1 /* 2 * ARM SVE Operations 3 * 4 * Copyright (c) 2018 Linaro, Ltd. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "internals.h" 23 #include "exec/exec-all.h" 24 #include "exec/page-protection.h" 25 #include "exec/helper-proto.h" 26 #include "tcg/tcg-gvec-desc.h" 27 #include "fpu/softfloat.h" 28 #include "tcg/tcg.h" 29 #include "vec_internal.h" 30 #include "sve_ldst_internal.h" 31 #include "hw/core/tcg-cpu-ops.h" 32 33 34 /* Return a value for NZCV as per the ARM PredTest pseudofunction. 35 * 36 * The return value has bit 31 set if N is set, bit 1 set if Z is clear, 37 * and bit 0 set if C is set. Compare the definitions of these variables 38 * within CPUARMState. 39 */ 40 41 /* For no G bits set, NZCV = C. */ 42 #define PREDTEST_INIT 1 43 44 /* This is an iterative function, called for each Pd and Pg word 45 * moving forward. 46 */ 47 static uint32_t iter_predtest_fwd(uint64_t d, uint64_t g, uint32_t flags) 48 { 49 if (likely(g)) { 50 /* Compute N from first D & G. 51 Use bit 2 to signal first G bit seen. */ 52 if (!(flags & 4)) { 53 flags |= ((d & (g & -g)) != 0) << 31; 54 flags |= 4; 55 } 56 57 /* Accumulate Z from each D & G. */ 58 flags |= ((d & g) != 0) << 1; 59 60 /* Compute C from last !(D & G). Replace previous. */ 61 flags = deposit32(flags, 0, 1, (d & pow2floor(g)) == 0); 62 } 63 return flags; 64 } 65 66 /* This is an iterative function, called for each Pd and Pg word 67 * moving backward. 68 */ 69 static uint32_t iter_predtest_bwd(uint64_t d, uint64_t g, uint32_t flags) 70 { 71 if (likely(g)) { 72 /* Compute C from first (i.e last) !(D & G). 73 Use bit 2 to signal first G bit seen. */ 74 if (!(flags & 4)) { 75 flags += 4 - 1; /* add bit 2, subtract C from PREDTEST_INIT */ 76 flags |= (d & pow2floor(g)) == 0; 77 } 78 79 /* Accumulate Z from each D & G. */ 80 flags |= ((d & g) != 0) << 1; 81 82 /* Compute N from last (i.e first) D & G. Replace previous. */ 83 flags = deposit32(flags, 31, 1, (d & (g & -g)) != 0); 84 } 85 return flags; 86 } 87 88 /* The same for a single word predicate. */ 89 uint32_t HELPER(sve_predtest1)(uint64_t d, uint64_t g) 90 { 91 return iter_predtest_fwd(d, g, PREDTEST_INIT); 92 } 93 94 /* The same for a multi-word predicate. */ 95 uint32_t HELPER(sve_predtest)(void *vd, void *vg, uint32_t words) 96 { 97 uint32_t flags = PREDTEST_INIT; 98 uint64_t *d = vd, *g = vg; 99 uintptr_t i = 0; 100 101 do { 102 flags = iter_predtest_fwd(d[i], g[i], flags); 103 } while (++i < words); 104 105 return flags; 106 } 107 108 /* Similarly for single word elements. */ 109 static inline uint64_t expand_pred_s(uint8_t byte) 110 { 111 static const uint64_t word[] = { 112 [0x01] = 0x00000000ffffffffull, 113 [0x10] = 0xffffffff00000000ull, 114 [0x11] = 0xffffffffffffffffull, 115 }; 116 return word[byte & 0x11]; 117 } 118 119 #define LOGICAL_PPPP(NAME, FUNC) \ 120 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ 121 { \ 122 uintptr_t opr_sz = simd_oprsz(desc); \ 123 uint64_t *d = vd, *n = vn, *m = vm, *g = vg; \ 124 uintptr_t i; \ 125 for (i = 0; i < opr_sz / 8; ++i) { \ 126 d[i] = FUNC(n[i], m[i], g[i]); \ 127 } \ 128 } 129 130 #define DO_AND(N, M, G) (((N) & (M)) & (G)) 131 #define DO_BIC(N, M, G) (((N) & ~(M)) & (G)) 132 #define DO_EOR(N, M, G) (((N) ^ (M)) & (G)) 133 #define DO_ORR(N, M, G) (((N) | (M)) & (G)) 134 #define DO_ORN(N, M, G) (((N) | ~(M)) & (G)) 135 #define DO_NOR(N, M, G) (~((N) | (M)) & (G)) 136 #define DO_NAND(N, M, G) (~((N) & (M)) & (G)) 137 #define DO_SEL(N, M, G) (((N) & (G)) | ((M) & ~(G))) 138 139 LOGICAL_PPPP(sve_and_pppp, DO_AND) 140 LOGICAL_PPPP(sve_bic_pppp, DO_BIC) 141 LOGICAL_PPPP(sve_eor_pppp, DO_EOR) 142 LOGICAL_PPPP(sve_sel_pppp, DO_SEL) 143 LOGICAL_PPPP(sve_orr_pppp, DO_ORR) 144 LOGICAL_PPPP(sve_orn_pppp, DO_ORN) 145 LOGICAL_PPPP(sve_nor_pppp, DO_NOR) 146 LOGICAL_PPPP(sve_nand_pppp, DO_NAND) 147 148 #undef DO_AND 149 #undef DO_BIC 150 #undef DO_EOR 151 #undef DO_ORR 152 #undef DO_ORN 153 #undef DO_NOR 154 #undef DO_NAND 155 #undef DO_SEL 156 #undef LOGICAL_PPPP 157 158 /* Fully general three-operand expander, controlled by a predicate. 159 * This is complicated by the host-endian storage of the register file. 160 */ 161 /* ??? I don't expect the compiler could ever vectorize this itself. 162 * With some tables we can convert bit masks to byte masks, and with 163 * extra care wrt byte/word ordering we could use gcc generic vectors 164 * and do 16 bytes at a time. 165 */ 166 #define DO_ZPZZ(NAME, TYPE, H, OP) \ 167 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ 168 { \ 169 intptr_t i, opr_sz = simd_oprsz(desc); \ 170 for (i = 0; i < opr_sz; ) { \ 171 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ 172 do { \ 173 if (pg & 1) { \ 174 TYPE nn = *(TYPE *)(vn + H(i)); \ 175 TYPE mm = *(TYPE *)(vm + H(i)); \ 176 *(TYPE *)(vd + H(i)) = OP(nn, mm); \ 177 } \ 178 i += sizeof(TYPE), pg >>= sizeof(TYPE); \ 179 } while (i & 15); \ 180 } \ 181 } 182 183 /* Similarly, specialized for 64-bit operands. */ 184 #define DO_ZPZZ_D(NAME, TYPE, OP) \ 185 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ 186 { \ 187 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ 188 TYPE *d = vd, *n = vn, *m = vm; \ 189 uint8_t *pg = vg; \ 190 for (i = 0; i < opr_sz; i += 1) { \ 191 if (pg[H1(i)] & 1) { \ 192 TYPE nn = n[i], mm = m[i]; \ 193 d[i] = OP(nn, mm); \ 194 } \ 195 } \ 196 } 197 198 #define DO_AND(N, M) (N & M) 199 #define DO_EOR(N, M) (N ^ M) 200 #define DO_ORR(N, M) (N | M) 201 #define DO_BIC(N, M) (N & ~M) 202 #define DO_ADD(N, M) (N + M) 203 #define DO_SUB(N, M) (N - M) 204 #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M)) 205 #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N)) 206 #define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N)) 207 #define DO_MUL(N, M) (N * M) 208 209 210 /* 211 * We must avoid the C undefined behaviour cases: division by 212 * zero and signed division of INT_MIN by -1. Both of these 213 * have architecturally defined required results for Arm. 214 * We special case all signed divisions by -1 to avoid having 215 * to deduce the minimum integer for the type involved. 216 */ 217 #define DO_SDIV(N, M) (unlikely(M == 0) ? 0 : unlikely(M == -1) ? -N : N / M) 218 #define DO_UDIV(N, M) (unlikely(M == 0) ? 0 : N / M) 219 220 DO_ZPZZ(sve_and_zpzz_b, uint8_t, H1, DO_AND) 221 DO_ZPZZ(sve_and_zpzz_h, uint16_t, H1_2, DO_AND) 222 DO_ZPZZ(sve_and_zpzz_s, uint32_t, H1_4, DO_AND) 223 DO_ZPZZ_D(sve_and_zpzz_d, uint64_t, DO_AND) 224 225 DO_ZPZZ(sve_orr_zpzz_b, uint8_t, H1, DO_ORR) 226 DO_ZPZZ(sve_orr_zpzz_h, uint16_t, H1_2, DO_ORR) 227 DO_ZPZZ(sve_orr_zpzz_s, uint32_t, H1_4, DO_ORR) 228 DO_ZPZZ_D(sve_orr_zpzz_d, uint64_t, DO_ORR) 229 230 DO_ZPZZ(sve_eor_zpzz_b, uint8_t, H1, DO_EOR) 231 DO_ZPZZ(sve_eor_zpzz_h, uint16_t, H1_2, DO_EOR) 232 DO_ZPZZ(sve_eor_zpzz_s, uint32_t, H1_4, DO_EOR) 233 DO_ZPZZ_D(sve_eor_zpzz_d, uint64_t, DO_EOR) 234 235 DO_ZPZZ(sve_bic_zpzz_b, uint8_t, H1, DO_BIC) 236 DO_ZPZZ(sve_bic_zpzz_h, uint16_t, H1_2, DO_BIC) 237 DO_ZPZZ(sve_bic_zpzz_s, uint32_t, H1_4, DO_BIC) 238 DO_ZPZZ_D(sve_bic_zpzz_d, uint64_t, DO_BIC) 239 240 DO_ZPZZ(sve_add_zpzz_b, uint8_t, H1, DO_ADD) 241 DO_ZPZZ(sve_add_zpzz_h, uint16_t, H1_2, DO_ADD) 242 DO_ZPZZ(sve_add_zpzz_s, uint32_t, H1_4, DO_ADD) 243 DO_ZPZZ_D(sve_add_zpzz_d, uint64_t, DO_ADD) 244 245 DO_ZPZZ(sve_sub_zpzz_b, uint8_t, H1, DO_SUB) 246 DO_ZPZZ(sve_sub_zpzz_h, uint16_t, H1_2, DO_SUB) 247 DO_ZPZZ(sve_sub_zpzz_s, uint32_t, H1_4, DO_SUB) 248 DO_ZPZZ_D(sve_sub_zpzz_d, uint64_t, DO_SUB) 249 250 DO_ZPZZ(sve_smax_zpzz_b, int8_t, H1, DO_MAX) 251 DO_ZPZZ(sve_smax_zpzz_h, int16_t, H1_2, DO_MAX) 252 DO_ZPZZ(sve_smax_zpzz_s, int32_t, H1_4, DO_MAX) 253 DO_ZPZZ_D(sve_smax_zpzz_d, int64_t, DO_MAX) 254 255 DO_ZPZZ(sve_umax_zpzz_b, uint8_t, H1, DO_MAX) 256 DO_ZPZZ(sve_umax_zpzz_h, uint16_t, H1_2, DO_MAX) 257 DO_ZPZZ(sve_umax_zpzz_s, uint32_t, H1_4, DO_MAX) 258 DO_ZPZZ_D(sve_umax_zpzz_d, uint64_t, DO_MAX) 259 260 DO_ZPZZ(sve_smin_zpzz_b, int8_t, H1, DO_MIN) 261 DO_ZPZZ(sve_smin_zpzz_h, int16_t, H1_2, DO_MIN) 262 DO_ZPZZ(sve_smin_zpzz_s, int32_t, H1_4, DO_MIN) 263 DO_ZPZZ_D(sve_smin_zpzz_d, int64_t, DO_MIN) 264 265 DO_ZPZZ(sve_umin_zpzz_b, uint8_t, H1, DO_MIN) 266 DO_ZPZZ(sve_umin_zpzz_h, uint16_t, H1_2, DO_MIN) 267 DO_ZPZZ(sve_umin_zpzz_s, uint32_t, H1_4, DO_MIN) 268 DO_ZPZZ_D(sve_umin_zpzz_d, uint64_t, DO_MIN) 269 270 DO_ZPZZ(sve_sabd_zpzz_b, int8_t, H1, DO_ABD) 271 DO_ZPZZ(sve_sabd_zpzz_h, int16_t, H1_2, DO_ABD) 272 DO_ZPZZ(sve_sabd_zpzz_s, int32_t, H1_4, DO_ABD) 273 DO_ZPZZ_D(sve_sabd_zpzz_d, int64_t, DO_ABD) 274 275 DO_ZPZZ(sve_uabd_zpzz_b, uint8_t, H1, DO_ABD) 276 DO_ZPZZ(sve_uabd_zpzz_h, uint16_t, H1_2, DO_ABD) 277 DO_ZPZZ(sve_uabd_zpzz_s, uint32_t, H1_4, DO_ABD) 278 DO_ZPZZ_D(sve_uabd_zpzz_d, uint64_t, DO_ABD) 279 280 /* Because the computation type is at least twice as large as required, 281 these work for both signed and unsigned source types. */ 282 static inline uint8_t do_mulh_b(int32_t n, int32_t m) 283 { 284 return (n * m) >> 8; 285 } 286 287 static inline uint16_t do_mulh_h(int32_t n, int32_t m) 288 { 289 return (n * m) >> 16; 290 } 291 292 static inline uint32_t do_mulh_s(int64_t n, int64_t m) 293 { 294 return (n * m) >> 32; 295 } 296 297 static inline uint64_t do_smulh_d(uint64_t n, uint64_t m) 298 { 299 uint64_t lo, hi; 300 muls64(&lo, &hi, n, m); 301 return hi; 302 } 303 304 static inline uint64_t do_umulh_d(uint64_t n, uint64_t m) 305 { 306 uint64_t lo, hi; 307 mulu64(&lo, &hi, n, m); 308 return hi; 309 } 310 311 DO_ZPZZ(sve_mul_zpzz_b, uint8_t, H1, DO_MUL) 312 DO_ZPZZ(sve_mul_zpzz_h, uint16_t, H1_2, DO_MUL) 313 DO_ZPZZ(sve_mul_zpzz_s, uint32_t, H1_4, DO_MUL) 314 DO_ZPZZ_D(sve_mul_zpzz_d, uint64_t, DO_MUL) 315 316 DO_ZPZZ(sve_smulh_zpzz_b, int8_t, H1, do_mulh_b) 317 DO_ZPZZ(sve_smulh_zpzz_h, int16_t, H1_2, do_mulh_h) 318 DO_ZPZZ(sve_smulh_zpzz_s, int32_t, H1_4, do_mulh_s) 319 DO_ZPZZ_D(sve_smulh_zpzz_d, uint64_t, do_smulh_d) 320 321 DO_ZPZZ(sve_umulh_zpzz_b, uint8_t, H1, do_mulh_b) 322 DO_ZPZZ(sve_umulh_zpzz_h, uint16_t, H1_2, do_mulh_h) 323 DO_ZPZZ(sve_umulh_zpzz_s, uint32_t, H1_4, do_mulh_s) 324 DO_ZPZZ_D(sve_umulh_zpzz_d, uint64_t, do_umulh_d) 325 326 DO_ZPZZ(sve_sdiv_zpzz_s, int32_t, H1_4, DO_SDIV) 327 DO_ZPZZ_D(sve_sdiv_zpzz_d, int64_t, DO_SDIV) 328 329 DO_ZPZZ(sve_udiv_zpzz_s, uint32_t, H1_4, DO_UDIV) 330 DO_ZPZZ_D(sve_udiv_zpzz_d, uint64_t, DO_UDIV) 331 332 /* Note that all bits of the shift are significant 333 and not modulo the element size. */ 334 #define DO_ASR(N, M) (N >> MIN(M, sizeof(N) * 8 - 1)) 335 #define DO_LSR(N, M) (M < sizeof(N) * 8 ? N >> M : 0) 336 #define DO_LSL(N, M) (M < sizeof(N) * 8 ? N << M : 0) 337 338 DO_ZPZZ(sve_asr_zpzz_b, int8_t, H1, DO_ASR) 339 DO_ZPZZ(sve_lsr_zpzz_b, uint8_t, H1_2, DO_LSR) 340 DO_ZPZZ(sve_lsl_zpzz_b, uint8_t, H1_4, DO_LSL) 341 342 DO_ZPZZ(sve_asr_zpzz_h, int16_t, H1, DO_ASR) 343 DO_ZPZZ(sve_lsr_zpzz_h, uint16_t, H1_2, DO_LSR) 344 DO_ZPZZ(sve_lsl_zpzz_h, uint16_t, H1_4, DO_LSL) 345 346 DO_ZPZZ(sve_asr_zpzz_s, int32_t, H1, DO_ASR) 347 DO_ZPZZ(sve_lsr_zpzz_s, uint32_t, H1_2, DO_LSR) 348 DO_ZPZZ(sve_lsl_zpzz_s, uint32_t, H1_4, DO_LSL) 349 350 DO_ZPZZ_D(sve_asr_zpzz_d, int64_t, DO_ASR) 351 DO_ZPZZ_D(sve_lsr_zpzz_d, uint64_t, DO_LSR) 352 DO_ZPZZ_D(sve_lsl_zpzz_d, uint64_t, DO_LSL) 353 354 static inline uint16_t do_sadalp_h(int16_t n, int16_t m) 355 { 356 int8_t n1 = n, n2 = n >> 8; 357 return m + n1 + n2; 358 } 359 360 static inline uint32_t do_sadalp_s(int32_t n, int32_t m) 361 { 362 int16_t n1 = n, n2 = n >> 16; 363 return m + n1 + n2; 364 } 365 366 static inline uint64_t do_sadalp_d(int64_t n, int64_t m) 367 { 368 int32_t n1 = n, n2 = n >> 32; 369 return m + n1 + n2; 370 } 371 372 DO_ZPZZ(sve2_sadalp_zpzz_h, int16_t, H1_2, do_sadalp_h) 373 DO_ZPZZ(sve2_sadalp_zpzz_s, int32_t, H1_4, do_sadalp_s) 374 DO_ZPZZ_D(sve2_sadalp_zpzz_d, int64_t, do_sadalp_d) 375 376 static inline uint16_t do_uadalp_h(uint16_t n, uint16_t m) 377 { 378 uint8_t n1 = n, n2 = n >> 8; 379 return m + n1 + n2; 380 } 381 382 static inline uint32_t do_uadalp_s(uint32_t n, uint32_t m) 383 { 384 uint16_t n1 = n, n2 = n >> 16; 385 return m + n1 + n2; 386 } 387 388 static inline uint64_t do_uadalp_d(uint64_t n, uint64_t m) 389 { 390 uint32_t n1 = n, n2 = n >> 32; 391 return m + n1 + n2; 392 } 393 394 DO_ZPZZ(sve2_uadalp_zpzz_h, uint16_t, H1_2, do_uadalp_h) 395 DO_ZPZZ(sve2_uadalp_zpzz_s, uint32_t, H1_4, do_uadalp_s) 396 DO_ZPZZ_D(sve2_uadalp_zpzz_d, uint64_t, do_uadalp_d) 397 398 #define do_srshl_b(n, m) do_sqrshl_bhs(n, m, 8, true, NULL) 399 #define do_srshl_h(n, m) do_sqrshl_bhs(n, m, 16, true, NULL) 400 #define do_srshl_s(n, m) do_sqrshl_bhs(n, m, 32, true, NULL) 401 #define do_srshl_d(n, m) do_sqrshl_d(n, m, true, NULL) 402 403 DO_ZPZZ(sve2_srshl_zpzz_b, int8_t, H1, do_srshl_b) 404 DO_ZPZZ(sve2_srshl_zpzz_h, int16_t, H1_2, do_srshl_h) 405 DO_ZPZZ(sve2_srshl_zpzz_s, int32_t, H1_4, do_srshl_s) 406 DO_ZPZZ_D(sve2_srshl_zpzz_d, int64_t, do_srshl_d) 407 408 #define do_urshl_b(n, m) do_uqrshl_bhs(n, (int8_t)m, 8, true, NULL) 409 #define do_urshl_h(n, m) do_uqrshl_bhs(n, (int16_t)m, 16, true, NULL) 410 #define do_urshl_s(n, m) do_uqrshl_bhs(n, m, 32, true, NULL) 411 #define do_urshl_d(n, m) do_uqrshl_d(n, m, true, NULL) 412 413 DO_ZPZZ(sve2_urshl_zpzz_b, uint8_t, H1, do_urshl_b) 414 DO_ZPZZ(sve2_urshl_zpzz_h, uint16_t, H1_2, do_urshl_h) 415 DO_ZPZZ(sve2_urshl_zpzz_s, uint32_t, H1_4, do_urshl_s) 416 DO_ZPZZ_D(sve2_urshl_zpzz_d, uint64_t, do_urshl_d) 417 418 /* 419 * Unlike the NEON and AdvSIMD versions, there is no QC bit to set. 420 * We pass in a pointer to a dummy saturation field to trigger 421 * the saturating arithmetic but discard the information about 422 * whether it has occurred. 423 */ 424 #define do_sqshl_b(n, m) \ 425 ({ uint32_t discard; do_sqrshl_bhs(n, m, 8, false, &discard); }) 426 #define do_sqshl_h(n, m) \ 427 ({ uint32_t discard; do_sqrshl_bhs(n, m, 16, false, &discard); }) 428 #define do_sqshl_s(n, m) \ 429 ({ uint32_t discard; do_sqrshl_bhs(n, m, 32, false, &discard); }) 430 #define do_sqshl_d(n, m) \ 431 ({ uint32_t discard; do_sqrshl_d(n, m, false, &discard); }) 432 433 DO_ZPZZ(sve2_sqshl_zpzz_b, int8_t, H1_2, do_sqshl_b) 434 DO_ZPZZ(sve2_sqshl_zpzz_h, int16_t, H1_2, do_sqshl_h) 435 DO_ZPZZ(sve2_sqshl_zpzz_s, int32_t, H1_4, do_sqshl_s) 436 DO_ZPZZ_D(sve2_sqshl_zpzz_d, int64_t, do_sqshl_d) 437 438 #define do_uqshl_b(n, m) \ 439 ({ uint32_t discard; do_uqrshl_bhs(n, (int8_t)m, 8, false, &discard); }) 440 #define do_uqshl_h(n, m) \ 441 ({ uint32_t discard; do_uqrshl_bhs(n, (int16_t)m, 16, false, &discard); }) 442 #define do_uqshl_s(n, m) \ 443 ({ uint32_t discard; do_uqrshl_bhs(n, m, 32, false, &discard); }) 444 #define do_uqshl_d(n, m) \ 445 ({ uint32_t discard; do_uqrshl_d(n, m, false, &discard); }) 446 447 DO_ZPZZ(sve2_uqshl_zpzz_b, uint8_t, H1_2, do_uqshl_b) 448 DO_ZPZZ(sve2_uqshl_zpzz_h, uint16_t, H1_2, do_uqshl_h) 449 DO_ZPZZ(sve2_uqshl_zpzz_s, uint32_t, H1_4, do_uqshl_s) 450 DO_ZPZZ_D(sve2_uqshl_zpzz_d, uint64_t, do_uqshl_d) 451 452 #define do_sqrshl_b(n, m) \ 453 ({ uint32_t discard; do_sqrshl_bhs(n, m, 8, true, &discard); }) 454 #define do_sqrshl_h(n, m) \ 455 ({ uint32_t discard; do_sqrshl_bhs(n, m, 16, true, &discard); }) 456 #define do_sqrshl_s(n, m) \ 457 ({ uint32_t discard; do_sqrshl_bhs(n, m, 32, true, &discard); }) 458 #define do_sqrshl_d(n, m) \ 459 ({ uint32_t discard; do_sqrshl_d(n, m, true, &discard); }) 460 461 DO_ZPZZ(sve2_sqrshl_zpzz_b, int8_t, H1_2, do_sqrshl_b) 462 DO_ZPZZ(sve2_sqrshl_zpzz_h, int16_t, H1_2, do_sqrshl_h) 463 DO_ZPZZ(sve2_sqrshl_zpzz_s, int32_t, H1_4, do_sqrshl_s) 464 DO_ZPZZ_D(sve2_sqrshl_zpzz_d, int64_t, do_sqrshl_d) 465 466 #undef do_sqrshl_d 467 468 #define do_uqrshl_b(n, m) \ 469 ({ uint32_t discard; do_uqrshl_bhs(n, (int8_t)m, 8, true, &discard); }) 470 #define do_uqrshl_h(n, m) \ 471 ({ uint32_t discard; do_uqrshl_bhs(n, (int16_t)m, 16, true, &discard); }) 472 #define do_uqrshl_s(n, m) \ 473 ({ uint32_t discard; do_uqrshl_bhs(n, m, 32, true, &discard); }) 474 #define do_uqrshl_d(n, m) \ 475 ({ uint32_t discard; do_uqrshl_d(n, m, true, &discard); }) 476 477 DO_ZPZZ(sve2_uqrshl_zpzz_b, uint8_t, H1_2, do_uqrshl_b) 478 DO_ZPZZ(sve2_uqrshl_zpzz_h, uint16_t, H1_2, do_uqrshl_h) 479 DO_ZPZZ(sve2_uqrshl_zpzz_s, uint32_t, H1_4, do_uqrshl_s) 480 DO_ZPZZ_D(sve2_uqrshl_zpzz_d, uint64_t, do_uqrshl_d) 481 482 #undef do_uqrshl_d 483 484 #define DO_HADD_BHS(n, m) (((int64_t)n + m) >> 1) 485 #define DO_HADD_D(n, m) ((n >> 1) + (m >> 1) + (n & m & 1)) 486 487 DO_ZPZZ(sve2_shadd_zpzz_b, int8_t, H1, DO_HADD_BHS) 488 DO_ZPZZ(sve2_shadd_zpzz_h, int16_t, H1_2, DO_HADD_BHS) 489 DO_ZPZZ(sve2_shadd_zpzz_s, int32_t, H1_4, DO_HADD_BHS) 490 DO_ZPZZ_D(sve2_shadd_zpzz_d, int64_t, DO_HADD_D) 491 492 DO_ZPZZ(sve2_uhadd_zpzz_b, uint8_t, H1, DO_HADD_BHS) 493 DO_ZPZZ(sve2_uhadd_zpzz_h, uint16_t, H1_2, DO_HADD_BHS) 494 DO_ZPZZ(sve2_uhadd_zpzz_s, uint32_t, H1_4, DO_HADD_BHS) 495 DO_ZPZZ_D(sve2_uhadd_zpzz_d, uint64_t, DO_HADD_D) 496 497 #define DO_RHADD_BHS(n, m) (((int64_t)n + m + 1) >> 1) 498 #define DO_RHADD_D(n, m) ((n >> 1) + (m >> 1) + ((n | m) & 1)) 499 500 DO_ZPZZ(sve2_srhadd_zpzz_b, int8_t, H1, DO_RHADD_BHS) 501 DO_ZPZZ(sve2_srhadd_zpzz_h, int16_t, H1_2, DO_RHADD_BHS) 502 DO_ZPZZ(sve2_srhadd_zpzz_s, int32_t, H1_4, DO_RHADD_BHS) 503 DO_ZPZZ_D(sve2_srhadd_zpzz_d, int64_t, DO_RHADD_D) 504 505 DO_ZPZZ(sve2_urhadd_zpzz_b, uint8_t, H1, DO_RHADD_BHS) 506 DO_ZPZZ(sve2_urhadd_zpzz_h, uint16_t, H1_2, DO_RHADD_BHS) 507 DO_ZPZZ(sve2_urhadd_zpzz_s, uint32_t, H1_4, DO_RHADD_BHS) 508 DO_ZPZZ_D(sve2_urhadd_zpzz_d, uint64_t, DO_RHADD_D) 509 510 #define DO_HSUB_BHS(n, m) (((int64_t)n - m) >> 1) 511 #define DO_HSUB_D(n, m) ((n >> 1) - (m >> 1) - (~n & m & 1)) 512 513 DO_ZPZZ(sve2_shsub_zpzz_b, int8_t, H1, DO_HSUB_BHS) 514 DO_ZPZZ(sve2_shsub_zpzz_h, int16_t, H1_2, DO_HSUB_BHS) 515 DO_ZPZZ(sve2_shsub_zpzz_s, int32_t, H1_4, DO_HSUB_BHS) 516 DO_ZPZZ_D(sve2_shsub_zpzz_d, int64_t, DO_HSUB_D) 517 518 DO_ZPZZ(sve2_uhsub_zpzz_b, uint8_t, H1, DO_HSUB_BHS) 519 DO_ZPZZ(sve2_uhsub_zpzz_h, uint16_t, H1_2, DO_HSUB_BHS) 520 DO_ZPZZ(sve2_uhsub_zpzz_s, uint32_t, H1_4, DO_HSUB_BHS) 521 DO_ZPZZ_D(sve2_uhsub_zpzz_d, uint64_t, DO_HSUB_D) 522 523 static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max) 524 { 525 return val >= max ? max : val <= min ? min : val; 526 } 527 528 #define DO_SQADD_B(n, m) do_sat_bhs((int64_t)n + m, INT8_MIN, INT8_MAX) 529 #define DO_SQADD_H(n, m) do_sat_bhs((int64_t)n + m, INT16_MIN, INT16_MAX) 530 #define DO_SQADD_S(n, m) do_sat_bhs((int64_t)n + m, INT32_MIN, INT32_MAX) 531 532 static inline int64_t do_sqadd_d(int64_t n, int64_t m) 533 { 534 int64_t r = n + m; 535 if (((r ^ n) & ~(n ^ m)) < 0) { 536 /* Signed overflow. */ 537 return r < 0 ? INT64_MAX : INT64_MIN; 538 } 539 return r; 540 } 541 542 DO_ZPZZ(sve2_sqadd_zpzz_b, int8_t, H1, DO_SQADD_B) 543 DO_ZPZZ(sve2_sqadd_zpzz_h, int16_t, H1_2, DO_SQADD_H) 544 DO_ZPZZ(sve2_sqadd_zpzz_s, int32_t, H1_4, DO_SQADD_S) 545 DO_ZPZZ_D(sve2_sqadd_zpzz_d, int64_t, do_sqadd_d) 546 547 #define DO_UQADD_B(n, m) do_sat_bhs((int64_t)n + m, 0, UINT8_MAX) 548 #define DO_UQADD_H(n, m) do_sat_bhs((int64_t)n + m, 0, UINT16_MAX) 549 #define DO_UQADD_S(n, m) do_sat_bhs((int64_t)n + m, 0, UINT32_MAX) 550 551 static inline uint64_t do_uqadd_d(uint64_t n, uint64_t m) 552 { 553 uint64_t r = n + m; 554 return r < n ? UINT64_MAX : r; 555 } 556 557 DO_ZPZZ(sve2_uqadd_zpzz_b, uint8_t, H1, DO_UQADD_B) 558 DO_ZPZZ(sve2_uqadd_zpzz_h, uint16_t, H1_2, DO_UQADD_H) 559 DO_ZPZZ(sve2_uqadd_zpzz_s, uint32_t, H1_4, DO_UQADD_S) 560 DO_ZPZZ_D(sve2_uqadd_zpzz_d, uint64_t, do_uqadd_d) 561 562 #define DO_SQSUB_B(n, m) do_sat_bhs((int64_t)n - m, INT8_MIN, INT8_MAX) 563 #define DO_SQSUB_H(n, m) do_sat_bhs((int64_t)n - m, INT16_MIN, INT16_MAX) 564 #define DO_SQSUB_S(n, m) do_sat_bhs((int64_t)n - m, INT32_MIN, INT32_MAX) 565 566 static inline int64_t do_sqsub_d(int64_t n, int64_t m) 567 { 568 int64_t r = n - m; 569 if (((r ^ n) & (n ^ m)) < 0) { 570 /* Signed overflow. */ 571 return r < 0 ? INT64_MAX : INT64_MIN; 572 } 573 return r; 574 } 575 576 DO_ZPZZ(sve2_sqsub_zpzz_b, int8_t, H1, DO_SQSUB_B) 577 DO_ZPZZ(sve2_sqsub_zpzz_h, int16_t, H1_2, DO_SQSUB_H) 578 DO_ZPZZ(sve2_sqsub_zpzz_s, int32_t, H1_4, DO_SQSUB_S) 579 DO_ZPZZ_D(sve2_sqsub_zpzz_d, int64_t, do_sqsub_d) 580 581 #define DO_UQSUB_B(n, m) do_sat_bhs((int64_t)n - m, 0, UINT8_MAX) 582 #define DO_UQSUB_H(n, m) do_sat_bhs((int64_t)n - m, 0, UINT16_MAX) 583 #define DO_UQSUB_S(n, m) do_sat_bhs((int64_t)n - m, 0, UINT32_MAX) 584 585 static inline uint64_t do_uqsub_d(uint64_t n, uint64_t m) 586 { 587 return n > m ? n - m : 0; 588 } 589 590 DO_ZPZZ(sve2_uqsub_zpzz_b, uint8_t, H1, DO_UQSUB_B) 591 DO_ZPZZ(sve2_uqsub_zpzz_h, uint16_t, H1_2, DO_UQSUB_H) 592 DO_ZPZZ(sve2_uqsub_zpzz_s, uint32_t, H1_4, DO_UQSUB_S) 593 DO_ZPZZ_D(sve2_uqsub_zpzz_d, uint64_t, do_uqsub_d) 594 595 #define DO_SUQADD_B(n, m) \ 596 do_sat_bhs((int64_t)(int8_t)n + m, INT8_MIN, INT8_MAX) 597 #define DO_SUQADD_H(n, m) \ 598 do_sat_bhs((int64_t)(int16_t)n + m, INT16_MIN, INT16_MAX) 599 #define DO_SUQADD_S(n, m) \ 600 do_sat_bhs((int64_t)(int32_t)n + m, INT32_MIN, INT32_MAX) 601 602 static inline int64_t do_suqadd_d(int64_t n, uint64_t m) 603 { 604 uint64_t r = n + m; 605 606 if (n < 0) { 607 /* Note that m - abs(n) cannot underflow. */ 608 if (r > INT64_MAX) { 609 /* Result is either very large positive or negative. */ 610 if (m > -n) { 611 /* m > abs(n), so r is a very large positive. */ 612 return INT64_MAX; 613 } 614 /* Result is negative. */ 615 } 616 } else { 617 /* Both inputs are positive: check for overflow. */ 618 if (r < m || r > INT64_MAX) { 619 return INT64_MAX; 620 } 621 } 622 return r; 623 } 624 625 DO_ZPZZ(sve2_suqadd_zpzz_b, uint8_t, H1, DO_SUQADD_B) 626 DO_ZPZZ(sve2_suqadd_zpzz_h, uint16_t, H1_2, DO_SUQADD_H) 627 DO_ZPZZ(sve2_suqadd_zpzz_s, uint32_t, H1_4, DO_SUQADD_S) 628 DO_ZPZZ_D(sve2_suqadd_zpzz_d, uint64_t, do_suqadd_d) 629 630 #define DO_USQADD_B(n, m) \ 631 do_sat_bhs((int64_t)n + (int8_t)m, 0, UINT8_MAX) 632 #define DO_USQADD_H(n, m) \ 633 do_sat_bhs((int64_t)n + (int16_t)m, 0, UINT16_MAX) 634 #define DO_USQADD_S(n, m) \ 635 do_sat_bhs((int64_t)n + (int32_t)m, 0, UINT32_MAX) 636 637 static inline uint64_t do_usqadd_d(uint64_t n, int64_t m) 638 { 639 uint64_t r = n + m; 640 641 if (m < 0) { 642 return n < -m ? 0 : r; 643 } 644 return r < n ? UINT64_MAX : r; 645 } 646 647 DO_ZPZZ(sve2_usqadd_zpzz_b, uint8_t, H1, DO_USQADD_B) 648 DO_ZPZZ(sve2_usqadd_zpzz_h, uint16_t, H1_2, DO_USQADD_H) 649 DO_ZPZZ(sve2_usqadd_zpzz_s, uint32_t, H1_4, DO_USQADD_S) 650 DO_ZPZZ_D(sve2_usqadd_zpzz_d, uint64_t, do_usqadd_d) 651 652 #undef DO_ZPZZ 653 #undef DO_ZPZZ_D 654 655 /* 656 * Three operand expander, operating on element pairs. 657 * If the slot I is even, the elements from from VN {I, I+1}. 658 * If the slot I is odd, the elements from from VM {I-1, I}. 659 * Load all of the input elements in each pair before overwriting output. 660 */ 661 #define DO_ZPZZ_PAIR(NAME, TYPE, H, OP) \ 662 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ 663 { \ 664 intptr_t i, opr_sz = simd_oprsz(desc); \ 665 for (i = 0; i < opr_sz; ) { \ 666 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ 667 do { \ 668 TYPE n0 = *(TYPE *)(vn + H(i)); \ 669 TYPE m0 = *(TYPE *)(vm + H(i)); \ 670 TYPE n1 = *(TYPE *)(vn + H(i + sizeof(TYPE))); \ 671 TYPE m1 = *(TYPE *)(vm + H(i + sizeof(TYPE))); \ 672 if (pg & 1) { \ 673 *(TYPE *)(vd + H(i)) = OP(n0, n1); \ 674 } \ 675 i += sizeof(TYPE), pg >>= sizeof(TYPE); \ 676 if (pg & 1) { \ 677 *(TYPE *)(vd + H(i)) = OP(m0, m1); \ 678 } \ 679 i += sizeof(TYPE), pg >>= sizeof(TYPE); \ 680 } while (i & 15); \ 681 } \ 682 } 683 684 /* Similarly, specialized for 64-bit operands. */ 685 #define DO_ZPZZ_PAIR_D(NAME, TYPE, OP) \ 686 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ 687 { \ 688 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ 689 TYPE *d = vd, *n = vn, *m = vm; \ 690 uint8_t *pg = vg; \ 691 for (i = 0; i < opr_sz; i += 2) { \ 692 TYPE n0 = n[i], n1 = n[i + 1]; \ 693 TYPE m0 = m[i], m1 = m[i + 1]; \ 694 if (pg[H1(i)] & 1) { \ 695 d[i] = OP(n0, n1); \ 696 } \ 697 if (pg[H1(i + 1)] & 1) { \ 698 d[i + 1] = OP(m0, m1); \ 699 } \ 700 } \ 701 } 702 703 DO_ZPZZ_PAIR(sve2_addp_zpzz_b, uint8_t, H1, DO_ADD) 704 DO_ZPZZ_PAIR(sve2_addp_zpzz_h, uint16_t, H1_2, DO_ADD) 705 DO_ZPZZ_PAIR(sve2_addp_zpzz_s, uint32_t, H1_4, DO_ADD) 706 DO_ZPZZ_PAIR_D(sve2_addp_zpzz_d, uint64_t, DO_ADD) 707 708 DO_ZPZZ_PAIR(sve2_umaxp_zpzz_b, uint8_t, H1, DO_MAX) 709 DO_ZPZZ_PAIR(sve2_umaxp_zpzz_h, uint16_t, H1_2, DO_MAX) 710 DO_ZPZZ_PAIR(sve2_umaxp_zpzz_s, uint32_t, H1_4, DO_MAX) 711 DO_ZPZZ_PAIR_D(sve2_umaxp_zpzz_d, uint64_t, DO_MAX) 712 713 DO_ZPZZ_PAIR(sve2_uminp_zpzz_b, uint8_t, H1, DO_MIN) 714 DO_ZPZZ_PAIR(sve2_uminp_zpzz_h, uint16_t, H1_2, DO_MIN) 715 DO_ZPZZ_PAIR(sve2_uminp_zpzz_s, uint32_t, H1_4, DO_MIN) 716 DO_ZPZZ_PAIR_D(sve2_uminp_zpzz_d, uint64_t, DO_MIN) 717 718 DO_ZPZZ_PAIR(sve2_smaxp_zpzz_b, int8_t, H1, DO_MAX) 719 DO_ZPZZ_PAIR(sve2_smaxp_zpzz_h, int16_t, H1_2, DO_MAX) 720 DO_ZPZZ_PAIR(sve2_smaxp_zpzz_s, int32_t, H1_4, DO_MAX) 721 DO_ZPZZ_PAIR_D(sve2_smaxp_zpzz_d, int64_t, DO_MAX) 722 723 DO_ZPZZ_PAIR(sve2_sminp_zpzz_b, int8_t, H1, DO_MIN) 724 DO_ZPZZ_PAIR(sve2_sminp_zpzz_h, int16_t, H1_2, DO_MIN) 725 DO_ZPZZ_PAIR(sve2_sminp_zpzz_s, int32_t, H1_4, DO_MIN) 726 DO_ZPZZ_PAIR_D(sve2_sminp_zpzz_d, int64_t, DO_MIN) 727 728 #undef DO_ZPZZ_PAIR 729 #undef DO_ZPZZ_PAIR_D 730 731 #define DO_ZPZZ_PAIR_FP(NAME, TYPE, H, OP) \ 732 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \ 733 void *status, uint32_t desc) \ 734 { \ 735 intptr_t i, opr_sz = simd_oprsz(desc); \ 736 for (i = 0; i < opr_sz; ) { \ 737 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ 738 do { \ 739 TYPE n0 = *(TYPE *)(vn + H(i)); \ 740 TYPE m0 = *(TYPE *)(vm + H(i)); \ 741 TYPE n1 = *(TYPE *)(vn + H(i + sizeof(TYPE))); \ 742 TYPE m1 = *(TYPE *)(vm + H(i + sizeof(TYPE))); \ 743 if (pg & 1) { \ 744 *(TYPE *)(vd + H(i)) = OP(n0, n1, status); \ 745 } \ 746 i += sizeof(TYPE), pg >>= sizeof(TYPE); \ 747 if (pg & 1) { \ 748 *(TYPE *)(vd + H(i)) = OP(m0, m1, status); \ 749 } \ 750 i += sizeof(TYPE), pg >>= sizeof(TYPE); \ 751 } while (i & 15); \ 752 } \ 753 } 754 755 DO_ZPZZ_PAIR_FP(sve2_faddp_zpzz_h, float16, H1_2, float16_add) 756 DO_ZPZZ_PAIR_FP(sve2_faddp_zpzz_s, float32, H1_4, float32_add) 757 DO_ZPZZ_PAIR_FP(sve2_faddp_zpzz_d, float64, H1_8, float64_add) 758 759 DO_ZPZZ_PAIR_FP(sve2_fmaxnmp_zpzz_h, float16, H1_2, float16_maxnum) 760 DO_ZPZZ_PAIR_FP(sve2_fmaxnmp_zpzz_s, float32, H1_4, float32_maxnum) 761 DO_ZPZZ_PAIR_FP(sve2_fmaxnmp_zpzz_d, float64, H1_8, float64_maxnum) 762 763 DO_ZPZZ_PAIR_FP(sve2_fminnmp_zpzz_h, float16, H1_2, float16_minnum) 764 DO_ZPZZ_PAIR_FP(sve2_fminnmp_zpzz_s, float32, H1_4, float32_minnum) 765 DO_ZPZZ_PAIR_FP(sve2_fminnmp_zpzz_d, float64, H1_8, float64_minnum) 766 767 DO_ZPZZ_PAIR_FP(sve2_fmaxp_zpzz_h, float16, H1_2, float16_max) 768 DO_ZPZZ_PAIR_FP(sve2_fmaxp_zpzz_s, float32, H1_4, float32_max) 769 DO_ZPZZ_PAIR_FP(sve2_fmaxp_zpzz_d, float64, H1_8, float64_max) 770 771 DO_ZPZZ_PAIR_FP(sve2_fminp_zpzz_h, float16, H1_2, float16_min) 772 DO_ZPZZ_PAIR_FP(sve2_fminp_zpzz_s, float32, H1_4, float32_min) 773 DO_ZPZZ_PAIR_FP(sve2_fminp_zpzz_d, float64, H1_8, float64_min) 774 775 #undef DO_ZPZZ_PAIR_FP 776 777 /* Three-operand expander, controlled by a predicate, in which the 778 * third operand is "wide". That is, for D = N op M, the same 64-bit 779 * value of M is used with all of the narrower values of N. 780 */ 781 #define DO_ZPZW(NAME, TYPE, TYPEW, H, OP) \ 782 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ 783 { \ 784 intptr_t i, opr_sz = simd_oprsz(desc); \ 785 for (i = 0; i < opr_sz; ) { \ 786 uint8_t pg = *(uint8_t *)(vg + H1(i >> 3)); \ 787 TYPEW mm = *(TYPEW *)(vm + i); \ 788 do { \ 789 if (pg & 1) { \ 790 TYPE nn = *(TYPE *)(vn + H(i)); \ 791 *(TYPE *)(vd + H(i)) = OP(nn, mm); \ 792 } \ 793 i += sizeof(TYPE), pg >>= sizeof(TYPE); \ 794 } while (i & 7); \ 795 } \ 796 } 797 798 DO_ZPZW(sve_asr_zpzw_b, int8_t, uint64_t, H1, DO_ASR) 799 DO_ZPZW(sve_lsr_zpzw_b, uint8_t, uint64_t, H1, DO_LSR) 800 DO_ZPZW(sve_lsl_zpzw_b, uint8_t, uint64_t, H1, DO_LSL) 801 802 DO_ZPZW(sve_asr_zpzw_h, int16_t, uint64_t, H1_2, DO_ASR) 803 DO_ZPZW(sve_lsr_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSR) 804 DO_ZPZW(sve_lsl_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSL) 805 806 DO_ZPZW(sve_asr_zpzw_s, int32_t, uint64_t, H1_4, DO_ASR) 807 DO_ZPZW(sve_lsr_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSR) 808 DO_ZPZW(sve_lsl_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSL) 809 810 #undef DO_ZPZW 811 812 /* Fully general two-operand expander, controlled by a predicate. 813 */ 814 #define DO_ZPZ(NAME, TYPE, H, OP) \ 815 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ 816 { \ 817 intptr_t i, opr_sz = simd_oprsz(desc); \ 818 for (i = 0; i < opr_sz; ) { \ 819 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ 820 do { \ 821 if (pg & 1) { \ 822 TYPE nn = *(TYPE *)(vn + H(i)); \ 823 *(TYPE *)(vd + H(i)) = OP(nn); \ 824 } \ 825 i += sizeof(TYPE), pg >>= sizeof(TYPE); \ 826 } while (i & 15); \ 827 } \ 828 } 829 830 /* Similarly, specialized for 64-bit operands. */ 831 #define DO_ZPZ_D(NAME, TYPE, OP) \ 832 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ 833 { \ 834 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ 835 TYPE *d = vd, *n = vn; \ 836 uint8_t *pg = vg; \ 837 for (i = 0; i < opr_sz; i += 1) { \ 838 if (pg[H1(i)] & 1) { \ 839 TYPE nn = n[i]; \ 840 d[i] = OP(nn); \ 841 } \ 842 } \ 843 } 844 845 #define DO_CLS_B(N) (clrsb32(N) - 24) 846 #define DO_CLS_H(N) (clrsb32(N) - 16) 847 848 DO_ZPZ(sve_cls_b, int8_t, H1, DO_CLS_B) 849 DO_ZPZ(sve_cls_h, int16_t, H1_2, DO_CLS_H) 850 DO_ZPZ(sve_cls_s, int32_t, H1_4, clrsb32) 851 DO_ZPZ_D(sve_cls_d, int64_t, clrsb64) 852 853 #define DO_CLZ_B(N) (clz32(N) - 24) 854 #define DO_CLZ_H(N) (clz32(N) - 16) 855 856 DO_ZPZ(sve_clz_b, uint8_t, H1, DO_CLZ_B) 857 DO_ZPZ(sve_clz_h, uint16_t, H1_2, DO_CLZ_H) 858 DO_ZPZ(sve_clz_s, uint32_t, H1_4, clz32) 859 DO_ZPZ_D(sve_clz_d, uint64_t, clz64) 860 861 DO_ZPZ(sve_cnt_zpz_b, uint8_t, H1, ctpop8) 862 DO_ZPZ(sve_cnt_zpz_h, uint16_t, H1_2, ctpop16) 863 DO_ZPZ(sve_cnt_zpz_s, uint32_t, H1_4, ctpop32) 864 DO_ZPZ_D(sve_cnt_zpz_d, uint64_t, ctpop64) 865 866 #define DO_CNOT(N) (N == 0) 867 868 DO_ZPZ(sve_cnot_b, uint8_t, H1, DO_CNOT) 869 DO_ZPZ(sve_cnot_h, uint16_t, H1_2, DO_CNOT) 870 DO_ZPZ(sve_cnot_s, uint32_t, H1_4, DO_CNOT) 871 DO_ZPZ_D(sve_cnot_d, uint64_t, DO_CNOT) 872 873 #define DO_FABS(N) (N & ((__typeof(N))-1 >> 1)) 874 875 DO_ZPZ(sve_fabs_h, uint16_t, H1_2, DO_FABS) 876 DO_ZPZ(sve_fabs_s, uint32_t, H1_4, DO_FABS) 877 DO_ZPZ_D(sve_fabs_d, uint64_t, DO_FABS) 878 879 #define DO_FNEG(N) (N ^ ~((__typeof(N))-1 >> 1)) 880 881 DO_ZPZ(sve_fneg_h, uint16_t, H1_2, DO_FNEG) 882 DO_ZPZ(sve_fneg_s, uint32_t, H1_4, DO_FNEG) 883 DO_ZPZ_D(sve_fneg_d, uint64_t, DO_FNEG) 884 885 #define DO_NOT(N) (~N) 886 887 DO_ZPZ(sve_not_zpz_b, uint8_t, H1, DO_NOT) 888 DO_ZPZ(sve_not_zpz_h, uint16_t, H1_2, DO_NOT) 889 DO_ZPZ(sve_not_zpz_s, uint32_t, H1_4, DO_NOT) 890 DO_ZPZ_D(sve_not_zpz_d, uint64_t, DO_NOT) 891 892 #define DO_SXTB(N) ((int8_t)N) 893 #define DO_SXTH(N) ((int16_t)N) 894 #define DO_SXTS(N) ((int32_t)N) 895 #define DO_UXTB(N) ((uint8_t)N) 896 #define DO_UXTH(N) ((uint16_t)N) 897 #define DO_UXTS(N) ((uint32_t)N) 898 899 DO_ZPZ(sve_sxtb_h, uint16_t, H1_2, DO_SXTB) 900 DO_ZPZ(sve_sxtb_s, uint32_t, H1_4, DO_SXTB) 901 DO_ZPZ(sve_sxth_s, uint32_t, H1_4, DO_SXTH) 902 DO_ZPZ_D(sve_sxtb_d, uint64_t, DO_SXTB) 903 DO_ZPZ_D(sve_sxth_d, uint64_t, DO_SXTH) 904 DO_ZPZ_D(sve_sxtw_d, uint64_t, DO_SXTS) 905 906 DO_ZPZ(sve_uxtb_h, uint16_t, H1_2, DO_UXTB) 907 DO_ZPZ(sve_uxtb_s, uint32_t, H1_4, DO_UXTB) 908 DO_ZPZ(sve_uxth_s, uint32_t, H1_4, DO_UXTH) 909 DO_ZPZ_D(sve_uxtb_d, uint64_t, DO_UXTB) 910 DO_ZPZ_D(sve_uxth_d, uint64_t, DO_UXTH) 911 DO_ZPZ_D(sve_uxtw_d, uint64_t, DO_UXTS) 912 913 #define DO_ABS(N) (N < 0 ? -N : N) 914 915 DO_ZPZ(sve_abs_b, int8_t, H1, DO_ABS) 916 DO_ZPZ(sve_abs_h, int16_t, H1_2, DO_ABS) 917 DO_ZPZ(sve_abs_s, int32_t, H1_4, DO_ABS) 918 DO_ZPZ_D(sve_abs_d, int64_t, DO_ABS) 919 920 #define DO_NEG(N) (-N) 921 922 DO_ZPZ(sve_neg_b, uint8_t, H1, DO_NEG) 923 DO_ZPZ(sve_neg_h, uint16_t, H1_2, DO_NEG) 924 DO_ZPZ(sve_neg_s, uint32_t, H1_4, DO_NEG) 925 DO_ZPZ_D(sve_neg_d, uint64_t, DO_NEG) 926 927 DO_ZPZ(sve_revb_h, uint16_t, H1_2, bswap16) 928 DO_ZPZ(sve_revb_s, uint32_t, H1_4, bswap32) 929 DO_ZPZ_D(sve_revb_d, uint64_t, bswap64) 930 931 DO_ZPZ(sve_revh_s, uint32_t, H1_4, hswap32) 932 DO_ZPZ_D(sve_revh_d, uint64_t, hswap64) 933 934 DO_ZPZ_D(sve_revw_d, uint64_t, wswap64) 935 936 void HELPER(sme_revd_q)(void *vd, void *vn, void *vg, uint32_t desc) 937 { 938 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 939 uint64_t *d = vd, *n = vn; 940 uint8_t *pg = vg; 941 942 for (i = 0; i < opr_sz; i += 2) { 943 if (pg[H1(i)] & 1) { 944 uint64_t n0 = n[i + 0]; 945 uint64_t n1 = n[i + 1]; 946 d[i + 0] = n1; 947 d[i + 1] = n0; 948 } 949 } 950 } 951 952 DO_ZPZ(sve_rbit_b, uint8_t, H1, revbit8) 953 DO_ZPZ(sve_rbit_h, uint16_t, H1_2, revbit16) 954 DO_ZPZ(sve_rbit_s, uint32_t, H1_4, revbit32) 955 DO_ZPZ_D(sve_rbit_d, uint64_t, revbit64) 956 957 #define DO_SQABS(X) \ 958 ({ __typeof(X) x_ = (X), min_ = 1ull << (sizeof(X) * 8 - 1); \ 959 x_ >= 0 ? x_ : x_ == min_ ? -min_ - 1 : -x_; }) 960 961 DO_ZPZ(sve2_sqabs_b, int8_t, H1, DO_SQABS) 962 DO_ZPZ(sve2_sqabs_h, int16_t, H1_2, DO_SQABS) 963 DO_ZPZ(sve2_sqabs_s, int32_t, H1_4, DO_SQABS) 964 DO_ZPZ_D(sve2_sqabs_d, int64_t, DO_SQABS) 965 966 #define DO_SQNEG(X) \ 967 ({ __typeof(X) x_ = (X), min_ = 1ull << (sizeof(X) * 8 - 1); \ 968 x_ == min_ ? -min_ - 1 : -x_; }) 969 970 DO_ZPZ(sve2_sqneg_b, uint8_t, H1, DO_SQNEG) 971 DO_ZPZ(sve2_sqneg_h, uint16_t, H1_2, DO_SQNEG) 972 DO_ZPZ(sve2_sqneg_s, uint32_t, H1_4, DO_SQNEG) 973 DO_ZPZ_D(sve2_sqneg_d, uint64_t, DO_SQNEG) 974 975 DO_ZPZ(sve2_urecpe_s, uint32_t, H1_4, helper_recpe_u32) 976 DO_ZPZ(sve2_ursqrte_s, uint32_t, H1_4, helper_rsqrte_u32) 977 978 /* Three-operand expander, unpredicated, in which the third operand is "wide". 