xref: /openbmc/qemu/target/arm/tcg/tlb_helper.c (revision a3ef070e)
1 /*
2  * ARM TLB (Translation lookaside buffer) helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 #include "qemu/osdep.h"
9 #include "cpu.h"
10 #include "internals.h"
11 #include "exec/exec-all.h"
12 #include "exec/helper-proto.h"
13 
14 
15 /* Return true if the translation regime is using LPAE format page tables */
16 bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
17 {
18     int el = regime_el(env, mmu_idx);
19     if (el == 2 || arm_el_is_aa64(env, el)) {
20         return true;
21     }
22     if (arm_feature(env, ARM_FEATURE_PMSA) &&
23         arm_feature(env, ARM_FEATURE_V8)) {
24         return true;
25     }
26     if (arm_feature(env, ARM_FEATURE_LPAE)
27         && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
28         return true;
29     }
30     return false;
31 }
32 
33 /*
34  * Returns true if the stage 1 translation regime is using LPAE format page
35  * tables. Used when raising alignment exceptions, whose FSR changes depending
36  * on whether the long or short descriptor format is in use.
37  */
38 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
39 {
40     mmu_idx = stage_1_mmu_idx(mmu_idx);
41     return regime_using_lpae_format(env, mmu_idx);
42 }
43 
44 static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
45                                             unsigned int target_el,
46                                             bool same_el, bool ea,
47                                             bool s1ptw, bool is_write,
48                                             int fsc)
49 {
50     uint32_t syn;
51 
52     /*
53      * ISV is only set for data aborts routed to EL2 and
54      * never for stage-1 page table walks faulting on stage 2.
55      *
56      * Furthermore, ISV is only set for certain kinds of load/stores.
57      * If the template syndrome does not have ISV set, we should leave
58      * it cleared.
59      *
60      * See ARMv8 specs, D7-1974:
61      * ISS encoding for an exception from a Data Abort, the
62      * ISV field.
63      */
64     if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
65         syn = syn_data_abort_no_iss(same_el, 0,
66                                     ea, 0, s1ptw, is_write, fsc);
67     } else {
68         /*
69          * Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
70          * syndrome created at translation time.
71          * Now we create the runtime syndrome with the remaining fields.
72          */
73         syn = syn_data_abort_with_iss(same_el,
74                                       0, 0, 0, 0, 0,
75                                       ea, 0, s1ptw, is_write, fsc,
76                                       true);
77         /* Merge the runtime syndrome with the template syndrome.  */
78         syn |= template_syn;
79     }
80     return syn;
81 }
82 
83 static uint32_t compute_fsr_fsc(CPUARMState *env, ARMMMUFaultInfo *fi,
84                                 int target_el, int mmu_idx, uint32_t *ret_fsc)
85 {
86     ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
87     uint32_t fsr, fsc;
88 
89     if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
90         arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
91         /*
92          * LPAE format fault status register : bottom 6 bits are
93          * status code in the same form as needed for syndrome
94          */
95         fsr = arm_fi_to_lfsc(fi);
96         fsc = extract32(fsr, 0, 6);
97     } else {
98         fsr = arm_fi_to_sfsc(fi);
99         /*
100          * Short format FSR : this fault will never actually be reported
101          * to an EL that uses a syndrome register. Use a (currently)
102          * reserved FSR code in case the constructed syndrome does leak
103          * into the guest somehow.
104          */
105         fsc = 0x3f;
106     }
107 
108     *ret_fsc = fsc;
109     return fsr;
110 }
111 
112 static G_NORETURN
113 void arm_deliver_fault(ARMCPU *cpu, vaddr addr,
114                        MMUAccessType access_type,
115                        int mmu_idx, ARMMMUFaultInfo *fi)
116 {
117     CPUARMState *env = &cpu->env;
118     int target_el;
119     bool same_el;
120     uint32_t syn, exc, fsr, fsc;
121 
122     target_el = exception_target_el(env);
123     if (fi->stage2) {
124         target_el = 2;
125         env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
126         if (arm_is_secure_below_el3(env) && fi->s1ns) {
127             env->cp15.hpfar_el2 |= HPFAR_NS;
128         }
129     }
130     same_el = (arm_current_el(env) == target_el);
131 
132     fsr = compute_fsr_fsc(env, fi, target_el, mmu_idx, &fsc);
133 
134     if (access_type == MMU_INST_FETCH) {
135         syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
136         exc = EXCP_PREFETCH_ABORT;
137     } else {
138         syn = merge_syn_data_abort(env->exception.syndrome, target_el,
139                                    same_el, fi->ea, fi->s1ptw,
140                                    access_type == MMU_DATA_STORE,
141                                    fsc);
142         if (access_type == MMU_DATA_STORE
143             && arm_feature(env, ARM_FEATURE_V6)) {
144             fsr |= (1 << 11);
145         }
146         exc = EXCP_DATA_ABORT;
147     }
148 
149     env->exception.vaddress = addr;
150     env->exception.fsr = fsr;
151     raise_exception(env, exc, syn, target_el);
152 }
153 
154 /* Raise a data fault alignment exception for the specified virtual address */
155 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
156                                  MMUAccessType access_type,
157                                  int mmu_idx, uintptr_t retaddr)
158 {
159     ARMCPU *cpu = ARM_CPU(cs);
160     ARMMMUFaultInfo fi = {};
161 
162     /* now we have a real cpu fault */
163     cpu_restore_state(cs, retaddr);
164 
165     fi.type = ARMFault_Alignment;
166     arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
167 }
168 
169 void helper_exception_pc_alignment(CPUARMState *env, target_ulong pc)
170 {
171     ARMMMUFaultInfo fi = { .type = ARMFault_Alignment };
172     int target_el = exception_target_el(env);
173     int mmu_idx = cpu_mmu_index(env, true);
174     uint32_t fsc;
175 
176     env->exception.vaddress = pc;
177 
178     /*
179      * Note that the fsc is not applicable to this exception,
180      * since any syndrome is pcalignment not insn_abort.
