shr_i64(dst, src, shift_amount); 4561 break; 4562 case A64_SHIFT_TYPE_ASR: 4563 if (!sf) { 4564 tcg_gen_ext32s_i64(dst, src); 4565 } 4566 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4567 break; 4568 case A64_SHIFT_TYPE_ROR: 4569 if (sf) { 4570 tcg_gen_rotr_i64(dst, src, shift_amount); 4571 } else { 4572 TCGv_i32 t0, t1; 4573 t0 = tcg_temp_new_i32(); 4574 t1 = tcg_temp_new_i32(); 4575 tcg_gen_extrl_i64_i32(t0, src); 4576 tcg_gen_extrl_i64_i32(t1, shift_amount); 4577 tcg_gen_rotr_i32(t0, t0, t1); 4578 tcg_gen_extu_i32_i64(dst, t0); 4579 } 4580 break; 4581 default: 4582 assert(FALSE); /* all shift types should be handled */ 4583 break; 4584 } 4585 4586 if (!sf) { /* zero extend final result */ 4587 tcg_gen_ext32u_i64(dst, dst); 4588 } 4589 } 4590 4591 /* Shift a TCGv src by immediate, put result in dst. 4592 * The shift amount must be in range (this should always be true as the 4593 * relevant instructions will UNDEF on bad shift immediates). 4594 */ 4595 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4596 enum a64_shift_type shift_type, unsigned int shift_i) 4597 { 4598 assert(shift_i < (sf ? 64 : 32)); 4599 4600 if (shift_i == 0) { 4601 tcg_gen_mov_i64(dst, src); 4602 } else { 4603 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4604 } 4605 } 4606 4607 /* Logical (shifted register) 4608 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4609 * +----+-----+-----------+-------+---+------+--------+------+------+ 4610 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4611 * +----+-----+-----------+-------+---+------+--------+------+------+ 4612 */ 4613 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4614 { 4615 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4616 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4617 4618 sf = extract32(insn, 31, 1); 4619 opc = extract32(insn, 29, 2); 4620 shift_type = extract32(insn, 22, 2); 4621 invert = extract32(insn, 21, 1); 4622 rm = extract32(insn, 16, 5); 4623 shift_amount = extract32(insn, 10, 6); 4624 rn = extract32(insn, 5, 5); 4625 rd = extract32(insn, 0, 5); 4626 4627 if (!sf && (shift_amount & (1 << 5))) { 4628 unallocated_encoding(s); 4629 return; 4630 } 4631 4632 tcg_rd = cpu_reg(s, rd); 4633 4634 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4635 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4636 * register-register MOV and MVN, so it is worth special casing. 4637 */ 4638 tcg_rm = cpu_reg(s, rm); 4639 if (invert) { 4640 tcg_gen_not_i64(tcg_rd, tcg_rm); 4641 if (!sf) { 4642 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4643 } 4644 } else { 4645 if (sf) { 4646 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4647 } else { 4648 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4649 } 4650 } 4651 return; 4652 } 4653 4654 tcg_rm = read_cpu_reg(s, rm, sf); 4655 4656 if (shift_amount) { 4657 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4658 } 4659 4660 tcg_rn = cpu_reg(s, rn); 4661 4662 switch (opc | (invert << 2)) { 4663 case 0: /* AND */ 4664 case 3: /* ANDS */ 4665 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4666 break; 4667 case 1: /* ORR */ 4668 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4669 break; 4670 case 2: /* EOR */ 4671 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4672 break; 4673 case 4: /* BIC */ 4674 case 7: /* BICS */ 4675 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4676 break; 4677 case 5: /* ORN */ 4678 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4679 break; 4680 case 6: /* EON */ 4681 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4682 break; 4683 default: 4684 assert(FALSE); 4685 break; 4686 } 4687 4688 if (!sf) { 4689 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4690 } 4691 4692 if (opc == 3) { 4693 gen_logic_CC(sf, tcg_rd); 4694 } 4695 } 4696 4697 /* 4698 * Add/subtract (extended register) 4699 * 4700 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4701 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4702 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4703 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4704 * 4705 * sf: 0 -> 32bit, 1 -> 64bit 4706 * op: 0 -> add , 1 -> sub 4707 * S: 1 -> set flags 4708 * opt: 00 4709 * option: extension type (see DecodeRegExtend) 4710 * imm3: optional shift to Rm 4711 * 4712 * Rd = Rn + LSL(extend(Rm), amount) 4713 */ 4714 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4715 { 4716 int rd = extract32(insn, 0, 5); 4717 int rn = extract32(insn, 5, 5); 4718 int imm3 = extract32(insn, 10, 3); 4719 int option = extract32(insn, 13, 3); 4720 int rm = extract32(insn, 16, 5); 4721 int opt = extract32(insn, 22, 2); 4722 bool setflags = extract32(insn, 29, 1); 4723 bool sub_op = extract32(insn, 30, 1); 4724 bool sf = extract32(insn, 31, 1); 4725 4726 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4727 TCGv_i64 tcg_rd; 4728 TCGv_i64 tcg_result; 4729 4730 if (imm3 > 4 || opt != 0) { 4731 unallocated_encoding(s); 4732 return; 4733 } 4734 4735 /* non-flag setting ops may use SP */ 4736 if (!setflags) { 4737 tcg_rd = cpu_reg_sp(s, rd); 4738 } else { 4739 tcg_rd = cpu_reg(s, rd); 4740 } 4741 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4742 4743 tcg_rm = read_cpu_reg(s, rm, sf); 4744 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4745 4746 tcg_result = tcg_temp_new_i64(); 4747 4748 if (!setflags) { 4749 if (sub_op) { 4750 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4751 } else { 4752 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4753 } 4754 } else { 4755 if (sub_op) { 4756 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4757 } else { 4758 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4759 } 4760 } 4761 4762 if (sf) { 4763 tcg_gen_mov_i64(tcg_rd, tcg_result); 4764 } else { 4765 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4766 } 4767 } 4768 4769 /* 4770 * Add/subtract (shifted register) 4771 * 4772 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4773 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4774 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4775 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4776 * 4777 * sf: 0 -> 32bit, 1 -> 64bit 4778 * op: 0 -> add , 1 -> sub 4779 * S: 1 -> set flags 4780 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4781 * imm6: Shift amount to apply to Rm before the add/sub 4782 */ 4783 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4784 { 4785 int rd = extract32(insn, 0, 5); 4786 int rn = extract32(insn, 5, 5); 4787 int imm6 = extract32(insn, 10, 6); 4788 int rm = extract32(insn, 16, 5); 4789 int shift_type = extract32(insn, 22, 2); 4790 bool setflags = extract32(insn, 29, 1); 4791 bool sub_op = extract32(insn, 30, 1); 4792 bool sf = extract32(insn, 31, 1); 4793 4794 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4795 TCGv_i64 tcg_rn, tcg_rm; 4796 TCGv_i64 tcg_result; 4797 4798 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4799 unallocated_encoding(s); 4800 return; 4801 } 4802 4803 tcg_rn = read_cpu_reg(s, rn, sf); 4804 tcg_rm = read_cpu_reg(s, rm, sf); 4805 4806 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4807 4808 tcg_result = tcg_temp_new_i64(); 4809 4810 if (!setflags) { 4811 if (sub_op) { 4812 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4813 } else { 4814 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4815 } 4816 } else { 4817 if (sub_op) { 4818 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4819 } else { 4820 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4821 } 4822 } 4823 4824 if (sf) { 4825 tcg_gen_mov_i64(tcg_rd, tcg_result); 4826 } else { 4827 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4828 } 4829 } 4830 4831 /* Data-processing (3 source) 4832 * 4833 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4834 * +--+------+-----------+------+------+----+------+------+------+ 4835 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4836 * +--+------+-----------+------+------+----+------+------+------+ 4837 */ 4838 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4839 { 4840 int rd = extract32(insn, 0, 5); 4841 int rn = extract32(insn, 5, 5); 4842 int ra = extract32(insn, 10, 5); 4843 int rm = extract32(insn, 16, 5); 4844 int op_id = (extract32(insn, 29, 3) << 4) | 4845 (extract32(insn, 21, 3) << 1) | 4846 extract32(insn, 15, 1); 4847 bool sf = extract32(insn, 31, 1); 4848 bool is_sub = extract32(op_id, 0, 1); 4849 bool is_high = extract32(op_id, 2, 1); 4850 bool is_signed = false; 4851 TCGv_i64 tcg_op1; 4852 TCGv_i64 tcg_op2; 4853 TCGv_i64 tcg_tmp; 4854 4855 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4856 switch (op_id) { 4857 case 0x42: /* SMADDL */ 4858 case 0x43: /* SMSUBL */ 4859 case 0x44: /* SMULH */ 4860 is_signed = true; 4861 break; 4862 case 0x0: /* MADD (32bit) */ 4863 case 0x1: /* MSUB (32bit) */ 4864 case 0x40: /* MADD (64bit) */ 4865 case 0x41: /* MSUB (64bit) */ 4866 case 0x4a: /* UMADDL */ 4867 case 0x4b: /* UMSUBL */ 4868 case 0x4c: /* UMULH */ 4869 break; 4870 default: 4871 unallocated_encoding(s); 4872 return; 4873 } 4874 4875 if (is_high) { 4876 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4877 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4878 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4879 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4880 4881 if (is_signed) { 4882 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4883 } else { 4884 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4885 } 4886 return; 4887 } 4888 4889 tcg_op1 = tcg_temp_new_i64(); 4890 tcg_op2 = tcg_temp_new_i64(); 4891 tcg_tmp = tcg_temp_new_i64(); 4892 4893 if (op_id < 0x42) { 4894 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4895 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4896 } else { 4897 if (is_signed) { 4898 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4899 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4900 } else { 4901 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4902 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4903 } 4904 } 4905 4906 if (ra == 31 && !is_sub) { 4907 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4908 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4909 } else { 4910 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4911 if (is_sub) { 4912 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4913 } else { 4914 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4915 } 4916 } 4917 4918 if (!sf) { 4919 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4920 } 4921 } 4922 4923 /* Add/subtract (with carry) 4924 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4925 * +--+--+--+------------------------+------+-------------+------+-----+ 4926 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4927 * +--+--+--+------------------------+------+-------------+------+-----+ 4928 */ 4929 4930 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4931 { 4932 unsigned int sf, op, setflags, rm, rn, rd; 4933 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4934 4935 sf = extract32(insn, 31, 1); 4936 op = extract32(insn, 30, 1); 4937 setflags = extract32(insn, 29, 1); 4938 rm = extract32(insn, 16, 5); 4939 rn = extract32(insn, 5, 5); 4940 rd = extract32(insn, 0, 5); 4941 4942 tcg_rd = cpu_reg(s, rd); 4943 tcg_rn = cpu_reg(s, rn); 4944 4945 if (op) { 4946 tcg_y = tcg_temp_new_i64(); 4947 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4948 } else { 4949 tcg_y = cpu_reg(s, rm); 4950 } 4951 4952 if (setflags) { 4953 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4954 } else { 4955 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4956 } 4957 } 4958 4959 /* 4960 * Rotate right into flags 4961 * 31 30 29 21 15 10 5 4 0 4962 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4963 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4964 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4965 */ 4966 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4967 { 4968 int mask = extract32(insn, 0, 4); 4969 int o2 = extract32(insn, 4, 1); 4970 int rn = extract32(insn, 5, 5); 4971 int imm6 = extract32(insn, 15, 6); 4972 int sf_op_s = extract32(insn, 29, 3); 4973 TCGv_i64 tcg_rn; 4974 TCGv_i32 nzcv; 4975 4976 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4977 unallocated_encoding(s); 4978 return; 4979 } 4980 4981 tcg_rn = read_cpu_reg(s, rn, 1); 4982 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4983 4984 nzcv = tcg_temp_new_i32(); 4985 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4986 4987 if (mask & 8) { /* N */ 4988 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4989 } 4990 if (mask & 4) { /* Z */ 4991 tcg_gen_not_i32(cpu_ZF, nzcv); 4992 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4993 } 4994 if (mask & 2) { /* C */ 4995 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4996 } 4997 if (mask & 1) { /* V */ 4998 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4999 } 5000 } 5001 5002 /* 5003 * Evaluate into flags 5004 * 31 30 29 21 15 14 10 5 4 0 5005 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5006 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5007 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5008 */ 5009 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5010 { 5011 int o3_mask = extract32(insn, 0, 5); 5012 int rn = extract32(insn, 5, 5); 5013 int o2 = extract32(insn, 15, 6); 5014 int sz = extract32(insn, 14, 1); 5015 int sf_op_s = extract32(insn, 29, 3); 5016 TCGv_i32 tmp; 5017 int shift; 5018 5019 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5020 !dc_isar_feature(aa64_condm_4, s)) { 5021 unallocated_encoding(s); 5022 return; 5023 } 5024 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5025 5026 tmp = tcg_temp_new_i32(); 5027 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5028 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5029 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5030 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5031 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5032 } 5033 5034 /* Conditional compare (immediate / register) 5035 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5036 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5037 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5038 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5039 * [1] y [0] [0] 5040 */ 5041 static void disas_cc(DisasContext *s, uint32_t insn) 5042 { 5043 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5044 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5045 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5046 DisasCompare c; 5047 5048 if (!extract32(insn, 29, 1)) { 5049 unallocated_encoding(s); 5050 return; 5051 } 5052 if (insn & (1 << 10 | 1 << 4)) { 5053 unallocated_encoding(s); 5054 return; 5055 } 5056 sf = extract32(insn, 31, 1); 5057 op = extract32(insn, 30, 1); 5058 is_imm = extract32(insn, 11, 1); 5059 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5060 cond = extract32(insn, 12, 4); 5061 rn = extract32(insn, 5, 5); 5062 nzcv = extract32(insn, 0, 4); 5063 5064 /* Set T0 = !COND. */ 5065 tcg_t0 = tcg_temp_new_i32(); 5066 arm_test_cc(&c, cond); 5067 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5068 5069 /* Load the arguments for the new comparison. */ 5070 if (is_imm) { 5071 tcg_y = tcg_temp_new_i64(); 5072 tcg_gen_movi_i64(tcg_y, y); 5073 } else { 5074 tcg_y = cpu_reg(s, y); 5075 } 5076 tcg_rn = cpu_reg(s, rn); 5077 5078 /* Set the flags for the new comparison. */ 5079 tcg_tmp = tcg_temp_new_i64(); 5080 if (op) { 5081 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5082 } else { 5083 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5084 } 5085 5086 /* If COND was false, force the flags to #nzcv. Compute two masks 5087 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5088 * For tcg hosts that support ANDC, we can make do with just T1. 5089 * In either case, allow the tcg optimizer to delete any unused mask. 5090 */ 5091 tcg_t1 = tcg_temp_new_i32(); 5092 tcg_t2 = tcg_temp_new_i32(); 5093 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5094 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5095 5096 if (nzcv & 8) { /* N */ 5097 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5098 } else { 5099 if (TCG_TARGET_HAS_andc_i32) { 5100 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5101 } else { 5102 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5103 } 5104 } 5105 if (nzcv & 4) { /* Z */ 5106 if (TCG_TARGET_HAS_andc_i32) { 5107 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5108 } else { 5109 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5110 } 5111 } else { 5112 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5113 } 5114 if (nzcv & 2) { /* C */ 5115 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5116 } else { 5117 if (TCG_TARGET_HAS_andc_i32) { 5118 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5119 } else { 5120 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5121 } 5122 } 5123 if (nzcv & 1) { /* V */ 5124 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5125 } else { 5126 if (TCG_TARGET_HAS_andc_i32) { 5127 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5128 } else { 5129 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5130 } 5131 } 5132 } 5133 5134 /* Conditional select 5135 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5136 * +----+----+---+-----------------+------+------+-----+------+------+ 5137 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5138 * +----+----+---+-----------------+------+------+-----+------+------+ 5139 */ 5140 static void disas_cond_select(DisasContext *s, uint32_t insn) 5141 { 5142 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5143 TCGv_i64 tcg_rd, zero; 5144 DisasCompare64 c; 5145 5146 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5147 /* S == 1 or op2<1> == 1 */ 5148 unallocated_encoding(s); 5149 return; 5150 } 5151 sf = extract32(insn, 31, 1); 5152 else_inv = extract32(insn, 30, 1); 5153 rm = extract32(insn, 16, 5); 5154 cond = extract32(insn, 12, 4); 5155 else_inc = extract32(insn, 10, 1); 5156 rn = extract32(insn, 5, 5); 5157 rd = extract32(insn, 0, 5); 5158 5159 tcg_rd = cpu_reg(s, rd); 5160 5161 a64_test_cc(&c, cond); 5162 zero = tcg_constant_i64(0); 5163 5164 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5165 /* CSET & CSETM. */ 5166 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5167 if (else_inv) { 5168 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5169 } 5170 } else { 5171 TCGv_i64 t_true = cpu_reg(s, rn); 5172 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5173 if (else_inv && else_inc) { 5174 tcg_gen_neg_i64(t_false, t_false); 5175 } else if (else_inv) { 5176 tcg_gen_not_i64(t_false, t_false); 5177 } else if (else_inc) { 5178 tcg_gen_addi_i64(t_false, t_false, 1); 5179 } 5180 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5181 } 5182 5183 if (!sf) { 5184 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5185 } 5186 } 5187 5188 static void handle_clz(DisasContext *s, unsigned int sf, 5189 unsigned int rn, unsigned int rd) 5190 { 5191 TCGv_i64 tcg_rd, tcg_rn; 5192 tcg_rd = cpu_reg(s, rd); 5193 tcg_rn = cpu_reg(s, rn); 5194 5195 if (sf) { 5196 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5197 } else { 5198 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5199 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5200 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5201 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5202 } 5203 } 5204 5205 static void handle_cls(DisasContext *s, unsigned int sf, 5206 unsigned int rn, unsigned int rd) 5207 { 5208 TCGv_i64 tcg_rd, tcg_rn; 5209 tcg_rd = cpu_reg(s, rd); 5210 tcg_rn = cpu_reg(s, rn); 5211 5212 if (sf) { 5213 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5214 } else { 5215 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5216 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5217 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5218 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5219 } 5220 } 5221 5222 static void handle_rbit(DisasContext *s, unsigned int sf, 5223 unsigned int rn, unsigned int rd) 5224 { 5225 TCGv_i64 tcg_rd, tcg_rn; 5226 tcg_rd = cpu_reg(s, rd); 5227 tcg_rn = cpu_reg(s, rn); 5228 5229 if (sf) { 5230 gen_helper_rbit64(tcg_rd, tcg_rn); 5231 } else { 5232 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5233 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5234 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5235 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5236 } 5237 } 5238 5239 /* REV with sf==1, opcode==3 ("REV64") */ 5240 static void handle_rev64(DisasContext *s, unsigned int sf, 5241 unsigned int rn, unsigned int rd) 5242 { 5243 if (!sf) { 5244 unallocated_encoding(s); 5245 return; 5246 } 5247 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5248 } 5249 5250 /* REV with sf==0, opcode==2 5251 * REV32 (sf==1, opcode==2) 5252 */ 5253 static void handle_rev32(DisasContext *s, unsigned int sf, 5254 unsigned int rn, unsigned int rd) 5255 { 5256 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5257 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5258 5259 if (sf) { 5260 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5261 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5262 } else { 5263 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5264 } 5265 } 5266 5267 /* REV16 (opcode==1) */ 5268 static void handle_rev16(DisasContext *s, unsigned int sf, 5269 unsigned int rn, unsigned int rd) 5270 { 5271 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5272 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5273 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5274 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5275 5276 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5277 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5278 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5279 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5280 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5281 } 5282 5283 /* Data-processing (1 source) 5284 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5285 * +----+---+---+-----------------+---------+--------+------+------+ 5286 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5287 * +----+---+---+-----------------+---------+--------+------+------+ 5288 */ 5289 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5290 { 5291 unsigned int sf, opcode, opcode2, rn, rd; 5292 TCGv_i64 tcg_rd; 5293 5294 if (extract32(insn, 29, 1)) { 5295 unallocated_encoding(s); 5296 return; 5297 } 5298 5299 sf = extract32(insn, 31, 1); 5300 opcode = extract32(insn, 10, 6); 5301 opcode2 = extract32(insn, 16, 5); 5302 rn = extract32(insn, 5, 5); 5303 rd = extract32(insn, 0, 5); 5304 5305 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5306 5307 switch (MAP(sf, opcode2, opcode)) { 5308 case MAP(0, 0x00, 0x00): /* RBIT */ 5309 case MAP(1, 0x00, 0x00): 5310 handle_rbit(s, sf, rn, rd); 5311 break; 5312 case MAP(0, 0x00, 0x01): /* REV16 */ 5313 case MAP(1, 0x00, 0x01): 5314 handle_rev16(s, sf, rn, rd); 5315 break; 5316 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5317 case MAP(1, 0x00, 0x02): 5318 handle_rev32(s, sf, rn, rd); 5319 break; 5320 case MAP(1, 0x00, 0x03): /* REV64 */ 5321 handle_rev64(s, sf, rn, rd); 5322 break; 5323 case MAP(0, 0x00, 0x04): /* CLZ */ 5324 case MAP(1, 0x00, 0x04): 5325 handle_clz(s, sf, rn, rd); 5326 break; 5327 case MAP(0, 0x00, 0x05): /* CLS */ 5328 case MAP(1, 0x00, 0x05): 5329 handle_cls(s, sf, rn, rd); 5330 break; 5331 case MAP(1, 0x01, 0x00): /* PACIA */ 5332 if (s->pauth_active) { 5333 tcg_rd = cpu_reg(s, rd); 5334 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5335 } else if (!dc_isar_feature(aa64_pauth, s)) { 5336 goto do_unallocated; 5337 } 5338 break; 5339 case MAP(1, 0x01, 0x01): /* PACIB */ 5340 if (s->pauth_active) { 5341 tcg_rd = cpu_reg(s, rd); 5342 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5343 } else if (!dc_isar_feature(aa64_pauth, s)) { 5344 goto do_unallocated; 5345 } 5346 break; 5347 case MAP(1, 0x01, 0x02): /* PACDA */ 5348 if (s->pauth_active) { 5349 tcg_rd = cpu_reg(s, rd); 5350 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5351 } else if (!dc_isar_feature(aa64_pauth, s)) { 5352 goto do_unallocated; 5353 } 5354 break; 5355 case MAP(1, 0x01, 0x03): /* PACDB */ 5356 if (s->pauth_active) { 5357 tcg_rd = cpu_reg(s, rd); 5358 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5359 } else if (!dc_isar_feature(aa64_pauth, s)) { 5360 goto do_unallocated; 5361 } 5362 break; 5363 case MAP(1, 0x01, 0x04): /* AUTIA */ 5364 if (s->pauth_active) { 5365 tcg_rd = cpu_reg(s, rd); 5366 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5367 } else if (!dc_isar_feature(aa64_pauth, s)) { 5368 goto do_unallocated; 5369 } 5370 break; 5371 case MAP(1, 0x01, 0x05): /* AUTIB */ 5372 if (s->pauth_active) { 5373 tcg_rd = cpu_reg(s, rd); 5374 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5375 } else if (!dc_isar_feature(aa64_pauth, s)) { 5376 goto do_unallocated; 5377 } 5378 break; 5379 case MAP(1, 0x01, 0x06): /* AUTDA */ 5380 if (s->pauth_active) { 5381 tcg_rd = cpu_reg(s, rd); 5382 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5383 } else if (!dc_isar_feature(aa64_pauth, s)) { 5384 goto do_unallocated; 5385 } 5386 break; 5387 case MAP(1, 0x01, 0x07): /* AUTDB */ 5388 if (s->pauth_active) { 5389 tcg_rd = cpu_reg(s, rd); 5390 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5391 } else if (!dc_isar_feature(aa64_pauth, s)) { 5392 goto do_unallocated; 5393 } 5394 break; 5395 case MAP(1, 0x01, 0x08): /* PACIZA */ 5396 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5397 goto do_unallocated; 5398 } else if (s->pauth_active) { 5399 tcg_rd = cpu_reg(s, rd); 5400 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5401 } 5402 break; 5403 case MAP(1, 0x01, 0x09): /* PACIZB */ 5404 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5405 goto do_unallocated; 5406 } else if (s->pauth_active) { 5407 tcg_rd = cpu_reg(s, rd); 5408 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5409 } 5410 break; 5411 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5412 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5413 goto do_unallocated; 5414 } else if (s->pauth_active) { 5415 tcg_rd = cpu_reg(s, rd); 5416 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5417 } 5418 break; 5419 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5420 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5421 goto do_unallocated; 5422 } else if (s->pauth_active) { 5423 tcg_rd = cpu_reg(s, rd); 5424 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5425 } 5426 break; 5427 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5428 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5429 goto do_unallocated; 5430 } else if (s->pauth_active) { 5431 tcg_rd = cpu_reg(s, rd); 5432 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5433 } 5434 break; 5435 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5436 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5437 goto do_unallocated; 5438 } else if (s->pauth_active) { 5439 tcg_rd = cpu_reg(s, rd); 5440 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5441 } 5442 break; 5443 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5444 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5445 goto do_unallocated; 5446 } else if (s->pauth_active) { 5447 tcg_rd = cpu_reg(s, rd); 5448 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5449 } 5450 break; 5451 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5452 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5453 goto do_unallocated; 5454 } else if (s->pauth_active) { 5455 tcg_rd = cpu_reg(s, rd); 5456 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5457 } 5458 break; 5459 case MAP(1, 0x01, 0x10): /* XPACI */ 5460 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5461 goto do_unallocated; 5462 } else if (s->pauth_active) { 5463 tcg_rd = cpu_reg(s, rd); 5464 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5465 } 5466 break; 5467 case MAP(1, 0x01, 0x11): /* XPACD */ 5468 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5469 goto do_unallocated; 5470 } else if (s->pauth_active) { 5471 tcg_rd = cpu_reg(s, rd); 5472 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5473 } 5474 break; 5475 default: 5476 do_unallocated: 5477 unallocated_encoding(s); 5478 break; 5479 } 5480 5481 #undef MAP 5482 } 5483 5484 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5485 unsigned int rm, unsigned int rn, unsigned int rd) 5486 { 5487 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5488 tcg_rd = cpu_reg(s, rd); 5489 5490 if (!sf && is_signed) { 5491 tcg_n = tcg_temp_new_i64(); 5492 tcg_m = tcg_temp_new_i64(); 5493 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5494 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5495 } else { 5496 tcg_n = read_cpu_reg(s, rn, sf); 5497 tcg_m = read_cpu_reg(s, rm, sf); 5498 } 5499 5500 if (is_signed) { 5501 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5502 } else { 5503 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5504 } 5505 5506 if (!sf) { /* zero extend final result */ 5507 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5508 } 5509 } 5510 5511 /* LSLV, LSRV, ASRV, RORV */ 5512 static void handle_shift_reg(DisasContext *s, 5513 enum a64_shift_type shift_type, unsigned int sf, 5514 unsigned int rm, unsigned int rn, unsigned int rd) 5515 { 5516 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5517 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5518 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5519 5520 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5521 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5522 } 5523 5524 /* CRC32[BHWX], CRC32C[BHWX] */ 5525 static void handle_crc32(DisasContext *s, 5526 unsigned int sf, unsigned int sz, bool crc32c, 5527 unsigned int rm, unsigned int rn, unsigned int rd) 5528 { 5529 TCGv_i64 tcg_acc, tcg_val; 5530 TCGv_i32 tcg_bytes; 5531 5532 if (!dc_isar_feature(aa64_crc32, s) 5533 || (sf == 1 && sz != 3) 5534 || (sf == 0 && sz == 3)) { 5535 unallocated_encoding(s); 5536 return; 5537 } 5538 5539 if (sz == 3) { 5540 tcg_val = cpu_reg(s, rm); 5541 } else { 5542 uint64_t mask; 5543 switch (sz) { 5544 case 0: 5545 mask = 0xFF; 5546 break; 5547 case 1: 5548 mask = 0xFFFF; 5549 break; 5550 case 2: 5551 mask = 0xFFFFFFFF; 5552 break; 5553 default: 5554 g_assert_not_reached(); 5555 } 5556 tcg_val = tcg_temp_new_i64(); 5557 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5558 } 5559 5560 tcg_acc = cpu_reg(s, rn); 5561 tcg_bytes = tcg_constant_i32(1 << sz); 5562 5563 if (crc32c) { 5564 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5565 } else { 5566 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5567 } 5568 } 5569 5570 /* Data-processing (2 source) 5571 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5572 * +----+---+---+-----------------+------+--------+------+------+ 5573 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5574 * +----+---+---+-----------------+------+--------+------+------+ 5575 */ 5576 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5577 { 5578 unsigned int sf, rm, opcode, rn, rd, setflag; 5579 sf = extract32(insn, 31, 1); 5580 setflag = extract32(insn, 29, 1); 5581 rm = extract32(insn, 16, 5); 5582 opcode = extract32(insn, 10, 6); 5583 rn = extract32(insn, 5, 5); 5584 rd = extract32(insn, 0, 5); 5585 5586 if (setflag && opcode != 0) { 5587 unallocated_encoding(s); 5588 return; 5589 } 5590 5591 switch (opcode) { 5592 case 0: /* SUBP(S) */ 5593 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5594 goto do_unallocated; 5595 } else { 5596 TCGv_i64 tcg_n, tcg_m, tcg_d; 5597 5598 tcg_n = read_cpu_reg_sp(s, rn, true); 5599 tcg_m = read_cpu_reg_sp(s, rm, true); 5600 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5601 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5602 tcg_d = cpu_reg(s, rd); 5603 5604 if (setflag) { 5605 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5606 } else { 5607 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5608 } 5609 } 5610 break; 5611 case 2: /* UDIV */ 5612 handle_div(s, false, sf, rm, rn, rd); 5613 break; 5614 case 3: /* SDIV */ 5615 handle_div(s, true, sf, rm, rn, rd); 5616 break; 5617 case 4: /* IRG */ 5618 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5619 goto do_unallocated; 5620 } 5621 if (s->ata) { 5622 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5623 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5624 } else { 5625 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5626 cpu_reg_sp(s, rn)); 5627 } 5628 break; 5629 case 5: /* GMI */ 5630 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5631 goto do_unallocated; 5632 } else { 5633 TCGv_i64 t = tcg_temp_new_i64(); 5634 5635 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5636 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5637 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5638 } 5639 break; 5640 case 8: /* LSLV */ 5641 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5642 break; 5643 case 9: /* LSRV */ 5644 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5645 break; 5646 case 10: /* ASRV */ 5647 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5648 break; 5649 case 11: /* RORV */ 5650 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5651 break; 5652 case 12: /* PACGA */ 5653 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5654 goto do_unallocated; 5655 } 5656 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5657 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5658 break; 5659 case 16: 5660 case 17: 5661 case 18: 5662 case 19: 5663 case 20: 5664 case 21: 5665 case 22: 5666 case 23: /* CRC32 */ 5667 { 5668 int sz = extract32(opcode, 0, 2); 5669 bool crc32c = extract32(opcode, 2, 1); 5670 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5671 break; 5672 } 5673 default: 5674 do_unallocated: 5675 unallocated_encoding(s); 5676 break; 5677 } 5678 } 5679 5680 /* 5681 * Data processing - register 5682 * 31 30 29 28 25 21 20 16 10 0 5683 * +--+---+--+---+-------+-----+-------+-------+---------+ 5684 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5685 * +--+---+--+---+-------+-----+-------+-------+---------+ 5686 */ 5687 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5688 { 5689 int op0 = extract32(insn, 30, 1); 5690 int op1 = extract32(insn, 28, 1); 5691 int op2 = extract32(insn, 21, 4); 5692 int op3 = extract32(insn, 10, 6); 5693 5694 if (!op1) { 5695 if (op2 & 8) { 5696 if (op2 & 1) { 5697 /* Add/sub (extended register) */ 5698 disas_add_sub_ext_reg(s, insn); 5699 } else { 5700 /* Add/sub (shifted register) */ 5701 disas_add_sub_reg(s, insn); 5702 } 5703 } else { 5704 /* Logical (shifted register) */ 5705 disas_logic_reg(s, insn); 5706 } 5707 return; 5708 } 5709 5710 switch (op2) { 5711 case 0x0: 5712 switch (op3) { 5713 case 0x00: /* Add/subtract (with carry) */ 5714 disas_adc_sbc(s, insn); 5715 break; 5716 5717 case 0x01: /* Rotate right into flags */ 5718 case 0x21: 5719 disas_rotate_right_into_flags(s, insn); 5720 break; 5721 5722 case 0x02: /* Evaluate into flags */ 5723 case 0x12: 5724 case 0x22: 5725 case 0x32: 5726 disas_evaluate_into_flags(s, insn); 5727 break; 5728 5729 default: 5730 goto do_unallocated; 5731 } 5732 break; 5733 5734 case 0x2: /* Conditional compare */ 5735 disas_cc(s, insn); /* both imm and reg forms */ 5736 break; 5737 5738 case 0x4: /* Conditional select */ 5739 disas_cond_select(s, insn); 5740 break; 5741 5742 case 0x6: /* Data-processing */ 5743 if (op0) { /* (1 source) */ 5744 disas_data_proc_1src(s, insn); 5745 } else { /* (2 source) */ 5746 disas_data_proc_2src(s, insn); 5747 } 5748 break; 5749 case 0x8 ... 