1 /* 2 * ARM SME Operations 3 * 4 * Copyright (c) 2022 Linaro, Ltd. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "internals.h" 23 #include "tcg/tcg-gvec-desc.h" 24 #include "exec/helper-proto.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/exec-all.h" 27 #include "qemu/int128.h" 28 #include "fpu/softfloat.h" 29 #include "vec_internal.h" 30 #include "sve_ldst_internal.h" 31 32 void helper_set_svcr(CPUARMState *env, uint32_t val, uint32_t mask) 33 { 34 aarch64_set_svcr(env, val, mask); 35 } 36 37 void helper_sme_zero(CPUARMState *env, uint32_t imm, uint32_t svl) 38 { 39 uint32_t i; 40 41 /* 42 * Special case clearing the entire ZA space. 43 * This falls into the CONSTRAINED UNPREDICTABLE zeroing of any 44 * parts of the ZA storage outside of SVL. 45 */ 46 if (imm == 0xff) { 47 memset(env->zarray, 0, sizeof(env->zarray)); 48 return; 49 } 50 51 /* 52 * Recall that ZAnH.D[m] is spread across ZA[n+8*m], 53 * so each row is discontiguous within ZA[]. 54 */ 55 for (i = 0; i < svl; i++) { 56 if (imm & (1 << (i % 8))) { 57 memset(&env->zarray[i], 0, svl); 58 } 59 } 60 } 61 62 63 /* 64 * When considering the ZA storage as an array of elements of 65 * type T, the index within that array of the Nth element of 66 * a vertical slice of a tile can be calculated like this, 67 * regardless of the size of type T. This is because the tiles 68 * are interleaved, so if type T is size N bytes then row 1 of 69 * the tile is N rows away from row 0. The division by N to 70 * convert a byte offset into an array index and the multiplication 71 * by N to convert from vslice-index-within-the-tile to 72 * the index within the ZA storage cancel out. 73 */ 74 #define tile_vslice_index(i) ((i) * sizeof(ARMVectorReg)) 75 76 /* 77 * When doing byte arithmetic on the ZA storage, the element 78 * byteoff bytes away in a tile vertical slice is always this 79 * many bytes away in the ZA storage, regardless of the 80 * size of the tile element, assuming that byteoff is a multiple 81 * of the element size. Again this is because of the interleaving 82 * of the tiles. For instance if we have 1 byte per element then 83 * each row of the ZA storage has one byte of the vslice data, 84 * and (counting from 0) byte 8 goes in row 8 of the storage 85 * at offset (8 * row-size-in-bytes). 86 * If we have 8 bytes per element then each row of the ZA storage 87 * has 8 bytes of the data, but there are 8 interleaved tiles and 88 * so byte 8 of the data goes into row 1 of the tile, 89 * which is again row 8 of the storage, so the offset is still 90 * (8 * row-size-in-bytes). Similarly for other element sizes. 91 */ 92 #define tile_vslice_offset(byteoff) ((byteoff) * sizeof(ARMVectorReg)) 93 94 95 /* 96 * Move Zreg vector to ZArray column. 97 */ 98 #define DO_MOVA_C(NAME, TYPE, H) \ 99 void HELPER(NAME)(void *za, void *vn, void *vg, uint32_t desc) \ 100 { \ 101 int i, oprsz = simd_oprsz(desc); \ 102 for (i = 0; i < oprsz; ) { \ 103 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ 104 do { \ 105 if (pg & 1) { \ 106 *(TYPE *)(za + tile_vslice_offset(i)) = *(TYPE *)(vn + H(i)); \ 107 } \ 108 i += sizeof(TYPE); \ 109 pg >>= sizeof(TYPE); \ 110 } while (i & 15); \ 111 } \ 112 } 113 114 DO_MOVA_C(sme_mova_cz_b, uint8_t, H1) 115 DO_MOVA_C(sme_mova_cz_h, uint16_t, H1_2) 116 DO_MOVA_C(sme_mova_cz_s, uint32_t, H1_4) 117 118 void HELPER(sme_mova_cz_d)(void *za, void *vn, void *vg, uint32_t desc) 119 { 120 int i, oprsz = simd_oprsz(desc) / 8; 121 uint8_t *pg = vg; 122 uint64_t *n = vn; 123 uint64_t *a = za; 124 125 for (i = 0; i < oprsz; i++) { 126 if (pg[H1(i)] & 1) { 127 a[tile_vslice_index(i)] = n[i]; 128 } 129 } 130 } 131 132 void HELPER(sme_mova_cz_q)(void *za, void *vn, void *vg, uint32_t desc) 133 { 134 int i, oprsz = simd_oprsz(desc) / 16; 135 uint16_t *pg = vg; 136 Int128 *n = vn; 137 Int128 *a = za; 138 139 /* 140 * Int128 is used here simply to copy 16 bytes, and to simplify 141 * the address arithmetic. 142 */ 143 for (i = 0; i < oprsz; i++) { 144 if (pg[H2(i)] & 1) { 145 a[tile_vslice_index(i)] = n[i]; 146 } 147 } 148 } 149 150 #undef DO_MOVA_C 151 152 /* 153 * Move ZArray column to Zreg vector. 