181      */
182     env->exception.fsr = compute_fsr_fsc(env, &fi, target_el, mmu_idx, &fsc);
183     raise_exception(env, EXCP_PREFETCH_ABORT, syn_pcalignment(), target_el);
184 }
185 
186 #if !defined(CONFIG_USER_ONLY)
187 
188 /*
189  * arm_cpu_do_transaction_failed: handle a memory system error response
190  * (eg "no device/memory present at address") by raising an external abort
191  * exception
192  */
193 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
194                                    vaddr addr, unsigned size,
195                                    MMUAccessType access_type,
196                                    int mmu_idx, MemTxAttrs attrs,
197                                    MemTxResult response, uintptr_t retaddr)
198 {
199     ARMCPU *cpu = ARM_CPU(cs);
200     ARMMMUFaultInfo fi = {};
201 
202     /* now we have a real cpu fault */
203     cpu_restore_state(cs, retaddr);
204 
205     fi.ea = arm_extabort_type(response);
206     fi.type = ARMFault_SyncExternal;
207     arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
208 }
209 
210 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
211                       MMUAccessType access_type, int mmu_idx,
212                       bool probe, uintptr_t retaddr)
213 {
214     ARMCPU *cpu = ARM_CPU(cs);
215     GetPhysAddrResult res = {};
216     ARMMMUFaultInfo local_fi, *fi;
217     int ret;
218 
219     /*
220      * Allow S1_ptw_translate to see any fault generated here.
221      * Since this may recurse, read and clear.
222      */
223     fi = cpu->env.tlb_fi;
224     if (fi) {
225         cpu->env.tlb_fi = NULL;
226     } else {
227         fi = memset(&local_fi, 0, sizeof(local_fi));
228     }
229 
230     /*
231      * Walk the page table and (if the mapping exists) add the page
232      * to the TLB.  On success, return true.  Otherwise, if probing,
233      * return false.  Otherwise populate fsr with ARM DFSR/IFSR fault
234      * register format, and signal the fault.
235      */
236     ret = get_phys_addr(&cpu->env, address, access_type,
237                         core_to_arm_mmu_idx(&cpu->env, mmu_idx),
238                         &res, fi);
239     if (likely(!ret)) {
240         /*
241          * Map a single [sub]page. Regions smaller than our declared
242          * target page size are handled specially, so for those we
243          * pass in the exact addresses.
244          */
245         if (res.f.lg_page_size >= TARGET_PAGE_BITS) {
246             res.f.phys_addr &= TARGET_PAGE_MASK;
247             address &= TARGET_PAGE_MASK;
248         }
249 
250         res.f.pte_attrs = res.cacheattrs.attrs;
251         res.f.shareability = res.cacheattrs.shareability;
252 
253         tlb_set_page_full(cs, mmu_idx, address, &res.f);
254         return true;
255     } else if (probe) {
256         return false;
257     } else {
258         /* now we have a real cpu fault */
259         cpu_restore_state(cs, retaddr);
260         arm_deliver_fault(cpu, address, access_type, mmu_idx, fi);
261     }
262 }
263 #else
264 void arm_cpu_record_sigsegv(CPUState *cs, vaddr addr,
265                             MMUAccessType access_type,
266                             bool maperr, uintptr_t ra)
267 {
268     ARMMMUFaultInfo fi = {
269         .type = maperr ? ARMFault_Translation : ARMFault_Permission,
270         .level = 3,
271     };
272     ARMCPU *cpu = ARM_CPU(cs);
273 
274     /*
275      * We report both ESR and FAR to signal handlers.
276      * For now, it's easiest to deliver the fault normally.
277      */
278     cpu_restore_state(cs, ra);
279     arm_deliver_fault(cpu, addr, access_type, MMU_USER_IDX, &fi);
280 }
281 
282 void arm_cpu_record_sigbus(CPUState *cs, vaddr addr,
283                            MMUAccessType access_type, uintptr_t ra)
284 {
285     arm_cpu_do_unaligned_access(cs, addr, access_type, MMU_USER_IDX, ra);
286 }
287 #endif /* !defined(CONFIG_USER_ONLY) */
288