979 */ 980 #define DO_ZZW(NAME, TYPE, TYPEW, H, OP) \ 981 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ 982 { \ 983 intptr_t i, opr_sz = simd_oprsz(desc); \ 984 for (i = 0; i < opr_sz; ) { \ 985 TYPEW mm = *(TYPEW *)(vm + i); \ 986 do { \ 987 TYPE nn = *(TYPE *)(vn + H(i)); \ 988 *(TYPE *)(vd + H(i)) = OP(nn, mm); \ 989 i += sizeof(TYPE); \ 990 } while (i & 7); \ 991 } \ 992 } 993 994 DO_ZZW(sve_asr_zzw_b, int8_t, uint64_t, H1, DO_ASR) 995 DO_ZZW(sve_lsr_zzw_b, uint8_t, uint64_t, H1, DO_LSR) 996 DO_ZZW(sve_lsl_zzw_b, uint8_t, uint64_t, H1, DO_LSL) 997 998 DO_ZZW(sve_asr_zzw_h, int16_t, uint64_t, H1_2, DO_ASR) 999 DO_ZZW(sve_lsr_zzw_h, uint16_t, uint64_t, H1_2, DO_LSR) 1000 DO_ZZW(sve_lsl_zzw_h, uint16_t, uint64_t, H1_2, DO_LSL) 1001 1002 DO_ZZW(sve_asr_zzw_s, int32_t, uint64_t, H1_4, DO_ASR) 1003 DO_ZZW(sve_lsr_zzw_s, uint32_t, uint64_t, H1_4, DO_LSR) 1004 DO_ZZW(sve_lsl_zzw_s, uint32_t, uint64_t, H1_4, DO_LSL) 1005 1006 #undef DO_ZZW 1007 1008 #undef DO_CLS_B 1009 #undef DO_CLS_H 1010 #undef DO_CLZ_B 1011 #undef DO_CLZ_H 1012 #undef DO_CNOT 1013 #undef DO_FABS 1014 #undef DO_FNEG 1015 #undef DO_ABS 1016 #undef DO_NEG 1017 #undef DO_ZPZ 1018 #undef DO_ZPZ_D 1019 1020 /* 1021 * Three-operand expander, unpredicated, in which the two inputs are 1022 * selected from the top or bottom half of the wide column. 1023 */ 1024 #define DO_ZZZ_TB(NAME, TYPEW, TYPEN, HW, HN, OP) \ 1025 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ 1026 { \ 1027 intptr_t i, opr_sz = simd_oprsz(desc); \ 1028 int sel1 = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN); \ 1029 int sel2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(TYPEN); \ 1030 for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ 1031 TYPEW nn = *(TYPEN *)(vn + HN(i + sel1)); \ 1032 TYPEW mm = *(TYPEN *)(vm + HN(i + sel2)); \ 1033 *(TYPEW *)(vd + HW(i)) = OP(nn, mm); \ 1034 } \ 1035 } 1036 1037 DO_ZZZ_TB(sve2_saddl_h, int16_t, int8_t, H1_2, H1, DO_ADD) 1038 DO_ZZZ_TB(sve2_saddl_s, int32_t, int16_t, H1_4, H1_2, DO_ADD) 1039 DO_ZZZ_TB(sve2_saddl_d, int64_t, int32_t, H1_8, H1_4, DO_ADD) 1040 1041 DO_ZZZ_TB(sve2_ssubl_h, int16_t, int8_t, H1_2, H1, DO_SUB) 1042 DO_ZZZ_TB(sve2_ssubl_s, int32_t, int16_t, H1_4, H1_2, DO_SUB) 1043 DO_ZZZ_TB(sve2_ssubl_d, int64_t, int32_t, H1_8, H1_4, DO_SUB) 1044 1045 DO_ZZZ_TB(sve2_sabdl_h, int16_t, int8_t, H1_2, H1, DO_ABD) 1046 DO_ZZZ_TB(sve2_sabdl_s, int32_t, int16_t, H1_4, H1_2, DO_ABD) 1047 DO_ZZZ_TB(sve2_sabdl_d, int64_t, int32_t, H1_8, H1_4, DO_ABD) 1048 1049 DO_ZZZ_TB(sve2_uaddl_h, uint16_t, uint8_t, H1_2, H1, DO_ADD) 1050 DO_ZZZ_TB(sve2_uaddl_s, uint32_t, uint16_t, H1_4, H1_2, DO_ADD) 1051 DO_ZZZ_TB(sve2_uaddl_d, uint64_t, uint32_t, H1_8, H1_4, DO_ADD) 1052 1053 DO_ZZZ_TB(sve2_usubl_h, uint16_t, uint8_t, H1_2, H1, DO_SUB) 1054 DO_ZZZ_TB(sve2_usubl_s, uint32_t, uint16_t, H1_4, H1_2, DO_SUB) 1055 DO_ZZZ_TB(sve2_usubl_d, uint64_t, uint32_t, H1_8, H1_4, DO_SUB) 1056 1057 DO_ZZZ_TB(sve2_uabdl_h, uint16_t, uint8_t, H1_2, H1, DO_ABD) 1058 DO_ZZZ_TB(sve2_uabdl_s, uint32_t, uint16_t, H1_4, H1_2, DO_ABD) 1059 DO_ZZZ_TB(sve2_uabdl_d, uint64_t, uint32_t, H1_8, H1_4, DO_ABD) 1060 1061 DO_ZZZ_TB(sve2_smull_zzz_h, int16_t, int8_t, H1_2, H1, DO_MUL) 1062 DO_ZZZ_TB(sve2_smull_zzz_s, int32_t, int16_t, H1_4, H1_2, DO_MUL) 1063 DO_ZZZ_TB(sve2_smull_zzz_d, int64_t, int32_t, H1_8, H1_4, DO_MUL) 1064 1065 DO_ZZZ_TB(sve2_umull_zzz_h, uint16_t, uint8_t, H1_2, H1, DO_MUL) 1066 DO_ZZZ_TB(sve2_umull_zzz_s, uint32_t, uint16_t, H1_4, H1_2, DO_MUL) 1067 DO_ZZZ_TB(sve2_umull_zzz_d, uint64_t, uint32_t, H1_8, H1_4, DO_MUL) 1068 1069 /* Note that the multiply cannot overflow, but the doubling can. */ 1070 static inline int16_t do_sqdmull_h(int16_t n, int16_t m) 1071 { 1072 int16_t val = n * m; 1073 return DO_SQADD_H(val, val); 1074 } 1075 1076 static inline int32_t do_sqdmull_s(int32_t n, int32_t m) 1077 { 1078 int32_t val = n * m; 1079 return DO_SQADD_S(val, val); 1080 } 1081 1082 static inline int64_t do_sqdmull_d(int64_t n, int64_t m) 1083 { 1084 int64_t val = n * m; 1085 return do_sqadd_d(val, val); 1086 } 1087 1088 DO_ZZZ_TB(sve2_sqdmull_zzz_h, int16_t, int8_t, H1_2, H1, do_sqdmull_h) 1089 DO_ZZZ_TB(sve2_sqdmull_zzz_s, int32_t, int16_t, H1_4, H1_2, do_sqdmull_s) 1090 DO_ZZZ_TB(sve2_sqdmull_zzz_d, int64_t, int32_t, H1_8, H1_4, do_sqdmull_d) 1091 1092 #undef DO_ZZZ_TB 1093 1094 #define DO_ZZZ_WTB(NAME, TYPEW, TYPEN, HW, HN, OP) \ 1095 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ 1096 { \ 1097 intptr_t i, opr_sz = simd_oprsz(desc); \ 1098 int sel2 = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN); \ 1099 for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ 1100 TYPEW nn = *(TYPEW *)(vn + HW(i)); \ 1101 TYPEW mm = *(TYPEN *)(vm + HN(i + sel2)); \ 1102 *(TYPEW *)(vd + HW(i)) = OP(nn, mm); \ 1103 } \ 1104 } 1105 1106 DO_ZZZ_WTB(sve2_saddw_h, int16_t, int8_t, H1_2, H1, DO_ADD) 1107 DO_ZZZ_WTB(sve2_saddw_s, int32_t, int16_t, H1_4, H1_2, DO_ADD) 1108 DO_ZZZ_WTB(sve2_saddw_d, int64_t, int32_t, H1_8, H1_4, DO_ADD) 1109 1110 DO_ZZZ_WTB(sve2_ssubw_h, int16_t, int8_t, H1_2, H1, DO_SUB) 1111 DO_ZZZ_WTB(sve2_ssubw_s, int32_t, int16_t, H1_4, H1_2, DO_SUB) 1112 DO_ZZZ_WTB(sve2_ssubw_d, int64_t, int32_t, H1_8, H1_4, DO_SUB) 1113 1114 DO_ZZZ_WTB(sve2_uaddw_h, uint16_t, uint8_t, H1_2, H1, DO_ADD) 1115 DO_ZZZ_WTB(sve2_uaddw_s, uint32_t, uint16_t, H1_4, H1_2, DO_ADD) 1116 DO_ZZZ_WTB(sve2_uaddw_d, uint64_t, uint32_t, H1_8, H1_4, DO_ADD) 1117 1118 DO_ZZZ_WTB(sve2_usubw_h, uint16_t, uint8_t, H1_2, H1, DO_SUB) 1119 DO_ZZZ_WTB(sve2_usubw_s, uint32_t, uint16_t, H1_4, H1_2, DO_SUB) 1120 DO_ZZZ_WTB(sve2_usubw_d, uint64_t, uint32_t, H1_8, H1_4, DO_SUB) 1121 1122 #undef DO_ZZZ_WTB 1123 1124 #define DO_ZZZ_NTB(NAME, TYPE, H, OP) \ 1125 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ 1126 { \ 1127 intptr_t i, opr_sz = simd_oprsz(desc); \ 1128 intptr_t sel1 = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPE); \ 1129 intptr_t sel2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(TYPE); \ 1130 for (i = 0; i < opr_sz; i += 2 * sizeof(TYPE)) { \ 1131 TYPE nn = *(TYPE *)(vn + H(i + sel1)); \ 1132 TYPE mm = *(TYPE *)(vm + H(i + sel2)); \ 1133 *(TYPE *)(vd + H(i + sel1)) = OP(nn, mm); \ 1134 } \ 1135 } 1136 1137 DO_ZZZ_NTB(sve2_eoril_b, uint8_t, H1, DO_EOR) 1138 DO_ZZZ_NTB(sve2_eoril_h, uint16_t, H1_2, DO_EOR) 1139 DO_ZZZ_NTB(sve2_eoril_s, uint32_t, H1_4, DO_EOR) 1140 DO_ZZZ_NTB(sve2_eoril_d, uint64_t, H1_8, DO_EOR) 1141 1142 #undef DO_ZZZ_NTB 1143 1144 #define DO_ZZZW_ACC(NAME, TYPEW, TYPEN, HW, HN, OP) \ 1145 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ 1146 { \ 1147 intptr_t i, opr_sz = simd_oprsz(desc); \ 1148 intptr_t sel1 = simd_data(desc) * sizeof(TYPEN); \ 1149 for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ 1150 TYPEW nn = *(TYPEN *)(vn + HN(i + sel1)); \ 1151 TYPEW mm = *(TYPEN *)(vm + HN(i + sel1)); \ 1152 TYPEW aa = *(TYPEW *)(va + HW(i)); \ 1153 *(TYPEW *)(vd + HW(i)) = OP(nn, mm) + aa; \ 1154 } \ 1155 } 1156 1157 DO_ZZZW_ACC(sve2_sabal_h, int16_t, int8_t, H1_2, H1, DO_ABD) 1158 DO_ZZZW_ACC(sve2_sabal_s, int32_t, int16_t, H1_4, H1_2, DO_ABD) 1159 DO_ZZZW_ACC(sve2_sabal_d, int64_t, int32_t, H1_8, H1_4, DO_ABD) 1160 1161 DO_ZZZW_ACC(sve2_uabal_h, uint16_t, uint8_t, H1_2, H1, DO_ABD) 1162 DO_ZZZW_ACC(sve2_uabal_s, uint32_t, uint16_t, H1_4, H1_2, DO_ABD) 1163 DO_ZZZW_ACC(sve2_uabal_d, uint64_t, uint32_t, H1_8, H1_4, DO_ABD) 1164 1165 DO_ZZZW_ACC(sve2_smlal_zzzw_h, int16_t, int8_t, H1_2, H1, DO_MUL) 1166 DO_ZZZW_ACC(sve2_smlal_zzzw_s, int32_t, int16_t, H1_4, H1_2, DO_MUL) 1167 DO_ZZZW_ACC(sve2_smlal_zzzw_d, int64_t, int32_t, H1_8, H1_4, DO_MUL) 1168 1169 DO_ZZZW_ACC(sve2_umlal_zzzw_h, uint16_t, uint8_t, H1_2, H1, DO_MUL) 1170 DO_ZZZW_ACC(sve2_umlal_zzzw_s, uint32_t, uint16_t, H1_4, H1_2, DO_MUL) 1171 DO_ZZZW_ACC(sve2_umlal_zzzw_d, uint64_t, uint32_t, H1_8, H1_4, DO_MUL) 1172 1173 #define DO_NMUL(N, M) -(N * M) 1174 1175 DO_ZZZW_ACC(sve2_smlsl_zzzw_h, int16_t, int8_t, H1_2, H1, DO_NMUL) 1176 DO_ZZZW_ACC(sve2_smlsl_zzzw_s, int32_t, int16_t, H1_4, H1_2, DO_NMUL) 1177 DO_ZZZW_ACC(sve2_smlsl_zzzw_d, int64_t, int32_t, H1_8, H1_4, DO_NMUL) 1178 1179 DO_ZZZW_ACC(sve2_umlsl_zzzw_h, uint16_t, uint8_t, H1_2, H1, DO_NMUL) 1180 DO_ZZZW_ACC(sve2_umlsl_zzzw_s, uint32_t, uint16_t, H1_4, H1_2, DO_NMUL) 1181 DO_ZZZW_ACC(sve2_umlsl_zzzw_d, uint64_t, uint32_t, H1_8, H1_4, DO_NMUL) 1182 1183 #undef DO_ZZZW_ACC 1184 1185 #define DO_XTNB(NAME, TYPE, OP) \ 1186 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ 1187 { \ 1188 intptr_t i, opr_sz = simd_oprsz(desc); \ 1189 for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \ 1190 TYPE nn = *(TYPE *)(vn + i); \ 1191 nn = OP(nn) & MAKE_64BIT_MASK(0, sizeof(TYPE) * 4); \ 1192 *(TYPE *)(vd + i) = nn; \ 1193 } \ 1194 } 1195 1196 #define DO_XTNT(NAME, TYPE, TYPEN, H, OP) \ 1197 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ 1198 { \ 1199 intptr_t i, opr_sz = simd_oprsz(desc), odd = H(sizeof(TYPEN)); \ 1200 for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \ 1201 TYPE nn = *(TYPE *)(vn + i); \ 1202 *(TYPEN *)(vd + i + odd) = OP(nn); \ 1203 } \ 1204 } 1205 1206 #define DO_SQXTN_H(n) do_sat_bhs(n, INT8_MIN, INT8_MAX) 1207 #define DO_SQXTN_S(n) do_sat_bhs(n, INT16_MIN, INT16_MAX) 1208 #define DO_SQXTN_D(n) do_sat_bhs(n, INT32_MIN, INT32_MAX) 1209 1210 DO_XTNB(sve2_sqxtnb_h, int16_t, DO_SQXTN_H) 1211 DO_XTNB(sve2_sqxtnb_s, int32_t, DO_SQXTN_S) 1212 DO_XTNB(sve2_sqxtnb_d, int64_t, DO_SQXTN_D) 1213 1214 DO_XTNT(sve2_sqxtnt_h, int16_t, int8_t, H1, DO_SQXTN_H) 1215 DO_XTNT(sve2_sqxtnt_s, int32_t, int16_t, H1_2, DO_SQXTN_S) 1216 DO_XTNT(sve2_sqxtnt_d, int64_t, int32_t, H1_4, DO_SQXTN_D) 1217 1218 #define DO_UQXTN_H(n) do_sat_bhs(n, 0, UINT8_MAX) 1219 #define DO_UQXTN_S(n) do_sat_bhs(n, 0, UINT16_MAX) 1220 #define DO_UQXTN_D(n) do_sat_bhs(n, 0, UINT32_MAX) 1221 1222 DO_XTNB(sve2_uqxtnb_h, uint16_t, DO_UQXTN_H) 1223 DO_XTNB(sve2_uqxtnb_s, uint32_t, DO_UQXTN_S) 1224 DO_XTNB(sve2_uqxtnb_d, uint64_t, DO_UQXTN_D) 1225 1226 DO_XTNT(sve2_uqxtnt_h, uint16_t, uint8_t, H1, DO_UQXTN_H) 1227 DO_XTNT(sve2_uqxtnt_s, uint32_t, uint16_t, H1_2, DO_UQXTN_S) 1228 DO_XTNT(sve2_uqxtnt_d, uint64_t, uint32_t, H1_4, DO_UQXTN_D) 1229 1230 DO_XTNB(sve2_sqxtunb_h, int16_t, DO_UQXTN_H) 1231 DO_XTNB(sve2_sqxtunb_s, int32_t, DO_UQXTN_S) 1232 DO_XTNB(sve2_sqxtunb_d, int64_t, DO_UQXTN_D) 1233 1234 DO_XTNT(sve2_sqxtunt_h, int16_t, int8_t, H1, DO_UQXTN_H) 1235 DO_XTNT(sve2_sqxtunt_s, int32_t, int16_t, H1_2, DO_UQXTN_S) 1236 DO_XTNT(sve2_sqxtunt_d, int64_t, int32_t, H1_4, DO_UQXTN_D) 1237 1238 #undef DO_XTNB 1239 #undef DO_XTNT 1240 1241 void HELPER(sve2_adcl_s)(void *vd, void *vn, void *vm, void *va, uint32_t desc) 1242 { 1243 intptr_t i, opr_sz = simd_oprsz(desc); 1244 int sel = H4(extract32(desc, SIMD_DATA_SHIFT, 1)); 1245 uint32_t inv = -extract32(desc, SIMD_DATA_SHIFT + 1, 1); 1246 uint32_t *a = va, *n = vn; 1247 uint64_t *d = vd, *m = vm; 1248 1249 for (i = 0; i < opr_sz / 8; ++i) { 1250 uint32_t e1 = a[2 * i + H4(0)]; 1251 uint32_t e2 = n[2 * i + sel] ^ inv; 1252 uint64_t c = extract64(m[i], 32, 1); 1253 /* Compute and store the entire 33-bit result at once. */ 1254 d[i] = c + e1 + e2; 1255 } 1256 } 1257 1258 void HELPER(sve2_adcl_d)(void *vd, void *vn, void *vm, void *va, uint32_t desc) 1259 { 1260 intptr_t i, opr_sz = simd_oprsz(desc); 1261 int sel = extract32(desc, SIMD_DATA_SHIFT, 1); 1262 uint64_t inv = -(uint64_t)extract32(desc, SIMD_DATA_SHIFT + 1, 1); 1263 uint64_t *d = vd, *a = va, *n = vn, *m = vm; 1264 1265 for (i = 0; i < opr_sz / 8; i += 2) { 1266 Int128 e1 = int128_make64(a[i]); 1267 Int128 e2 = int128_make64(n[i + sel] ^ inv); 1268 Int128 c = int128_make64(m[i + 1] & 1); 1269 Int128 r = int128_add(int128_add(e1, e2), c); 1270 d[i + 0] = int128_getlo(r); 1271 d[i + 1] = int128_gethi(r); 1272 } 1273 } 1274 1275 #define DO_SQDMLAL(NAME, TYPEW, TYPEN, HW, HN, DMUL_OP, SUM_OP) \ 1276 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ 1277 { \ 1278 intptr_t i, opr_sz = simd_oprsz(desc); \ 1279 int sel1 = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN); \ 1280 int sel2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(TYPEN); \ 1281 for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ 1282 TYPEW nn = *(TYPEN *)(vn + HN(i + sel1)); \ 1283 TYPEW mm = *(TYPEN *)(vm + HN(i + sel2)); \ 1284 TYPEW aa = *(TYPEW *)(va + HW(i)); \ 1285 *(TYPEW *)(vd + HW(i)) = SUM_OP(aa, DMUL_OP(nn, mm)); \ 1286 } \ 1287 } 1288 1289 DO_SQDMLAL(sve2_sqdmlal_zzzw_h, int16_t, int8_t, H1_2, H1, 1290 do_sqdmull_h, DO_SQADD_H) 1291 DO_SQDMLAL(sve2_sqdmlal_zzzw_s, int32_t, int16_t, H1_4, H1_2, 1292 do_sqdmull_s, DO_SQADD_S) 1293 DO_SQDMLAL(sve2_sqdmlal_zzzw_d, int64_t, int32_t, H1_8, H1_4, 1294 do_sqdmull_d, do_sqadd_d) 1295 1296 DO_SQDMLAL(sve2_sqdmlsl_zzzw_h, int16_t, int8_t, H1_2, H1, 1297 do_sqdmull_h, DO_SQSUB_H) 1298 DO_SQDMLAL(sve2_sqdmlsl_zzzw_s, int32_t, int16_t, H1_4, H1_2, 1299 do_sqdmull_s, DO_SQSUB_S) 1300 DO_SQDMLAL(sve2_sqdmlsl_zzzw_d, int64_t, int32_t, H1_8, H1_4, 1301 do_sqdmull_d, do_sqsub_d) 1302 1303 #undef DO_SQDMLAL 1304 1305 #define DO_CMLA_FUNC(NAME, TYPE, H, OP) \ 1306 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ 1307 { \ 1308 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(TYPE); \ 1309 int rot = simd_data(desc); \ 1310 int sel_a = rot & 1, sel_b = sel_a ^ 1; \ 1311 bool sub_r = rot == 1 || rot == 2; \ 1312 bool sub_i = rot >= 2; \ 1313 TYPE *d = vd, *n = vn, *m = vm, *a = va; \ 1314 for (i = 0; i < opr_sz; i += 2) { \ 1315 TYPE elt1_a = n[H(i + sel_a)]; \ 1316 TYPE elt2_a = m[H(i + sel_a)]; \ 1317 TYPE elt2_b = m[H(i + sel_b)]; \ 1318 d[H(i)] = OP(elt1_a, elt2_a, a[H(i)], sub_r); \ 1319 d[H(i + 1)] = OP(elt1_a, elt2_b, a[H(i + 1)], sub_i); \ 1320 } \ 1321 } 1322 1323 #define DO_CMLA(N, M, A, S) (A + (N * M) * (S ? -1 : 1)) 1324 1325 DO_CMLA_FUNC(sve2_cmla_zzzz_b, uint8_t, H1, DO_CMLA) 1326 DO_CMLA_FUNC(sve2_cmla_zzzz_h, uint16_t, H2, DO_CMLA) 1327 DO_CMLA_FUNC(sve2_cmla_zzzz_s, uint32_t, H4, DO_CMLA) 1328 DO_CMLA_FUNC(sve2_cmla_zzzz_d, uint64_t, H8, DO_CMLA) 1329 1330 #define DO_SQRDMLAH_B(N, M, A, S) \ 1331 do_sqrdmlah_b(N, M, A, S, true) 1332 #define DO_SQRDMLAH_H(N, M, A, S) \ 1333 ({ uint32_t discard; do_sqrdmlah_h(N, M, A, S, true, &discard); }) 1334 #define DO_SQRDMLAH_S(N, M, A, S) \ 1335 ({ uint32_t discard; do_sqrdmlah_s(N, M, A, S, true, &discard); }) 1336 #define DO_SQRDMLAH_D(N, M, A, S) \ 1337 do_sqrdmlah_d(N, M, A, S, true) 1338 1339 DO_CMLA_FUNC(sve2_sqrdcmlah_zzzz_b, int8_t, H1, DO_SQRDMLAH_B) 1340 DO_CMLA_FUNC(sve2_sqrdcmlah_zzzz_h, int16_t, H2, DO_SQRDMLAH_H) 1341 DO_CMLA_FUNC(sve2_sqrdcmlah_zzzz_s, int32_t, H4, DO_SQRDMLAH_S) 1342 DO_CMLA_FUNC(sve2_sqrdcmlah_zzzz_d, int64_t, H8, DO_SQRDMLAH_D) 1343 1344 #define DO_CMLA_IDX_FUNC(NAME, TYPE, H, OP) \ 1345 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ 1346 { \ 1347 intptr_t i, j, oprsz = simd_oprsz(desc); \ 1348 int rot = extract32(desc, SIMD_DATA_SHIFT, 2); \ 1349 int idx = extract32(desc, SIMD_DATA_SHIFT + 2, 2) * 2; \ 1350 int sel_a = rot & 1, sel_b = sel_a ^ 1; \ 1351 bool sub_r = rot == 1 || rot == 2; \ 1352 bool sub_i = rot >= 2; \ 1353 TYPE *d = vd, *n = vn, *m = vm, *a = va; \ 1354 for (i = 0; i < oprsz / sizeof(TYPE); i += 16 / sizeof(TYPE)) { \ 1355 TYPE elt2_a = m[H(i + idx + sel_a)]; \ 1356 TYPE elt2_b = m[H(i + idx + sel_b)]; \ 1357 for (j = 0; j < 16 / sizeof(TYPE); j += 2) { \ 1358 TYPE elt1_a = n[H(i + j + sel_a)]; \ 1359 d[H2(i + j)] = OP(elt1_a, elt2_a, a[H(i + j)], sub_r); \ 1360 d[H2(i + j + 1)] = OP(elt1_a, elt2_b, a[H(i + j + 1)], sub_i); \ 1361 } \ 1362 } \ 1363 } 1364 1365 DO_CMLA_IDX_FUNC(sve2_cmla_idx_h, int16_t, H2, DO_CMLA) 1366 DO_CMLA_IDX_FUNC(sve2_cmla_idx_s, int32_t, H4, DO_CMLA) 1367 1368 DO_CMLA_IDX_FUNC(sve2_sqrdcmlah_idx_h, int16_t, H2, DO_SQRDMLAH_H) 1369 DO_CMLA_IDX_FUNC(sve2_sqrdcmlah_idx_s, int32_t, H4, DO_SQRDMLAH_S) 1370 1371 #undef DO_CMLA 1372 #undef DO_CMLA_FUNC 1373 #undef DO_CMLA_IDX_FUNC 1374 #undef DO_SQRDMLAH_B 1375 #undef DO_SQRDMLAH_H 1376 #undef DO_SQRDMLAH_S 1377 #undef DO_SQRDMLAH_D 1378 1379 /* Note N and M are 4 elements bundled into one unit. */ 1380 static int32_t do_cdot_s(uint32_t n, uint32_t m, int32_t a, 1381 int sel_a, int sel_b, int sub_i) 1382 { 1383 for (int i = 0; i <= 1; i++) { 1384 int32_t elt1_r = (int8_t)(n >> (16 * i)); 1385 int32_t elt1_i = (int8_t)(n >> (16 * i + 8)); 1386 int32_t elt2_a = (int8_t)(m >> (16 * i + 8 * sel_a)); 1387 int32_t elt2_b = (int8_t)(m >> (16 * i + 8 * sel_b)); 1388 1389 a += elt1_r * elt2_a + elt1_i * elt2_b * sub_i; 1390 } 1391 return a; 1392 } 1393 1394 static int64_t do_cdot_d(uint64_t n, uint64_t m, int64_t a, 1395 int sel_a, int sel_b, int sub_i) 1396 { 1397 for (int i = 0; i <= 1; i++) { 1398 int64_t elt1_r = (int16_t)(n >> (32 * i + 0)); 1399 int64_t elt1_i = (int16_t)(n >> (32 * i + 16)); 1400 int64_t elt2_a = (int16_t)(m >> (32 * i + 16 * sel_a)); 1401 int64_t elt2_b = (int16_t)(m >> (32 * i + 16 * sel_b)); 1402 1403 a += elt1_r * elt2_a + elt1_i * elt2_b * sub_i; 1404 } 1405 return a; 1406 } 1407 1408 void HELPER(sve2_cdot_zzzz_s)(void *vd, void *vn, void *vm, 1409 void *va, uint32_t desc) 1410 { 1411 int opr_sz = simd_oprsz(desc); 1412 int rot = simd_data(desc); 1413 int sel_a = rot & 1; 1414 int sel_b = sel_a ^ 1; 1415 int sub_i = (rot == 0 || rot == 3 ? -1 : 1); 1416 uint32_t *d = vd, *n = vn, *m = vm, *a = va; 1417 1418 for (int e = 0; e < opr_sz / 4; e++) { 1419 d[e] = do_cdot_s(n[e], m[e], a[e], sel_a, sel_b, sub_i); 1420 } 1421 } 1422 1423 void HELPER(sve2_cdot_zzzz_d)(void *vd, void *vn, void *vm, 1424 void *va, uint32_t desc) 1425 { 1426 int opr_sz = simd_oprsz(desc); 1427 int rot = simd_data(desc); 1428 int sel_a = rot & 1; 1429 int sel_b = sel_a ^ 1; 1430 int sub_i = (rot == 0 || rot == 3 ? -1 : 1); 1431 uint64_t *d = vd, *n = vn, *m = vm, *a = va; 1432 1433 for (int e = 0; e < opr_sz / 8; e++) { 1434 d[e] = do_cdot_d(n[e], m[e], a[e], sel_a, sel_b, sub_i); 1435 } 1436 } 1437 1438 void HELPER(sve2_cdot_idx_s)(void *vd, void *vn, void *vm, 1439 void *va, uint32_t desc) 1440 { 1441 int opr_sz = simd_oprsz(desc); 1442 int rot = extract32(desc, SIMD_DATA_SHIFT, 2); 1443 int idx = H4(extract32(desc, SIMD_DATA_SHIFT + 2, 2)); 1444 int sel_a = rot & 1; 1445 int sel_b = sel_a ^ 1; 1446 int sub_i = (rot == 0 || rot == 3 ? -1 : 1); 1447 uint32_t *d = vd, *n = vn, *m = vm, *a = va; 1448 1449 for (int seg = 0; seg < opr_sz / 4; seg += 4) { 1450 uint32_t seg_m = m[seg + idx]; 1451 for (int e = 0; e < 4; e++) { 1452 d[seg + e] = do_cdot_s(n[seg + e], seg_m, a[seg + e], 1453 sel_a, sel_b, sub_i); 1454 } 1455 } 1456 } 1457 1458 void HELPER(sve2_cdot_idx_d)(void *vd, void *vn, void *vm, 1459 void *va, uint32_t desc) 1460 { 1461 int seg, opr_sz = simd_oprsz(desc); 1462 int rot = extract32(desc, SIMD_DATA_SHIFT, 2); 1463 int idx = extract32(desc, SIMD_DATA_SHIFT + 2, 2); 1464 int sel_a = rot & 1; 1465 int sel_b = sel_a ^ 1; 1466 int sub_i = (rot == 0 || rot == 3 ? -1 : 1); 1467 uint64_t *d = vd, *n = vn, *m = vm, *a = va; 1468 1469 for (seg = 0; seg < opr_sz / 8; seg += 2) { 1470 uint64_t seg_m = m[seg + idx]; 1471 for (int e = 0; e < 2; e++) { 1472 d[seg + e] = do_cdot_d(n[seg + e], seg_m, a[seg + e], 1473 sel_a, sel_b, sub_i); 1474 } 1475 } 1476 } 1477 1478 #define DO_ZZXZ(NAME, TYPE, H, OP) \ 1479 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ 1480 { \ 1481 intptr_t oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \ 1482 intptr_t i, j, idx = simd_data(desc); \ 1483 TYPE *d = vd, *a = va, *n = vn, *m = (TYPE *)vm + H(idx); \ 1484 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \ 1485 TYPE mm = m[i]; \ 1486 for (j = 0; j < segment; j++) { \ 1487 d[i + j] = OP(n[i + j], mm, a[i + j]); \ 1488 } \ 1489 } \ 1490 } 1491 1492 #define DO_SQRDMLAH_H(N, M, A) \ 1493 ({ uint32_t discard; do_sqrdmlah_h(N, M, A, false, true, &discard); }) 1494 #define DO_SQRDMLAH_S(N, M, A) \ 1495 ({ uint32_t discard; do_sqrdmlah_s(N, M, A, false, true, &discard); }) 1496 #define DO_SQRDMLAH_D(N, M, A) do_sqrdmlah_d(N, M, A, false, true) 1497 1498 DO_ZZXZ(sve2_sqrdmlah_idx_h, int16_t, H2, DO_SQRDMLAH_H) 1499 DO_ZZXZ(sve2_sqrdmlah_idx_s, int32_t, H4, DO_SQRDMLAH_S) 1500 DO_ZZXZ(sve2_sqrdmlah_idx_d, int64_t, H8, DO_SQRDMLAH_D) 1501 1502 #define DO_SQRDMLSH_H(N, M, A) \ 1503 ({ uint32_t discard; do_sqrdmlah_h(N, M, A, true, true, &discard); }) 1504 #define DO_SQRDMLSH_S(N, M, A) \ 1505 ({ uint32_t discard; do_sqrdmlah_s(N, M, A, true, true, &discard); }) 1506 #define DO_SQRDMLSH_D(N, M, A) do_sqrdmlah_d(N, M, A, true, true) 1507 1508 DO_ZZXZ(sve2_sqrdmlsh_idx_h, int16_t, H2, DO_SQRDMLSH_H) 1509 DO_ZZXZ(sve2_sqrdmlsh_idx_s, int32_t, H4, DO_SQRDMLSH_S) 1510 DO_ZZXZ(sve2_sqrdmlsh_idx_d, int64_t, H8, DO_SQRDMLSH_D) 1511 1512 #undef DO_ZZXZ 1513 1514 #define DO_ZZXW(NAME, TYPEW, TYPEN, HW, HN, OP) \ 1515 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ 1516 { \ 1517 intptr_t i, j, oprsz = simd_oprsz(desc); \ 1518 intptr_t sel = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN); \ 1519 intptr_t idx = extract32(desc, SIMD_DATA_SHIFT + 1, 3) * sizeof(TYPEN); \ 1520 for (i = 0; i < oprsz; i += 16) { \ 1521 TYPEW mm = *(TYPEN *)(vm + HN(i + idx)); \ 1522 for (j = 0; j < 16; j += sizeof(TYPEW)) { \ 1523 TYPEW nn = *(TYPEN *)(vn + HN(i + j + sel)); \ 1524 TYPEW aa = *(TYPEW *)(va + HW(i + j)); \ 1525 *(TYPEW *)(vd + HW(i + j)) = OP(nn, mm, aa); \ 1526 } \ 1527 } \ 1528 } 1529 1530 #define DO_MLA(N, M, A) (A + N * M) 1531 1532 DO_ZZXW(sve2_smlal_idx_s, int32_t, int16_t, H1_4, H1_2, DO_MLA) 1533 DO_ZZXW(sve2_smlal_idx_d, int64_t, int32_t, H1_8, H1_4, DO_MLA) 1534 DO_ZZXW(sve2_umlal_idx_s, uint32_t, uint16_t, H1_4, H1_2, DO_MLA) 1535 DO_ZZXW(sve2_umlal_idx_d, uint64_t, uint32_t, H1_8, H1_4, DO_MLA) 1536 1537 #define DO_MLS(N, M, A) (A - N * M) 1538 1539 DO_ZZXW(sve2_smlsl_idx_s, int32_t, int16_t, H1_4, H1_2, DO_MLS) 1540 DO_ZZXW(sve2_smlsl_idx_d, int64_t, int32_t, H1_8, H1_4, DO_MLS) 1541 DO_ZZXW(sve2_umlsl_idx_s, uint32_t, uint16_t, H1_4, H1_2, DO_MLS) 1542 DO_ZZXW(sve2_umlsl_idx_d, uint64_t, uint32_t, H1_8, H1_4, DO_MLS) 1543 1544 #define DO_SQDMLAL_S(N, M, A) DO_SQADD_S(A, do_sqdmull_s(N, M)) 1545 #define DO_SQDMLAL_D(N, M, A) do_sqadd_d(A, do_sqdmull_d(N, M)) 1546 1547 DO_ZZXW(sve2_sqdmlal_idx_s, int32_t, int16_t, H1_4, H1_2, DO_SQDMLAL_S) 1548 DO_ZZXW(sve2_sqdmlal_idx_d, int64_t, int32_t, H1_8, H1_4, DO_SQDMLAL_D) 1549 1550 #define DO_SQDMLSL_S(N, M, A) DO_SQSUB_S(A, do_sqdmull_s(N, M)) 1551 #define DO_SQDMLSL_D(N, M, A) do_sqsub_d(A, do_sqdmull_d(N, M)) 1552 1553 DO_ZZXW(sve2_sqdmlsl_idx_s, int32_t, int16_t, H1_4, H1_2, DO_SQDMLSL_S) 1554 DO_ZZXW(sve2_sqdmlsl_idx_d, int64_t, int32_t, H1_8, H1_4, DO_SQDMLSL_D) 1555 1556 #undef DO_MLA 1557 #undef DO_MLS 1558 #undef DO_ZZXW 1559 1560 #define DO_ZZX(NAME, TYPEW, TYPEN, HW, HN, OP) \ 1561 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ 1562 { \ 1563 intptr_t i, j, oprsz = simd_oprsz(desc); \ 1564 intptr_t sel = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN); \ 1565 intptr_t idx = extract32(desc, SIMD_DATA_SHIFT + 1, 3) * sizeof(TYPEN); \ 1566 for (i = 0; i < oprsz; i += 16) { \ 1567 TYPEW mm = *(TYPEN *)(vm + HN(i + idx)); \ 1568 for (j = 0; j < 16; j += sizeof(TYPEW)) { \ 1569 TYPEW nn = *(TYPEN *)(vn + HN(i + j + sel)); \ 1570 *(TYPEW *)(vd + HW(i + j)) = OP(nn, mm); \ 1571 } \ 1572 } \ 1573 } 1574 1575 DO_ZZX(sve2_sqdmull_idx_s, int32_t, int16_t, H1_4, H1_2, do_sqdmull_s) 1576 DO_ZZX(sve2_sqdmull_idx_d, int64_t, int32_t, H1_8, H1_4, do_sqdmull_d) 1577 1578 DO_ZZX(sve2_smull_idx_s, int32_t, int16_t, H1_4, H1_2, DO_MUL) 1579 DO_ZZX(sve2_smull_idx_d, int64_t, int32_t, H1_8, H1_4, DO_MUL) 1580 1581 DO_ZZX(sve2_umull_idx_s, uint32_t, uint16_t, H1_4, H1_2, DO_MUL) 1582 DO_ZZX(sve2_umull_idx_d, uint64_t, uint32_t, H1_8, H1_4, DO_MUL) 1583 1584 #undef DO_ZZX 1585 1586 #define DO_BITPERM(NAME, TYPE, OP) \ 1587 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ 1588 { \ 1589 intptr_t i, opr_sz = simd_oprsz(desc); \ 1590 for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \ 1591 TYPE nn = *(TYPE *)(vn + i); \ 1592 TYPE mm = *(TYPE *)(vm + i); \ 1593 *(TYPE *)(vd + i) = OP(nn, mm, sizeof(TYPE) * 8); \ 1594 } \ 1595 } 1596 1597 static uint64_t bitextract(uint64_t data, uint64_t mask, int n) 1598 { 1599 uint64_t res = 0; 1600 int db, rb = 0; 1601 1602 for (db = 0; db < n; ++db) { 1603 if ((mask >> db) & 1) { 1604 res |= ((data >> db) & 1) << rb; 1605 ++rb; 1606 } 1607 } 1608 return res; 1609 } 1610 1611 DO_BITPERM(sve2_bext_b, uint8_t, bitextract) 1612 DO_BITPERM(sve2_bext_h, uint16_t, bitextract) 1613 DO_BITPERM(sve2_bext_s, uint32_t, bitextract) 1614 DO_BITPERM(sve2_bext_d, uint64_t, bitextract) 1615 1616 static uint64_t bitdeposit(uint64_t data, uint64_t mask, int n) 1617 { 1618 uint64_t res = 0; 1619 int rb, db = 0; 1620 1621 for (rb = 0; rb < n; ++rb) { 1622 if ((mask >> rb) & 1) { 1623 res |= ((data >> db) & 1) << rb; 1624 ++db; 1625 } 1626 } 1627 return res; 1628 } 1629 1630 DO_BITPERM(sve2_bdep_b, uint8_t, bitdeposit) 1631 DO_BITPERM(sve2_bdep_h, uint16_t, bitdeposit) 1632 DO_BITPERM(sve2_bdep_s, uint32_t, bitdeposit) 1633 DO_BITPERM(sve2_bdep_d, uint64_t, bitdeposit) 1634 1635 static uint64_t bitgroup(uint64_t data, uint64_t mask, int n) 1636 { 1637 uint64_t resm = 0, resu = 0; 1638 int db, rbm = 0, rbu = 0; 1639 1640 for (db = 0; db < n; ++db) { 1641 uint64_t val = (data >> db) & 1; 1642 if ((mask >> db) & 1) { 1643 resm |= val << rbm++; 1644 } else { 1645 resu |= val << rbu++; 1646 } 1647 } 1648 1649 return resm | (resu << rbm); 1650 } 1651 1652 DO_BITPERM(sve2_bgrp_b, uint8_t, bitgroup) 1653 DO_BITPERM(sve2_bgrp_h, uint16_t, bitgroup) 1654 DO_BITPERM(sve2_bgrp_s, uint32_t, bitgroup) 1655 DO_BITPERM(sve2_bgrp_d, uint64_t, bitgroup) 1656 1657 #undef DO_BITPERM 1658 1659 #define DO_CADD(NAME, TYPE, H, ADD_OP, SUB_OP) \ 1660 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ 1661 { \ 1662 intptr_t i, opr_sz = simd_oprsz(desc); \ 1663 int sub_r = simd_data(desc); \ 1664 if (sub_r) { \ 1665 for (i = 0; i < opr_sz; i += 2 * sizeof(TYPE)) { \ 1666 TYPE acc_r = *(TYPE *)(vn + H(i)); \ 1667 TYPE acc_i = *(TYPE *)(vn + H(i + sizeof(TYPE))); \ 1668 TYPE el2_r = *(TYPE *)(vm + H(i)); \ 1669 TYPE el2_i = *(TYPE *)(vm + H(i + sizeof(TYPE))); \ 1670 acc_r = ADD_OP(acc_r, el2_i); \ 1671 acc_i = SUB_OP(acc_i, el2_r); \ 1672 *(TYPE *)(vd + H(i)) = acc_r; \ 1673 *(TYPE *)(vd + H(i + sizeof(TYPE))) = acc_i; \ 1674 } \ 1675 } else { \ 1676 for (i = 0; i < opr_sz; i += 2 * sizeof(TYPE)) { \ 1677 TYPE acc_r = *(TYPE *)(vn + H(i)); \ 1678 TYPE acc_i = *(TYPE *)(vn + H(i + sizeof(TYPE))); \ 1679 TYPE el2_r = *(TYPE *)(vm + H(i)); \ 1680 TYPE el2_i = *(TYPE *)(vm + H(i + sizeof(TYPE))); \ 1681 acc_r = SUB_OP(acc_r, el2_i); \ 1682 acc_i = ADD_OP(acc_i, el2_r); \ 1683 *(TYPE *)(vd + H(i)) = acc_r; \ 1684 *(TYPE *)(vd + H(i + sizeof(TYPE))) = acc_i; \ 1685 } \ 1686 } \ 1687 } 1688 1689 DO_CADD(sve2_cadd_b, int8_t, H1, DO_ADD, DO_SUB) 1690 DO_CADD(sve2_cadd_h, int16_t, H1_2, DO_ADD, DO_SUB) 1691 DO_CADD(sve2_cadd_s, int32_t, H1_4, DO_ADD, DO_SUB) 1692 DO_CADD(sve2_cadd_d, int64_t, H1_8, DO_ADD, DO_SUB) 1693 1694 DO_CADD(sve2_sqcadd_b, int8_t, H1, DO_SQADD_B, DO_SQSUB_B) 1695 DO_CADD(sve2_sqcadd_h, int16_t, H1_2, DO_SQADD_H, DO_SQSUB_H) 1696 DO_CADD(sve2_sqcadd_s, int32_t, H1_4, DO_SQADD_S, DO_SQSUB_S) 1697 DO_CADD(sve2_sqcadd_d, int64_t, H1_8, do_sqadd_d, do_sqsub_d) 1698 1699 #undef DO_CADD 1700 1701 #define DO_ZZI_SHLL(NAME, TYPEW, TYPEN, HW, HN) \ 1702 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ 1703 { \ 1704 intptr_t i, opr_sz = simd_oprsz(desc); \ 1705 intptr_t sel = (simd_data(desc) & 1) * sizeof(TYPEN); \ 1706 int shift = simd_data(desc) >> 1; \ 1707 for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ 1708 TYPEW nn = *(TYPEN *)(vn + HN(i + sel)); \ 1709 *(TYPEW *)(vd + HW(i)) = nn << shift; \ 1710 } \ 1711 } 1712 1713 DO_ZZI_SHLL(sve2_sshll_h, int16_t, int8_t, H1_2, H1) 1714 DO_ZZI_SHLL(sve2_sshll_s, int32_t, int16_t, H1_4, H1_2) 1715 DO_ZZI_SHLL(sve2_sshll_d, int64_t, int32_t, H1_8, H1_4) 1716 1717 DO_ZZI_SHLL(sve2_ushll_h, uint16_t, uint8_t, H1_2, H1) 1718 DO_ZZI_SHLL(sve2_ushll_s, uint32_t, uint16_t, H1_4, H1_2) 1719 DO_ZZI_SHLL(sve2_ushll_d, uint64_t, uint32_t, H1_8, H1_4) 1720 1721 #undef DO_ZZI_SHLL 1722 1723 /* Two-operand reduction expander, controlled by a predicate. 