154 */ 155 #define DO_MOVA_Z(NAME, TYPE, H) \ 156 void HELPER(NAME)(void *vd, void *za, void *vg, uint32_t desc) \ 157 { \ 158 int i, oprsz = simd_oprsz(desc); \ 159 for (i = 0; i < oprsz; ) { \ 160 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ 161 do { \ 162 if (pg & 1) { \ 163 *(TYPE *)(vd + H(i)) = *(TYPE *)(za + tile_vslice_offset(i)); \ 164 } \ 165 i += sizeof(TYPE); \ 166 pg >>= sizeof(TYPE); \ 167 } while (i & 15); \ 168 } \ 169 } 170 171 DO_MOVA_Z(sme_mova_zc_b, uint8_t, H1) 172 DO_MOVA_Z(sme_mova_zc_h, uint16_t, H1_2) 173 DO_MOVA_Z(sme_mova_zc_s, uint32_t, H1_4) 174 175 void HELPER(sme_mova_zc_d)(void *vd, void *za, void *vg, uint32_t desc) 176 { 177 int i, oprsz = simd_oprsz(desc) / 8; 178 uint8_t *pg = vg; 179 uint64_t *d = vd; 180 uint64_t *a = za; 181 182 for (i = 0; i < oprsz; i++) { 183 if (pg[H1(i)] & 1) { 184 d[i] = a[tile_vslice_index(i)]; 185 } 186 } 187 } 188 189 void HELPER(sme_mova_zc_q)(void *vd, void *za, void *vg, uint32_t desc) 190 { 191 int i, oprsz = simd_oprsz(desc) / 16; 192 uint16_t *pg = vg; 193 Int128 *d = vd; 194 Int128 *a = za; 195 196 /* 197 * Int128 is used here simply to copy 16 bytes, and to simplify 198 * the address arithmetic. 199 */ 200 for (i = 0; i < oprsz; i++, za += sizeof(ARMVectorReg)) { 201 if (pg[H2(i)] & 1) { 202 d[i] = a[tile_vslice_index(i)]; 203 } 204 } 205 } 206 207 #undef DO_MOVA_Z 208 209 /* 210 * Clear elements in a tile slice comprising len bytes. 211 */ 212 213 typedef void ClearFn(void *ptr, size_t off, size_t len); 214 215 static void clear_horizontal(void *ptr, size_t off, size_t len) 216 { 217 memset(ptr + off, 0, len); 218 } 219 220 static void clear_vertical_b(void *vptr, size_t off, size_t len) 221 { 222 for (size_t i = 0; i < len; ++i) { 223 *(uint8_t *)(vptr + tile_vslice_offset(i + off)) = 0; 224 } 225 } 226 227 static void clear_vertical_h(void *vptr, size_t off, size_t len) 228 { 229 for (size_t i = 0; i < len; i += 2) { 230 *(uint16_t *)(vptr + tile_vslice_offset(i + off)) = 0; 231 } 232 } 233 234 static void clear_vertical_s(void *vptr, size_t off, size_t len) 235 { 236 for (size_t i = 0; i < len; i += 4) { 237 *(uint32_t *)(vptr + tile_vslice_offset(i + off)) = 0; 238 } 239 } 240 241 static void clear_vertical_d(void *vptr, size_t off, size_t len) 242 { 243 for (size_t i = 0; i < len; i += 8) { 244 *(uint64_t *)(vptr + tile_vslice_offset(i + off)) = 0; 245 } 246 } 247 248 static void clear_vertical_q(void *vptr, size_t off, size_t len) 249 { 250 for (size_t i = 0; i < len; i += 16) { 251 memset(vptr + tile_vslice_offset(i + off), 0, 16); 252 } 253 } 254 255 /* 256 * Copy elements from an array into a tile slice comprising len bytes. 257 */ 258 259 typedef void CopyFn(void *dst, const void *src, size_t len); 260 261 static void copy_horizontal(void *dst, const void *src, size_t len) 262 { 263 memcpy(dst, src, len); 264 } 265 266 static void copy_vertical_b(void *vdst, const void *vsrc, size_t len) 267 { 268 const uint8_t *src = vsrc; 269 uint8_t *dst = vdst; 270 size_t i; 271 272 for (i = 0; i < len; ++i) { 273 dst[tile_vslice_index(i)] = src[i]; 274 } 275 } 276 277 static void copy_vertical_h(void *vdst, const void *vsrc, size_t len) 278 { 279 const uint16_t *src = vsrc; 280 uint16_t *dst = vdst; 281 size_t i; 282 283 for (i = 0; i < len / 2; ++i) { 284 dst[tile_vslice_index(i)] = src[i]; 285 } 286 } 287 288 static void copy_vertical_s(void *vdst, const void *vsrc, size_t len) 289 { 290 const uint32_t *src = vsrc; 291 uint32_t *dst = vdst; 292 size_t i; 293 294 for (i = 0; i < len / 4; ++i) { 295 dst[tile_vslice_index(i)] = src[i]; 296 } 297 } 298 299 static void copy_vertical_d(void *vdst, const void *vsrc, size_t len) 300 { 301 const uint64_t *src = vsrc; 302 uint64_t *dst = vdst; 303 size_t i; 304 305 for (i = 0; i < len / 8; ++i) { 306 dst[tile_vslice_index(i)] = src[i]; 307 } 308 } 309 310 static void copy_vertical_q(void *vdst, const void *vsrc, size_t len) 311 { 312 for (size_t i = 0; i < len; i += 16) { 313 memcpy(vdst + tile_vslice_offset(i), vsrc + i, 16); 314 } 315 } 316 317 /* 318 * Host and TLB primitives for vertical tile slice addressing. 