0xf: /* (3 source) */ 5750 disas_data_proc_3src(s, insn); 5751 break; 5752 5753 default: 5754 do_unallocated: 5755 unallocated_encoding(s); 5756 break; 5757 } 5758 } 5759 5760 static void handle_fp_compare(DisasContext *s, int size, 5761 unsigned int rn, unsigned int rm, 5762 bool cmp_with_zero, bool signal_all_nans) 5763 { 5764 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5765 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5766 5767 if (size == MO_64) { 5768 TCGv_i64 tcg_vn, tcg_vm; 5769 5770 tcg_vn = read_fp_dreg(s, rn); 5771 if (cmp_with_zero) { 5772 tcg_vm = tcg_constant_i64(0); 5773 } else { 5774 tcg_vm = read_fp_dreg(s, rm); 5775 } 5776 if (signal_all_nans) { 5777 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5778 } else { 5779 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5780 } 5781 } else { 5782 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5783 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5784 5785 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5786 if (cmp_with_zero) { 5787 tcg_gen_movi_i32(tcg_vm, 0); 5788 } else { 5789 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5790 } 5791 5792 switch (size) { 5793 case MO_32: 5794 if (signal_all_nans) { 5795 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5796 } else { 5797 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5798 } 5799 break; 5800 case MO_16: 5801 if (signal_all_nans) { 5802 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5803 } else { 5804 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5805 } 5806 break; 5807 default: 5808 g_assert_not_reached(); 5809 } 5810 } 5811 5812 gen_set_nzcv(tcg_flags); 5813 } 5814 5815 /* Floating point compare 5816 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5817 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5818 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5819 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5820 */ 5821 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5822 { 5823 unsigned int mos, type, rm, op, rn, opc, op2r; 5824 int size; 5825 5826 mos = extract32(insn, 29, 3); 5827 type = extract32(insn, 22, 2); 5828 rm = extract32(insn, 16, 5); 5829 op = extract32(insn, 14, 2); 5830 rn = extract32(insn, 5, 5); 5831 opc = extract32(insn, 3, 2); 5832 op2r = extract32(insn, 0, 3); 5833 5834 if (mos || op || op2r) { 5835 unallocated_encoding(s); 5836 return; 5837 } 5838 5839 switch (type) { 5840 case 0: 5841 size = MO_32; 5842 break; 5843 case 1: 5844 size = MO_64; 5845 break; 5846 case 3: 5847 size = MO_16; 5848 if (dc_isar_feature(aa64_fp16, s)) { 5849 break; 5850 } 5851 /* fallthru */ 5852 default: 5853 unallocated_encoding(s); 5854 return; 5855 } 5856 5857 if (!fp_access_check(s)) { 5858 return; 5859 } 5860 5861 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5862 } 5863 5864 /* Floating point conditional compare 5865 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5866 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5867 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5868 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5869 */ 5870 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5871 { 5872 unsigned int mos, type, rm, cond, rn, op, nzcv; 5873 TCGLabel *label_continue = NULL; 5874 int size; 5875 5876 mos = extract32(insn, 29, 3); 5877 type = extract32(insn, 22, 2); 5878 rm = extract32(insn, 16, 5); 5879 cond = extract32(insn, 12, 4); 5880 rn = extract32(insn, 5, 5); 5881 op = extract32(insn, 4, 1); 5882 nzcv = extract32(insn, 0, 4); 5883 5884 if (mos) { 5885 unallocated_encoding(s); 5886 return; 5887 } 5888 5889 switch (type) { 5890 case 0: 5891 size = MO_32; 5892 break; 5893 case 1: 5894 size = MO_64; 5895 break; 5896 case 3: 5897 size = MO_16; 5898 if (dc_isar_feature(aa64_fp16, s)) { 5899 break; 5900 } 5901 /* fallthru */ 5902 default: 5903 unallocated_encoding(s); 5904 return; 5905 } 5906 5907 if (!fp_access_check(s)) { 5908 return; 5909 } 5910 5911 if (cond < 0x0e) { /* not always */ 5912 TCGLabel *label_match = gen_new_label(); 5913 label_continue = gen_new_label(); 5914 arm_gen_test_cc(cond, label_match); 5915 /* nomatch: */ 5916 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5917 tcg_gen_br(label_continue); 5918 gen_set_label(label_match); 5919 } 5920 5921 handle_fp_compare(s, size, rn, rm, false, op); 5922 5923 if (cond < 0x0e) { 5924 gen_set_label(label_continue); 5925 } 5926 } 5927 5928 /* Floating point conditional select 5929 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5930 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5931 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5932 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5933 */ 5934 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5935 { 5936 unsigned int mos, type, rm, cond, rn, rd; 5937 TCGv_i64 t_true, t_false; 5938 DisasCompare64 c; 5939 MemOp sz; 5940 5941 mos = extract32(insn, 29, 3); 5942 type = extract32(insn, 22, 2); 5943 rm = extract32(insn, 16, 5); 5944 cond = extract32(insn, 12, 4); 5945 rn = extract32(insn, 5, 5); 5946 rd = extract32(insn, 0, 5); 5947 5948 if (mos) { 5949 unallocated_encoding(s); 5950 return; 5951 } 5952 5953 switch (type) { 5954 case 0: 5955 sz = MO_32; 5956 break; 5957 case 1: 5958 sz = MO_64; 5959 break; 5960 case 3: 5961 sz = MO_16; 5962 if (dc_isar_feature(aa64_fp16, s)) { 5963 break; 5964 } 5965 /* fallthru */ 5966 default: 5967 unallocated_encoding(s); 5968 return; 5969 } 5970 5971 if (!fp_access_check(s)) { 5972 return; 5973 } 5974 5975 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5976 t_true = tcg_temp_new_i64(); 5977 t_false = tcg_temp_new_i64(); 5978 read_vec_element(s, t_true, rn, 0, sz); 5979 read_vec_element(s, t_false, rm, 0, sz); 5980 5981 a64_test_cc(&c, cond); 5982 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5983 t_true, t_false); 5984 5985 /* Note that sregs & hregs write back zeros to the high bits, 5986 and we've already done the zero-extension. */ 5987 write_fp_dreg(s, rd, t_true); 5988 } 5989 5990 /* Floating-point data-processing (1 source) - half precision */ 5991 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5992 { 5993 TCGv_ptr fpst = NULL; 5994 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5995 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5996 5997 switch (opcode) { 5998 case 0x0: /* FMOV */ 5999 tcg_gen_mov_i32(tcg_res, tcg_op); 6000 break; 6001 case 0x1: /* FABS */ 6002 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6003 break; 6004 case 0x2: /* FNEG */ 6005 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6006 break; 6007 case 0x3: /* FSQRT */ 6008 fpst = fpstatus_ptr(FPST_FPCR_F16); 6009 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6010 break; 6011 case 0x8: /* FRINTN */ 6012 case 0x9: /* FRINTP */ 6013 case 0xa: /* FRINTM */ 6014 case 0xb: /* FRINTZ */ 6015 case 0xc: /* FRINTA */ 6016 { 6017 TCGv_i32 tcg_rmode; 6018 6019 fpst = fpstatus_ptr(FPST_FPCR_F16); 6020 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6021 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6022 gen_restore_rmode(tcg_rmode, fpst); 6023 break; 6024 } 6025 case 0xe: /* FRINTX */ 6026 fpst = fpstatus_ptr(FPST_FPCR_F16); 6027 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6028 break; 6029 case 0xf: /* FRINTI */ 6030 fpst = fpstatus_ptr(FPST_FPCR_F16); 6031 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6032 break; 6033 default: 6034 g_assert_not_reached(); 6035 } 6036 6037 write_fp_sreg(s, rd, tcg_res); 6038 } 6039 6040 /* Floating-point data-processing (1 source) - single precision */ 6041 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6042 { 6043 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6044 TCGv_i32 tcg_op, tcg_res; 6045 TCGv_ptr fpst; 6046 int rmode = -1; 6047 6048 tcg_op = read_fp_sreg(s, rn); 6049 tcg_res = tcg_temp_new_i32(); 6050 6051 switch (opcode) { 6052 case 0x0: /* FMOV */ 6053 tcg_gen_mov_i32(tcg_res, tcg_op); 6054 goto done; 6055 case 0x1: /* FABS */ 6056 gen_helper_vfp_abss(tcg_res, tcg_op); 6057 goto done; 6058 case 0x2: /* FNEG */ 6059 gen_helper_vfp_negs(tcg_res, tcg_op); 6060 goto done; 6061 case 0x3: /* FSQRT */ 6062 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6063 goto done; 6064 case 0x6: /* BFCVT */ 6065 gen_fpst = gen_helper_bfcvt; 6066 break; 6067 case 0x8: /* FRINTN */ 6068 case 0x9: /* FRINTP */ 6069 case 0xa: /* FRINTM */ 6070 case 0xb: /* FRINTZ */ 6071 case 0xc: /* FRINTA */ 6072 rmode = opcode & 7; 6073 gen_fpst = gen_helper_rints; 6074 break; 6075 case 0xe: /* FRINTX */ 6076 gen_fpst = gen_helper_rints_exact; 6077 break; 6078 case 0xf: /* FRINTI */ 6079 gen_fpst = gen_helper_rints; 6080 break; 6081 case 0x10: /* FRINT32Z */ 6082 rmode = FPROUNDING_ZERO; 6083 gen_fpst = gen_helper_frint32_s; 6084 break; 6085 case 0x11: /* FRINT32X */ 6086 gen_fpst = gen_helper_frint32_s; 6087 break; 6088 case 0x12: /* FRINT64Z */ 6089 rmode = FPROUNDING_ZERO; 6090 gen_fpst = gen_helper_frint64_s; 6091 break; 6092 case 0x13: /* FRINT64X */ 6093 gen_fpst = gen_helper_frint64_s; 6094 break; 6095 default: 6096 g_assert_not_reached(); 6097 } 6098 6099 fpst = fpstatus_ptr(FPST_FPCR); 6100 if (rmode >= 0) { 6101 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6102 gen_fpst(tcg_res, tcg_op, fpst); 6103 gen_restore_rmode(tcg_rmode, fpst); 6104 } else { 6105 gen_fpst(tcg_res, tcg_op, fpst); 6106 } 6107 6108 done: 6109 write_fp_sreg(s, rd, tcg_res); 6110 } 6111 6112 /* Floating-point data-processing (1 source) - double precision */ 6113 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6114 { 6115 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6116 TCGv_i64 tcg_op, tcg_res; 6117 TCGv_ptr fpst; 6118 int rmode = -1; 6119 6120 switch (opcode) { 6121 case 0x0: /* FMOV */ 6122 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6123 return; 6124 } 6125 6126 tcg_op = read_fp_dreg(s, rn); 6127 tcg_res = tcg_temp_new_i64(); 6128 6129 switch (opcode) { 6130 case 0x1: /* FABS */ 6131 gen_helper_vfp_absd(tcg_res, tcg_op); 6132 goto done; 6133 case 0x2: /* FNEG */ 6134 gen_helper_vfp_negd(tcg_res, tcg_op); 6135 goto done; 6136 case 0x3: /* FSQRT */ 6137 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6138 goto done; 6139 case 0x8: /* FRINTN */ 6140 case 0x9: /* FRINTP */ 6141 case 0xa: /* FRINTM */ 6142 case 0xb: /* FRINTZ */ 6143 case 0xc: /* FRINTA */ 6144 rmode = opcode & 7; 6145 gen_fpst = gen_helper_rintd; 6146 break; 6147 case 0xe: /* FRINTX */ 6148 gen_fpst = gen_helper_rintd_exact; 6149 break; 6150 case 0xf: /* FRINTI */ 6151 gen_fpst = gen_helper_rintd; 6152 break; 6153 case 0x10: /* FRINT32Z */ 6154 rmode = FPROUNDING_ZERO; 6155 gen_fpst = gen_helper_frint32_d; 6156 break; 6157 case 0x11: /* FRINT32X */ 6158 gen_fpst = gen_helper_frint32_d; 6159 break; 6160 case 0x12: /* FRINT64Z */ 6161 rmode = FPROUNDING_ZERO; 6162 gen_fpst = gen_helper_frint64_d; 6163 break; 6164 case 0x13: /* FRINT64X */ 6165 gen_fpst = gen_helper_frint64_d; 6166 break; 6167 default: 6168 g_assert_not_reached(); 6169 } 6170 6171 fpst = fpstatus_ptr(FPST_FPCR); 6172 if (rmode >= 0) { 6173 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6174 gen_fpst(tcg_res, tcg_op, fpst); 6175 gen_restore_rmode(tcg_rmode, fpst); 6176 } else { 6177 gen_fpst(tcg_res, tcg_op, fpst); 6178 } 6179 6180 done: 6181 write_fp_dreg(s, rd, tcg_res); 6182 } 6183 6184 static void handle_fp_fcvt(DisasContext *s, int opcode, 6185 int rd, int rn, int dtype, int ntype) 6186 { 6187 switch (ntype) { 6188 case 0x0: 6189 { 6190 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6191 if (dtype == 1) { 6192 /* Single to double */ 6193 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6194 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6195 write_fp_dreg(s, rd, tcg_rd); 6196 } else { 6197 /* Single to half */ 6198 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6199 TCGv_i32 ahp = get_ahp_flag(); 6200 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6201 6202 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6203 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6204 write_fp_sreg(s, rd, tcg_rd); 6205 } 6206 break; 6207 } 6208 case 0x1: 6209 { 6210 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6211 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6212 if (dtype == 0) { 6213 /* Double to single */ 6214 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6215 } else { 6216 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6217 TCGv_i32 ahp = get_ahp_flag(); 6218 /* Double to half */ 6219 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6220 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6221 } 6222 write_fp_sreg(s, rd, tcg_rd); 6223 break; 6224 } 6225 case 0x3: 6226 { 6227 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6228 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6229 TCGv_i32 tcg_ahp = get_ahp_flag(); 6230 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6231 if (dtype == 0) { 6232 /* Half to single */ 6233 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6234 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6235 write_fp_sreg(s, rd, tcg_rd); 6236 } else { 6237 /* Half to double */ 6238 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6239 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6240 write_fp_dreg(s, rd, tcg_rd); 6241 } 6242 break; 6243 } 6244 default: 6245 g_assert_not_reached(); 6246 } 6247 } 6248 6249 /* Floating point data-processing (1 source) 6250 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6251 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6252 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6253 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6254 */ 6255 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6256 { 6257 int mos = extract32(insn, 29, 3); 6258 int type = extract32(insn, 22, 2); 6259 int opcode = extract32(insn, 15, 6); 6260 int rn = extract32(insn, 5, 5); 6261 int rd = extract32(insn, 0, 5); 6262 6263 if (mos) { 6264 goto do_unallocated; 6265 } 6266 6267 switch (opcode) { 6268 case 0x4: case 0x5: case 0x7: 6269 { 6270 /* FCVT between half, single and double precision */ 6271 int dtype = extract32(opcode, 0, 2); 6272 if (type == 2 || dtype == type) { 6273 goto do_unallocated; 6274 } 6275 if (!fp_access_check(s)) { 6276 return; 6277 } 6278 6279 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6280 break; 6281 } 6282 6283 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6284 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6285 goto do_unallocated; 6286 } 6287 /* fall through */ 6288 case 0x0 ... 0x3: 6289 case 0x8 ... 0xc: 6290 case 0xe ... 0xf: 6291 /* 32-to-32 and 64-to-64 ops */ 6292 switch (type) { 6293 case 0: 6294 if (!fp_access_check(s)) { 6295 return; 6296 } 6297 handle_fp_1src_single(s, opcode, rd, rn); 6298 break; 6299 case 1: 6300 if (!fp_access_check(s)) { 6301 return; 6302 } 6303 handle_fp_1src_double(s, opcode, rd, rn); 6304 break; 6305 case 3: 6306 if (!dc_isar_feature(aa64_fp16, s)) { 6307 goto do_unallocated; 6308 } 6309 6310 if (!fp_access_check(s)) { 6311 return; 6312 } 6313 handle_fp_1src_half(s, opcode, rd, rn); 6314 break; 6315 default: 6316 goto do_unallocated; 6317 } 6318 break; 6319 6320 case 0x6: 6321 switch (type) { 6322 case 1: /* BFCVT */ 6323 if (!dc_isar_feature(aa64_bf16, s)) { 6324 goto do_unallocated; 6325 } 6326 if (!fp_access_check(s)) { 6327 return; 6328 } 6329 handle_fp_1src_single(s, opcode, rd, rn); 6330 break; 6331 default: 6332 goto do_unallocated; 6333 } 6334 break; 6335 6336 default: 6337 do_unallocated: 6338 unallocated_encoding(s); 6339 break; 6340 } 6341 } 6342 6343 /* Floating-point data-processing (2 source) - single precision */ 6344 static void handle_fp_2src_single(DisasContext *s, int opcode, 6345 int rd, int rn, int rm) 6346 { 6347 TCGv_i32 tcg_op1; 6348 TCGv_i32 tcg_op2; 6349 TCGv_i32 tcg_res; 6350 TCGv_ptr fpst; 6351 6352 tcg_res = tcg_temp_new_i32(); 6353 fpst = fpstatus_ptr(FPST_FPCR); 6354 tcg_op1 = read_fp_sreg(s, rn); 6355 tcg_op2 = read_fp_sreg(s, rm); 6356 6357 switch (opcode) { 6358 case 0x0: /* FMUL */ 6359 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6360 break; 6361 case 0x1: /* FDIV */ 6362 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6363 break; 6364 case 0x2: /* FADD */ 6365 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6366 break; 6367 case 0x3: /* FSUB */ 6368 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6369 break; 6370 case 0x4: /* FMAX */ 6371 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6372 break; 6373 case 0x5: /* FMIN */ 6374 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6375 break; 6376 case 0x6: /* FMAXNM */ 6377 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6378 break; 6379 case 0x7: /* FMINNM */ 6380 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6381 break; 6382 case 0x8: /* FNMUL */ 6383 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6384 gen_helper_vfp_negs(tcg_res, tcg_res); 6385 break; 6386 } 6387 6388 write_fp_sreg(s, rd, tcg_res); 6389 } 6390 6391 /* Floating-point data-processing (2 source) - double precision */ 6392 static void handle_fp_2src_double(DisasContext *s, int opcode, 6393 int rd, int rn, int rm) 6394 { 6395 TCGv_i64 tcg_op1; 6396 TCGv_i64 tcg_op2; 6397 TCGv_i64 tcg_res; 6398 TCGv_ptr fpst; 6399 6400 tcg_res = tcg_temp_new_i64(); 6401 fpst = fpstatus_ptr(FPST_FPCR); 6402 tcg_op1 = read_fp_dreg(s, rn); 6403 tcg_op2 = read_fp_dreg(s, rm); 6404 6405 switch (opcode) { 6406 case 0x0: /* FMUL */ 6407 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6408 break; 6409 case 0x1: /* FDIV */ 6410 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6411 break; 6412 case 0x2: /* FADD */ 6413 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6414 break; 6415 case 0x3: /* FSUB */ 6416 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6417 break; 6418 case 0x4: /* FMAX */ 6419 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6420 break; 6421 case 0x5: /* FMIN */ 6422 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6423 break; 6424 case 0x6: /* FMAXNM */ 6425 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6426 break; 6427 case 0x7: /* FMINNM */ 6428 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6429 break; 6430 case 0x8: /* FNMUL */ 6431 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6432 gen_helper_vfp_negd(tcg_res, tcg_res); 6433 break; 6434 } 6435 6436 write_fp_dreg(s, rd, tcg_res); 6437 } 6438 6439 /* Floating-point data-processing (2 source) - half precision */ 6440 static void handle_fp_2src_half(DisasContext *s, int opcode, 6441 int rd, int rn, int rm) 6442 { 6443 TCGv_i32 tcg_op1; 6444 TCGv_i32 tcg_op2; 6445 TCGv_i32 tcg_res; 6446 TCGv_ptr fpst; 6447 6448 tcg_res = tcg_temp_new_i32(); 6449 fpst = fpstatus_ptr(FPST_FPCR_F16); 6450 tcg_op1 = read_fp_hreg(s, rn); 6451 tcg_op2 = read_fp_hreg(s, rm); 6452 6453 switch (opcode) { 6454 case 0x0: /* FMUL */ 6455 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6456 break; 6457 case 0x1: /* FDIV */ 6458 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6459 break; 6460 case 0x2: /* FADD */ 6461 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6462 break; 6463 case 0x3: /* FSUB */ 6464 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6465 break; 6466 case 0x4: /* FMAX */ 6467 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6468 break; 6469 case 0x5: /* FMIN */ 6470 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6471 break; 6472 case 0x6: /* FMAXNM */ 6473 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6474 break; 6475 case 0x7: /* FMINNM */ 6476 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6477 break; 6478 case 0x8: /* FNMUL */ 6479 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6480 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6481 break; 6482 default: 6483 g_assert_not_reached(); 6484 } 6485 6486 write_fp_sreg(s, rd, tcg_res); 6487 } 6488 6489 /* Floating point data-processing (2 source) 6490 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6491 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6492 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6493 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6494 */ 6495 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6496 { 6497 int mos = extract32(insn, 29, 3); 6498 int type = extract32(insn, 22, 2); 6499 int rd = extract32(insn, 0, 5); 6500 int rn = extract32(insn, 5, 5); 6501 int rm = extract32(insn, 16, 5); 6502 int opcode = extract32(insn, 12, 4); 6503 6504 if (opcode > 8 || mos) { 6505 unallocated_encoding(s); 6506 return; 6507 } 6508 6509 switch (type) { 6510 case 0: 6511 if (!fp_access_check(s)) { 6512 return; 6513 } 6514 handle_fp_2src_single(s, opcode, rd, rn, rm); 6515 break; 6516 case 1: 6517 if (!fp_access_check(s)) { 6518 return; 6519 } 6520 handle_fp_2src_double(s, opcode, rd, rn, rm); 6521 break; 6522 case 3: 6523 if (!dc_isar_feature(aa64_fp16, s)) { 6524 unallocated_encoding(s); 6525 return; 6526 } 6527 if (!fp_access_check(s)) { 6528 return; 6529 } 6530 handle_fp_2src_half(s, opcode, rd, rn, rm); 6531 break; 6532 default: 6533 unallocated_encoding(s); 6534 } 6535 } 6536 6537 /* Floating-point data-processing (3 source) - single precision */ 6538 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6539 int rd, int rn, int rm, int ra) 6540 { 6541 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6542 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6543 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6544 6545 tcg_op1 = read_fp_sreg(s, rn); 6546 tcg_op2 = read_fp_sreg(s, rm); 6547 tcg_op3 = read_fp_sreg(s, ra); 6548 6549 /* These are fused multiply-add, and must be done as one 6550 * floating point operation with no rounding between the 6551 * multiplication and addition steps. 6552 * NB that doing the negations here as separate steps is 6553 * correct : an input NaN should come out with its sign bit 6554 * flipped if it is a negated-input. 6555 */ 6556 if (o1 == true) { 6557 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6558 } 6559 6560 if (o0 != o1) { 6561 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6562 } 6563 6564 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6565 6566 write_fp_sreg(s, rd, tcg_res); 6567 } 6568 6569 /* Floating-point data-processing (3 source) - double precision */ 6570 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6571 int rd, int rn, int rm, int ra) 6572 { 6573 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6574 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6575 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6576 6577 tcg_op1 = read_fp_dreg(s, rn); 6578 tcg_op2 = read_fp_dreg(s, rm); 6579 tcg_op3 = read_fp_dreg(s, ra); 6580 6581 /* These are fused multiply-add, and must be done as one 6582 * floating point operation with no rounding between the 6583 * multiplication and addition steps. 6584 * NB that doing the negations here as separate steps is 6585 * correct : an input NaN should come out with its sign bit 6586 * flipped if it is a negated-input. 6587 */ 6588 if (o1 == true) { 6589 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6590 } 6591 6592 if (o0 != o1) { 6593 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6594 } 6595 6596 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6597 6598 write_fp_dreg(s, rd, tcg_res); 6599 } 6600 6601 /* Floating-point data-processing (3 source) - half precision */ 6602 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6603 int rd, int rn, int rm, int ra) 6604 { 6605 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6606 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6607 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6608 6609 tcg_op1 = read_fp_hreg(s, rn); 6610 tcg_op2 = read_fp_hreg(s, rm); 6611 tcg_op3 = read_fp_hreg(s, ra); 6612 6613 /* These are fused multiply-add, and must be done as one 6614 * floating point operation with no rounding between the 6615 * multiplication and addition steps. 6616 * NB that doing the negations here as separate steps is 6617 * correct : an input NaN should come out with its sign bit 6618 * flipped if it is a negated-input. 6619 */ 6620 if (o1 == true) { 6621 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6622 } 6623 6624 if (o0 != o1) { 6625 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6626 } 6627 6628 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6629 6630 write_fp_sreg(s, rd, tcg_res); 6631 } 6632 6633 /* Floating point data-processing (3 source) 6634 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6635 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6636 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6637 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6638 */ 6639 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6640 { 6641 int mos = extract32(insn, 29, 3); 6642 int type = extract32(insn, 22, 2); 6643 int rd = extract32(insn, 0, 5); 6644 int rn = extract32(insn, 5, 5); 6645 int ra = extract32(insn, 10, 5); 6646 int rm = extract32(insn, 16, 5); 6647 bool o0 = extract32(insn, 15, 1); 6648 bool o1 = extract32(insn, 21, 1); 6649 6650 if (mos) { 6651 unallocated_encoding(s); 6652 return; 6653 } 6654 6655 switch (type) { 6656 case 0: 6657 if (!fp_access_check(s)) { 6658 return; 6659 } 6660 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6661 break; 6662 case 1: 6663 if (!fp_access_check(s)) { 6664 return; 6665 } 6666 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6667 break; 6668 case 3: 6669 if (!dc_isar_feature(aa64_fp16, s)) { 6670 unallocated_encoding(s); 6671 return; 6672 } 6673 if (!fp_access_check(s)) { 6674 return; 6675 } 6676 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6677 break; 6678 default: 6679 unallocated_encoding(s); 6680 } 6681 } 6682 6683 /* Floating point immediate 6684 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6685 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6686 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6687 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6688 */ 6689 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6690 { 6691 int rd = extract32(insn, 0, 5); 6692 int imm5 = extract32(insn, 5, 5); 6693 int imm8 = extract32(insn, 13, 8); 6694 int type = extract32(insn, 22, 2); 6695 int mos = extract32(insn, 29, 3); 6696 uint64_t imm; 6697 MemOp sz; 6698 6699 if (mos || imm5) { 6700 unallocated_encoding(s); 6701 return; 6702 } 6703 6704 switch (type) { 6705 case 0: 6706 sz = MO_32; 6707 break; 6708 case 1: 6709 sz = MO_64; 6710 break; 6711 case 3: 6712 sz = MO_16; 6713 if (dc_isar_feature(aa64_fp16, s)) { 6714 break; 6715 } 6716 /* fallthru */ 6717 default: 6718 unallocated_encoding(s); 6719 return; 6720 } 6721 6722 if (!fp_access_check(s)) { 6723 return; 6724 } 6725 6726 imm = vfp_expand_imm(sz, imm8); 6727 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6728 } 6729 6730 /* Handle floating point <=> fixed point conversions. Note that we can 6731 * also deal with fp <=> integer conversions as a special case (scale == 64) 6732 * OPTME: consider handling that special case specially or at least skipping 6733 * the call to scalbn in the helpers for zero shifts. 6734 */ 6735 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6736 bool itof, int rmode, int scale, int sf, int type) 6737 { 6738 bool is_signed = !(opcode & 1); 6739 TCGv_ptr tcg_fpstatus; 6740 TCGv_i32 tcg_shift, tcg_single; 6741 TCGv_i64 tcg_double; 6742 6743 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6744 6745 tcg_shift = tcg_constant_i32(64 - scale); 6746 6747 if (itof) { 6748 TCGv_i64 tcg_int = cpu_reg(s, rn); 6749 if (!sf) { 6750 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6751 6752 if (is_signed) { 6753 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6754 } else { 6755 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6756 } 6757 6758 tcg_int = tcg_extend; 6759 } 6760 6761 switch (type) { 6762 case 1: /* float64 */ 6763 tcg_double = tcg_temp_new_i64(); 6764 if (is_signed) { 6765 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6766 tcg_shift, tcg_fpstatus); 6767 } else { 6768 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6769 tcg_shift, tcg_fpstatus); 6770 } 6771 write_fp_dreg(s, rd, tcg_double); 6772 break; 6773 6774 case 0: /* float32 */ 6775 tcg_single = tcg_temp_new_i32(); 6776 if (is_signed) { 6777 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6778 tcg_shift, tcg_fpstatus); 6779 } else { 6780 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6781 tcg_shift, tcg_fpstatus); 6782 } 6783 write_fp_sreg(s, rd, tcg_single); 6784 break; 6785 6786 case 3: /* float16 */ 6787 tcg_single = tcg_temp_new_i32(); 6788 if (is_signed) { 6789 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6790 tcg_shift, tcg_fpstatus); 6791 } else { 6792 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6793 tcg_shift, tcg_fpstatus); 6794 } 6795 write_fp_sreg(s, rd, tcg_single); 6796 break; 6797 6798 default: 6799 g_assert_not_reached(); 6800 } 6801 } else { 6802 TCGv_i64 tcg_int = cpu_reg(s, rd); 6803 TCGv_i32 tcg_rmode; 6804 6805 if (extract32(opcode, 2, 1)) { 6806 /* There are too many rounding modes to all fit into rmode, 6807 * so FCVTA[US] is a special case. 6808 */ 6809 rmode = FPROUNDING_TIEAWAY; 6810 } 6811 6812 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6813 6814 switch (type) { 6815 case 1: /* float64 */ 6816 tcg_double = read_fp_dreg(s, rn); 6817 if (is_signed) { 6818 if (!sf) { 6819 gen_helper_vfp_tosld(tcg_int, tcg_double, 6820 tcg_shift, tcg_fpstatus); 6821 } else { 6822 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6823 tcg_shift, tcg_fpstatus); 6824 } 6825 } else { 6826 if (!sf) { 6827 gen_helper_vfp_tould(tcg_int, tcg_double, 6828 tcg_shift, tcg_fpstatus); 6829 } else { 6830 gen_helper_vfp_touqd(tcg_int, tcg_double, 6831 tcg_shift, tcg_fpstatus); 6832 } 6833 } 6834 if (!sf) { 6835 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6836 } 6837 break; 6838 6839 case 0: /* float32 */ 6840 tcg_single = read_fp_sreg(s, rn); 6841 if (sf) { 6842 if (is_signed) { 6843 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6844 tcg_shift, tcg_fpstatus); 6845 } else { 6846 gen_helper_vfp_touqs(tcg_int, tcg_single, 6847 tcg_shift, tcg_fpstatus); 6848 } 6849 } else { 6850 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6851 if (is_signed) { 6852 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6853 tcg_shift, tcg_fpstatus); 6854 } else { 6855 gen_helper_vfp_touls(tcg_dest, tcg_single, 6856 tcg_shift, tcg_fpstatus); 6857 } 6858 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6859 } 6860 break; 6861 6862 case 3: /* float16 */ 6863 tcg_single = read_fp_sreg(s, rn); 6864 if (sf) { 6865 if (is_signed) { 6866 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6867 tcg_shift, tcg_fpstatus); 6868 } else { 6869 gen_helper_vfp_touqh(tcg_int, tcg_single, 6870 tcg_shift, tcg_fpstatus); 6871 } 6872 } else { 6873 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6874 if (is_signed) { 6875 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6876 tcg_shift, tcg_fpstatus); 6877 } else { 6878 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6879 tcg_shift, tcg_fpstatus); 6880 } 6881 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6882 } 6883 break; 6884 6885 default: 6886 g_assert_not_reached(); 6887 } 6888 6889 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6890 } 6891 } 6892 6893 /* Floating point <-> fixed point conversions 6894 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6895 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6896 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6897 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6898 */ 6899 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6900 { 6901 int rd = extract32(insn, 0, 5); 6902 int rn = extract32(insn, 5, 5); 6903 int scale = extract32(insn, 10, 6); 6904 int opcode = extract32(insn, 16, 3); 6905 int rmode = extract32(insn, 19, 2); 6906 int type = extract32(insn, 22, 2); 6907 bool sbit = extract32(insn, 29, 1); 6908 bool sf = extract32(insn, 31, 1); 6909 bool itof; 6910 6911 if (sbit || (!sf && scale < 32)) { 6912 unallocated_encoding(s); 6913 return; 6914 } 6915 6916 switch (type) { 6917 case 0: /* float32 */ 6918 case 1: /* float64 */ 6919 break; 6920 case 3: /* float16 */ 6921 if (dc_isar_feature(aa64_fp16, s)) { 6922 break; 6923 } 6924 /* fallthru */ 6925 default: 6926 unallocated_encoding(s); 6927 return; 6928 } 6929 6930 switch ((rmode << 3) | opcode) { 6931 case 0x2: /* SCVTF */ 6932 case 0x3: /* UCVTF */ 6933 itof = true; 6934 break; 6935 case 0x18: /* FCVTZS */ 6936 case 0x19: /* FCVTZU */ 6937 itof = false; 6938 break; 6939 default: 6940 unallocated_encoding(s); 6941 return; 6942 } 6943 6944 if (!fp_access_check(s)) { 6945 return; 6946 } 6947 6948 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6949 } 6950 6951 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6952 { 6953 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6954 * without conversion. 