1724 * The difference between TYPERED and TYPERET has to do with 1725 * sign-extension. E.g. for SMAX, TYPERED must be signed, 1726 * but TYPERET must be unsigned so that e.g. a 32-bit value 1727 * is not sign-extended to the ABI uint64_t return type. 1728 */ 1729 /* ??? If we were to vectorize this by hand the reduction ordering 1730 * would change. For integer operands, this is perfectly fine. 1731 */ 1732 #define DO_VPZ(NAME, TYPEELT, TYPERED, TYPERET, H, INIT, OP) \ 1733 uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \ 1734 { \ 1735 intptr_t i, opr_sz = simd_oprsz(desc); \ 1736 TYPERED ret = INIT; \ 1737 for (i = 0; i < opr_sz; ) { \ 1738 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ 1739 do { \ 1740 if (pg & 1) { \ 1741 TYPEELT nn = *(TYPEELT *)(vn + H(i)); \ 1742 ret = OP(ret, nn); \ 1743 } \ 1744 i += sizeof(TYPEELT), pg >>= sizeof(TYPEELT); \ 1745 } while (i & 15); \ 1746 } \ 1747 return (TYPERET)ret; \ 1748 } 1749 1750 #define DO_VPZ_D(NAME, TYPEE, TYPER, INIT, OP) \ 1751 uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \ 1752 { \ 1753 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ 1754 TYPEE *n = vn; \ 1755 uint8_t *pg = vg; \ 1756 TYPER ret = INIT; \ 1757 for (i = 0; i < opr_sz; i += 1) { \ 1758 if (pg[H1(i)] & 1) { \ 1759 TYPEE nn = n[i]; \ 1760 ret = OP(ret, nn); \ 1761 } \ 1762 } \ 1763 return ret; \ 1764 } 1765 1766 DO_VPZ(sve_orv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_ORR) 1767 DO_VPZ(sve_orv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_ORR) 1768 DO_VPZ(sve_orv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_ORR) 1769 DO_VPZ_D(sve_orv_d, uint64_t, uint64_t, 0, DO_ORR) 1770 1771 DO_VPZ(sve_eorv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_EOR) 1772 DO_VPZ(sve_eorv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_EOR) 1773 DO_VPZ(sve_eorv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_EOR) 1774 DO_VPZ_D(sve_eorv_d, uint64_t, uint64_t, 0, DO_EOR) 1775 1776 DO_VPZ(sve_andv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_AND) 1777 DO_VPZ(sve_andv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_AND) 1778 DO_VPZ(sve_andv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_AND) 1779 DO_VPZ_D(sve_andv_d, uint64_t, uint64_t, -1, DO_AND) 1780 1781 DO_VPZ(sve_saddv_b, int8_t, uint64_t, uint64_t, H1, 0, DO_ADD) 1782 DO_VPZ(sve_saddv_h, int16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD) 1783 DO_VPZ(sve_saddv_s, int32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD) 1784 1785 DO_VPZ(sve_uaddv_b, uint8_t, uint64_t, uint64_t, H1, 0, DO_ADD) 1786 DO_VPZ(sve_uaddv_h, uint16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD) 1787 DO_VPZ(sve_uaddv_s, uint32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD) 1788 DO_VPZ_D(sve_uaddv_d, uint64_t, uint64_t, 0, DO_ADD) 1789 1790 DO_VPZ(sve_smaxv_b, int8_t, int8_t, uint8_t, H1, INT8_MIN, DO_MAX) 1791 DO_VPZ(sve_smaxv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MIN, DO_MAX) 1792 DO_VPZ(sve_smaxv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MIN, DO_MAX) 1793 DO_VPZ_D(sve_smaxv_d, int64_t, int64_t, INT64_MIN, DO_MAX) 1794 1795 DO_VPZ(sve_umaxv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_MAX) 1796 DO_VPZ(sve_umaxv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_MAX) 1797 DO_VPZ(sve_umaxv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_MAX) 1798 DO_VPZ_D(sve_umaxv_d, uint64_t, uint64_t, 0, DO_MAX) 1799 1800 DO_VPZ(sve_sminv_b, int8_t, int8_t, uint8_t, H1, INT8_MAX, DO_MIN) 1801 DO_VPZ(sve_sminv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MAX, DO_MIN) 1802 DO_VPZ(sve_sminv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MAX, DO_MIN) 1803 DO_VPZ_D(sve_sminv_d, int64_t, int64_t, INT64_MAX, DO_MIN) 1804 1805 DO_VPZ(sve_uminv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_MIN) 1806 DO_VPZ(sve_uminv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_MIN) 1807 DO_VPZ(sve_uminv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_MIN) 1808 DO_VPZ_D(sve_uminv_d, uint64_t, uint64_t, -1, DO_MIN) 1809 1810 #undef DO_VPZ 1811 #undef DO_VPZ_D 1812 1813 /* Two vector operand, one scalar operand, unpredicated. */ 1814 #define DO_ZZI(NAME, TYPE, OP) \ 1815 void HELPER(NAME)(void *vd, void *vn, uint64_t s64, uint32_t desc) \ 1816 { \ 1817 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(TYPE); \ 1818 TYPE s = s64, *d = vd, *n = vn; \ 1819 for (i = 0; i < opr_sz; ++i) { \ 1820 d[i] = OP(n[i], s); \ 1821 } \ 1822 } 1823 1824 #define DO_SUBR(X, Y) (Y - X) 1825 1826 DO_ZZI(sve_subri_b, uint8_t, DO_SUBR) 1827 DO_ZZI(sve_subri_h, uint16_t, DO_SUBR) 1828 DO_ZZI(sve_subri_s, uint32_t, DO_SUBR) 1829 DO_ZZI(sve_subri_d, uint64_t, DO_SUBR) 1830 1831 DO_ZZI(sve_smaxi_b, int8_t, DO_MAX) 1832 DO_ZZI(sve_smaxi_h, int16_t, DO_MAX) 1833 DO_ZZI(sve_smaxi_s, int32_t, DO_MAX) 1834 DO_ZZI(sve_smaxi_d, int64_t, DO_MAX) 1835 1836 DO_ZZI(sve_smini_b, int8_t, DO_MIN) 1837 DO_ZZI(sve_smini_h, int16_t, DO_MIN) 1838 DO_ZZI(sve_smini_s, int32_t, DO_MIN) 1839 DO_ZZI(sve_smini_d, int64_t, DO_MIN) 1840 1841 DO_ZZI(sve_umaxi_b, uint8_t, DO_MAX) 1842 DO_ZZI(sve_umaxi_h, uint16_t, DO_MAX) 1843 DO_ZZI(sve_umaxi_s, uint32_t, DO_MAX) 1844 DO_ZZI(sve_umaxi_d, uint64_t, DO_MAX) 1845 1846 DO_ZZI(sve_umini_b, uint8_t, DO_MIN) 1847 DO_ZZI(sve_umini_h, uint16_t, DO_MIN) 1848 DO_ZZI(sve_umini_s, uint32_t, DO_MIN) 1849 DO_ZZI(sve_umini_d, uint64_t, DO_MIN) 1850 1851 #undef DO_ZZI 1852 1853 #undef DO_AND 1854 #undef DO_ORR 1855 #undef DO_EOR 1856 #undef DO_BIC 1857 #undef DO_ADD 1858 #undef DO_SUB 1859 #undef DO_MAX 1860 #undef DO_MIN 1861 #undef DO_ABD 1862 #undef DO_MUL 1863 #undef DO_DIV 1864 #undef DO_ASR 1865 #undef DO_LSR 1866 #undef DO_LSL 1867 #undef DO_SUBR 1868 1869 /* Similar to the ARM LastActiveElement pseudocode function, except the 1870 result is multiplied by the element size. This includes the not found 1871 indication; e.g. not found for esz=3 is -8. */ 1872 static intptr_t last_active_element(uint64_t *g, intptr_t words, intptr_t esz) 1873 { 1874 uint64_t mask = pred_esz_masks[esz]; 1875 intptr_t i = words; 1876 1877 do { 1878 uint64_t this_g = g[--i] & mask; 1879 if (this_g) { 1880 return i * 64 + (63 - clz64(this_g)); 1881 } 1882 } while (i > 0); 1883 return (intptr_t)-1 << esz; 1884 } 1885 1886 uint32_t HELPER(sve_pfirst)(void *vd, void *vg, uint32_t pred_desc) 1887 { 1888 intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8); 1889 uint32_t flags = PREDTEST_INIT; 1890 uint64_t *d = vd, *g = vg; 1891 intptr_t i = 0; 1892 1893 do { 1894 uint64_t this_d = d[i]; 1895 uint64_t this_g = g[i]; 1896 1897 if (this_g) { 1898 if (!(flags & 4)) { 1899 /* Set in D the first bit of G. */ 1900 this_d |= this_g & -this_g; 1901 d[i] = this_d; 1902 } 1903 flags = iter_predtest_fwd(this_d, this_g, flags); 1904 } 1905 } while (++i < words); 1906 1907 return flags; 1908 } 1909 1910 uint32_t HELPER(sve_pnext)(void *vd, void *vg, uint32_t pred_desc) 1911 { 1912 intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8); 1913 intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); 1914 uint32_t flags = PREDTEST_INIT; 1915 uint64_t *d = vd, *g = vg, esz_mask; 1916 intptr_t i, next; 1917 1918 next = last_active_element(vd, words, esz) + (1 << esz); 1919 esz_mask = pred_esz_masks[esz]; 1920 1921 /* Similar to the pseudocode for pnext, but scaled by ESZ 1922 so that we find the correct bit. */ 1923 if (next < words * 64) { 1924 uint64_t mask = -1; 1925 1926 if (next & 63) { 1927 mask = ~((1ull << (next & 63)) - 1); 1928 next &= -64; 1929 } 1930 do { 1931 uint64_t this_g = g[next / 64] & esz_mask & mask; 1932 if (this_g != 0) { 1933 next = (next & -64) + ctz64(this_g); 1934 break; 1935 } 1936 next += 64; 1937 mask = -1; 1938 } while (next < words * 64); 1939 } 1940 1941 i = 0; 1942 do { 1943 uint64_t this_d = 0; 1944 if (i == next / 64) { 1945 this_d = 1ull << (next & 63); 1946 } 1947 d[i] = this_d; 1948 flags = iter_predtest_fwd(this_d, g[i] & esz_mask, flags); 1949 } while (++i < words); 1950 1951 return flags; 1952 } 1953 1954 /* 1955 * Copy Zn into Zd, and store zero into inactive elements. 1956 * If inv, store zeros into the active elements. 1957 */ 1958 void HELPER(sve_movz_b)(void *vd, void *vn, void *vg, uint32_t desc) 1959 { 1960 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 1961 uint64_t inv = -(uint64_t)(simd_data(desc) & 1); 1962 uint64_t *d = vd, *n = vn; 1963 uint8_t *pg = vg; 1964 1965 for (i = 0; i < opr_sz; i += 1) { 1966 d[i] = n[i] & (expand_pred_b(pg[H1(i)]) ^ inv); 1967 } 1968 } 1969 1970 void HELPER(sve_movz_h)(void *vd, void *vn, void *vg, uint32_t desc) 1971 { 1972 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 1973 uint64_t inv = -(uint64_t)(simd_data(desc) & 1); 1974 uint64_t *d = vd, *n = vn; 1975 uint8_t *pg = vg; 1976 1977 for (i = 0; i < opr_sz; i += 1) { 1978 d[i] = n[i] & (expand_pred_h(pg[H1(i)]) ^ inv); 1979 } 1980 } 1981 1982 void HELPER(sve_movz_s)(void *vd, void *vn, void *vg, uint32_t desc) 1983 { 1984 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 1985 uint64_t inv = -(uint64_t)(simd_data(desc) & 1); 1986 uint64_t *d = vd, *n = vn; 1987 uint8_t *pg = vg; 1988 1989 for (i = 0; i < opr_sz; i += 1) { 1990 d[i] = n[i] & (expand_pred_s(pg[H1(i)]) ^ inv); 1991 } 1992 } 1993 1994 void HELPER(sve_movz_d)(void *vd, void *vn, void *vg, uint32_t desc) 1995 { 1996 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 1997 uint64_t *d = vd, *n = vn; 1998 uint8_t *pg = vg; 1999 uint8_t inv = simd_data(desc); 2000 2001 for (i = 0; i < opr_sz; i += 1) { 2002 d[i] = n[i] & -(uint64_t)((pg[H1(i)] ^ inv) & 1); 2003 } 2004 } 2005 2006 /* Three-operand expander, immediate operand, controlled by a predicate. 2007 */ 2008 #define DO_ZPZI(NAME, TYPE, H, OP) \ 2009 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ 2010 { \ 2011 intptr_t i, opr_sz = simd_oprsz(desc); \ 2012 TYPE imm = simd_data(desc); \ 2013 for (i = 0; i < opr_sz; ) { \ 2014 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ 2015 do { \ 2016 if (pg & 1) { \ 2017 TYPE nn = *(TYPE *)(vn + H(i)); \ 2018 *(TYPE *)(vd + H(i)) = OP(nn, imm); \ 2019 } \ 2020 i += sizeof(TYPE), pg >>= sizeof(TYPE); \ 2021 } while (i & 15); \ 2022 } \ 2023 } 2024 2025 /* Similarly, specialized for 64-bit operands. */ 2026 #define DO_ZPZI_D(NAME, TYPE, OP) \ 2027 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ 2028 { \ 2029 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ 2030 TYPE *d = vd, *n = vn; \ 2031 TYPE imm = simd_data(desc); \ 2032 uint8_t *pg = vg; \ 2033 for (i = 0; i < opr_sz; i += 1) { \ 2034 if (pg[H1(i)] & 1) { \ 2035 TYPE nn = n[i]; \ 2036 d[i] = OP(nn, imm); \ 2037 } \ 2038 } \ 2039 } 2040 2041 #define DO_SHR(N, M) (N >> M) 2042 #define DO_SHL(N, M) (N << M) 2043 2044 /* Arithmetic shift right for division. This rounds negative numbers 2045 toward zero as per signed division. Therefore before shifting, 2046 when N is negative, add 2**M-1. */ 2047 #define DO_ASRD(N, M) ((N + (N < 0 ? ((__typeof(N))1 << M) - 1 : 0)) >> M) 2048 2049 static inline uint64_t do_urshr(uint64_t x, unsigned sh) 2050 { 2051 if (likely(sh < 64)) { 2052 return (x >> sh) + ((x >> (sh - 1)) & 1); 2053 } else if (sh == 64) { 2054 return x >> 63; 2055 } else { 2056 return 0; 2057 } 2058 } 2059 2060 static inline int64_t do_srshr(int64_t x, unsigned sh) 2061 { 2062 if (likely(sh < 64)) { 2063 return (x >> sh) + ((x >> (sh - 1)) & 1); 2064 } else { 2065 /* Rounding the sign bit always produces 0. */ 2066 return 0; 2067 } 2068 } 2069 2070 DO_ZPZI(sve_asr_zpzi_b, int8_t, H1, DO_SHR) 2071 DO_ZPZI(sve_asr_zpzi_h, int16_t, H1_2, DO_SHR) 2072 DO_ZPZI(sve_asr_zpzi_s, int32_t, H1_4, DO_SHR) 2073 DO_ZPZI_D(sve_asr_zpzi_d, int64_t, DO_SHR) 2074 2075 DO_ZPZI(sve_lsr_zpzi_b, uint8_t, H1, DO_SHR) 2076 DO_ZPZI(sve_lsr_zpzi_h, uint16_t, H1_2, DO_SHR) 2077 DO_ZPZI(sve_lsr_zpzi_s, uint32_t, H1_4, DO_SHR) 2078 DO_ZPZI_D(sve_lsr_zpzi_d, uint64_t, DO_SHR) 2079 2080 DO_ZPZI(sve_lsl_zpzi_b, uint8_t, H1, DO_SHL) 2081 DO_ZPZI(sve_lsl_zpzi_h, uint16_t, H1_2, DO_SHL) 2082 DO_ZPZI(sve_lsl_zpzi_s, uint32_t, H1_4, DO_SHL) 2083 DO_ZPZI_D(sve_lsl_zpzi_d, uint64_t, DO_SHL) 2084 2085 DO_ZPZI(sve_asrd_b, int8_t, H1, DO_ASRD) 2086 DO_ZPZI(sve_asrd_h, int16_t, H1_2, DO_ASRD) 2087 DO_ZPZI(sve_asrd_s, int32_t, H1_4, DO_ASRD) 2088 DO_ZPZI_D(sve_asrd_d, int64_t, DO_ASRD) 2089 2090 /* SVE2 bitwise shift by immediate */ 2091 DO_ZPZI(sve2_sqshl_zpzi_b, int8_t, H1, do_sqshl_b) 2092 DO_ZPZI(sve2_sqshl_zpzi_h, int16_t, H1_2, do_sqshl_h) 2093 DO_ZPZI(sve2_sqshl_zpzi_s, int32_t, H1_4, do_sqshl_s) 2094 DO_ZPZI_D(sve2_sqshl_zpzi_d, int64_t, do_sqshl_d) 2095 2096 DO_ZPZI(sve2_uqshl_zpzi_b, uint8_t, H1, do_uqshl_b) 2097 DO_ZPZI(sve2_uqshl_zpzi_h, uint16_t, H1_2, do_uqshl_h) 2098 DO_ZPZI(sve2_uqshl_zpzi_s, uint32_t, H1_4, do_uqshl_s) 2099 DO_ZPZI_D(sve2_uqshl_zpzi_d, uint64_t, do_uqshl_d) 2100 2101 DO_ZPZI(sve2_srshr_b, int8_t, H1, do_srshr) 2102 DO_ZPZI(sve2_srshr_h, int16_t, H1_2, do_srshr) 2103 DO_ZPZI(sve2_srshr_s, int32_t, H1_4, do_srshr) 2104 DO_ZPZI_D(sve2_srshr_d, int64_t, do_srshr) 2105 2106 DO_ZPZI(sve2_urshr_b, uint8_t, H1, do_urshr) 2107 DO_ZPZI(sve2_urshr_h, uint16_t, H1_2, do_urshr) 2108 DO_ZPZI(sve2_urshr_s, uint32_t, H1_4, do_urshr) 2109 DO_ZPZI_D(sve2_urshr_d, uint64_t, do_urshr) 2110 2111 #define do_suqrshl_b(n, m) \ 2112 ({ uint32_t discard; do_suqrshl_bhs(n, (int8_t)m, 8, false, &discard); }) 2113 #define do_suqrshl_h(n, m) \ 2114 ({ uint32_t discard; do_suqrshl_bhs(n, (int16_t)m, 16, false, &discard); }) 2115 #define do_suqrshl_s(n, m) \ 2116 ({ uint32_t discard; do_suqrshl_bhs(n, m, 32, false, &discard); }) 2117 #define do_suqrshl_d(n, m) \ 2118 ({ uint32_t discard; do_suqrshl_d(n, m, false, &discard); }) 2119 2120 DO_ZPZI(sve2_sqshlu_b, int8_t, H1, do_suqrshl_b) 2121 DO_ZPZI(sve2_sqshlu_h, int16_t, H1_2, do_suqrshl_h) 2122 DO_ZPZI(sve2_sqshlu_s, int32_t, H1_4, do_suqrshl_s) 2123 DO_ZPZI_D(sve2_sqshlu_d, int64_t, do_suqrshl_d) 2124 2125 #undef DO_ASRD 2126 #undef DO_ZPZI 2127 #undef DO_ZPZI_D 2128 2129 #define DO_SHRNB(NAME, TYPEW, TYPEN, OP) \ 2130 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ 2131 { \ 2132 intptr_t i, opr_sz = simd_oprsz(desc); \ 2133 int shift = simd_data(desc); \ 2134 for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ 2135 TYPEW nn = *(TYPEW *)(vn + i); \ 2136 *(TYPEW *)(vd + i) = (TYPEN)OP(nn, shift); \ 2137 } \ 2138 } 2139 2140 #define DO_SHRNT(NAME, TYPEW, TYPEN, HW, HN, OP) \ 2141 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ 2142 { \ 2143 intptr_t i, opr_sz = simd_oprsz(desc); \ 2144 int shift = simd_data(desc); \ 2145 for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ 2146 TYPEW nn = *(TYPEW *)(vn + HW(i)); \ 2147 *(TYPEN *)(vd + HN(i + sizeof(TYPEN))) = OP(nn, shift); \ 2148 } \ 2149 } 2150 2151 DO_SHRNB(sve2_shrnb_h, uint16_t, uint8_t, DO_SHR) 2152 DO_SHRNB(sve2_shrnb_s, uint32_t, uint16_t, DO_SHR) 2153 DO_SHRNB(sve2_shrnb_d, uint64_t, uint32_t, DO_SHR) 2154 2155 DO_SHRNT(sve2_shrnt_h, uint16_t, uint8_t, H1_2, H1, DO_SHR) 2156 DO_SHRNT(sve2_shrnt_s, uint32_t, uint16_t, H1_4, H1_2, DO_SHR) 2157 DO_SHRNT(sve2_shrnt_d, uint64_t, uint32_t, H1_8, H1_4, DO_SHR) 2158 2159 DO_SHRNB(sve2_rshrnb_h, uint16_t, uint8_t, do_urshr) 2160 DO_SHRNB(sve2_rshrnb_s, uint32_t, uint16_t, do_urshr) 2161 DO_SHRNB(sve2_rshrnb_d, uint64_t, uint32_t, do_urshr) 2162 2163 DO_SHRNT(sve2_rshrnt_h, uint16_t, uint8_t, H1_2, H1, do_urshr) 2164 DO_SHRNT(sve2_rshrnt_s, uint32_t, uint16_t, H1_4, H1_2, do_urshr) 2165 DO_SHRNT(sve2_rshrnt_d, uint64_t, uint32_t, H1_8, H1_4, do_urshr) 2166 2167 #define DO_SQSHRUN_H(x, sh) do_sat_bhs((int64_t)(x) >> sh, 0, UINT8_MAX) 2168 #define DO_SQSHRUN_S(x, sh) do_sat_bhs((int64_t)(x) >> sh, 0, UINT16_MAX) 2169 #define DO_SQSHRUN_D(x, sh) \ 2170 do_sat_bhs((int64_t)(x) >> (sh < 64 ? sh : 63), 0, UINT32_MAX) 2171 2172 DO_SHRNB(sve2_sqshrunb_h, int16_t, uint8_t, DO_SQSHRUN_H) 2173 DO_SHRNB(sve2_sqshrunb_s, int32_t, uint16_t, DO_SQSHRUN_S) 2174 DO_SHRNB(sve2_sqshrunb_d, int64_t, uint32_t, DO_SQSHRUN_D) 2175 2176 DO_SHRNT(sve2_sqshrunt_h, int16_t, uint8_t, H1_2, H1, DO_SQSHRUN_H) 2177 DO_SHRNT(sve2_sqshrunt_s, int32_t, uint16_t, H1_4, H1_2, DO_SQSHRUN_S) 2178 DO_SHRNT(sve2_sqshrunt_d, int64_t, uint32_t, H1_8, H1_4, DO_SQSHRUN_D) 2179 2180 #define DO_SQRSHRUN_H(x, sh) do_sat_bhs(do_srshr(x, sh), 0, UINT8_MAX) 2181 #define DO_SQRSHRUN_S(x, sh) do_sat_bhs(do_srshr(x, sh), 0, UINT16_MAX) 2182 #define DO_SQRSHRUN_D(x, sh) do_sat_bhs(do_srshr(x, sh), 0, UINT32_MAX) 2183 2184 DO_SHRNB(sve2_sqrshrunb_h, int16_t, uint8_t, DO_SQRSHRUN_H) 2185 DO_SHRNB(sve2_sqrshrunb_s, int32_t, uint16_t, DO_SQRSHRUN_S) 2186 DO_SHRNB(sve2_sqrshrunb_d, int64_t, uint32_t, DO_SQRSHRUN_D) 2187 2188 DO_SHRNT(sve2_sqrshrunt_h, int16_t, uint8_t, H1_2, H1, DO_SQRSHRUN_H) 2189 DO_SHRNT(sve2_sqrshrunt_s, int32_t, uint16_t, H1_4, H1_2, DO_SQRSHRUN_S) 2190 DO_SHRNT(sve2_sqrshrunt_d, int64_t, uint32_t, H1_8, H1_4, DO_SQRSHRUN_D) 2191 2192 #define DO_SQSHRN_H(x, sh) do_sat_bhs(x >> sh, INT8_MIN, INT8_MAX) 2193 #define DO_SQSHRN_S(x, sh) do_sat_bhs(x >> sh, INT16_MIN, INT16_MAX) 2194 #define DO_SQSHRN_D(x, sh) do_sat_bhs(x >> sh, INT32_MIN, INT32_MAX) 2195 2196 DO_SHRNB(sve2_sqshrnb_h, int16_t, uint8_t, DO_SQSHRN_H) 2197 DO_SHRNB(sve2_sqshrnb_s, int32_t, uint16_t, DO_SQSHRN_S) 2198 DO_SHRNB(sve2_sqshrnb_d, int64_t, uint32_t, DO_SQSHRN_D) 2199 2200 DO_SHRNT(sve2_sqshrnt_h, int16_t, uint8_t, H1_2, H1, DO_SQSHRN_H) 2201 DO_SHRNT(sve2_sqshrnt_s, int32_t, uint16_t, H1_4, H1_2, DO_SQSHRN_S) 2202 DO_SHRNT(sve2_sqshrnt_d, int64_t, uint32_t, H1_8, H1_4, DO_SQSHRN_D) 2203 2204 #define DO_SQRSHRN_H(x, sh) do_sat_bhs(do_srshr(x, sh), INT8_MIN, INT8_MAX) 2205 #define DO_SQRSHRN_S(x, sh) do_sat_bhs(do_srshr(x, sh), INT16_MIN, INT16_MAX) 2206 #define DO_SQRSHRN_D(x, sh) do_sat_bhs(do_srshr(x, sh), INT32_MIN, INT32_MAX) 2207 2208 DO_SHRNB(sve2_sqrshrnb_h, int16_t, uint8_t, DO_SQRSHRN_H) 2209 DO_SHRNB(sve2_sqrshrnb_s, int32_t, uint16_t, DO_SQRSHRN_S) 2210 DO_SHRNB(sve2_sqrshrnb_d, int64_t, uint32_t, DO_SQRSHRN_D) 2211 2212 DO_SHRNT(sve2_sqrshrnt_h, int16_t, uint8_t, H1_2, H1, DO_SQRSHRN_H) 2213 DO_SHRNT(sve2_sqrshrnt_s, int32_t, uint16_t, H1_4, H1_2, DO_SQRSHRN_S) 2214 DO_SHRNT(sve2_sqrshrnt_d, int64_t, uint32_t, H1_8, H1_4, DO_SQRSHRN_D) 2215 2216 #define DO_UQSHRN_H(x, sh) MIN(x >> sh, UINT8_MAX) 2217 #define DO_UQSHRN_S(x, sh) MIN(x >> sh, UINT16_MAX) 2218 #define DO_UQSHRN_D(x, sh) MIN(x >> sh, UINT32_MAX) 2219 2220 DO_SHRNB(sve2_uqshrnb_h, uint16_t, uint8_t, DO_UQSHRN_H) 2221 DO_SHRNB(sve2_uqshrnb_s, uint32_t, uint16_t, DO_UQSHRN_S) 2222 DO_SHRNB(sve2_uqshrnb_d, uint64_t, uint32_t, DO_UQSHRN_D) 2223 2224 DO_SHRNT(sve2_uqshrnt_h, uint16_t, uint8_t, H1_2, H1, DO_UQSHRN_H) 2225 DO_SHRNT(sve2_uqshrnt_s, uint32_t, uint16_t, H1_4, H1_2, DO_UQSHRN_S) 2226 DO_SHRNT(sve2_uqshrnt_d, uint64_t, uint32_t, H1_8, H1_4, DO_UQSHRN_D) 2227 2228 #define DO_UQRSHRN_H(x, sh) MIN(do_urshr(x, sh), UINT8_MAX) 2229 #define DO_UQRSHRN_S(x, sh) MIN(do_urshr(x, sh), UINT16_MAX) 2230 #define DO_UQRSHRN_D(x, sh) MIN(do_urshr(x, sh), UINT32_MAX) 2231 2232 DO_SHRNB(sve2_uqrshrnb_h, uint16_t, uint8_t, DO_UQRSHRN_H) 2233 DO_SHRNB(sve2_uqrshrnb_s, uint32_t, uint16_t, DO_UQRSHRN_S) 2234 DO_SHRNB(sve2_uqrshrnb_d, uint64_t, uint32_t, DO_UQRSHRN_D) 2235 2236 DO_SHRNT(sve2_uqrshrnt_h, uint16_t, uint8_t, H1_2, H1, DO_UQRSHRN_H) 2237 DO_SHRNT(sve2_uqrshrnt_s, uint32_t, uint16_t, H1_4, H1_2, DO_UQRSHRN_S) 2238 DO_SHRNT(sve2_uqrshrnt_d, uint64_t, uint32_t, H1_8, H1_4, DO_UQRSHRN_D) 2239 2240 #undef DO_SHRNB 2241 #undef DO_SHRNT 2242 2243 #define DO_BINOPNB(NAME, TYPEW, TYPEN, SHIFT, OP) \ 2244 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ 2245 { \ 2246 intptr_t i, opr_sz = simd_oprsz(desc); \ 2247 for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ 2248 TYPEW nn = *(TYPEW *)(vn + i); \ 2249 TYPEW mm = *(TYPEW *)(vm + i); \ 2250 *(TYPEW *)(vd + i) = (TYPEN)OP(nn, mm, SHIFT); \ 2251 } \ 2252 } 2253 2254 #define DO_BINOPNT(NAME, TYPEW, TYPEN, SHIFT, HW, HN, OP) \ 2255 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ 2256 { \ 2257 intptr_t i, opr_sz = simd_oprsz(desc); \ 2258 for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ 2259 TYPEW nn = *(TYPEW *)(vn + HW(i)); \ 2260 TYPEW mm = *(TYPEW *)(vm + HW(i)); \ 2261 *(TYPEN *)(vd + HN(i + sizeof(TYPEN))) = OP(nn, mm, SHIFT); \ 2262 } \ 2263 } 2264 2265 #define DO_ADDHN(N, M, SH) ((N + M) >> SH) 2266 #define DO_RADDHN(N, M, SH) ((N + M + ((__typeof(N))1 << (SH - 1))) >> SH) 2267 #define DO_SUBHN(N, M, SH) ((N - M) >> SH) 2268 #define DO_RSUBHN(N, M, SH) ((N - M + ((__typeof(N))1 << (SH - 1))) >> SH) 2269 2270 DO_BINOPNB(sve2_addhnb_h, uint16_t, uint8_t, 8, DO_ADDHN) 2271 DO_BINOPNB(sve2_addhnb_s, uint32_t, uint16_t, 16, DO_ADDHN) 2272 DO_BINOPNB(sve2_addhnb_d, uint64_t, uint32_t, 32, DO_ADDHN) 2273 2274 DO_BINOPNT(sve2_addhnt_h, uint16_t, uint8_t, 8, H1_2, H1, DO_ADDHN) 2275 DO_BINOPNT(sve2_addhnt_s, uint32_t, uint16_t, 16, H1_4, H1_2, DO_ADDHN) 2276 DO_BINOPNT(sve2_addhnt_d, uint64_t, uint32_t, 32, H1_8, H1_4, DO_ADDHN) 2277 2278 DO_BINOPNB(sve2_raddhnb_h, uint16_t, uint8_t, 8, DO_RADDHN) 2279 DO_BINOPNB(sve2_raddhnb_s, uint32_t, uint16_t, 16, DO_RADDHN) 2280 DO_BINOPNB(sve2_raddhnb_d, uint64_t, uint32_t, 32, DO_RADDHN) 2281 2282 DO_BINOPNT(sve2_raddhnt_h, uint16_t, uint8_t, 8, H1_2, H1, DO_RADDHN) 2283 DO_BINOPNT(sve2_raddhnt_s, uint32_t, uint16_t, 16, H1_4, H1_2, DO_RADDHN) 2284 DO_BINOPNT(sve2_raddhnt_d, uint64_t, uint32_t, 32, H1_8, H1_4, DO_RADDHN) 2285 2286 DO_BINOPNB(sve2_subhnb_h, uint16_t, uint8_t, 8, DO_SUBHN) 2287 DO_BINOPNB(sve2_subhnb_s, uint32_t, uint16_t, 16, DO_SUBHN) 2288 DO_BINOPNB(sve2_subhnb_d, uint64_t, uint32_t, 32, DO_SUBHN) 2289 2290 DO_BINOPNT(sve2_subhnt_h, uint16_t, uint8_t, 8, H1_2, H1, DO_SUBHN) 2291 DO_BINOPNT(sve2_subhnt_s, uint32_t, uint16_t, 16, H1_4, H1_2, DO_SUBHN) 2292 DO_BINOPNT(sve2_subhnt_d, uint64_t, uint32_t, 32, H1_8, H1_4, DO_SUBHN) 2293 2294 DO_BINOPNB(sve2_rsubhnb_h, uint16_t, uint8_t, 8, DO_RSUBHN) 2295 DO_BINOPNB(sve2_rsubhnb_s, uint32_t, uint16_t, 16, DO_RSUBHN) 2296 DO_BINOPNB(sve2_rsubhnb_d, uint64_t, uint32_t, 32, DO_RSUBHN) 2297 2298 DO_BINOPNT(sve2_rsubhnt_h, uint16_t, uint8_t, 8, H1_2, H1, DO_RSUBHN) 2299 DO_BINOPNT(sve2_rsubhnt_s, uint32_t, uint16_t, 16, H1_4, H1_2, DO_RSUBHN) 2300 DO_BINOPNT(sve2_rsubhnt_d, uint64_t, uint32_t, 32, H1_8, H1_4, DO_RSUBHN) 2301 2302 #undef DO_RSUBHN 2303 #undef DO_SUBHN 2304 #undef DO_RADDHN 2305 #undef DO_ADDHN 2306 2307 #undef DO_BINOPNB 2308 2309 /* Fully general four-operand expander, controlled by a predicate. 2310 */ 2311 #define DO_ZPZZZ(NAME, TYPE, H, OP) \ 2312 void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \ 2313 void *vg, uint32_t desc) \ 2314 { \ 2315 intptr_t i, opr_sz = simd_oprsz(desc); \ 2316 for (i = 0; i < opr_sz; ) { \ 2317 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ 2318 do { \ 2319 if (pg & 1) { \ 2320 TYPE nn = *(TYPE *)(vn + H(i)); \ 2321 TYPE mm = *(TYPE *)(vm + H(i)); \ 2322 TYPE aa = *(TYPE *)(va + H(i)); \ 2323 *(TYPE *)(vd + H(i)) = OP(aa, nn, mm); \ 2324 } \ 2325 i += sizeof(TYPE), pg >>= sizeof(TYPE); \ 2326 } while (i & 15); \ 2327 } \ 2328 } 2329 2330 /* Similarly, specialized for 64-bit operands. */ 2331 #define DO_ZPZZZ_D(NAME, TYPE, OP) \ 2332 void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \ 2333 void *vg, uint32_t desc) \ 2334 { \ 2335 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ 2336 TYPE *d = vd, *a = va, *n = vn, *m = vm; \ 2337 uint8_t *pg = vg; \ 2338 for (i = 0; i < opr_sz; i += 1) { \ 2339 if (pg[H1(i)] & 1) { \ 2340 TYPE aa = a[i], nn = n[i], mm = m[i]; \ 2341 d[i] = OP(aa, nn, mm); \ 2342 } \ 2343 } \ 2344 } 2345 2346 #define DO_MLA(A, N, M) (A + N * M) 2347 #define DO_MLS(A, N, M) (A - N * M) 2348 2349 DO_ZPZZZ(sve_mla_b, uint8_t, H1, DO_MLA) 2350 DO_ZPZZZ(sve_mls_b, uint8_t, H1, DO_MLS) 2351 2352 DO_ZPZZZ(sve_mla_h, uint16_t, H1_2, DO_MLA) 2353 DO_ZPZZZ(sve_mls_h, uint16_t, H1_2, DO_MLS) 2354 2355 DO_ZPZZZ(sve_mla_s, uint32_t, H1_4, DO_MLA) 2356 DO_ZPZZZ(sve_mls_s, uint32_t, H1_4, DO_MLS) 2357 2358 DO_ZPZZZ_D(sve_mla_d, uint64_t, DO_MLA) 2359 DO_ZPZZZ_D(sve_mls_d, uint64_t, DO_MLS) 2360 2361 #undef DO_MLA 2362 #undef DO_MLS 2363 #undef DO_ZPZZZ 2364 #undef DO_ZPZZZ_D 2365 2366 void HELPER(sve_index_b)(void *vd, uint32_t start, 2367 uint32_t incr, uint32_t desc) 2368 { 2369 intptr_t i, opr_sz = simd_oprsz(desc); 2370 uint8_t *d = vd; 2371 for (i = 0; i < opr_sz; i += 1) { 2372 d[H1(i)] = start + i * incr; 2373 } 2374 } 2375 2376 void HELPER(sve_index_h)(void *vd, uint32_t start, 2377 uint32_t incr, uint32_t desc) 2378 { 2379 intptr_t i, opr_sz = simd_oprsz(desc) / 2; 2380 uint16_t *d = vd; 2381 for (i = 0; i < opr_sz; i += 1) { 2382 d[H2(i)] = start + i * incr; 2383 } 2384 } 2385 2386 void HELPER(sve_index_s)(void *vd, uint32_t start, 2387 uint32_t incr, uint32_t desc) 2388 { 2389 intptr_t i, opr_sz = simd_oprsz(desc) / 4; 2390 uint32_t *d = vd; 2391 for (i = 0; i < opr_sz; i += 1) { 2392 d[H4(i)] = start + i * incr; 2393 } 2394 } 2395 2396 void HELPER(sve_index_d)(void *vd, uint64_t start, 2397 uint64_t incr, uint32_t desc) 2398 { 2399 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 2400 uint64_t *d = vd; 2401 for (i = 0; i < opr_sz; i += 1) { 2402 d[i] = start + i * incr; 2403 } 2404 } 2405 2406 void HELPER(sve_adr_p32)(void *vd, void *vn, void *vm, uint32_t desc) 2407 { 2408 intptr_t i, opr_sz = simd_oprsz(desc) / 4; 2409 uint32_t sh = simd_data(desc); 2410 uint32_t *d = vd, *n = vn, *m = vm; 2411 for (i = 0; i < opr_sz; i += 1) { 2412 d[i] = n[i] + (m[i] << sh); 2413 } 2414 } 2415 2416 void HELPER(sve_adr_p64)(void *vd, void *vn, void *vm, uint32_t desc) 2417 { 2418 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 2419 uint64_t sh = simd_data(desc); 2420 uint64_t *d = vd, *n = vn, *m = vm; 2421 for (i = 0; i < opr_sz; i += 1) { 2422 d[i] = n[i] + (m[i] << sh); 2423 } 2424 } 2425 2426 void HELPER(sve_adr_s32)(void *vd, void *vn, void *vm, uint32_t desc) 2427 { 2428 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 2429 uint64_t sh = simd_data(desc); 2430 uint64_t *d = vd, *n = vn, *m = vm; 2431 for (i = 0; i < opr_sz; i += 1) { 2432 d[i] = n[i] + ((uint64_t)(int32_t)m[i] << sh); 2433 } 2434 } 2435 2436 void HELPER(sve_adr_u32)(void *vd, void *vn, void *vm, uint32_t desc) 2437 { 2438 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 2439 uint64_t sh = simd_data(desc); 2440 uint64_t *d = vd, *n = vn, *m = vm; 2441 for (i = 0; i < opr_sz; i += 1) { 2442 d[i] = n[i] + ((uint64_t)(uint32_t)m[i] << sh); 2443 } 2444 } 2445 2446 void HELPER(sve_fexpa_h)(void *vd, void *vn, uint32_t desc) 2447 { 2448 /* These constants are cut-and-paste directly from the ARM pseudocode. */ 2449 static const uint16_t coeff[] = { 2450 0x0000, 0x0016, 0x002d, 0x0045, 0x005d, 0x0075, 0x008e, 0x00a8, 2451 0x00c2, 0x00dc, 0x00f8, 0x0114, 0x0130, 0x014d, 0x016b, 0x0189, 2452 0x01a8, 0x01c8, 0x01e8, 0x0209, 0x022b, 0x024e, 0x0271, 0x0295, 2453 0x02ba, 0x02e0, 0x0306, 0x032e, 0x0356, 0x037f, 0x03a9, 0x03d4, 2454 }; 2455 intptr_t i, opr_sz = simd_oprsz(desc) / 2; 2456 uint16_t *d = vd, *n = vn; 2457 2458 for (i = 0; i < opr_sz; i++) { 2459 uint16_t nn = n[i]; 2460 intptr_t idx = extract32(nn, 0, 5); 2461 uint16_t exp = extract32(nn, 5, 5); 2462 d[i] = coeff[idx] | (exp << 10); 2463 } 2464 } 2465 2466 void HELPER(sve_fexpa_s)(void *vd, void *vn, uint32_t desc) 2467 { 2468 /* These constants are cut-and-paste directly from the ARM pseudocode. */ 2469 static const uint32_t coeff[] = { 2470 0x000000, 0x0164d2, 0x02cd87, 0x043a29, 2471 0x05aac3, 0x071f62, 0x08980f, 0x0a14d5, 2472 0x0b95c2, 0x0d1adf, 0x0ea43a, 0x1031dc, 2473 0x11c3d3, 0x135a2b, 0x14f4f0, 0x16942d, 2474 0x1837f0, 0x19e046, 0x1b8d3a, 0x1d3eda, 2475 0x1ef532, 0x20b051, 0x227043, 0x243516, 2476 0x25fed7, 0x27cd94, 0x29a15b, 0x2b7a3a, 2477 0x2d583f, 0x2f3b79, 0x3123f6, 0x3311c4, 2478 0x3504f3, 0x36fd92, 0x38fbaf, 0x3aff5b, 2479 0x3d08a4, 0x3f179a, 0x412c4d, 0x4346cd, 2480 0x45672a, 0x478d75, 0x49b9be, 0x4bec15, 2481 0x4e248c, 0x506334, 0x52a81e, 0x54f35b, 2482 0x5744fd, 0x599d16, 0x5bfbb8, 0x5e60f5, 2483 0x60ccdf, 0x633f89, 0x65b907, 0x68396a, 2484 0x6ac0c7, 0x6d4f30, 0x6fe4ba, 0x728177, 2485 0x75257d, 0x77d0df, 0x7a83b3, 0x7d3e0c, 2486 }; 2487 intptr_t i, opr_sz = simd_oprsz(desc) / 4; 2488 uint32_t *d = vd, *n = vn; 2489 2490 for (i = 0; i < opr_sz; i++) { 2491 uint32_t nn = n[i]; 2492 intptr_t idx = extract32(nn, 0, 6); 2493 uint32_t exp = extract32(nn, 6, 8); 2494 d[i] = coeff[idx] | (exp << 23); 2495 } 2496 } 2497 2498 void HELPER(sve_fexpa_d)(void *vd, void *vn, uint32_t desc) 2499 { 2500 /* These constants are cut-and-paste directly from the ARM pseudocode. */ 2501 static const uint64_t coeff[] = { 2502 0x0000000000000ull, 0x02C9A3E778061ull, 0x059B0D3158574ull, 2503 0x0874518759BC8ull, 0x0B5586CF9890Full, 0x0E3EC32D3D1A2ull, 2504 0x11301D0125B51ull, 0x1429AAEA92DE0ull, 0x172B83C7D517Bull, 2505 0x1A35BEB6FCB75ull, 0x1D4873168B9AAull, 0x2063B88628CD6ull, 2506 0x2387A6E756238ull, 0x26B4565E27CDDull, 0x29E9DF51FDEE1ull, 2507 0x2D285A6E4030Bull, 0x306FE0A31B715ull, 0x33C08B26416FFull, 2508 0x371A7373AA9CBull, 0x3A7DB34E59FF7ull, 0x3DEA64C123422ull, 2509 0x4160A21F72E2Aull, 0x44E086061892Dull, 0x486A2B5C13CD0ull, 2510 0x4BFDAD5362A27ull, 0x4F9B2769D2CA7ull, 0x5342B569D4F82ull, 2511 0x56F4736B527DAull, 0x5AB07DD485429ull, 0x5E76F15AD2148ull, 2512 0x6247EB03A5585ull, 0x6623882552225ull, 0x6A09E667F3BCDull, 2513 0x6DFB23C651A2Full, 0x71F75E8EC5F74ull, 0x75FEB564267C9ull, 2514 0x7A11473EB0187ull, 0x7E2F336CF4E62ull, 0x82589994CCE13ull, 2515 0x868D99B4492EDull, 0x8ACE5422AA0DBull, 0x8F1AE99157736ull, 2516 0x93737B0CDC5E5ull, 0x97D829FDE4E50ull, 0x9C49182A3F090ull, 2517 0xA0C667B5DE565ull, 0xA5503B23E255Dull, 0xA9E6B5579FDBFull, 2518 0xAE89F995AD3ADull, 0xB33A2B84F15FBull, 0xB7F76F2FB5E47ull, 2519 0xBCC1E904BC1D2ull, 0xC199BDD85529Cull, 0xC67F12E57D14Bull, 2520 0xCB720DCEF9069ull, 0xD072D4A07897Cull, 0xD5818DCFBA487ull, 2521 0xDA9E603DB3285ull, 0xDFC97337B9B5Full, 0xE502EE78B3FF6ull, 2522 0xEA4AFA2A490DAull, 0xEFA1BEE615A27ull, 0xF50765B6E4540ull, 2523 0xFA7C1819E90D8ull, 2524 }; 2525 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 2526 uint64_t *d = vd, *n = vn; 2527 2528 for (i = 0; i < opr_sz; i++) { 2529 uint64_t nn = n[i]; 2530 intptr_t idx = extract32(nn, 0, 6); 2531 uint64_t exp = extract32(nn, 6, 11); 2532 d[i] = coeff[idx] | (exp << 52); 2533 } 2534 } 2535 2536 void HELPER(sve_ftssel_h)(void *vd, void *vn, void *vm, uint32_t desc) 2537 { 2538 intptr_t i, opr_sz = simd_oprsz(desc) / 2; 2539 uint16_t *d = vd, *n = vn, *m = vm; 2540 for (i = 0; i < opr_sz; i += 1) { 2541 uint16_t nn = n[i]; 2542 uint16_t mm = m[i]; 2543 if (mm & 1) { 2544 nn = float16_one; 2545 } 2546 d[i] = nn ^ (mm & 2) << 14; 2547 } 2548 } 2549 2550 void HELPER(sve_ftssel_s)(void *vd, void *vn, void *vm, uint32_t desc) 2551 { 2552 intptr_t i, opr_sz = simd_oprsz(desc) / 4; 2553 uint32_t *d = vd, *n = vn, *m = vm; 2554 for (i = 0; i < opr_sz; i += 1) { 2555 uint32_t nn = n[i]; 2556 uint32_t mm = m[i]; 2557 if (mm & 1) { 2558 nn = float32_one; 2559 } 2560 d[i] = nn ^ (mm & 2) << 30; 2561 } 2562 } 2563 2564 void HELPER(sve_ftssel_d)(void *vd, void *vn, void *vm, uint32_t desc) 2565 { 2566 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 2567 uint64_t *d = vd, *n = vn, *m = vm; 2568 for (i = 0; i < opr_sz; i += 1) { 2569 uint64_t nn = n[i]; 2570 uint64_t mm = m[i]; 2571 if (mm & 1) { 2572 nn = float64_one; 2573 } 2574 d[i] = nn ^ (mm & 2) << 62; 2575 } 2576 } 2577 2578 /* 2579 * Signed saturating addition with scalar operand. 