319 */ 320 321 #define DO_LD(NAME, TYPE, HOST, TLB) \ 322 static inline void sme_##NAME##_v_host(void *za, intptr_t off, void *host) \ 323 { \ 324 TYPE val = HOST(host); \ 325 *(TYPE *)(za + tile_vslice_offset(off)) = val; \ 326 } \ 327 static inline void sme_##NAME##_v_tlb(CPUARMState *env, void *za, \ 328 intptr_t off, target_ulong addr, uintptr_t ra) \ 329 { \ 330 TYPE val = TLB(env, useronly_clean_ptr(addr), ra); \ 331 *(TYPE *)(za + tile_vslice_offset(off)) = val; \ 332 } 333 334 #define DO_ST(NAME, TYPE, HOST, TLB) \ 335 static inline void sme_##NAME##_v_host(void *za, intptr_t off, void *host) \ 336 { \ 337 TYPE val = *(TYPE *)(za + tile_vslice_offset(off)); \ 338 HOST(host, val); \ 339 } \ 340 static inline void sme_##NAME##_v_tlb(CPUARMState *env, void *za, \ 341 intptr_t off, target_ulong addr, uintptr_t ra) \ 342 { \ 343 TYPE val = *(TYPE *)(za + tile_vslice_offset(off)); \ 344 TLB(env, useronly_clean_ptr(addr), val, ra); \ 345 } 346 347 /* 348 * The ARMVectorReg elements are stored in host-endian 64-bit units. 349 * For 128-bit quantities, the sequence defined by the Elem[] pseudocode 350 * corresponds to storing the two 64-bit pieces in little-endian order. 351 */ 352 #define DO_LDQ(HNAME, VNAME, BE, HOST, TLB) \ 353 static inline void HNAME##_host(void *za, intptr_t off, void *host) \ 354 { \ 355 uint64_t val0 = HOST(host), val1 = HOST(host + 8); \ 356 uint64_t *ptr = za + off; \ 357 ptr[0] = BE ? val1 : val0, ptr[1] = BE ? val0 : val1; \ 358 } \ 359 static inline void VNAME##_v_host(void *za, intptr_t off, void *host) \ 360 { \ 361 HNAME##_host(za, tile_vslice_offset(off), host); \ 362 } \ 363 static inline void HNAME##_tlb(CPUARMState *env, void *za, intptr_t off, \ 364 target_ulong addr, uintptr_t ra) \ 365 { \ 366 uint64_t val0 = TLB(env, useronly_clean_ptr(addr), ra); \ 367 uint64_t val1 = TLB(env, useronly_clean_ptr(addr + 8), ra); \ 368 uint64_t *ptr = za + off; \ 369 ptr[0] = BE ? val1 : val0, ptr[1] = BE ? val0 : val1; \ 370 } \ 371 static inline void VNAME##_v_tlb(CPUARMState *env, void *za, intptr_t off, \ 372 target_ulong addr, uintptr_t ra) \ 373 { \ 374 HNAME##_tlb(env, za, tile_vslice_offset(off), addr, ra); \ 375 } 376 377 #define DO_STQ(HNAME, VNAME, BE, HOST, TLB) \ 378 static inline void HNAME##_host(void *za, intptr_t off, void *host) \ 379 { \ 380 uint64_t *ptr = za + off; \ 381 HOST(host, ptr[BE]); \ 382 HOST(host + 8, ptr[!BE]); \ 383 } \ 384 static inline void VNAME##_v_host(void *za, intptr_t off, void *host) \ 385 { \ 386 HNAME##_host(za, tile_vslice_offset(off), host); \ 387 } \ 388 static inline void HNAME##_tlb(CPUARMState *env, void *za, intptr_t off, \ 389 target_ulong addr, uintptr_t ra) \ 390 { \ 391 uint64_t *ptr = za + off; \ 392 TLB(env, useronly_clean_ptr(addr), ptr[BE], ra); \ 393 TLB(env, useronly_clean_ptr(addr + 8), ptr[!BE], ra); \ 394 } \ 395 static inline void VNAME##_v_tlb(CPUARMState *env, void *za, intptr_t off, \ 396 target_ulong addr, uintptr_t ra) \ 397 { \ 398 HNAME##_tlb(env, za, tile_vslice_offset(off), addr, ra); \ 399 } 400 401 DO_LD(ld1b, uint8_t, ldub_p, cpu_ldub_data_ra) 402 DO_LD(ld1h_be, uint16_t, lduw_be_p, cpu_lduw_be_data_ra) 403 DO_LD(ld1h_le, uint16_t, lduw_le_p, cpu_lduw_le_data_ra) 404 DO_LD(ld1s_be, uint32_t, ldl_be_p, cpu_ldl_be_data_ra) 405 DO_LD(ld1s_le, uint32_t, ldl_le_p, cpu_ldl_le_data_ra) 406 DO_LD(ld1d_be, uint64_t, ldq_be_p, cpu_ldq_be_data_ra) 407 DO_LD(ld1d_le, uint64_t, ldq_le_p, cpu_ldq_le_data_ra) 408 409 DO_LDQ(sve_ld1qq_be, sme_ld1q_be, 1, ldq_be_p, cpu_ldq_be_data_ra) 410 DO_LDQ(sve_ld1qq_le, sme_ld1q_le, 0, ldq_le_p, cpu_ldq_le_data_ra) 411 412 DO_ST(st1b, uint8_t, stb_p, cpu_stb_data_ra) 413 DO_ST(st1h_be, uint16_t, stw_be_p, cpu_stw_be_data_ra) 414 DO_ST(st1h_le, uint16_t, stw_le_p, cpu_stw_le_data_ra) 415 DO_ST(st1s_be, uint32_t, stl_be_p, cpu_stl_be_data_ra) 416 DO_ST(st1s_le, uint32_t, stl_le_p, cpu_stl_le_data_ra) 417 DO_ST(st1d_be, uint64_t, stq_be_p, cpu_stq_be_data_ra) 418 DO_ST(st1d_le, uint64_t, stq_le_p, cpu_stq_le_data_ra) 419 420 DO_STQ(sve_st1qq_be, sme_st1q_be, 1, stq_be_p, cpu_stq_be_data_ra) 421 DO_STQ(sve_st1qq_le, sme_st1q_le, 0, stq_le_p, cpu_stq_le_data_ra) 422 423 #undef DO_LD 424 #undef DO_ST 425 #undef DO_LDQ 426 #undef DO_STQ 427 428 /* 429 * Common helper for all contiguous predicated loads. 