6955 */ 6956 6957 if (itof) { 6958 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6959 TCGv_i64 tmp; 6960 6961 switch (type) { 6962 case 0: 6963 /* 32 bit */ 6964 tmp = tcg_temp_new_i64(); 6965 tcg_gen_ext32u_i64(tmp, tcg_rn); 6966 write_fp_dreg(s, rd, tmp); 6967 break; 6968 case 1: 6969 /* 64 bit */ 6970 write_fp_dreg(s, rd, tcg_rn); 6971 break; 6972 case 2: 6973 /* 64 bit to top half. */ 6974 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 6975 clear_vec_high(s, true, rd); 6976 break; 6977 case 3: 6978 /* 16 bit */ 6979 tmp = tcg_temp_new_i64(); 6980 tcg_gen_ext16u_i64(tmp, tcg_rn); 6981 write_fp_dreg(s, rd, tmp); 6982 break; 6983 default: 6984 g_assert_not_reached(); 6985 } 6986 } else { 6987 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6988 6989 switch (type) { 6990 case 0: 6991 /* 32 bit */ 6992 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 6993 break; 6994 case 1: 6995 /* 64 bit */ 6996 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 6997 break; 6998 case 2: 6999 /* 64 bits from top half */ 7000 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7001 break; 7002 case 3: 7003 /* 16 bit */ 7004 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7005 break; 7006 default: 7007 g_assert_not_reached(); 7008 } 7009 } 7010 } 7011 7012 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7013 { 7014 TCGv_i64 t = read_fp_dreg(s, rn); 7015 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7016 7017 gen_helper_fjcvtzs(t, t, fpstatus); 7018 7019 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7020 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7021 tcg_gen_movi_i32(cpu_CF, 0); 7022 tcg_gen_movi_i32(cpu_NF, 0); 7023 tcg_gen_movi_i32(cpu_VF, 0); 7024 } 7025 7026 /* Floating point <-> integer conversions 7027 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7028 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7029 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7030 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7031 */ 7032 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7033 { 7034 int rd = extract32(insn, 0, 5); 7035 int rn = extract32(insn, 5, 5); 7036 int opcode = extract32(insn, 16, 3); 7037 int rmode = extract32(insn, 19, 2); 7038 int type = extract32(insn, 22, 2); 7039 bool sbit = extract32(insn, 29, 1); 7040 bool sf = extract32(insn, 31, 1); 7041 bool itof = false; 7042 7043 if (sbit) { 7044 goto do_unallocated; 7045 } 7046 7047 switch (opcode) { 7048 case 2: /* SCVTF */ 7049 case 3: /* UCVTF */ 7050 itof = true; 7051 /* fallthru */ 7052 case 4: /* FCVTAS */ 7053 case 5: /* FCVTAU */ 7054 if (rmode != 0) { 7055 goto do_unallocated; 7056 } 7057 /* fallthru */ 7058 case 0: /* FCVT[NPMZ]S */ 7059 case 1: /* FCVT[NPMZ]U */ 7060 switch (type) { 7061 case 0: /* float32 */ 7062 case 1: /* float64 */ 7063 break; 7064 case 3: /* float16 */ 7065 if (!dc_isar_feature(aa64_fp16, s)) { 7066 goto do_unallocated; 7067 } 7068 break; 7069 default: 7070 goto do_unallocated; 7071 } 7072 if (!fp_access_check(s)) { 7073 return; 7074 } 7075 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7076 break; 7077 7078 default: 7079 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7080 case 0b01100110: /* FMOV half <-> 32-bit int */ 7081 case 0b01100111: 7082 case 0b11100110: /* FMOV half <-> 64-bit int */ 7083 case 0b11100111: 7084 if (!dc_isar_feature(aa64_fp16, s)) { 7085 goto do_unallocated; 7086 } 7087 /* fallthru */ 7088 case 0b00000110: /* FMOV 32-bit */ 7089 case 0b00000111: 7090 case 0b10100110: /* FMOV 64-bit */ 7091 case 0b10100111: 7092 case 0b11001110: /* FMOV top half of 128-bit */ 7093 case 0b11001111: 7094 if (!fp_access_check(s)) { 7095 return; 7096 } 7097 itof = opcode & 1; 7098 handle_fmov(s, rd, rn, type, itof); 7099 break; 7100 7101 case 0b00111110: /* FJCVTZS */ 7102 if (!dc_isar_feature(aa64_jscvt, s)) { 7103 goto do_unallocated; 7104 } else if (fp_access_check(s)) { 7105 handle_fjcvtzs(s, rd, rn); 7106 } 7107 break; 7108 7109 default: 7110 do_unallocated: 7111 unallocated_encoding(s); 7112 return; 7113 } 7114 break; 7115 } 7116 } 7117 7118 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7119 * 31 30 29 28 25 24 0 7120 * +---+---+---+---------+-----------------------------+ 7121 * | | 0 | | 1 1 1 1 | | 7122 * +---+---+---+---------+-----------------------------+ 7123 */ 7124 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7125 { 7126 if (extract32(insn, 24, 1)) { 7127 /* Floating point data-processing (3 source) */ 7128 disas_fp_3src(s, insn); 7129 } else if (extract32(insn, 21, 1) == 0) { 7130 /* Floating point to fixed point conversions */ 7131 disas_fp_fixed_conv(s, insn); 7132 } else { 7133 switch (extract32(insn, 10, 2)) { 7134 case 1: 7135 /* Floating point conditional compare */ 7136 disas_fp_ccomp(s, insn); 7137 break; 7138 case 2: 7139 /* Floating point data-processing (2 source) */ 7140 disas_fp_2src(s, insn); 7141 break; 7142 case 3: 7143 /* Floating point conditional select */ 7144 disas_fp_csel(s, insn); 7145 break; 7146 case 0: 7147 switch (ctz32(extract32(insn, 12, 4))) { 7148 case 0: /* [15:12] == xxx1 */ 7149 /* Floating point immediate */ 7150 disas_fp_imm(s, insn); 7151 break; 7152 case 1: /* [15:12] == xx10 */ 7153 /* Floating point compare */ 7154 disas_fp_compare(s, insn); 7155 break; 7156 case 2: /* [15:12] == x100 */ 7157 /* Floating point data-processing (1 source) */ 7158 disas_fp_1src(s, insn); 7159 break; 7160 case 3: /* [15:12] == 1000 */ 7161 unallocated_encoding(s); 7162 break; 7163 default: /* [15:12] == 0000 */ 7164 /* Floating point <-> integer conversions */ 7165 disas_fp_int_conv(s, insn); 7166 break; 7167 } 7168 break; 7169 } 7170 } 7171 } 7172 7173 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7174 int pos) 7175 { 7176 /* Extract 64 bits from the middle of two concatenated 64 bit 7177 * vector register slices left:right. The extracted bits start 7178 * at 'pos' bits into the right (least significant) side. 7179 * We return the result in tcg_right, and guarantee not to 7180 * trash tcg_left. 7181 */ 7182 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7183 assert(pos > 0 && pos < 64); 7184 7185 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7186 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7187 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7188 } 7189 7190 /* EXT 7191 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7192 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7193 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7194 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7195 */ 7196 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7197 { 7198 int is_q = extract32(insn, 30, 1); 7199 int op2 = extract32(insn, 22, 2); 7200 int imm4 = extract32(insn, 11, 4); 7201 int rm = extract32(insn, 16, 5); 7202 int rn = extract32(insn, 5, 5); 7203 int rd = extract32(insn, 0, 5); 7204 int pos = imm4 << 3; 7205 TCGv_i64 tcg_resl, tcg_resh; 7206 7207 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7208 unallocated_encoding(s); 7209 return; 7210 } 7211 7212 if (!fp_access_check(s)) { 7213 return; 7214 } 7215 7216 tcg_resh = tcg_temp_new_i64(); 7217 tcg_resl = tcg_temp_new_i64(); 7218 7219 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7220 * either extracting 128 bits from a 128:128 concatenation, or 7221 * extracting 64 bits from a 64:64 concatenation. 7222 */ 7223 if (!is_q) { 7224 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7225 if (pos != 0) { 7226 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7227 do_ext64(s, tcg_resh, tcg_resl, pos); 7228 } 7229 } else { 7230 TCGv_i64 tcg_hh; 7231 typedef struct { 7232 int reg; 7233 int elt; 7234 } EltPosns; 7235 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7236 EltPosns *elt = eltposns; 7237 7238 if (pos >= 64) { 7239 elt++; 7240 pos -= 64; 7241 } 7242 7243 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7244 elt++; 7245 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7246 elt++; 7247 if (pos != 0) { 7248 do_ext64(s, tcg_resh, tcg_resl, pos); 7249 tcg_hh = tcg_temp_new_i64(); 7250 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7251 do_ext64(s, tcg_hh, tcg_resh, pos); 7252 } 7253 } 7254 7255 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7256 if (is_q) { 7257 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7258 } 7259 clear_vec_high(s, is_q, rd); 7260 } 7261 7262 /* TBL/TBX 7263 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7264 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7265 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7266 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7267 */ 7268 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7269 { 7270 int op2 = extract32(insn, 22, 2); 7271 int is_q = extract32(insn, 30, 1); 7272 int rm = extract32(insn, 16, 5); 7273 int rn = extract32(insn, 5, 5); 7274 int rd = extract32(insn, 0, 5); 7275 int is_tbx = extract32(insn, 12, 1); 7276 int len = (extract32(insn, 13, 2) + 1) * 16; 7277 7278 if (op2 != 0) { 7279 unallocated_encoding(s); 7280 return; 7281 } 7282 7283 if (!fp_access_check(s)) { 7284 return; 7285 } 7286 7287 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7288 vec_full_reg_offset(s, rm), cpu_env, 7289 is_q ? 16 : 8, vec_full_reg_size(s), 7290 (len << 6) | (is_tbx << 5) | rn, 7291 gen_helper_simd_tblx); 7292 } 7293 7294 /* ZIP/UZP/TRN 7295 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7296 * +---+---+-------------+------+---+------+---+------------------+------+ 7297 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7298 * +---+---+-------------+------+---+------+---+------------------+------+ 7299 */ 7300 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7301 { 7302 int rd = extract32(insn, 0, 5); 7303 int rn = extract32(insn, 5, 5); 7304 int rm = extract32(insn, 16, 5); 7305 int size = extract32(insn, 22, 2); 7306 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7307 * bit 2 indicates 1 vs 2 variant of the insn. 7308 */ 7309 int opcode = extract32(insn, 12, 2); 7310 bool part = extract32(insn, 14, 1); 7311 bool is_q = extract32(insn, 30, 1); 7312 int esize = 8 << size; 7313 int i; 7314 int datasize = is_q ? 128 : 64; 7315 int elements = datasize / esize; 7316 TCGv_i64 tcg_res[2], tcg_ele; 7317 7318 if (opcode == 0 || (size == 3 && !is_q)) { 7319 unallocated_encoding(s); 7320 return; 7321 } 7322 7323 if (!fp_access_check(s)) { 7324 return; 7325 } 7326 7327 tcg_res[0] = tcg_temp_new_i64(); 7328 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7329 tcg_ele = tcg_temp_new_i64(); 7330 7331 for (i = 0; i < elements; i++) { 7332 int o, w; 7333 7334 switch (opcode) { 7335 case 1: /* UZP1/2 */ 7336 { 7337 int midpoint = elements / 2; 7338 if (i < midpoint) { 7339 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7340 } else { 7341 read_vec_element(s, tcg_ele, rm, 7342 2 * (i - midpoint) + part, size); 7343 } 7344 break; 7345 } 7346 case 2: /* TRN1/2 */ 7347 if (i & 1) { 7348 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7349 } else { 7350 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7351 } 7352 break; 7353 case 3: /* ZIP1/2 */ 7354 { 7355 int base = part * elements / 2; 7356 if (i & 1) { 7357 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7358 } else { 7359 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7360 } 7361 break; 7362 } 7363 default: 7364 g_assert_not_reached(); 7365 } 7366 7367 w = (i * esize) / 64; 7368 o = (i * esize) % 64; 7369 if (o == 0) { 7370 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7371 } else { 7372 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7373 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7374 } 7375 } 7376 7377 for (i = 0; i <= is_q; ++i) { 7378 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7379 } 7380 clear_vec_high(s, is_q, rd); 7381 } 7382 7383 /* 7384 * do_reduction_op helper 7385 * 7386 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7387 * important for correct NaN propagation that we do these 7388 * operations in exactly the order specified by the pseudocode. 7389 * 7390 * This is a recursive function, TCG temps should be freed by the 7391 * calling function once it is done with the values. 7392 */ 7393 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7394 int esize, int size, int vmap, TCGv_ptr fpst) 7395 { 7396 if (esize == size) { 7397 int element; 7398 MemOp msize = esize == 16 ? MO_16 : MO_32; 7399 TCGv_i32 tcg_elem; 7400 7401 /* We should have one register left here */ 7402 assert(ctpop8(vmap) == 1); 7403 element = ctz32(vmap); 7404 assert(element < 8); 7405 7406 tcg_elem = tcg_temp_new_i32(); 7407 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7408 return tcg_elem; 7409 } else { 7410 int bits = size / 2; 7411 int shift = ctpop8(vmap) / 2; 7412 int vmap_lo = (vmap >> shift) & vmap; 7413 int vmap_hi = (vmap & ~vmap_lo); 7414 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7415 7416 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7417 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7418 tcg_res = tcg_temp_new_i32(); 7419 7420 switch (fpopcode) { 7421 case 0x0c: /* fmaxnmv half-precision */ 7422 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7423 break; 7424 case 0x0f: /* fmaxv half-precision */ 7425 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7426 break; 7427 case 0x1c: /* fminnmv half-precision */ 7428 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7429 break; 7430 case 0x1f: /* fminv half-precision */ 7431 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7432 break; 7433 case 0x2c: /* fmaxnmv */ 7434 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7435 break; 7436 case 0x2f: /* fmaxv */ 7437 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7438 break; 7439 case 0x3c: /* fminnmv */ 7440 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7441 break; 7442 case 0x3f: /* fminv */ 7443 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7444 break; 7445 default: 7446 g_assert_not_reached(); 7447 } 7448 return tcg_res; 7449 } 7450 } 7451 7452 /* AdvSIMD across lanes 7453 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7454 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7455 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7456 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7457 */ 7458 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7459 { 7460 int rd = extract32(insn, 0, 5); 7461 int rn = extract32(insn, 5, 5); 7462 int size = extract32(insn, 22, 2); 7463 int opcode = extract32(insn, 12, 5); 7464 bool is_q = extract32(insn, 30, 1); 7465 bool is_u = extract32(insn, 29, 1); 7466 bool is_fp = false; 7467 bool is_min = false; 7468 int esize; 7469 int elements; 7470 int i; 7471 TCGv_i64 tcg_res, tcg_elt; 7472 7473 switch (opcode) { 7474 case 0x1b: /* ADDV */ 7475 if (is_u) { 7476 unallocated_encoding(s); 7477 return; 7478 } 7479 /* fall through */ 7480 case 0x3: /* SADDLV, UADDLV */ 7481 case 0xa: /* SMAXV, UMAXV */ 7482 case 0x1a: /* SMINV, UMINV */ 7483 if (size == 3 || (size == 2 && !is_q)) { 7484 unallocated_encoding(s); 7485 return; 7486 } 7487 break; 7488 case 0xc: /* FMAXNMV, FMINNMV */ 7489 case 0xf: /* FMAXV, FMINV */ 7490 /* Bit 1 of size field encodes min vs max and the actual size 7491 * depends on the encoding of the U bit. If not set (and FP16 7492 * enabled) then we do half-precision float instead of single 7493 * precision. 7494 */ 7495 is_min = extract32(size, 1, 1); 7496 is_fp = true; 7497 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7498 size = 1; 7499 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7500 unallocated_encoding(s); 7501 return; 7502 } else { 7503 size = 2; 7504 } 7505 break; 7506 default: 7507 unallocated_encoding(s); 7508 return; 7509 } 7510 7511 if (!fp_access_check(s)) { 7512 return; 7513 } 7514 7515 esize = 8 << size; 7516 elements = (is_q ? 128 : 64) / esize; 7517 7518 tcg_res = tcg_temp_new_i64(); 7519 tcg_elt = tcg_temp_new_i64(); 7520 7521 /* These instructions operate across all lanes of a vector 7522 * to produce a single result. We can guarantee that a 64 7523 * bit intermediate is sufficient: 7524 * + for [US]ADDLV the maximum element size is 32 bits, and 7525 * the result type is 64 bits 7526 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7527 * same as the element size, which is 32 bits at most 7528 * For the integer operations we can choose to work at 64 7529 * or 32 bits and truncate at the end; for simplicity 7530 * we use 64 bits always. The floating point 7531 * ops do require 32 bit intermediates, though. 7532 */ 7533 if (!is_fp) { 7534 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7535 7536 for (i = 1; i < elements; i++) { 7537 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7538 7539 switch (opcode) { 7540 case 0x03: /* SADDLV / UADDLV */ 7541 case 0x1b: /* ADDV */ 7542 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7543 break; 7544 case 0x0a: /* SMAXV / UMAXV */ 7545 if (is_u) { 7546 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7547 } else { 7548 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7549 } 7550 break; 7551 case 0x1a: /* SMINV / UMINV */ 7552 if (is_u) { 7553 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7554 } else { 7555 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7556 } 7557 break; 7558 default: 7559 g_assert_not_reached(); 7560 } 7561 7562 } 7563 } else { 7564 /* Floating point vector reduction ops which work across 32 7565 * bit (single) or 16 bit (half-precision) intermediates. 7566 * Note that correct NaN propagation requires that we do these 7567 * operations in exactly the order specified by the pseudocode. 7568 */ 7569 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7570 int fpopcode = opcode | is_min << 4 | is_u << 5; 7571 int vmap = (1 << elements) - 1; 7572 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7573 (is_q ? 128 : 64), vmap, fpst); 7574 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7575 } 7576 7577 /* Now truncate the result to the width required for the final output */ 7578 if (opcode == 0x03) { 7579 /* SADDLV, UADDLV: result is 2*esize */ 7580 size++; 7581 } 7582 7583 switch (size) { 7584 case 0: 7585 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7586 break; 7587 case 1: 7588 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7589 break; 7590 case 2: 7591 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7592 break; 7593 case 3: 7594 break; 7595 default: 7596 g_assert_not_reached(); 7597 } 7598 7599 write_fp_dreg(s, rd, tcg_res); 7600 } 7601 7602 /* DUP (Element, Vector) 7603 * 7604 * 31 30 29 21 20 16 15 10 9 5 4 0 7605 * +---+---+-------------------+--------+-------------+------+------+ 7606 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7607 * +---+---+-------------------+--------+-------------+------+------+ 7608 * 7609 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7610 */ 7611 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7612 int imm5) 7613 { 7614 int size = ctz32(imm5); 7615 int index; 7616 7617 if (size > 3 || (size == 3 && !is_q)) { 7618 unallocated_encoding(s); 7619 return; 7620 } 7621 7622 if (!fp_access_check(s)) { 7623 return; 7624 } 7625 7626 index = imm5 >> (size + 1); 7627 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7628 vec_reg_offset(s, rn, index, size), 7629 is_q ? 16 : 8, vec_full_reg_size(s)); 7630 } 7631 7632 /* DUP (element, scalar) 7633 * 31 21 20 16 15 10 9 5 4 0 7634 * +-----------------------+--------+-------------+------+------+ 7635 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7636 * +-----------------------+--------+-------------+------+------+ 7637 */ 7638 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7639 int imm5) 7640 { 7641 int size = ctz32(imm5); 7642 int index; 7643 TCGv_i64 tmp; 7644 7645 if (size > 3) { 7646 unallocated_encoding(s); 7647 return; 7648 } 7649 7650 if (!fp_access_check(s)) { 7651 return; 7652 } 7653 7654 index = imm5 >> (size + 1); 7655 7656 /* This instruction just extracts the specified element and 7657 * zero-extends it into the bottom of the destination register. 7658 */ 7659 tmp = tcg_temp_new_i64(); 7660 read_vec_element(s, tmp, rn, index, size); 7661 write_fp_dreg(s, rd, tmp); 7662 } 7663 7664 /* DUP (General) 7665 * 7666 * 31 30 29 21 20 16 15 10 9 5 4 0 7667 * +---+---+-------------------+--------+-------------+------+------+ 7668 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7669 * +---+---+-------------------+--------+-------------+------+------+ 7670 * 7671 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7672 */ 7673 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7674 int imm5) 7675 { 7676 int size = ctz32(imm5); 7677 uint32_t dofs, oprsz, maxsz; 7678 7679 if (size > 3 || ((size == 3) && !is_q)) { 7680 unallocated_encoding(s); 7681 return; 7682 } 7683 7684 if (!fp_access_check(s)) { 7685 return; 7686 } 7687 7688 dofs = vec_full_reg_offset(s, rd); 7689 oprsz = is_q ? 16 : 8; 7690 maxsz = vec_full_reg_size(s); 7691 7692 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7693 } 7694 7695 /* INS (Element) 7696 * 7697 * 31 21 20 16 15 14 11 10 9 5 4 0 7698 * +-----------------------+--------+------------+---+------+------+ 7699 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7700 * +-----------------------+--------+------------+---+------+------+ 7701 * 7702 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7703 * index: encoded in imm5<4:size+1> 7704 */ 7705 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7706 int imm4, int imm5) 7707 { 7708 int size = ctz32(imm5); 7709 int src_index, dst_index; 7710 TCGv_i64 tmp; 7711 7712 if (size > 3) { 7713 unallocated_encoding(s); 7714 return; 7715 } 7716 7717 if (!fp_access_check(s)) { 7718 return; 7719 } 7720 7721 dst_index = extract32(imm5, 1+size, 5); 7722 src_index = extract32(imm4, size, 4); 7723 7724 tmp = tcg_temp_new_i64(); 7725 7726 read_vec_element(s, tmp, rn, src_index, size); 7727 write_vec_element(s, tmp, rd, dst_index, size); 7728 7729 /* INS is considered a 128-bit write for SVE. */ 7730 clear_vec_high(s, true, rd); 7731 } 7732 7733 7734 /* INS (General) 7735 * 7736 * 31 21 20 16 15 10 9 5 4 0 7737 * +-----------------------+--------+-------------+------+------+ 7738 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7739 * +-----------------------+--------+-------------+------+------+ 7740 * 7741 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7742 * index: encoded in imm5<4:size+1> 7743 */ 7744 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7745 { 7746 int size = ctz32(imm5); 7747 int idx; 7748 7749 if (size > 3) { 7750 unallocated_encoding(s); 7751 return; 7752 } 7753 7754 if (!fp_access_check(s)) { 7755 return; 7756 } 7757 7758 idx = extract32(imm5, 1 + size, 4 - size); 7759 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7760 7761 /* INS is considered a 128-bit write for SVE. */ 7762 clear_vec_high(s, true, rd); 7763 } 7764 7765 /* 7766 * UMOV (General) 7767 * SMOV (General) 7768 * 7769 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7770 * +---+---+-------------------+--------+-------------+------+------+ 7771 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7772 * +---+---+-------------------+--------+-------------+------+------+ 7773 * 7774 * U: unsigned when set 7775 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7776 */ 7777 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7778 int rn, int rd, int imm5) 7779 { 7780 int size = ctz32(imm5); 7781 int element; 7782 TCGv_i64 tcg_rd; 7783 7784 /* Check for UnallocatedEncodings */ 7785 if (is_signed) { 7786 if (size > 2 || (size == 2 && !is_q)) { 7787 unallocated_encoding(s); 7788 return; 7789 } 7790 } else { 7791 if (size > 3 7792 || (size < 3 && is_q) 7793 || (size == 3 && !is_q)) { 7794 unallocated_encoding(s); 7795 return; 7796 } 7797 } 7798 7799 if (!fp_access_check(s)) { 7800 return; 7801 } 7802 7803 element = extract32(imm5, 1+size, 4); 7804 7805 tcg_rd = cpu_reg(s, rd); 7806 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7807 if (is_signed && !is_q) { 7808 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7809 } 7810 } 7811 7812 /* AdvSIMD copy 7813 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7814 * +---+---+----+-----------------+------+---+------+---+------+------+ 7815 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7816 * +---+---+----+-----------------+------+---+------+---+------+------+ 7817 */ 7818 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7819 { 7820 int rd = extract32(insn, 0, 5); 7821 int rn = extract32(insn, 5, 5); 7822 int imm4 = extract32(insn, 11, 4); 7823 int op = extract32(insn, 29, 1); 7824 int is_q = extract32(insn, 30, 1); 7825 int imm5 = extract32(insn, 16, 5); 7826 7827 if (op) { 7828 if (is_q) { 7829 /* INS (element) */ 7830 handle_simd_inse(s, rd, rn, imm4, imm5); 7831 } else { 7832 unallocated_encoding(s); 7833 } 7834 } else { 7835 switch (imm4) { 7836 case 0: 7837 /* DUP (element - vector) */ 7838 handle_simd_dupe(s, is_q, rd, rn, imm5); 7839 break; 7840 case 1: 7841 /* DUP (general) */ 7842 handle_simd_dupg(s, is_q, rd, rn, imm5); 7843 break; 7844 case 3: 7845 if (is_q) { 7846 /* INS (general) */ 7847 handle_simd_insg(s, rd, rn, imm5); 7848 } else { 7849 unallocated_encoding(s); 7850 } 7851 break; 7852 case 5: 7853 case 7: 7854 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7855 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7856 break; 7857 default: 7858 unallocated_encoding(s); 7859 break; 7860 } 7861 } 7862 } 7863 7864 /* AdvSIMD modified immediate 7865 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7866 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7867 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7868 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7869 * 7870 * There are a number of operations that can be carried out here: 7871 * MOVI - move (shifted) imm into register 7872 * MVNI - move inverted (shifted) imm into register 7873 * ORR - bitwise OR of (shifted) imm with register 7874 * BIC - bitwise clear of (shifted) imm with register 7875 * With ARMv8.2 we also have: 7876 * FMOV half-precision 7877 */ 7878 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7879 { 7880 int rd = extract32(insn, 0, 5); 7881 int cmode = extract32(insn, 12, 4); 7882 int o2 = extract32(insn, 11, 1); 7883 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7884 bool is_neg = extract32(insn, 29, 1); 7885 bool is_q = extract32(insn, 30, 1); 7886 uint64_t imm = 0; 7887 7888 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7889 /* Check for FMOV (vector, immediate) - half-precision */ 7890 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7891 unallocated_encoding(s); 7892 return; 7893 } 7894 } 7895 7896 if (!fp_access_check(s)) { 7897 return; 7898 } 7899 7900 if (cmode == 15 && o2 && !is_neg) { 7901 /* FMOV (vector, immediate) - half-precision */ 7902 imm = vfp_expand_imm(MO_16, abcdefgh); 7903 /* now duplicate across the lanes */ 7904 imm = dup_const(MO_16, imm); 7905 } else { 7906 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7907 } 7908 7909 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7910 /* MOVI or MVNI, with MVNI negation handled above. */ 7911 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7912 vec_full_reg_size(s), imm); 7913 } else { 7914 /* ORR or BIC, with BIC negation to AND handled above. */ 7915 if (is_neg) { 7916 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7917 } else { 7918 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7919 } 7920 } 7921 } 7922 7923 /* AdvSIMD scalar copy 7924 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7925 * +-----+----+-----------------+------+---+------+---+------+------+ 7926 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7927 * +-----+----+-----------------+------+---+------+---+------+------+ 7928 */ 7929 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7930 { 7931 int rd = extract32(insn, 0, 5); 7932 int rn = extract32(insn, 5, 5); 7933 int imm4 = extract32(insn, 11, 4); 7934 int imm5 = extract32(insn, 16, 5); 7935 int op = extract32(insn, 29, 1); 7936 7937 if (op != 0 || imm4 != 0) { 7938 unallocated_encoding(s); 7939 return; 7940 } 7941 7942 /* DUP (element, scalar) */ 7943 handle_simd_dupes(s, rd, rn, imm5); 7944 } 7945 7946 /* AdvSIMD scalar pairwise 7947 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7948 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7949 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7950 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7951 */ 7952 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7953 { 7954 int u = extract32(insn, 29, 1); 7955 int size = extract32(insn, 22, 2); 7956 int opcode = extract32(insn, 12, 5); 7957 int rn = extract32(insn, 5, 5); 7958 int rd = extract32(insn, 0, 5); 7959 TCGv_ptr fpst; 7960 7961 /* For some ops (the FP ones), size[1] is part of the encoding. 7962 * For ADDP strictly it is not but size[1] is always 1 for valid 7963 * encodings. 7964 */ 7965 opcode |= (extract32(size, 1, 1) << 5); 7966 7967 switch (opcode) { 7968 case 0x3b: /* ADDP */ 7969 if (u || size != 3) { 7970 unallocated_encoding(s); 7971 return; 7972 } 7973 if (!fp_access_check(s)) { 7974 return; 7975 } 7976 7977 fpst = NULL; 7978 break; 7979 case 0xc: /* FMAXNMP */ 7980 case 0xd: /* FADDP */ 7981 case 0xf: /* FMAXP */ 7982 case 0x2c: /* FMINNMP */ 7983 case 0x2f: /* FMINP */ 7984 /* FP op, size[0] is 32 or 64 bit*/ 7985 if (!u) { 7986 if (!dc_isar_feature(aa64_fp16, s)) { 7987 unallocated_encoding(s); 7988 return; 7989 } else { 7990 size = MO_16; 7991 } 7992 } else { 7993 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7994 } 7995 7996 if (!fp_access_check(s)) { 7997 return; 7998 } 7999 8000 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8001 break; 8002 default: 8003 unallocated_encoding(s); 8004 return; 8005 } 8006 8007 if (size == MO_64) { 8008 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8009 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8010 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8011 8012 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8013 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8014 8015 switch (opcode) { 8016 case 0x3b: /* ADDP */ 8017 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8018 break; 8019 case 0xc: /* FMAXNMP */ 8020 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8021 break; 8022 case 0xd: /* FADDP */ 8023 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8024 break; 8025 case 0xf: /* FMAXP */ 8026 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8027 break; 8028 case 0x2c: /* FMINNMP */ 8029 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8030 break; 8031 case 0x2f: /* FMINP */ 8032 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8033 break; 8034 default: 8035 g_assert_not_reached(); 8036 } 8037 8038 write_fp_dreg(s, rd, tcg_res); 8039 } else { 8040 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8041 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8042 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8043 8044 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8045 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8046 8047 if (size == MO_16) { 8048 switch (opcode) { 8049 case 0xc: /* FMAXNMP */ 8050 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8051 break; 8052 case 0xd: /* FADDP */ 8053 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8054 break; 8055 case 0xf: /* FMAXP */ 8056 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8057 break; 8058 case 0x2c: /* FMINNMP */ 8059 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8060 break; 8061 case 0x2f: /* FMINP */ 8062 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8063 break; 8064 default: 8065 g_assert_not_reached(); 8066 } 8067 } else { 8068 switch (opcode) { 8069 case 0xc: /* FMAXNMP */ 8070 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8071 break; 8072 case 0xd: /* FADDP */ 8073 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8074 break; 8075 case 0xf: /* FMAXP */ 8076 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8077 break; 8078 case 0x2c: /* FMINNMP */ 8079 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8080 break; 8081 case 0x2f: /* FMINP */ 8082 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8083 break; 8084 default: 8085 g_assert_not_reached(); 8086 } 8087 } 8088 8089 write_fp_sreg(s, rd, tcg_res); 8090 } 8091 } 8092 8093 /* 8094 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8095 * 8096 * This code is handles the common shifting code and is used by both 8097 * the vector and scalar code. 8098 */ 8099 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8100 TCGv_i64 tcg_rnd, bool accumulate, 8101 bool is_u, int size, int shift) 8102 { 8103 bool extended_result = false; 8104 bool round = tcg_rnd != NULL; 8105 int ext_lshift = 0; 8106 TCGv_i64 tcg_src_hi; 8107 8108 if (round && size == 3) { 8109 extended_result = true; 8110 ext_lshift = 64 - shift; 8111 tcg_src_hi = tcg_temp_new_i64(); 8112 } else if (shift == 64) { 8113 if (!accumulate && is_u) { 8114 /* result is zero */ 8115 tcg_gen_movi_i64(tcg_res, 0); 8116 return; 8117 } 8118 } 8119 8120 /* Deal with the rounding step */ 8121 if (round) { 8122 if (extended_result) { 8123 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8124 if (!is_u) { 8125 /* take care of sign extending tcg_res */ 8126 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8127 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8128 tcg_src, tcg_src_hi, 8129 tcg_rnd, tcg_zero); 8130 } else { 8131 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8132 tcg_src, tcg_zero, 8133 tcg_rnd, tcg_zero); 8134 } 8135 } else { 8136 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8137 } 8138 } 8139 8140 /* Now do the shift right */ 8141 if (round && extended_result) { 8142 /* extended case, >64 bit precision required */ 8143 if (ext_lshift == 0) { 8144 /* special case, only high bits matter */ 8145 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8146 } else { 8147 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8148 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8149 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8150 } 8151 } else { 8152 if (is_u) { 8153 if (shift == 64) { 8154 /* essentially shifting in 64 zeros */ 8155 tcg_gen_movi_i64(tcg_src, 0); 8156 } else { 8157 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8158 } 8159 } else { 8160 if (shift == 64) { 8161 /* effectively extending the sign-bit */ 8162 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8163 } else { 8164 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8165 } 8166 } 8167 } 8168 8169 if (accumulate) { 8170 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8171 } else { 8172 tcg_gen_mov_i64(tcg_res, tcg_src); 8173 } 8174 } 8175 8176 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8177 static void handle_scalar_simd_shri(DisasContext *s, 8178 bool is_u, int immh, int immb, 8179 int opcode, int rn, int rd) 8180 { 8181 const int size = 3; 8182 int immhb = immh << 3 | immb; 8183 int shift = 2 * (8 << size) - immhb; 8184 bool accumulate = false; 8185 bool round = false; 8186 bool insert = false; 8187 TCGv_i64 tcg_rn; 8188 TCGv_i64 tcg_rd; 8189 TCGv_i64 tcg_round; 8190 8191 if (!extract32(immh, 3, 1)) { 8192 unallocated_encoding(s); 8193 return; 8194 } 8195 8196 if (!fp_access_check(s)) { 8197 return; 8198 } 8199 8200 switch (opcode) { 8201 case 0x02: /* SSRA / USRA (accumulate) */ 8202 accumulate = true; 8203 break; 8204 case 0x04: /* SRSHR / URSHR (rounding) */ 8205 round = true; 8206 break; 8207 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8208 accumulate = round = true; 8209 break; 8210 case 0x08: /* SRI */ 8211 insert = true; 8212 break; 8213 } 8214 8215 if (round) { 8216 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8217 } else { 8218 tcg_round = NULL; 8219 } 8220 8221 tcg_rn = read_fp_dreg(s, rn); 8222 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8223 8224 if (insert) { 8225 /* shift count same as element size is valid but does nothing; 8226 * special case to avoid potential shift by 64. 8227 */ 8228 int esize = 8 << size; 8229 if (shift != esize) { 8230 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8231 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8232 } 8233 } else { 8234 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8235 accumulate, is_u, size, shift); 8236 } 8237 8238 write_fp_dreg(s, rd, tcg_rd); 8239 } 8240 8241 /* SHL/SLI - Scalar shift left */ 8242 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8243 int immh, int immb, int opcode, 8244 int rn, int rd) 8245 { 8246 int size = 32 - clz32(immh) - 1; 8247 int immhb = immh << 3 | immb; 8248 int shift = immhb - (8 << size); 8249 TCGv_i64 tcg_rn; 8250 TCGv_i64 tcg_rd; 8251 8252 if (!extract32(immh, 3, 1)) { 8253 unallocated_encoding(s); 8254 return; 8255 } 8256 8257 if (!fp_access_check(s)) { 8258 return; 8259 } 8260 8261 tcg_rn = read_fp_dreg(s, rn); 8262 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8263 8264 if (insert) { 8265 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8266 } else { 8267 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8268 } 8269 8270 write_fp_dreg(s, rd, tcg_rd); 8271 } 8272 8273 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8274 * (signed/unsigned) narrowing */ 8275 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8276 bool is_u_shift, bool is_u_narrow, 8277 int immh, int immb, int opcode, 8278 int rn, int rd) 8279 { 8280 int immhb = immh << 3 | immb; 8281 int size = 32 - clz32(immh) - 1; 8282 int esize = 8 << size; 8283 int shift = (2 * esize) - immhb; 8284 int elements = is_scalar ? 1 : (64 / esize); 8285 bool round = extract32(opcode, 0, 1); 8286 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8287 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8288 TCGv_i32 tcg_rd_narrowed; 8289 TCGv_i64 tcg_final; 8290 8291 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8292 { gen_helper_neon_narrow_sat_s8, 8293 gen_helper_neon_unarrow_sat8 }, 8294 { gen_helper_neon_narrow_sat_s16, 8295 gen_helper_neon_unarrow_sat16 }, 8296 { gen_helper_neon_narrow_sat_s32, 8297 gen_helper_neon_unarrow_sat32 }, 8298 { NULL, NULL }, 8299 }; 8300 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8301 gen_helper_neon_narrow_sat_u8, 8302 gen_helper_neon_narrow_sat_u16, 8303 gen_helper_neon_narrow_sat_u32, 8304 NULL 8305 }; 8306 NeonGenNarrowEnvFn *narrowfn; 8307 8308 int i; 8309 8310 assert(size < 4); 8311 8312 if (extract32(immh, 3, 1)) { 8313 unallocated_encoding(s); 8314 return; 8315 } 8316 8317 if (!fp_access_check(s)) { 8318 return; 8319 } 8320 8321 if (is_u_shift) { 8322 narrowfn = unsigned_narrow_fns[size]; 8323 } else { 8324 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8325 } 8326 8327 tcg_rn = tcg_temp_new_i64(); 8328 tcg_rd = tcg_temp_new_i64(); 8329 tcg_rd_narrowed = tcg_temp_new_i32(); 8330 tcg_final = tcg_temp_new_i64(); 8331 8332 if (round) { 8333 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8334 } else { 8335 tcg_round = NULL; 8336 } 8337 8338 for (i = 0; i < elements; i++) { 8339 read_vec_element(s, tcg_rn, rn, i, ldop); 8340 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8341 false, is_u_shift, size+1, shift); 8342 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8343 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8344 if (i == 0) { 8345 tcg_gen_mov_i64(tcg_final, tcg_rd); 8346 } else { 8347 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8348 } 8349 } 8350 8351 if (!is_q) { 8352 write_vec_element(s, tcg_final, rd, 0, MO_64); 8353 } else { 8354 write_vec_element(s, tcg_final, rd, 1, MO_64); 8355 } 8356 clear_vec_high(s, is_q, rd); 8357 } 8358 8359 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8360 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8361 bool src_unsigned, bool dst_unsigned, 8362 int immh, int immb, int rn, int rd) 8363 { 8364 int immhb = immh << 3 | immb; 8365 int size = 32 - clz32(immh) - 1; 8366 int shift = immhb - (8 << size); 8367 int pass; 8368 8369 assert(immh != 0); 8370 assert(!