2580 */ 2581 2582 void HELPER(sve_sqaddi_b)(void *d, void *a, int32_t b, uint32_t desc) 2583 { 2584 intptr_t i, oprsz = simd_oprsz(desc); 2585 2586 for (i = 0; i < oprsz; i += sizeof(int8_t)) { 2587 *(int8_t *)(d + i) = DO_SQADD_B(b, *(int8_t *)(a + i)); 2588 } 2589 } 2590 2591 void HELPER(sve_sqaddi_h)(void *d, void *a, int32_t b, uint32_t desc) 2592 { 2593 intptr_t i, oprsz = simd_oprsz(desc); 2594 2595 for (i = 0; i < oprsz; i += sizeof(int16_t)) { 2596 *(int16_t *)(d + i) = DO_SQADD_H(b, *(int16_t *)(a + i)); 2597 } 2598 } 2599 2600 void HELPER(sve_sqaddi_s)(void *d, void *a, int64_t b, uint32_t desc) 2601 { 2602 intptr_t i, oprsz = simd_oprsz(desc); 2603 2604 for (i = 0; i < oprsz; i += sizeof(int32_t)) { 2605 *(int32_t *)(d + i) = DO_SQADD_S(b, *(int32_t *)(a + i)); 2606 } 2607 } 2608 2609 void HELPER(sve_sqaddi_d)(void *d, void *a, int64_t b, uint32_t desc) 2610 { 2611 intptr_t i, oprsz = simd_oprsz(desc); 2612 2613 for (i = 0; i < oprsz; i += sizeof(int64_t)) { 2614 *(int64_t *)(d + i) = do_sqadd_d(b, *(int64_t *)(a + i)); 2615 } 2616 } 2617 2618 /* 2619 * Unsigned saturating addition with scalar operand. 2620 */ 2621 2622 void HELPER(sve_uqaddi_b)(void *d, void *a, int32_t b, uint32_t desc) 2623 { 2624 intptr_t i, oprsz = simd_oprsz(desc); 2625 2626 for (i = 0; i < oprsz; i += sizeof(uint8_t)) { 2627 *(uint8_t *)(d + i) = DO_UQADD_B(b, *(uint8_t *)(a + i)); 2628 } 2629 } 2630 2631 void HELPER(sve_uqaddi_h)(void *d, void *a, int32_t b, uint32_t desc) 2632 { 2633 intptr_t i, oprsz = simd_oprsz(desc); 2634 2635 for (i = 0; i < oprsz; i += sizeof(uint16_t)) { 2636 *(uint16_t *)(d + i) = DO_UQADD_H(b, *(uint16_t *)(a + i)); 2637 } 2638 } 2639 2640 void HELPER(sve_uqaddi_s)(void *d, void *a, int64_t b, uint32_t desc) 2641 { 2642 intptr_t i, oprsz = simd_oprsz(desc); 2643 2644 for (i = 0; i < oprsz; i += sizeof(uint32_t)) { 2645 *(uint32_t *)(d + i) = DO_UQADD_S(b, *(uint32_t *)(a + i)); 2646 } 2647 } 2648 2649 void HELPER(sve_uqaddi_d)(void *d, void *a, uint64_t b, uint32_t desc) 2650 { 2651 intptr_t i, oprsz = simd_oprsz(desc); 2652 2653 for (i = 0; i < oprsz; i += sizeof(uint64_t)) { 2654 *(uint64_t *)(d + i) = do_uqadd_d(b, *(uint64_t *)(a + i)); 2655 } 2656 } 2657 2658 void HELPER(sve_uqsubi_d)(void *d, void *a, uint64_t b, uint32_t desc) 2659 { 2660 intptr_t i, oprsz = simd_oprsz(desc); 2661 2662 for (i = 0; i < oprsz; i += sizeof(uint64_t)) { 2663 *(uint64_t *)(d + i) = do_uqsub_d(*(uint64_t *)(a + i), b); 2664 } 2665 } 2666 2667 /* Two operand predicated copy immediate with merge. All valid immediates 2668 * can fit within 17 signed bits in the simd_data field. 2669 */ 2670 void HELPER(sve_cpy_m_b)(void *vd, void *vn, void *vg, 2671 uint64_t mm, uint32_t desc) 2672 { 2673 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 2674 uint64_t *d = vd, *n = vn; 2675 uint8_t *pg = vg; 2676 2677 mm = dup_const(MO_8, mm); 2678 for (i = 0; i < opr_sz; i += 1) { 2679 uint64_t nn = n[i]; 2680 uint64_t pp = expand_pred_b(pg[H1(i)]); 2681 d[i] = (mm & pp) | (nn & ~pp); 2682 } 2683 } 2684 2685 void HELPER(sve_cpy_m_h)(void *vd, void *vn, void *vg, 2686 uint64_t mm, uint32_t desc) 2687 { 2688 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 2689 uint64_t *d = vd, *n = vn; 2690 uint8_t *pg = vg; 2691 2692 mm = dup_const(MO_16, mm); 2693 for (i = 0; i < opr_sz; i += 1) { 2694 uint64_t nn = n[i]; 2695 uint64_t pp = expand_pred_h(pg[H1(i)]); 2696 d[i] = (mm & pp) | (nn & ~pp); 2697 } 2698 } 2699 2700 void HELPER(sve_cpy_m_s)(void *vd, void *vn, void *vg, 2701 uint64_t mm, uint32_t desc) 2702 { 2703 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 2704 uint64_t *d = vd, *n = vn; 2705 uint8_t *pg = vg; 2706 2707 mm = dup_const(MO_32, mm); 2708 for (i = 0; i < opr_sz; i += 1) { 2709 uint64_t nn = n[i]; 2710 uint64_t pp = expand_pred_s(pg[H1(i)]); 2711 d[i] = (mm & pp) | (nn & ~pp); 2712 } 2713 } 2714 2715 void HELPER(sve_cpy_m_d)(void *vd, void *vn, void *vg, 2716 uint64_t mm, uint32_t desc) 2717 { 2718 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 2719 uint64_t *d = vd, *n = vn; 2720 uint8_t *pg = vg; 2721 2722 for (i = 0; i < opr_sz; i += 1) { 2723 uint64_t nn = n[i]; 2724 d[i] = (pg[H1(i)] & 1 ? mm : nn); 2725 } 2726 } 2727 2728 void HELPER(sve_cpy_z_b)(void *vd, void *vg, uint64_t val, uint32_t desc) 2729 { 2730 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 2731 uint64_t *d = vd; 2732 uint8_t *pg = vg; 2733 2734 val = dup_const(MO_8, val); 2735 for (i = 0; i < opr_sz; i += 1) { 2736 d[i] = val & expand_pred_b(pg[H1(i)]); 2737 } 2738 } 2739 2740 void HELPER(sve_cpy_z_h)(void *vd, void *vg, uint64_t val, uint32_t desc) 2741 { 2742 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 2743 uint64_t *d = vd; 2744 uint8_t *pg = vg; 2745 2746 val = dup_const(MO_16, val); 2747 for (i = 0; i < opr_sz; i += 1) { 2748 d[i] = val & expand_pred_h(pg[H1(i)]); 2749 } 2750 } 2751 2752 void HELPER(sve_cpy_z_s)(void *vd, void *vg, uint64_t val, uint32_t desc) 2753 { 2754 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 2755 uint64_t *d = vd; 2756 uint8_t *pg = vg; 2757 2758 val = dup_const(MO_32, val); 2759 for (i = 0; i < opr_sz; i += 1) { 2760 d[i] = val & expand_pred_s(pg[H1(i)]); 2761 } 2762 } 2763 2764 void HELPER(sve_cpy_z_d)(void *vd, void *vg, uint64_t val, uint32_t desc) 2765 { 2766 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 2767 uint64_t *d = vd; 2768 uint8_t *pg = vg; 2769 2770 for (i = 0; i < opr_sz; i += 1) { 2771 d[i] = (pg[H1(i)] & 1 ? val : 0); 2772 } 2773 } 2774 2775 /* Big-endian hosts need to frob the byte indices. If the copy 2776 * happens to be 8-byte aligned, then no frobbing necessary. 2777 */ 2778 static void swap_memmove(void *vd, void *vs, size_t n) 2779 { 2780 uintptr_t d = (uintptr_t)vd; 2781 uintptr_t s = (uintptr_t)vs; 2782 uintptr_t o = (d | s | n) & 7; 2783 size_t i; 2784 2785 #if !HOST_BIG_ENDIAN 2786 o = 0; 2787 #endif 2788 switch (o) { 2789 case 0: 2790 memmove(vd, vs, n); 2791 break; 2792 2793 case 4: 2794 if (d < s || d >= s + n) { 2795 for (i = 0; i < n; i += 4) { 2796 *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i); 2797 } 2798 } else { 2799 for (i = n; i > 0; ) { 2800 i -= 4; 2801 *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i); 2802 } 2803 } 2804 break; 2805 2806 case 2: 2807 case 6: 2808 if (d < s || d >= s + n) { 2809 for (i = 0; i < n; i += 2) { 2810 *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i); 2811 } 2812 } else { 2813 for (i = n; i > 0; ) { 2814 i -= 2; 2815 *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i); 2816 } 2817 } 2818 break; 2819 2820 default: 2821 if (d < s || d >= s + n) { 2822 for (i = 0; i < n; i++) { 2823 *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i); 2824 } 2825 } else { 2826 for (i = n; i > 0; ) { 2827 i -= 1; 2828 *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i); 2829 } 2830 } 2831 break; 2832 } 2833 } 2834 2835 /* Similarly for memset of 0. */ 2836 static void swap_memzero(void *vd, size_t n) 2837 { 2838 uintptr_t d = (uintptr_t)vd; 2839 uintptr_t o = (d | n) & 7; 2840 size_t i; 2841 2842 /* Usually, the first bit of a predicate is set, so N is 0. */ 2843 if (likely(n == 0)) { 2844 return; 2845 } 2846 2847 #if !HOST_BIG_ENDIAN 2848 o = 0; 2849 #endif 2850 switch (o) { 2851 case 0: 2852 memset(vd, 0, n); 2853 break; 2854 2855 case 4: 2856 for (i = 0; i < n; i += 4) { 2857 *(uint32_t *)H1_4(d + i) = 0; 2858 } 2859 break; 2860 2861 case 2: 2862 case 6: 2863 for (i = 0; i < n; i += 2) { 2864 *(uint16_t *)H1_2(d + i) = 0; 2865 } 2866 break; 2867 2868 default: 2869 for (i = 0; i < n; i++) { 2870 *(uint8_t *)H1(d + i) = 0; 2871 } 2872 break; 2873 } 2874 } 2875 2876 void HELPER(sve_ext)(void *vd, void *vn, void *vm, uint32_t desc) 2877 { 2878 intptr_t opr_sz = simd_oprsz(desc); 2879 size_t n_ofs = simd_data(desc); 2880 size_t n_siz = opr_sz - n_ofs; 2881 2882 if (vd != vm) { 2883 swap_memmove(vd, vn + n_ofs, n_siz); 2884 swap_memmove(vd + n_siz, vm, n_ofs); 2885 } else if (vd != vn) { 2886 swap_memmove(vd + n_siz, vd, n_ofs); 2887 swap_memmove(vd, vn + n_ofs, n_siz); 2888 } else { 2889 /* vd == vn == vm. Need temp space. */ 2890 ARMVectorReg tmp; 2891 swap_memmove(&tmp, vm, n_ofs); 2892 swap_memmove(vd, vd + n_ofs, n_siz); 2893 memcpy(vd + n_siz, &tmp, n_ofs); 2894 } 2895 } 2896 2897 #define DO_INSR(NAME, TYPE, H) \ 2898 void HELPER(NAME)(void *vd, void *vn, uint64_t val, uint32_t desc) \ 2899 { \ 2900 intptr_t opr_sz = simd_oprsz(desc); \ 2901 swap_memmove(vd + sizeof(TYPE), vn, opr_sz - sizeof(TYPE)); \ 2902 *(TYPE *)(vd + H(0)) = val; \ 2903 } 2904 2905 DO_INSR(sve_insr_b, uint8_t, H1) 2906 DO_INSR(sve_insr_h, uint16_t, H1_2) 2907 DO_INSR(sve_insr_s, uint32_t, H1_4) 2908 DO_INSR(sve_insr_d, uint64_t, H1_8) 2909 2910 #undef DO_INSR 2911 2912 void HELPER(sve_rev_b)(void *vd, void *vn, uint32_t desc) 2913 { 2914 intptr_t i, j, opr_sz = simd_oprsz(desc); 2915 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) { 2916 uint64_t f = *(uint64_t *)(vn + i); 2917 uint64_t b = *(uint64_t *)(vn + j); 2918 *(uint64_t *)(vd + i) = bswap64(b); 2919 *(uint64_t *)(vd + j) = bswap64(f); 2920 } 2921 } 2922 2923 void HELPER(sve_rev_h)(void *vd, void *vn, uint32_t desc) 2924 { 2925 intptr_t i, j, opr_sz = simd_oprsz(desc); 2926 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) { 2927 uint64_t f = *(uint64_t *)(vn + i); 2928 uint64_t b = *(uint64_t *)(vn + j); 2929 *(uint64_t *)(vd + i) = hswap64(b); 2930 *(uint64_t *)(vd + j) = hswap64(f); 2931 } 2932 } 2933 2934 void HELPER(sve_rev_s)(void *vd, void *vn, uint32_t desc) 2935 { 2936 intptr_t i, j, opr_sz = simd_oprsz(desc); 2937 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) { 2938 uint64_t f = *(uint64_t *)(vn + i); 2939 uint64_t b = *(uint64_t *)(vn + j); 2940 *(uint64_t *)(vd + i) = rol64(b, 32); 2941 *(uint64_t *)(vd + j) = rol64(f, 32); 2942 } 2943 } 2944 2945 void HELPER(sve_rev_d)(void *vd, void *vn, uint32_t desc) 2946 { 2947 intptr_t i, j, opr_sz = simd_oprsz(desc); 2948 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) { 2949 uint64_t f = *(uint64_t *)(vn + i); 2950 uint64_t b = *(uint64_t *)(vn + j); 2951 *(uint64_t *)(vd + i) = b; 2952 *(uint64_t *)(vd + j) = f; 2953 } 2954 } 2955 2956 typedef void tb_impl_fn(void *, void *, void *, void *, uintptr_t, bool); 2957 2958 static inline void do_tbl1(void *vd, void *vn, void *vm, uint32_t desc, 2959 bool is_tbx, tb_impl_fn *fn) 2960 { 2961 ARMVectorReg scratch; 2962 uintptr_t oprsz = simd_oprsz(desc); 2963 2964 if (unlikely(vd == vn)) { 2965 vn = memcpy(&scratch, vn, oprsz); 2966 } 2967 2968 fn(vd, vn, NULL, vm, oprsz, is_tbx); 2969 } 2970 2971 static inline void do_tbl2(void *vd, void *vn0, void *vn1, void *vm, 2972 uint32_t desc, bool is_tbx, tb_impl_fn *fn) 2973 { 2974 ARMVectorReg scratch; 2975 uintptr_t oprsz = simd_oprsz(desc); 2976 2977 if (unlikely(vd == vn0)) { 2978 vn0 = memcpy(&scratch, vn0, oprsz); 2979 if (vd == vn1) { 2980 vn1 = vn0; 2981 } 2982 } else if (unlikely(vd == vn1)) { 2983 vn1 = memcpy(&scratch, vn1, oprsz); 2984 } 2985 2986 fn(vd, vn0, vn1, vm, oprsz, is_tbx); 2987 } 2988 2989 #define DO_TB(SUFF, TYPE, H) \ 2990 static inline void do_tb_##SUFF(void *vd, void *vt0, void *vt1, \ 2991 void *vm, uintptr_t oprsz, bool is_tbx) \ 2992 { \ 2993 TYPE *d = vd, *tbl0 = vt0, *tbl1 = vt1, *indexes = vm; \ 2994 uintptr_t i, nelem = oprsz / sizeof(TYPE); \ 2995 for (i = 0; i < nelem; ++i) { \ 2996 TYPE index = indexes[H1(i)], val = 0; \ 2997 if (index < nelem) { \ 2998 val = tbl0[H(index)]; \ 2999 } else { \ 3000 index -= nelem; \ 3001 if (tbl1 && index < nelem) { \ 3002 val = tbl1[H(index)]; \ 3003 } else if (is_tbx) { \ 3004 continue; \ 3005 } \ 3006 } \ 3007 d[H(i)] = val; \ 3008 } \ 3009 } \ 3010 void HELPER(sve_tbl_##SUFF)(void *vd, void *vn, void *vm, uint32_t desc) \ 3011 { \ 3012 do_tbl1(vd, vn, vm, desc, false, do_tb_##SUFF); \ 3013 } \ 3014 void HELPER(sve2_tbl_##SUFF)(void *vd, void *vn0, void *vn1, \ 3015 void *vm, uint32_t desc) \ 3016 { \ 3017 do_tbl2(vd, vn0, vn1, vm, desc, false, do_tb_##SUFF); \ 3018 } \ 3019 void HELPER(sve2_tbx_##SUFF)(void *vd, void *vn, void *vm, uint32_t desc) \ 3020 { \ 3021 do_tbl1(vd, vn, vm, desc, true, do_tb_##SUFF); \ 3022 } 3023 3024 DO_TB(b, uint8_t, H1) 3025 DO_TB(h, uint16_t, H2) 3026 DO_TB(s, uint32_t, H4) 3027 DO_TB(d, uint64_t, H8) 3028 3029 #undef DO_TB 3030 3031 #define DO_UNPK(NAME, TYPED, TYPES, HD, HS) \ 3032 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ 3033 { \ 3034 intptr_t i, opr_sz = simd_oprsz(desc); \ 3035 TYPED *d = vd; \ 3036 TYPES *n = vn; \ 3037 ARMVectorReg tmp; \ 3038 if (unlikely(vn - vd < opr_sz)) { \ 3039 n = memcpy(&tmp, n, opr_sz / 2); \ 3040 } \ 3041 for (i = 0; i < opr_sz / sizeof(TYPED); i++) { \ 3042 d[HD(i)] = n[HS(i)]; \ 3043 } \ 3044 } 3045 3046 DO_UNPK(sve_sunpk_h, int16_t, int8_t, H2, H1) 3047 DO_UNPK(sve_sunpk_s, int32_t, int16_t, H4, H2) 3048 DO_UNPK(sve_sunpk_d, int64_t, int32_t, H8, H4) 3049 3050 DO_UNPK(sve_uunpk_h, uint16_t, uint8_t, H2, H1) 3051 DO_UNPK(sve_uunpk_s, uint32_t, uint16_t, H4, H2) 3052 DO_UNPK(sve_uunpk_d, uint64_t, uint32_t, H8, H4) 3053 3054 #undef DO_UNPK 3055 3056 /* Mask of bits included in the even numbered predicates of width esz. 3057 * We also use this for expand_bits/compress_bits, and so extend the 3058 * same pattern out to 16-bit units. 3059 */ 3060 static const uint64_t even_bit_esz_masks[5] = { 3061 0x5555555555555555ull, 3062 0x3333333333333333ull, 3063 0x0f0f0f0f0f0f0f0full, 3064 0x00ff00ff00ff00ffull, 3065 0x0000ffff0000ffffull, 3066 }; 3067 3068 /* Zero-extend units of 2**N bits to units of 2**(N+1) bits. 3069 * For N==0, this corresponds to the operation that in qemu/bitops.h 3070 * we call half_shuffle64; this algorithm is from Hacker's Delight, 3071 * section 7-2 Shuffling Bits. 3072 */ 3073 static uint64_t expand_bits(uint64_t x, int n) 3074 { 3075 int i; 3076 3077 x &= 0xffffffffu; 3078 for (i = 4; i >= n; i--) { 3079 int sh = 1 << i; 3080 x = ((x << sh) | x) & even_bit_esz_masks[i]; 3081 } 3082 return x; 3083 } 3084 3085 /* Compress units of 2**(N+1) bits to units of 2**N bits. 3086 * For N==0, this corresponds to the operation that in qemu/bitops.h 3087 * we call half_unshuffle64; this algorithm is from Hacker's Delight, 3088 * section 7-2 Shuffling Bits, where it is called an inverse half shuffle. 3089 */ 3090 static uint64_t compress_bits(uint64_t x, int n) 3091 { 3092 int i; 3093 3094 for (i = n; i <= 4; i++) { 3095 int sh = 1 << i; 3096 x &= even_bit_esz_masks[i]; 3097 x = (x >> sh) | x; 3098 } 3099 return x & 0xffffffffu; 3100 } 3101 3102 void HELPER(sve_zip_p)(void *vd, void *vn, void *vm, uint32_t pred_desc) 3103 { 3104 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 3105 int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); 3106 intptr_t high = FIELD_EX32(pred_desc, PREDDESC, DATA); 3107 int esize = 1 << esz; 3108 uint64_t *d = vd; 3109 intptr_t i; 3110 3111 if (oprsz <= 8) { 3112 uint64_t nn = *(uint64_t *)vn; 3113 uint64_t mm = *(uint64_t *)vm; 3114 int half = 4 * oprsz; 3115 3116 nn = extract64(nn, high * half, half); 3117 mm = extract64(mm, high * half, half); 3118 nn = expand_bits(nn, esz); 3119 mm = expand_bits(mm, esz); 3120 d[0] = nn | (mm << esize); 3121 } else { 3122 ARMPredicateReg tmp; 3123 3124 /* We produce output faster than we consume input. 3125 Therefore we must be mindful of possible overlap. */ 3126 if (vd == vn) { 3127 vn = memcpy(&tmp, vn, oprsz); 3128 if (vd == vm) { 3129 vm = vn; 3130 } 3131 } else if (vd == vm) { 3132 vm = memcpy(&tmp, vm, oprsz); 3133 } 3134 if (high) { 3135 high = oprsz >> 1; 3136 } 3137 3138 if ((oprsz & 7) == 0) { 3139 uint32_t *n = vn, *m = vm; 3140 high >>= 2; 3141 3142 for (i = 0; i < oprsz / 8; i++) { 3143 uint64_t nn = n[H4(high + i)]; 3144 uint64_t mm = m[H4(high + i)]; 3145 3146 nn = expand_bits(nn, esz); 3147 mm = expand_bits(mm, esz); 3148 d[i] = nn | (mm << esize); 3149 } 3150 } else { 3151 uint8_t *n = vn, *m = vm; 3152 uint16_t *d16 = vd; 3153 3154 for (i = 0; i < oprsz / 2; i++) { 3155 uint16_t nn = n[H1(high + i)]; 3156 uint16_t mm = m[H1(high + i)]; 3157 3158 nn = expand_bits(nn, esz); 3159 mm = expand_bits(mm, esz); 3160 d16[H2(i)] = nn | (mm << esize); 3161 } 3162 } 3163 } 3164 } 3165 3166 void HELPER(sve_uzp_p)(void *vd, void *vn, void *vm, uint32_t pred_desc) 3167 { 3168 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 3169 int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); 3170 int odd = FIELD_EX32(pred_desc, PREDDESC, DATA) << esz; 3171 uint64_t *d = vd, *n = vn, *m = vm; 3172 uint64_t l, h; 3173 intptr_t i; 3174 3175 if (oprsz <= 8) { 3176 l = compress_bits(n[0] >> odd, esz); 3177 h = compress_bits(m[0] >> odd, esz); 3178 d[0] = l | (h << (4 * oprsz)); 3179 } else { 3180 ARMPredicateReg tmp_m; 3181 intptr_t oprsz_16 = oprsz / 16; 3182 3183 if ((vm - vd) < (uintptr_t)oprsz) { 3184 m = memcpy(&tmp_m, vm, oprsz); 3185 } 3186 3187 for (i = 0; i < oprsz_16; i++) { 3188 l = n[2 * i + 0]; 3189 h = n[2 * i + 1]; 3190 l = compress_bits(l >> odd, esz); 3191 h = compress_bits(h >> odd, esz); 3192 d[i] = l | (h << 32); 3193 } 3194 3195 /* 3196 * For VL which is not a multiple of 512, the results from M do not 3197 * align nicely with the uint64_t for D. Put the aligned results 3198 * from M into TMP_M and then copy it into place afterward. 3199 */ 3200 if (oprsz & 15) { 3201 int final_shift = (oprsz & 15) * 2; 3202 3203 l = n[2 * i + 0]; 3204 h = n[2 * i + 1]; 3205 l = compress_bits(l >> odd, esz); 3206 h = compress_bits(h >> odd, esz); 3207 d[i] = l | (h << final_shift); 3208 3209 for (i = 0; i < oprsz_16; i++) { 3210 l = m[2 * i + 0]; 3211 h = m[2 * i + 1]; 3212 l = compress_bits(l >> odd, esz); 3213 h = compress_bits(h >> odd, esz); 3214 tmp_m.p[i] = l | (h << 32); 3215 } 3216 l = m[2 * i + 0]; 3217 h = m[2 * i + 1]; 3218 l = compress_bits(l >> odd, esz); 3219 h = compress_bits(h >> odd, esz); 3220 tmp_m.p[i] = l | (h << final_shift); 3221 3222 swap_memmove(vd + oprsz / 2, &tmp_m, oprsz / 2); 3223 } else { 3224 for (i = 0; i < oprsz_16; i++) { 3225 l = m[2 * i + 0]; 3226 h = m[2 * i + 1]; 3227 l = compress_bits(l >> odd, esz); 3228 h = compress_bits(h >> odd, esz); 3229 d[oprsz_16 + i] = l | (h << 32); 3230 } 3231 } 3232 } 3233 } 3234 3235 void HELPER(sve_trn_p)(void *vd, void *vn, void *vm, uint32_t pred_desc) 3236 { 3237 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 3238 int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); 3239 int odd = FIELD_EX32(pred_desc, PREDDESC, DATA); 3240 uint64_t *d = vd, *n = vn, *m = vm; 3241 uint64_t mask; 3242 int shr, shl; 3243 intptr_t i; 3244 3245 shl = 1 << esz; 3246 shr = 0; 3247 mask = even_bit_esz_masks[esz]; 3248 if (odd) { 3249 mask <<= shl; 3250 shr = shl; 3251 shl = 0; 3252 } 3253 3254 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) { 3255 uint64_t nn = (n[i] & mask) >> shr; 3256 uint64_t mm = (m[i] & mask) << shl; 3257 d[i] = nn + mm; 3258 } 3259 } 3260 3261 /* Reverse units of 2**N bits. */ 3262 static uint64_t reverse_bits_64(uint64_t x, int n) 3263 { 3264 int i, sh; 3265 3266 x = bswap64(x); 3267 for (i = 2, sh = 4; i >= n; i--, sh >>= 1) { 3268 uint64_t mask = even_bit_esz_masks[i]; 3269 x = ((x & mask) << sh) | ((x >> sh) & mask); 3270 } 3271 return x; 3272 } 3273 3274 static uint8_t reverse_bits_8(uint8_t x, int n) 3275 { 3276 static const uint8_t mask[3] = { 0x55, 0x33, 0x0f }; 3277 int i, sh; 3278 3279 for (i = 2, sh = 4; i >= n; i--, sh >>= 1) { 3280 x = ((x & mask[i]) << sh) | ((x >> sh) & mask[i]); 3281 } 3282 return x; 3283 } 3284 3285 void HELPER(sve_rev_p)(void *vd, void *vn, uint32_t pred_desc) 3286 { 3287 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 3288 int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); 3289 intptr_t i, oprsz_2 = oprsz / 2; 3290 3291 if (oprsz <= 8) { 3292 uint64_t l = *(uint64_t *)vn; 3293 l = reverse_bits_64(l << (64 - 8 * oprsz), esz); 3294 *(uint64_t *)vd = l; 3295 } else if ((oprsz & 15) == 0) { 3296 for (i = 0; i < oprsz_2; i += 8) { 3297 intptr_t ih = oprsz - 8 - i; 3298 uint64_t l = reverse_bits_64(*(uint64_t *)(vn + i), esz); 3299 uint64_t h = reverse_bits_64(*(uint64_t *)(vn + ih), esz); 3300 *(uint64_t *)(vd + i) = h; 3301 *(uint64_t *)(vd + ih) = l; 3302 } 3303 } else { 3304 for (i = 0; i < oprsz_2; i += 1) { 3305 intptr_t il = H1(i); 3306 intptr_t ih = H1(oprsz - 1 - i); 3307 uint8_t l = reverse_bits_8(*(uint8_t *)(vn + il), esz); 3308 uint8_t h = reverse_bits_8(*(uint8_t *)(vn + ih), esz); 3309 *(uint8_t *)(vd + il) = h; 3310 *(uint8_t *)(vd + ih) = l; 3311 } 3312 } 3313 } 3314 3315 void HELPER(sve_punpk_p)(void *vd, void *vn, uint32_t pred_desc) 3316 { 3317 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 3318 intptr_t high = FIELD_EX32(pred_desc, PREDDESC, DATA); 3319 uint64_t *d = vd; 3320 intptr_t i; 3321 3322 if (oprsz <= 8) { 3323 uint64_t nn = *(uint64_t *)vn; 3324 int half = 4 * oprsz; 3325 3326 nn = extract64(nn, high * half, half); 3327 nn = expand_bits(nn, 0); 3328 d[0] = nn; 3329 } else { 3330 ARMPredicateReg tmp_n; 3331 3332 /* We produce output faster than we consume input. 3333 Therefore we must be mindful of possible overlap. */ 3334 if ((vn - vd) < (uintptr_t)oprsz) { 3335 vn = memcpy(&tmp_n, vn, oprsz); 3336 } 3337 if (high) { 3338 high = oprsz >> 1; 3339 } 3340 3341 if ((oprsz & 7) == 0) { 3342 uint32_t *n = vn; 3343 high >>= 2; 3344 3345 for (i = 0; i < oprsz / 8; i++) { 3346 uint64_t nn = n[H4(high + i)]; 3347 d[i] = expand_bits(nn, 0); 3348 } 3349 } else { 3350 uint16_t *d16 = vd; 3351 uint8_t *n = vn; 3352 3353 for (i = 0; i < oprsz / 2; i++) { 3354 uint16_t nn = n[H1(high + i)]; 3355 d16[H2(i)] = expand_bits(nn, 0); 3356 } 3357 } 3358 } 3359 } 3360 3361 #define DO_ZIP(NAME, TYPE, H) \ 3362 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ 3363 { \ 3364 intptr_t oprsz = simd_oprsz(desc); \ 3365 intptr_t odd_ofs = simd_data(desc); \ 3366 intptr_t i, oprsz_2 = oprsz / 2; \ 3367 ARMVectorReg tmp_n, tmp_m; \ 3368 /* We produce output faster than we consume input. \ 3369 Therefore we must be mindful of possible overlap. */ \ 3370 if (unlikely((vn - vd) < (uintptr_t)oprsz)) { \ 3371 vn = memcpy(&tmp_n, vn, oprsz); \ 3372 } \ 3373 if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \ 3374 vm = memcpy(&tmp_m, vm, oprsz); \ 3375 } \ 3376 for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \ 3377 *(TYPE *)(vd + H(2 * i + 0)) = *(TYPE *)(vn + odd_ofs + H(i)); \ 3378 *(TYPE *)(vd + H(2 * i + sizeof(TYPE))) = \ 3379 *(TYPE *)(vm + odd_ofs + H(i)); \ 3380 } \ 3381 if (sizeof(TYPE) == 16 && unlikely(oprsz & 16)) { \ 3382 memset(vd + oprsz - 16, 0, 16); \ 3383 } \ 3384 } 3385 3386 DO_ZIP(sve_zip_b, uint8_t, H1) 3387 DO_ZIP(sve_zip_h, uint16_t, H1_2) 3388 DO_ZIP(sve_zip_s, uint32_t, H1_4) 3389 DO_ZIP(sve_zip_d, uint64_t, H1_8) 3390 DO_ZIP(sve2_zip_q, Int128, ) 3391 3392 #define DO_UZP(NAME, TYPE, H) \ 3393 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ 3394 { \ 3395 intptr_t oprsz = simd_oprsz(desc); \ 3396 intptr_t odd_ofs = simd_data(desc); \ 3397 intptr_t i, p; \ 3398 ARMVectorReg tmp_m; \ 3399 if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \ 3400 vm = memcpy(&tmp_m, vm, oprsz); \ 3401 } \ 3402 i = 0, p = odd_ofs; \ 3403 do { \ 3404 *(TYPE *)(vd + H(i)) = *(TYPE *)(vn + H(p)); \ 3405 i += sizeof(TYPE), p += 2 * sizeof(TYPE); \ 3406 } while (p < oprsz); \ 3407 p -= oprsz; \ 3408 do { \ 3409 *(TYPE *)(vd + H(i)) = *(TYPE *)(vm + H(p)); \ 3410 i += sizeof(TYPE), p += 2 * sizeof(TYPE); \ 3411 } while (p < oprsz); \ 3412 tcg_debug_assert(i == oprsz); \ 3413 } 3414 3415 DO_UZP(sve_uzp_b, uint8_t, H1) 3416 DO_UZP(sve_uzp_h, uint16_t, H1_2) 3417 DO_UZP(sve_uzp_s, uint32_t, H1_4) 3418 DO_UZP(sve_uzp_d, uint64_t, H1_8) 3419 DO_UZP(sve2_uzp_q, Int128, ) 3420 3421 #define DO_TRN(NAME, TYPE, H) \ 3422 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ 3423 { \ 3424 intptr_t oprsz = simd_oprsz(desc); \ 3425 intptr_t odd_ofs = simd_data(desc); \ 3426 intptr_t i; \ 3427 for (i = 0; i < oprsz; i += 2 * sizeof(TYPE)) { \ 3428 TYPE ae = *(TYPE *)(vn + H(i + odd_ofs)); \ 3429 TYPE be = *(TYPE *)(vm + H(i + odd_ofs)); \ 3430 *(TYPE *)(vd + H(i + 0)) = ae; \ 3431 *(TYPE *)(vd + H(i + sizeof(TYPE))) = be; \ 3432 } \ 3433 if (sizeof(TYPE) == 16 && unlikely(oprsz & 16)) { \ 3434 memset(vd + oprsz - 16, 0, 16); \ 3435 } \ 3436 } 3437 3438 DO_TRN(sve_trn_b, uint8_t, H1) 3439 DO_TRN(sve_trn_h, uint16_t, H1_2) 3440 DO_TRN(sve_trn_s, uint32_t, H1_4) 3441 DO_TRN(sve_trn_d, uint64_t, H1_8) 3442 DO_TRN(sve2_trn_q, Int128, ) 3443 3444 #undef DO_ZIP 3445 #undef DO_UZP 3446 #undef DO_TRN 3447 3448 void HELPER(sve_compact_s)(void *vd, void *vn, void *vg, uint32_t desc) 3449 { 3450 intptr_t i, j, opr_sz = simd_oprsz(desc) / 4; 3451 uint32_t *d = vd, *n = vn; 3452 uint8_t *pg = vg; 3453 3454 for (i = j = 0; i < opr_sz; i++) { 3455 if (pg[H1(i / 2)] & (i & 1 ? 0x10 : 0x01)) { 3456 d[H4(j)] = n[H4(i)]; 3457 j++; 3458 } 3459 } 3460 for (; j < opr_sz; j++) { 3461 d[H4(j)] = 0; 3462 } 3463 } 3464 3465 void HELPER(sve_compact_d)(void *vd, void *vn, void *vg, uint32_t desc) 3466 { 3467 intptr_t i, j, opr_sz = simd_oprsz(desc) / 8; 3468 uint64_t *d = vd, *n = vn; 3469 uint8_t *pg = vg; 3470 3471 for (i = j = 0; i < opr_sz; i++) { 3472 if (pg[H1(i)] & 1) { 3473 d[j] = n[i]; 3474 j++; 3475 } 3476 } 3477 for (; j < opr_sz; j++) { 3478 d[j] = 0; 3479 } 3480 } 3481 3482 /* Similar to the ARM LastActiveElement pseudocode function, except the 3483 * result is multiplied by the element size. This includes the not found 3484 * indication; e.g. not found for esz=3 is -8. 3485 */ 3486 int32_t HELPER(sve_last_active_element)(void *vg, uint32_t pred_desc) 3487 { 3488 intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8); 3489 intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); 3490 3491 return last_active_element(vg, words, esz); 3492 } 3493 3494 void HELPER(sve_splice)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) 3495 { 3496 intptr_t opr_sz = simd_oprsz(desc) / 8; 3497 int esz = simd_data(desc); 3498 uint64_t pg, first_g, last_g, len, mask = pred_esz_masks[esz]; 3499 intptr_t i, first_i, last_i; 3500 ARMVectorReg tmp; 3501 3502 first_i = last_i = 0; 3503 first_g = last_g = 0; 3504 3505 /* Find the extent of the active elements within VG. */ 3506 for (i = QEMU_ALIGN_UP(opr_sz, 8) - 8; i >= 0; i -= 8) { 3507 pg = *(uint64_t *)(vg + i) & mask; 3508 if (pg) { 3509 if (last_g == 0) { 3510 last_g = pg; 3511 last_i = i; 3512 } 3513 first_g = pg; 3514 first_i = i; 3515 } 3516 } 3517 3518 len = 0; 3519 if (first_g != 0) { 3520 first_i = first_i * 8 + ctz64(first_g); 3521 last_i = last_i * 8 + 63 - clz64(last_g); 3522 len = last_i - first_i + (1 << esz); 3523 if (vd == vm) { 3524 vm = memcpy(&tmp, vm, opr_sz * 8); 3525 } 3526 swap_memmove(vd, vn + first_i, len); 3527 } 3528 swap_memmove(vd + len, vm, opr_sz * 8 - len); 3529 } 3530 3531 void HELPER(sve_sel_zpzz_b)(void *vd, void *vn, void *vm, 3532 void *vg, uint32_t desc) 3533 { 3534 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 3535 uint64_t *d = vd, *n = vn, *m = vm; 3536 uint8_t *pg = vg; 3537 3538 for (i = 0; i < opr_sz; i += 1) { 3539 uint64_t nn = n[i], mm = m[i]; 3540 uint64_t pp = expand_pred_b(pg[H1(i)]); 3541 d[i] = (nn & pp) | (mm & ~pp); 3542 } 3543 } 3544 3545 void HELPER(sve_sel_zpzz_h)(void *vd, void *vn, void *vm, 3546 void *vg, uint32_t desc) 3547 { 3548 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 3549 uint64_t *d = vd, *n = vn, *m = vm; 3550 uint8_t *pg = vg; 3551 3552 for (i = 0; i < opr_sz; i += 1) { 3553 uint64_t nn = n[i], mm = m[i]; 3554 uint64_t pp = expand_pred_h(pg[H1(i)]); 3555 d[i] = (nn & pp) | (mm & ~pp); 3556 } 3557 } 3558 3559 void HELPER(sve_sel_zpzz_s)(void *vd, void *vn, void *vm, 3560 void *vg, uint32_t desc) 3561 { 3562 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 3563 uint64_t *d = vd, *n = vn, *m = vm; 3564 uint8_t *pg = vg; 3565 3566 for (i = 0; i < opr_sz; i += 1) { 3567 uint64_t nn = n[i], mm = m[i]; 3568 uint64_t pp = expand_pred_s(pg[H1(i)]); 3569 d[i] = (nn & pp) | (mm & ~pp); 3570 } 3571 } 3572 3573 void HELPER(sve_sel_zpzz_d)(void *vd, void *vn, void *vm, 3574 void *vg, uint32_t desc) 3575 { 3576 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 3577 uint64_t *d = vd, *n = vn, *m = vm; 3578 uint8_t *pg = vg; 3579 3580 for (i = 0; i < opr_sz; i += 1) { 3581 uint64_t nn = n[i], mm = m[i]; 3582 d[i] = (pg[H1(i)] & 1 ? nn : mm); 3583 } 3584 } 3585 3586 void HELPER(sve_sel_zpzz_q)(void *vd, void *vn, void *vm, 3587 void *vg, uint32_t desc) 3588 { 3589 intptr_t i, opr_sz = simd_oprsz(desc) / 16; 3590 Int128 *d = vd, *n = vn, *m = vm; 3591 uint16_t *pg = vg; 3592 3593 for (i = 0; i < opr_sz; i += 1) { 3594 d[i] = (pg[H2(i)] & 1 ? n : m)[i]; 3595 } 3596 } 3597 3598 /* Two operand comparison controlled by a predicate. 3599 * ??? It is very tempting to want to be able to expand this inline 3600 * with x86 instructions, e.g. 3601 * 3602 * vcmpeqw zm, zn, %ymm0 3603 * vpmovmskb %ymm0, %eax 3604 * and $0x5555, %eax 3605 * and pg, %eax 3606 * 3607 * or even aarch64, e.g. 3608 * 3609 * // mask = 4000 1000 0400 0100 0040 0010 0004 0001 3610 * cmeq v0.8h, zn, zm 3611 * and v0.8h, v0.8h, mask 3612 * addv h0, v0.8h 3613 * and v0.8b, pg 3614 * 3615 * However, coming up with an abstraction that allows vector inputs and 3616 * a scalar output, and also handles the byte-ordering of sub-uint64_t 3617 * scalar outputs, is tricky. 3618 */ 3619 #define DO_CMP_PPZZ(NAME, TYPE, OP, H, MASK) \ 3620 uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ 3621 { \ 3622 intptr_t opr_sz = simd_oprsz(desc); \ 3623 uint32_t flags = PREDTEST_INIT; \ 3624 intptr_t i = opr_sz; \ 3625 do { \ 3626 uint64_t out = 0, pg; \ 3627 do { \ 3628 i -= sizeof(TYPE), out <<= sizeof(TYPE); \ 3629 TYPE nn = *(TYPE *)(vn + H(i)); \ 3630 TYPE mm = *(TYPE *)(vm + H(i)); \ 3631 out |= nn OP mm; \ 3632 } while (i & 63); \ 3633 pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \ 3634 out &= pg; \ 3635 *(uint64_t *)(vd + (i >> 3)) = out; \ 3636 flags = iter_predtest_bwd(out, pg, flags); \ 3637 } while (i > 0); \ 3638 return flags; \ 3639 } 3640 3641 #define DO_CMP_PPZZ_B(NAME, TYPE, OP) \ 3642 DO_CMP_PPZZ(NAME, TYPE, OP, H1, 0xffffffffffffffffull) 3643 #define DO_CMP_PPZZ_H(NAME, TYPE, OP) \ 3644 DO_CMP_PPZZ(NAME, TYPE, OP, H1_2, 0x5555555555555555ull) 3645 #define DO_CMP_PPZZ_S(NAME, TYPE, OP) \ 3646 DO_CMP_PPZZ(NAME, TYPE, OP, H1_4, 0x1111111111111111ull) 3647 #define DO_CMP_PPZZ_D(NAME, TYPE, OP) \ 3648 DO_CMP_PPZZ(NAME, TYPE, OP, H1_8, 0x0101010101010101ull) 3649 3650 DO_CMP_PPZZ_B(sve_cmpeq_ppzz_b, uint8_t, ==) 3651 DO_CMP_PPZZ_H(sve_cmpeq_ppzz_h, uint16_t, ==) 3652 DO_CMP_PPZZ_S(sve_cmpeq_ppzz_s, uint32_t, ==) 3653 DO_CMP_PPZZ_D(sve_cmpeq_ppzz_d, uint64_t, ==) 3654 3655 DO_CMP_PPZZ_B(sve_cmpne_ppzz_b, uint8_t, !=) 3656 DO_CMP_PPZZ_H(sve_cmpne_ppzz_h, uint16_t, !=) 3657 DO_CMP_PPZZ_S(sve_cmpne_ppzz_s, uint32_t, !=) 3658 DO_CMP_PPZZ_D(sve_cmpne_ppzz_d, uint64_t, !