430 */ 431 432 static inline QEMU_ALWAYS_INLINE 433 void sme_ld1(CPUARMState *env, void *za, uint64_t *vg, 434 const target_ulong addr, uint32_t desc, const uintptr_t ra, 435 const int esz, uint32_t mtedesc, bool vertical, 436 sve_ldst1_host_fn *host_fn, 437 sve_ldst1_tlb_fn *tlb_fn, 438 ClearFn *clr_fn, 439 CopyFn *cpy_fn) 440 { 441 const intptr_t reg_max = simd_oprsz(desc); 442 const intptr_t esize = 1 << esz; 443 intptr_t reg_off, reg_last; 444 SVEContLdSt info; 445 void *host; 446 int flags; 447 448 /* Find the active elements. */ 449 if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, esize)) { 450 /* The entire predicate was false; no load occurs. */ 451 clr_fn(za, 0, reg_max); 452 return; 453 } 454 455 /* Probe the page(s). Exit with exception for any invalid page. */ 456 sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_LOAD, ra); 457 458 /* Handle watchpoints for all active elements. */ 459 sve_cont_ldst_watchpoints(&info, env, vg, addr, esize, esize, 460 BP_MEM_READ, ra); 461 462 /* 463 * Handle mte checks for all active elements. 464 * Since TBI must be set for MTE, !mtedesc => !mte_active. 465 */ 466 if (mtedesc) { 467 sve_cont_ldst_mte_check(&info, env, vg, addr, esize, esize, 468 mtedesc, ra); 469 } 470 471 flags = info.page[0].flags | info.page[1].flags; 472 if (unlikely(flags != 0)) { 473 #ifdef CONFIG_USER_ONLY 474 g_assert_not_reached(); 475 #else 476 /* 477 * At least one page includes MMIO. 478 * Any bus operation can fail with cpu_transaction_failed, 479 * which for ARM will raise SyncExternal. Perform the load 480 * into scratch memory to preserve register state until the end. 481 */ 482 ARMVectorReg scratch = { }; 483 484 reg_off = info.reg_off_first[0]; 485 reg_last = info.reg_off_last[1]; 486 if (reg_last < 0) { 487 reg_last = info.reg_off_split; 488 if (reg_last < 0) { 489 reg_last = info.reg_off_last[0]; 490 } 491 } 492 493 do { 494 uint64_t pg = vg[reg_off >> 6]; 495 do { 496 if ((pg >> (reg_off & 63)) & 1) { 497 tlb_fn(env, &scratch, reg_off, addr + reg_off, ra); 498 } 499 reg_off += esize; 500 } while (reg_off & 63); 501 } while (reg_off <= reg_last); 502 503 cpy_fn(za, &scratch, reg_max); 504 return; 505 #endif 506 } 507 508 /* The entire operation is in RAM, on valid pages. */ 509 510 reg_off = info.reg_off_first[0]; 511 reg_last = info.reg_off_last[0]; 512 host = info.page[0].host; 513 514 if (!vertical) { 515 memset(za, 0, reg_max); 516 } else if (reg_off) { 517 clr_fn(za, 0, reg_off); 518 } 519 520 while (reg_off <= reg_last) { 521 uint64_t pg = vg[reg_off >> 6]; 522 do { 523 if ((pg >> (reg_off & 63)) & 1) { 524 host_fn(za, reg_off, host + reg_off); 525 } else if (vertical) { 526 clr_fn(za, reg_off, esize); 527 } 528 reg_off += esize; 529 } while (reg_off <= reg_last && (reg_off & 63)); 530 } 531 532 /* 533 * Use the slow path to manage the cross-page misalignment. 534 * But we know this is RAM and cannot trap. 535 */ 536 reg_off = info.reg_off_split; 537 if (unlikely(reg_off >= 0)) { 538 tlb_fn(env, za, reg_off, addr + reg_off, ra); 539 } 540 541 reg_off = info.reg_off_first[1]; 542 if (unlikely(reg_off >= 0)) { 543 reg_last = info.reg_off_last[1]; 544 host = info.page[1].host; 545 546 do { 547 uint64_t pg = vg[reg_off >> 6]; 548 do { 549 if ((pg >> (reg_off & 63)) & 1) { 550 host_fn(za, reg_off, host + reg_off); 551 } else if (vertical) { 552 clr_fn(za, reg_off, esize); 553 } 554 reg_off += esize; 555 } while (reg_off & 63); 556 } while (reg_off <= reg_last); 557 } 558 } 559 560 static inline QEMU_ALWAYS_INLINE 561 void sme_ld1_mte(CPUARMState *env, void *za, uint64_t *vg, 562 target_ulong addr, uint32_t desc, uintptr_t ra, 563 const int esz, bool vertical, 564 sve_ldst1_host_fn *host_fn, 565 sve_ldst1_tlb_fn *tlb_fn, 566 ClearFn *clr_fn, 567 CopyFn *cpy_fn) 568 { 569 uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); 570 int bit55 = extract64(addr, 55, 1); 571 572 /* Remove mtedesc from the normal sve descriptor. */ 573 desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); 574 575 /* Perform gross MTE suppression early. */ 576 if (!tbi_check(mtedesc, bit55) || 577 tcma_check(mtedesc, bit55, allocation_tag_from_addr(addr))) { 578 mtedesc = 0; 579 } 580 581 sme_ld1(env, za, vg, addr, desc, ra, esz, mtedesc, vertical, 582 host_fn, tlb_fn, clr_fn, cpy_fn); 583 } 584 585 #define DO_LD(L, END, ESZ) \ 586 void HELPER(sme_ld1##L##END##_h)(CPUARMState *env, void *za, void *vg, \ 587 target_ulong addr, uint32_t desc) \ 588 { \ 589 sme_ld1(env, za, vg, addr, desc, GETPC(), ESZ, 0, false, \ 590 sve_ld1##L##L##END##_host, sve_ld1##L##L##END##_tlb, \ 591 clear_horizontal, copy_horizontal); \ 592 } \ 593 void HELPER(sme_ld1##L##END##_v)(CPUARMState *env, void *za, void *vg, \ 594 