(scalar && is_q)); 8371 8372 if (!scalar) { 8373 if (!is_q && extract32(immh, 3, 1)) { 8374 unallocated_encoding(s); 8375 return; 8376 } 8377 8378 /* Since we use the variable-shift helpers we must 8379 * replicate the shift count into each element of 8380 * the tcg_shift value. 8381 */ 8382 switch (size) { 8383 case 0: 8384 shift |= shift << 8; 8385 /* fall through */ 8386 case 1: 8387 shift |= shift << 16; 8388 break; 8389 case 2: 8390 case 3: 8391 break; 8392 default: 8393 g_assert_not_reached(); 8394 } 8395 } 8396 8397 if (!fp_access_check(s)) { 8398 return; 8399 } 8400 8401 if (size == 3) { 8402 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8403 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8404 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8405 { NULL, gen_helper_neon_qshl_u64 }, 8406 }; 8407 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8408 int maxpass = is_q ? 2 : 1; 8409 8410 for (pass = 0; pass < maxpass; pass++) { 8411 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8412 8413 read_vec_element(s, tcg_op, rn, pass, MO_64); 8414 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8415 write_vec_element(s, tcg_op, rd, pass, MO_64); 8416 } 8417 clear_vec_high(s, is_q, rd); 8418 } else { 8419 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8420 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8421 { 8422 { gen_helper_neon_qshl_s8, 8423 gen_helper_neon_qshl_s16, 8424 gen_helper_neon_qshl_s32 }, 8425 { gen_helper_neon_qshlu_s8, 8426 gen_helper_neon_qshlu_s16, 8427 gen_helper_neon_qshlu_s32 } 8428 }, { 8429 { NULL, NULL, NULL }, 8430 { gen_helper_neon_qshl_u8, 8431 gen_helper_neon_qshl_u16, 8432 gen_helper_neon_qshl_u32 } 8433 } 8434 }; 8435 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8436 MemOp memop = scalar ? size : MO_32; 8437 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8438 8439 for (pass = 0; pass < maxpass; pass++) { 8440 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8441 8442 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8443 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8444 if (scalar) { 8445 switch (size) { 8446 case 0: 8447 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8448 break; 8449 case 1: 8450 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8451 break; 8452 case 2: 8453 break; 8454 default: 8455 g_assert_not_reached(); 8456 } 8457 write_fp_sreg(s, rd, tcg_op); 8458 } else { 8459 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8460 } 8461 } 8462 8463 if (!scalar) { 8464 clear_vec_high(s, is_q, rd); 8465 } 8466 } 8467 } 8468 8469 /* Common vector code for handling integer to FP conversion */ 8470 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8471 int elements, int is_signed, 8472 int fracbits, int size) 8473 { 8474 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8475 TCGv_i32 tcg_shift = NULL; 8476 8477 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8478 int pass; 8479 8480 if (fracbits || size == MO_64) { 8481 tcg_shift = tcg_constant_i32(fracbits); 8482 } 8483 8484 if (size == MO_64) { 8485 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8486 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8487 8488 for (pass = 0; pass < elements; pass++) { 8489 read_vec_element(s, tcg_int64, rn, pass, mop); 8490 8491 if (is_signed) { 8492 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8493 tcg_shift, tcg_fpst); 8494 } else { 8495 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8496 tcg_shift, tcg_fpst); 8497 } 8498 if (elements == 1) { 8499 write_fp_dreg(s, rd, tcg_double); 8500 } else { 8501 write_vec_element(s, tcg_double, rd, pass, MO_64); 8502 } 8503 } 8504 } else { 8505 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8506 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8507 8508 for (pass = 0; pass < elements; pass++) { 8509 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8510 8511 switch (size) { 8512 case MO_32: 8513 if (fracbits) { 8514 if (is_signed) { 8515 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8516 tcg_shift, tcg_fpst); 8517 } else { 8518 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8519 tcg_shift, tcg_fpst); 8520 } 8521 } else { 8522 if (is_signed) { 8523 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8524 } else { 8525 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8526 } 8527 } 8528 break; 8529 case MO_16: 8530 if (fracbits) { 8531 if (is_signed) { 8532 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8533 tcg_shift, tcg_fpst); 8534 } else { 8535 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8536 tcg_shift, tcg_fpst); 8537 } 8538 } else { 8539 if (is_signed) { 8540 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8541 } else { 8542 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8543 } 8544 } 8545 break; 8546 default: 8547 g_assert_not_reached(); 8548 } 8549 8550 if (elements == 1) { 8551 write_fp_sreg(s, rd, tcg_float); 8552 } else { 8553 write_vec_element_i32(s, tcg_float, rd, pass, size); 8554 } 8555 } 8556 } 8557 8558 clear_vec_high(s, elements << size == 16, rd); 8559 } 8560 8561 /* UCVTF/SCVTF - Integer to FP conversion */ 8562 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8563 bool is_q, bool is_u, 8564 int immh, int immb, int opcode, 8565 int rn, int rd) 8566 { 8567 int size, elements, fracbits; 8568 int immhb = immh << 3 | immb; 8569 8570 if (immh & 8) { 8571 size = MO_64; 8572 if (!is_scalar && !is_q) { 8573 unallocated_encoding(s); 8574 return; 8575 } 8576 } else if (immh & 4) { 8577 size = MO_32; 8578 } else if (immh & 2) { 8579 size = MO_16; 8580 if (!dc_isar_feature(aa64_fp16, s)) { 8581 unallocated_encoding(s); 8582 return; 8583 } 8584 } else { 8585 /* immh == 0 would be a failure of the decode logic */ 8586 g_assert(immh == 1); 8587 unallocated_encoding(s); 8588 return; 8589 } 8590 8591 if (is_scalar) { 8592 elements = 1; 8593 } else { 8594 elements = (8 << is_q) >> size; 8595 } 8596 fracbits = (16 << size) - immhb; 8597 8598 if (!fp_access_check(s)) { 8599 return; 8600 } 8601 8602 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8603 } 8604 8605 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8606 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8607 bool is_q, bool is_u, 8608 int immh, int immb, int rn, int rd) 8609 { 8610 int immhb = immh << 3 | immb; 8611 int pass, size, fracbits; 8612 TCGv_ptr tcg_fpstatus; 8613 TCGv_i32 tcg_rmode, tcg_shift; 8614 8615 if (immh & 0x8) { 8616 size = MO_64; 8617 if (!is_scalar && !is_q) { 8618 unallocated_encoding(s); 8619 return; 8620 } 8621 } else if (immh & 0x4) { 8622 size = MO_32; 8623 } else if (immh & 0x2) { 8624 size = MO_16; 8625 if (!dc_isar_feature(aa64_fp16, s)) { 8626 unallocated_encoding(s); 8627 return; 8628 } 8629 } else { 8630 /* Should have split out AdvSIMD modified immediate earlier. */ 8631 assert(immh == 1); 8632 unallocated_encoding(s); 8633 return; 8634 } 8635 8636 if (!fp_access_check(s)) { 8637 return; 8638 } 8639 8640 assert(!(is_scalar && is_q)); 8641 8642 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8643 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8644 fracbits = (16 << size) - immhb; 8645 tcg_shift = tcg_constant_i32(fracbits); 8646 8647 if (size == MO_64) { 8648 int maxpass = is_scalar ? 1 : 2; 8649 8650 for (pass = 0; pass < maxpass; pass++) { 8651 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8652 8653 read_vec_element(s, tcg_op, rn, pass, MO_64); 8654 if (is_u) { 8655 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8656 } else { 8657 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8658 } 8659 write_vec_element(s, tcg_op, rd, pass, MO_64); 8660 } 8661 clear_vec_high(s, is_q, rd); 8662 } else { 8663 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8664 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8665 8666 switch (size) { 8667 case MO_16: 8668 if (is_u) { 8669 fn = gen_helper_vfp_touhh; 8670 } else { 8671 fn = gen_helper_vfp_toshh; 8672 } 8673 break; 8674 case MO_32: 8675 if (is_u) { 8676 fn = gen_helper_vfp_touls; 8677 } else { 8678 fn = gen_helper_vfp_tosls; 8679 } 8680 break; 8681 default: 8682 g_assert_not_reached(); 8683 } 8684 8685 for (pass = 0; pass < maxpass; pass++) { 8686 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8687 8688 read_vec_element_i32(s, tcg_op, rn, pass, size); 8689 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8690 if (is_scalar) { 8691 write_fp_sreg(s, rd, tcg_op); 8692 } else { 8693 write_vec_element_i32(s, tcg_op, rd, pass, size); 8694 } 8695 } 8696 if (!is_scalar) { 8697 clear_vec_high(s, is_q, rd); 8698 } 8699 } 8700 8701 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8702 } 8703 8704 /* AdvSIMD scalar shift by immediate 8705 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8706 * +-----+---+-------------+------+------+--------+---+------+------+ 8707 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8708 * +-----+---+-------------+------+------+--------+---+------+------+ 8709 * 8710 * This is the scalar version so it works on a fixed sized registers 8711 */ 8712 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8713 { 8714 int rd = extract32(insn, 0, 5); 8715 int rn = extract32(insn, 5, 5); 8716 int opcode = extract32(insn, 11, 5); 8717 int immb = extract32(insn, 16, 3); 8718 int immh = extract32(insn, 19, 4); 8719 bool is_u = extract32(insn, 29, 1); 8720 8721 if (immh == 0) { 8722 unallocated_encoding(s); 8723 return; 8724 } 8725 8726 switch (opcode) { 8727 case 0x08: /* SRI */ 8728 if (!is_u) { 8729 unallocated_encoding(s); 8730 return; 8731 } 8732 /* fall through */ 8733 case 0x00: /* SSHR / USHR */ 8734 case 0x02: /* SSRA / USRA */ 8735 case 0x04: /* SRSHR / URSHR */ 8736 case 0x06: /* SRSRA / URSRA */ 8737 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8738 break; 8739 case 0x0a: /* SHL / SLI */ 8740 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8741 break; 8742 case 0x1c: /* SCVTF, UCVTF */ 8743 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8744 opcode, rn, rd); 8745 break; 8746 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8747 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8748 if (!is_u) { 8749 unallocated_encoding(s); 8750 return; 8751 } 8752 handle_vec_simd_sqshrn(s, true, false, false, true, 8753 immh, immb, opcode, rn, rd); 8754 break; 8755 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8756 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8757 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8758 immh, immb, opcode, rn, rd); 8759 break; 8760 case 0xc: /* SQSHLU */ 8761 if (!is_u) { 8762 unallocated_encoding(s); 8763 return; 8764 } 8765 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8766 break; 8767 case 0xe: /* SQSHL, UQSHL */ 8768 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8769 break; 8770 case 0x1f: /* FCVTZS, FCVTZU */ 8771 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8772 break; 8773 default: 8774 unallocated_encoding(s); 8775 break; 8776 } 8777 } 8778 8779 /* AdvSIMD scalar three different 8780 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8781 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8782 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8783 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8784 */ 8785 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8786 { 8787 bool is_u = extract32(insn, 29, 1); 8788 int size = extract32(insn, 22, 2); 8789 int opcode = extract32(insn, 12, 4); 8790 int rm = extract32(insn, 16, 5); 8791 int rn = extract32(insn, 5, 5); 8792 int rd = extract32(insn, 0, 5); 8793 8794 if (is_u) { 8795 unallocated_encoding(s); 8796 return; 8797 } 8798 8799 switch (opcode) { 8800 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8801 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8802 case 0xd: /* SQDMULL, SQDMULL2 */ 8803 if (size == 0 || size == 3) { 8804 unallocated_encoding(s); 8805 return; 8806 } 8807 break; 8808 default: 8809 unallocated_encoding(s); 8810 return; 8811 } 8812 8813 if (!fp_access_check(s)) { 8814 return; 8815 } 8816 8817 if (size == 2) { 8818 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8819 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8820 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8821 8822 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8823 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8824 8825 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8826 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8827 8828 switch (opcode) { 8829 case 0xd: /* SQDMULL, SQDMULL2 */ 8830 break; 8831 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8832 tcg_gen_neg_i64(tcg_res, tcg_res); 8833 /* fall through */ 8834 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8835 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8836 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8837 tcg_res, tcg_op1); 8838 break; 8839 default: 8840 g_assert_not_reached(); 8841 } 8842 8843 write_fp_dreg(s, rd, tcg_res); 8844 } else { 8845 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8846 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8847 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8848 8849 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8850 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8851 8852 switch (opcode) { 8853 case 0xd: /* SQDMULL, SQDMULL2 */ 8854 break; 8855 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8856 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8857 /* fall through */ 8858 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8859 { 8860 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8861 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8862 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8863 tcg_res, tcg_op3); 8864 break; 8865 } 8866 default: 8867 g_assert_not_reached(); 8868 } 8869 8870 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8871 write_fp_dreg(s, rd, tcg_res); 8872 } 8873 } 8874 8875 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8876 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8877 { 8878 /* Handle 64x64->64 opcodes which are shared between the scalar 8879 * and vector 3-same groups. We cover every opcode where size == 3 8880 * is valid in either the three-reg-same (integer, not pairwise) 8881 * or scalar-three-reg-same groups. 8882 */ 8883 TCGCond cond; 8884 8885 switch (opcode) { 8886 case 0x1: /* SQADD */ 8887 if (u) { 8888 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8889 } else { 8890 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8891 } 8892 break; 8893 case 0x5: /* SQSUB */ 8894 if (u) { 8895 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8896 } else { 8897 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8898 } 8899 break; 8900 case 0x6: /* CMGT, CMHI */ 8901 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 8902 * We implement this using setcond (test) and then negating. 8903 */ 8904 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8905 do_cmop: 8906 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8907 tcg_gen_neg_i64(tcg_rd, tcg_rd); 8908 break; 8909 case 0x7: /* CMGE, CMHS */ 8910 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8911 goto do_cmop; 8912 case 0x11: /* CMTST, CMEQ */ 8913 if (u) { 8914 cond = TCG_COND_EQ; 8915 goto do_cmop; 8916 } 8917 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8918 break; 8919 case 0x8: /* SSHL, USHL */ 8920 if (u) { 8921 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8922 } else { 8923 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8924 } 8925 break; 8926 case 0x9: /* SQSHL, UQSHL */ 8927 if (u) { 8928 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8929 } else { 8930 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8931 } 8932 break; 8933 case 0xa: /* SRSHL, URSHL */ 8934 if (u) { 8935 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8936 } else { 8937 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8938 } 8939 break; 8940 case 0xb: /* SQRSHL, UQRSHL */ 8941 if (u) { 8942 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8943 } else { 8944 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8945 } 8946 break; 8947 case 0x10: /* ADD, SUB */ 8948 if (u) { 8949 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8950 } else { 8951 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8952 } 8953 break; 8954 default: 8955 g_assert_not_reached(); 8956 } 8957 } 8958 8959 /* Handle the 3-same-operands float operations; shared by the scalar 8960 * and vector encodings. The caller must filter out any encodings 8961 * not allocated for the encoding it is dealing with. 8962 */ 8963 static void handle_3same_float(DisasContext *s, int size, int elements, 8964 int fpopcode, int rd, int rn, int rm) 8965 { 8966 int pass; 8967 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8968 8969 for (pass = 0; pass < elements; pass++) { 8970 if (size) { 8971 /* Double */ 8972 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8973 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8974 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8975 8976 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8977 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8978 8979 switch (fpopcode) { 8980 case 0x39: /* FMLS */ 8981 /* As usual for ARM, separate negation for fused multiply-add */ 8982 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8983 /* fall through */ 8984 case 0x19: /* FMLA */ 8985 read_vec_element(s, tcg_res, rd, pass, MO_64); 8986 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8987 tcg_res, fpst); 8988 break; 8989 case 0x18: /* FMAXNM */ 8990 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8991 break; 8992 case 0x1a: /* FADD */ 8993 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8994 break; 8995 case 0x1b: /* FMULX */ 8996 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8997 break; 8998 case 0x1c: /* FCMEQ */ 8999 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9000 break; 9001 case 0x1e: /* FMAX */ 9002 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9003 break; 9004 case 0x1f: /* FRECPS */ 9005 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9006 break; 9007 case 0x38: /* FMINNM */ 9008 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9009 break; 9010 case 0x3a: /* FSUB */ 9011 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9012 break; 9013 case 0x3e: /* FMIN */ 9014 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9015 break; 9016 case 0x3f: /* FRSQRTS */ 9017 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9018 break; 9019 case 0x5b: /* FMUL */ 9020 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9021 break; 9022 case 0x5c: /* FCMGE */ 9023 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9024 break; 9025 case 0x5d: /* FACGE */ 9026 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9027 break; 9028 case 0x5f: /* FDIV */ 9029 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9030 break; 9031 case 0x7a: /* FABD */ 9032 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9033 gen_helper_vfp_absd(tcg_res, tcg_res); 9034 break; 9035 case 0x7c: /* FCMGT */ 9036 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9037 break; 9038 case 0x7d: /* FACGT */ 9039 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9040 break; 9041 default: 9042 g_assert_not_reached(); 9043 } 9044 9045 write_vec_element(s, tcg_res, rd, pass, MO_64); 9046 } else { 9047 /* Single */ 9048 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9049 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9050 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9051 9052 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9053 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9054 9055 switch (fpopcode) { 9056 case 0x39: /* FMLS */ 9057 /* As usual for ARM, separate negation for fused multiply-add */ 9058 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9059 /* fall through */ 9060 case 0x19: /* FMLA */ 9061 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9062 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9063 tcg_res, fpst); 9064 break; 9065 case 0x1a: /* FADD */ 9066 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9067 break; 9068 case 0x1b: /* FMULX */ 9069 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9070 break; 9071 case 0x1c: /* FCMEQ */ 9072 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9073 break; 9074 case 0x1e: /* FMAX */ 9075 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9076 break; 9077 case 0x1f: /* FRECPS */ 9078 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9079 break; 9080 case 0x18: /* FMAXNM */ 9081 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9082 break; 9083 case 0x38: /* FMINNM */ 9084 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9085 break; 9086 case 0x3a: /* FSUB */ 9087 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9088 break; 9089 case 0x3e: /* FMIN */ 9090 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9091 break; 9092 case 0x3f: /* FRSQRTS */ 9093 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9094 break; 9095 case 0x5b: /* FMUL */ 9096 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9097 break; 9098 case 0x5c: /* FCMGE */ 9099 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9100 break; 9101 case 0x5d: /* FACGE */ 9102 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9103 break; 9104 case 0x5f: /* FDIV */ 9105 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9106 break; 9107 case 0x7a: /* FABD */ 9108 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9109 gen_helper_vfp_abss(tcg_res, tcg_res); 9110 break; 9111 case 0x7c: /* FCMGT */ 9112 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9113 break; 9114 case 0x7d: /* FACGT */ 9115 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9116 break; 9117 default: 9118 g_assert_not_reached(); 9119 } 9120 9121 if (elements == 1) { 9122 /* scalar single so clear high part */ 9123 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9124 9125 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9126 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9127 } else { 9128 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9129 } 9130 } 9131 } 9132 9133 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9134 } 9135 9136 /* AdvSIMD scalar three same 9137 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9138 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9139 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9140 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9141 */ 9142 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9143 { 9144 int rd = extract32(insn, 0, 5); 9145 int rn = extract32(insn, 5, 5); 9146 int opcode = extract32(insn, 11, 5); 9147 int rm = extract32(insn, 16, 5); 9148 int size = extract32(insn, 22, 2); 9149 bool u = extract32(insn, 29, 1); 9150 TCGv_i64 tcg_rd; 9151 9152 if (opcode >= 0x18) { 9153 /* Floating point: U, size[1] and opcode indicate operation */ 9154 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9155 switch (fpopcode) { 9156 case 0x1b: /* FMULX */ 9157 case 0x1f: /* FRECPS */ 9158 case 0x3f: /* FRSQRTS */ 9159 case 0x5d: /* FACGE */ 9160 case 0x7d: /* FACGT */ 9161 case 0x1c: /* FCMEQ */ 9162 case 0x5c: /* FCMGE */ 9163 case 0x7c: /* FCMGT */ 9164 case 0x7a: /* FABD */ 9165 break; 9166 default: 9167 unallocated_encoding(s); 9168 return; 9169 } 9170 9171 if (!fp_access_check(s)) { 9172 return; 9173 } 9174 9175 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9176 return; 9177 } 9178 9179 switch (opcode) { 9180 case 0x1: /* SQADD, UQADD */ 9181 case 0x5: /* SQSUB, UQSUB */ 9182 case 0x9: /* SQSHL, UQSHL */ 9183 case 0xb: /* SQRSHL, UQRSHL */ 9184 break; 9185 case 0x8: /* SSHL, USHL */ 9186 case 0xa: /* SRSHL, URSHL */ 9187 case 0x6: /* CMGT, CMHI */ 9188 case 0x7: /* CMGE, CMHS */ 9189 case 0x11: /* CMTST, CMEQ */ 9190 case 0x10: /* ADD, SUB (vector) */ 9191 if (size != 3) { 9192 unallocated_encoding(s); 9193 return; 9194 } 9195 break; 9196 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9197 if (size != 1 && size != 2) { 9198 unallocated_encoding(s); 9199 return; 9200 } 9201 break; 9202 default: 9203 unallocated_encoding(s); 9204 return; 9205 } 9206 9207 if (!fp_access_check(s)) { 9208 return; 9209 } 9210 9211 tcg_rd = tcg_temp_new_i64(); 9212 9213 if (size == 3) { 9214 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9215 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9216 9217 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9218 } else { 9219 /* Do a single operation on the lowest element in the vector. 9220 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9221 * no side effects for all these operations. 9222 * OPTME: special-purpose helpers would avoid doing some 9223 * unnecessary work in the helper for the 8 and 16 bit cases. 9224 */ 9225 NeonGenTwoOpEnvFn *genenvfn; 9226 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9227 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9228 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9229 9230 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9231 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9232 9233 switch (opcode) { 9234 case 0x1: /* SQADD, UQADD */ 9235 { 9236 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9237 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9238 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9239 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9240 }; 9241 genenvfn = fns[size][u]; 9242 break; 9243 } 9244 case 0x5: /* SQSUB, UQSUB */ 9245 { 9246 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9247 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9248 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9249 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9250 }; 9251 genenvfn = fns[size][u]; 9252 break; 9253 } 9254 case 0x9: /* SQSHL, UQSHL */ 9255 { 9256 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9257 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9258 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9259 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9260 }; 9261 genenvfn = fns[size][u]; 9262 break; 9263 } 9264 case 0xb: /* SQRSHL, UQRSHL */ 9265 { 9266 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9267 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9268 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9269 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9270 }; 9271 genenvfn = fns[size][u]; 9272 break; 9273 } 9274 case 0x16: /* SQDMULH, SQRDMULH */ 9275 { 9276 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9277 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9278 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9279 }; 9280 assert(size == 1 || size == 2); 9281 genenvfn = fns[size - 1][u]; 9282 break; 9283 } 9284 default: 9285 g_assert_not_reached(); 9286 } 9287 9288 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9289 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9290 } 9291 9292 write_fp_dreg(s, rd, tcg_rd); 9293 } 9294 9295 /* AdvSIMD scalar three same FP16 9296 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9297 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9298 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9299 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9300 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9301 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9302 */ 9303 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9304 uint32_t insn) 9305 { 9306 int rd = extract32(insn, 0, 5); 9307 int rn = extract32(insn, 5, 5); 9308 int opcode = extract32(insn, 11, 3); 9309 int rm = extract32(insn, 16, 5); 9310 bool u = extract32(insn, 29, 1); 9311 bool a = extract32(insn, 23, 1); 9312 int fpopcode = opcode | (a << 3) | (u << 4); 9313 TCGv_ptr fpst; 9314 TCGv_i32 tcg_op1; 9315 TCGv_i32 tcg_op2; 9316 TCGv_i32 tcg_res; 9317 9318 switch (fpopcode) { 9319 case 0x03: /* FMULX */ 9320 case 0x04: /* FCMEQ (reg) */ 9321 case 0x07: /* FRECPS */ 9322 case 0x0f: /* FRSQRTS */ 9323 case 0x14: /* FCMGE (reg) */ 9324 case 0x15: /* FACGE */ 9325 case 0x1a: /* FABD */ 9326 case 0x1c: /* FCMGT (reg) */ 9327 case 0x1d: /* FACGT */ 9328 break; 9329 default: 9330 unallocated_encoding(s); 9331 return; 9332 } 9333 9334 if (!dc_isar_feature(aa64_fp16, s)) { 9335 unallocated_encoding(s); 9336 } 9337 9338 if (!fp_access_check(s)) { 9339 return; 9340 } 9341 9342 fpst = fpstatus_ptr(FPST_FPCR_F16); 9343 9344 tcg_op1 = read_fp_hreg(s, rn); 9345 tcg_op2 = read_fp_hreg(s, rm); 9346 tcg_res = tcg_temp_new_i32(); 9347 9348 switch (fpopcode) { 9349 case 0x03: /* FMULX */ 9350 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9351 break; 9352 case 0x04: /* FCMEQ (reg) */ 9353 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9354 break; 9355 case 0x07: /* FRECPS */ 9356 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9357 break; 9358 case 0x0f: /* FRSQRTS */ 9359 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9360 break; 9361 case 0x14: /* FCMGE (reg) */ 9362 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9363 break; 9364 case 0x15: /* FACGE */ 9365 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9366 break; 9367 case 0x1a: /* FABD */ 9368 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9369 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9370 break; 9371 case 0x1c: /* FCMGT (reg) */ 9372 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9373 break; 9374 case 0x1d: /* FACGT */ 9375 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9376 break; 9377 default: 9378 g_assert_not_reached(); 9379 } 9380 9381 write_fp_sreg(s, rd, tcg_res); 9382 } 9383 9384 /* AdvSIMD scalar three same extra 9385 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9386 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9387 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9388 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9389 */ 9390 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9391 uint32_t insn) 9392 { 9393 int rd = extract32(insn, 0, 5); 9394 int rn = extract32(insn, 5, 5); 9395 int opcode = extract32(insn, 11, 4); 9396 int rm = extract32(insn, 16, 5); 9397 int size = extract32(insn, 22, 2); 9398 bool u = extract32(insn, 29, 1); 9399 TCGv_i32 ele1, ele2, ele3; 9400 TCGv_i64 res; 9401 bool feature; 9402 9403 switch (u * 16 + opcode) { 9404 case 0x10: /* SQRDMLAH (vector) */ 9405 case 0x11: /* SQRDMLSH (vector) */ 9406 if (size != 1 && size != 2) { 9407 unallocated_encoding(s); 9408 return; 9409 } 9410 feature = dc_isar_feature(aa64_rdm, s); 9411 break; 9412 default: 9413 unallocated_encoding(s); 9414 return; 9415 } 9416 if (!feature) { 9417 unallocated_encoding(s); 9418 return; 9419 } 9420 if (!fp_access_check(s)) { 9421 return; 9422 } 9423 9424 /* Do a single operation on the lowest element in the vector. 9425 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9426 * with no side effects for all these operations. 9427 * OPTME: special-purpose helpers would avoid doing some 9428 * unnecessary work in the helper for the 16 bit cases. 9429 */ 9430 ele1 = tcg_temp_new_i32(); 9431 ele2 = tcg_temp_new_i32(); 9432 ele3 = tcg_temp_new_i32(); 9433 9434 read_vec_element_i32(s, ele1, rn, 0, size); 9435 read_vec_element_i32(s, ele2, rm, 0, size); 9436 read_vec_element_i32(s, ele3, rd, 0, size); 9437 9438 switch (opcode) { 9439 case 0x0: /* SQRDMLAH */ 9440 if (size == 1) { 9441 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9442 } else { 9443 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9444 } 9445 break; 9446 case 0x1: /* SQRDMLSH */ 9447 if (size == 1) { 9448 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9449 } else { 9450 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9451 } 9452 break; 9453 default: 9454 g_assert_not_reached(); 9455 } 9456 9457 res = tcg_temp_new_i64(); 9458 tcg_gen_extu_i32_i64(res, ele3); 9459 write_fp_dreg(s, rd, res); 9460 } 9461 9462 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9463 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9464 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9465 { 9466 /* Handle 64->64 opcodes which are shared between the scalar and 9467 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9468 * is valid in either group and also the double-precision fp ops. 9469 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9470 * requires them. 9471 */ 9472 TCGCond cond; 9473 9474 switch (opcode) { 9475 case 0x4: /* CLS, CLZ */ 9476 if (u) { 9477 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9478 } else { 9479 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9480 } 9481 break; 9482 case 0x5: /* NOT */ 9483 /* This opcode is shared with CNT and RBIT but we have earlier 9484 * enforced that size == 3 if and only if this is the NOT insn. 9485 */ 9486 tcg_gen_not_i64(tcg_rd, tcg_rn); 9487 break; 9488 case 0x7: /* SQABS, SQNEG */ 9489 if (u) { 9490 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9491 } else { 9492 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9493 } 9494 break; 9495 case 0xa: /* CMLT */ 9496 /* 64 bit integer comparison against zero, result is 9497 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9498 * subtracting 1. 