=) 3659 3660 DO_CMP_PPZZ_B(sve_cmpgt_ppzz_b, int8_t, >) 3661 DO_CMP_PPZZ_H(sve_cmpgt_ppzz_h, int16_t, >) 3662 DO_CMP_PPZZ_S(sve_cmpgt_ppzz_s, int32_t, >) 3663 DO_CMP_PPZZ_D(sve_cmpgt_ppzz_d, int64_t, >) 3664 3665 DO_CMP_PPZZ_B(sve_cmpge_ppzz_b, int8_t, >=) 3666 DO_CMP_PPZZ_H(sve_cmpge_ppzz_h, int16_t, >=) 3667 DO_CMP_PPZZ_S(sve_cmpge_ppzz_s, int32_t, >=) 3668 DO_CMP_PPZZ_D(sve_cmpge_ppzz_d, int64_t, >=) 3669 3670 DO_CMP_PPZZ_B(sve_cmphi_ppzz_b, uint8_t, >) 3671 DO_CMP_PPZZ_H(sve_cmphi_ppzz_h, uint16_t, >) 3672 DO_CMP_PPZZ_S(sve_cmphi_ppzz_s, uint32_t, >) 3673 DO_CMP_PPZZ_D(sve_cmphi_ppzz_d, uint64_t, >) 3674 3675 DO_CMP_PPZZ_B(sve_cmphs_ppzz_b, uint8_t, >=) 3676 DO_CMP_PPZZ_H(sve_cmphs_ppzz_h, uint16_t, >=) 3677 DO_CMP_PPZZ_S(sve_cmphs_ppzz_s, uint32_t, >=) 3678 DO_CMP_PPZZ_D(sve_cmphs_ppzz_d, uint64_t, >=) 3679 3680 #undef DO_CMP_PPZZ_B 3681 #undef DO_CMP_PPZZ_H 3682 #undef DO_CMP_PPZZ_S 3683 #undef DO_CMP_PPZZ_D 3684 #undef DO_CMP_PPZZ 3685 3686 /* Similar, but the second source is "wide". */ 3687 #define DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H, MASK) \ 3688 uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ 3689 { \ 3690 intptr_t opr_sz = simd_oprsz(desc); \ 3691 uint32_t flags = PREDTEST_INIT; \ 3692 intptr_t i = opr_sz; \ 3693 do { \ 3694 uint64_t out = 0, pg; \ 3695 do { \ 3696 TYPEW mm = *(TYPEW *)(vm + i - 8); \ 3697 do { \ 3698 i -= sizeof(TYPE), out <<= sizeof(TYPE); \ 3699 TYPE nn = *(TYPE *)(vn + H(i)); \ 3700 out |= nn OP mm; \ 3701 } while (i & 7); \ 3702 } while (i & 63); \ 3703 pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \ 3704 out &= pg; \ 3705 *(uint64_t *)(vd + (i >> 3)) = out; \ 3706 flags = iter_predtest_bwd(out, pg, flags); \ 3707 } while (i > 0); \ 3708 return flags; \ 3709 } 3710 3711 #define DO_CMP_PPZW_B(NAME, TYPE, TYPEW, OP) \ 3712 DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1, 0xffffffffffffffffull) 3713 #define DO_CMP_PPZW_H(NAME, TYPE, TYPEW, OP) \ 3714 DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_2, 0x5555555555555555ull) 3715 #define DO_CMP_PPZW_S(NAME, TYPE, TYPEW, OP) \ 3716 DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_4, 0x1111111111111111ull) 3717 3718 DO_CMP_PPZW_B(sve_cmpeq_ppzw_b, int8_t, uint64_t, ==) 3719 DO_CMP_PPZW_H(sve_cmpeq_ppzw_h, int16_t, uint64_t, ==) 3720 DO_CMP_PPZW_S(sve_cmpeq_ppzw_s, int32_t, uint64_t, ==) 3721 3722 DO_CMP_PPZW_B(sve_cmpne_ppzw_b, int8_t, uint64_t, !=) 3723 DO_CMP_PPZW_H(sve_cmpne_ppzw_h, int16_t, uint64_t, !=) 3724 DO_CMP_PPZW_S(sve_cmpne_ppzw_s, int32_t, uint64_t, !=) 3725 3726 DO_CMP_PPZW_B(sve_cmpgt_ppzw_b, int8_t, int64_t, >) 3727 DO_CMP_PPZW_H(sve_cmpgt_ppzw_h, int16_t, int64_t, >) 3728 DO_CMP_PPZW_S(sve_cmpgt_ppzw_s, int32_t, int64_t, >) 3729 3730 DO_CMP_PPZW_B(sve_cmpge_ppzw_b, int8_t, int64_t, >=) 3731 DO_CMP_PPZW_H(sve_cmpge_ppzw_h, int16_t, int64_t, >=) 3732 DO_CMP_PPZW_S(sve_cmpge_ppzw_s, int32_t, int64_t, >=) 3733 3734 DO_CMP_PPZW_B(sve_cmphi_ppzw_b, uint8_t, uint64_t, >) 3735 DO_CMP_PPZW_H(sve_cmphi_ppzw_h, uint16_t, uint64_t, >) 3736 DO_CMP_PPZW_S(sve_cmphi_ppzw_s, uint32_t, uint64_t, >) 3737 3738 DO_CMP_PPZW_B(sve_cmphs_ppzw_b, uint8_t, uint64_t, >=) 3739 DO_CMP_PPZW_H(sve_cmphs_ppzw_h, uint16_t, uint64_t, >=) 3740 DO_CMP_PPZW_S(sve_cmphs_ppzw_s, uint32_t, uint64_t, >=) 3741 3742 DO_CMP_PPZW_B(sve_cmplt_ppzw_b, int8_t, int64_t, <) 3743 DO_CMP_PPZW_H(sve_cmplt_ppzw_h, int16_t, int64_t, <) 3744 DO_CMP_PPZW_S(sve_cmplt_ppzw_s, int32_t, int64_t, <) 3745 3746 DO_CMP_PPZW_B(sve_cmple_ppzw_b, int8_t, int64_t, <=) 3747 DO_CMP_PPZW_H(sve_cmple_ppzw_h, int16_t, int64_t, <=) 3748 DO_CMP_PPZW_S(sve_cmple_ppzw_s, int32_t, int64_t, <=) 3749 3750 DO_CMP_PPZW_B(sve_cmplo_ppzw_b, uint8_t, uint64_t, <) 3751 DO_CMP_PPZW_H(sve_cmplo_ppzw_h, uint16_t, uint64_t, <) 3752 DO_CMP_PPZW_S(sve_cmplo_ppzw_s, uint32_t, uint64_t, <) 3753 3754 DO_CMP_PPZW_B(sve_cmpls_ppzw_b, uint8_t, uint64_t, <=) 3755 DO_CMP_PPZW_H(sve_cmpls_ppzw_h, uint16_t, uint64_t, <=) 3756 DO_CMP_PPZW_S(sve_cmpls_ppzw_s, uint32_t, uint64_t, <=) 3757 3758 #undef DO_CMP_PPZW_B 3759 #undef DO_CMP_PPZW_H 3760 #undef DO_CMP_PPZW_S 3761 #undef DO_CMP_PPZW 3762 3763 /* Similar, but the second source is immediate. */ 3764 #define DO_CMP_PPZI(NAME, TYPE, OP, H, MASK) \ 3765 uint32_t HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ 3766 { \ 3767 intptr_t opr_sz = simd_oprsz(desc); \ 3768 uint32_t flags = PREDTEST_INIT; \ 3769 TYPE mm = simd_data(desc); \ 3770 intptr_t i = opr_sz; \ 3771 do { \ 3772 uint64_t out = 0, pg; \ 3773 do { \ 3774 i -= sizeof(TYPE), out <<= sizeof(TYPE); \ 3775 TYPE nn = *(TYPE *)(vn + H(i)); \ 3776 out |= nn OP mm; \ 3777 } while (i & 63); \ 3778 pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \ 3779 out &= pg; \ 3780 *(uint64_t *)(vd + (i >> 3)) = out; \ 3781 flags = iter_predtest_bwd(out, pg, flags); \ 3782 } while (i > 0); \ 3783 return flags; \ 3784 } 3785 3786 #define DO_CMP_PPZI_B(NAME, TYPE, OP) \ 3787 DO_CMP_PPZI(NAME, TYPE, OP, H1, 0xffffffffffffffffull) 3788 #define DO_CMP_PPZI_H(NAME, TYPE, OP) \ 3789 DO_CMP_PPZI(NAME, TYPE, OP, H1_2, 0x5555555555555555ull) 3790 #define DO_CMP_PPZI_S(NAME, TYPE, OP) \ 3791 DO_CMP_PPZI(NAME, TYPE, OP, H1_4, 0x1111111111111111ull) 3792 #define DO_CMP_PPZI_D(NAME, TYPE, OP) \ 3793 DO_CMP_PPZI(NAME, TYPE, OP, H1_8, 0x0101010101010101ull) 3794 3795 DO_CMP_PPZI_B(sve_cmpeq_ppzi_b, uint8_t, ==) 3796 DO_CMP_PPZI_H(sve_cmpeq_ppzi_h, uint16_t, ==) 3797 DO_CMP_PPZI_S(sve_cmpeq_ppzi_s, uint32_t, ==) 3798 DO_CMP_PPZI_D(sve_cmpeq_ppzi_d, uint64_t, ==) 3799 3800 DO_CMP_PPZI_B(sve_cmpne_ppzi_b, uint8_t, !=) 3801 DO_CMP_PPZI_H(sve_cmpne_ppzi_h, uint16_t, !=) 3802 DO_CMP_PPZI_S(sve_cmpne_ppzi_s, uint32_t, !=) 3803 DO_CMP_PPZI_D(sve_cmpne_ppzi_d, uint64_t, !=) 3804 3805 DO_CMP_PPZI_B(sve_cmpgt_ppzi_b, int8_t, >) 3806 DO_CMP_PPZI_H(sve_cmpgt_ppzi_h, int16_t, >) 3807 DO_CMP_PPZI_S(sve_cmpgt_ppzi_s, int32_t, >) 3808 DO_CMP_PPZI_D(sve_cmpgt_ppzi_d, int64_t, >) 3809 3810 DO_CMP_PPZI_B(sve_cmpge_ppzi_b, int8_t, >=) 3811 DO_CMP_PPZI_H(sve_cmpge_ppzi_h, int16_t, >=) 3812 DO_CMP_PPZI_S(sve_cmpge_ppzi_s, int32_t, >=) 3813 DO_CMP_PPZI_D(sve_cmpge_ppzi_d, int64_t, >=) 3814 3815 DO_CMP_PPZI_B(sve_cmphi_ppzi_b, uint8_t, >) 3816 DO_CMP_PPZI_H(sve_cmphi_ppzi_h, uint16_t, >) 3817 DO_CMP_PPZI_S(sve_cmphi_ppzi_s, uint32_t, >) 3818 DO_CMP_PPZI_D(sve_cmphi_ppzi_d, uint64_t, >) 3819 3820 DO_CMP_PPZI_B(sve_cmphs_ppzi_b, uint8_t, >=) 3821 DO_CMP_PPZI_H(sve_cmphs_ppzi_h, uint16_t, >=) 3822 DO_CMP_PPZI_S(sve_cmphs_ppzi_s, uint32_t, >=) 3823 DO_CMP_PPZI_D(sve_cmphs_ppzi_d, uint64_t, >=) 3824 3825 DO_CMP_PPZI_B(sve_cmplt_ppzi_b, int8_t, <) 3826 DO_CMP_PPZI_H(sve_cmplt_ppzi_h, int16_t, <) 3827 DO_CMP_PPZI_S(sve_cmplt_ppzi_s, int32_t, <) 3828 DO_CMP_PPZI_D(sve_cmplt_ppzi_d, int64_t, <) 3829 3830 DO_CMP_PPZI_B(sve_cmple_ppzi_b, int8_t, <=) 3831 DO_CMP_PPZI_H(sve_cmple_ppzi_h, int16_t, <=) 3832 DO_CMP_PPZI_S(sve_cmple_ppzi_s, int32_t, <=) 3833 DO_CMP_PPZI_D(sve_cmple_ppzi_d, int64_t, <=) 3834 3835 DO_CMP_PPZI_B(sve_cmplo_ppzi_b, uint8_t, <) 3836 DO_CMP_PPZI_H(sve_cmplo_ppzi_h, uint16_t, <) 3837 DO_CMP_PPZI_S(sve_cmplo_ppzi_s, uint32_t, <) 3838 DO_CMP_PPZI_D(sve_cmplo_ppzi_d, uint64_t, <) 3839 3840 DO_CMP_PPZI_B(sve_cmpls_ppzi_b, uint8_t, <=) 3841 DO_CMP_PPZI_H(sve_cmpls_ppzi_h, uint16_t, <=) 3842 DO_CMP_PPZI_S(sve_cmpls_ppzi_s, uint32_t, <=) 3843 DO_CMP_PPZI_D(sve_cmpls_ppzi_d, uint64_t, <=) 3844 3845 #undef DO_CMP_PPZI_B 3846 #undef DO_CMP_PPZI_H 3847 #undef DO_CMP_PPZI_S 3848 #undef DO_CMP_PPZI_D 3849 #undef DO_CMP_PPZI 3850 3851 /* Similar to the ARM LastActive pseudocode function. */ 3852 static bool last_active_pred(void *vd, void *vg, intptr_t oprsz) 3853 { 3854 intptr_t i; 3855 3856 for (i = QEMU_ALIGN_UP(oprsz, 8) - 8; i >= 0; i -= 8) { 3857 uint64_t pg = *(uint64_t *)(vg + i); 3858 if (pg) { 3859 return (pow2floor(pg) & *(uint64_t *)(vd + i)) != 0; 3860 } 3861 } 3862 return 0; 3863 } 3864 3865 /* Compute a mask into RETB that is true for all G, up to and including 3866 * (if after) or excluding (if !after) the first G & N. 3867 * Return true if BRK found. 3868 */ 3869 static bool compute_brk(uint64_t *retb, uint64_t n, uint64_t g, 3870 bool brk, bool after) 3871 { 3872 uint64_t b; 3873 3874 if (brk) { 3875 b = 0; 3876 } else if ((g & n) == 0) { 3877 /* For all G, no N are set; break not found. */ 3878 b = g; 3879 } else { 3880 /* Break somewhere in N. Locate it. */ 3881 b = g & n; /* guard true, pred true */ 3882 b = b & -b; /* first such */ 3883 if (after) { 3884 b = b | (b - 1); /* break after same */ 3885 } else { 3886 b = b - 1; /* break before same */ 3887 } 3888 brk = true; 3889 } 3890 3891 *retb = b; 3892 return brk; 3893 } 3894 3895 /* Compute a zeroing BRK. */ 3896 static void compute_brk_z(uint64_t *d, uint64_t *n, uint64_t *g, 3897 intptr_t oprsz, bool after) 3898 { 3899 bool brk = false; 3900 intptr_t i; 3901 3902 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) { 3903 uint64_t this_b, this_g = g[i]; 3904 3905 brk = compute_brk(&this_b, n[i], this_g, brk, after); 3906 d[i] = this_b & this_g; 3907 } 3908 } 3909 3910 /* Likewise, but also compute flags. */ 3911 static uint32_t compute_brks_z(uint64_t *d, uint64_t *n, uint64_t *g, 3912 intptr_t oprsz, bool after) 3913 { 3914 uint32_t flags = PREDTEST_INIT; 3915 bool brk = false; 3916 intptr_t i; 3917 3918 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) { 3919 uint64_t this_b, this_d, this_g = g[i]; 3920 3921 brk = compute_brk(&this_b, n[i], this_g, brk, after); 3922 d[i] = this_d = this_b & this_g; 3923 flags = iter_predtest_fwd(this_d, this_g, flags); 3924 } 3925 return flags; 3926 } 3927 3928 /* Compute a merging BRK. */ 3929 static void compute_brk_m(uint64_t *d, uint64_t *n, uint64_t *g, 3930 intptr_t oprsz, bool after) 3931 { 3932 bool brk = false; 3933 intptr_t i; 3934 3935 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) { 3936 uint64_t this_b, this_g = g[i]; 3937 3938 brk = compute_brk(&this_b, n[i], this_g, brk, after); 3939 d[i] = (this_b & this_g) | (d[i] & ~this_g); 3940 } 3941 } 3942 3943 /* Likewise, but also compute flags. */ 3944 static uint32_t compute_brks_m(uint64_t *d, uint64_t *n, uint64_t *g, 3945 intptr_t oprsz, bool after) 3946 { 3947 uint32_t flags = PREDTEST_INIT; 3948 bool brk = false; 3949 intptr_t i; 3950 3951 for (i = 0; i < oprsz / 8; ++i) { 3952 uint64_t this_b, this_d = d[i], this_g = g[i]; 3953 3954 brk = compute_brk(&this_b, n[i], this_g, brk, after); 3955 d[i] = this_d = (this_b & this_g) | (this_d & ~this_g); 3956 flags = iter_predtest_fwd(this_d, this_g, flags); 3957 } 3958 return flags; 3959 } 3960 3961 static uint32_t do_zero(ARMPredicateReg *d, intptr_t oprsz) 3962 { 3963 /* It is quicker to zero the whole predicate than loop on OPRSZ. 3964 * The compiler should turn this into 4 64-bit integer stores. 3965 */ 3966 memset(d, 0, sizeof(ARMPredicateReg)); 3967 return PREDTEST_INIT; 3968 } 3969 3970 void HELPER(sve_brkpa)(void *vd, void *vn, void *vm, void *vg, 3971 uint32_t pred_desc) 3972 { 3973 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 3974 if (last_active_pred(vn, vg, oprsz)) { 3975 compute_brk_z(vd, vm, vg, oprsz, true); 3976 } else { 3977 do_zero(vd, oprsz); 3978 } 3979 } 3980 3981 uint32_t HELPER(sve_brkpas)(void *vd, void *vn, void *vm, void *vg, 3982 uint32_t pred_desc) 3983 { 3984 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 3985 if (last_active_pred(vn, vg, oprsz)) { 3986 return compute_brks_z(vd, vm, vg, oprsz, true); 3987 } else { 3988 return do_zero(vd, oprsz); 3989 } 3990 } 3991 3992 void HELPER(sve_brkpb)(void *vd, void *vn, void *vm, void *vg, 3993 uint32_t pred_desc) 3994 { 3995 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 3996 if (last_active_pred(vn, vg, oprsz)) { 3997 compute_brk_z(vd, vm, vg, oprsz, false); 3998 } else { 3999 do_zero(vd, oprsz); 4000 } 4001 } 4002 4003 uint32_t HELPER(sve_brkpbs)(void *vd, void *vn, void *vm, void *vg, 4004 uint32_t pred_desc) 4005 { 4006 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 4007 if (last_active_pred(vn, vg, oprsz)) { 4008 return compute_brks_z(vd, vm, vg, oprsz, false); 4009 } else { 4010 return do_zero(vd, oprsz); 4011 } 4012 } 4013 4014 void HELPER(sve_brka_z)(void *vd, void *vn, void *vg, uint32_t pred_desc) 4015 { 4016 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 4017 compute_brk_z(vd, vn, vg, oprsz, true); 4018 } 4019 4020 uint32_t HELPER(sve_brkas_z)(void *vd, void *vn, void *vg, uint32_t pred_desc) 4021 { 4022 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 4023 return compute_brks_z(vd, vn, vg, oprsz, true); 4024 } 4025 4026 void HELPER(sve_brkb_z)(void *vd, void *vn, void *vg, uint32_t pred_desc) 4027 { 4028 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 4029 compute_brk_z(vd, vn, vg, oprsz, false); 4030 } 4031 4032 uint32_t HELPER(sve_brkbs_z)(void *vd, void *vn, void *vg, uint32_t pred_desc) 4033 { 4034 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 4035 return compute_brks_z(vd, vn, vg, oprsz, false); 4036 } 4037 4038 void HELPER(sve_brka_m)(void *vd, void *vn, void *vg, uint32_t pred_desc) 4039 { 4040 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 4041 compute_brk_m(vd, vn, vg, oprsz, true); 4042 } 4043 4044 uint32_t HELPER(sve_brkas_m)(void *vd, void *vn, void *vg, uint32_t pred_desc) 4045 { 4046 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 4047 return compute_brks_m(vd, vn, vg, oprsz, true); 4048 } 4049 4050 void HELPER(sve_brkb_m)(void *vd, void *vn, void *vg, uint32_t pred_desc) 4051 { 4052 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 4053 compute_brk_m(vd, vn, vg, oprsz, false); 4054 } 4055 4056 uint32_t HELPER(sve_brkbs_m)(void *vd, void *vn, void *vg, uint32_t pred_desc) 4057 { 4058 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 4059 return compute_brks_m(vd, vn, vg, oprsz, false); 4060 } 4061 4062 void HELPER(sve_brkn)(void *vd, void *vn, void *vg, uint32_t pred_desc) 4063 { 4064 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 4065 if (!last_active_pred(vn, vg, oprsz)) { 4066 do_zero(vd, oprsz); 4067 } 4068 } 4069 4070 /* As if PredTest(Ones(PL), D, esz). */ 4071 static uint32_t predtest_ones(ARMPredicateReg *d, intptr_t oprsz, 4072 uint64_t esz_mask) 4073 { 4074 uint32_t flags = PREDTEST_INIT; 4075 intptr_t i; 4076 4077 for (i = 0; i < oprsz / 8; i++) { 4078 flags = iter_predtest_fwd(d->p[i], esz_mask, flags); 4079 } 4080 if (oprsz & 7) { 4081 uint64_t mask = ~(-1ULL << (8 * (oprsz & 7))); 4082 flags = iter_predtest_fwd(d->p[i], esz_mask & mask, flags); 4083 } 4084 return flags; 4085 } 4086 4087 uint32_t HELPER(sve_brkns)(void *vd, void *vn, void *vg, uint32_t pred_desc) 4088 { 4089 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 4090 if (last_active_pred(vn, vg, oprsz)) { 4091 return predtest_ones(vd, oprsz, -1); 4092 } else { 4093 return do_zero(vd, oprsz); 4094 } 4095 } 4096 4097 uint64_t HELPER(sve_cntp)(void *vn, void *vg, uint32_t pred_desc) 4098 { 4099 intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8); 4100 intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); 4101 uint64_t *n = vn, *g = vg, sum = 0, mask = pred_esz_masks[esz]; 4102 intptr_t i; 4103 4104 for (i = 0; i < words; ++i) { 4105 uint64_t t = n[i] & g[i] & mask; 4106 sum += ctpop64(t); 4107 } 4108 return sum; 4109 } 4110 4111 uint32_t HELPER(sve_whilel)(void *vd, uint32_t count, uint32_t pred_desc) 4112 { 4113 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 4114 intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); 4115 uint64_t esz_mask = pred_esz_masks[esz]; 4116 ARMPredicateReg *d = vd; 4117 uint32_t flags; 4118 intptr_t i; 4119 4120 /* Begin with a zero predicate register. */ 4121 flags = do_zero(d, oprsz); 4122 if (count == 0) { 4123 return flags; 4124 } 4125 4126 /* Set all of the requested bits. */ 4127 for (i = 0; i < count / 64; ++i) { 4128 d->p[i] = esz_mask; 4129 } 4130 if (count & 63) { 4131 d->p[i] = MAKE_64BIT_MASK(0, count & 63) & esz_mask; 4132 } 4133 4134 return predtest_ones(d, oprsz, esz_mask); 4135 } 4136 4137 uint32_t HELPER(sve_whileg)(void *vd, uint32_t count, uint32_t pred_desc) 4138 { 4139 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); 4140 intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); 4141 uint64_t esz_mask = pred_esz_masks[esz]; 4142 ARMPredicateReg *d = vd; 4143 intptr_t i, invcount, oprbits; 4144 uint64_t bits; 4145 4146 if (count == 0) { 4147 return do_zero(d, oprsz); 4148 } 4149 4150 oprbits = oprsz * 8; 4151 tcg_debug_assert(count <= oprbits); 4152 4153 bits = esz_mask; 4154 if (oprbits & 63) { 4155 bits &= MAKE_64BIT_MASK(0, oprbits & 63); 4156 } 4157 4158 invcount = oprbits - count; 4159 for (i = (oprsz - 1) / 8; i > invcount / 64; --i) { 4160 d->p[i] = bits; 4161 bits = esz_mask; 4162 } 4163 4164 d->p[i] = bits & MAKE_64BIT_MASK(invcount & 63, 64); 4165 4166 while (--i >= 0) { 4167 d->p[i] = 0; 4168 } 4169 4170 return predtest_ones(d, oprsz, esz_mask); 4171 } 4172 4173 /* Recursive reduction on a function; 4174 * C.f. the ARM ARM function ReducePredicated. 4175 * 4176 * While it would be possible to write this without the DATA temporary, 4177 * it is much simpler to process the predicate register this way. 4178 * The recursion is bounded to depth 7 (128 fp16 elements), so there's 4179 * little to gain with a more complex non-recursive form. 4180 */ 4181 #define DO_REDUCE(NAME, TYPE, H, FUNC, IDENT) \ 4182 static TYPE NAME##_reduce(TYPE *data, float_status *status, uintptr_t n) \ 4183 { \ 4184 if (n == 1) { \ 4185 return *data; \ 4186 } else { \ 4187 uintptr_t half = n / 2; \ 4188 TYPE lo = NAME##_reduce(data, status, half); \ 4189 TYPE hi = NAME##_reduce(data + half, status, half); \ 4190 return TYPE##_##FUNC(lo, hi, status); \ 4191 } \ 4192 } \ 4193 uint64_t HELPER(NAME)(void *vn, void *vg, void *vs, uint32_t desc) \ 4194 { \ 4195 uintptr_t i, oprsz = simd_oprsz(desc), maxsz = simd_data(desc); \ 4196 TYPE data[sizeof(ARMVectorReg) / sizeof(TYPE)]; \ 4197 for (i = 0; i < oprsz; ) { \ 4198 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ 4199 do { \ 4200 TYPE nn = *(TYPE *)(vn + H(i)); \ 4201 *(TYPE *)((void *)data + i) = (pg & 1 ? nn : IDENT); \ 4202 i += sizeof(TYPE), pg >>= sizeof(TYPE); \ 4203 } while (i & 15); \ 4204 } \ 4205 for (; i < maxsz; i += sizeof(TYPE)) { \ 4206 *(TYPE *)((void *)data + i) = IDENT; \ 4207 } \ 4208 return NAME##_reduce(data, vs, maxsz / sizeof(TYPE)); \ 4209 } 4210 4211 DO_REDUCE(sve_faddv_h, float16, H1_2, add, float16_zero) 4212 DO_REDUCE(sve_faddv_s, float32, H1_4, add, float32_zero) 4213 DO_REDUCE(sve_faddv_d, float64, H1_8, add, float64_zero) 4214 4215 /* Identity is floatN_default_nan, without the function call. */ 4216 DO_REDUCE(sve_fminnmv_h, float16, H1_2, minnum, 0x7E00) 4217 DO_REDUCE(sve_fminnmv_s, float32, H1_4, minnum, 0x7FC00000) 4218 DO_REDUCE(sve_fminnmv_d, float64, H1_8, minnum, 0x7FF8000000000000ULL) 4219 4220 DO_REDUCE(sve_fmaxnmv_h, float16, H1_2, maxnum, 0x7E00) 4221 DO_REDUCE(sve_fmaxnmv_s, float32, H1_4, maxnum, 0x7FC00000) 4222 DO_REDUCE(sve_fmaxnmv_d, float64, H1_8, maxnum, 0x7FF8000000000000ULL) 4223 4224 DO_REDUCE(sve_fminv_h, float16, H1_2, min, float16_infinity) 4225 DO_REDUCE(sve_fminv_s, float32, H1_4, min, float32_infinity) 4226 DO_REDUCE(sve_fminv_d, float64, H1_8, min, float64_infinity) 4227 4228 DO_REDUCE(sve_fmaxv_h, float16, H1_2, max, float16_chs(float16_infinity)) 4229 DO_REDUCE(sve_fmaxv_s, float32, H1_4, max, float32_chs(float32_infinity)) 4230 DO_REDUCE(sve_fmaxv_d, float64, H1_8, max, float64_chs(float64_infinity)) 4231 4232 #undef DO_REDUCE 4233 4234 uint64_t HELPER(sve_fadda_h)(uint64_t nn, void *vm, void *vg, 4235 void *status, uint32_t desc) 4236 { 4237 intptr_t i = 0, opr_sz = simd_oprsz(desc); 4238 float16 result = nn; 4239 4240 do { 4241 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); 4242 do { 4243 if (pg & 1) { 4244 float16 mm = *(float16 *)(vm + H1_2(i)); 4245 result = float16_add(result, mm, status); 4246 } 4247 i += sizeof(float16), pg >>= sizeof(float16); 4248 } while (i & 15); 4249 } while (i < opr_sz); 4250 4251 return result; 4252 } 4253 4254 uint64_t HELPER(sve_fadda_s)(uint64_t nn, void *vm, void *vg, 4255 void *status, uint32_t desc) 4256 { 4257 intptr_t i = 0, opr_sz = simd_oprsz(desc); 4258 float32 result = nn; 4259 4260 do { 4261 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); 4262 do { 4263 if (pg & 1) { 4264 float32 mm = *(float32 *)(vm + H1_2(i)); 4265 result = float32_add(result, mm, status); 4266 } 4267 i += sizeof(float32), pg >>= sizeof(float32); 4268 } while (i & 15); 4269 } while (i < opr_sz); 4270 4271 return result; 4272 } 4273 4274 uint64_t HELPER(sve_fadda_d)(uint64_t nn, void *vm, void *vg, 4275 void *status, uint32_t desc) 4276 { 4277 intptr_t i = 0, opr_sz = simd_oprsz(desc) / 8; 4278 uint64_t *m = vm; 4279 uint8_t *pg = vg; 4280 4281 for (i = 0; i < opr_sz; i++) { 4282 if (pg[H1(i)] & 1) { 4283 nn = float64_add(nn, m[i], status); 4284 } 4285 } 4286 4287 return nn; 4288 } 4289 4290 /* Fully general three-operand expander, controlled by a predicate, 4291 * With the extra float_status parameter. 4292 */ 4293 #define DO_ZPZZ_FP(NAME, TYPE, H, OP) \ 4294 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \ 4295 void *status, uint32_t desc) \ 4296 { \ 4297 intptr_t i = simd_oprsz(desc); \ 4298 uint64_t *g = vg; \ 4299 do { \ 4300 uint64_t pg = g[(i - 1) >> 6]; \ 4301 do { \ 4302 i -= sizeof(TYPE); \ 4303 if (likely((pg >> (i & 63)) & 1)) { \ 4304 TYPE nn = *(TYPE *)(vn + H(i)); \ 4305 TYPE mm = *(TYPE *)(vm + H(i)); \ 4306 *(TYPE *)(vd + H(i)) = OP(nn, mm, status); \ 4307 } \ 4308 } while (i & 63); \ 4309 } while (i != 0); \ 4310 } 4311 4312 DO_ZPZZ_FP(sve_fadd_h, uint16_t, H1_2, float16_add) 4313 DO_ZPZZ_FP(sve_fadd_s, uint32_t, H1_4, float32_add) 4314 DO_ZPZZ_FP(sve_fadd_d, uint64_t, H1_8, float64_add) 4315 4316 DO_ZPZZ_FP(sve_fsub_h, uint16_t, H1_2, float16_sub) 4317 DO_ZPZZ_FP(sve_fsub_s, uint32_t, H1_4, float32_sub) 4318 DO_ZPZZ_FP(sve_fsub_d, uint64_t, H1_8, float64_sub) 4319 4320 DO_ZPZZ_FP(sve_fmul_h, uint16_t, H1_2, float16_mul) 4321 DO_ZPZZ_FP(sve_fmul_s, uint32_t, H1_4, float32_mul) 4322 DO_ZPZZ_FP(sve_fmul_d, uint64_t, H1_8, float64_mul) 4323 4324 DO_ZPZZ_FP(sve_fdiv_h, uint16_t, H1_2, float16_div) 4325 DO_ZPZZ_FP(sve_fdiv_s, uint32_t, H1_4, float32_div) 4326 DO_ZPZZ_FP(sve_fdiv_d, uint64_t, H1_8, float64_div) 4327 4328 DO_ZPZZ_FP(sve_fmin_h, uint16_t, H1_2, float16_min) 4329 DO_ZPZZ_FP(sve_fmin_s, uint32_t, H1_4, float32_min) 4330 DO_ZPZZ_FP(sve_fmin_d, uint64_t, H1_8, float64_min) 4331 4332 DO_ZPZZ_FP(sve_fmax_h, uint16_t, H1_2, float16_max) 4333 DO_ZPZZ_FP(sve_fmax_s, uint32_t, H1_4, float32_max) 4334 DO_ZPZZ_FP(sve_fmax_d, uint64_t, H1_8, float64_max) 4335 4336 DO_ZPZZ_FP(sve_fminnum_h, uint16_t, H1_2, float16_minnum) 4337 DO_ZPZZ_FP(sve_fminnum_s, uint32_t, H1_4, float32_minnum) 4338 DO_ZPZZ_FP(sve_fminnum_d, uint64_t, H1_8, float64_minnum) 4339 4340 DO_ZPZZ_FP(sve_fmaxnum_h, uint16_t, H1_2, float16_maxnum) 4341 DO_ZPZZ_FP(sve_fmaxnum_s, uint32_t, H1_4, float32_maxnum) 4342 DO_ZPZZ_FP(sve_fmaxnum_d, uint64_t, H1_8, float64_maxnum) 4343 4344 static inline float16 abd_h(float16 a, float16 b, float_status *s) 4345 { 4346 return float16_abs(float16_sub(a, b, s)); 4347 } 4348 4349 static inline float32 abd_s(float32 a, float32 b, float_status *s) 4350 { 4351 return float32_abs(float32_sub(a, b, s)); 4352 } 4353 4354 static inline float64 abd_d(float64 a, float64 b, float_status *s) 4355 { 4356 return float64_abs(float64_sub(a, b, s)); 4357 } 4358 4359 DO_ZPZZ_FP(sve_fabd_h, uint16_t, H1_2, abd_h) 4360 DO_ZPZZ_FP(sve_fabd_s, uint32_t, H1_4, abd_s) 4361 DO_ZPZZ_FP(sve_fabd_d, uint64_t, H1_8, abd_d) 4362 4363 static inline float64 scalbn_d(float64 a, int64_t b, float_status *s) 4364 { 4365 int b_int = MIN(MAX(b, INT_MIN), INT_MAX); 4366 return float64_scalbn(a, b_int, s); 4367 } 4368 4369 DO_ZPZZ_FP(sve_fscalbn_h, int16_t, H1_2, float16_scalbn) 4370 DO_ZPZZ_FP(sve_fscalbn_s, int32_t, H1_4, float32_scalbn) 4371 DO_ZPZZ_FP(sve_fscalbn_d, int64_t, H1_8, scalbn_d) 4372 4373 DO_ZPZZ_FP(sve_fmulx_h, uint16_t, H1_2, helper_advsimd_mulxh) 4374 DO_ZPZZ_FP(sve_fmulx_s, uint32_t, H1_4, helper_vfp_mulxs) 4375 DO_ZPZZ_FP(sve_fmulx_d, uint64_t, H1_8, helper_vfp_mulxd) 4376 4377 #undef DO_ZPZZ_FP 4378 4379 /* Three-operand expander, with one scalar operand, controlled by 4380 * a predicate, with the extra float_status parameter. 4381 */ 4382 #define DO_ZPZS_FP(NAME, TYPE, H, OP) \ 4383 void HELPER(NAME)(void *vd, void *vn, void *vg, uint64_t scalar, \ 4384 void *status, uint32_t desc) \ 4385 { \ 4386 intptr_t i = simd_oprsz(desc); \ 4387 uint64_t *g = vg; \ 4388 TYPE mm = scalar; \ 4389 do { \ 4390 uint64_t pg = g[(i - 1) >> 6]; \ 4391 do { \ 4392 i -= sizeof(TYPE); \ 4393 if (likely((pg >> (i & 63)) & 1)) { \ 4394 TYPE nn = *(TYPE *)(vn + H(i)); \ 4395 *(TYPE *)(vd + H(i)) = OP(nn, mm, status); \ 4396 } \ 4397 } while (i & 63); \ 4398 } while (i != 0); \ 4399 } 4400 4401 DO_ZPZS_FP(sve_fadds_h, float16, H1_2, float16_add) 4402 DO_ZPZS_FP(sve_fadds_s, float32, H1_4, float32_add) 4403 DO_ZPZS_FP(sve_fadds_d, float64, H1_8, float64_add) 4404 4405 DO_ZPZS_FP(sve_fsubs_h, float16, H1_2, float16_sub) 4406 DO_ZPZS_FP(sve_fsubs_s, float32, H1_4, float32_sub) 4407 DO_ZPZS_FP(sve_fsubs_d, float64, H1_8, float64_sub) 4408 4409 DO_ZPZS_FP(sve_fmuls_h, float16, H1_2, float16_mul) 4410 DO_ZPZS_FP(sve_fmuls_s, float32, H1_4, float32_mul) 4411 DO_ZPZS_FP(sve_fmuls_d, float64, H1_8, float64_mul) 4412 4413 static inline float16 subr_h(float16 a, float16 b, float_status *s) 4414 { 4415 return float16_sub(b, a, s); 4416 } 4417 4418 static inline float32 subr_s(float32 a, float32 b, float_status *s) 4419 { 4420 return float32_sub(b, a, s); 4421 } 4422 4423 static inline float64 subr_d(float64 a, float64 b, float_status *s) 4424 { 4425 return float64_sub(b, a, s); 4426 } 4427 4428 DO_ZPZS_FP(sve_fsubrs_h, float16, H1_2, subr_h) 4429 DO_ZPZS_FP(sve_fsubrs_s, float32, H1_4, subr_s) 4430 DO_ZPZS_FP(sve_fsubrs_d, float64, H1_8, subr_d) 4431 4432 DO_ZPZS_FP(sve_fmaxnms_h, float16, H1_2, float16_maxnum) 4433 DO_ZPZS_FP(sve_fmaxnms_s, float32, H1_4, float32_maxnum) 4434 DO_ZPZS_FP(sve_fmaxnms_d, float64, H1_8, float64_maxnum) 4435 4436 DO_ZPZS_FP(sve_fminnms_h, float16, H1_2, float16_minnum) 4437 DO_ZPZS_FP(sve_fminnms_s, float32, H1_4, float32_minnum) 4438 DO_ZPZS_FP(sve_fminnms_d, float64, H1_8, float64_minnum) 4439 4440 DO_ZPZS_FP(sve_fmaxs_h, float16, H1_2, float16_max) 4441 DO_ZPZS_FP(sve_fmaxs_s, float32, H1_4, float32_max) 4442 DO_ZPZS_FP(sve_fmaxs_d, float64, H1_8, float64_max) 4443 4444 DO_ZPZS_FP(sve_fmins_h, float16, H1_2, float16_min) 4445 DO_ZPZS_FP(sve_fmins_s, float32, H1_4, float32_min) 4446 DO_ZPZS_FP(sve_fmins_d, float64, H1_8, float64_min) 4447 4448 /* Fully general two-operand expander, controlled by a predicate, 4449 * With the extra float_status parameter. 4450 */ 4451 #define DO_ZPZ_FP(NAME, TYPE, H, OP) \ 4452 void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc) \ 4453 { \ 4454 intptr_t i = simd_oprsz(desc); \ 4455 uint64_t *g = vg; \ 4456 do { \ 4457 uint64_t pg = g[(i - 1) >> 6]; \ 4458 do { \ 4459 i -= sizeof(TYPE); \ 4460 if (likely((pg >> (i & 63)) & 1)) { \ 4461 TYPE nn = *(TYPE *)(vn + H(i)); \ 4462 *(TYPE *)(vd + H(i)) = OP(nn, status); \ 4463 } \ 4464 } while (i & 63); \ 4465 } while (i != 0); \ 4466 } 4467 4468 /* SVE fp16 conversions always use IEEE mode. Like AdvSIMD, they ignore 4469 * FZ16. When converting from fp16, this affects flushing input denormals; 4470 * when converting to fp16, this affects flushing output denormals. 