target_ulong addr, uint32_t desc) \ 595 { \ 596 sme_ld1(env, za, vg, addr, desc, GETPC(), ESZ, 0, true, \ 597 sme_ld1##L##END##_v_host, sme_ld1##L##END##_v_tlb, \ 598 clear_vertical_##L, copy_vertical_##L); \ 599 } \ 600 void HELPER(sme_ld1##L##END##_h_mte)(CPUARMState *env, void *za, void *vg, \ 601 target_ulong addr, uint32_t desc) \ 602 { \ 603 sme_ld1_mte(env, za, vg, addr, desc, GETPC(), ESZ, false, \ 604 sve_ld1##L##L##END##_host, sve_ld1##L##L##END##_tlb, \ 605 clear_horizontal, copy_horizontal); \ 606 } \ 607 void HELPER(sme_ld1##L##END##_v_mte)(CPUARMState *env, void *za, void *vg, \ 608 target_ulong addr, uint32_t desc) \ 609 { \ 610 sme_ld1_mte(env, za, vg, addr, desc, GETPC(), ESZ, true, \ 611 sme_ld1##L##END##_v_host, sme_ld1##L##END##_v_tlb, \ 612 clear_vertical_##L, copy_vertical_##L); \ 613 } 614 615 DO_LD(b, , MO_8) 616 DO_LD(h, _be, MO_16) 617 DO_LD(h, _le, MO_16) 618 DO_LD(s, _be, MO_32) 619 DO_LD(s, _le, MO_32) 620 DO_LD(d, _be, MO_64) 621 DO_LD(d, _le, MO_64) 622 DO_LD(q, _be, MO_128) 623 DO_LD(q, _le, MO_128) 624 625 #undef DO_LD 626 627 /* 628 * Common helper for all contiguous predicated stores. 629 */ 630 631 static inline QEMU_ALWAYS_INLINE 632 void sme_st1(CPUARMState *env, void *za, uint64_t *vg, 633 const target_ulong addr, uint32_t desc, const uintptr_t ra, 634 const int esz, uint32_t mtedesc, bool vertical, 635 sve_ldst1_host_fn *host_fn, 636 sve_ldst1_tlb_fn *tlb_fn) 637 { 638 const intptr_t reg_max = simd_oprsz(desc); 639 const intptr_t esize = 1 << esz; 640 intptr_t reg_off, reg_last; 641 SVEContLdSt info; 642 void *host; 643 int flags; 644 645 /* Find the active elements. */ 646 if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, esize)) { 647 /* The entire predicate was false; no store occurs. */ 648 return; 649 } 650 651 /* Probe the page(s). Exit with exception for any invalid page. */ 652 sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_STORE, ra); 653 654 /* Handle watchpoints for all active elements. */ 655 sve_cont_ldst_watchpoints(&info, env, vg, addr, esize, esize, 656 BP_MEM_WRITE, ra); 657 658 /* 659 * Handle mte checks for all active elements. 660 * Since TBI must be set for MTE, !mtedesc => !mte_active. 661 */ 662 if (mtedesc) { 663 sve_cont_ldst_mte_check(&info, env, vg, addr, esize, esize, 664 mtedesc, ra); 665 } 666 667 flags = info.page[0].flags | info.page[1].flags; 668 if (unlikely(flags != 0)) { 669 #ifdef CONFIG_USER_ONLY 670 g_assert_not_reached(); 671 #else 672 /* 673 * At least one page includes MMIO. 674 * Any bus operation can fail with cpu_transaction_failed, 675 * which for ARM will raise SyncExternal. We cannot avoid 676 * this fault and will leave with the store incomplete. 677 */ 678 reg_off = info.reg_off_first[0]; 679 reg_last = info.reg_off_last[1]; 680 if (reg_last < 0) { 681 reg_last = info.reg_off_split; 682 if (reg_last < 0) { 683 reg_last = info.reg_off_last[0]; 684 } 685 } 686 687 do { 688 uint64_t pg = vg[reg_off >> 6]; 689 do { 690 if ((pg >> (reg_off & 63)) & 1) { 691 tlb_fn(env, za, reg_off, addr + reg_off, ra); 692 } 693 reg_off += esize; 694 } while (reg_off & 63); 695 } while (reg_off <= reg_last); 696 return; 697 #endif 698 } 699 700 reg_off = info.reg_off_first[0]; 701 reg_last = info.reg_off_last[0]; 702 host = info.page[0].host; 703 704 while (reg_off <= reg_last) { 705 uint64_t pg = vg[reg_off >> 6]; 706 do { 707 if ((pg >> (reg_off & 63)) & 1) { 708 host_fn(za, reg_off, host + reg_off); 709 } 710 reg_off += 1 << esz; 711 } while (reg_off <= reg_last && (reg_off & 63)); 712 } 713 714 /* 715 * Use the slow path to manage the cross-page misalignment. 716 * But we know this is RAM and cannot trap. 717 */ 718 reg_off = info.reg_off_split; 719 if (unlikely(reg_off >= 0)) { 720 tlb_fn(env, za, reg_off, addr + reg_off, ra); 721 } 722 723 reg_off = info.reg_off_first[1]; 724 if (unlikely(reg_off >= 0)) { 725 reg_last = info.reg_off_last[1]; 726 host = info.page[1].host; 727 728 do { 729 uint64_t pg = vg[reg_off >> 6]; 730 do { 731 if ((pg >> (reg_off & 63)) & 1) { 732 host_fn(za, reg_off, host + reg_off); 733 } 734 reg_off += 1 << esz; 735 } while (reg_off & 63); 736 } while (reg_off <= reg_last); 737 } 738 } 739 740 static inline QEMU_ALWAYS_INLINE 741 void sme_st1_mte(CPUARMState *env, void *za, uint64_t *vg, target_ulong addr, 742 uint32_t