9499 */ 9500 cond = TCG_COND_LT; 9501 do_cmop: 9502 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9503 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9504 break; 9505 case 0x8: /* CMGT, CMGE */ 9506 cond = u ? TCG_COND_GE : TCG_COND_GT; 9507 goto do_cmop; 9508 case 0x9: /* CMEQ, CMLE */ 9509 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9510 goto do_cmop; 9511 case 0xb: /* ABS, NEG */ 9512 if (u) { 9513 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9514 } else { 9515 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9516 } 9517 break; 9518 case 0x2f: /* FABS */ 9519 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9520 break; 9521 case 0x6f: /* FNEG */ 9522 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9523 break; 9524 case 0x7f: /* FSQRT */ 9525 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9526 break; 9527 case 0x1a: /* FCVTNS */ 9528 case 0x1b: /* FCVTMS */ 9529 case 0x1c: /* FCVTAS */ 9530 case 0x3a: /* FCVTPS */ 9531 case 0x3b: /* FCVTZS */ 9532 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9533 break; 9534 case 0x5a: /* FCVTNU */ 9535 case 0x5b: /* FCVTMU */ 9536 case 0x5c: /* FCVTAU */ 9537 case 0x7a: /* FCVTPU */ 9538 case 0x7b: /* FCVTZU */ 9539 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9540 break; 9541 case 0x18: /* FRINTN */ 9542 case 0x19: /* FRINTM */ 9543 case 0x38: /* FRINTP */ 9544 case 0x39: /* FRINTZ */ 9545 case 0x58: /* FRINTA */ 9546 case 0x79: /* FRINTI */ 9547 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9548 break; 9549 case 0x59: /* FRINTX */ 9550 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9551 break; 9552 case 0x1e: /* FRINT32Z */ 9553 case 0x5e: /* FRINT32X */ 9554 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9555 break; 9556 case 0x1f: /* FRINT64Z */ 9557 case 0x5f: /* FRINT64X */ 9558 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9559 break; 9560 default: 9561 g_assert_not_reached(); 9562 } 9563 } 9564 9565 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9566 bool is_scalar, bool is_u, bool is_q, 9567 int size, int rn, int rd) 9568 { 9569 bool is_double = (size == MO_64); 9570 TCGv_ptr fpst; 9571 9572 if (!fp_access_check(s)) { 9573 return; 9574 } 9575 9576 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9577 9578 if (is_double) { 9579 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9580 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9581 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9582 NeonGenTwoDoubleOpFn *genfn; 9583 bool swap = false; 9584 int pass; 9585 9586 switch (opcode) { 9587 case 0x2e: /* FCMLT (zero) */ 9588 swap = true; 9589 /* fallthrough */ 9590 case 0x2c: /* FCMGT (zero) */ 9591 genfn = gen_helper_neon_cgt_f64; 9592 break; 9593 case 0x2d: /* FCMEQ (zero) */ 9594 genfn = gen_helper_neon_ceq_f64; 9595 break; 9596 case 0x6d: /* FCMLE (zero) */ 9597 swap = true; 9598 /* fall through */ 9599 case 0x6c: /* FCMGE (zero) */ 9600 genfn = gen_helper_neon_cge_f64; 9601 break; 9602 default: 9603 g_assert_not_reached(); 9604 } 9605 9606 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9607 read_vec_element(s, tcg_op, rn, pass, MO_64); 9608 if (swap) { 9609 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9610 } else { 9611 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9612 } 9613 write_vec_element(s, tcg_res, rd, pass, MO_64); 9614 } 9615 9616 clear_vec_high(s, !is_scalar, rd); 9617 } else { 9618 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9619 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9620 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9621 NeonGenTwoSingleOpFn *genfn; 9622 bool swap = false; 9623 int pass, maxpasses; 9624 9625 if (size == MO_16) { 9626 switch (opcode) { 9627 case 0x2e: /* FCMLT (zero) */ 9628 swap = true; 9629 /* fall through */ 9630 case 0x2c: /* FCMGT (zero) */ 9631 genfn = gen_helper_advsimd_cgt_f16; 9632 break; 9633 case 0x2d: /* FCMEQ (zero) */ 9634 genfn = gen_helper_advsimd_ceq_f16; 9635 break; 9636 case 0x6d: /* FCMLE (zero) */ 9637 swap = true; 9638 /* fall through */ 9639 case 0x6c: /* FCMGE (zero) */ 9640 genfn = gen_helper_advsimd_cge_f16; 9641 break; 9642 default: 9643 g_assert_not_reached(); 9644 } 9645 } else { 9646 switch (opcode) { 9647 case 0x2e: /* FCMLT (zero) */ 9648 swap = true; 9649 /* fall through */ 9650 case 0x2c: /* FCMGT (zero) */ 9651 genfn = gen_helper_neon_cgt_f32; 9652 break; 9653 case 0x2d: /* FCMEQ (zero) */ 9654 genfn = gen_helper_neon_ceq_f32; 9655 break; 9656 case 0x6d: /* FCMLE (zero) */ 9657 swap = true; 9658 /* fall through */ 9659 case 0x6c: /* FCMGE (zero) */ 9660 genfn = gen_helper_neon_cge_f32; 9661 break; 9662 default: 9663 g_assert_not_reached(); 9664 } 9665 } 9666 9667 if (is_scalar) { 9668 maxpasses = 1; 9669 } else { 9670 int vector_size = 8 << is_q; 9671 maxpasses = vector_size >> size; 9672 } 9673 9674 for (pass = 0; pass < maxpasses; pass++) { 9675 read_vec_element_i32(s, tcg_op, rn, pass, size); 9676 if (swap) { 9677 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9678 } else { 9679 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9680 } 9681 if (is_scalar) { 9682 write_fp_sreg(s, rd, tcg_res); 9683 } else { 9684 write_vec_element_i32(s, tcg_res, rd, pass, size); 9685 } 9686 } 9687 9688 if (!is_scalar) { 9689 clear_vec_high(s, is_q, rd); 9690 } 9691 } 9692 } 9693 9694 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9695 bool is_scalar, bool is_u, bool is_q, 9696 int size, int rn, int rd) 9697 { 9698 bool is_double = (size == 3); 9699 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9700 9701 if (is_double) { 9702 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9703 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9704 int pass; 9705 9706 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9707 read_vec_element(s, tcg_op, rn, pass, MO_64); 9708 switch (opcode) { 9709 case 0x3d: /* FRECPE */ 9710 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9711 break; 9712 case 0x3f: /* FRECPX */ 9713 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9714 break; 9715 case 0x7d: /* FRSQRTE */ 9716 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9717 break; 9718 default: 9719 g_assert_not_reached(); 9720 } 9721 write_vec_element(s, tcg_res, rd, pass, MO_64); 9722 } 9723 clear_vec_high(s, !is_scalar, rd); 9724 } else { 9725 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9726 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9727 int pass, maxpasses; 9728 9729 if (is_scalar) { 9730 maxpasses = 1; 9731 } else { 9732 maxpasses = is_q ? 4 : 2; 9733 } 9734 9735 for (pass = 0; pass < maxpasses; pass++) { 9736 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9737 9738 switch (opcode) { 9739 case 0x3c: /* URECPE */ 9740 gen_helper_recpe_u32(tcg_res, tcg_op); 9741 break; 9742 case 0x3d: /* FRECPE */ 9743 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9744 break; 9745 case 0x3f: /* FRECPX */ 9746 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9747 break; 9748 case 0x7d: /* FRSQRTE */ 9749 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9750 break; 9751 default: 9752 g_assert_not_reached(); 9753 } 9754 9755 if (is_scalar) { 9756 write_fp_sreg(s, rd, tcg_res); 9757 } else { 9758 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9759 } 9760 } 9761 if (!is_scalar) { 9762 clear_vec_high(s, is_q, rd); 9763 } 9764 } 9765 } 9766 9767 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9768 int opcode, bool u, bool is_q, 9769 int size, int rn, int rd) 9770 { 9771 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9772 * in the source becomes a size element in the destination). 9773 */ 9774 int pass; 9775 TCGv_i32 tcg_res[2]; 9776 int destelt = is_q ? 2 : 0; 9777 int passes = scalar ? 1 : 2; 9778 9779 if (scalar) { 9780 tcg_res[1] = tcg_constant_i32(0); 9781 } 9782 9783 for (pass = 0; pass < passes; pass++) { 9784 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9785 NeonGenNarrowFn *genfn = NULL; 9786 NeonGenNarrowEnvFn *genenvfn = NULL; 9787 9788 if (scalar) { 9789 read_vec_element(s, tcg_op, rn, pass, size + 1); 9790 } else { 9791 read_vec_element(s, tcg_op, rn, pass, MO_64); 9792 } 9793 tcg_res[pass] = tcg_temp_new_i32(); 9794 9795 switch (opcode) { 9796 case 0x12: /* XTN, SQXTUN */ 9797 { 9798 static NeonGenNarrowFn * const xtnfns[3] = { 9799 gen_helper_neon_narrow_u8, 9800 gen_helper_neon_narrow_u16, 9801 tcg_gen_extrl_i64_i32, 9802 }; 9803 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9804 gen_helper_neon_unarrow_sat8, 9805 gen_helper_neon_unarrow_sat16, 9806 gen_helper_neon_unarrow_sat32, 9807 }; 9808 if (u) { 9809 genenvfn = sqxtunfns[size]; 9810 } else { 9811 genfn = xtnfns[size]; 9812 } 9813 break; 9814 } 9815 case 0x14: /* SQXTN, UQXTN */ 9816 { 9817 static NeonGenNarrowEnvFn * const fns[3][2] = { 9818 { gen_helper_neon_narrow_sat_s8, 9819 gen_helper_neon_narrow_sat_u8 }, 9820 { gen_helper_neon_narrow_sat_s16, 9821 gen_helper_neon_narrow_sat_u16 }, 9822 { gen_helper_neon_narrow_sat_s32, 9823 gen_helper_neon_narrow_sat_u32 }, 9824 }; 9825 genenvfn = fns[size][u]; 9826 break; 9827 } 9828 case 0x16: /* FCVTN, FCVTN2 */ 9829 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9830 if (size == 2) { 9831 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9832 } else { 9833 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9834 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9835 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9836 TCGv_i32 ahp = get_ahp_flag(); 9837 9838 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9839 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9840 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9841 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9842 } 9843 break; 9844 case 0x36: /* BFCVTN, BFCVTN2 */ 9845 { 9846 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9847 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9848 } 9849 break; 9850 case 0x56: /* FCVTXN, FCVTXN2 */ 9851 /* 64 bit to 32 bit float conversion 9852 * with von Neumann rounding (round to odd) 9853 */ 9854 assert(size == 2); 9855 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9856 break; 9857 default: 9858 g_assert_not_reached(); 9859 } 9860 9861 if (genfn) { 9862 genfn(tcg_res[pass], tcg_op); 9863 } else if (genenvfn) { 9864 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9865 } 9866 } 9867 9868 for (pass = 0; pass < 2; pass++) { 9869 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9870 } 9871 clear_vec_high(s, is_q, rd); 9872 } 9873 9874 /* Remaining saturating accumulating ops */ 9875 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9876 bool is_q, int size, int rn, int rd) 9877 { 9878 bool is_double = (size == 3); 9879 9880 if (is_double) { 9881 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9882 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9883 int pass; 9884 9885 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9886 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9887 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9888 9889 if (is_u) { /* USQADD */ 9890 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9891 } else { /* SUQADD */ 9892 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9893 } 9894 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9895 } 9896 clear_vec_high(s, !is_scalar, rd); 9897 } else { 9898 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9899 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9900 int pass, maxpasses; 9901 9902 if (is_scalar) { 9903 maxpasses = 1; 9904 } else { 9905 maxpasses = is_q ? 4 : 2; 9906 } 9907 9908 for (pass = 0; pass < maxpasses; pass++) { 9909 if (is_scalar) { 9910 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9911 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9912 } else { 9913 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9914 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9915 } 9916 9917 if (is_u) { /* USQADD */ 9918 switch (size) { 9919 case 0: 9920 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9921 break; 9922 case 1: 9923 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9924 break; 9925 case 2: 9926 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9927 break; 9928 default: 9929 g_assert_not_reached(); 9930 } 9931 } else { /* SUQADD */ 9932 switch (size) { 9933 case 0: 9934 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9935 break; 9936 case 1: 9937 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9938 break; 9939 case 2: 9940 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9941 break; 9942 default: 9943 g_assert_not_reached(); 9944 } 9945 } 9946 9947 if (is_scalar) { 9948 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9949 } 9950 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9951 } 9952 clear_vec_high(s, is_q, rd); 9953 } 9954 } 9955 9956 /* AdvSIMD scalar two reg misc 9957 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9958 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9959 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9960 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9961 */ 9962 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9963 { 9964 int rd = extract32(insn, 0, 5); 9965 int rn = extract32(insn, 5, 5); 9966 int opcode = extract32(insn, 12, 5); 9967 int size = extract32(insn, 22, 2); 9968 bool u = extract32(insn, 29, 1); 9969 bool is_fcvt = false; 9970 int rmode; 9971 TCGv_i32 tcg_rmode; 9972 TCGv_ptr tcg_fpstatus; 9973 9974 switch (opcode) { 9975 case 0x3: /* USQADD / SUQADD*/ 9976 if (!fp_access_check(s)) { 9977 return; 9978 } 9979 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9980 return; 9981 case 0x7: /* SQABS / SQNEG */ 9982 break; 9983 case 0xa: /* CMLT */ 9984 if (u) { 9985 unallocated_encoding(s); 9986 return; 9987 } 9988 /* fall through */ 9989 case 0x8: /* CMGT, CMGE */ 9990 case 0x9: /* CMEQ, CMLE */ 9991 case 0xb: /* ABS, NEG */ 9992 if (size != 3) { 9993 unallocated_encoding(s); 9994 return; 9995 } 9996 break; 9997 case 0x12: /* SQXTUN */ 9998 if (!u) { 9999 unallocated_encoding(s); 10000 return; 10001 } 10002 /* fall through */ 10003 case 0x14: /* SQXTN, UQXTN */ 10004 if (size == 3) { 10005 unallocated_encoding(s); 10006 return; 10007 } 10008 if (!fp_access_check(s)) { 10009 return; 10010 } 10011 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10012 return; 10013 case 0xc ... 0xf: 10014 case 0x16 ... 0x1d: 10015 case 0x1f: 10016 /* Floating point: U, size[1] and opcode indicate operation; 10017 * size[0] indicates single or double precision. 10018 */ 10019 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10020 size = extract32(size, 0, 1) ? 3 : 2; 10021 switch (opcode) { 10022 case 0x2c: /* FCMGT (zero) */ 10023 case 0x2d: /* FCMEQ (zero) */ 10024 case 0x2e: /* FCMLT (zero) */ 10025 case 0x6c: /* FCMGE (zero) */ 10026 case 0x6d: /* FCMLE (zero) */ 10027 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10028 return; 10029 case 0x1d: /* SCVTF */ 10030 case 0x5d: /* UCVTF */ 10031 { 10032 bool is_signed = (opcode == 0x1d); 10033 if (!fp_access_check(s)) { 10034 return; 10035 } 10036 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10037 return; 10038 } 10039 case 0x3d: /* FRECPE */ 10040 case 0x3f: /* FRECPX */ 10041 case 0x7d: /* FRSQRTE */ 10042 if (!fp_access_check(s)) { 10043 return; 10044 } 10045 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10046 return; 10047 case 0x1a: /* FCVTNS */ 10048 case 0x1b: /* FCVTMS */ 10049 case 0x3a: /* FCVTPS */ 10050 case 0x3b: /* FCVTZS */ 10051 case 0x5a: /* FCVTNU */ 10052 case 0x5b: /* FCVTMU */ 10053 case 0x7a: /* FCVTPU */ 10054 case 0x7b: /* FCVTZU */ 10055 is_fcvt = true; 10056 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10057 break; 10058 case 0x1c: /* FCVTAS */ 10059 case 0x5c: /* FCVTAU */ 10060 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10061 is_fcvt = true; 10062 rmode = FPROUNDING_TIEAWAY; 10063 break; 10064 case 0x56: /* FCVTXN, FCVTXN2 */ 10065 if (size == 2) { 10066 unallocated_encoding(s); 10067 return; 10068 } 10069 if (!fp_access_check(s)) { 10070 return; 10071 } 10072 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10073 return; 10074 default: 10075 unallocated_encoding(s); 10076 return; 10077 } 10078 break; 10079 default: 10080 unallocated_encoding(s); 10081 return; 10082 } 10083 10084 if (!fp_access_check(s)) { 10085 return; 10086 } 10087 10088 if (is_fcvt) { 10089 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10090 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10091 } else { 10092 tcg_fpstatus = NULL; 10093 tcg_rmode = NULL; 10094 } 10095 10096 if (size == 3) { 10097 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10098 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10099 10100 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10101 write_fp_dreg(s, rd, tcg_rd); 10102 } else { 10103 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10104 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10105 10106 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10107 10108 switch (opcode) { 10109 case 0x7: /* SQABS, SQNEG */ 10110 { 10111 NeonGenOneOpEnvFn *genfn; 10112 static NeonGenOneOpEnvFn * const fns[3][2] = { 10113 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10114 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10115 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10116 }; 10117 genfn = fns[size][u]; 10118 genfn(tcg_rd, cpu_env, tcg_rn); 10119 break; 10120 } 10121 case 0x1a: /* FCVTNS */ 10122 case 0x1b: /* FCVTMS */ 10123 case 0x1c: /* FCVTAS */ 10124 case 0x3a: /* FCVTPS */ 10125 case 0x3b: /* FCVTZS */ 10126 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10127 tcg_fpstatus); 10128 break; 10129 case 0x5a: /* FCVTNU */ 10130 case 0x5b: /* FCVTMU */ 10131 case 0x5c: /* FCVTAU */ 10132 case 0x7a: /* FCVTPU */ 10133 case 0x7b: /* FCVTZU */ 10134 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10135 tcg_fpstatus); 10136 break; 10137 default: 10138 g_assert_not_reached(); 10139 } 10140 10141 write_fp_sreg(s, rd, tcg_rd); 10142 } 10143 10144 if (is_fcvt) { 10145 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10146 } 10147 } 10148 10149 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10150 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10151 int immh, int immb, int opcode, int rn, int rd) 10152 { 10153 int size = 32 - clz32(immh) - 1; 10154 int immhb = immh << 3 | immb; 10155 int shift = 2 * (8 << size) - immhb; 10156 GVecGen2iFn *gvec_fn; 10157 10158 if (extract32(immh, 3, 1) && !is_q) { 10159 unallocated_encoding(s); 10160 return; 10161 } 10162 tcg_debug_assert(size <= 3); 10163 10164 if (!fp_access_check(s)) { 10165 return; 10166 } 10167 10168 switch (opcode) { 10169 case 0x02: /* SSRA / USRA (accumulate) */ 10170 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10171 break; 10172 10173 case 0x08: /* SRI */ 10174 gvec_fn = gen_gvec_sri; 10175 break; 10176 10177 case 0x00: /* SSHR / USHR */ 10178 if (is_u) { 10179 if (shift == 8 << size) { 10180 /* Shift count the same size as element size produces zero. */ 10181 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10182 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10183 return; 10184 } 10185 gvec_fn = tcg_gen_gvec_shri; 10186 } else { 10187 /* Shift count the same size as element size produces all sign. */ 10188 if (shift == 8 << size) { 10189 shift -= 1; 10190 } 10191 gvec_fn = tcg_gen_gvec_sari; 10192 } 10193 break; 10194 10195 case 0x04: /* SRSHR / URSHR (rounding) */ 10196 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10197 break; 10198 10199 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10200 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10201 break; 10202 10203 default: 10204 g_assert_not_reached(); 10205 } 10206 10207 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10208 } 10209 10210 /* SHL/SLI - Vector shift left */ 10211 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10212 int immh, int immb, int opcode, int rn, int rd) 10213 { 10214 int size = 32 - clz32(immh) - 1; 10215 int immhb = immh << 3 | immb; 10216 int shift = immhb - (8 << size); 10217 10218 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10219 assert(size >= 0 && size <= 3); 10220 10221 if (extract32(immh, 3, 1) && !is_q) { 10222 unallocated_encoding(s); 10223 return; 10224 } 10225 10226 if (!fp_access_check(s)) { 10227 return; 10228 } 10229 10230 if (insert) { 10231 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10232 } else { 10233 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10234 } 10235 } 10236 10237 /* USHLL/SHLL - Vector shift left with widening */ 10238 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10239 int immh, int immb, int opcode, int rn, int rd) 10240 { 10241 int size = 32 - clz32(immh) - 1; 10242 int immhb = immh << 3 | immb; 10243 int shift = immhb - (8 << size); 10244 int dsize = 64; 10245 int esize = 8 << size; 10246 int elements = dsize/esize; 10247 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10248 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10249 int i; 10250 10251 if (size >= 3) { 10252 unallocated_encoding(s); 10253 return; 10254 } 10255 10256 if (!fp_access_check(s)) { 10257 return; 10258 } 10259 10260 /* For the LL variants the store is larger than the load, 10261 * so if rd == rn we would overwrite parts of our input. 10262 * So load everything right now and use shifts in the main loop. 10263 */ 10264 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10265 10266 for (i = 0; i < elements; i++) { 10267 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10268 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10269 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10270 write_vec_element(s, tcg_rd, rd, i, size + 1); 10271 } 10272 } 10273 10274 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10275 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10276 int immh, int immb, int opcode, int rn, int rd) 10277 { 10278 int immhb = immh << 3 | immb; 10279 int size = 32 - clz32(immh) - 1; 10280 int dsize = 64; 10281 int esize = 8 << size; 10282 int elements = dsize/esize; 10283 int shift = (2 * esize) - immhb; 10284 bool round = extract32(opcode, 0, 1); 10285 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10286 TCGv_i64 tcg_round; 10287 int i; 10288 10289 if (extract32(immh, 3, 1)) { 10290 unallocated_encoding(s); 10291 return; 10292 } 10293 10294 if (!fp_access_check(s)) { 10295 return; 10296 } 10297 10298 tcg_rn = tcg_temp_new_i64(); 10299 tcg_rd = tcg_temp_new_i64(); 10300 tcg_final = tcg_temp_new_i64(); 10301 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10302 10303 if (round) { 10304 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10305 } else { 10306 tcg_round = NULL; 10307 } 10308 10309 for (i = 0; i < elements; i++) { 10310 read_vec_element(s, tcg_rn, rn, i, size+1); 10311 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10312 false, true, size+1, shift); 10313 10314 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10315 } 10316 10317 if (!is_q) { 10318 write_vec_element(s, tcg_final, rd, 0, MO_64); 10319 } else { 10320 write_vec_element(s, tcg_final, rd, 1, MO_64); 10321 } 10322 10323 clear_vec_high(s, is_q, rd); 10324 } 10325 10326 10327 /* AdvSIMD shift by immediate 10328 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10329 * +---+---+---+-------------+------+------+--------+---+------+------+ 10330 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10331 * +---+---+---+-------------+------+------+--------+---+------+------+ 10332 */ 10333 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10334 { 10335 int rd = extract32(insn, 0, 5); 10336 int rn = extract32(insn, 5, 5); 10337 int opcode = extract32(insn, 11, 5); 10338 int immb = extract32(insn, 16, 3); 10339 int immh = extract32(insn, 19, 4); 10340 bool is_u = extract32(insn, 29, 1); 10341 bool is_q = extract32(insn, 30, 1); 10342 10343 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10344 assert(immh != 0); 10345 10346 switch (opcode) { 10347 case 0x08: /* SRI */ 10348 if (!is_u) { 10349 unallocated_encoding(s); 10350 return; 10351 } 10352 /* fall through */ 10353 case 0x00: /* SSHR / USHR */ 10354 case 0x02: /* SSRA / USRA (accumulate) */ 10355 case 0x04: /* SRSHR / URSHR (rounding) */ 10356 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10357 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10358 break; 10359 case 0x0a: /* SHL / SLI */ 10360 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10361 break; 10362 case 0x10: /* SHRN */ 10363 case 0x11: /* RSHRN / SQRSHRUN */ 10364 if (is_u) { 10365 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10366 opcode, rn, rd); 10367 } else { 10368 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10369 } 10370 break; 10371 case 0x12: /* SQSHRN / UQSHRN */ 10372 case 0x13: /* SQRSHRN / UQRSHRN */ 10373 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10374 opcode, rn, rd); 10375 break; 10376 case 0x14: /* SSHLL / USHLL */ 10377 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10378 break; 10379 case 0x1c: /* SCVTF / UCVTF */ 10380 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10381 opcode, rn, rd); 10382 break; 10383 case 0xc: /* SQSHLU */ 10384 if (!is_u) { 10385 unallocated_encoding(s); 10386 return; 10387 } 10388 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10389 break; 10390 case 0xe: /* SQSHL, UQSHL */ 10391 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10392 break; 10393 case 0x1f: /* FCVTZS/ FCVTZU */ 10394 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10395 return; 10396 default: 10397 unallocated_encoding(s); 10398 return; 10399 } 10400 } 10401 10402 /* Generate code to do a "long" addition or subtraction, ie one done in 10403 * TCGv_i64 on vector lanes twice the width specified by size. 10404 */ 10405 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10406 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10407 { 10408 static NeonGenTwo64OpFn * const fns[3][2] = { 10409 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10410 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10411 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10412 }; 10413 NeonGenTwo64OpFn *genfn; 10414 assert(size < 3); 10415 10416 genfn = fns[size][is_sub]; 10417 genfn(tcg_res, tcg_op1, tcg_op2); 10418 } 10419 10420 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10421 int opcode, int rd, int rn, int rm) 10422 { 10423 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10424 TCGv_i64 tcg_res[2]; 10425 int pass, accop; 10426 10427 tcg_res[0] = tcg_temp_new_i64(); 10428 tcg_res[1] = tcg_temp_new_i64(); 10429 10430 /* Does this op do an adding accumulate, a subtracting accumulate, 10431 * or no accumulate at all? 10432 */ 10433 switch (opcode) { 10434 case 5: 10435 case 8: 10436 case 9: 10437 accop = 1; 10438 break; 10439 case 10: 10440 case 11: 10441 accop = -1; 10442 break; 10443 default: 10444 accop = 0; 10445 break; 10446 } 10447 10448 if (accop != 0) { 10449 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10450 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10451 } 10452 10453 /* size == 2 means two 32x32->64 operations; this is worth special 10454 * casing because we can generally handle it inline. 10455 */ 10456 if (size == 2) { 10457 for (pass = 0; pass < 2; pass++) { 10458 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10459 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10460 TCGv_i64 tcg_passres; 10461 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10462 10463 int elt = pass + is_q * 2; 10464 10465 read_vec_element(s, tcg_op1, rn, elt, memop); 10466 read_vec_element(s, tcg_op2, rm, elt, memop); 10467 10468 if (accop == 0) { 10469 tcg_passres = tcg_res[pass]; 10470 } else { 10471 tcg_passres = tcg_temp_new_i64(); 10472 } 10473 10474 switch (opcode) { 10475 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10476 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10477 break; 10478 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10479 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10480 break; 10481 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10482 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10483 { 10484 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10485 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10486 10487 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10488 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10489 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10490 tcg_passres, 10491 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10492 break; 10493 } 10494 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10495 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10496 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10497 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10498 break; 10499 case 9: /* SQDMLAL, SQDMLAL2 */ 10500 case 11: /* SQDMLSL, SQDMLSL2 */ 10501 case 13: /* SQDMULL, SQDMULL2 */ 10502 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10503 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10504 tcg_passres, tcg_passres); 10505 break; 10506 default: 10507 g_assert_not_reached(); 10508 } 10509 10510 if (opcode == 9 || opcode == 11) { 10511 /* saturating accumulate ops */ 10512 if (accop < 0) { 10513 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10514 } 10515 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10516 tcg_res[pass], tcg_passres); 10517 } else if (accop > 0) { 10518 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10519 } else if (accop < 0) { 10520 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10521 } 10522 } 10523 } else { 10524 /* size 0 or 1, generally helper functions */ 10525 for (pass = 0; pass < 2; pass++) { 10526 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10527 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10528 TCGv_i64 tcg_passres; 10529 int elt = pass + is_q * 2; 10530 10531 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10532 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10533 10534 if (accop == 0) { 10535 tcg_passres = tcg_res[pass]; 10536 } else { 10537 tcg_passres = tcg_temp_new_i64(); 10538 } 10539 10540 switch (opcode) { 10541 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10542 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10543 { 10544 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10545 static NeonGenWidenFn * const widenfns[2][2] = { 10546 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10547 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10548 }; 10549 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10550 10551 widenfn(tcg_op2_64, tcg_op2); 10552 widenfn(tcg_passres, tcg_op1); 10553 gen_neon_addl(size, (opcode == 2), tcg_passres, 10554 tcg_passres, tcg_op2_64); 10555 break; 10556 } 10557 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10558 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10559 if (size == 0) { 10560 if (is_u) { 10561 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10562 } else { 10563 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10564 } 10565 } else { 10566 if (is_u) { 10567 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10568 } else { 10569 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10570 } 10571 } 10572 break; 10573 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10574 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10575 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10576 if (size == 0) { 10577 if (is_u) { 10578 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10579 } else { 10580 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10581 } 10582 } else { 10583 if (is_u) { 10584 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10585 } else { 10586 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10587 } 10588 } 10589 break; 10590 case 9: /* SQDMLAL, SQDMLAL2 */ 10591 case 11: /* SQDMLSL, SQDMLSL2 */ 10592 case 13: /* SQDMULL, SQDMULL2 */ 10593 assert(size == 1); 10594 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10595 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10596 tcg_passres, tcg_passres); 10597 break; 10598 default: 10599 g_assert_not_reached(); 10600 } 10601 10602 if (accop != 0) { 10603 if (opcode == 9 || opcode == 11) { 10604 /* saturating accumulate ops */ 10605 if (accop < 0) { 10606 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10607 } 10608 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10609 tcg_res[pass], 10610 tcg_passres); 10611 } else { 10612 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10613 tcg_res[pass], tcg_passres); 10614 } 10615 } 10616 } 10617 } 10618 10619 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10620 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10621 } 10622 10623 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10624 int opcode, int rd, int rn, int rm) 10625 { 10626 TCGv_i64 tcg_res[2]; 10627 int part = is_q ? 2 : 0; 10628 int pass; 10629 10630 for (pass = 0; pass < 2; pass++) { 10631 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10632 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10633 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10634 static NeonGenWidenFn * const widenfns[3][2] = { 10635 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10636 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10637 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10638 }; 10639 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10640 10641 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10642 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10643 widenfn(tcg_op2_wide, tcg_op2); 10644 tcg_res[pass] = tcg_temp_new_i64(); 10645 gen_neon_addl(size, (opcode == 3), 10646 tcg_res[pass], tcg_op1, tcg_op2_wide); 10647 } 10648 10649 for (pass = 0; pass < 2; pass++) { 10650 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10651 } 10652 } 10653 10654 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10655 { 10656 tcg_gen_addi_i64(in, in, 1U << 31); 10657 tcg_gen_extrh_i64_i32(res, in); 10658 } 10659 10660 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10661 int opcode, int rd, int rn, int rm) 10662 { 10663 TCGv_i32 tcg_res[2]; 10664 int part = is_q ? 2 : 0; 10665 int pass; 10666 10667 for (pass = 0; pass < 2; pass++) { 10668 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10669 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10670 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10671 static NeonGenNarrowFn * const narrowfns[3][2] = { 10672 { gen_helper_neon_narrow_high_u8, 10673 gen_helper_neon_narrow_round_high_u8 }, 10674 { gen_helper_neon_narrow_high_u16, 10675 gen_helper_neon_narrow_round_high_u16 }, 10676 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10677 }; 10678 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10679 10680 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10681 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10682 10683 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10684 10685 tcg_res[pass] = tcg_temp_new_i32(); 10686 gennarrow(tcg_res[pass], tcg_wideres); 10687 } 10688 10689 for (pass = 0; pass < 2; pass++) { 10690 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10691 } 10692 clear_vec_high(s, is_q, rd); 10693 } 10694 10695 /* AdvSIMD three different 10696 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10697 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10698 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10699 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10700 */ 10701 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10702 { 10703 /* Instructions in this group fall into three basic classes 10704 * (in each case with the operation working on each element in 10705 * the input vectors): 10706 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10707 * 128 bit input) 10708 * (2) wide 64 x 128 -> 128 10709 * (3) narrowing 128 x 128 -> 64 10710 * Here we do initial decode, catch unallocated cases and 10711 * dispatch to separate functions for each class. 