4471 */ 4472 static inline float32 sve_f16_to_f32(float16 f, float_status *fpst) 4473 { 4474 bool save = get_flush_inputs_to_zero(fpst); 4475 float32 ret; 4476 4477 set_flush_inputs_to_zero(false, fpst); 4478 ret = float16_to_float32(f, true, fpst); 4479 set_flush_inputs_to_zero(save, fpst); 4480 return ret; 4481 } 4482 4483 static inline float64 sve_f16_to_f64(float16 f, float_status *fpst) 4484 { 4485 bool save = get_flush_inputs_to_zero(fpst); 4486 float64 ret; 4487 4488 set_flush_inputs_to_zero(false, fpst); 4489 ret = float16_to_float64(f, true, fpst); 4490 set_flush_inputs_to_zero(save, fpst); 4491 return ret; 4492 } 4493 4494 static inline float16 sve_f32_to_f16(float32 f, float_status *fpst) 4495 { 4496 bool save = get_flush_to_zero(fpst); 4497 float16 ret; 4498 4499 set_flush_to_zero(false, fpst); 4500 ret = float32_to_float16(f, true, fpst); 4501 set_flush_to_zero(save, fpst); 4502 return ret; 4503 } 4504 4505 static inline float16 sve_f64_to_f16(float64 f, float_status *fpst) 4506 { 4507 bool save = get_flush_to_zero(fpst); 4508 float16 ret; 4509 4510 set_flush_to_zero(false, fpst); 4511 ret = float64_to_float16(f, true, fpst); 4512 set_flush_to_zero(save, fpst); 4513 return ret; 4514 } 4515 4516 static inline int16_t vfp_float16_to_int16_rtz(float16 f, float_status *s) 4517 { 4518 if (float16_is_any_nan(f)) { 4519 float_raise(float_flag_invalid, s); 4520 return 0; 4521 } 4522 return float16_to_int16_round_to_zero(f, s); 4523 } 4524 4525 static inline int64_t vfp_float16_to_int64_rtz(float16 f, float_status *s) 4526 { 4527 if (float16_is_any_nan(f)) { 4528 float_raise(float_flag_invalid, s); 4529 return 0; 4530 } 4531 return float16_to_int64_round_to_zero(f, s); 4532 } 4533 4534 static inline int64_t vfp_float32_to_int64_rtz(float32 f, float_status *s) 4535 { 4536 if (float32_is_any_nan(f)) { 4537 float_raise(float_flag_invalid, s); 4538 return 0; 4539 } 4540 return float32_to_int64_round_to_zero(f, s); 4541 } 4542 4543 static inline int64_t vfp_float64_to_int64_rtz(float64 f, float_status *s) 4544 { 4545 if (float64_is_any_nan(f)) { 4546 float_raise(float_flag_invalid, s); 4547 return 0; 4548 } 4549 return float64_to_int64_round_to_zero(f, s); 4550 } 4551 4552 static inline uint16_t vfp_float16_to_uint16_rtz(float16 f, float_status *s) 4553 { 4554 if (float16_is_any_nan(f)) { 4555 float_raise(float_flag_invalid, s); 4556 return 0; 4557 } 4558 return float16_to_uint16_round_to_zero(f, s); 4559 } 4560 4561 static inline uint64_t vfp_float16_to_uint64_rtz(float16 f, float_status *s) 4562 { 4563 if (float16_is_any_nan(f)) { 4564 float_raise(float_flag_invalid, s); 4565 return 0; 4566 } 4567 return float16_to_uint64_round_to_zero(f, s); 4568 } 4569 4570 static inline uint64_t vfp_float32_to_uint64_rtz(float32 f, float_status *s) 4571 { 4572 if (float32_is_any_nan(f)) { 4573 float_raise(float_flag_invalid, s); 4574 return 0; 4575 } 4576 return float32_to_uint64_round_to_zero(f, s); 4577 } 4578 4579 static inline uint64_t vfp_float64_to_uint64_rtz(float64 f, float_status *s) 4580 { 4581 if (float64_is_any_nan(f)) { 4582 float_raise(float_flag_invalid, s); 4583 return 0; 4584 } 4585 return float64_to_uint64_round_to_zero(f, s); 4586 } 4587 4588 DO_ZPZ_FP(sve_fcvt_sh, uint32_t, H1_4, sve_f32_to_f16) 4589 DO_ZPZ_FP(sve_fcvt_hs, uint32_t, H1_4, sve_f16_to_f32) 4590 DO_ZPZ_FP(sve_bfcvt, uint32_t, H1_4, float32_to_bfloat16) 4591 DO_ZPZ_FP(sve_fcvt_dh, uint64_t, H1_8, sve_f64_to_f16) 4592 DO_ZPZ_FP(sve_fcvt_hd, uint64_t, H1_8, sve_f16_to_f64) 4593 DO_ZPZ_FP(sve_fcvt_ds, uint64_t, H1_8, float64_to_float32) 4594 DO_ZPZ_FP(sve_fcvt_sd, uint64_t, H1_8, float32_to_float64) 4595 4596 DO_ZPZ_FP(sve_fcvtzs_hh, uint16_t, H1_2, vfp_float16_to_int16_rtz) 4597 DO_ZPZ_FP(sve_fcvtzs_hs, uint32_t, H1_4, helper_vfp_tosizh) 4598 DO_ZPZ_FP(sve_fcvtzs_ss, uint32_t, H1_4, helper_vfp_tosizs) 4599 DO_ZPZ_FP(sve_fcvtzs_hd, uint64_t, H1_8, vfp_float16_to_int64_rtz) 4600 DO_ZPZ_FP(sve_fcvtzs_sd, uint64_t, H1_8, vfp_float32_to_int64_rtz) 4601 DO_ZPZ_FP(sve_fcvtzs_ds, uint64_t, H1_8, helper_vfp_tosizd) 4602 DO_ZPZ_FP(sve_fcvtzs_dd, uint64_t, H1_8, vfp_float64_to_int64_rtz) 4603 4604 DO_ZPZ_FP(sve_fcvtzu_hh, uint16_t, H1_2, vfp_float16_to_uint16_rtz) 4605 DO_ZPZ_FP(sve_fcvtzu_hs, uint32_t, H1_4, helper_vfp_touizh) 4606 DO_ZPZ_FP(sve_fcvtzu_ss, uint32_t, H1_4, helper_vfp_touizs) 4607 DO_ZPZ_FP(sve_fcvtzu_hd, uint64_t, H1_8, vfp_float16_to_uint64_rtz) 4608 DO_ZPZ_FP(sve_fcvtzu_sd, uint64_t, H1_8, vfp_float32_to_uint64_rtz) 4609 DO_ZPZ_FP(sve_fcvtzu_ds, uint64_t, H1_8, helper_vfp_touizd) 4610 DO_ZPZ_FP(sve_fcvtzu_dd, uint64_t, H1_8, vfp_float64_to_uint64_rtz) 4611 4612 DO_ZPZ_FP(sve_frint_h, uint16_t, H1_2, helper_advsimd_rinth) 4613 DO_ZPZ_FP(sve_frint_s, uint32_t, H1_4, helper_rints) 4614 DO_ZPZ_FP(sve_frint_d, uint64_t, H1_8, helper_rintd) 4615 4616 DO_ZPZ_FP(sve_frintx_h, uint16_t, H1_2, float16_round_to_int) 4617 DO_ZPZ_FP(sve_frintx_s, uint32_t, H1_4, float32_round_to_int) 4618 DO_ZPZ_FP(sve_frintx_d, uint64_t, H1_8, float64_round_to_int) 4619 4620 DO_ZPZ_FP(sve_frecpx_h, uint16_t, H1_2, helper_frecpx_f16) 4621 DO_ZPZ_FP(sve_frecpx_s, uint32_t, H1_4, helper_frecpx_f32) 4622 DO_ZPZ_FP(sve_frecpx_d, uint64_t, H1_8, helper_frecpx_f64) 4623 4624 DO_ZPZ_FP(sve_fsqrt_h, uint16_t, H1_2, float16_sqrt) 4625 DO_ZPZ_FP(sve_fsqrt_s, uint32_t, H1_4, float32_sqrt) 4626 DO_ZPZ_FP(sve_fsqrt_d, uint64_t, H1_8, float64_sqrt) 4627 4628 DO_ZPZ_FP(sve_scvt_hh, uint16_t, H1_2, int16_to_float16) 4629 DO_ZPZ_FP(sve_scvt_sh, uint32_t, H1_4, int32_to_float16) 4630 DO_ZPZ_FP(sve_scvt_ss, uint32_t, H1_4, int32_to_float32) 4631 DO_ZPZ_FP(sve_scvt_sd, uint64_t, H1_8, int32_to_float64) 4632 DO_ZPZ_FP(sve_scvt_dh, uint64_t, H1_8, int64_to_float16) 4633 DO_ZPZ_FP(sve_scvt_ds, uint64_t, H1_8, int64_to_float32) 4634 DO_ZPZ_FP(sve_scvt_dd, uint64_t, H1_8, int64_to_float64) 4635 4636 DO_ZPZ_FP(sve_ucvt_hh, uint16_t, H1_2, uint16_to_float16) 4637 DO_ZPZ_FP(sve_ucvt_sh, uint32_t, H1_4, uint32_to_float16) 4638 DO_ZPZ_FP(sve_ucvt_ss, uint32_t, H1_4, uint32_to_float32) 4639 DO_ZPZ_FP(sve_ucvt_sd, uint64_t, H1_8, uint32_to_float64) 4640 DO_ZPZ_FP(sve_ucvt_dh, uint64_t, H1_8, uint64_to_float16) 4641 DO_ZPZ_FP(sve_ucvt_ds, uint64_t, H1_8, uint64_to_float32) 4642 DO_ZPZ_FP(sve_ucvt_dd, uint64_t, H1_8, uint64_to_float64) 4643 4644 static int16_t do_float16_logb_as_int(float16 a, float_status *s) 4645 { 4646 /* Extract frac to the top of the uint32_t. */ 4647 uint32_t frac = (uint32_t)a << (16 + 6); 4648 int16_t exp = extract32(a, 10, 5); 4649 4650 if (unlikely(exp == 0)) { 4651 if (frac != 0) { 4652 if (!get_flush_inputs_to_zero(s)) { 4653 /* denormal: bias - fractional_zeros */ 4654 return -15 - clz32(frac); 4655 } 4656 /* flush to zero */ 4657 float_raise(float_flag_input_denormal, s); 4658 } 4659 } else if (unlikely(exp == 0x1f)) { 4660 if (frac == 0) { 4661 return INT16_MAX; /* infinity */ 4662 } 4663 } else { 4664 /* normal: exp - bias */ 4665 return exp - 15; 4666 } 4667 /* nan or zero */ 4668 float_raise(float_flag_invalid, s); 4669 return INT16_MIN; 4670 } 4671 4672 static int32_t do_float32_logb_as_int(float32 a, float_status *s) 4673 { 4674 /* Extract frac to the top of the uint32_t. */ 4675 uint32_t frac = a << 9; 4676 int32_t exp = extract32(a, 23, 8); 4677 4678 if (unlikely(exp == 0)) { 4679 if (frac != 0) { 4680 if (!get_flush_inputs_to_zero(s)) { 4681 /* denormal: bias - fractional_zeros */ 4682 return -127 - clz32(frac); 4683 } 4684 /* flush to zero */ 4685 float_raise(float_flag_input_denormal, s); 4686 } 4687 } else if (unlikely(exp == 0xff)) { 4688 if (frac == 0) { 4689 return INT32_MAX; /* infinity */ 4690 } 4691 } else { 4692 /* normal: exp - bias */ 4693 return exp - 127; 4694 } 4695 /* nan or zero */ 4696 float_raise(float_flag_invalid, s); 4697 return INT32_MIN; 4698 } 4699 4700 static int64_t do_float64_logb_as_int(float64 a, float_status *s) 4701 { 4702 /* Extract frac to the top of the uint64_t. */ 4703 uint64_t frac = a << 12; 4704 int64_t exp = extract64(a, 52, 11); 4705 4706 if (unlikely(exp == 0)) { 4707 if (frac != 0) { 4708 if (!get_flush_inputs_to_zero(s)) { 4709 /* denormal: bias - fractional_zeros */ 4710 return -1023 - clz64(frac); 4711 } 4712 /* flush to zero */ 4713 float_raise(float_flag_input_denormal, s); 4714 } 4715 } else if (unlikely(exp == 0x7ff)) { 4716 if (frac == 0) { 4717 return INT64_MAX; /* infinity */ 4718 } 4719 } else { 4720 /* normal: exp - bias */ 4721 return exp - 1023; 4722 } 4723 /* nan or zero */ 4724 float_raise(float_flag_invalid, s); 4725 return INT64_MIN; 4726 } 4727 4728 DO_ZPZ_FP(flogb_h, float16, H1_2, do_float16_logb_as_int) 4729 DO_ZPZ_FP(flogb_s, float32, H1_4, do_float32_logb_as_int) 4730 DO_ZPZ_FP(flogb_d, float64, H1_8, do_float64_logb_as_int) 4731 4732 #undef DO_ZPZ_FP 4733 4734 static void do_fmla_zpzzz_h(void *vd, void *vn, void *vm, void *va, void *vg, 4735 float_status *status, uint32_t desc, 4736 uint16_t neg1, uint16_t neg3) 4737 { 4738 intptr_t i = simd_oprsz(desc); 4739 uint64_t *g = vg; 4740 4741 do { 4742 uint64_t pg = g[(i - 1) >> 6]; 4743 do { 4744 i -= 2; 4745 if (likely((pg >> (i & 63)) & 1)) { 4746 float16 e1, e2, e3, r; 4747 4748 e1 = *(uint16_t *)(vn + H1_2(i)) ^ neg1; 4749 e2 = *(uint16_t *)(vm + H1_2(i)); 4750 e3 = *(uint16_t *)(va + H1_2(i)) ^ neg3; 4751 r = float16_muladd(e1, e2, e3, 0, status); 4752 *(uint16_t *)(vd + H1_2(i)) = r; 4753 } 4754 } while (i & 63); 4755 } while (i != 0); 4756 } 4757 4758 void HELPER(sve_fmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va, 4759 void *vg, void *status, uint32_t desc) 4760 { 4761 do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0, 0); 4762 } 4763 4764 void HELPER(sve_fmls_zpzzz_h)(void *vd, void *vn, void *vm, void *va, 4765 void *vg, void *status, uint32_t desc) 4766 { 4767 do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0x8000, 0); 4768 } 4769 4770 void HELPER(sve_fnmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va, 4771 void *vg, void *status, uint32_t desc) 4772 { 4773 do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0x8000, 0x8000); 4774 } 4775 4776 void HELPER(sve_fnmls_zpzzz_h)(void *vd, void *vn, void *vm, void *va, 4777 void *vg, void *status, uint32_t desc) 4778 { 4779 do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0, 0x8000); 4780 } 4781 4782 static void do_fmla_zpzzz_s(void *vd, void *vn, void *vm, void *va, void *vg, 4783 float_status *status, uint32_t desc, 4784 uint32_t neg1, uint32_t neg3) 4785 { 4786 intptr_t i = simd_oprsz(desc); 4787 uint64_t *g = vg; 4788 4789 do { 4790 uint64_t pg = g[(i - 1) >> 6]; 4791 do { 4792 i -= 4; 4793 if (likely((pg >> (i & 63)) & 1)) { 4794 float32 e1, e2, e3, r; 4795 4796 e1 = *(uint32_t *)(vn + H1_4(i)) ^ neg1; 4797 e2 = *(uint32_t *)(vm + H1_4(i)); 4798 e3 = *(uint32_t *)(va + H1_4(i)) ^ neg3; 4799 r = float32_muladd(e1, e2, e3, 0, status); 4800 *(uint32_t *)(vd + H1_4(i)) = r; 4801 } 4802 } while (i & 63); 4803 } while (i != 0); 4804 } 4805 4806 void HELPER(sve_fmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va, 4807 void *vg, void *status, uint32_t desc) 4808 { 4809 do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0, 0); 4810 } 4811 4812 void HELPER(sve_fmls_zpzzz_s)(void *vd, void *vn, void *vm, void *va, 4813 void *vg, void *status, uint32_t desc) 4814 { 4815 do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0x80000000, 0); 4816 } 4817 4818 void HELPER(sve_fnmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va, 4819 void *vg, void *status, uint32_t desc) 4820 { 4821 do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0x80000000, 0x80000000); 4822 } 4823 4824 void HELPER(sve_fnmls_zpzzz_s)(void *vd, void *vn, void *vm, void *va, 4825 void *vg, void *status, uint32_t desc) 4826 { 4827 do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0, 0x80000000); 4828 } 4829 4830 static void do_fmla_zpzzz_d(void *vd, void *vn, void *vm, void *va, void *vg, 4831 float_status *status, uint32_t desc, 4832 uint64_t neg1, uint64_t neg3) 4833 { 4834 intptr_t i = simd_oprsz(desc); 4835 uint64_t *g = vg; 4836 4837 do { 4838 uint64_t pg = g[(i - 1) >> 6]; 4839 do { 4840 i -= 8; 4841 if (likely((pg >> (i & 63)) & 1)) { 4842 float64 e1, e2, e3, r; 4843 4844 e1 = *(uint64_t *)(vn + i) ^ neg1; 4845 e2 = *(uint64_t *)(vm + i); 4846 e3 = *(uint64_t *)(va + i) ^ neg3; 4847 r = float64_muladd(e1, e2, e3, 0, status); 4848 *(uint64_t *)(vd + i) = r; 4849 } 4850 } while (i & 63); 4851 } while (i != 0); 4852 } 4853 4854 void HELPER(sve_fmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va, 4855 void *vg, void *status, uint32_t desc) 4856 { 4857 do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, 0, 0); 4858 } 4859 4860 void HELPER(sve_fmls_zpzzz_d)(void *vd, void *vn, void *vm, void *va, 4861 void *vg, void *status, uint32_t desc) 4862 { 4863 do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, INT64_MIN, 0); 4864 } 4865 4866 void HELPER(sve_fnmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va, 4867 void *vg, void *status, uint32_t desc) 4868 { 4869 do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, INT64_MIN, INT64_MIN); 4870 } 4871 4872 void HELPER(sve_fnmls_zpzzz_d)(void *vd, void *vn, void *vm, void *va, 4873 void *vg, void *status, uint32_t desc) 4874 { 4875 do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, 0, INT64_MIN); 4876 } 4877 4878 /* Two operand floating-point comparison controlled by a predicate. 4879 * Unlike the integer version, we are not allowed to optimistically 4880 * compare operands, since the comparison may have side effects wrt 4881 * the FPSR. 4882 */ 4883 #define DO_FPCMP_PPZZ(NAME, TYPE, H, OP) \ 4884 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \ 4885 void *status, uint32_t desc) \ 4886 { \ 4887 intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6; \ 4888 uint64_t *d = vd, *g = vg; \ 4889 do { \ 4890 uint64_t out = 0, pg = g[j]; \ 4891 do { \ 4892 i -= sizeof(TYPE), out <<= sizeof(TYPE); \ 4893 if (likely((pg >> (i & 63)) & 1)) { \ 4894 TYPE nn = *(TYPE *)(vn + H(i)); \ 4895 TYPE mm = *(TYPE *)(vm + H(i)); \ 4896 out |= OP(TYPE, nn, mm, status); \ 4897 } \ 4898 } while (i & 63); \ 4899 d[j--] = out; \ 4900 } while (i > 0); \ 4901 } 4902 4903 #define DO_FPCMP_PPZZ_H(NAME, OP) \ 4904 DO_FPCMP_PPZZ(NAME##_h, float16, H1_2, OP) 4905 #define DO_FPCMP_PPZZ_S(NAME, OP) \ 4906 DO_FPCMP_PPZZ(NAME##_s, float32, H1_4, OP) 4907 #define DO_FPCMP_PPZZ_D(NAME, OP) \ 4908 DO_FPCMP_PPZZ(NAME##_d, float64, H1_8, OP) 4909 4910 #define DO_FPCMP_PPZZ_ALL(NAME, OP) \ 4911 DO_FPCMP_PPZZ_H(NAME, OP) \ 4912 DO_FPCMP_PPZZ_S(NAME, OP) \ 4913 DO_FPCMP_PPZZ_D(NAME, OP) 4914 4915 #define DO_FCMGE(TYPE, X, Y, ST) TYPE##_compare(Y, X, ST) <= 0 4916 #define DO_FCMGT(TYPE, X, Y, ST) TYPE##_compare(Y, X, ST) < 0 4917 #define DO_FCMLE(TYPE, X, Y, ST) TYPE##_compare(X, Y, ST) <= 0 4918 #define DO_FCMLT(TYPE, X, Y, ST) TYPE##_compare(X, Y, ST) < 0 4919 #define DO_FCMEQ(TYPE, X, Y, ST) TYPE##_compare_quiet(X, Y, ST) == 0 4920 #define DO_FCMNE(TYPE, X, Y, ST) TYPE##_compare_quiet(X, Y, ST) != 0 4921 #define DO_FCMUO(TYPE, X, Y, ST) \ 4922 TYPE##_compare_quiet(X, Y, ST) == float_relation_unordered 4923 #define DO_FACGE(TYPE, X, Y, ST) \ 4924 TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) <= 0 4925 #define DO_FACGT(TYPE, X, Y, ST) \ 4926 TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) < 0 4927 4928 DO_FPCMP_PPZZ_ALL(sve_fcmge, DO_FCMGE) 4929 DO_FPCMP_PPZZ_ALL(sve_fcmgt, DO_FCMGT) 4930 DO_FPCMP_PPZZ_ALL(sve_fcmeq, DO_FCMEQ) 4931 DO_FPCMP_PPZZ_ALL(sve_fcmne, DO_FCMNE) 4932 DO_FPCMP_PPZZ_ALL(sve_fcmuo, DO_FCMUO) 4933 DO_FPCMP_PPZZ_ALL(sve_facge, DO_FACGE) 4934 DO_FPCMP_PPZZ_ALL(sve_facgt, DO_FACGT) 4935 4936 #undef DO_FPCMP_PPZZ_ALL 4937 #undef DO_FPCMP_PPZZ_D 4938 #undef DO_FPCMP_PPZZ_S 4939 #undef DO_FPCMP_PPZZ_H 4940 #undef DO_FPCMP_PPZZ 4941 4942 /* One operand floating-point comparison against zero, controlled 4943 * by a predicate. 4944 */ 4945 #define DO_FPCMP_PPZ0(NAME, TYPE, H, OP) \ 4946 void HELPER(NAME)(void *vd, void *vn, void *vg, \ 4947 void *status, uint32_t desc) \ 4948 { \ 4949 intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6; \ 4950 uint64_t *d = vd, *g = vg; \ 4951 do { \ 4952 uint64_t out = 0, pg = g[j]; \ 4953 do { \ 4954 i -= sizeof(TYPE), out <<= sizeof(TYPE); \ 4955 if ((pg >> (i & 63)) & 1) { \ 4956 TYPE nn = *(TYPE *)(vn + H(i)); \ 4957 out |= OP(TYPE, nn, 0, status); \ 4958 } \ 4959 } while (i & 63); \ 4960 d[j--] = out; \ 4961 } while (i > 0); \ 4962 } 4963 4964 #define DO_FPCMP_PPZ0_H(NAME, OP) \ 4965 DO_FPCMP_PPZ0(NAME##_h, float16, H1_2, OP) 4966 #define DO_FPCMP_PPZ0_S(NAME, OP) \ 4967 DO_FPCMP_PPZ0(NAME##_s, float32, H1_4, OP) 4968 #define DO_FPCMP_PPZ0_D(NAME, OP) \ 4969 DO_FPCMP_PPZ0(NAME##_d, float64, H1_8, OP) 4970 4971 #define DO_FPCMP_PPZ0_ALL(NAME, OP) \ 4972 DO_FPCMP_PPZ0_H(NAME, OP) \ 4973 DO_FPCMP_PPZ0_S(NAME, OP) \ 4974 DO_FPCMP_PPZ0_D(NAME, OP) 4975 4976 DO_FPCMP_PPZ0_ALL(sve_fcmge0, DO_FCMGE) 4977 DO_FPCMP_PPZ0_ALL(sve_fcmgt0, DO_FCMGT) 4978 DO_FPCMP_PPZ0_ALL(sve_fcmle0, DO_FCMLE) 4979 DO_FPCMP_PPZ0_ALL(sve_fcmlt0, DO_FCMLT) 4980 DO_FPCMP_PPZ0_ALL(sve_fcmeq0, DO_FCMEQ) 4981 DO_FPCMP_PPZ0_ALL(sve_fcmne0, DO_FCMNE) 4982 4983 /* FP Trig Multiply-Add. */ 4984 4985 void HELPER(sve_ftmad_h)(void *vd, void *vn, void *vm, void *vs, uint32_t desc) 4986 { 4987 static const float16 coeff[16] = { 4988 0x3c00, 0xb155, 0x2030, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 4989 0x3c00, 0xb800, 0x293a, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 4990 }; 4991 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float16); 4992 intptr_t x = simd_data(desc); 4993 float16 *d = vd, *n = vn, *m = vm; 4994 for (i = 0; i < opr_sz; i++) { 4995 float16 mm = m[i]; 4996 intptr_t xx = x; 4997 if (float16_is_neg(mm)) { 4998 mm = float16_abs(mm); 4999 xx += 8; 5000 } 5001 d[i] = float16_muladd(n[i], mm, coeff[xx], 0, vs); 5002 } 5003 } 5004 5005 void HELPER(sve_ftmad_s)(void *vd, void *vn, void *vm, void *vs, uint32_t desc) 5006 { 5007 static const float32 coeff[16] = { 5008 0x3f800000, 0xbe2aaaab, 0x3c088886, 0xb95008b9, 5009 0x36369d6d, 0x00000000, 0x00000000, 0x00000000, 5010 0x3f800000, 0xbf000000, 0x3d2aaaa6, 0xbab60705, 5011 0x37cd37cc, 0x00000000, 0x00000000, 0x00000000, 5012 }; 5013 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float32); 5014 intptr_t x = simd_data(desc); 5015 float32 *d = vd, *n = vn, *m = vm; 5016 for (i = 0; i < opr_sz; i++) { 5017 float32 mm = m[i]; 5018 intptr_t xx = x; 5019 if (float32_is_neg(mm)) { 5020 mm = float32_abs(mm); 5021 xx += 8; 5022 } 5023 d[i] = float32_muladd(n[i], mm, coeff[xx], 0, vs); 5024 } 5025 } 5026 5027 void HELPER(sve_ftmad_d)(void *vd, void *vn, void *vm, void *vs, uint32_t desc) 5028 { 5029 static const float64 coeff[16] = { 5030 0x3ff0000000000000ull, 0xbfc5555555555543ull, 5031 0x3f8111111110f30cull, 0xbf2a01a019b92fc6ull, 5032 0x3ec71de351f3d22bull, 0xbe5ae5e2b60f7b91ull, 5033 0x3de5d8408868552full, 0x0000000000000000ull, 5034 0x3ff0000000000000ull, 0xbfe0000000000000ull, 5035 0x3fa5555555555536ull, 0xbf56c16c16c13a0bull, 5036 0x3efa01a019b1e8d8ull, 0xbe927e4f7282f468ull, 5037 0x3e21ee96d2641b13ull, 0xbda8f76380fbb401ull, 5038 }; 5039 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float64); 5040 intptr_t x = simd_data(desc); 5041 float64 *d = vd, *n = vn, *m = vm; 5042 for (i = 0; i < opr_sz; i++) { 5043 float64 mm = m[i]; 5044 intptr_t xx = x; 5045 if (float64_is_neg(mm)) { 5046 mm = float64_abs(mm); 5047 xx += 8; 5048 } 5049 d[i] = float64_muladd(n[i], mm, coeff[xx], 0, vs); 5050 } 5051 } 5052 5053 /* 5054 * FP Complex Add 5055 */ 5056 5057 void HELPER(sve_fcadd_h)(void *vd, void *vn, void *vm, void *vg, 5058 void *vs, uint32_t desc) 5059 { 5060 intptr_t j, i = simd_oprsz(desc); 5061 uint64_t *g = vg; 5062 float16 neg_imag = float16_set_sign(0, simd_data(desc)); 5063 float16 neg_real = float16_chs(neg_imag); 5064 5065 do { 5066 uint64_t pg = g[(i - 1) >> 6]; 5067 do { 5068 float16 e0, e1, e2, e3; 5069 5070 /* I holds the real index; J holds the imag index. */ 5071 j = i - sizeof(float16); 5072 i -= 2 * sizeof(float16); 5073 5074 e0 = *(float16 *)(vn + H1_2(i)); 5075 e1 = *(float16 *)(vm + H1_2(j)) ^ neg_real; 5076 e2 = *(float16 *)(vn + H1_2(j)); 5077 e3 = *(float16 *)(vm + H1_2(i)) ^ neg_imag; 5078 5079 if (likely((pg >> (i & 63)) & 1)) { 5080 *(float16 *)(vd + H1_2(i)) = float16_add(e0, e1, vs); 5081 } 5082 if (likely((pg >> (j & 63)) & 1)) { 5083 *(float16 *)(vd + H1_2(j)) = float16_add(e2, e3, vs); 5084 } 5085 } while (i & 63); 5086 } while (i != 0); 5087 } 5088 5089 void HELPER(sve_fcadd_s)(void *vd, void *vn, void *vm, void *vg, 5090 void *vs, uint32_t desc) 5091 { 5092 intptr_t j, i = simd_oprsz(desc); 5093 uint64_t *g = vg; 5094 float32 neg_imag = float32_set_sign(0, simd_data(desc)); 5095 float32 neg_real = float32_chs(neg_imag); 5096 5097 do { 5098 uint64_t pg = g[(i - 1) >> 6]; 5099 do { 5100 float32 e0, e1, e2, e3; 5101 5102 /* I holds the real index; J holds the imag index. */ 5103 j = i - sizeof(float32); 5104 i -= 2 * sizeof(float32); 5105 5106 e0 = *(float32 *)(vn + H1_2(i)); 5107 e1 = *(float32 *)(vm + H1_2(j)) ^ neg_real; 5108 e2 = *(float32 *)(vn + H1_2(j)); 5109 e3 = *(float32 *)(vm + H1_2(i)) ^ neg_imag; 5110 5111 if (likely((pg >> (i & 63)) & 1)) { 5112 *(float32 *)(vd + H1_2(i)) = float32_add(e0, e1, vs); 5113 } 5114 if (likely((pg >> (j & 63)) & 1)) { 5115 *(float32 *)(vd + H1_2(j)) = float32_add(e2, e3, vs); 5116 } 5117 } while (i & 63); 5118 } while (i != 0); 5119 } 5120 5121 void HELPER(sve_fcadd_d)(void *vd, void *vn, void *vm, void *vg, 5122 void *vs, uint32_t desc) 5123 { 5124 intptr_t j, i = simd_oprsz(desc); 5125 uint64_t *g = vg; 5126 float64 neg_imag = float64_set_sign(0, simd_data(desc)); 5127 float64 neg_real = float64_chs(neg_imag); 5128 5129 do { 5130 uint64_t pg = g[(i - 1) >> 6]; 5131 do { 5132 float64 e0, e1, e2, e3; 5133 5134 /* I holds the real index; J holds the imag index. */ 5135 j = i - sizeof(float64); 5136 i -= 2 * sizeof(float64); 5137 5138 e0 = *(float64 *)(vn + H1_2(i)); 5139 e1 = *(float64 *)(vm + H1_2(j)) ^ neg_real; 5140 e2 = *(float64 *)(vn + H1_2(j)); 5141 e3 = *(float64 *)(vm + H1_2(i)) ^ neg_imag; 5142 5143 if (likely((pg >> (i & 63)) & 1)) { 5144 *(float64 *)(vd + H1_2(i)) = float64_add(e0, e1, vs); 5145 } 5146 if (likely((pg >> (j & 63)) & 1)) { 5147 *(float64 *)(vd + H1_2(j)) = float64_add(e2, e3, vs); 5148 } 5149 } while (i & 63); 5150 } while (i != 0); 5151 } 5152 5153 /* 5154 * FP Complex Multiply 5155 */ 5156 5157 void HELPER(sve_fcmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va, 5158 void *vg, void *status, uint32_t desc) 5159 { 5160 intptr_t j, i = simd_oprsz(desc); 5161 unsigned rot = simd_data(desc); 5162 bool flip = rot & 1; 5163 float16 neg_imag, neg_real; 5164 uint64_t *g = vg; 5165 5166 neg_imag = float16_set_sign(0, (rot & 2) != 0); 5167 neg_real = float16_set_sign(0, rot == 1 || rot == 2); 5168 5169 do { 5170 uint64_t pg = g[(i - 1) >> 6]; 5171 do { 5172 float16 e1, e2, e3, e4, nr, ni, mr, mi, d; 5173 5174 /* I holds the real index; J holds the imag index. */ 5175 j = i - sizeof(float16); 5176 i -= 2 * sizeof(float16); 5177 5178 nr = *(float16 *)(vn + H1_2(i)); 5179 ni = *(float16 *)(vn + H1_2(j)); 5180 mr = *(float16 *)(vm + H1_2(i)); 5181 mi = *(float16 *)(vm + H1_2(j)); 5182 5183 e2 = (flip ? ni : nr); 5184 e1 = (flip ? mi : mr) ^ neg_real; 5185 e4 = e2; 5186 e3 = (flip ? mr : mi) ^ neg_imag; 5187 5188 if (likely((pg >> (i & 63)) & 1)) { 5189 d = *(float16 *)(va + H1_2(i)); 5190 d = float16_muladd(e2, e1, d, 0, status); 5191 *(float16 *)(vd + H1_2(i)) = d; 5192 } 5193 if (likely((pg >> (j & 63)) & 1)) { 5194 d = *(float16 *)(va + H1_2(j)); 5195 d = float16_muladd(e4, e3, d, 0, status); 5196 *(float16 *)(vd + H1_2(j)) = d; 5197 } 5198 } while (i & 63); 5199 } while (i != 0); 5200 } 5201 5202 void HELPER(sve_fcmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va, 5203 void *vg, void *status, uint32_t desc) 5204 { 5205 intptr_t j, i = simd_oprsz(desc); 5206 unsigned rot = simd_data(desc); 5207 bool flip = rot & 1; 5208 float32 neg_imag, neg_real; 5209 uint64_t *g = vg; 5210 5211 neg_imag = float32_set_sign(0, (rot & 2) != 0); 5212 neg_real = float32_set_sign(0, rot == 1 || rot == 2); 5213 5214 do { 5215 uint64_t pg = g[(i - 1) >> 6]; 5216 do { 5217 float32 e1, e2, e3, e4, nr, ni, mr, mi, d; 5218 5219 /* I holds the real index; J holds the imag index. */ 5220 j = i - sizeof(float32); 5221 i -= 2 * sizeof(float32); 5222 5223 nr = *(float32 *)(vn + H1_2(i)); 5224 ni = *(float32 *)(vn + H1_2(j)); 5225 mr = *(float32 *)(vm + H1_2(i)); 5226 mi = *(float32 *)(vm + H1_2(j)); 5227 5228 e2 = (flip ? ni : nr); 5229 e1 = (flip ? mi : mr) ^ neg_real; 5230 e4 = e2; 5231 e3 = (flip ? mr : mi) ^ neg_imag; 5232 5233 if (likely((pg >> (i & 63)) & 1)) { 5234 d = *(float32 *)(va + H1_2(i)); 5235 d = float32_muladd(e2, e1, d, 0, status); 5236 *(float32 *)(vd + H1_2(i)) = d; 5237 } 5238 if (likely((pg >> (j & 63)) & 1)) { 5239 d = *(float32 *)(va + H1_2(j)); 5240 d = float32_muladd(e4, e3, d, 0, status); 5241 *(float32 *)(vd + H1_2(j)) = d; 5242 } 5243 } while (i & 63); 5244 } while (i != 0); 5245 } 5246 5247 void HELPER(sve_fcmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va, 5248 void *vg, void *status, uint32_t desc) 5249 { 5250 intptr_t j, i = simd_oprsz(desc); 5251 unsigned rot = simd_data(desc); 5252 bool flip = rot & 1; 5253 float64 neg_imag, neg_real; 5254 uint64_t *g = vg; 5255 5256 neg_imag = float64_set_sign(0, (rot & 2) != 0); 5257 neg_real = float64_set_sign(0, rot == 1 || rot == 2); 5258 5259 do { 5260 uint64_t pg = g[(i - 1) >> 6]; 5261 do { 5262 float64 e1, e2, e3, e4, nr, ni, mr, mi, d; 5263 5264 /* I holds the real index; J holds the imag index. */ 5265 j = i - sizeof(float64); 5266 i -= 2 * sizeof(float64); 5267 5268 nr = *(float64 *)(vn + H1_2(i)); 5269 ni = *(float64 *)(vn + H1_2(j)); 5270 mr = *(float64 *)(vm + H1_2(i)); 5271 mi = *(float64 *)(vm + H1_2(j)); 5272 5273 e2 = (flip ? ni : nr); 5274 e1 = (flip ? mi : mr) ^ neg_real; 5275 e4 = e2; 5276 e3 = (flip ? mr : mi) ^ neg_imag; 5277 5278 if (likely((pg >> (i & 63)) & 1)) { 5279 d = *(float64 *)(va + H1_2(i)); 5280 d = float64_muladd(e2, e1, d, 0, status); 5281 *(float64 *)(vd + H1_2(i)) = d; 5282 } 5283 if (likely((pg >> (j & 63)) & 1)) { 5284 d = *(float64 *)(va + H1_2(j)); 5285 d = float64_muladd(e4, e3, d, 0, status); 5286 *(float64 *)(vd + H1_2(j)) = d; 5287 } 5288 } while (i & 63); 5289 } while (i != 0); 5290 } 5291 5292 /* 5293 * Load contiguous data, protected by a governing predicate. 5294 */ 5295 5296 /* 5297 * Skip through a sequence of inactive elements in the guarding predicate @vg, 5298 * beginning at @reg_off bounded by @reg_max. Return the offset of the active 5299 * element >= @reg_off, or @reg_max if there were no active elements at all. 5300 */ 5301 static intptr_t find_next_active(uint64_t *vg, intptr_t reg_off, 5302 intptr_t reg_max, int esz) 5303 { 5304 uint64_t pg_mask = pred_esz_masks[esz]; 5305 uint64_t pg = (vg[reg_off >> 6] & pg_mask) >> (reg_off & 63); 5306 5307 /* In normal usage, the first element is active. */ 5308 if (likely(pg & 1)) { 5309 return reg_off; 5310 } 5311 5312 if (pg == 0) { 5313 reg_off &= -64; 5314 do { 5315 reg_off += 64; 5316 if (unlikely(reg_off >= reg_max)) { 5317 /* The entire predicate was false. */ 5318 return reg_max; 5319 } 5320 pg = vg[reg_off >> 6] & pg_mask; 5321 } while (pg == 0); 5322 } 5323 reg_off += ctz64(pg); 5324 5325 /* We should never see an out of range predicate bit set. */ 5326 tcg_debug_assert(reg_off < reg_max); 5327 return reg_off; 5328 } 5329 5330 /* 5331 * Resolve the guest virtual address to info->host and info->flags. 5332 * If @nofault, return false if the page is invalid, otherwise 5333 * exit via page fault exception. 5334 */ 5335 5336 bool sve_probe_page(SVEHostPage *info, bool nofault, CPUARMState *env, 5337 target_ulong addr, int mem_off, MMUAccessType access_type, 5338 int mmu_idx, uintptr_t retaddr) 5339 { 5340 int flags; 5341 5342 addr += mem_off; 5343 5344 /* 5345 * User-only currently always issues with TBI. See the comment 5346 * above useronly_clean_ptr. Usually we clean this top byte away 5347 * during translation, but we can't do that for e.g. vector + imm 5348 * addressing modes. 5349 * 5350 * We currently always enable TBI for user-only, and do not provide 5351 * a way to turn it off. So clean the pointer unconditionally here, 5352 * rather than look it up here, or pass it down from above. 5353 */ 5354 addr = useronly_clean_ptr(addr); 5355 5356 #ifdef CONFIG_USER_ONLY 5357 flags = probe_access_flags(env, addr, 0, access_type, mmu_idx, nofault, 5358 &info->host, retaddr); 5359 #else 5360 CPUTLBEntryFull *full; 5361 flags = probe_access_full(env, addr, 0, access_type, mmu_idx, nofault, 5362 &info->host, &full, retaddr); 5363 #endif 5364 info->flags = flags; 5365 5366 if (flags & TLB_INVALID_MASK) { 5367 g_assert(nofault); 5368 return false; 5369 } 5370 5371 #ifdef CONFIG_USER_ONLY 5372 memset(&info->attrs, 0, sizeof(info->attrs)); 5373 /* Require both ANON and MTE; see allocation_tag_mem(). */ 5374 info->tagged = (flags & PAGE_ANON) && (flags & PAGE_MTE); 5375 #else 5376 info->attrs = full->attrs; 5377 info->tagged = full->extra.arm.pte_attrs == 0xf0; 5378 #endif 5379 5380 /* Ensure that info->host[] is relative to addr, not addr + mem_off. */ 5381 info->host -= mem_off; 5382 return true; 5383 } 5384 5385 /* 5386 * Find first active element on each page, and a loose bound for the 5387 * final element on each page. Identify any single element that spans 5388 * the page boundary. Return true if there are any active elements. 5389 */ 5390 bool sve_cont_ldst_elements(SVEContLdSt *info, target_ulong addr, uint64_t *vg, 5391 intptr_t reg_max, int esz, int msize) 5392 { 5393 const int esize = 1 << esz; 5394 const uint64_t pg_mask = pred_esz_masks[esz]; 5395 intptr_t reg_off_first = -1, reg_off_last = -1, reg_off_split; 5396 intptr_t mem_off_last, mem_off_split; 5397 intptr_t page_split, elt_split; 5398 intptr_t i; 5399 5400 /* Set all of the element indices to -1, and the TLB data to 0. */ 5401 memset(info, -1, offsetof(SVEContLdSt, page)); 5402 memset(info->page, 0, sizeof(info->page)); 5403 5404 /* Gross scan over the entire predicate to find bounds. */ 5405 i = 0; 5406 do { 5407 uint64_t pg = vg[i] & pg_mask; 5408 if (pg) { 5409 reg_off_last = i * 64 + 63 - clz64(pg); 5410 if (reg_off_first < 0) { 5411 reg_off_first = i * 64 + ctz64(pg); 5412 } 5413 } 5414 } while (++i * 64 < reg_max); 5415 5416 if (unlikely(reg_off_first < 0)) { 5417 /* No active elements, no pages touched. */ 5418 return false; 5419 } 5420 tcg_debug_assert(reg_off_last >= 0 && reg_off_last < reg_max); 5421 5422 info->reg_off_first[0] = reg_off_first; 5423 info->mem_off_first[0] = (reg_off_first >> esz) * msize; 5424 mem_off_last = (reg_off_last >> esz) * msize; 5425 5426 page_split = -(addr | TARGET_PAGE_MASK); 5427 if (likely(mem_off_last + msize <= page_split)) { 5428 /* The entire operation fits within a single page. */ 5429 info->reg_off_last[0] = reg_off_last; 5430 return true; 5431 } 5432 5433 info->page_split = page_split; 5434 elt_split = page_split / msize; 5435 reg_off_split = elt_split << esz; 5436 mem_off_split = elt_split * msize; 5437 5438 /* 5439 * This is the last full element on the first page, but it is not 5440 * necessarily active. If there is no full element, i.e. the first 5441 * active element is the one that's split, this value remains -1. 5442 * It is useful as iteration bounds. 5443 */ 5444 if (elt_split != 0) { 5445 info->reg_off_last[0] = reg_off_split - esize; 5446 } 5447 5448 /* Determine if an unaligned element spans the pages. */ 5449 if (page_split % msize != 0) { 5450 /* It is helpful to know if the split element is active. */ 5451 if ((vg[reg_off_split >> 6] >> (reg_off_split & 63)) & 1) { 5452 info->reg_off_split = reg_off_split; 5453 info->mem_off_split = mem_off_split; 5454 5455 if (reg_off_split == reg_off_last) { 5456 /* The page crossing element is last. */ 5457 return true; 5458 } 5459 } 5460 reg_off_split += esize; 5461 mem_off_split += msize; 5462 } 5463 5464 /* 5465 * We do want the first active element on the second page, because 5466 * this may affect the address reported in an exception. 5467 */ 5468 reg_off_split = find_next_active(vg, reg_off_split, reg_max, esz); 5469 tcg_debug_assert(reg_off_split <= reg_off_last); 5470 info->reg_off_first[1] = reg_off_split; 5471 info->mem_off_first[1] = (reg_off_split >> esz) * msize; 5472 info->reg_off_last[1] = reg_off_last; 5473 return true; 5474 } 5475 5476 /* 5477 * Resolve the guest virtual addresses to info->page[]. 5478 * Control the generation of page faults with @fault. Return false if 5479 * there is no work to do, which can only happen with @fault == FAULT_NO. 5480 */ 5481 bool sve_cont_ldst_pages(SVEContLdSt *info, SVEContFault fault, 5482 CPUARMState *env, target_ulong addr, 5483 MMUAccessType access_type, uintptr_t retaddr) 5484 { 5485 int mmu_idx = arm_env_mmu_index(env); 5486 int mem_off = info->mem_off_first[0]; 5487 bool nofault = fault == FAULT_NO; 5488 bool have_work = true; 5489 5490 if (!sve_probe_page(&info->page[0], nofault, env, addr, mem_off, 5491 access_type, mmu_idx, retaddr)) { 5492 /* No work to be done. */ 5493 return false; 5494 } 5495 5496 if (likely(info->page_split < 0)) { 5497 /* The entire operation was on the one page. */ 5498 return true; 5499 } 5500 5501 /* 5502 * If the second page is invalid, then we want the fault address to be 5503 * the first byte on that page which is accessed. 5504 */ 5505 if (info->mem_off_split >= 0) { 5506 /* 5507 * There is an element split across the pages. The fault address 5508 * should be the first byte of the second page. 5509 */ 5510 mem_off = info->page_split; 5511 /* 5512 * If the split element is also the first active element 5513 * of the vector, then: For first-fault we should continue 5514 * to generate faults for the second page. For no-fault, 5515 * we have work only if the second page is valid. 5516 */ 5517 if (info->mem_off_first[0] < info->mem_off_split) { 5518 nofault = FAULT_FIRST; 5519 have_work = false; 5520 } 5521 } else { 5522 /* 5523 * There is no element split across the pages. The fault address 5524 * should be the first active element on the second page. 5525 */ 5526 mem_off = info->mem_off_first[1]; 5527 /* 5528 * There must have been one active element on the first page, 5529 * so we're out of first-fault territory. 5530 */ 5531 nofault = fault != FAULT_ALL; 5532 } 5533 5534 have_work |= sve_probe_page(&info->page[1], nofault, env, addr, mem_off, 5535 access_type, mmu_idx, retaddr); 5536 return have_work; 5537 } 5538 5539 #ifndef CONFIG_USER_ONLY 5540 void sve_cont_ldst_watchpoints(SVEContLdSt *info, CPUARMState *env, 5541 uint64_t *vg, target_ulong addr, 5542 int esize, int msize, int wp_access, 5543 uintptr_t retaddr) 5544 { 5545 intptr_t mem_off, reg_off, reg_last; 5546 int flags0 = info->page[0].flags; 5547 int flags1 = info->page[1].flags; 5548 5549 if (likely(!