desc, uintptr_t ra, int esz, bool vertical, 743 sve_ldst1_host_fn *host_fn, 744 sve_ldst1_tlb_fn *tlb_fn) 745 { 746 uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); 747 int bit55 = extract64(addr, 55, 1); 748 749 /* Remove mtedesc from the normal sve descriptor. */ 750 desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); 751 752 /* Perform gross MTE suppression early. */ 753 if (!tbi_check(mtedesc, bit55) || 754 tcma_check(mtedesc, bit55, allocation_tag_from_addr(addr))) { 755 mtedesc = 0; 756 } 757 758 sme_st1(env, za, vg, addr, desc, ra, esz, mtedesc, 759 vertical, host_fn, tlb_fn); 760 } 761 762 #define DO_ST(L, END, ESZ) \ 763 void HELPER(sme_st1##L##END##_h)(CPUARMState *env, void *za, void *vg, \ 764 target_ulong addr, uint32_t desc) \ 765 { \ 766 sme_st1(env, za, vg, addr, desc, GETPC(), ESZ, 0, false, \ 767 sve_st1##L##L##END##_host, sve_st1##L##L##END##_tlb); \ 768 } \ 769 void HELPER(sme_st1##L##END##_v)(CPUARMState *env, void *za, void *vg, \ 770 target_ulong addr, uint32_t desc) \ 771 { \ 772 sme_st1(env, za, vg, addr, desc, GETPC(), ESZ, 0, true, \ 773 sme_st1##L##END##_v_host, sme_st1##L##END##_v_tlb); \ 774 } \ 775 void HELPER(sme_st1##L##END##_h_mte)(CPUARMState *env, void *za, void *vg, \ 776 target_ulong addr, uint32_t desc) \ 777 { \ 778 sme_st1_mte(env, za, vg, addr, desc, GETPC(), ESZ, false, \ 779 sve_st1##L##L##END##_host, sve_st1##L##L##END##_tlb); \ 780 } \ 781 void HELPER(sme_st1##L##END##_v_mte)(CPUARMState *env, void *za, void *vg, \ 782 target_ulong addr, uint32_t desc) \ 783 { \ 784 sme_st1_mte(env, za, vg, addr, desc, GETPC(), ESZ, true, \ 785 sme_st1##L##END##_v_host, sme_st1##L##END##_v_tlb); \ 786 } 787 788 DO_ST(b, , MO_8) 789 DO_ST(h, _be, MO_16) 790 DO_ST(h, _le, MO_16) 791 DO_ST(s, _be, MO_32) 792 DO_ST(s, _le, MO_32) 793 DO_ST(d, _be, MO_64) 794 DO_ST(d, _le, MO_64) 795 DO_ST(q, _be, MO_128) 796 DO_ST(q, _le, MO_128) 797 798 #undef DO_ST 799 800 void HELPER(sme_addha_s)(void *vzda, void *vzn, void *vpn, 801 void *vpm, uint32_t desc) 802 { 803 intptr_t row, col, oprsz = simd_oprsz(desc) / 4; 804 uint64_t *pn = vpn, *pm = vpm; 805 uint32_t *zda = vzda, *zn = vzn; 806 807 for (row = 0; row < oprsz; ) { 808 uint64_t pa = pn[row >> 4]; 809 do { 810 if (pa & 1) { 811 for (col = 0; col < oprsz; ) { 812 uint64_t pb = pm[col >> 4]; 813 do { 814 if (pb & 1) { 815 zda[tile_vslice_index(row) + H4(col)] += zn[H4(col)]; 816 } 817 pb >>= 4; 818 } while (++col & 15); 819 } 820 } 821 pa >>= 4; 822 } while (++row & 15); 823 } 824 } 825 826 void HELPER(sme_addha_d)(void *vzda, void *vzn, void *vpn, 827 void *vpm, uint32_t desc) 828 { 829 intptr_t row, col, oprsz = simd_oprsz(desc) / 8; 830 uint8_t *pn = vpn, *pm = vpm; 831 uint64_t *zda = vzda, *zn = vzn; 832 833 for (row = 0; row < oprsz; ++row) { 834 if (pn[H1(row)] & 1) { 835 for (col = 0; col < oprsz; ++col) { 836 if (pm[H1(col)] & 1) { 837 zda[tile_vslice_index(row) + col] += zn[col]; 838 } 839 } 840 } 841 } 842 } 843 844 void HELPER(sme_addva_s)(void *vzda, void *vzn, void *vpn, 845 void *vpm, uint32_t desc) 846 { 847 intptr_t row, col, oprsz = simd_oprsz(desc) / 4; 848 uint64_t *pn = vpn, *pm = vpm; 849 uint32_t *zda = vzda, *zn = vzn; 850 851 for (row = 0; row < oprsz; ) { 852 uint64_t pa = pn[row >> 4]; 853 do { 854 if (pa & 1) { 855 uint32_t zn_row = zn[H4(row)]; 856 for (col = 0; col < oprsz; ) { 857 uint64_t pb = pm[col >> 4]; 858 do { 859 if (pb & 1) { 860 zda[tile_vslice_index(row) + H4(col)] += zn_row; 861 } 862 pb >>= 4; 863 } while (++col & 15); 864 } 865 } 866 pa >>= 4; 867 } while (++row & 15); 868 } 869 } 870 871 void HELPER(sme_addva_d)(void *vzda, void *vzn, void *vpn, 872 void *vpm, uint32_t desc) 873 { 874 intptr_t row, col, oprsz = simd_oprsz(desc) / 8; 875 uint8_t *pn = vpn, *pm = vpm; 876 uint64_t *zda = vzda, *zn = vzn; 877 878 for (row = 0; row < oprsz; ++row) { 879 if (pn[H1(row)] & 1) { 880 uint64_t zn_row = zn[row]; 881 for (col = 0; col < oprsz; ++col) { 882 if (pm[H1(col)] & 1) { 883 zda[tile_vslice_index(row) + col] += zn_row; 884 } 885 } 886 } 887 } 888 } 889 890 void HELPER(sme_fmopa_s)(void *vza, void *vzn, void *vzm, void *vpn, 891 void *vpm, void *vst, uint32_t desc) 892 { 893 intptr_t row, col, oprsz = simd_maxsz(desc); 894 uint32_t neg = simd_data(desc) << 31; 895 uint16_t *pn = vpn, *pm = vpm; 896 float_status fpst; 