10712 */ 10713 int is_q = extract32(insn, 30, 1); 10714 int is_u = extract32(insn, 29, 1); 10715 int size = extract32(insn, 22, 2); 10716 int opcode = extract32(insn, 12, 4); 10717 int rm = extract32(insn, 16, 5); 10718 int rn = extract32(insn, 5, 5); 10719 int rd = extract32(insn, 0, 5); 10720 10721 switch (opcode) { 10722 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10723 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10724 /* 64 x 128 -> 128 */ 10725 if (size == 3) { 10726 unallocated_encoding(s); 10727 return; 10728 } 10729 if (!fp_access_check(s)) { 10730 return; 10731 } 10732 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10733 break; 10734 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10735 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10736 /* 128 x 128 -> 64 */ 10737 if (size == 3) { 10738 unallocated_encoding(s); 10739 return; 10740 } 10741 if (!fp_access_check(s)) { 10742 return; 10743 } 10744 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10745 break; 10746 case 14: /* PMULL, PMULL2 */ 10747 if (is_u) { 10748 unallocated_encoding(s); 10749 return; 10750 } 10751 switch (size) { 10752 case 0: /* PMULL.P8 */ 10753 if (!fp_access_check(s)) { 10754 return; 10755 } 10756 /* The Q field specifies lo/hi half input for this insn. */ 10757 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10758 gen_helper_neon_pmull_h); 10759 break; 10760 10761 case 3: /* PMULL.P64 */ 10762 if (!dc_isar_feature(aa64_pmull, s)) { 10763 unallocated_encoding(s); 10764 return; 10765 } 10766 if (!fp_access_check(s)) { 10767 return; 10768 } 10769 /* The Q field specifies lo/hi half input for this insn. */ 10770 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10771 gen_helper_gvec_pmull_q); 10772 break; 10773 10774 default: 10775 unallocated_encoding(s); 10776 break; 10777 } 10778 return; 10779 case 9: /* SQDMLAL, SQDMLAL2 */ 10780 case 11: /* SQDMLSL, SQDMLSL2 */ 10781 case 13: /* SQDMULL, SQDMULL2 */ 10782 if (is_u || size == 0) { 10783 unallocated_encoding(s); 10784 return; 10785 } 10786 /* fall through */ 10787 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10788 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10789 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10790 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10791 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10792 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10793 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10794 /* 64 x 64 -> 128 */ 10795 if (size == 3) { 10796 unallocated_encoding(s); 10797 return; 10798 } 10799 if (!fp_access_check(s)) { 10800 return; 10801 } 10802 10803 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10804 break; 10805 default: 10806 /* opcode 15 not allocated */ 10807 unallocated_encoding(s); 10808 break; 10809 } 10810 } 10811 10812 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10813 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10814 { 10815 int rd = extract32(insn, 0, 5); 10816 int rn = extract32(insn, 5, 5); 10817 int rm = extract32(insn, 16, 5); 10818 int size = extract32(insn, 22, 2); 10819 bool is_u = extract32(insn, 29, 1); 10820 bool is_q = extract32(insn, 30, 1); 10821 10822 if (!fp_access_check(s)) { 10823 return; 10824 } 10825 10826 switch (size + 4 * is_u) { 10827 case 0: /* AND */ 10828 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10829 return; 10830 case 1: /* BIC */ 10831 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10832 return; 10833 case 2: /* ORR */ 10834 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10835 return; 10836 case 3: /* ORN */ 10837 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10838 return; 10839 case 4: /* EOR */ 10840 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10841 return; 10842 10843 case 5: /* BSL bitwise select */ 10844 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10845 return; 10846 case 6: /* BIT, bitwise insert if true */ 10847 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10848 return; 10849 case 7: /* BIF, bitwise insert if false */ 10850 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10851 return; 10852 10853 default: 10854 g_assert_not_reached(); 10855 } 10856 } 10857 10858 /* Pairwise op subgroup of C3.6.16. 10859 * 10860 * This is called directly or via the handle_3same_float for float pairwise 10861 * operations where the opcode and size are calculated differently. 10862 */ 10863 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10864 int size, int rn, int rm, int rd) 10865 { 10866 TCGv_ptr fpst; 10867 int pass; 10868 10869 /* Floating point operations need fpst */ 10870 if (opcode >= 0x58) { 10871 fpst = fpstatus_ptr(FPST_FPCR); 10872 } else { 10873 fpst = NULL; 10874 } 10875 10876 if (!fp_access_check(s)) { 10877 return; 10878 } 10879 10880 /* These operations work on the concatenated rm:rn, with each pair of 10881 * adjacent elements being operated on to produce an element in the result. 10882 */ 10883 if (size == 3) { 10884 TCGv_i64 tcg_res[2]; 10885 10886 for (pass = 0; pass < 2; pass++) { 10887 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10888 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10889 int passreg = (pass == 0) ? rn : rm; 10890 10891 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10892 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10893 tcg_res[pass] = tcg_temp_new_i64(); 10894 10895 switch (opcode) { 10896 case 0x17: /* ADDP */ 10897 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10898 break; 10899 case 0x58: /* FMAXNMP */ 10900 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10901 break; 10902 case 0x5a: /* FADDP */ 10903 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10904 break; 10905 case 0x5e: /* FMAXP */ 10906 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10907 break; 10908 case 0x78: /* FMINNMP */ 10909 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10910 break; 10911 case 0x7e: /* FMINP */ 10912 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10913 break; 10914 default: 10915 g_assert_not_reached(); 10916 } 10917 } 10918 10919 for (pass = 0; pass < 2; pass++) { 10920 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10921 } 10922 } else { 10923 int maxpass = is_q ? 4 : 2; 10924 TCGv_i32 tcg_res[4]; 10925 10926 for (pass = 0; pass < maxpass; pass++) { 10927 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10928 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10929 NeonGenTwoOpFn *genfn = NULL; 10930 int passreg = pass < (maxpass / 2) ? rn : rm; 10931 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10932 10933 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10934 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10935 tcg_res[pass] = tcg_temp_new_i32(); 10936 10937 switch (opcode) { 10938 case 0x17: /* ADDP */ 10939 { 10940 static NeonGenTwoOpFn * const fns[3] = { 10941 gen_helper_neon_padd_u8, 10942 gen_helper_neon_padd_u16, 10943 tcg_gen_add_i32, 10944 }; 10945 genfn = fns[size]; 10946 break; 10947 } 10948 case 0x14: /* SMAXP, UMAXP */ 10949 { 10950 static NeonGenTwoOpFn * const fns[3][2] = { 10951 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10952 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10953 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10954 }; 10955 genfn = fns[size][u]; 10956 break; 10957 } 10958 case 0x15: /* SMINP, UMINP */ 10959 { 10960 static NeonGenTwoOpFn * const fns[3][2] = { 10961 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10962 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10963 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10964 }; 10965 genfn = fns[size][u]; 10966 break; 10967 } 10968 /* The FP operations are all on single floats (32 bit) */ 10969 case 0x58: /* FMAXNMP */ 10970 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10971 break; 10972 case 0x5a: /* FADDP */ 10973 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10974 break; 10975 case 0x5e: /* FMAXP */ 10976 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10977 break; 10978 case 0x78: /* FMINNMP */ 10979 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10980 break; 10981 case 0x7e: /* FMINP */ 10982 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10983 break; 10984 default: 10985 g_assert_not_reached(); 10986 } 10987 10988 /* FP ops called directly, otherwise call now */ 10989 if (genfn) { 10990 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10991 } 10992 } 10993 10994 for (pass = 0; pass < maxpass; pass++) { 10995 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10996 } 10997 clear_vec_high(s, is_q, rd); 10998 } 10999 } 11000 11001 /* Floating point op subgroup of C3.6.16. */ 11002 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11003 { 11004 /* For floating point ops, the U, size[1] and opcode bits 11005 * together indicate the operation. size[0] indicates single 11006 * or double. 11007 */ 11008 int fpopcode = extract32(insn, 11, 5) 11009 | (extract32(insn, 23, 1) << 5) 11010 | (extract32(insn, 29, 1) << 6); 11011 int is_q = extract32(insn, 30, 1); 11012 int size = extract32(insn, 22, 1); 11013 int rm = extract32(insn, 16, 5); 11014 int rn = extract32(insn, 5, 5); 11015 int rd = extract32(insn, 0, 5); 11016 11017 int datasize = is_q ? 128 : 64; 11018 int esize = 32 << size; 11019 int elements = datasize / esize; 11020 11021 if (size == 1 && !is_q) { 11022 unallocated_encoding(s); 11023 return; 11024 } 11025 11026 switch (fpopcode) { 11027 case 0x58: /* FMAXNMP */ 11028 case 0x5a: /* FADDP */ 11029 case 0x5e: /* FMAXP */ 11030 case 0x78: /* FMINNMP */ 11031 case 0x7e: /* FMINP */ 11032 if (size && !is_q) { 11033 unallocated_encoding(s); 11034 return; 11035 } 11036 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11037 rn, rm, rd); 11038 return; 11039 case 0x1b: /* FMULX */ 11040 case 0x1f: /* FRECPS */ 11041 case 0x3f: /* FRSQRTS */ 11042 case 0x5d: /* FACGE */ 11043 case 0x7d: /* FACGT */ 11044 case 0x19: /* FMLA */ 11045 case 0x39: /* FMLS */ 11046 case 0x18: /* FMAXNM */ 11047 case 0x1a: /* FADD */ 11048 case 0x1c: /* FCMEQ */ 11049 case 0x1e: /* FMAX */ 11050 case 0x38: /* FMINNM */ 11051 case 0x3a: /* FSUB */ 11052 case 0x3e: /* FMIN */ 11053 case 0x5b: /* FMUL */ 11054 case 0x5c: /* FCMGE */ 11055 case 0x5f: /* FDIV */ 11056 case 0x7a: /* FABD */ 11057 case 0x7c: /* FCMGT */ 11058 if (!fp_access_check(s)) { 11059 return; 11060 } 11061 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11062 return; 11063 11064 case 0x1d: /* FMLAL */ 11065 case 0x3d: /* FMLSL */ 11066 case 0x59: /* FMLAL2 */ 11067 case 0x79: /* FMLSL2 */ 11068 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11069 unallocated_encoding(s); 11070 return; 11071 } 11072 if (fp_access_check(s)) { 11073 int is_s = extract32(insn, 23, 1); 11074 int is_2 = extract32(insn, 29, 1); 11075 int data = (is_2 << 1) | is_s; 11076 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11077 vec_full_reg_offset(s, rn), 11078 vec_full_reg_offset(s, rm), cpu_env, 11079 is_q ? 16 : 8, vec_full_reg_size(s), 11080 data, gen_helper_gvec_fmlal_a64); 11081 } 11082 return; 11083 11084 default: 11085 unallocated_encoding(s); 11086 return; 11087 } 11088 } 11089 11090 /* Integer op subgroup of C3.6.16. */ 11091 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11092 { 11093 int is_q = extract32(insn, 30, 1); 11094 int u = extract32(insn, 29, 1); 11095 int size = extract32(insn, 22, 2); 11096 int opcode = extract32(insn, 11, 5); 11097 int rm = extract32(insn, 16, 5); 11098 int rn = extract32(insn, 5, 5); 11099 int rd = extract32(insn, 0, 5); 11100 int pass; 11101 TCGCond cond; 11102 11103 switch (opcode) { 11104 case 0x13: /* MUL, PMUL */ 11105 if (u && size != 0) { 11106 unallocated_encoding(s); 11107 return; 11108 } 11109 /* fall through */ 11110 case 0x0: /* SHADD, UHADD */ 11111 case 0x2: /* SRHADD, URHADD */ 11112 case 0x4: /* SHSUB, UHSUB */ 11113 case 0xc: /* SMAX, UMAX */ 11114 case 0xd: /* SMIN, UMIN */ 11115 case 0xe: /* SABD, UABD */ 11116 case 0xf: /* SABA, UABA */ 11117 case 0x12: /* MLA, MLS */ 11118 if (size == 3) { 11119 unallocated_encoding(s); 11120 return; 11121 } 11122 break; 11123 case 0x16: /* SQDMULH, SQRDMULH */ 11124 if (size == 0 || size == 3) { 11125 unallocated_encoding(s); 11126 return; 11127 } 11128 break; 11129 default: 11130 if (size == 3 && !is_q) { 11131 unallocated_encoding(s); 11132 return; 11133 } 11134 break; 11135 } 11136 11137 if (!fp_access_check(s)) { 11138 return; 11139 } 11140 11141 switch (opcode) { 11142 case 0x01: /* SQADD, UQADD */ 11143 if (u) { 11144 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11145 } else { 11146 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11147 } 11148 return; 11149 case 0x05: /* SQSUB, UQSUB */ 11150 if (u) { 11151 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11152 } else { 11153 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11154 } 11155 return; 11156 case 0x08: /* SSHL, USHL */ 11157 if (u) { 11158 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11159 } else { 11160 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11161 } 11162 return; 11163 case 0x0c: /* SMAX, UMAX */ 11164 if (u) { 11165 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11166 } else { 11167 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11168 } 11169 return; 11170 case 0x0d: /* SMIN, UMIN */ 11171 if (u) { 11172 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11173 } else { 11174 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11175 } 11176 return; 11177 case 0xe: /* SABD, UABD */ 11178 if (u) { 11179 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11180 } else { 11181 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11182 } 11183 return; 11184 case 0xf: /* SABA, UABA */ 11185 if (u) { 11186 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11187 } else { 11188 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11189 } 11190 return; 11191 case 0x10: /* ADD, SUB */ 11192 if (u) { 11193 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11194 } else { 11195 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11196 } 11197 return; 11198 case 0x13: /* MUL, PMUL */ 11199 if (!u) { /* MUL */ 11200 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11201 } else { /* PMUL */ 11202 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11203 } 11204 return; 11205 case 0x12: /* MLA, MLS */ 11206 if (u) { 11207 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11208 } else { 11209 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11210 } 11211 return; 11212 case 0x16: /* SQDMULH, SQRDMULH */ 11213 { 11214 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11215 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11216 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11217 }; 11218 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11219 } 11220 return; 11221 case 0x11: 11222 if (!u) { /* CMTST */ 11223 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11224 return; 11225 } 11226 /* else CMEQ */ 11227 cond = TCG_COND_EQ; 11228 goto do_gvec_cmp; 11229 case 0x06: /* CMGT, CMHI */ 11230 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11231 goto do_gvec_cmp; 11232 case 0x07: /* CMGE, CMHS */ 11233 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11234 do_gvec_cmp: 11235 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11236 vec_full_reg_offset(s, rn), 11237 vec_full_reg_offset(s, rm), 11238 is_q ? 16 : 8, vec_full_reg_size(s)); 11239 return; 11240 } 11241 11242 if (size == 3) { 11243 assert(is_q); 11244 for (pass = 0; pass < 2; pass++) { 11245 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11246 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11247 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11248 11249 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11250 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11251 11252 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11253 11254 write_vec_element(s, tcg_res, rd, pass, MO_64); 11255 } 11256 } else { 11257 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11258 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11259 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11260 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11261 NeonGenTwoOpFn *genfn = NULL; 11262 NeonGenTwoOpEnvFn *genenvfn = NULL; 11263 11264 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11265 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11266 11267 switch (opcode) { 11268 case 0x0: /* SHADD, UHADD */ 11269 { 11270 static NeonGenTwoOpFn * const fns[3][2] = { 11271 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11272 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11273 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11274 }; 11275 genfn = fns[size][u]; 11276 break; 11277 } 11278 case 0x2: /* SRHADD, URHADD */ 11279 { 11280 static NeonGenTwoOpFn * const fns[3][2] = { 11281 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11282 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11283 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11284 }; 11285 genfn = fns[size][u]; 11286 break; 11287 } 11288 case 0x4: /* SHSUB, UHSUB */ 11289 { 11290 static NeonGenTwoOpFn * const fns[3][2] = { 11291 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11292 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11293 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11294 }; 11295 genfn = fns[size][u]; 11296 break; 11297 } 11298 case 0x9: /* SQSHL, UQSHL */ 11299 { 11300 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11301 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11302 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11303 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11304 }; 11305 genenvfn = fns[size][u]; 11306 break; 11307 } 11308 case 0xa: /* SRSHL, URSHL */ 11309 { 11310 static NeonGenTwoOpFn * const fns[3][2] = { 11311 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11312 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11313 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11314 }; 11315 genfn = fns[size][u]; 11316 break; 11317 } 11318 case 0xb: /* SQRSHL, UQRSHL */ 11319 { 11320 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11321 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11322 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11323 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11324 }; 11325 genenvfn = fns[size][u]; 11326 break; 11327 } 11328 default: 11329 g_assert_not_reached(); 11330 } 11331 11332 if (genenvfn) { 11333 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11334 } else { 11335 genfn(tcg_res, tcg_op1, tcg_op2); 11336 } 11337 11338 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11339 } 11340 } 11341 clear_vec_high(s, is_q, rd); 11342 } 11343 11344 /* AdvSIMD three same 11345 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11346 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11347 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11348 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11349 */ 11350 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11351 { 11352 int opcode = extract32(insn, 11, 5); 11353 11354 switch (opcode) { 11355 case 0x3: /* logic ops */ 11356 disas_simd_3same_logic(s, insn); 11357 break; 11358 case 0x17: /* ADDP */ 11359 case 0x14: /* SMAXP, UMAXP */ 11360 case 0x15: /* SMINP, UMINP */ 11361 { 11362 /* Pairwise operations */ 11363 int is_q = extract32(insn, 30, 1); 11364 int u = extract32(insn, 29, 1); 11365 int size = extract32(insn, 22, 2); 11366 int rm = extract32(insn, 16, 5); 11367 int rn = extract32(insn, 5, 5); 11368 int rd = extract32(insn, 0, 5); 11369 if (opcode == 0x17) { 11370 if (u || (size == 3 && !is_q)) { 11371 unallocated_encoding(s); 11372 return; 11373 } 11374 } else { 11375 if (size == 3) { 11376 unallocated_encoding(s); 11377 return; 11378 } 11379 } 11380 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11381 break; 11382 } 11383 case 0x18 ... 0x31: 11384 /* floating point ops, sz[1] and U are part of opcode */ 11385 disas_simd_3same_float(s, insn); 11386 break; 11387 default: 11388 disas_simd_3same_int(s, insn); 11389 break; 11390 } 11391 } 11392 11393 /* 11394 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11395 * 11396 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11397 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11398 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11399 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11400 * 11401 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11402 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11403 * 11404 */ 11405 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11406 { 11407 int opcode = extract32(insn, 11, 3); 11408 int u = extract32(insn, 29, 1); 11409 int a = extract32(insn, 23, 1); 11410 int is_q = extract32(insn, 30, 1); 11411 int rm = extract32(insn, 16, 5); 11412 int rn = extract32(insn, 5, 5); 11413 int rd = extract32(insn, 0, 5); 11414 /* 11415 * For these floating point ops, the U, a and opcode bits 11416 * together indicate the operation. 11417 */ 11418 int fpopcode = opcode | (a << 3) | (u << 4); 11419 int datasize = is_q ? 128 : 64; 11420 int elements = datasize / 16; 11421 bool pairwise; 11422 TCGv_ptr fpst; 11423 int pass; 11424 11425 switch (fpopcode) { 11426 case 0x0: /* FMAXNM */ 11427 case 0x1: /* FMLA */ 11428 case 0x2: /* FADD */ 11429 case 0x3: /* FMULX */ 11430 case 0x4: /* FCMEQ */ 11431 case 0x6: /* FMAX */ 11432 case 0x7: /* FRECPS */ 11433 case 0x8: /* FMINNM */ 11434 case 0x9: /* FMLS */ 11435 case 0xa: /* FSUB */ 11436 case 0xe: /* FMIN */ 11437 case 0xf: /* FRSQRTS */ 11438 case 0x13: /* FMUL */ 11439 case 0x14: /* FCMGE */ 11440 case 0x15: /* FACGE */ 11441 case 0x17: /* FDIV */ 11442 case 0x1a: /* FABD */ 11443 case 0x1c: /* FCMGT */ 11444 case 0x1d: /* FACGT */ 11445 pairwise = false; 11446 break; 11447 case 0x10: /* FMAXNMP */ 11448 case 0x12: /* FADDP */ 11449 case 0x16: /* FMAXP */ 11450 case 0x18: /* FMINNMP */ 11451 case 0x1e: /* FMINP */ 11452 pairwise = true; 11453 break; 11454 default: 11455 unallocated_encoding(s); 11456 return; 11457 } 11458 11459 if (!dc_isar_feature(aa64_fp16, s)) { 11460 unallocated_encoding(s); 11461 return; 11462 } 11463 11464 if (!fp_access_check(s)) { 11465 return; 11466 } 11467 11468 fpst = fpstatus_ptr(FPST_FPCR_F16); 11469 11470 if (pairwise) { 11471 int maxpass = is_q ? 8 : 4; 11472 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11473 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11474 TCGv_i32 tcg_res[8]; 11475 11476 for (pass = 0; pass < maxpass; pass++) { 11477 int passreg = pass < (maxpass / 2) ? rn : rm; 11478 int passelt = (pass << 1) & (maxpass - 1); 11479 11480 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11481 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11482 tcg_res[pass] = tcg_temp_new_i32(); 11483 11484 switch (fpopcode) { 11485 case 0x10: /* FMAXNMP */ 11486 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11487 fpst); 11488 break; 11489 case 0x12: /* FADDP */ 11490 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11491 break; 11492 case 0x16: /* FMAXP */ 11493 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11494 break; 11495 case 0x18: /* FMINNMP */ 11496 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11497 fpst); 11498 break; 11499 case 0x1e: /* FMINP */ 11500 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11501 break; 11502 default: 11503 g_assert_not_reached(); 11504 } 11505 } 11506 11507 for (pass = 0; pass < maxpass; pass++) { 11508 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11509 } 11510 } else { 11511 for (pass = 0; pass < elements; pass++) { 11512 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11513 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11514 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11515 11516 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11517 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11518 11519 switch (fpopcode) { 11520 case 0x0: /* FMAXNM */ 11521 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11522 break; 11523 case 0x1: /* FMLA */ 11524 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11525 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11526 fpst); 11527 break; 11528 case 0x2: /* FADD */ 11529 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11530 break; 11531 case 0x3: /* FMULX */ 11532 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11533 break; 11534 case 0x4: /* FCMEQ */ 11535 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11536 break; 11537 case 0x6: /* FMAX */ 11538 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11539 break; 11540 case 0x7: /* FRECPS */ 11541 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11542 break; 11543 case 0x8: /* FMINNM */ 11544 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11545 break; 11546 case 0x9: /* FMLS */ 11547 /* As usual for ARM, separate negation for fused multiply-add */ 11548 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11549 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11550 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11551 fpst); 11552 break; 11553 case 0xa: /* FSUB */ 11554 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11555 break; 11556 case 0xe: /* FMIN */ 11557 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11558 break; 11559 case 0xf: /* FRSQRTS */ 11560 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11561 break; 11562 case 0x13: /* FMUL */ 11563 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11564 break; 11565 case 0x14: /* FCMGE */ 11566 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11567 break; 11568 case 0x15: /* FACGE */ 11569 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11570 break; 11571 case 0x17: /* FDIV */ 11572 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11573 break; 11574 case 0x1a: /* FABD */ 11575 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11576 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11577 break; 11578 case 0x1c: /* FCMGT */ 11579 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11580 break; 11581 case 0x1d: /* FACGT */ 11582 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11583 break; 11584 default: 11585 g_assert_not_reached(); 11586 } 11587 11588 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11589 } 11590 } 11591 11592 clear_vec_high(s, is_q, rd); 11593 } 11594 11595 /* AdvSIMD three same extra 11596 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11597 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11598 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11599 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11600 */ 11601 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11602 { 11603 int rd = extract32(insn, 0, 5); 11604 int rn = extract32(insn, 5, 5); 11605 int opcode = extract32(insn, 11, 4); 11606 int rm = extract32(insn, 16, 5); 11607 int size = extract32(insn, 22, 2); 11608 bool u = extract32(insn, 29, 1); 11609 bool is_q = extract32(insn, 30, 1); 11610 bool feature; 11611 int rot; 11612 11613 switch (u * 16 + opcode) { 11614 case 0x10: /* SQRDMLAH (vector) */ 11615 case 0x11: /* SQRDMLSH (vector) */ 11616 if (size != 1 && size != 2) { 11617 unallocated_encoding(s); 11618 return; 11619 } 11620 feature = dc_isar_feature(aa64_rdm, s); 11621 break; 11622 case 0x02: /* SDOT (vector) */ 11623 case 0x12: /* UDOT (vector) */ 11624 if (size != MO_32) { 11625 unallocated_encoding(s); 11626 return; 11627 } 11628 feature = dc_isar_feature(aa64_dp, s); 11629 break; 11630 case 0x03: /* USDOT */ 11631 if (size != MO_32) { 11632 unallocated_encoding(s); 11633 return; 11634 } 11635 feature = dc_isar_feature(aa64_i8mm, s); 11636 break; 11637 case 0x04: /* SMMLA */ 11638 case 0x14: /* UMMLA */ 11639 case 0x05: /* USMMLA */ 11640 if (!is_q || size != MO_32) { 11641 unallocated_encoding(s); 11642 return; 11643 } 11644 feature = dc_isar_feature(aa64_i8mm, s); 11645 break; 11646 case 0x18: /* FCMLA, #0 */ 11647 case 0x19: /* FCMLA, #90 */ 11648 case 0x1a: /* FCMLA, #180 */ 11649 case 0x1b: /* FCMLA, #270 */ 11650 case 0x1c: /* FCADD, #90 */ 11651 case 0x1e: /* FCADD, #270 */ 11652 if (size == 0 11653 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11654 || (size == 3 && !is_q)) { 11655 unallocated_encoding(s); 11656 return; 11657 } 11658 feature = dc_isar_feature(aa64_fcma, s); 11659 break; 11660 case 0x1d: /* BFMMLA */ 11661 if (size != MO_16 || !is_q) { 11662 unallocated_encoding(s); 11663 return; 11664 } 11665 feature = dc_isar_feature(aa64_bf16, s); 11666 break; 11667 case 0x1f: 11668 switch (size) { 11669 case 1: /* BFDOT */ 11670 case 3: /* BFMLAL{B,T} */ 11671 feature = dc_isar_feature(aa64_bf16, s); 11672 break; 11673 default: 11674 unallocated_encoding(s); 11675 return; 11676 } 11677 break; 11678 default: 11679 unallocated_encoding(s); 11680 return; 11681 } 11682 if (!feature) { 11683 unallocated_encoding(s); 11684 return; 11685 } 11686 if (!fp_access_check(s)) { 11687 return; 11688 } 11689 11690 switch (opcode) { 11691 case 0x0: /* SQRDMLAH (vector) */ 11692 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11693 return; 11694 11695 case 0x1: /* SQRDMLSH (vector) */ 11696 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11697 return; 11698 11699 case 0x2: /* SDOT / UDOT */ 11700 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11701 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11702 return; 11703 11704 case 0x3: /* USDOT */ 11705 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11706 return; 11707 11708 case 0x04: /* SMMLA, UMMLA */ 11709 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11710 u ? gen_helper_gvec_ummla_b 11711 : gen_helper_gvec_smmla_b); 11712 return; 11713 case 0x05: /* USMMLA */ 11714 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11715 return; 11716 11717 case 0x8: /* FCMLA, #0 */ 11718 case 0x9: /* FCMLA, #90 */ 11719 case 0xa: /* FCMLA, #180 */ 11720 case 0xb: /* FCMLA, #270 */ 11721 rot = extract32(opcode, 0, 2); 11722 switch (size) { 11723 case 1: 11724 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11725 gen_helper_gvec_fcmlah); 11726 break; 11727 case 2: 11728 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11729 gen_helper_gvec_fcmlas); 11730 break; 11731 case 3: 11732 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11733 gen_helper_gvec_fcmlad); 11734 break; 11735 default: 11736 g_assert_not_reached(); 11737 } 11738 return; 11739 11740 case 0xc: /* FCADD, #90 */ 11741 case 0xe: /* FCADD, #270 */ 11742 rot = extract32(opcode, 1, 1); 11743 switch (size) { 11744 case 1: 11745 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11746 gen_helper_gvec_fcaddh); 11747 break; 11748 case 2: 11749 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11750 gen_helper_gvec_fcadds); 11751 break; 11752 case 3: 11753 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11754 gen_helper_gvec_fcaddd); 11755 break; 11756 default: 11757 g_assert_not_reached(); 11758 } 11759 return; 11760 11761 case 0xd: /* BFMMLA */ 11762 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11763 return; 11764 case 0xf: 11765 switch (size) { 11766 case 1: /* BFDOT */ 11767 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11768 break; 11769 case 3: /* BFMLAL{B,T} */ 11770 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11771 gen_helper_gvec_bfmlal); 11772 break; 11773 default: 11774 g_assert_not_reached(); 11775 } 11776 return; 11777 11778 default: 11779 g_assert_not_reached(); 11780 } 11781 } 11782 11783 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11784 int size, int rn, int rd) 11785 { 11786 /* Handle 2-reg-misc ops which are widening (so each size element 11787 * in the source becomes a 2*size element in the destination. 11788 * The only instruction like this is FCVTL. 11789 */ 11790 int pass; 11791 11792 if (size == 3) { 11793 /* 32 -> 64 bit fp conversion */ 11794 TCGv_i64 tcg_res[2]; 11795 int srcelt = is_q ? 2 : 0; 11796 11797 for (pass = 0; pass < 2; pass++) { 11798 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11799 tcg_res[pass] = tcg_temp_new_i64(); 11800 11801 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11802 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11803 } 11804 for (pass = 0; pass < 2; pass++) { 11805 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11806 } 11807 } else { 11808 /* 16 -> 32 bit fp conversion */ 11809 int srcelt = is_q ? 4 : 0; 11810 TCGv_i32 tcg_res[4]; 11811 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11812 TCGv_i32 ahp = get_ahp_flag(); 11813 11814 for (pass = 0; pass < 4; pass++) { 11815 tcg_res[pass] = tcg_temp_new_i32(); 11816 11817 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11818 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11819 fpst, ahp); 11820 } 11821 for (pass = 0; pass < 4; pass++) { 11822 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11823 } 11824 } 11825 } 11826 11827 static void handle_rev(DisasContext *s, int opcode, bool u, 11828 bool is_q, int size, int rn, int rd) 11829 { 11830 int op = (opcode << 1) | u; 11831 int opsz = op + size; 11832 int grp_size = 3 - opsz; 11833 int dsize = is_q ? 128 : 64; 11834 int i; 11835 11836 if (opsz >= 3) { 11837 unallocated_encoding(s); 11838 return; 11839 } 11840 11841 if (!fp_access_check(s)) { 11842 return; 11843 } 11844 11845 if (size == 0) { 11846 /* Special case bytes, use bswap op on each group of elements */ 11847 int groups = dsize / (8 << grp_size); 11848 11849 for (i = 0; i < groups; i++) { 11850 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11851 11852 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11853 switch (grp_size) { 11854 case MO_16: 11855 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11856 break; 11857 case MO_32: 11858 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11859 break; 11860 case MO_64: 11861 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11862 break; 11863 default: 11864 g_assert_not_reached(); 11865 } 11866 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11867 } 11868 clear_vec_high(s, is_q, rd); 11869 } else { 11870 int revmask = (1 << grp_size) - 1; 11871 int esize = 8 << size; 11872 int elements = dsize / esize; 11873 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11874 TCGv_i64 tcg_rd[2]; 11875 11876 for (i = 0; i < 2; i++) { 11877 tcg_rd[i] = tcg_temp_new_i64(); 11878 tcg_gen_movi_i64(tcg_rd[i], 0); 11879 } 11880 11881 for (i = 0; i < elements; i++) { 11882 int e_rev = (i & 0xf) ^ revmask; 11883 int w = (e_rev * esize) / 64; 11884 int o = (e_rev * esize) % 64; 11885 11886 read_vec_element(s, tcg_rn, rn, i, size); 11887 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11888 } 11889 11890 for (i = 0; i < 2; i++) { 11891 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11892 } 11893 clear_vec_high(s, true, rd); 11894 } 11895 } 11896 11897 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11898 bool is_q, int size, int rn, int rd) 11899 { 11900 /* Implement the pairwise operations from 2-misc: 11901 * SADDLP, UADDLP, SADALP, UADALP. 11902 * These all add pairs of elements in the input to produce a 11903 * double-width result element in the output (possibly accumulating). 11904 */ 11905 bool accum = (opcode == 0x6); 11906 int maxpass = is_q ? 2 : 1; 11907 int pass; 11908 TCGv_i64 tcg_res[2]; 11909 11910 if (size == 2) { 11911 /* 32 + 32 -> 64 op */ 11912 MemOp memop = size + (u ? 0 : MO_SIGN); 11913 11914 for (pass = 0; pass < maxpass; pass++) { 11915 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11916 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11917 11918 tcg_res[pass] = tcg_temp_new_i64(); 11919 11920 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11921 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11922 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11923 if (accum) { 11924 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11925 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11926 } 11927 } 11928 } else { 11929 for (pass = 0; pass < maxpass; pass++) { 11930 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11931 NeonGenOne64OpFn *genfn; 11932 static NeonGenOne64OpFn * const fns[2][2] = { 11933 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11934 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11935 }; 11936 11937 genfn = fns[size][u]; 11938 11939 tcg_res[pass] = tcg_temp_new_i64(); 11940 11941 read_vec_element(s, tcg_op, rn, pass, MO_64); 11942 genfn(tcg_res[pass], tcg_op); 11943 11944 if (accum) { 11945 read_vec_element(s, tcg_op, rd, pass, MO_64); 11946 if (size == 0) { 11947 gen_helper_neon_addl_u16(tcg_res[pass], 11948 tcg_res[pass], tcg_op); 11949 } else { 11950 gen_helper_neon_addl_u32(tcg_res[pass], 11951 tcg_res[pass], tcg_op); 11952 } 11953 } 11954 } 11955 } 11956 if (!is_q) { 11957 tcg_res[1] = tcg_constant_i64(0); 11958 } 11959 for (pass = 0; pass < 2; pass++) { 11960 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11961 } 11962 } 11963 11964 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11965 { 11966 /* Implement SHLL and SHLL2 */ 11967 int pass; 11968 int part = is_q ? 