((flags0 | flags1) & TLB_WATCHPOINT))) { 5550 return; 5551 } 5552 5553 /* Indicate that watchpoints are handled. */ 5554 info->page[0].flags = flags0 & ~TLB_WATCHPOINT; 5555 info->page[1].flags = flags1 & ~TLB_WATCHPOINT; 5556 5557 if (flags0 & TLB_WATCHPOINT) { 5558 mem_off = info->mem_off_first[0]; 5559 reg_off = info->reg_off_first[0]; 5560 reg_last = info->reg_off_last[0]; 5561 5562 while (reg_off <= reg_last) { 5563 uint64_t pg = vg[reg_off >> 6]; 5564 do { 5565 if ((pg >> (reg_off & 63)) & 1) { 5566 cpu_check_watchpoint(env_cpu(env), addr + mem_off, 5567 msize, info->page[0].attrs, 5568 wp_access, retaddr); 5569 } 5570 reg_off += esize; 5571 mem_off += msize; 5572 } while (reg_off <= reg_last && (reg_off & 63)); 5573 } 5574 } 5575 5576 mem_off = info->mem_off_split; 5577 if (mem_off >= 0) { 5578 cpu_check_watchpoint(env_cpu(env), addr + mem_off, msize, 5579 info->page[0].attrs, wp_access, retaddr); 5580 } 5581 5582 mem_off = info->mem_off_first[1]; 5583 if ((flags1 & TLB_WATCHPOINT) && mem_off >= 0) { 5584 reg_off = info->reg_off_first[1]; 5585 reg_last = info->reg_off_last[1]; 5586 5587 do { 5588 uint64_t pg = vg[reg_off >> 6]; 5589 do { 5590 if ((pg >> (reg_off & 63)) & 1) { 5591 cpu_check_watchpoint(env_cpu(env), addr + mem_off, 5592 msize, info->page[1].attrs, 5593 wp_access, retaddr); 5594 } 5595 reg_off += esize; 5596 mem_off += msize; 5597 } while (reg_off & 63); 5598 } while (reg_off <= reg_last); 5599 } 5600 } 5601 #endif 5602 5603 void sve_cont_ldst_mte_check(SVEContLdSt *info, CPUARMState *env, 5604 uint64_t *vg, target_ulong addr, int esize, 5605 int msize, uint32_t mtedesc, uintptr_t ra) 5606 { 5607 intptr_t mem_off, reg_off, reg_last; 5608 5609 /* Process the page only if MemAttr == Tagged. */ 5610 if (info->page[0].tagged) { 5611 mem_off = info->mem_off_first[0]; 5612 reg_off = info->reg_off_first[0]; 5613 reg_last = info->reg_off_split; 5614 if (reg_last < 0) { 5615 reg_last = info->reg_off_last[0]; 5616 } 5617 5618 do { 5619 uint64_t pg = vg[reg_off >> 6]; 5620 do { 5621 if ((pg >> (reg_off & 63)) & 1) { 5622 mte_check(env, mtedesc, addr, ra); 5623 } 5624 reg_off += esize; 5625 mem_off += msize; 5626 } while (reg_off <= reg_last && (reg_off & 63)); 5627 } while (reg_off <= reg_last); 5628 } 5629 5630 mem_off = info->mem_off_first[1]; 5631 if (mem_off >= 0 && info->page[1].tagged) { 5632 reg_off = info->reg_off_first[1]; 5633 reg_last = info->reg_off_last[1]; 5634 5635 do { 5636 uint64_t pg = vg[reg_off >> 6]; 5637 do { 5638 if ((pg >> (reg_off & 63)) & 1) { 5639 mte_check(env, mtedesc, addr, ra); 5640 } 5641 reg_off += esize; 5642 mem_off += msize; 5643 } while (reg_off & 63); 5644 } while (reg_off <= reg_last); 5645 } 5646 } 5647 5648 /* 5649 * Common helper for all contiguous 1,2,3,4-register predicated stores. 5650 */ 5651 static inline QEMU_ALWAYS_INLINE 5652 void sve_ldN_r(CPUARMState *env, uint64_t *vg, const target_ulong addr, 5653 uint32_t desc, const uintptr_t retaddr, 5654 const int esz, const int msz, const int N, uint32_t mtedesc, 5655 sve_ldst1_host_fn *host_fn, 5656 sve_ldst1_tlb_fn *tlb_fn) 5657 { 5658 const unsigned rd = simd_data(desc); 5659 const intptr_t reg_max = simd_oprsz(desc); 5660 intptr_t reg_off, reg_last, mem_off; 5661 SVEContLdSt info; 5662 void *host; 5663 int flags, i; 5664 5665 /* Find the active elements. */ 5666 if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, N << msz)) { 5667 /* The entire predicate was false; no load occurs. */ 5668 for (i = 0; i < N; ++i) { 5669 memset(&env->vfp.zregs[(rd + i) & 31], 0, reg_max); 5670 } 5671 return; 5672 } 5673 5674 /* Probe the page(s). Exit with exception for any invalid page. */ 5675 sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_LOAD, retaddr); 5676 5677 /* Handle watchpoints for all active elements. */ 5678 sve_cont_ldst_watchpoints(&info, env, vg, addr, 1 << esz, N << msz, 5679 BP_MEM_READ, retaddr); 5680 5681 /* 5682 * Handle mte checks for all active elements. 5683 * Since TBI must be set for MTE, !mtedesc => !mte_active. 5684 */ 5685 if (mtedesc) { 5686 sve_cont_ldst_mte_check(&info, env, vg, addr, 1 << esz, N << msz, 5687 mtedesc, retaddr); 5688 } 5689 5690 flags = info.page[0].flags | info.page[1].flags; 5691 if (unlikely(flags != 0)) { 5692 /* 5693 * At least one page includes MMIO. 5694 * Any bus operation can fail with cpu_transaction_failed, 5695 * which for ARM will raise SyncExternal. Perform the load 5696 * into scratch memory to preserve register state until the end. 5697 */ 5698 ARMVectorReg scratch[4] = { }; 5699 5700 mem_off = info.mem_off_first[0]; 5701 reg_off = info.reg_off_first[0]; 5702 reg_last = info.reg_off_last[1]; 5703 if (reg_last < 0) { 5704 reg_last = info.reg_off_split; 5705 if (reg_last < 0) { 5706 reg_last = info.reg_off_last[0]; 5707 } 5708 } 5709 5710 do { 5711 uint64_t pg = vg[reg_off >> 6]; 5712 do { 5713 if ((pg >> (reg_off & 63)) & 1) { 5714 for (i = 0; i < N; ++i) { 5715 tlb_fn(env, &scratch[i], reg_off, 5716 addr + mem_off + (i << msz), retaddr); 5717 } 5718 } 5719 reg_off += 1 << esz; 5720 mem_off += N << msz; 5721 } while (reg_off & 63); 5722 } while (reg_off <= reg_last); 5723 5724 for (i = 0; i < N; ++i) { 5725 memcpy(&env->vfp.zregs[(rd + i) & 31], &scratch[i], reg_max); 5726 } 5727 return; 5728 } 5729 5730 /* The entire operation is in RAM, on valid pages. */ 5731 5732 for (i = 0; i < N; ++i) { 5733 memset(&env->vfp.zregs[(rd + i) & 31], 0, reg_max); 5734 } 5735 5736 mem_off = info.mem_off_first[0]; 5737 reg_off = info.reg_off_first[0]; 5738 reg_last = info.reg_off_last[0]; 5739 host = info.page[0].host; 5740 5741 while (reg_off <= reg_last) { 5742 uint64_t pg = vg[reg_off >> 6]; 5743 do { 5744 if ((pg >> (reg_off & 63)) & 1) { 5745 for (i = 0; i < N; ++i) { 5746 host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off, 5747 host + mem_off + (i << msz)); 5748 } 5749 } 5750 reg_off += 1 << esz; 5751 mem_off += N << msz; 5752 } while (reg_off <= reg_last && (reg_off & 63)); 5753 } 5754 5755 /* 5756 * Use the slow path to manage the cross-page misalignment. 5757 * But we know this is RAM and cannot trap. 5758 */ 5759 mem_off = info.mem_off_split; 5760 if (unlikely(mem_off >= 0)) { 5761 reg_off = info.reg_off_split; 5762 for (i = 0; i < N; ++i) { 5763 tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off, 5764 addr + mem_off + (i << msz), retaddr); 5765 } 5766 } 5767 5768 mem_off = info.mem_off_first[1]; 5769 if (unlikely(mem_off >= 0)) { 5770 reg_off = info.reg_off_first[1]; 5771 reg_last = info.reg_off_last[1]; 5772 host = info.page[1].host; 5773 5774 do { 5775 uint64_t pg = vg[reg_off >> 6]; 5776 do { 5777 if ((pg >> (reg_off & 63)) & 1) { 5778 for (i = 0; i < N; ++i) { 5779 host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off, 5780 host + mem_off + (i << msz)); 5781 } 5782 } 5783 reg_off += 1 << esz; 5784 mem_off += N << msz; 5785 } while (reg_off & 63); 5786 } while (reg_off <= reg_last); 5787 } 5788 } 5789 5790 static inline QEMU_ALWAYS_INLINE 5791 void sve_ldN_r_mte(CPUARMState *env, uint64_t *vg, target_ulong addr, 5792 uint32_t desc, const uintptr_t ra, 5793 const int esz, const int msz, const int N, 5794 sve_ldst1_host_fn *host_fn, 5795 sve_ldst1_tlb_fn *tlb_fn) 5796 { 5797 uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); 5798 int bit55 = extract64(addr, 55, 1); 5799 5800 /* Remove mtedesc from the normal sve descriptor. */ 5801 desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); 5802 5803 /* Perform gross MTE suppression early. */ 5804 if (!tbi_check(mtedesc, bit55) || 5805 tcma_check(mtedesc, bit55, allocation_tag_from_addr(addr))) { 5806 mtedesc = 0; 5807 } 5808 5809 sve_ldN_r(env, vg, addr, desc, ra, esz, msz, N, mtedesc, host_fn, tlb_fn); 5810 } 5811 5812 #define DO_LD1_1(NAME, ESZ) \ 5813 void HELPER(sve_##NAME##_r)(CPUARMState *env, void *vg, \ 5814 target_ulong addr, uint32_t desc) \ 5815 { \ 5816 sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MO_8, 1, 0, \ 5817 sve_##NAME##_host, sve_##NAME##_tlb); \ 5818 } \ 5819 void HELPER(sve_##NAME##_r_mte)(CPUARMState *env, void *vg, \ 5820 target_ulong addr, uint32_t desc) \ 5821 { \ 5822 sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, 1, \ 5823 sve_##NAME##_host, sve_##NAME##_tlb); \ 5824 } 5825 5826 #define DO_LD1_2(NAME, ESZ, MSZ) \ 5827 void HELPER(sve_##NAME##_le_r)(CPUARMState *env, void *vg, \ 5828 target_ulong addr, uint32_t desc) \ 5829 { \ 5830 sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, 0, \ 5831 sve_##NAME##_le_host, sve_##NAME##_le_tlb); \ 5832 } \ 5833 void HELPER(sve_##NAME##_be_r)(CPUARMState *env, void *vg, \ 5834 target_ulong addr, uint32_t desc) \ 5835 { \ 5836 sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, 0, \ 5837 sve_##NAME##_be_host, sve_##NAME##_be_tlb); \ 5838 } \ 5839 void HELPER(sve_##NAME##_le_r_mte)(CPUARMState *env, void *vg, \ 5840 target_ulong addr, uint32_t desc) \ 5841 { \ 5842 sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, \ 5843 sve_##NAME##_le_host, sve_##NAME##_le_tlb); \ 5844 } \ 5845 void HELPER(sve_##NAME##_be_r_mte)(CPUARMState *env, void *vg, \ 5846 target_ulong addr, uint32_t desc) \ 5847 { \ 5848 sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, \ 5849 sve_##NAME##_be_host, sve_##NAME##_be_tlb); \ 5850 } 5851 5852 DO_LD1_1(ld1bb, MO_8) 5853 DO_LD1_1(ld1bhu, MO_16) 5854 DO_LD1_1(ld1bhs, MO_16) 5855 DO_LD1_1(ld1bsu, MO_32) 5856 DO_LD1_1(ld1bss, MO_32) 5857 DO_LD1_1(ld1bdu, MO_64) 5858 DO_LD1_1(ld1bds, MO_64) 5859 5860 DO_LD1_2(ld1hh, MO_16, MO_16) 5861 DO_LD1_2(ld1hsu, MO_32, MO_16) 5862 DO_LD1_2(ld1hss, MO_32, MO_16) 5863 DO_LD1_2(ld1hdu, MO_64, MO_16) 5864 DO_LD1_2(ld1hds, MO_64, MO_16) 5865 5866 DO_LD1_2(ld1ss, MO_32, MO_32) 5867 DO_LD1_2(ld1sdu, MO_64, MO_32) 5868 DO_LD1_2(ld1sds, MO_64, MO_32) 5869 5870 DO_LD1_2(ld1dd, MO_64, MO_64) 5871 5872 #undef DO_LD1_1 5873 #undef DO_LD1_2 5874 5875 #define DO_LDN_1(N) \ 5876 void HELPER(sve_ld##N##bb_r)(CPUARMState *env, void *vg, \ 5877 target_ulong addr, uint32_t desc) \ 5878 { \ 5879 sve_ldN_r(env, vg, addr, desc, GETPC(), MO_8, MO_8, N, 0, \ 5880 sve_ld1bb_host, sve_ld1bb_tlb); \ 5881 } \ 5882 void HELPER(sve_ld##N##bb_r_mte)(CPUARMState *env, void *vg, \ 5883 target_ulong addr, uint32_t desc) \ 5884 { \ 5885 sve_ldN_r_mte(env, vg, addr, desc, GETPC(), MO_8, MO_8, N, \ 5886 sve_ld1bb_host, sve_ld1bb_tlb); \ 5887 } 5888 5889 #define DO_LDN_2(N, SUFF, ESZ) \ 5890 void HELPER(sve_ld##N##SUFF##_le_r)(CPUARMState *env, void *vg, \ 5891 target_ulong addr, uint32_t desc) \ 5892 { \ 5893 sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, 0, \ 5894 sve_ld1##SUFF##_le_host, sve_ld1##SUFF##_le_tlb); \ 5895 } \ 5896 void HELPER(sve_ld##N##SUFF##_be_r)(CPUARMState *env, void *vg, \ 5897 target_ulong addr, uint32_t desc) \ 5898 { \ 5899 sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, 0, \ 5900 sve_ld1##SUFF##_be_host, sve_ld1##SUFF##_be_tlb); \ 5901 } \ 5902 void HELPER(sve_ld##N##SUFF##_le_r_mte)(CPUARMState *env, void *vg, \ 5903 target_ulong addr, uint32_t desc) \ 5904 { \ 5905 sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, \ 5906 sve_ld1##SUFF##_le_host, sve_ld1##SUFF##_le_tlb); \ 5907 } \ 5908 void HELPER(sve_ld##N##SUFF##_be_r_mte)(CPUARMState *env, void *vg, \ 5909 target_ulong addr, uint32_t desc) \ 5910 { \ 5911 sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, \ 5912 sve_ld1##SUFF##_be_host, sve_ld1##SUFF##_be_tlb); \ 5913 } 5914 5915 DO_LDN_1(2) 5916 DO_LDN_1(3) 5917 DO_LDN_1(4) 5918 5919 DO_LDN_2(2, hh, MO_16) 5920 DO_LDN_2(3, hh, MO_16) 5921 DO_LDN_2(4, hh, MO_16) 5922 5923 DO_LDN_2(2, ss, MO_32) 5924 DO_LDN_2(3, ss, MO_32) 5925 DO_LDN_2(4, ss, MO_32) 5926 5927 DO_LDN_2(2, dd, MO_64) 5928 DO_LDN_2(3, dd, MO_64) 5929 DO_LDN_2(4, dd, MO_64) 5930 5931 #undef DO_LDN_1 5932 #undef DO_LDN_2 5933 5934 /* 5935 * Load contiguous data, first-fault and no-fault. 5936 * 5937 * For user-only, one could argue that we should hold the mmap_lock during 5938 * the operation so that there is no race between page_check_range and the 5939 * load operation. However, unmapping pages out from under a running thread 5940 * is extraordinarily unlikely. This theoretical race condition also affects 5941 * linux-user/ in its get_user/put_user macros. 5942 * 5943 * TODO: Construct some helpers, written in assembly, that interact with 5944 * host_signal_handler to produce memory ops which can properly report errors 5945 * without racing. 5946 */ 5947 5948 /* Fault on byte I. All bits in FFR from I are cleared. The vector 5949 * result from I is CONSTRAINED UNPREDICTABLE; we choose the MERGE 5950 * option, which leaves subsequent data unchanged. 5951 */ 5952 static void record_fault(CPUARMState *env, uintptr_t i, uintptr_t oprsz) 5953 { 5954 uint64_t *ffr = env->vfp.pregs[FFR_PRED_NUM].p; 5955 5956 if (i & 63) { 5957 ffr[i / 64] &= MAKE_64BIT_MASK(0, i & 63); 5958 i = ROUND_UP(i, 64); 5959 } 5960 for (; i < oprsz; i += 64) { 5961 ffr[i / 64] = 0; 5962 } 5963 } 5964 5965 /* 5966 * Common helper for all contiguous no-fault and first-fault loads. 5967 */ 5968 static inline QEMU_ALWAYS_INLINE 5969 void sve_ldnfff1_r(CPUARMState *env, void *vg, const target_ulong addr, 5970 uint32_t desc, const uintptr_t retaddr, uint32_t mtedesc, 5971 const int esz, const int msz, const SVEContFault fault, 5972 sve_ldst1_host_fn *host_fn, 5973 sve_ldst1_tlb_fn *tlb_fn) 5974 { 5975 const unsigned rd = simd_data(desc); 5976 void *vd = &env->vfp.zregs[rd]; 5977 const intptr_t reg_max = simd_oprsz(desc); 5978 intptr_t reg_off, mem_off, reg_last; 5979 SVEContLdSt info; 5980 int flags; 5981 void *host; 5982 5983 /* Find the active elements. */ 5984 if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, 1 << msz)) { 5985 /* The entire predicate was false; no load occurs. */ 5986 memset(vd, 0, reg_max); 5987 return; 5988 } 5989 reg_off = info.reg_off_first[0]; 5990 5991 /* Probe the page(s). */ 5992 if (!sve_cont_ldst_pages(&info, fault, env, addr, MMU_DATA_LOAD, retaddr)) { 5993 /* Fault on first element. */ 5994 tcg_debug_assert(fault == FAULT_NO); 5995 memset(vd, 0, reg_max); 5996 goto do_fault; 5997 } 5998 5999 mem_off = info.mem_off_first[0]; 6000 flags = info.page[0].flags; 6001 6002 /* 6003 * Disable MTE checking if the Tagged bit is not set. Since TBI must 6004 * be set within MTEDESC for MTE, !mtedesc => !mte_active. 6005 */ 6006 if (!info.page[0].tagged) { 6007 mtedesc = 0; 6008 } 6009 6010 if (fault == FAULT_FIRST) { 6011 /* Trapping mte check for the first-fault element. */ 6012 if (mtedesc) { 6013 mte_check(env, mtedesc, addr + mem_off, retaddr); 6014 } 6015 6016 /* 6017 * Special handling of the first active element, 6018 * if it crosses a page boundary or is MMIO. 6019 */ 6020 bool is_split = mem_off == info.mem_off_split; 6021 if (unlikely(flags != 0) || unlikely(is_split)) { 6022 /* 6023 * Use the slow path for cross-page handling. 6024 * Might trap for MMIO or watchpoints. 6025 */ 6026 tlb_fn(env, vd, reg_off, addr + mem_off, retaddr); 6027 6028 /* After any fault, zero the other elements. */ 6029 swap_memzero(vd, reg_off); 6030 reg_off += 1 << esz; 6031 mem_off += 1 << msz; 6032 swap_memzero(vd + reg_off, reg_max - reg_off); 6033 6034 if (is_split) { 6035 goto second_page; 6036 } 6037 } else { 6038 memset(vd, 0, reg_max); 6039 } 6040 } else { 6041 memset(vd, 0, reg_max); 6042 if (unlikely(mem_off == info.mem_off_split)) { 6043 /* The first active element crosses a page boundary. */ 6044 flags |= info.page[1].flags; 6045 if (unlikely(flags & TLB_MMIO)) { 6046 /* Some page is MMIO, see below. */ 6047 goto do_fault; 6048 } 6049 if (unlikely(flags & TLB_WATCHPOINT) && 6050 (cpu_watchpoint_address_matches 6051 (env_cpu(env), addr + mem_off, 1 << msz) 6052 & BP_MEM_READ)) { 6053 /* Watchpoint hit, see below. */ 6054 goto do_fault; 6055 } 6056 if (mtedesc && !mte_probe(env, mtedesc, addr + mem_off)) { 6057 goto do_fault; 6058 } 6059 /* 6060 * Use the slow path for cross-page handling. 6061 * This is RAM, without a watchpoint, and will not trap. 6062 */ 6063 tlb_fn(env, vd, reg_off, addr + mem_off, retaddr); 6064 goto second_page; 6065 } 6066 } 6067 6068 /* 6069 * From this point on, all memory operations are MemSingleNF. 6070 * 6071 * Per the MemSingleNF pseudocode, a no-fault load from Device memory 6072 * must not actually hit the bus -- it returns (UNKNOWN, FAULT) instead. 6073 * 6074 * Unfortuately we do not have access to the memory attributes from the 6075 * PTE to tell Device memory from Normal memory. So we make a mostly 6076 * correct check, and indicate (UNKNOWN, FAULT) for any MMIO. 6077 * This gives the right answer for the common cases of "Normal memory, 6078 * backed by host RAM" and "Device memory, backed by MMIO". 6079 * The architecture allows us to suppress an NF load and return 6080 * (UNKNOWN, FAULT) for any reason, so our behaviour for the corner 6081 * case of "Normal memory, backed by MMIO" is permitted. The case we 6082 * get wrong is "Device memory, backed by host RAM", for which we 6083 * should return (UNKNOWN, FAULT) for but do not. 6084 * 6085 * Similarly, CPU_BP breakpoints would raise exceptions, and so 6086 * return (UNKNOWN, FAULT). For simplicity, we consider gdb and 6087 * architectural breakpoints the same. 6088 */ 6089 if (unlikely(flags & TLB_MMIO)) { 6090 goto do_fault; 6091 } 6092 6093 reg_last = info.reg_off_last[0]; 6094 host = info.page[0].host; 6095 6096 do { 6097 uint64_t pg = *(uint64_t *)(vg + (reg_off >> 3)); 6098 do { 6099 if ((pg >> (reg_off & 63)) & 1) { 6100 if (unlikely(flags & TLB_WATCHPOINT) && 6101 (cpu_watchpoint_address_matches 6102 (env_cpu(env), addr + mem_off, 1 << msz) 6103 & BP_MEM_READ)) { 6104 goto do_fault; 6105 } 6106 if (mtedesc && !mte_probe(env, mtedesc, addr + mem_off)) { 6107 goto do_fault; 6108 } 6109 host_fn(vd, reg_off, host + mem_off); 6110 } 6111 reg_off += 1 << esz; 6112 mem_off += 1 << msz; 6113 } while (reg_off <= reg_last && (reg_off & 63)); 6114 } while (reg_off <= reg_last); 6115 6116 /* 6117 * MemSingleNF is allowed to fail for any reason. We have special 6118 * code above to handle the first element crossing a page boundary. 6119 * As an implementation choice, decline to handle a cross-page element 6120 * in any other position. 6121 */ 6122 reg_off = info.reg_off_split; 6123 if (reg_off >= 0) { 6124 goto do_fault; 6125 } 6126 6127 second_page: 6128 reg_off = info.reg_off_first[1]; 6129 if (likely(reg_off < 0)) { 6130 /* No active elements on the second page. All done. */ 6131 return; 6132 } 6133 6134 /* 6135 * MemSingleNF is allowed to fail for any reason. As an implementation 6136 * choice, decline to handle elements on the second page. This should 6137 * be low frequency as the guest walks through memory -- the next 6138 * iteration of the guest's loop should be aligned on the page boundary, 6139 * and then all following iterations will stay aligned. 6140 */ 6141 6142 do_fault: 6143 record_fault(env, reg_off, reg_max); 6144 } 6145 6146 static inline QEMU_ALWAYS_INLINE 6147 void sve_ldnfff1_r_mte(CPUARMState *env, void *vg, target_ulong addr, 6148 uint32_t desc, const uintptr_t retaddr, 6149 const int esz, const int msz, const SVEContFault fault, 6150 sve_ldst1_host_fn *host_fn, 6151 sve_ldst1_tlb_fn *tlb_fn) 6152 { 6153 uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); 6154 int bit55 = extract64(addr, 55, 1); 6155 6156 /* Remove mtedesc from the normal sve descriptor. */ 6157 desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); 6158 6159 /* Perform gross MTE suppression early. */ 6160 if (!tbi_check(mtedesc, bit55) || 6161 tcma_check(mtedesc, bit55, allocation_tag_from_addr(addr))) { 6162 mtedesc = 0; 6163 } 6164 6165 sve_ldnfff1_r(env, vg, addr, desc, retaddr, mtedesc, 6166 esz, msz, fault, host_fn, tlb_fn); 6167 } 6168 6169 #define DO_LDFF1_LDNF1_1(PART, ESZ) \ 6170 void HELPER(sve_ldff1##PART##_r)(CPUARMState *env, void *vg, \ 6171 target_ulong addr, uint32_t desc) \ 6172 { \ 6173 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MO_8, FAULT_FIRST, \ 6174 sve_ld1##PART##_host, sve_ld1##PART##_tlb); \ 6175 } \ 6176 void HELPER(sve_ldnf1##PART##_r)(CPUARMState *env, void *vg, \ 6177 target_ulong addr, uint32_t desc) \ 6178 { \ 6179 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MO_8, FAULT_NO, \ 6180 sve_ld1##PART##_host, sve_ld1##PART##_tlb); \ 6181 } \ 6182 void HELPER(sve_ldff1##PART##_r_mte)(CPUARMState *env, void *vg, \ 6183 target_ulong addr, uint32_t desc) \ 6184 { \ 6185 sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, FAULT_FIRST, \ 6186 sve_ld1##PART##_host, sve_ld1##PART##_tlb); \ 6187 } \ 6188 void HELPER(sve_ldnf1##PART##_r_mte)(CPUARMState *env, void *vg, \ 6189 target_ulong addr, uint32_t desc) \ 6190 { \ 6191 sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, FAULT_NO, \ 6192 sve_ld1##PART##_host, sve_ld1##PART##_tlb); \ 6193 } 6194 6195 #define DO_LDFF1_LDNF1_2(PART, ESZ, MSZ) \ 6196 void HELPER(sve_ldff1##PART##_le_r)(CPUARMState *env, void *vg, \ 6197 target_ulong addr, uint32_t desc) \ 6198 { \ 6199 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_FIRST, \ 6200 sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \ 6201 } \ 6202 void HELPER(sve_ldnf1##PART##_le_r)(CPUARMState *env, void *vg, \ 6203 target_ulong addr, uint32_t desc) \ 6204 { \ 6205 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_NO, \ 6206 sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \ 6207 } \ 6208 void HELPER(sve_ldff1##PART##_be_r)(CPUARMState *env, void *vg, \ 6209 target_ulong addr, uint32_t desc) \ 6210 { \ 6211 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_FIRST, \ 6212 sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \ 6213 } \ 6214 void HELPER(sve_ldnf1##PART##_be_r)(CPUARMState *env, void *vg, \ 6215 target_ulong addr, uint32_t desc) \ 6216 { \ 6217 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_NO, \ 6218 sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \ 6219 } \ 6220 void HELPER(sve_ldff1##PART##_le_r_mte)(CPUARMState *env, void *vg, \ 6221 target_ulong addr, uint32_t desc) \ 6222 { \ 6223 sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_FIRST, \ 6224 sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \ 6225 } \ 6226 void HELPER(sve_ldnf1##PART##_le_r_mte)(CPUARMState *env, void *vg, \ 6227 target_ulong addr, uint32_t desc) \ 6228 { \ 6229 sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_NO, \ 6230 sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \ 6231 } \ 6232 void HELPER(sve_ldff1##PART##_be_r_mte)(CPUARMState *env, void *vg, \ 6233 target_ulong addr, uint32_t desc) \ 6234 { \ 6235 sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_FIRST, \ 6236 sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \ 6237 } \ 6238 void HELPER(sve_ldnf1##PART##_be_r_mte)(CPUARMState *env, void *vg, \ 6239 target_ulong addr, uint32_t desc) \ 6240 { \ 6241 sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_NO, \ 6242 sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \ 6243 } 6244 6245 DO_LDFF1_LDNF1_1(bb, MO_8) 6246 DO_LDFF1_LDNF1_1(bhu, MO_16) 6247 DO_LDFF1_LDNF1_1(bhs, MO_16) 6248 DO_LDFF1_LDNF1_1(bsu, MO_32) 6249 DO_LDFF1_LDNF1_1(bss, MO_32) 6250 DO_LDFF1_LDNF1_1(bdu, MO_64) 6251 DO_LDFF1_LDNF1_1(bds, MO_64) 6252 6253 DO_LDFF1_LDNF1_2(hh, MO_16, MO_16) 6254 DO_LDFF1_LDNF1_2(hsu, MO_32, MO_16) 6255 DO_LDFF1_LDNF1_2(hss, MO_32, MO_16) 6256 DO_LDFF1_LDNF1_2(hdu, MO_64, MO_16) 6257 DO_LDFF1_LDNF1_2(hds, MO_64, MO_16) 6258 6259 DO_LDFF1_LDNF1_2(ss, MO_32, MO_32) 6260 DO_LDFF1_LDNF1_2(sdu, MO_64, MO_32) 6261 DO_LDFF1_LDNF1_2(sds, MO_64, MO_32) 6262 6263 DO_LDFF1_LDNF1_2(dd, MO_64, MO_64) 6264 6265 #undef DO_LDFF1_LDNF1_1 6266 #undef DO_LDFF1_LDNF1_2 6267 6268 /* 6269 * Common helper for all contiguous 1,2,3,4-register predicated stores. 6270 */ 6271 6272 static inline QEMU_ALWAYS_INLINE 6273 void sve_stN_r(CPUARMState *env, uint64_t *vg, target_ulong addr, 6274 uint32_t desc, const uintptr_t retaddr, 6275 const int esz, const int msz, const int N, uint32_t mtedesc, 6276 sve_ldst1_host_fn *host_fn, 6277 sve_ldst1_tlb_fn *tlb_fn) 6278 { 6279 const unsigned rd = simd_data(desc); 6280 const intptr_t reg_max = simd_oprsz(desc); 6281 intptr_t reg_off, reg_last, mem_off; 6282 SVEContLdSt info; 6283 void *host; 6284 int i, flags; 6285 6286 /* Find the active elements. */ 6287 if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, N << msz)) { 6288 /* The entire predicate was false; no store occurs. */ 6289 return; 6290 } 6291 6292 /* Probe the page(s). Exit with exception for any invalid page. */ 6293 sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_STORE, retaddr); 6294 6295 /* Handle watchpoints for all active elements. */ 6296 sve_cont_ldst_watchpoints(&info, env, vg, addr, 1 << esz, N << msz, 6297 BP_MEM_WRITE, retaddr); 6298 6299 /* 6300 * Handle mte checks for all active elements. 6301 * Since TBI must be set for MTE, !mtedesc => !mte_active. 6302 */ 6303 if (mtedesc) { 6304 sve_cont_ldst_mte_check(&info, env, vg, addr, 1 << esz, N << msz, 6305 mtedesc, retaddr); 6306 } 6307 6308 flags = info.page[0].flags | info.page[1].flags; 6309 if (unlikely(flags != 0)) { 6310 #ifdef CONFIG_USER_ONLY 6311 g_assert_not_reached(); 6312 #else 6313 /* 6314 * At least one page includes MMIO. 6315 * Any bus operation can fail with cpu_transaction_failed, 6316 * which for ARM will raise SyncExternal. We cannot avoid 6317 * this fault and will leave with the store incomplete. 6318 */ 6319 mem_off = info.mem_off_first[0]; 6320 reg_off = info.reg_off_first[0]; 6321 reg_last = info.reg_off_last[1]; 6322 if (reg_last < 0) { 6323 reg_last = info.reg_off_split; 6324 if (reg_last < 0) { 6325 reg_last = info.reg_off_last[0]; 6326 } 6327 } 6328 6329 do { 6330 uint64_t pg = vg[reg_off >> 6]; 6331 do { 6332 if ((pg >> (reg_off & 63)) & 1) { 6333 for (i = 0; i < N; ++i) { 6334 tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off, 6335 addr + mem_off + (i << msz), retaddr); 6336 } 6337 } 6338 reg_off += 1 << esz; 6339 mem_off += N << msz; 6340 } while (reg_off & 63); 6341 } while (reg_off <= reg_last); 6342 return; 6343 #endif 6344 } 6345 6346 mem_off = info.mem_off_first[0]; 6347 reg_off = info.reg_off_first[0]; 6348 reg_last = info.reg_off_last[0]; 6349 host = info.page[0].host; 6350 6351 while (reg_off <= reg_last) { 6352 uint64_t pg = vg[reg_off >> 6]; 6353 do { 6354 if ((pg >> (reg_off & 63)) & 1) { 6355 for (i = 0; i < N; ++i) { 6356 host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off, 6357 host + mem_off + (i << msz)); 6358 } 6359 } 6360 reg_off += 1 << esz; 6361 mem_off += N << msz; 6362 } while (reg_off <= reg_last && (reg_off & 63)); 6363 } 6364 6365 /* 6366 * Use the slow path to manage the cross-page misalignment. 6367 * But we know this is RAM and cannot trap. 6368 */ 6369 mem_off = info.mem_off_split; 6370 if (unlikely(mem_off >= 0)) { 6371 reg_off = info.reg_off_split; 6372 for (i = 0; i < N; ++i) { 6373 tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off, 6374 addr + mem_off + (i << msz), retaddr); 6375 } 6376 } 6377 6378 mem_off = info.mem_off_first[1]; 6379 if (unlikely(mem_off >= 0)) { 6380 reg_off = info.reg_off_first[1]; 6381 reg_last = info.reg_off_last[1]; 6382 host = info.page[1].host; 6383 6384 do { 6385 uint64_t pg = vg[reg_off >> 6]; 6386 do { 6387 if ((pg >> (reg_off & 63)) & 1) { 6388 for (i = 0; i < N; ++i) { 6389 host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off, 6390 host + mem_off + (i << msz)); 6391 } 6392 } 6393 reg_off += 1 << esz; 6394 mem_off += N << msz; 6395 } while (reg_off & 63); 6396 } while (reg_off <= reg_last); 6397 } 6398 } 6399 6400 static inline QEMU_ALWAYS_INLINE 6401 void sve_stN_r_mte(CPUARMState *env, uint64_t *vg, target_ulong addr, 6402 uint32_t desc, const uintptr_t ra, 6403 const int esz, const int msz, const int N, 6404 sve_ldst1_host_fn *host_fn, 6405 sve_ldst1_tlb_fn *tlb_fn) 6406 { 6407 uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); 6408 int bit55 = extract64(addr, 55, 1); 6409 6410 /* Remove mtedesc from the normal sve descriptor. */ 6411 desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); 6412 6413 /* Perform gross MTE suppression early. */ 6414 if (!tbi_check(mtedesc, bit55) || 6415 tcma_check(mtedesc, bit55, allocation_tag_from_addr(addr))) { 6416 mtedesc = 0; 6417 } 6418 6419 sve_stN_r(env, vg, addr, desc, ra, esz, msz, N, mtedesc, host_fn, tlb_fn); 6420 } 6421 6422 #define DO_STN_1(N, NAME, ESZ) \ 6423 void HELPER(sve_st##N##NAME##_r)(CPUARMState *env, void *vg, \ 6424 target_ulong addr, uint32_t desc) \ 6425 { \ 6426 sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MO_8, N, 0, \ 6427 sve_st1##NAME##_host, sve_st1##NAME##_tlb); \ 6428 } \ 6429 void HELPER(sve_st##N##NAME##_r_mte)(CPUARMState *env, void *vg, \ 6430 target_ulong addr, uint32_t desc) \ 6431 { \ 6432 sve_stN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, N, \ 6433 sve_st1##NAME##_host, sve_st1##NAME##_tlb); \ 6434 } 6435 6436 #define DO_STN_2(N, NAME, ESZ, MSZ) \ 6437 void HELPER(sve_st##N##NAME##_le_r)(CPUARMState *env, void *vg, \ 6438 target_ulong addr, uint32_t desc) \ 6439 { \ 6440 sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, 0, \ 6441 sve_st1##NAME##_le_host, sve_st1##NAME##_le_tlb); \ 6442 } \ 6443 void HELPER(sve_st##N##NAME##_be_r)(CPUARMState *env, void *vg, \ 6444 target_ulong addr, uint32_t desc) \ 6445 { \ 6446 sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, 0, \ 6447 sve_st1##NAME##_be_host, sve_st1##NAME##_be_tlb); \ 6448 } \ 6449 void HELPER(sve_st##N##NAME##_le_r_mte)(CPUARMState *env, void *vg, \ 6450 target_ulong addr, uint32_t desc) \ 6451 { \ 6452 sve_stN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, \ 6453 sve_st1##NAME##_le_host, sve_st1##NAME##_le_tlb); \ 6454 } \ 6455 void HELPER(sve_st##N##NAME##_be_r_mte)(CPUARMState *env, void *vg, \ 6456 target_ulong addr, uint32_t desc) \ 6457 { \ 6458 sve_stN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, \ 6459 sve_st1##NAME##_be_host, sve_st1##NAME##_be_tlb); \ 6460 } 6461 6462 DO_STN_1(1, bb, MO_8) 6463 DO_STN_1(1, bh, MO_16) 6464 DO_STN_1(1, bs, MO_32) 6465 DO_STN_1(1, bd, MO_64) 6466 DO_STN_1(2, bb, MO_8) 6467 DO_STN_1(3, bb, MO_8) 6468 DO_STN_1(4, bb, MO_8) 6469 6470 DO_STN_2(1, hh, MO_16, MO_16) 6471 DO_STN_2(1, hs, MO_32, MO_16) 6472 DO_STN_2(1, hd, MO_64, MO_16) 6473 DO_STN_2(2, hh, MO_16, MO_16) 6474 DO_STN_2(3, hh, MO_16, MO_16) 6475 DO_STN_2(4, hh, MO_16, MO_16) 6476 6477 DO_STN_2(1, ss, MO_32, MO_32) 6478 DO_STN_2(1, sd, MO_64, MO_32) 6479 DO_STN_2(2, ss, MO_32, MO_32) 6480 DO_STN_2(3, ss, MO_32, MO_32) 6481 DO_STN_2(4, ss, MO_32, MO_32) 6482 6483 DO_STN_2(1, dd, MO_64, MO_64) 6484 DO_STN_2(2, dd, MO_64, MO_64) 6485 DO_STN_2(3, dd, MO_64, MO_64) 6486 DO_STN_2(4, dd, MO_64, MO_64) 6487 6488 #undef DO_STN_1 6489 #undef DO_STN_2 6490 6491 /* 6492 * Loads with a vector index. 6493 */ 6494 6495 /* 6496 * Load the element at @reg + @reg_ofs, sign or zero-extend as needed. 