897 898 /* 899 * Make a copy of float_status because this operation does not 900 * update the cumulative fp exception status. It also produces 901 * default nans. 902 */ 903 fpst = *(float_status *)vst; 904 set_default_nan_mode(true, &fpst); 905 906 for (row = 0; row < oprsz; ) { 907 uint16_t pa = pn[H2(row >> 4)]; 908 do { 909 if (pa & 1) { 910 void *vza_row = vza + tile_vslice_offset(row); 911 uint32_t n = *(uint32_t *)(vzn + H1_4(row)) ^ neg; 912 913 for (col = 0; col < oprsz; ) { 914 uint16_t pb = pm[H2(col >> 4)]; 915 do { 916 if (pb & 1) { 917 uint32_t *a = vza_row + H1_4(col); 918 uint32_t *m = vzm + H1_4(col); 919 *a = float32_muladd(n, *m, *a, 0, vst); 920 } 921 col += 4; 922 pb >>= 4; 923 } while (col & 15); 924 } 925 } 926 row += 4; 927 pa >>= 4; 928 } while (row & 15); 929 } 930 } 931 932 void HELPER(sme_fmopa_d)(void *vza, void *vzn, void *vzm, void *vpn, 933 void *vpm, void *vst, uint32_t desc) 934 { 935 intptr_t row, col, oprsz = simd_oprsz(desc) / 8; 936 uint64_t neg = (uint64_t)simd_data(desc) << 63; 937 uint64_t *za = vza, *zn = vzn, *zm = vzm; 938 uint8_t *pn = vpn, *pm = vpm; 939 float_status fpst = *(float_status *)vst; 940 941 set_default_nan_mode(true, &fpst); 942 943 for (row = 0; row < oprsz; ++row) { 944 if (pn[H1(row)] & 1) { 945 uint64_t *za_row = &za[tile_vslice_index(row)]; 946 uint64_t n = zn[row] ^ neg; 947 948 for (col = 0; col < oprsz; ++col) { 949 if (pm[H1(col)] & 1) { 950 uint64_t *a = &za_row[col]; 951 *a = float64_muladd(n, zm[col], *a, 0, &fpst); 952 } 953 } 954 } 955 } 956 } 957 958 /* 959 * Alter PAIR as needed for controlling predicates being false, 960 * and for NEG on an enabled row element. 961 */ 962 static inline uint32_t f16mop_adj_pair(uint32_t pair, uint32_t pg, uint32_t neg) 963 { 964 /* 965 * The pseudocode uses a conditional negate after the conditional zero. 966 * It is simpler here to unconditionally negate before conditional zero. 967 */ 968 pair ^= neg; 969 if (!(pg & 1)) { 970 pair &= 0xffff0000u; 971 } 972 if (!(pg & 4)) { 973 pair &= 0x0000ffffu; 974 } 975 return pair; 976 } 977 978 static float32 f16_dotadd(float32 sum, uint32_t e1, uint32_t e2, 979 float_status *s_std, float_status *s_odd) 980 { 981 float64 e1r = float16_to_float64(e1 & 0xffff, true, s_std); 982 float64 e1c = float16_to_float64(e1 >> 16, true, s_std); 983 float64 e2r = float16_to_float64(e2 & 0xffff, true, s_std); 984 float64 e2c = float16_to_float64(e2 >> 16, true, s_std); 985 float64 t64; 986 float32 t32; 987 988 /* 989 * The ARM pseudocode function FPDot performs both multiplies 990 * and the add with a single rounding operation. Emulate this 991 * by performing the first multiply in round-to-odd, then doing 992 * the second multiply as fused multiply-add, and rounding to 993 * float32 all in one step. 994 */ 995 t64 = float64_mul(e1r, e2r, s_odd); 996 t64 = float64r32_muladd(e1c, e2c, t64, 0, s_std); 997 998 /* This conversion is exact, because we've already rounded. */ 999 t32 = float64_to_float32(t64, s_std); 1000 1001 /* The final accumulation step is not fused. */ 1002 return float32_add(sum, t32, s_std); 1003 } 1004 1005 void HELPER(sme_fmopa_h)(void *vza, void *vzn, void *vzm, void *vpn, 1006 void *vpm, void *vst, uint32_t desc) 1007 { 1008 intptr_t row, col, oprsz = simd_maxsz(desc); 1009 uint32_t neg = simd_data(desc) * 0x80008000u; 1010 uint16_t *pn = vpn, *pm = vpm; 1011 float_status fpst_odd, fpst_std; 1012 1013 /* 1014 * Make a copy of float_status because this operation does not 1015 * update the cumulative fp exception status. It also produces 1016 * default nans. Make a second copy with round-to-odd -- see above. 1017 */ 1018 fpst_std = *(float_status *)vst; 1019 set_default_nan_mode(true, &fpst_std); 1020 fpst_odd = fpst_std; 1021 set_float_rounding_mode(float_round_to_odd, &fpst_odd); 1022 1023 for (row = 0; row < oprsz; ) { 1024 uint16_t prow = pn[H2(row >> 4)]; 1025 do { 1026 void *vza_row = vza + tile_vslice_offset(row); 1027 uint32_t n = *(uint32_t *)(vzn + H1_4(row)); 1028 1029 n = f16mop_adj_pair(n, prow, neg); 1030 1031 for (col = 0; col < oprsz; ) { 1032 uint16_t pcol = pm[H2(col >> 4)]; 1033 do { 1034 if (prow & pcol & 0b0101) { 1035 uint32_t *a = vza_row + H1_4(col); 1036 uint32_t m = *(uint32_t *)(vzm + H1_4(col)); 1037 1038 m = f16mop_adj_pair(m, pcol, 0); 1039 *a = f16_dotadd(*a, n, m, &fpst_std, &fpst_odd); 1040 } 1041 col += 4; 1042 pcol >>= 4; 1043 } while (col & 15); 1044 } 1045 row += 4; 1046 prow >>= 4; 1047 } while (row & 15); 1048 } 1049 } 1050 1051 void HELPER(sme_bfmopa)(void *vza, void *vzn, void *vzm, void *vpn, 1052 void *vpm, uint32_t desc) 1053 { 1054 intptr_t row, col, oprsz = simd_maxsz(desc); 1055 uint32_t neg = simd_data(desc) * 0x80008000u; 1056 uint16_t *pn = vpn, *pm = vpm; 1057 1058 for (row = 0; row < oprsz; ) { 1059 uint16_t prow = pn[H2(row >> 4)]; 1060 do { 1061 void *vza_row = vza + tile_vslice_offset(row); 1062 uint32_t n = *(uint32_t *)(vzn + H1_4(row)); 1063 1064 n = f16mop_adj_pair(n, prow, neg); 1065 1066 for (col = 0; col < oprsz; ) { 1067 uint16_t pcol = pm[H2(col >> 4)]; 1068 do { 1069 if (prow & pcol & 0b0101) { 1070 uint32_t *a = vza_row + H1_4(col); 1071 uint32_t m = *(uint32_t *)(vzm + H1_4(col)); 1072 1073 m = f16mop_adj_pair(m, pcol, 0); 1074 *a = bfdotadd(*a, n, m); 1075 } 1076 col += 4; 1077 pcol >>= 4; 1078 } while (col & 15); 1079 } 1080 row += 4; 1081 prow >>= 4; 1082 } while (row & 15); 1083 } 1084 } 1085 1086 typedef uint32_t IMOPFn32(uint32_t, uint32_t, uint32_t, uint8_t, bool); 1087 static inline void do_imopa_s(uint32_t *za, uint32_t *zn, uint32_t *zm, 1088 uint8_t *pn, uint8_t *pm, 1089 uint32_t desc, IMOPFn32 *fn) 1090 { 1091 intptr_t row, col, oprsz = simd_oprsz(desc) / 4; 1092 bool neg = simd_data(desc); 1093 1094 for (row = 0; row < oprsz; ++row) { 1095 uint8_t pa = (pn[H1(row >> 1)] >> ((row & 1) * 4)) & 0xf; 1096 uint32_t *za_row = &za[tile_vslice_index(row)]; 1097 uint32_t n = zn[H4(row)]; 1098 1099 for (col = 0; col < oprsz; ++col) { 1100 uint8_t pb = pm[H1(col >> 1)] >> ((col & 1) * 4); 1101 uint32_t *a = &za_row[H4(col)]; 1102 1103 *a = fn(n, zm[H4(col)], *a, pa & pb, neg); 1104 } 1105 } 1106 } 1107 1108 typedef uint64_t IMOPFn64(uint64_t, uint64_t, uint64_t, uint8_t, bool); 1109 static inline void do_imopa_d(uint64_t *za, uint64_t *zn, uint64_t *zm, 1110 uint8_t *pn, uint8_t *pm, 1111 uint32_t desc, IMOPFn64 *fn) 1112 { 1113 intptr_t row, col, oprsz = simd_oprsz(desc) / 8; 1114 bool neg = simd_data(desc); 1115 1116 for (row = 0; row < oprsz; ++row) { 1117 uint8_t pa = pn[H1(row)]; 1118 uint64_t *za_row = &za[tile_vslice_index(row)]; 1119 uint64_t n = zn[row]; 1120 1121 for (col = 0; col < oprsz; ++col) { 1122 uint8_t pb = pm[H1(col)]; 1123 uint64_t *a = &za_row[col]; 1124 1125 *a = fn(n, zm[col], *a, pa & pb, neg); 1126 } 1127 } 1128 } 1129 1130 #define DEF_IMOP_32(NAME, NTYPE, MTYPE) \ 1131 static uint32_t NAME(uint32_t n, uint32_t m, uint32_t a, uint8_t p, bool neg) \ 1132 { \ 1133 uint32_t sum = 0; \ 1134 /* Apply P to N as a mask, making the inactive elements 0. */ \ 1135 n &= expand_pred_b(p); \ 1136 sum += (NTYPE)(n >> 0) * (MTYPE)(m >> 0); \ 1137 sum += (NTYPE)(n >> 8) * (MTYPE)(m >> 8); \ 1138 sum += (NTYPE)(n >> 16) * (MTYPE)(m >> 16); \ 1139 sum += (NTYPE)(n >> 24) * (MTYPE)(m >> 24); \ 1140 return neg ? a - sum : a + sum; \ 1141 } 1142 1143 #define DEF_IMOP_64(NAME, NTYPE, MTYPE) \ 1144 static uint64_t NAME(uint64_t n, uint64_t m, uint64_t a, uint8_t p, bool neg) \ 1145 { \ 1146 uint64_t sum = 0; \ 1147 /* Apply P to N as a mask, making the inactive elements 0. */ \ 1148 n &= expand_pred_h(p); \ 1149 sum += (NTYPE)(n >> 0) * (MTYPE)(m >> 0); \ 1150 sum += (NTYPE)(n >> 16) * (MTYPE)(m >> 16); \ 1151 sum += (NTYPE)(n >> 32) * (MTYPE)(m >> 32); \ 1152 sum += (NTYPE)(n >> 48) * (MTYPE)(m >> 48); \ 1153 return neg ? a - sum : a + sum; \ 1154 } 1155 1156 DEF_IMOP_32(smopa_s, int8_t, int8_t) 1157 DEF_IMOP_32(umopa_s, uint8_t, uint8_t) 1158 DEF_IMOP_32(sumopa_s, int8_t, uint8_t) 1159 DEF_IMOP_32(usmopa_s, uint8_t, int8_t) 1160 1161 DEF_IMOP_64(smopa_d, int16_t, int16_t) 1162 DEF_IMOP_64(umopa_d, uint16_t, uint16_t) 1163 DEF_IMOP_64(sumopa_d, int16_t, uint16_t) 1164 DEF_IMOP_64(usmopa_d, uint16_t, int16_t) 1165 1166 #define DEF_IMOPH(NAME, S) \ 1167 void HELPER(sme_##NAME##_##S)(void *vza, void *vzn, void *vzm, \ 1168 void *vpn, void *vpm, uint32_t desc) \ 1169 { do_imopa_##S(vza, vzn, vzm, vpn, vpm, desc, NAME##_##S); } 1170 1171 DEF_IMOPH(smopa, s) 1172 DEF_IMOPH(umopa, s) 1173 DEF_IMOPH(sumopa, s) 1174 DEF_IMOPH(usmopa, s) 1175 1176 DEF_IMOPH(smopa, d) 1177 DEF_IMOPH(umopa, d) 1178 DEF_IMOPH(sumopa, d) 1179 DEF_IMOPH(usmopa, d) 1180