2 : 0; 11969 TCGv_i64 tcg_res[2]; 11970 11971 for (pass = 0; pass < 2; pass++) { 11972 static NeonGenWidenFn * const widenfns[3] = { 11973 gen_helper_neon_widen_u8, 11974 gen_helper_neon_widen_u16, 11975 tcg_gen_extu_i32_i64, 11976 }; 11977 NeonGenWidenFn *widenfn = widenfns[size]; 11978 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11979 11980 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11981 tcg_res[pass] = tcg_temp_new_i64(); 11982 widenfn(tcg_res[pass], tcg_op); 11983 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11984 } 11985 11986 for (pass = 0; pass < 2; pass++) { 11987 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11988 } 11989 } 11990 11991 /* AdvSIMD two reg misc 11992 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11993 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11994 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11995 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11996 */ 11997 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11998 { 11999 int size = extract32(insn, 22, 2); 12000 int opcode = extract32(insn, 12, 5); 12001 bool u = extract32(insn, 29, 1); 12002 bool is_q = extract32(insn, 30, 1); 12003 int rn = extract32(insn, 5, 5); 12004 int rd = extract32(insn, 0, 5); 12005 bool need_fpstatus = false; 12006 int rmode = -1; 12007 TCGv_i32 tcg_rmode; 12008 TCGv_ptr tcg_fpstatus; 12009 12010 switch (opcode) { 12011 case 0x0: /* REV64, REV32 */ 12012 case 0x1: /* REV16 */ 12013 handle_rev(s, opcode, u, is_q, size, rn, rd); 12014 return; 12015 case 0x5: /* CNT, NOT, RBIT */ 12016 if (u && size == 0) { 12017 /* NOT */ 12018 break; 12019 } else if (u && size == 1) { 12020 /* RBIT */ 12021 break; 12022 } else if (!u && size == 0) { 12023 /* CNT */ 12024 break; 12025 } 12026 unallocated_encoding(s); 12027 return; 12028 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12029 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12030 if (size == 3) { 12031 unallocated_encoding(s); 12032 return; 12033 } 12034 if (!fp_access_check(s)) { 12035 return; 12036 } 12037 12038 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12039 return; 12040 case 0x4: /* CLS, CLZ */ 12041 if (size == 3) { 12042 unallocated_encoding(s); 12043 return; 12044 } 12045 break; 12046 case 0x2: /* SADDLP, UADDLP */ 12047 case 0x6: /* SADALP, UADALP */ 12048 if (size == 3) { 12049 unallocated_encoding(s); 12050 return; 12051 } 12052 if (!fp_access_check(s)) { 12053 return; 12054 } 12055 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12056 return; 12057 case 0x13: /* SHLL, SHLL2 */ 12058 if (u == 0 || size == 3) { 12059 unallocated_encoding(s); 12060 return; 12061 } 12062 if (!fp_access_check(s)) { 12063 return; 12064 } 12065 handle_shll(s, is_q, size, rn, rd); 12066 return; 12067 case 0xa: /* CMLT */ 12068 if (u == 1) { 12069 unallocated_encoding(s); 12070 return; 12071 } 12072 /* fall through */ 12073 case 0x8: /* CMGT, CMGE */ 12074 case 0x9: /* CMEQ, CMLE */ 12075 case 0xb: /* ABS, NEG */ 12076 if (size == 3 && !is_q) { 12077 unallocated_encoding(s); 12078 return; 12079 } 12080 break; 12081 case 0x3: /* SUQADD, USQADD */ 12082 if (size == 3 && !is_q) { 12083 unallocated_encoding(s); 12084 return; 12085 } 12086 if (!fp_access_check(s)) { 12087 return; 12088 } 12089 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12090 return; 12091 case 0x7: /* SQABS, SQNEG */ 12092 if (size == 3 && !is_q) { 12093 unallocated_encoding(s); 12094 return; 12095 } 12096 break; 12097 case 0xc ... 0xf: 12098 case 0x16 ... 0x1f: 12099 { 12100 /* Floating point: U, size[1] and opcode indicate operation; 12101 * size[0] indicates single or double precision. 12102 */ 12103 int is_double = extract32(size, 0, 1); 12104 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12105 size = is_double ? 3 : 2; 12106 switch (opcode) { 12107 case 0x2f: /* FABS */ 12108 case 0x6f: /* FNEG */ 12109 if (size == 3 && !is_q) { 12110 unallocated_encoding(s); 12111 return; 12112 } 12113 break; 12114 case 0x1d: /* SCVTF */ 12115 case 0x5d: /* UCVTF */ 12116 { 12117 bool is_signed = (opcode == 0x1d) ? true : false; 12118 int elements = is_double ? 2 : is_q ? 4 : 2; 12119 if (is_double && !is_q) { 12120 unallocated_encoding(s); 12121 return; 12122 } 12123 if (!fp_access_check(s)) { 12124 return; 12125 } 12126 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12127 return; 12128 } 12129 case 0x2c: /* FCMGT (zero) */ 12130 case 0x2d: /* FCMEQ (zero) */ 12131 case 0x2e: /* FCMLT (zero) */ 12132 case 0x6c: /* FCMGE (zero) */ 12133 case 0x6d: /* FCMLE (zero) */ 12134 if (size == 3 && !is_q) { 12135 unallocated_encoding(s); 12136 return; 12137 } 12138 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12139 return; 12140 case 0x7f: /* FSQRT */ 12141 if (size == 3 && !is_q) { 12142 unallocated_encoding(s); 12143 return; 12144 } 12145 break; 12146 case 0x1a: /* FCVTNS */ 12147 case 0x1b: /* FCVTMS */ 12148 case 0x3a: /* FCVTPS */ 12149 case 0x3b: /* FCVTZS */ 12150 case 0x5a: /* FCVTNU */ 12151 case 0x5b: /* FCVTMU */ 12152 case 0x7a: /* FCVTPU */ 12153 case 0x7b: /* FCVTZU */ 12154 need_fpstatus = true; 12155 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12156 if (size == 3 && !is_q) { 12157 unallocated_encoding(s); 12158 return; 12159 } 12160 break; 12161 case 0x5c: /* FCVTAU */ 12162 case 0x1c: /* FCVTAS */ 12163 need_fpstatus = true; 12164 rmode = FPROUNDING_TIEAWAY; 12165 if (size == 3 && !is_q) { 12166 unallocated_encoding(s); 12167 return; 12168 } 12169 break; 12170 case 0x3c: /* URECPE */ 12171 if (size == 3) { 12172 unallocated_encoding(s); 12173 return; 12174 } 12175 /* fall through */ 12176 case 0x3d: /* FRECPE */ 12177 case 0x7d: /* FRSQRTE */ 12178 if (size == 3 && !is_q) { 12179 unallocated_encoding(s); 12180 return; 12181 } 12182 if (!fp_access_check(s)) { 12183 return; 12184 } 12185 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12186 return; 12187 case 0x56: /* FCVTXN, FCVTXN2 */ 12188 if (size == 2) { 12189 unallocated_encoding(s); 12190 return; 12191 } 12192 /* fall through */ 12193 case 0x16: /* FCVTN, FCVTN2 */ 12194 /* handle_2misc_narrow does a 2*size -> size operation, but these 12195 * instructions encode the source size rather than dest size. 12196 */ 12197 if (!fp_access_check(s)) { 12198 return; 12199 } 12200 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12201 return; 12202 case 0x36: /* BFCVTN, BFCVTN2 */ 12203 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12204 unallocated_encoding(s); 12205 return; 12206 } 12207 if (!fp_access_check(s)) { 12208 return; 12209 } 12210 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12211 return; 12212 case 0x17: /* FCVTL, FCVTL2 */ 12213 if (!fp_access_check(s)) { 12214 return; 12215 } 12216 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12217 return; 12218 case 0x18: /* FRINTN */ 12219 case 0x19: /* FRINTM */ 12220 case 0x38: /* FRINTP */ 12221 case 0x39: /* FRINTZ */ 12222 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12223 /* fall through */ 12224 case 0x59: /* FRINTX */ 12225 case 0x79: /* FRINTI */ 12226 need_fpstatus = true; 12227 if (size == 3 && !is_q) { 12228 unallocated_encoding(s); 12229 return; 12230 } 12231 break; 12232 case 0x58: /* FRINTA */ 12233 rmode = FPROUNDING_TIEAWAY; 12234 need_fpstatus = true; 12235 if (size == 3 && !is_q) { 12236 unallocated_encoding(s); 12237 return; 12238 } 12239 break; 12240 case 0x7c: /* URSQRTE */ 12241 if (size == 3) { 12242 unallocated_encoding(s); 12243 return; 12244 } 12245 break; 12246 case 0x1e: /* FRINT32Z */ 12247 case 0x1f: /* FRINT64Z */ 12248 rmode = FPROUNDING_ZERO; 12249 /* fall through */ 12250 case 0x5e: /* FRINT32X */ 12251 case 0x5f: /* FRINT64X */ 12252 need_fpstatus = true; 12253 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12254 unallocated_encoding(s); 12255 return; 12256 } 12257 break; 12258 default: 12259 unallocated_encoding(s); 12260 return; 12261 } 12262 break; 12263 } 12264 default: 12265 unallocated_encoding(s); 12266 return; 12267 } 12268 12269 if (!fp_access_check(s)) { 12270 return; 12271 } 12272 12273 if (need_fpstatus || rmode >= 0) { 12274 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12275 } else { 12276 tcg_fpstatus = NULL; 12277 } 12278 if (rmode >= 0) { 12279 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12280 } else { 12281 tcg_rmode = NULL; 12282 } 12283 12284 switch (opcode) { 12285 case 0x5: 12286 if (u && size == 0) { /* NOT */ 12287 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12288 return; 12289 } 12290 break; 12291 case 0x8: /* CMGT, CMGE */ 12292 if (u) { 12293 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12294 } else { 12295 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12296 } 12297 return; 12298 case 0x9: /* CMEQ, CMLE */ 12299 if (u) { 12300 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12301 } else { 12302 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12303 } 12304 return; 12305 case 0xa: /* CMLT */ 12306 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12307 return; 12308 case 0xb: 12309 if (u) { /* ABS, NEG */ 12310 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12311 } else { 12312 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12313 } 12314 return; 12315 } 12316 12317 if (size == 3) { 12318 /* All 64-bit element operations can be shared with scalar 2misc */ 12319 int pass; 12320 12321 /* Coverity claims (size == 3 && !is_q) has been eliminated 12322 * from all paths leading to here. 12323 */ 12324 tcg_debug_assert(is_q); 12325 for (pass = 0; pass < 2; pass++) { 12326 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12327 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12328 12329 read_vec_element(s, tcg_op, rn, pass, MO_64); 12330 12331 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12332 tcg_rmode, tcg_fpstatus); 12333 12334 write_vec_element(s, tcg_res, rd, pass, MO_64); 12335 } 12336 } else { 12337 int pass; 12338 12339 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12340 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12341 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12342 12343 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12344 12345 if (size == 2) { 12346 /* Special cases for 32 bit elements */ 12347 switch (opcode) { 12348 case 0x4: /* CLS */ 12349 if (u) { 12350 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12351 } else { 12352 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12353 } 12354 break; 12355 case 0x7: /* SQABS, SQNEG */ 12356 if (u) { 12357 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12358 } else { 12359 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12360 } 12361 break; 12362 case 0x2f: /* FABS */ 12363 gen_helper_vfp_abss(tcg_res, tcg_op); 12364 break; 12365 case 0x6f: /* FNEG */ 12366 gen_helper_vfp_negs(tcg_res, tcg_op); 12367 break; 12368 case 0x7f: /* FSQRT */ 12369 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12370 break; 12371 case 0x1a: /* FCVTNS */ 12372 case 0x1b: /* FCVTMS */ 12373 case 0x1c: /* FCVTAS */ 12374 case 0x3a: /* FCVTPS */ 12375 case 0x3b: /* FCVTZS */ 12376 gen_helper_vfp_tosls(tcg_res, tcg_op, 12377 tcg_constant_i32(0), tcg_fpstatus); 12378 break; 12379 case 0x5a: /* FCVTNU */ 12380 case 0x5b: /* FCVTMU */ 12381 case 0x5c: /* FCVTAU */ 12382 case 0x7a: /* FCVTPU */ 12383 case 0x7b: /* FCVTZU */ 12384 gen_helper_vfp_touls(tcg_res, tcg_op, 12385 tcg_constant_i32(0), tcg_fpstatus); 12386 break; 12387 case 0x18: /* FRINTN */ 12388 case 0x19: /* FRINTM */ 12389 case 0x38: /* FRINTP */ 12390 case 0x39: /* FRINTZ */ 12391 case 0x58: /* FRINTA */ 12392 case 0x79: /* FRINTI */ 12393 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12394 break; 12395 case 0x59: /* FRINTX */ 12396 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12397 break; 12398 case 0x7c: /* URSQRTE */ 12399 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12400 break; 12401 case 0x1e: /* FRINT32Z */ 12402 case 0x5e: /* FRINT32X */ 12403 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12404 break; 12405 case 0x1f: /* FRINT64Z */ 12406 case 0x5f: /* FRINT64X */ 12407 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12408 break; 12409 default: 12410 g_assert_not_reached(); 12411 } 12412 } else { 12413 /* Use helpers for 8 and 16 bit elements */ 12414 switch (opcode) { 12415 case 0x5: /* CNT, RBIT */ 12416 /* For these two insns size is part of the opcode specifier 12417 * (handled earlier); they always operate on byte elements. 12418 */ 12419 if (u) { 12420 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12421 } else { 12422 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12423 } 12424 break; 12425 case 0x7: /* SQABS, SQNEG */ 12426 { 12427 NeonGenOneOpEnvFn *genfn; 12428 static NeonGenOneOpEnvFn * const fns[2][2] = { 12429 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12430 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12431 }; 12432 genfn = fns[size][u]; 12433 genfn(tcg_res, cpu_env, tcg_op); 12434 break; 12435 } 12436 case 0x4: /* CLS, CLZ */ 12437 if (u) { 12438 if (size == 0) { 12439 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12440 } else { 12441 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12442 } 12443 } else { 12444 if (size == 0) { 12445 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12446 } else { 12447 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12448 } 12449 } 12450 break; 12451 default: 12452 g_assert_not_reached(); 12453 } 12454 } 12455 12456 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12457 } 12458 } 12459 clear_vec_high(s, is_q, rd); 12460 12461 if (tcg_rmode) { 12462 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12463 } 12464 } 12465 12466 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12467 * 12468 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12469 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12470 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12471 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12472 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12473 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12474 * 12475 * This actually covers two groups where scalar access is governed by 12476 * bit 28. A bunch of the instructions (float to integral) only exist 12477 * in the vector form and are un-allocated for the scalar decode. Also 12478 * in the scalar decode Q is always 1. 12479 */ 12480 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12481 { 12482 int fpop, opcode, a, u; 12483 int rn, rd; 12484 bool is_q; 12485 bool is_scalar; 12486 bool only_in_vector = false; 12487 12488 int pass; 12489 TCGv_i32 tcg_rmode = NULL; 12490 TCGv_ptr tcg_fpstatus = NULL; 12491 bool need_fpst = true; 12492 int rmode = -1; 12493 12494 if (!dc_isar_feature(aa64_fp16, s)) { 12495 unallocated_encoding(s); 12496 return; 12497 } 12498 12499 rd = extract32(insn, 0, 5); 12500 rn = extract32(insn, 5, 5); 12501 12502 a = extract32(insn, 23, 1); 12503 u = extract32(insn, 29, 1); 12504 is_scalar = extract32(insn, 28, 1); 12505 is_q = extract32(insn, 30, 1); 12506 12507 opcode = extract32(insn, 12, 5); 12508 fpop = deposit32(opcode, 5, 1, a); 12509 fpop = deposit32(fpop, 6, 1, u); 12510 12511 switch (fpop) { 12512 case 0x1d: /* SCVTF */ 12513 case 0x5d: /* UCVTF */ 12514 { 12515 int elements; 12516 12517 if (is_scalar) { 12518 elements = 1; 12519 } else { 12520 elements = (is_q ? 8 : 4); 12521 } 12522 12523 if (!fp_access_check(s)) { 12524 return; 12525 } 12526 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12527 return; 12528 } 12529 break; 12530 case 0x2c: /* FCMGT (zero) */ 12531 case 0x2d: /* FCMEQ (zero) */ 12532 case 0x2e: /* FCMLT (zero) */ 12533 case 0x6c: /* FCMGE (zero) */ 12534 case 0x6d: /* FCMLE (zero) */ 12535 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12536 return; 12537 case 0x3d: /* FRECPE */ 12538 case 0x3f: /* FRECPX */ 12539 break; 12540 case 0x18: /* FRINTN */ 12541 only_in_vector = true; 12542 rmode = FPROUNDING_TIEEVEN; 12543 break; 12544 case 0x19: /* FRINTM */ 12545 only_in_vector = true; 12546 rmode = FPROUNDING_NEGINF; 12547 break; 12548 case 0x38: /* FRINTP */ 12549 only_in_vector = true; 12550 rmode = FPROUNDING_POSINF; 12551 break; 12552 case 0x39: /* FRINTZ */ 12553 only_in_vector = true; 12554 rmode = FPROUNDING_ZERO; 12555 break; 12556 case 0x58: /* FRINTA */ 12557 only_in_vector = true; 12558 rmode = FPROUNDING_TIEAWAY; 12559 break; 12560 case 0x59: /* FRINTX */ 12561 case 0x79: /* FRINTI */ 12562 only_in_vector = true; 12563 /* current rounding mode */ 12564 break; 12565 case 0x1a: /* FCVTNS */ 12566 rmode = FPROUNDING_TIEEVEN; 12567 break; 12568 case 0x1b: /* FCVTMS */ 12569 rmode = FPROUNDING_NEGINF; 12570 break; 12571 case 0x1c: /* FCVTAS */ 12572 rmode = FPROUNDING_TIEAWAY; 12573 break; 12574 case 0x3a: /* FCVTPS */ 12575 rmode = FPROUNDING_POSINF; 12576 break; 12577 case 0x3b: /* FCVTZS */ 12578 rmode = FPROUNDING_ZERO; 12579 break; 12580 case 0x5a: /* FCVTNU */ 12581 rmode = FPROUNDING_TIEEVEN; 12582 break; 12583 case 0x5b: /* FCVTMU */ 12584 rmode = FPROUNDING_NEGINF; 12585 break; 12586 case 0x5c: /* FCVTAU */ 12587 rmode = FPROUNDING_TIEAWAY; 12588 break; 12589 case 0x7a: /* FCVTPU */ 12590 rmode = FPROUNDING_POSINF; 12591 break; 12592 case 0x7b: /* FCVTZU */ 12593 rmode = FPROUNDING_ZERO; 12594 break; 12595 case 0x2f: /* FABS */ 12596 case 0x6f: /* FNEG */ 12597 need_fpst = false; 12598 break; 12599 case 0x7d: /* FRSQRTE */ 12600 case 0x7f: /* FSQRT (vector) */ 12601 break; 12602 default: 12603 unallocated_encoding(s); 12604 return; 12605 } 12606 12607 12608 /* Check additional constraints for the scalar encoding */ 12609 if (is_scalar) { 12610 if (!is_q) { 12611 unallocated_encoding(s); 12612 return; 12613 } 12614 /* FRINTxx is only in the vector form */ 12615 if (only_in_vector) { 12616 unallocated_encoding(s); 12617 return; 12618 } 12619 } 12620 12621 if (!fp_access_check(s)) { 12622 return; 12623 } 12624 12625 if (rmode >= 0 || need_fpst) { 12626 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12627 } 12628 12629 if (rmode >= 0) { 12630 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12631 } 12632 12633 if (is_scalar) { 12634 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12635 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12636 12637 switch (fpop) { 12638 case 0x1a: /* FCVTNS */ 12639 case 0x1b: /* FCVTMS */ 12640 case 0x1c: /* FCVTAS */ 12641 case 0x3a: /* FCVTPS */ 12642 case 0x3b: /* FCVTZS */ 12643 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12644 break; 12645 case 0x3d: /* FRECPE */ 12646 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12647 break; 12648 case 0x3f: /* FRECPX */ 12649 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12650 break; 12651 case 0x5a: /* FCVTNU */ 12652 case 0x5b: /* FCVTMU */ 12653 case 0x5c: /* FCVTAU */ 12654 case 0x7a: /* FCVTPU */ 12655 case 0x7b: /* FCVTZU */ 12656 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12657 break; 12658 case 0x6f: /* FNEG */ 12659 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12660 break; 12661 case 0x7d: /* FRSQRTE */ 12662 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12663 break; 12664 default: 12665 g_assert_not_reached(); 12666 } 12667 12668 /* limit any sign extension going on */ 12669 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12670 write_fp_sreg(s, rd, tcg_res); 12671 } else { 12672 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12673 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12674 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12675 12676 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12677 12678 switch (fpop) { 12679 case 0x1a: /* FCVTNS */ 12680 case 0x1b: /* FCVTMS */ 12681 case 0x1c: /* FCVTAS */ 12682 case 0x3a: /* FCVTPS */ 12683 case 0x3b: /* FCVTZS */ 12684 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12685 break; 12686 case 0x3d: /* FRECPE */ 12687 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12688 break; 12689 case 0x5a: /* FCVTNU */ 12690 case 0x5b: /* FCVTMU */ 12691 case 0x5c: /* FCVTAU */ 12692 case 0x7a: /* FCVTPU */ 12693 case 0x7b: /* FCVTZU */ 12694 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12695 break; 12696 case 0x18: /* FRINTN */ 12697 case 0x19: /* FRINTM */ 12698 case 0x38: /* FRINTP */ 12699 case 0x39: /* FRINTZ */ 12700 case 0x58: /* FRINTA */ 12701 case 0x79: /* FRINTI */ 12702 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12703 break; 12704 case 0x59: /* FRINTX */ 12705 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12706 break; 12707 case 0x2f: /* FABS */ 12708 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12709 break; 12710 case 0x6f: /* FNEG */ 12711 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12712 break; 12713 case 0x7d: /* FRSQRTE */ 12714 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12715 break; 12716 case 0x7f: /* FSQRT */ 12717 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12718 break; 12719 default: 12720 g_assert_not_reached(); 12721 } 12722 12723 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12724 } 12725 12726 clear_vec_high(s, is_q, rd); 12727 } 12728 12729 if (tcg_rmode) { 12730 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12731 } 12732 } 12733 12734 /* AdvSIMD scalar x indexed element 12735 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12736 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12737 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12738 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12739 * AdvSIMD vector x indexed element 12740 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12741 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12742 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12743 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12744 */ 12745 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12746 { 12747 /* This encoding has two kinds of instruction: 12748 * normal, where we perform elt x idxelt => elt for each 12749 * element in the vector 12750 * long, where we perform elt x idxelt and generate a result of 12751 * double the width of the input element 12752 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12753 */ 12754 bool is_scalar = extract32(insn, 28, 1); 12755 bool is_q = extract32(insn, 30, 1); 12756 bool u = extract32(insn, 29, 1); 12757 int size = extract32(insn, 22, 2); 12758 int l = extract32(insn, 21, 1); 12759 int m = extract32(insn, 20, 1); 12760 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12761 int rm = extract32(insn, 16, 4); 12762 int opcode = extract32(insn, 12, 4); 12763 int h = extract32(insn, 11, 1); 12764 int rn = extract32(insn, 5, 5); 12765 int rd = extract32(insn, 0, 5); 12766 bool is_long = false; 12767 int is_fp = 0; 12768 bool is_fp16 = false; 12769 int index; 12770 TCGv_ptr fpst; 12771 12772 switch (16 * u + opcode) { 12773 case 0x08: /* MUL */ 12774 case 0x10: /* MLA */ 12775 case 0x14: /* MLS */ 12776 if (is_scalar) { 12777 unallocated_encoding(s); 12778 return; 12779 } 12780 break; 12781 case 0x02: /* SMLAL, SMLAL2 */ 12782 case 0x12: /* UMLAL, UMLAL2 */ 12783 case 0x06: /* SMLSL, SMLSL2 */ 12784 case 0x16: /* UMLSL, UMLSL2 */ 12785 case 0x0a: /* SMULL, SMULL2 */ 12786 case 0x1a: /* UMULL, UMULL2 */ 12787 if (is_scalar) { 12788 unallocated_encoding(s); 12789 return; 12790 } 12791 is_long = true; 12792 break; 12793 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12794 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12795 case 0x0b: /* SQDMULL, SQDMULL2 */ 12796 is_long = true; 12797 break; 12798 case 0x0c: /* SQDMULH */ 12799 case 0x0d: /* SQRDMULH */ 12800 break; 12801 case 0x01: /* FMLA */ 12802 case 0x05: /* FMLS */ 12803 case 0x09: /* FMUL */ 12804 case 0x19: /* FMULX */ 12805 is_fp = 1; 12806 break; 12807 case 0x1d: /* SQRDMLAH */ 12808 case 0x1f: /* SQRDMLSH */ 12809 if (!dc_isar_feature(aa64_rdm, s)) { 12810 unallocated_encoding(s); 12811 return; 12812 } 12813 break; 12814 case 0x0e: /* SDOT */ 12815 case 0x1e: /* UDOT */ 12816 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12817 unallocated_encoding(s); 12818 return; 12819 } 12820 break; 12821 case 0x0f: 12822 switch (size) { 12823 case 0: /* SUDOT */ 12824 case 2: /* USDOT */ 12825 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12826 unallocated_encoding(s); 12827 return; 12828 } 12829 size = MO_32; 12830 break; 12831 case 1: /* BFDOT */ 12832 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12833 unallocated_encoding(s); 12834 return; 12835 } 12836 size = MO_32; 12837 break; 12838 case 3: /* BFMLAL{B,T} */ 12839 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12840 unallocated_encoding(s); 12841 return; 12842 } 12843 /* can't set is_fp without other incorrect size checks */ 12844 size = MO_16; 12845 break; 12846 default: 12847 unallocated_encoding(s); 12848 return; 12849 } 12850 break; 12851 case 0x11: /* FCMLA #0 */ 12852 case 0x13: /* FCMLA #90 */ 12853 case 0x15: /* FCMLA #180 */ 12854 case 0x17: /* FCMLA #270 */ 12855 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12856 unallocated_encoding(s); 12857 return; 12858 } 12859 is_fp = 2; 12860 break; 12861 case 0x00: /* FMLAL */ 12862 case 0x04: /* FMLSL */ 12863 case 0x18: /* FMLAL2 */ 12864 case 0x1c: /* FMLSL2 */ 12865 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12866 unallocated_encoding(s); 12867 return; 12868 } 12869 size = MO_16; 12870 /* is_fp, but we pass cpu_env not fp_status. */ 12871 break; 12872 default: 12873 unallocated_encoding(s); 12874 return; 12875 } 12876 12877 switch (is_fp) { 12878 case 1: /* normal fp */ 12879 /* convert insn encoded size to MemOp size */ 12880 switch (size) { 12881 case 0: /* half-precision */ 12882 size = MO_16; 12883 is_fp16 = true; 12884 break; 12885 case MO_32: /* single precision */ 12886 case MO_64: /* double precision */ 12887 break; 12888 default: 12889 unallocated_encoding(s); 12890 return; 12891 } 12892 break; 12893 12894 case 2: /* complex fp */ 12895 /* Each indexable element is a complex pair. */ 12896 size += 1; 12897 switch (size) { 12898 case MO_32: 12899 if (h && !is_q) { 12900 unallocated_encoding(s); 12901 return; 12902 } 12903 is_fp16 = true; 12904 break; 12905 case MO_64: 12906 break; 12907 default: 12908 unallocated_encoding(s); 12909 return; 12910 } 12911 break; 12912 12913 default: /* integer */ 12914 switch (size) { 12915 case MO_8: 12916 case MO_64: 12917 unallocated_encoding(s); 12918 return; 12919 } 12920 break; 12921 } 12922 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12923 unallocated_encoding(s); 12924 return; 12925 } 12926 12927 /* Given MemOp size, adjust register and indexing. */ 12928 switch (size) { 12929 case MO_16: 12930 index = h << 2 | l << 1 | m; 12931 break; 12932 case MO_32: 12933 index = h << 1 | l; 12934 rm |= m << 4; 12935 break; 12936 case MO_64: 12937 if (l || !is_q) { 12938 unallocated_encoding(s); 12939 return; 12940 } 12941 index = h; 12942 rm |= m << 4; 12943 break; 12944 default: 12945 g_assert_not_reached(); 12946 } 12947 12948 if (!fp_access_check(s)) { 12949 return; 12950 } 12951 12952 if (is_fp) { 12953 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12954 } else { 12955 fpst = NULL; 12956 } 12957 12958 switch (16 * u + opcode) { 12959 case 0x0e: /* SDOT */ 12960 case 0x1e: /* UDOT */ 12961 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12962 u ? gen_helper_gvec_udot_idx_b 12963 : gen_helper_gvec_sdot_idx_b); 12964 return; 12965 case 0x0f: 12966 switch (extract32(insn, 22, 2)) { 12967 case 0: /* SUDOT */ 12968 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12969 gen_helper_gvec_sudot_idx_b); 12970 return; 12971 case 1: /* BFDOT */ 12972 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12973 gen_helper_gvec_bfdot_idx); 12974 return; 12975 case 2: /* USDOT */ 12976 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12977 gen_helper_gvec_usdot_idx_b); 12978 return; 12979 case 3: /* BFMLAL{B,T} */ 12980 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12981 gen_helper_gvec_bfmlal_idx); 12982 return; 12983 } 12984 g_assert_not_reached(); 12985 case 0x11: /* FCMLA #0 */ 12986 case 0x13: /* FCMLA #90 */ 12987 case 0x15: /* FCMLA #180 */ 12988 case 0x17: /* FCMLA #270 */ 12989 { 12990 int rot = extract32(insn, 13, 2); 12991 int data = (index << 2) | rot; 12992 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12993 vec_full_reg_offset(s, rn), 12994 vec_full_reg_offset(s, rm), 12995 vec_full_reg_offset(s, rd), fpst, 12996 is_q ? 16 : 8, vec_full_reg_size(s), data, 12997 size == MO_64 12998 ? gen_helper_gvec_fcmlas_idx 12999 : gen_helper_gvec_fcmlah_idx); 13000 } 13001 return; 13002 13003 case 0x00: /* FMLAL */ 13004 case 0x04: /* FMLSL */ 13005 case 0x18: /* FMLAL2 */ 13006 case 0x1c: /* FMLSL2 */ 13007 { 13008 int is_s = extract32(opcode, 2, 1); 13009 int is_2 = u; 13010 int data = (index << 2) | (is_2 << 1) | is_s; 13011 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13012 vec_full_reg_offset(s, rn), 13013 vec_full_reg_offset(s, rm), cpu_env, 13014 is_q ? 16 : 8, vec_full_reg_size(s), 13015 data, gen_helper_gvec_fmlal_idx_a64); 13016 } 13017 return; 13018 13019 case 0x08: /* MUL */ 13020 if (!is_long && !is_scalar) { 13021 static gen_helper_gvec_3 * const fns[3] = { 13022 gen_helper_gvec_mul_idx_h, 13023 gen_helper_gvec_mul_idx_s, 13024 gen_helper_gvec_mul_idx_d, 13025 }; 13026 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13027 vec_full_reg_offset(s, rn), 13028 vec_full_reg_offset(s, rm), 13029 is_q ? 16 : 8, vec_full_reg_size(s), 13030 index, fns[size - 1]); 13031 return; 13032 } 13033 break; 13034 13035 case 0x10: /* MLA */ 13036 if (!is_long && !is_scalar) { 13037 static gen_helper_gvec_4 * const fns[3] = { 13038 gen_helper_gvec_mla_idx_h, 13039 gen_helper_gvec_mla_idx_s, 13040 gen_helper_gvec_mla_idx_d, 13041 }; 13042 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13043 vec_full_reg_offset(s, rn), 13044 vec_full_reg_offset(s, rm), 13045 vec_full_reg_offset(s, rd), 13046 is_q ? 16 : 8, vec_full_reg_size(s), 13047 index, fns[size - 1]); 13048 return; 13049 } 13050 break; 13051 13052 case 0x14: /* MLS */ 13053 if (!is_long && !is_scalar) { 13054 static gen_helper_gvec_4 * const fns[3] = { 13055 gen_helper_gvec_mls_idx_h, 13056 gen_helper_gvec_mls_idx_s, 13057 gen_helper_gvec_mls_idx_d, 13058 }; 13059 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13060 vec_full_reg_offset(s, rn), 13061 vec_full_reg_offset(s, rm), 13062 vec_full_reg_offset(s, rd), 13063 is_q ? 16 : 8, vec_full_reg_size(s), 13064 index, fns[size - 1]); 13065 return; 13066 } 13067 break; 13068 } 13069 13070 if (size == 3) { 13071 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13072 int pass; 13073 13074 assert(is_fp && is_q && !is_long); 13075 13076 read_vec_element(s, tcg_idx, rm, index, MO_64); 13077 13078 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13079 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13080 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13081 13082 read_vec_element(s, tcg_op, rn, pass, MO_64); 13083 13084 switch (16 * u + opcode) { 13085 case 0x05: /* FMLS */ 13086 /* As usual for ARM, separate negation for fused multiply-add */ 13087 gen_helper_vfp_negd(tcg_op, tcg_op); 13088 /* fall through */ 13089 case 0x01: /* FMLA */ 13090 read_vec_element(s, tcg_res, rd, pass, MO_64); 13091 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13092 break; 13093 case 0x09: /* FMUL */ 13094 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13095 break; 13096 case 0x19: /* FMULX */ 13097 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13098 break; 13099 default: 13100 g_assert_not_reached(); 13101 } 13102 13103 write_vec_element(s, tcg_res, rd, pass, MO_64); 13104 } 13105 13106 clear_vec_high(s, !is_scalar, rd); 13107 } else if (!is_long) { 13108 /* 32 bit floating point, or 16 or 32 bit integer. 13109 * For the 16 bit scalar case we use the usual Neon helpers and 13110 * rely on the fact that 0 op 0 == 0 with no side effects. 13111 */ 13112 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13113 int pass, maxpasses; 13114 13115 if (is_scalar) { 13116 maxpasses = 1; 13117 } else { 13118 maxpasses = is_q ? 4 : 2; 13119 } 13120 13121 read_vec_element_i32(s, tcg_idx, rm, index, size); 13122 13123 if (size == 1 && !is_scalar) { 13124 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13125 * the index into both halves of the 32 bit tcg_idx and then use 13126 * the usual Neon helpers. 13127 */ 13128 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13129 } 13130 13131 for (pass = 0; pass < maxpasses; pass++) { 13132 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13133 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13134 13135 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13136 13137 switch (16 * u + opcode) { 13138 case 0x08: /* MUL */ 13139 case 0x10: /* MLA */ 13140 case 0x14: /* MLS */ 13141 { 13142 static NeonGenTwoOpFn * const fns[2][2] = { 13143 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13144 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13145 }; 13146 NeonGenTwoOpFn *genfn; 13147 bool is_sub = opcode == 0x4; 13148 13149 if (size == 1) { 13150 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13151 } else { 13152 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13153 } 13154 if (opcode == 0x8) { 13155 break; 13156 } 13157 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13158 genfn = fns[size - 1][is_sub]; 13159 genfn(tcg_res, tcg_op, tcg_res); 13160 break; 13161 } 13162 case 0x05: /* FMLS */ 13163 case 0x01: /* FMLA */ 13164 read_vec_element_i32(s, tcg_res, rd, pass, 13165 is_scalar ? size : MO_32); 13166 switch (size) { 13167 case 1: 13168 if (opcode == 0x5) { 13169 /* As usual for ARM, separate negation for fused 13170 * multiply-add */ 13171 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13172 } 13173 if (is_scalar) { 13174 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13175 tcg_res, fpst); 13176 } else { 13177 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13178 tcg_res, fpst); 13179 } 13180 break; 13181 case 2: 13182 if (opcode == 0x5) { 13183 /* As usual for ARM, separate negation for 13184 * fused multiply-add */ 13185 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13186 } 13187 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13188 tcg_res, fpst); 13189 break; 13190 default: 13191 g_assert_not_reached(); 13192 } 13193 break; 13194 case 0x09: /* FMUL */ 13195 switch (size) { 13196 case 1: 13197 if (is_scalar) { 13198 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13199 tcg_idx, fpst); 13200 } else { 13201 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13202 tcg_idx, fpst); 13203 } 13204 break; 13205 case 2: 13206 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13207 break; 13208 default: 13209 g_assert_not_reached(); 13210 } 13211 break; 13212 case 0x19: /* FMULX */ 13213 switch (size) { 13214 case 1: 13215 if (is_scalar) { 13216 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13217 tcg_idx, fpst); 13218 } else { 13219 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13220 tcg_idx, fpst); 13221 } 13222 break; 13223 case 2: 13224 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13225 break; 13226 default: 13227 g_assert_not_reached(); 13228 } 13229 break; 13230 case 0x0c: /* SQDMULH */ 13231 if (size == 1) { 13232 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13233 tcg_op, tcg_idx); 13234 } else { 13235 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13236 tcg_op, tcg_idx); 13237 } 13238 break; 13239 case 0x0d: /* SQRDMULH */ 13240 if (size == 1) { 13241 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13242 tcg_op, tcg_idx); 13243 } else { 13244 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13245 tcg_op, tcg_idx); 13246 } 13247 break; 13248 case 0x1d: /* SQRDMLAH */ 13249 read_vec_element_i32(s, tcg_res, rd, pass, 13250 is_scalar ? size : MO_32); 13251 if (size == 1) { 13252 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13253 tcg_op, tcg_idx, tcg_res); 13254 } else { 13255 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13256 tcg_op, tcg_idx, tcg_res); 13257 } 13258 break; 13259 case 0x1f: /* SQRDMLSH */ 13260 read_vec_element_i32(s, tcg_res, rd, pass, 13261 is_scalar ? size : MO_32); 13262 if (size == 1) { 13263 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13264 tcg_op, tcg_idx, tcg_res); 13265 } else { 13266 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13267 tcg_op, tcg_idx, tcg_res); 13268 } 13269 break; 13270 default: 13271 g_assert_not_reached(); 13272 } 13273 13274 if (is_scalar) { 13275 write_fp_sreg(s, rd, tcg_res); 13276 } else { 13277 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13278 } 13279 } 13280 13281 clear_vec_high(s, is_q, rd); 13282 } else { 13283 /* long ops: 16x16->32 or 32x32->64 */ 13284 TCGv_i64 tcg_res[2]; 13285 int pass; 13286 bool satop = extract32(opcode, 0, 1); 13287 MemOp memop = MO_32; 13288 13289 if (satop || !u) { 13290 memop |= MO_SIGN; 13291 } 13292 13293 if (size == 2) { 13294 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13295 13296 read_vec_element(s, tcg_idx, rm, index, memop); 13297 13298 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13299 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13300 TCGv_i64 tcg_passres; 13301 int passelt; 13302 13303 if (is_scalar) { 13304 passelt = 0; 13305 } else { 13306 passelt = pass + (is_q * 2); 13307 } 13308 13309 read_vec_element(s, tcg_op, rn, passelt, memop); 13310 13311 tcg_res[pass] = tcg_temp_new_i64(); 13312 13313 if (opcode == 0xa || opcode == 0xb) { 13314 /* Non-accumulating ops */ 13315 tcg_passres = tcg_res[pass]; 13316 } else { 13317 tcg_passres = tcg_temp_new_i64(); 13318 } 13319 13320 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13321 13322 if (satop) { 13323 /* saturating, doubling */ 13324 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13325 tcg_passres, tcg_passres); 13326 } 13327 13328 if (opcode == 0xa || opcode == 0xb) { 13329 continue; 13330 } 13331 13332 /* Accumulating op: handle accumulate step */ 13333 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13334 13335 switch (opcode) { 13336 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13337 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13338 break; 13339 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13340 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13341 break; 13342 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13343 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13344 /* fall through */ 13345 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13346 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13347 tcg_res[pass], 13348 tcg_passres); 13349 break; 13350 default: 13351 g_assert_not_reached(); 13352 } 13353 } 13354 13355 clear_vec_high(s, !is_scalar, rd); 13356 } else { 13357 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13358 13359 assert(size == 1); 13360 read_vec_element_i32(s, tcg_idx, rm, index, size); 13361 13362 if (!is_scalar) { 13363 /* The simplest way to handle the 16x16 indexed ops is to 13364 * duplicate the index into both halves of the 32 bit tcg_idx 13365 * and then use the usual Neon helpers. 