6497 */ 6498 typedef target_ulong zreg_off_fn(void *reg, intptr_t reg_ofs); 6499 6500 static target_ulong off_zsu_s(void *reg, intptr_t reg_ofs) 6501 { 6502 return *(uint32_t *)(reg + H1_4(reg_ofs)); 6503 } 6504 6505 static target_ulong off_zss_s(void *reg, intptr_t reg_ofs) 6506 { 6507 return *(int32_t *)(reg + H1_4(reg_ofs)); 6508 } 6509 6510 static target_ulong off_zsu_d(void *reg, intptr_t reg_ofs) 6511 { 6512 return (uint32_t)*(uint64_t *)(reg + reg_ofs); 6513 } 6514 6515 static target_ulong off_zss_d(void *reg, intptr_t reg_ofs) 6516 { 6517 return (int32_t)*(uint64_t *)(reg + reg_ofs); 6518 } 6519 6520 static target_ulong off_zd_d(void *reg, intptr_t reg_ofs) 6521 { 6522 return *(uint64_t *)(reg + reg_ofs); 6523 } 6524 6525 static inline QEMU_ALWAYS_INLINE 6526 void sve_ld1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm, 6527 target_ulong base, uint32_t desc, uintptr_t retaddr, 6528 uint32_t mtedesc, int esize, int msize, 6529 zreg_off_fn *off_fn, 6530 sve_ldst1_host_fn *host_fn, 6531 sve_ldst1_tlb_fn *tlb_fn) 6532 { 6533 const int mmu_idx = arm_env_mmu_index(env); 6534 const intptr_t reg_max = simd_oprsz(desc); 6535 const int scale = simd_data(desc); 6536 ARMVectorReg scratch; 6537 intptr_t reg_off; 6538 SVEHostPage info, info2; 6539 6540 memset(&scratch, 0, reg_max); 6541 reg_off = 0; 6542 do { 6543 uint64_t pg = vg[reg_off >> 6]; 6544 do { 6545 if (likely(pg & 1)) { 6546 target_ulong addr = base + (off_fn(vm, reg_off) << scale); 6547 target_ulong in_page = -(addr | TARGET_PAGE_MASK); 6548 6549 sve_probe_page(&info, false, env, addr, 0, MMU_DATA_LOAD, 6550 mmu_idx, retaddr); 6551 6552 if (likely(in_page >= msize)) { 6553 if (unlikely(info.flags & TLB_WATCHPOINT)) { 6554 cpu_check_watchpoint(env_cpu(env), addr, msize, 6555 info.attrs, BP_MEM_READ, retaddr); 6556 } 6557 if (mtedesc && info.tagged) { 6558 mte_check(env, mtedesc, addr, retaddr); 6559 } 6560 if (unlikely(info.flags & TLB_MMIO)) { 6561 tlb_fn(env, &scratch, reg_off, addr, retaddr); 6562 } else { 6563 host_fn(&scratch, reg_off, info.host); 6564 } 6565 } else { 6566 /* Element crosses the page boundary. */ 6567 sve_probe_page(&info2, false, env, addr + in_page, 0, 6568 MMU_DATA_LOAD, mmu_idx, retaddr); 6569 if (unlikely((info.flags | info2.flags) & TLB_WATCHPOINT)) { 6570 cpu_check_watchpoint(env_cpu(env), addr, 6571 msize, info.attrs, 6572 BP_MEM_READ, retaddr); 6573 } 6574 if (mtedesc && info.tagged) { 6575 mte_check(env, mtedesc, addr, retaddr); 6576 } 6577 tlb_fn(env, &scratch, reg_off, addr, retaddr); 6578 } 6579 } 6580 reg_off += esize; 6581 pg >>= esize; 6582 } while (reg_off & 63); 6583 } while (reg_off < reg_max); 6584 6585 /* Wait until all exceptions have been raised to write back. */ 6586 memcpy(vd, &scratch, reg_max); 6587 } 6588 6589 static inline QEMU_ALWAYS_INLINE 6590 void sve_ld1_z_mte(CPUARMState *env, void *vd, uint64_t *vg, void *vm, 6591 target_ulong base, uint32_t desc, uintptr_t retaddr, 6592 int esize, int msize, zreg_off_fn *off_fn, 6593 sve_ldst1_host_fn *host_fn, 6594 sve_ldst1_tlb_fn *tlb_fn) 6595 { 6596 uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); 6597 /* Remove mtedesc from the normal sve descriptor. */ 6598 desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); 6599 6600 /* 6601 * ??? TODO: For the 32-bit offset extractions, base + ofs cannot 6602 * offset base entirely over the address space hole to change the 6603 * pointer tag, or change the bit55 selector. So we could here 6604 * examine TBI + TCMA like we do for sve_ldN_r_mte(). 6605 */ 6606 sve_ld1_z(env, vd, vg, vm, base, desc, retaddr, mtedesc, 6607 esize, msize, off_fn, host_fn, tlb_fn); 6608 } 6609 6610 #define DO_LD1_ZPZ_S(MEM, OFS, MSZ) \ 6611 void HELPER(sve_ld##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \ 6612 void *vm, target_ulong base, uint32_t desc) \ 6613 { \ 6614 sve_ld1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 4, 1 << MSZ, \ 6615 off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \ 6616 } \ 6617 void HELPER(sve_ld##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \ 6618 void *vm, target_ulong base, uint32_t desc) \ 6619 { \ 6620 sve_ld1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 4, 1 << MSZ, \ 6621 off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \ 6622 } 6623 6624 #define DO_LD1_ZPZ_D(MEM, OFS, MSZ) \ 6625 void HELPER(sve_ld##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \ 6626 void *vm, target_ulong base, uint32_t desc) \ 6627 { \ 6628 sve_ld1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 8, 1 << MSZ, \ 6629 off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \ 6630 } \ 6631 void HELPER(sve_ld##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \ 6632 void *vm, target_ulong base, uint32_t desc) \ 6633 { \ 6634 sve_ld1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 8, 1 << MSZ, \ 6635 off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \ 6636 } 6637 6638 DO_LD1_ZPZ_S(bsu, zsu, MO_8) 6639 DO_LD1_ZPZ_S(bsu, zss, MO_8) 6640 DO_LD1_ZPZ_D(bdu, zsu, MO_8) 6641 DO_LD1_ZPZ_D(bdu, zss, MO_8) 6642 DO_LD1_ZPZ_D(bdu, zd, MO_8) 6643 6644 DO_LD1_ZPZ_S(bss, zsu, MO_8) 6645 DO_LD1_ZPZ_S(bss, zss, MO_8) 6646 DO_LD1_ZPZ_D(bds, zsu, MO_8) 6647 DO_LD1_ZPZ_D(bds, zss, MO_8) 6648 DO_LD1_ZPZ_D(bds, zd, MO_8) 6649 6650 DO_LD1_ZPZ_S(hsu_le, zsu, MO_16) 6651 DO_LD1_ZPZ_S(hsu_le, zss, MO_16) 6652 DO_LD1_ZPZ_D(hdu_le, zsu, MO_16) 6653 DO_LD1_ZPZ_D(hdu_le, zss, MO_16) 6654 DO_LD1_ZPZ_D(hdu_le, zd, MO_16) 6655 6656 DO_LD1_ZPZ_S(hsu_be, zsu, MO_16) 6657 DO_LD1_ZPZ_S(hsu_be, zss, MO_16) 6658 DO_LD1_ZPZ_D(hdu_be, zsu, MO_16) 6659 DO_LD1_ZPZ_D(hdu_be, zss, MO_16) 6660 DO_LD1_ZPZ_D(hdu_be, zd, MO_16) 6661 6662 DO_LD1_ZPZ_S(hss_le, zsu, MO_16) 6663 DO_LD1_ZPZ_S(hss_le, zss, MO_16) 6664 DO_LD1_ZPZ_D(hds_le, zsu, MO_16) 6665 DO_LD1_ZPZ_D(hds_le, zss, MO_16) 6666 DO_LD1_ZPZ_D(hds_le, zd, MO_16) 6667 6668 DO_LD1_ZPZ_S(hss_be, zsu, MO_16) 6669 DO_LD1_ZPZ_S(hss_be, zss, MO_16) 6670 DO_LD1_ZPZ_D(hds_be, zsu, MO_16) 6671 DO_LD1_ZPZ_D(hds_be, zss, MO_16) 6672 DO_LD1_ZPZ_D(hds_be, zd, MO_16) 6673 6674 DO_LD1_ZPZ_S(ss_le, zsu, MO_32) 6675 DO_LD1_ZPZ_S(ss_le, zss, MO_32) 6676 DO_LD1_ZPZ_D(sdu_le, zsu, MO_32) 6677 DO_LD1_ZPZ_D(sdu_le, zss, MO_32) 6678 DO_LD1_ZPZ_D(sdu_le, zd, MO_32) 6679 6680 DO_LD1_ZPZ_S(ss_be, zsu, MO_32) 6681 DO_LD1_ZPZ_S(ss_be, zss, MO_32) 6682 DO_LD1_ZPZ_D(sdu_be, zsu, MO_32) 6683 DO_LD1_ZPZ_D(sdu_be, zss, MO_32) 6684 DO_LD1_ZPZ_D(sdu_be, zd, MO_32) 6685 6686 DO_LD1_ZPZ_D(sds_le, zsu, MO_32) 6687 DO_LD1_ZPZ_D(sds_le, zss, MO_32) 6688 DO_LD1_ZPZ_D(sds_le, zd, MO_32) 6689 6690 DO_LD1_ZPZ_D(sds_be, zsu, MO_32) 6691 DO_LD1_ZPZ_D(sds_be, zss, MO_32) 6692 DO_LD1_ZPZ_D(sds_be, zd, MO_32) 6693 6694 DO_LD1_ZPZ_D(dd_le, zsu, MO_64) 6695 DO_LD1_ZPZ_D(dd_le, zss, MO_64) 6696 DO_LD1_ZPZ_D(dd_le, zd, MO_64) 6697 6698 DO_LD1_ZPZ_D(dd_be, zsu, MO_64) 6699 DO_LD1_ZPZ_D(dd_be, zss, MO_64) 6700 DO_LD1_ZPZ_D(dd_be, zd, MO_64) 6701 6702 #undef DO_LD1_ZPZ_S 6703 #undef DO_LD1_ZPZ_D 6704 6705 /* First fault loads with a vector index. */ 6706 6707 /* 6708 * Common helpers for all gather first-faulting loads. 6709 */ 6710 6711 static inline QEMU_ALWAYS_INLINE 6712 void sve_ldff1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm, 6713 target_ulong base, uint32_t desc, uintptr_t retaddr, 6714 uint32_t mtedesc, const int esz, const int msz, 6715 zreg_off_fn *off_fn, 6716 sve_ldst1_host_fn *host_fn, 6717 sve_ldst1_tlb_fn *tlb_fn) 6718 { 6719 const int mmu_idx = arm_env_mmu_index(env); 6720 const intptr_t reg_max = simd_oprsz(desc); 6721 const int scale = simd_data(desc); 6722 const int esize = 1 << esz; 6723 const int msize = 1 << msz; 6724 intptr_t reg_off; 6725 SVEHostPage info; 6726 target_ulong addr, in_page; 6727 ARMVectorReg scratch; 6728 6729 /* Skip to the first true predicate. */ 6730 reg_off = find_next_active(vg, 0, reg_max, esz); 6731 if (unlikely(reg_off >= reg_max)) { 6732 /* The entire predicate was false; no load occurs. */ 6733 memset(vd, 0, reg_max); 6734 return; 6735 } 6736 6737 /* Protect against overlap between vd and vm. */ 6738 if (unlikely(vd == vm)) { 6739 vm = memcpy(&scratch, vm, reg_max); 6740 } 6741 6742 /* 6743 * Probe the first element, allowing faults. 6744 */ 6745 addr = base + (off_fn(vm, reg_off) << scale); 6746 if (mtedesc) { 6747 mte_check(env, mtedesc, addr, retaddr); 6748 } 6749 tlb_fn(env, vd, reg_off, addr, retaddr); 6750 6751 /* After any fault, zero the other elements. */ 6752 swap_memzero(vd, reg_off); 6753 reg_off += esize; 6754 swap_memzero(vd + reg_off, reg_max - reg_off); 6755 6756 /* 6757 * Probe the remaining elements, not allowing faults. 6758 */ 6759 while (reg_off < reg_max) { 6760 uint64_t pg = vg[reg_off >> 6]; 6761 do { 6762 if (likely((pg >> (reg_off & 63)) & 1)) { 6763 addr = base + (off_fn(vm, reg_off) << scale); 6764 in_page = -(addr | TARGET_PAGE_MASK); 6765 6766 if (unlikely(in_page < msize)) { 6767 /* Stop if the element crosses a page boundary. */ 6768 goto fault; 6769 } 6770 6771 sve_probe_page(&info, true, env, addr, 0, MMU_DATA_LOAD, 6772 mmu_idx, retaddr); 6773 if (unlikely(info.flags & (TLB_INVALID_MASK | TLB_MMIO))) { 6774 goto fault; 6775 } 6776 if (unlikely(info.flags & TLB_WATCHPOINT) && 6777 (cpu_watchpoint_address_matches 6778 (env_cpu(env), addr, msize) & BP_MEM_READ)) { 6779 goto fault; 6780 } 6781 if (mtedesc && info.tagged && !mte_probe(env, mtedesc, addr)) { 6782 goto fault; 6783 } 6784 6785 host_fn(vd, reg_off, info.host); 6786 } 6787 reg_off += esize; 6788 } while (reg_off & 63); 6789 } 6790 return; 6791 6792 fault: 6793 record_fault(env, reg_off, reg_max); 6794 } 6795 6796 static inline QEMU_ALWAYS_INLINE 6797 void sve_ldff1_z_mte(CPUARMState *env, void *vd, uint64_t *vg, void *vm, 6798 target_ulong base, uint32_t desc, uintptr_t retaddr, 6799 const int esz, const int msz, 6800 zreg_off_fn *off_fn, 6801 sve_ldst1_host_fn *host_fn, 6802 sve_ldst1_tlb_fn *tlb_fn) 6803 { 6804 uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); 6805 /* Remove mtedesc from the normal sve descriptor. */ 6806 desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); 6807 6808 /* 6809 * ??? TODO: For the 32-bit offset extractions, base + ofs cannot 6810 * offset base entirely over the address space hole to change the 6811 * pointer tag, or change the bit55 selector. So we could here 6812 * examine TBI + TCMA like we do for sve_ldN_r_mte(). 6813 */ 6814 sve_ldff1_z(env, vd, vg, vm, base, desc, retaddr, mtedesc, 6815 esz, msz, off_fn, host_fn, tlb_fn); 6816 } 6817 6818 #define DO_LDFF1_ZPZ_S(MEM, OFS, MSZ) \ 6819 void HELPER(sve_ldff##MEM##_##OFS) \ 6820 (CPUARMState *env, void *vd, void *vg, \ 6821 void *vm, target_ulong base, uint32_t desc) \ 6822 { \ 6823 sve_ldff1_z(env, vd, vg, vm, base, desc, GETPC(), 0, MO_32, MSZ, \ 6824 off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \ 6825 } \ 6826 void HELPER(sve_ldff##MEM##_##OFS##_mte) \ 6827 (CPUARMState *env, void *vd, void *vg, \ 6828 void *vm, target_ulong base, uint32_t desc) \ 6829 { \ 6830 sve_ldff1_z_mte(env, vd, vg, vm, base, desc, GETPC(), MO_32, MSZ, \ 6831 off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \ 6832 } 6833 6834 #define DO_LDFF1_ZPZ_D(MEM, OFS, MSZ) \ 6835 void HELPER(sve_ldff##MEM##_##OFS) \ 6836 (CPUARMState *env, void *vd, void *vg, \ 6837 void *vm, target_ulong base, uint32_t desc) \ 6838 { \ 6839 sve_ldff1_z(env, vd, vg, vm, base, desc, GETPC(), 0, MO_64, MSZ, \ 6840 off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \ 6841 } \ 6842 void HELPER(sve_ldff##MEM##_##OFS##_mte) \ 6843 (CPUARMState *env, void *vd, void *vg, \ 6844 void *vm, target_ulong base, uint32_t desc) \ 6845 { \ 6846 sve_ldff1_z_mte(env, vd, vg, vm, base, desc, GETPC(), MO_64, MSZ, \ 6847 off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \ 6848 } 6849 6850 DO_LDFF1_ZPZ_S(bsu, zsu, MO_8) 6851 DO_LDFF1_ZPZ_S(bsu, zss, MO_8) 6852 DO_LDFF1_ZPZ_D(bdu, zsu, MO_8) 6853 DO_LDFF1_ZPZ_D(bdu, zss, MO_8) 6854 DO_LDFF1_ZPZ_D(bdu, zd, MO_8) 6855 6856 DO_LDFF1_ZPZ_S(bss, zsu, MO_8) 6857 DO_LDFF1_ZPZ_S(bss, zss, MO_8) 6858 DO_LDFF1_ZPZ_D(bds, zsu, MO_8) 6859 DO_LDFF1_ZPZ_D(bds, zss, MO_8) 6860 DO_LDFF1_ZPZ_D(bds, zd, MO_8) 6861 6862 DO_LDFF1_ZPZ_S(hsu_le, zsu, MO_16) 6863 DO_LDFF1_ZPZ_S(hsu_le, zss, MO_16) 6864 DO_LDFF1_ZPZ_D(hdu_le, zsu, MO_16) 6865 DO_LDFF1_ZPZ_D(hdu_le, zss, MO_16) 6866 DO_LDFF1_ZPZ_D(hdu_le, zd, MO_16) 6867 6868 DO_LDFF1_ZPZ_S(hsu_be, zsu, MO_16) 6869 DO_LDFF1_ZPZ_S(hsu_be, zss, MO_16) 6870 DO_LDFF1_ZPZ_D(hdu_be, zsu, MO_16) 6871 DO_LDFF1_ZPZ_D(hdu_be, zss, MO_16) 6872 DO_LDFF1_ZPZ_D(hdu_be, zd, MO_16) 6873 6874 DO_LDFF1_ZPZ_S(hss_le, zsu, MO_16) 6875 DO_LDFF1_ZPZ_S(hss_le, zss, MO_16) 6876 DO_LDFF1_ZPZ_D(hds_le, zsu, MO_16) 6877 DO_LDFF1_ZPZ_D(hds_le, zss, MO_16) 6878 DO_LDFF1_ZPZ_D(hds_le, zd, MO_16) 6879 6880 DO_LDFF1_ZPZ_S(hss_be, zsu, MO_16) 6881 DO_LDFF1_ZPZ_S(hss_be, zss, MO_16) 6882 DO_LDFF1_ZPZ_D(hds_be, zsu, MO_16) 6883 DO_LDFF1_ZPZ_D(hds_be, zss, MO_16) 6884 DO_LDFF1_ZPZ_D(hds_be, zd, MO_16) 6885 6886 DO_LDFF1_ZPZ_S(ss_le, zsu, MO_32) 6887 DO_LDFF1_ZPZ_S(ss_le, zss, MO_32) 6888 DO_LDFF1_ZPZ_D(sdu_le, zsu, MO_32) 6889 DO_LDFF1_ZPZ_D(sdu_le, zss, MO_32) 6890 DO_LDFF1_ZPZ_D(sdu_le, zd, MO_32) 6891 6892 DO_LDFF1_ZPZ_S(ss_be, zsu, MO_32) 6893 DO_LDFF1_ZPZ_S(ss_be, zss, MO_32) 6894 DO_LDFF1_ZPZ_D(sdu_be, zsu, MO_32) 6895 DO_LDFF1_ZPZ_D(sdu_be, zss, MO_32) 6896 DO_LDFF1_ZPZ_D(sdu_be, zd, MO_32) 6897 6898 DO_LDFF1_ZPZ_D(sds_le, zsu, MO_32) 6899 DO_LDFF1_ZPZ_D(sds_le, zss, MO_32) 6900 DO_LDFF1_ZPZ_D(sds_le, zd, MO_32) 6901 6902 DO_LDFF1_ZPZ_D(sds_be, zsu, MO_32) 6903 DO_LDFF1_ZPZ_D(sds_be, zss, MO_32) 6904 DO_LDFF1_ZPZ_D(sds_be, zd, MO_32) 6905 6906 DO_LDFF1_ZPZ_D(dd_le, zsu, MO_64) 6907 DO_LDFF1_ZPZ_D(dd_le, zss, MO_64) 6908 DO_LDFF1_ZPZ_D(dd_le, zd, MO_64) 6909 6910 DO_LDFF1_ZPZ_D(dd_be, zsu, MO_64) 6911 DO_LDFF1_ZPZ_D(dd_be, zss, MO_64) 6912 DO_LDFF1_ZPZ_D(dd_be, zd, MO_64) 6913 6914 /* Stores with a vector index. */ 6915 6916 static inline QEMU_ALWAYS_INLINE 6917 void sve_st1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm, 6918 target_ulong base, uint32_t desc, uintptr_t retaddr, 6919 uint32_t mtedesc, int esize, int msize, 6920 zreg_off_fn *off_fn, 6921 sve_ldst1_host_fn *host_fn, 6922 sve_ldst1_tlb_fn *tlb_fn) 6923 { 6924 const int mmu_idx = arm_env_mmu_index(env); 6925 const intptr_t reg_max = simd_oprsz(desc); 6926 const int scale = simd_data(desc); 6927 void *host[ARM_MAX_VQ * 4]; 6928 intptr_t reg_off, i; 6929 SVEHostPage info, info2; 6930 6931 /* 6932 * Probe all of the elements for host addresses and flags. 6933 */ 6934 i = reg_off = 0; 6935 do { 6936 uint64_t pg = vg[reg_off >> 6]; 6937 do { 6938 target_ulong addr = base + (off_fn(vm, reg_off) << scale); 6939 target_ulong in_page = -(addr | TARGET_PAGE_MASK); 6940 6941 host[i] = NULL; 6942 if (likely((pg >> (reg_off & 63)) & 1)) { 6943 if (likely(in_page >= msize)) { 6944 sve_probe_page(&info, false, env, addr, 0, MMU_DATA_STORE, 6945 mmu_idx, retaddr); 6946 if (!(info.flags & TLB_MMIO)) { 6947 host[i] = info.host; 6948 } 6949 } else { 6950 /* 6951 * Element crosses the page boundary. 6952 * Probe both pages, but do not record the host address, 6953 * so that we use the slow path. 6954 */ 6955 sve_probe_page(&info, false, env, addr, 0, 6956 MMU_DATA_STORE, mmu_idx, retaddr); 6957 sve_probe_page(&info2, false, env, addr + in_page, 0, 6958 MMU_DATA_STORE, mmu_idx, retaddr); 6959 info.flags |= info2.flags; 6960 } 6961 6962 if (unlikely(info.flags & TLB_WATCHPOINT)) { 6963 cpu_check_watchpoint(env_cpu(env), addr, msize, 6964 info.attrs, BP_MEM_WRITE, retaddr); 6965 } 6966 6967 if (mtedesc && info.tagged) { 6968 mte_check(env, mtedesc, addr, retaddr); 6969 } 6970 } 6971 i += 1; 6972 reg_off += esize; 6973 } while (reg_off & 63); 6974 } while (reg_off < reg_max); 6975 6976 /* 6977 * Now that we have recognized all exceptions except SyncExternal 6978 * (from TLB_MMIO), which we cannot avoid, perform all of the stores. 6979 * 6980 * Note for the common case of an element in RAM, not crossing a page 6981 * boundary, we have stored the host address in host[]. This doubles 6982 * as a first-level check against the predicate, since only enabled 6983 * elements have non-null host addresses. 6984 */ 6985 i = reg_off = 0; 6986 do { 6987 void *h = host[i]; 6988 if (likely(h != NULL)) { 6989 host_fn(vd, reg_off, h); 6990 } else if ((vg[reg_off >> 6] >> (reg_off & 63)) & 1) { 6991 target_ulong addr = base + (off_fn(vm, reg_off) << scale); 6992 tlb_fn(env, vd, reg_off, addr, retaddr); 6993 } 6994 i += 1; 6995 reg_off += esize; 6996 } while (reg_off < reg_max); 6997 } 6998 6999 static inline QEMU_ALWAYS_INLINE 7000 void sve_st1_z_mte(CPUARMState *env, void *vd, uint64_t *vg, void *vm, 7001 target_ulong base, uint32_t desc, uintptr_t retaddr, 7002 int esize, int msize, zreg_off_fn *off_fn, 7003 sve_ldst1_host_fn *host_fn, 7004 sve_ldst1_tlb_fn *tlb_fn) 7005 { 7006 uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); 7007 /* Remove mtedesc from the normal sve descriptor. */ 7008 desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); 7009 7010 /* 7011 * ??? TODO: For the 32-bit offset extractions, base + ofs cannot 7012 * offset base entirely over the address space hole to change the 7013 * pointer tag, or change the bit55 selector. So we could here 7014 * examine TBI + TCMA like we do for sve_ldN_r_mte(). 7015 */ 7016 sve_st1_z(env, vd, vg, vm, base, desc, retaddr, mtedesc, 7017 esize, msize, off_fn, host_fn, tlb_fn); 7018 } 7019 7020 #define DO_ST1_ZPZ_S(MEM, OFS, MSZ) \ 7021 void HELPER(sve_st##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \ 7022 void *vm, target_ulong base, uint32_t desc) \ 7023 { \ 7024 sve_st1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 4, 1 << MSZ, \ 7025 off_##OFS##_s, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \ 7026 } \ 7027 void HELPER(sve_st##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \ 7028 void *vm, target_ulong base, uint32_t desc) \ 7029 { \ 7030 sve_st1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 4, 1 << MSZ, \ 7031 off_##OFS##_s, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \ 7032 } 7033 7034 #define DO_ST1_ZPZ_D(MEM, OFS, MSZ) \ 7035 void HELPER(sve_st##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \ 7036 void *vm, target_ulong base, uint32_t desc) \ 7037 { \ 7038 sve_st1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 8, 1 << MSZ, \ 7039 off_##OFS##_d, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \ 7040 } \ 7041 void HELPER(sve_st##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \ 7042 void *vm, target_ulong base, uint32_t desc) \ 7043 { \ 7044 sve_st1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 8, 1 << MSZ, \ 7045 off_##OFS##_d, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \ 7046 } 7047 7048 DO_ST1_ZPZ_S(bs, zsu, MO_8) 7049 DO_ST1_ZPZ_S(hs_le, zsu, MO_16) 7050 DO_ST1_ZPZ_S(hs_be, zsu, MO_16) 7051 DO_ST1_ZPZ_S(ss_le, zsu, MO_32) 7052 DO_ST1_ZPZ_S(ss_be, zsu, MO_32) 7053 7054 DO_ST1_ZPZ_S(bs, zss, MO_8) 7055 DO_ST1_ZPZ_S(hs_le, zss, MO_16) 7056 DO_ST1_ZPZ_S(hs_be, zss, MO_16) 7057 DO_ST1_ZPZ_S(ss_le, zss, MO_32) 7058 DO_ST1_ZPZ_S(ss_be, zss, MO_32) 7059 7060 DO_ST1_ZPZ_D(bd, zsu, MO_8) 7061 DO_ST1_ZPZ_D(hd_le, zsu, MO_16) 7062 DO_ST1_ZPZ_D(hd_be, zsu, MO_16) 7063 DO_ST1_ZPZ_D(sd_le, zsu, MO_32) 7064 DO_ST1_ZPZ_D(sd_be, zsu, MO_32) 7065 DO_ST1_ZPZ_D(dd_le, zsu, MO_64) 7066 DO_ST1_ZPZ_D(dd_be, zsu, MO_64) 7067 7068 DO_ST1_ZPZ_D(bd, zss, MO_8) 7069 DO_ST1_ZPZ_D(hd_le, zss, MO_16) 7070 DO_ST1_ZPZ_D(hd_be, zss, MO_16) 7071 DO_ST1_ZPZ_D(sd_le, zss, MO_32) 7072 DO_ST1_ZPZ_D(sd_be, zss, MO_32) 7073 DO_ST1_ZPZ_D(dd_le, zss, MO_64) 7074 DO_ST1_ZPZ_D(dd_be, zss, MO_64) 7075 7076 DO_ST1_ZPZ_D(bd, zd, MO_8) 7077 DO_ST1_ZPZ_D(hd_le, zd, MO_16) 7078 DO_ST1_ZPZ_D(hd_be, zd, MO_16) 7079 DO_ST1_ZPZ_D(sd_le, zd, MO_32) 7080 DO_ST1_ZPZ_D(sd_be, zd, MO_32) 7081 DO_ST1_ZPZ_D(dd_le, zd, MO_64) 7082 DO_ST1_ZPZ_D(dd_be, zd, MO_64) 7083 7084 #undef DO_ST1_ZPZ_S 7085 #undef DO_ST1_ZPZ_D 7086 7087 void HELPER(sve2_eor3)(void *vd, void *vn, void *vm, void *vk, uint32_t desc) 7088 { 7089 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 7090 uint64_t *d = vd, *n = vn, *m = vm, *k = vk; 7091 7092 for (i = 0; i < opr_sz; ++i) { 7093 d[i] = n[i] ^ m[i] ^ k[i]; 7094 } 7095 } 7096 7097 void HELPER(sve2_bcax)(void *vd, void *vn, void *vm, void *vk, uint32_t desc) 7098 { 7099 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 7100 uint64_t *d = vd, *n = vn, *m = vm, *k = vk; 7101 7102 for (i = 0; i < opr_sz; ++i) { 7103 d[i] = n[i] ^ (m[i] & ~k[i]); 7104 } 7105 } 7106 7107 void HELPER(sve2_bsl1n)(void *vd, void *vn, void *vm, void *vk, uint32_t desc) 7108 { 7109 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 7110 uint64_t *d = vd, *n = vn, *m = vm, *k = vk; 7111 7112 for (i = 0; i < opr_sz; ++i) { 7113 d[i] = (~n[i] & k[i]) | (m[i] & ~k[i]); 7114 } 7115 } 7116 7117 void HELPER(sve2_bsl2n)(void *vd, void *vn, void *vm, void *vk, uint32_t desc) 7118 { 7119 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 7120 uint64_t *d = vd, *n = vn, *m = vm, *k = vk; 7121 7122 for (i = 0; i < opr_sz; ++i) { 7123 d[i] = (n[i] & k[i]) | (~m[i] & ~k[i]); 7124 } 7125 } 7126 7127 void HELPER(sve2_nbsl)(void *vd, void *vn, void *vm, void *vk, uint32_t desc) 7128 { 7129 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 7130 uint64_t *d = vd, *n = vn, *m = vm, *k = vk; 7131 7132 for (i = 0; i < opr_sz; ++i) { 7133 d[i] = ~((n[i] & k[i]) | (m[i] & ~k[i])); 7134 } 7135 } 7136 7137 /* 7138 * Returns true if m0 or m1 contains the low uint8_t/uint16_t in n. 7139 * See hasless(v,1) from 7140 * https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord 7141 */ 7142 static inline bool do_match2(uint64_t n, uint64_t m0, uint64_t m1, int esz) 7143 { 7144 int bits = 8 << esz; 7145 uint64_t ones = dup_const(esz, 1); 7146 uint64_t signs = ones << (bits - 1); 7147 uint64_t cmp0, cmp1; 7148 7149 cmp1 = dup_const(esz, n); 7150 cmp0 = cmp1 ^ m0; 7151 cmp1 = cmp1 ^ m1; 7152 cmp0 = (cmp0 - ones) & ~cmp0; 7153 cmp1 = (cmp1 - ones) & ~cmp1; 7154 return (cmp0 | cmp1) & signs; 7155 } 7156 7157 static inline uint32_t do_match(void *vd, void *vn, void *vm, void *vg, 7158 uint32_t desc, int esz, bool nmatch) 7159 { 7160 uint16_t esz_mask = pred_esz_masks[esz]; 7161 intptr_t opr_sz = simd_oprsz(desc); 7162 uint32_t flags = PREDTEST_INIT; 7163 intptr_t i, j, k; 7164 7165 for (i = 0; i < opr_sz; i += 16) { 7166 uint64_t m0 = *(uint64_t *)(vm + i); 7167 uint64_t m1 = *(uint64_t *)(vm + i + 8); 7168 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)) & esz_mask; 7169 uint16_t out = 0; 7170 7171 for (j = 0; j < 16; j += 8) { 7172 uint64_t n = *(uint64_t *)(vn + i + j); 7173 7174 for (k = 0; k < 8; k += 1 << esz) { 7175 if (pg & (1 << (j + k))) { 7176 bool o = do_match2(n >> (k * 8), m0, m1, esz); 7177 out |= (o ^ nmatch) << (j + k); 7178 } 7179 } 7180 } 7181 *(uint16_t *)(vd + H1_2(i >> 3)) = out; 7182 flags = iter_predtest_fwd(out, pg, flags); 7183 } 7184 return flags; 7185 } 7186 7187 #define DO_PPZZ_MATCH(NAME, ESZ, INV) \ 7188 uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ 7189 { \ 7190 return do_match(vd, vn, vm, vg, desc, ESZ, INV); \ 7191 } 7192 7193 DO_PPZZ_MATCH(sve2_match_ppzz_b, MO_8, false) 7194 DO_PPZZ_MATCH(sve2_match_ppzz_h, MO_16, false) 7195 7196 DO_PPZZ_MATCH(sve2_nmatch_ppzz_b, MO_8, true) 7197 DO_PPZZ_MATCH(sve2_nmatch_ppzz_h, MO_16, true) 7198 7199 #undef DO_PPZZ_MATCH 7200 7201 void HELPER(sve2_histcnt_s)(void *vd, void *vn, void *vm, void *vg, 7202 uint32_t desc) 7203 { 7204 ARMVectorReg scratch; 7205 intptr_t i, j; 7206 intptr_t opr_sz = simd_oprsz(desc); 7207 uint32_t *d = vd, *n = vn, *m = vm; 7208 uint8_t *pg = vg; 7209 7210 if (d == n) { 7211 n = memcpy(&scratch, n, opr_sz); 7212 if (d == m) { 7213 m = n; 7214 } 7215 } else if (d == m) { 7216 m = memcpy(&scratch, m, opr_sz); 7217 } 7218 7219 for (i = 0; i < opr_sz; i += 4) { 7220 uint64_t count = 0; 7221 uint8_t pred; 7222 7223 pred = pg[H1(i >> 3)] >> (i & 7); 7224 if (pred & 1) { 7225 uint32_t nn = n[H4(i >> 2)]; 7226 7227 for (j = 0; j <= i; j += 4) { 7228 pred = pg[H1(j >> 3)] >> (j & 7); 7229 if ((pred & 1) && nn == m[H4(j >> 2)]) { 7230 ++count; 7231 } 7232 } 7233 } 7234 d[H4(i >> 2)] = count; 7235 } 7236 } 7237 7238 void HELPER(sve2_histcnt_d)(void *vd, void *vn, void *vm, void *vg, 7239 uint32_t desc) 7240 { 7241 ARMVectorReg scratch; 7242 intptr_t i, j; 7243 intptr_t opr_sz = simd_oprsz(desc); 7244 uint64_t *d = vd, *n = vn, *m = vm; 7245 uint8_t *pg = vg; 7246 7247 if (d == n) { 7248 n = memcpy(&scratch, n, opr_sz); 7249 if (d == m) { 7250 m = n; 7251 } 7252 } else if (d == m) { 7253 m = memcpy(&scratch, m, opr_sz); 7254 } 7255 7256 for (i = 0; i < opr_sz / 8; ++i) { 7257 uint64_t count = 0; 7258 if (pg[H1(i)] & 1) { 7259 uint64_t nn = n[i]; 7260 for (j = 0; j <= i; ++j) { 7261 if ((pg[H1(j)] & 1) && nn == m[j]) { 7262 ++count; 7263 } 7264 } 7265 } 7266 d[i] = count; 7267 } 7268 } 7269 7270 /* 7271 * Returns the number of bytes in m0 and m1 that match n. 7272 * Unlike do_match2 we don't just need true/false, we need an exact count. 7273 * This requires two extra logical operations. 7274 */ 7275 static inline uint64_t do_histseg_cnt(uint8_t n, uint64_t m0, uint64_t m1) 7276 { 7277 const uint64_t mask = dup_const(MO_8, 0x7f); 7278 uint64_t cmp0, cmp1; 7279 7280 cmp1 = dup_const(MO_8, n); 7281 cmp0 = cmp1 ^ m0; 7282 cmp1 = cmp1 ^ m1; 7283 7284 /* 7285 * 1: clear msb of each byte to avoid carry to next byte (& mask) 7286 * 2: carry in to msb if byte != 0 (+ mask) 7287 * 3: set msb if cmp has msb set (| cmp) 7288 * 4: set ~msb to ignore them (| mask) 7289 * We now have 0xff for byte != 0 or 0x7f for byte == 0. 7290 * 5: invert, resulting in 0x80 if and only if byte == 0. 7291 */ 7292 cmp0 = ~(((cmp0 & mask) + mask) | cmp0 | mask); 7293 cmp1 = ~(((cmp1 & mask) + mask) | cmp1 | mask); 7294 7295 /* 7296 * Combine the two compares in a way that the bits do 7297 * not overlap, and so preserves the count of set bits. 7298 * If the host has an efficient instruction for ctpop, 7299 * then ctpop(x) + ctpop(y) has the same number of 7300 * operations as ctpop(x | (y >> 1)). If the host does 7301 * not have an efficient ctpop, then we only want to 7302 * use it once. 7303 */ 7304 return ctpop64(cmp0 | (cmp1 >> 1)); 7305 } 7306 7307 void HELPER(sve2_histseg)(void *vd, void *vn, void *vm, uint32_t desc) 7308 { 7309 intptr_t i, j; 7310 intptr_t opr_sz = simd_oprsz(desc); 7311 7312 for (i = 0; i < opr_sz; i += 16) { 7313 uint64_t n0 = *(uint64_t *)(vn + i); 7314 uint64_t m0 = *(uint64_t *)(vm + i); 7315 uint64_t n1 = *(uint64_t *)(vn + i + 8); 7316 uint64_t m1 = *(uint64_t *)(vm + i + 8); 7317 uint64_t out0 = 0; 7318 uint64_t out1 = 0; 7319 7320 for (j = 0; j < 64; j += 8) { 7321 uint64_t cnt0 = do_histseg_cnt(n0 >> j, m0, m1); 7322 uint64_t cnt1 = do_histseg_cnt(n1 >> j, m0, m1); 7323 out0 |= cnt0 << j; 7324 out1 |= cnt1 << j; 7325 } 7326 7327 *(uint64_t *)(vd + i) = out0; 7328 *(uint64_t *)(vd + i + 8) = out1; 7329 } 7330 } 7331 7332 void HELPER(sve2_xar_b)(void *vd, void *vn, void *vm, uint32_t desc) 7333 { 7334 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 7335 int shr = simd_data(desc); 7336 int shl = 8 - shr; 7337 uint64_t mask = dup_const(MO_8, 0xff >> shr); 7338 uint64_t *d = vd, *n = vn, *m = vm; 7339 7340 for (i = 0; i < opr_sz; ++i) { 7341 uint64_t t = n[i] ^ m[i]; 7342 d[i] = ((t >> shr) & mask) | ((t << shl) & ~mask); 7343 } 7344 } 7345 7346 void HELPER(sve2_xar_h)(void *vd, void *vn, void *vm, uint32_t desc) 7347 { 7348 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 7349 int shr = simd_data(desc); 7350 int shl = 16 - shr; 7351 uint64_t mask = dup_const(MO_16, 0xffff >> shr); 7352 uint64_t *d = vd, *n = vn, *m = vm; 7353 7354 for (i = 0; i < opr_sz; ++i) { 7355 uint64_t t = n[i] ^ m[i]; 7356 d[i] = ((t >> shr) & mask) | ((t << shl) & ~mask); 7357 } 7358 } 7359 7360 void HELPER(sve2_xar_s)(void *vd, void *vn, void *vm, uint32_t desc) 7361 { 7362 intptr_t i, opr_sz = simd_oprsz(desc) / 4; 7363 int shr = simd_data(desc); 7364 uint32_t *d = vd, *n = vn, *m = vm; 7365 7366 for (i = 0; i < opr_sz; ++i) { 7367 d[i] = ror32(n[i] ^ m[i], shr); 7368 } 7369 } 7370 7371 void HELPER(fmmla_s)(void *vd, void *vn, void *vm, void *va, 7372 void *status, uint32_t desc) 7373 { 7374 intptr_t s, opr_sz = simd_oprsz(desc) / (sizeof(float32) * 4); 7375 7376 for (s = 0; s < opr_sz; ++s) { 7377 float32 *n = vn + s * sizeof(float32) * 4; 7378 float32 *m = vm + s * sizeof(float32) * 4; 7379 float32 *a = va + s * sizeof(float32) * 4; 7380 float32 *d = vd + s * sizeof(float32) * 4; 7381 float32 n00 = n[H4(0)], n01 = n[H4(1)]; 7382 float32 n10 = n[H4(2)], n11 = n[H4(3)]; 7383 float32 m00 = m[H4(0)], m01 = m[H4(1)]; 7384 float32 m10 = m[H4(2)], m11 = m[H4(3)]; 7385 float32 p0, p1; 7386 7387 /* i = 0, j = 0 */ 7388 p0 = float32_mul(n00, m00, status); 7389 p1 = float32_mul(n01, m01, status); 7390 d[H4(0)] = float32_add(a[H4(0)], float32_add(p0, p1, status), status); 7391 7392 /* i = 0, j = 1 */ 7393 p0 = float32_mul(n00, m10, status); 7394 p1 = float32_mul(n01, m11, status); 7395 d[H4(1)] = float32_add(a[H4(1)], float32_add(p0, p1, status), status); 7396 7397 /* i = 1, j = 0 */ 7398 p0 = float32_mul(n10, m00, status); 7399 p1 = float32_mul(n11, m01, status); 7400 d[H4(2)] = float32_add(a[H4(2)], float32_add(p0, p1, status), status); 7401 7402 /* i = 1, j = 1 */ 7403 p0 = float32_mul(n10, m10, status); 7404 p1 = float32_mul(n11, m11, status); 7405 d[H4(3)] = float32_add(a[H4(3)], float32_add(p0, p1, status), status); 7406 } 7407 } 7408 7409 void HELPER(fmmla_d)(void *vd, void *vn, void *vm, void *va, 7410 void *status, uint32_t desc) 7411 { 7412 intptr_t s, opr_sz = simd_oprsz(desc) / (sizeof(float64) * 4); 7413 7414 for (s = 0; s < opr_sz; ++s) { 7415 float64 *n = vn + s * sizeof(float64) * 4; 7416 float64 *m = vm + s * sizeof(float64) * 4; 7417 float64 *a = va + s * sizeof(float64) * 4; 7418 float64 *d = vd + s * sizeof(float64) * 4; 7419 float64 n00 = n[0], n01 = n[1], n10 = n[2], n11 = n[3]; 7420 float64 m00 = m[0], m01 = m[1], m10 = m[2], m11 = m[3]; 7421 float64 p0, p1; 7422 7423 /* i = 0, j = 0 */ 7424 p0 = float64_mul(n00, m00, status); 7425 p1 = float64_mul(n01, m01, status); 7426 d[0] = float64_add(a[0], float64_add(p0, p1, status), status); 7427 7428 /* i = 0, j = 1 */ 7429 p0 = float64_mul(n00, m10, status); 7430 p1 = float64_mul(n01, m11, status); 7431 d[1] = float64_add(a[1], float64_add(p0, p1, status), status); 7432 7433 /* i = 1, j = 0 */ 7434 p0 = float64_mul(n10, m00, status); 7435 p1 = float64_mul(n11, m01, status); 7436 d[2] = float64_add(a[2], float64_add(p0, p1, status), status); 7437 7438 /* i = 1, j = 1 */ 7439 p0 = float64_mul(n10, m10, status); 7440 p1 = float64_mul(n11, m11, status); 7441 d[3] = float64_add(a[3], float64_add(p0, p1, status), status); 7442 } 7443 } 7444 7445 #define DO_FCVTNT(NAME, TYPEW, TYPEN, HW, HN, OP) \ 7446 void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc) \ 7447 { \ 7448 intptr_t i = simd_oprsz(desc); \ 7449 uint64_t *g = vg; \ 7450 do { \ 7451 uint64_t pg = g[(i - 1) >> 6]; \ 7452 do { \ 7453 i -= sizeof(TYPEW); \ 7454 if (likely((pg >> (i & 63)) & 1)) { \ 7455 TYPEW nn = *(TYPEW *)(vn + HW(i)); \ 7456 *(TYPEN *)(vd + HN(i + sizeof(TYPEN))) = OP(nn, status); \ 7457 } \ 7458 } while (i & 63); \ 7459 } while (i != 0); \ 7460 } 7461 7462 DO_FCVTNT(sve_bfcvtnt, uint32_t, uint16_t, H1_4, H1_2, float32_to_bfloat16) 7463 DO_FCVTNT(sve2_fcvtnt_sh, uint32_t, uint16_t, H1_4, H1_2, sve_f32_to_f16) 7464 DO_FCVTNT(sve2_fcvtnt_ds, uint64_t, uint32_t, H1_8, H1_4, float64_to_float32) 7465 7466 #define DO_FCVTLT(NAME, TYPEW, TYPEN, HW, HN, OP) \ 7467 void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc) \ 7468 { \ 7469 intptr_t i = simd_oprsz(desc); \ 7470 uint64_t *g = vg; \ 7471 do { \ 7472 uint64_t pg = g[(i - 1) >> 6]; \ 7473 do { \ 7474 i -= sizeof(TYPEW); \ 7475 if (likely((pg >> (i & 63)) & 1)) { \ 7476 TYPEN nn = *(TYPEN *)(vn + HN(i + sizeof(TYPEN))); \ 7477 *(TYPEW *)(vd + HW(i)) = OP(nn, status); \ 7478 } \ 7479 } while (i & 63); \ 7480 } while (i != 0); \ 7481 } 7482 7483 DO_FCVTLT(sve2_fcvtlt_hs, uint32_t, uint16_t, H1_4, H1_2, sve_f16_to_f32) 7484 DO_FCVTLT(sve2_fcvtlt_sd, uint64_t, uint32_t, H1_8, H1_4, float32_to_float64) 7485 7486 #undef DO_FCVTLT 7487 #undef DO_FCVTNT 7488