13366 */ 13367 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13368 } 13369 13370 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13371 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13372 TCGv_i64 tcg_passres; 13373 13374 if (is_scalar) { 13375 read_vec_element_i32(s, tcg_op, rn, pass, size); 13376 } else { 13377 read_vec_element_i32(s, tcg_op, rn, 13378 pass + (is_q * 2), MO_32); 13379 } 13380 13381 tcg_res[pass] = tcg_temp_new_i64(); 13382 13383 if (opcode == 0xa || opcode == 0xb) { 13384 /* Non-accumulating ops */ 13385 tcg_passres = tcg_res[pass]; 13386 } else { 13387 tcg_passres = tcg_temp_new_i64(); 13388 } 13389 13390 if (memop & MO_SIGN) { 13391 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13392 } else { 13393 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13394 } 13395 if (satop) { 13396 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13397 tcg_passres, tcg_passres); 13398 } 13399 13400 if (opcode == 0xa || opcode == 0xb) { 13401 continue; 13402 } 13403 13404 /* Accumulating op: handle accumulate step */ 13405 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13406 13407 switch (opcode) { 13408 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13409 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13410 tcg_passres); 13411 break; 13412 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13413 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13414 tcg_passres); 13415 break; 13416 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13417 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13418 /* fall through */ 13419 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13420 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13421 tcg_res[pass], 13422 tcg_passres); 13423 break; 13424 default: 13425 g_assert_not_reached(); 13426 } 13427 } 13428 13429 if (is_scalar) { 13430 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13431 } 13432 } 13433 13434 if (is_scalar) { 13435 tcg_res[1] = tcg_constant_i64(0); 13436 } 13437 13438 for (pass = 0; pass < 2; pass++) { 13439 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13440 } 13441 } 13442 } 13443 13444 /* Crypto AES 13445 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13446 * +-----------------+------+-----------+--------+-----+------+------+ 13447 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13448 * +-----------------+------+-----------+--------+-----+------+------+ 13449 */ 13450 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13451 { 13452 int size = extract32(insn, 22, 2); 13453 int opcode = extract32(insn, 12, 5); 13454 int rn = extract32(insn, 5, 5); 13455 int rd = extract32(insn, 0, 5); 13456 int decrypt; 13457 gen_helper_gvec_2 *genfn2 = NULL; 13458 gen_helper_gvec_3 *genfn3 = NULL; 13459 13460 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13461 unallocated_encoding(s); 13462 return; 13463 } 13464 13465 switch (opcode) { 13466 case 0x4: /* AESE */ 13467 decrypt = 0; 13468 genfn3 = gen_helper_crypto_aese; 13469 break; 13470 case 0x6: /* AESMC */ 13471 decrypt = 0; 13472 genfn2 = gen_helper_crypto_aesmc; 13473 break; 13474 case 0x5: /* AESD */ 13475 decrypt = 1; 13476 genfn3 = gen_helper_crypto_aese; 13477 break; 13478 case 0x7: /* AESIMC */ 13479 decrypt = 1; 13480 genfn2 = gen_helper_crypto_aesmc; 13481 break; 13482 default: 13483 unallocated_encoding(s); 13484 return; 13485 } 13486 13487 if (!fp_access_check(s)) { 13488 return; 13489 } 13490 if (genfn2) { 13491 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13492 } else { 13493 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13494 } 13495 } 13496 13497 /* Crypto three-reg SHA 13498 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13499 * +-----------------+------+---+------+---+--------+-----+------+------+ 13500 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13501 * +-----------------+------+---+------+---+--------+-----+------+------+ 13502 */ 13503 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13504 { 13505 int size = extract32(insn, 22, 2); 13506 int opcode = extract32(insn, 12, 3); 13507 int rm = extract32(insn, 16, 5); 13508 int rn = extract32(insn, 5, 5); 13509 int rd = extract32(insn, 0, 5); 13510 gen_helper_gvec_3 *genfn; 13511 bool feature; 13512 13513 if (size != 0) { 13514 unallocated_encoding(s); 13515 return; 13516 } 13517 13518 switch (opcode) { 13519 case 0: /* SHA1C */ 13520 genfn = gen_helper_crypto_sha1c; 13521 feature = dc_isar_feature(aa64_sha1, s); 13522 break; 13523 case 1: /* SHA1P */ 13524 genfn = gen_helper_crypto_sha1p; 13525 feature = dc_isar_feature(aa64_sha1, s); 13526 break; 13527 case 2: /* SHA1M */ 13528 genfn = gen_helper_crypto_sha1m; 13529 feature = dc_isar_feature(aa64_sha1, s); 13530 break; 13531 case 3: /* SHA1SU0 */ 13532 genfn = gen_helper_crypto_sha1su0; 13533 feature = dc_isar_feature(aa64_sha1, s); 13534 break; 13535 case 4: /* SHA256H */ 13536 genfn = gen_helper_crypto_sha256h; 13537 feature = dc_isar_feature(aa64_sha256, s); 13538 break; 13539 case 5: /* SHA256H2 */ 13540 genfn = gen_helper_crypto_sha256h2; 13541 feature = dc_isar_feature(aa64_sha256, s); 13542 break; 13543 case 6: /* SHA256SU1 */ 13544 genfn = gen_helper_crypto_sha256su1; 13545 feature = dc_isar_feature(aa64_sha256, s); 13546 break; 13547 default: 13548 unallocated_encoding(s); 13549 return; 13550 } 13551 13552 if (!feature) { 13553 unallocated_encoding(s); 13554 return; 13555 } 13556 13557 if (!fp_access_check(s)) { 13558 return; 13559 } 13560 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13561 } 13562 13563 /* Crypto two-reg SHA 13564 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13565 * +-----------------+------+-----------+--------+-----+------+------+ 13566 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13567 * +-----------------+------+-----------+--------+-----+------+------+ 13568 */ 13569 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13570 { 13571 int size = extract32(insn, 22, 2); 13572 int opcode = extract32(insn, 12, 5); 13573 int rn = extract32(insn, 5, 5); 13574 int rd = extract32(insn, 0, 5); 13575 gen_helper_gvec_2 *genfn; 13576 bool feature; 13577 13578 if (size != 0) { 13579 unallocated_encoding(s); 13580 return; 13581 } 13582 13583 switch (opcode) { 13584 case 0: /* SHA1H */ 13585 feature = dc_isar_feature(aa64_sha1, s); 13586 genfn = gen_helper_crypto_sha1h; 13587 break; 13588 case 1: /* SHA1SU1 */ 13589 feature = dc_isar_feature(aa64_sha1, s); 13590 genfn = gen_helper_crypto_sha1su1; 13591 break; 13592 case 2: /* SHA256SU0 */ 13593 feature = dc_isar_feature(aa64_sha256, s); 13594 genfn = gen_helper_crypto_sha256su0; 13595 break; 13596 default: 13597 unallocated_encoding(s); 13598 return; 13599 } 13600 13601 if (!feature) { 13602 unallocated_encoding(s); 13603 return; 13604 } 13605 13606 if (!fp_access_check(s)) { 13607 return; 13608 } 13609 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13610 } 13611 13612 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13613 { 13614 tcg_gen_rotli_i64(d, m, 1); 13615 tcg_gen_xor_i64(d, d, n); 13616 } 13617 13618 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13619 { 13620 tcg_gen_rotli_vec(vece, d, m, 1); 13621 tcg_gen_xor_vec(vece, d, d, n); 13622 } 13623 13624 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13625 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13626 { 13627 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13628 static const GVecGen3 op = { 13629 .fni8 = gen_rax1_i64, 13630 .fniv = gen_rax1_vec, 13631 .opt_opc = vecop_list, 13632 .fno = gen_helper_crypto_rax1, 13633 .vece = MO_64, 13634 }; 13635 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13636 } 13637 13638 /* Crypto three-reg SHA512 13639 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13640 * +-----------------------+------+---+---+-----+--------+------+------+ 13641 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13642 * +-----------------------+------+---+---+-----+--------+------+------+ 13643 */ 13644 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13645 { 13646 int opcode = extract32(insn, 10, 2); 13647 int o = extract32(insn, 14, 1); 13648 int rm = extract32(insn, 16, 5); 13649 int rn = extract32(insn, 5, 5); 13650 int rd = extract32(insn, 0, 5); 13651 bool feature; 13652 gen_helper_gvec_3 *oolfn = NULL; 13653 GVecGen3Fn *gvecfn = NULL; 13654 13655 if (o == 0) { 13656 switch (opcode) { 13657 case 0: /* SHA512H */ 13658 feature = dc_isar_feature(aa64_sha512, s); 13659 oolfn = gen_helper_crypto_sha512h; 13660 break; 13661 case 1: /* SHA512H2 */ 13662 feature = dc_isar_feature(aa64_sha512, s); 13663 oolfn = gen_helper_crypto_sha512h2; 13664 break; 13665 case 2: /* SHA512SU1 */ 13666 feature = dc_isar_feature(aa64_sha512, s); 13667 oolfn = gen_helper_crypto_sha512su1; 13668 break; 13669 case 3: /* RAX1 */ 13670 feature = dc_isar_feature(aa64_sha3, s); 13671 gvecfn = gen_gvec_rax1; 13672 break; 13673 default: 13674 g_assert_not_reached(); 13675 } 13676 } else { 13677 switch (opcode) { 13678 case 0: /* SM3PARTW1 */ 13679 feature = dc_isar_feature(aa64_sm3, s); 13680 oolfn = gen_helper_crypto_sm3partw1; 13681 break; 13682 case 1: /* SM3PARTW2 */ 13683 feature = dc_isar_feature(aa64_sm3, s); 13684 oolfn = gen_helper_crypto_sm3partw2; 13685 break; 13686 case 2: /* SM4EKEY */ 13687 feature = dc_isar_feature(aa64_sm4, s); 13688 oolfn = gen_helper_crypto_sm4ekey; 13689 break; 13690 default: 13691 unallocated_encoding(s); 13692 return; 13693 } 13694 } 13695 13696 if (!feature) { 13697 unallocated_encoding(s); 13698 return; 13699 } 13700 13701 if (!fp_access_check(s)) { 13702 return; 13703 } 13704 13705 if (oolfn) { 13706 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13707 } else { 13708 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13709 } 13710 } 13711 13712 /* Crypto two-reg SHA512 13713 * 31 12 11 10 9 5 4 0 13714 * +-----------------------------------------+--------+------+------+ 13715 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13716 * +-----------------------------------------+--------+------+------+ 13717 */ 13718 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13719 { 13720 int opcode = extract32(insn, 10, 2); 13721 int rn = extract32(insn, 5, 5); 13722 int rd = extract32(insn, 0, 5); 13723 bool feature; 13724 13725 switch (opcode) { 13726 case 0: /* SHA512SU0 */ 13727 feature = dc_isar_feature(aa64_sha512, s); 13728 break; 13729 case 1: /* SM4E */ 13730 feature = dc_isar_feature(aa64_sm4, s); 13731 break; 13732 default: 13733 unallocated_encoding(s); 13734 return; 13735 } 13736 13737 if (!feature) { 13738 unallocated_encoding(s); 13739 return; 13740 } 13741 13742 if (!fp_access_check(s)) { 13743 return; 13744 } 13745 13746 switch (opcode) { 13747 case 0: /* SHA512SU0 */ 13748 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13749 break; 13750 case 1: /* SM4E */ 13751 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13752 break; 13753 default: 13754 g_assert_not_reached(); 13755 } 13756 } 13757 13758 /* Crypto four-register 13759 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13760 * +-------------------+-----+------+---+------+------+------+ 13761 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13762 * +-------------------+-----+------+---+------+------+------+ 13763 */ 13764 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13765 { 13766 int op0 = extract32(insn, 21, 2); 13767 int rm = extract32(insn, 16, 5); 13768 int ra = extract32(insn, 10, 5); 13769 int rn = extract32(insn, 5, 5); 13770 int rd = extract32(insn, 0, 5); 13771 bool feature; 13772 13773 switch (op0) { 13774 case 0: /* EOR3 */ 13775 case 1: /* BCAX */ 13776 feature = dc_isar_feature(aa64_sha3, s); 13777 break; 13778 case 2: /* SM3SS1 */ 13779 feature = dc_isar_feature(aa64_sm3, s); 13780 break; 13781 default: 13782 unallocated_encoding(s); 13783 return; 13784 } 13785 13786 if (!feature) { 13787 unallocated_encoding(s); 13788 return; 13789 } 13790 13791 if (!fp_access_check(s)) { 13792 return; 13793 } 13794 13795 if (op0 < 2) { 13796 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13797 int pass; 13798 13799 tcg_op1 = tcg_temp_new_i64(); 13800 tcg_op2 = tcg_temp_new_i64(); 13801 tcg_op3 = tcg_temp_new_i64(); 13802 tcg_res[0] = tcg_temp_new_i64(); 13803 tcg_res[1] = tcg_temp_new_i64(); 13804 13805 for (pass = 0; pass < 2; pass++) { 13806 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13807 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13808 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13809 13810 if (op0 == 0) { 13811 /* EOR3 */ 13812 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13813 } else { 13814 /* BCAX */ 13815 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13816 } 13817 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13818 } 13819 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13820 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13821 } else { 13822 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13823 13824 tcg_op1 = tcg_temp_new_i32(); 13825 tcg_op2 = tcg_temp_new_i32(); 13826 tcg_op3 = tcg_temp_new_i32(); 13827 tcg_res = tcg_temp_new_i32(); 13828 tcg_zero = tcg_constant_i32(0); 13829 13830 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13831 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13832 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13833 13834 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13835 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13836 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13837 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13838 13839 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13840 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13841 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13842 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13843 } 13844 } 13845 13846 /* Crypto XAR 13847 * 31 21 20 16 15 10 9 5 4 0 13848 * +-----------------------+------+--------+------+------+ 13849 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13850 * +-----------------------+------+--------+------+------+ 13851 */ 13852 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13853 { 13854 int rm = extract32(insn, 16, 5); 13855 int imm6 = extract32(insn, 10, 6); 13856 int rn = extract32(insn, 5, 5); 13857 int rd = extract32(insn, 0, 5); 13858 13859 if (!dc_isar_feature(aa64_sha3, s)) { 13860 unallocated_encoding(s); 13861 return; 13862 } 13863 13864 if (!fp_access_check(s)) { 13865 return; 13866 } 13867 13868 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13869 vec_full_reg_offset(s, rn), 13870 vec_full_reg_offset(s, rm), imm6, 16, 13871 vec_full_reg_size(s)); 13872 } 13873 13874 /* Crypto three-reg imm2 13875 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13876 * +-----------------------+------+-----+------+--------+------+------+ 13877 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13878 * +-----------------------+------+-----+------+--------+------+------+ 13879 */ 13880 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13881 { 13882 static gen_helper_gvec_3 * const fns[4] = { 13883 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13884 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13885 }; 13886 int opcode = extract32(insn, 10, 2); 13887 int imm2 = extract32(insn, 12, 2); 13888 int rm = extract32(insn, 16, 5); 13889 int rn = extract32(insn, 5, 5); 13890 int rd = extract32(insn, 0, 5); 13891 13892 if (!dc_isar_feature(aa64_sm3, s)) { 13893 unallocated_encoding(s); 13894 return; 13895 } 13896 13897 if (!fp_access_check(s)) { 13898 return; 13899 } 13900 13901 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13902 } 13903 13904 /* C3.6 Data processing - SIMD, inc Crypto 13905 * 13906 * As the decode gets a little complex we are using a table based 13907 * approach for this part of the decode. 13908 */ 13909 static const AArch64DecodeTable data_proc_simd[] = { 13910 /* pattern , mask , fn */ 13911 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13912 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13913 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13914 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13915 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13916 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13917 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13918 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13919 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13920 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13921 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13922 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13923 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13924 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13925 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13926 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13927 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13928 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13929 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13930 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13931 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13932 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13933 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13934 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13935 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13936 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13937 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13938 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13939 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13940 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13941 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13942 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13943 { 0x00000000, 0x00000000, NULL } 13944 }; 13945 13946 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13947 { 13948 /* Note that this is called with all non-FP cases from 13949 * table C3-6 so it must UNDEF for entries not specifically 13950 * allocated to instructions in that table. 13951 */ 13952 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13953 if (fn) { 13954 fn(s, insn); 13955 } else { 13956 unallocated_encoding(s); 13957 } 13958 } 13959 13960 /* C3.6 Data processing - SIMD and floating point */ 13961 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13962 { 13963 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13964 disas_data_proc_fp(s, insn); 13965 } else { 13966 /* SIMD, including crypto */ 13967 disas_data_proc_simd(s, insn); 13968 } 13969 } 13970 13971 static bool trans_OK(DisasContext *s, arg_OK *a) 13972 { 13973 return true; 13974 } 13975 13976 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13977 { 13978 s->is_nonstreaming = true; 13979 return true; 13980 } 13981 13982 /** 13983 * is_guarded_page: 13984 * @env: The cpu environment 13985 * @s: The DisasContext 13986 * 13987 * Return true if the page is guarded. 13988 */ 13989 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13990 { 13991 uint64_t addr = s->base.pc_first; 13992 #ifdef CONFIG_USER_ONLY 13993 return page_get_flags(addr) & PAGE_BTI; 13994 #else 13995 CPUTLBEntryFull *full; 13996 void *host; 13997 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13998 int flags; 13999 14000 /* 14001 * We test this immediately after reading an insn, which means 14002 * that the TLB entry must be present and valid, and thus this 14003 * access will never raise an exception. 14004 */ 14005 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14006 false, &host, &full, 0); 14007 assert(!(flags & TLB_INVALID_MASK)); 14008 14009 return full->guarded; 14010 #endif 14011 } 14012 14013 /** 14014 * btype_destination_ok: 14015 * @insn: The instruction at the branch destination 14016 * @bt: SCTLR_ELx.BT 14017 * @btype: PSTATE.BTYPE, and is non-zero 14018 * 14019 * On a guarded page, there are a limited number of insns 14020 * that may be present at the branch target: 14021 * - branch target identifiers, 14022 * - paciasp, pacibsp, 14023 * - BRK insn 14024 * - HLT insn 14025 * Anything else causes a Branch Target Exception. 14026 * 14027 * Return true if the branch is compatible, false to raise BTITRAP. 14028 */ 14029 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14030 { 14031 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14032 /* HINT space */ 14033 switch (extract32(insn, 5, 7)) { 14034 case 0b011001: /* PACIASP */ 14035 case 0b011011: /* PACIBSP */ 14036 /* 14037 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14038 * with btype == 3. Otherwise all btype are ok. 14039 */ 14040 return !bt || btype != 3; 14041 case 0b100000: /* BTI */ 14042 /* Not compatible with any btype. */ 14043 return false; 14044 case 0b100010: /* BTI c */ 14045 /* Not compatible with btype == 3 */ 14046 return btype != 3; 14047 case 0b100100: /* BTI j */ 14048 /* Not compatible with btype == 2 */ 14049 return btype != 2; 14050 case 0b100110: /* BTI jc */ 14051 /* Compatible with any btype. */ 14052 return true; 14053 } 14054 } else { 14055 switch (insn & 0xffe0001fu) { 14056 case 0xd4200000u: /* BRK */ 14057 case 0xd4400000u: /* HLT */ 14058 /* Give priority to the breakpoint exception. */ 14059 return true; 14060 } 14061 } 14062 return false; 14063 } 14064 14065 /* C3.1 A64 instruction index by encoding */ 14066 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14067 { 14068 switch (extract32(insn, 25, 4)) { 14069 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14070 disas_b_exc_sys(s, insn); 14071 break; 14072 case 0x4: 14073 case 0x6: 14074 case 0xc: 14075 case 0xe: /* Loads and stores */ 14076 disas_ldst(s, insn); 14077 break; 14078 case 0x5: 14079 case 0xd: /* Data processing - register */ 14080 disas_data_proc_reg(s, insn); 14081 break; 14082 case 0x7: 14083 case 0xf: /* Data processing - SIMD and floating point */ 14084 disas_data_proc_simd_fp(s, insn); 14085 break; 14086 default: 14087 unallocated_encoding(s); 14088 break; 14089 } 14090 } 14091 14092 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14093 CPUState *cpu) 14094 { 14095 DisasContext *dc = container_of(dcbase, DisasContext, base); 14096 CPUARMState *env = cpu->env_ptr; 14097 ARMCPU *arm_cpu = env_archcpu(env); 14098 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14099 int bound, core_mmu_idx; 14100 14101 dc->isar = &arm_cpu->isar; 14102 dc->condjmp = 0; 14103 dc->pc_save = dc->base.pc_first; 14104 dc->aarch64 = true; 14105 dc->thumb = false; 14106 dc->sctlr_b = 0; 14107 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14108 dc->condexec_mask = 0; 14109 dc->condexec_cond = 0; 14110 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14111 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14112 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14113 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14114 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14115 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14116 #if !defined(CONFIG_USER_ONLY) 14117 dc->user = (dc->current_el == 0); 14118 #endif 14119 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14120 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14121 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14122 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14123 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14124 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14125 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14126 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14127 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14128 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14129 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14130 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14131 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14132 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14133 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14134 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14135 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14136 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14137 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14138 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14139 dc->vec_len = 0; 14140 dc->vec_stride = 0; 14141 dc->cp_regs = arm_cpu->cp_regs; 14142 dc->features = env->features; 14143 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14144 14145 #ifdef CONFIG_USER_ONLY 14146 /* In sve_probe_page, we assume TBI is enabled. */ 14147 tcg_debug_assert(dc->tbid & 1); 14148 #endif 14149 14150 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14151 14152 /* Single step state. The code-generation logic here is: 14153 * SS_ACTIVE == 0: 14154 * generate code with no special handling for single-stepping (except 14155 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14156 * this happens anyway because those changes are all system register or 14157 * PSTATE writes). 14158 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14159 * emit code for one insn 14160 * emit code to clear PSTATE.SS 14161 * emit code to generate software step exception for completed step 14162 * end TB (as usual for having generated an exception) 14163 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14164 * emit code to generate a software step exception 14165 * end the TB 14166 */ 14167 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14168 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14169 dc->is_ldex = false; 14170 14171 /* Bound the number of insns to execute to those left on the page. */ 14172 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14173 14174 /* If architectural single step active, limit to 1. */ 14175 if (dc->ss_active) { 14176 bound = 1; 14177 } 14178 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14179 } 14180 14181 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14182 { 14183 } 14184 14185 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14186 { 14187 DisasContext *dc = container_of(dcbase, DisasContext, base); 14188 target_ulong pc_arg = dc->base.pc_next; 14189 14190 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14191 pc_arg &= ~TARGET_PAGE_MASK; 14192 } 14193 tcg_gen_insn_start(pc_arg, 0, 0); 14194 dc->insn_start = tcg_last_op(); 14195 } 14196 14197 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14198 { 14199 DisasContext *s = container_of(dcbase, DisasContext, base); 14200 CPUARMState *env = cpu->env_ptr; 14201 uint64_t pc = s->base.pc_next; 14202 uint32_t insn; 14203 14204 /* Singlestep exceptions have the highest priority. */ 14205 if (s->ss_active && !s->pstate_ss) { 14206 /* Singlestep state is Active-pending. 14207 * If we're in this state at the start of a TB then either 14208 * a) we just took an exception to an EL which is being debugged 14209 * and this is the first insn in the exception handler 14210 * b) debug exceptions were masked and we just unmasked them 14211 * without changing EL (eg by clearing PSTATE.D) 14212 * In either case we're going to take a swstep exception in the 14213 * "did not step an insn" case, and so the syndrome ISV and EX 14214 * bits should be zero. 14215 */ 14216 assert(s->base.num_insns == 1); 14217 gen_swstep_exception(s, 0, 0); 14218 s->base.is_jmp = DISAS_NORETURN; 14219 s->base.pc_next = pc + 4; 14220 return; 14221 } 14222 14223 if (pc & 3) { 14224 /* 14225 * PC alignment fault. This has priority over the instruction abort 14226 * that we would receive from a translation fault via arm_ldl_code. 14227 * This should only be possible after an indirect branch, at the 14228 * start of the TB. 14229 */ 14230 assert(s->base.num_insns == 1); 14231 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14232 s->base.is_jmp = DISAS_NORETURN; 14233 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14234 return; 14235 } 14236 14237 s->pc_curr = pc; 14238 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14239 s->insn = insn; 14240 s->base.pc_next = pc + 4; 14241 14242 s->fp_access_checked = false; 14243 s->sve_access_checked = false; 14244 14245 if (s->pstate_il) { 14246 /* 14247 * Illegal execution state. This has priority over BTI 14248 * exceptions, but comes after instruction abort exceptions. 14249 */ 14250 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14251 return; 14252 } 14253 14254 if (dc_isar_feature(aa64_bti, s)) { 14255 if (s->base.num_insns == 1) { 14256 /* 14257 * At the first insn of the TB, compute s->guarded_page. 14258 * We delayed computing this until successfully reading 14259 * the first insn of the TB, above. This (mostly) ensures 14260 * that the softmmu tlb entry has been populated, and the 14261 * page table GP bit is available. 14262 * 14263 * Note that we need to compute this even if btype == 0, 14264 * because this value is used for BR instructions later 14265 * where ENV is not available. 14266 */ 14267 s->guarded_page = is_guarded_page(env, s); 14268 14269 /* First insn can have btype set to non-zero. */ 14270 tcg_debug_assert(s->btype >= 0); 14271 14272 /* 14273 * Note that the Branch Target Exception has fairly high 14274 * priority -- below debugging exceptions but above most 14275 * everything else. This allows us to handle this now 14276 * instead of waiting until the insn is otherwise decoded. 14277 */ 14278 if (s->btype != 0 14279 && s->guarded_page 14280 && !btype_destination_ok(insn, s->bt, s->btype)) { 14281 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14282 return; 14283 } 14284 } else { 14285 /* Not the first insn: btype must be 0. */ 14286 tcg_debug_assert(s->btype == 0); 14287 } 14288 } 14289 14290 s->is_nonstreaming = false; 14291 if (s->sme_trap_nonstreaming) { 14292 disas_sme_fa64(s, insn); 14293 } 14294 14295 if (!disas_a64(s, insn) && 14296 !disas_sme(s, insn) && 14297 !disas_sve(s, insn)) { 14298 disas_a64_legacy(s, insn); 14299 } 14300 14301 /* 14302 * After execution of most insns, btype is reset to 0. 14303 * Note that we set btype == -1 when the insn sets btype. 14304 */ 14305 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14306 reset_btype(s); 14307 } 14308 } 14309 14310 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14311 { 14312 DisasContext *dc = container_of(dcbase, DisasContext, base); 14313 14314 if (unlikely(dc->ss_active)) { 14315 /* Note that this means single stepping WFI doesn't halt the CPU. 14316 * For conditional branch insns this is harmless unreachable code as 14317 * gen_goto_tb() has already handled emitting the debug exception 14318 * (and thus a tb-jump is not possible when singlestepping). 14319 */ 14320 switch (dc->base.is_jmp) { 14321 default: 14322 gen_a64_update_pc(dc, 4); 14323 /* fall through */ 14324 case DISAS_EXIT: 14325 case DISAS_JUMP: 14326 gen_step_complete_exception(dc); 14327 break; 14328 case DISAS_NORETURN: 14329 break; 14330 } 14331 } else { 14332 switch (dc->base.is_jmp) { 14333 case DISAS_NEXT: 14334 case DISAS_TOO_MANY: 14335 gen_goto_tb(dc, 1, 4); 14336 break; 14337 default: 14338 case DISAS_UPDATE_EXIT: 14339 gen_a64_update_pc(dc, 4); 14340 /* fall through */ 14341 case DISAS_EXIT: 14342 tcg_gen_exit_tb(NULL, 0); 14343 break; 14344 case DISAS_UPDATE_NOCHAIN: 14345 gen_a64_update_pc(dc, 4); 14346 /* fall through */ 14347 case DISAS_JUMP: 14348 tcg_gen_lookup_and_goto_ptr(); 14349 break; 14350 case DISAS_NORETURN: 14351 case DISAS_SWI: 14352 break; 14353 case DISAS_WFE: 14354 gen_a64_update_pc(dc, 4); 14355 gen_helper_wfe(cpu_env); 14356 break; 14357 case DISAS_YIELD: 14358 gen_a64_update_pc(dc, 4); 14359 gen_helper_yield(cpu_env); 14360 break; 14361 case DISAS_WFI: 14362 /* 14363 * This is a special case because we don't want to just halt 14364 * the CPU if trying to debug across a WFI. 14365 */ 14366 gen_a64_update_pc(dc, 4); 14367 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14368 /* 14369 * The helper doesn't necessarily throw an exception, but we 14370 * must go back to the main loop to check for interrupts anyway. 14371 */ 14372 tcg_gen_exit_tb(NULL, 0); 14373 break; 14374 } 14375 } 14376 } 14377 14378 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14379 CPUState *cpu, FILE *logfile) 14380 { 14381 DisasContext *dc = container_of(dcbase, DisasContext, base); 14382 14383 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14384 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14385 } 14386 14387 const TranslatorOps aarch64_translator_ops = { 14388 .init_disas_context = aarch64_tr_init_disas_context, 14389 .tb_start = aarch64_tr_tb_start, 14390 .insn_start = aarch64_tr_insn_start, 14391 .translate_insn = aarch64_tr_translate_insn, 14392 .tb_stop = aarch64_tr_tb_stop, 14393 .disas_log = aarch64_tr_disas_log, 14394 }; 14395