1 /* 2 * ARM helper routines 3 * 4 * Copyright (c) 2005-2007 CodeSourcery, LLC 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu/main-loop.h" 21 #include "cpu.h" 22 #include "exec/helper-proto.h" 23 #include "internals.h" 24 #include "cpu-features.h" 25 #include "exec/exec-all.h" 26 #include "exec/cpu_ldst.h" 27 #include "cpregs.h" 28 29 #define SIGNBIT (uint32_t)0x80000000 30 #define SIGNBIT64 ((uint64_t)1 << 63) 31 32 int exception_target_el(CPUARMState *env) 33 { 34 int target_el = MAX(1, arm_current_el(env)); 35 36 /* 37 * No such thing as secure EL1 if EL3 is aarch32, 38 * so update the target EL to EL3 in this case. 39 */ 40 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) { 41 target_el = 3; 42 } 43 44 return target_el; 45 } 46 47 void raise_exception(CPUARMState *env, uint32_t excp, 48 uint32_t syndrome, uint32_t target_el) 49 { 50 CPUState *cs = env_cpu(env); 51 52 if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) { 53 /* 54 * Redirect NS EL1 exceptions to NS EL2. These are reported with 55 * their original syndrome register value, with the exception of 56 * SIMD/FP access traps, which are reported as uncategorized 57 * (see DDI0478C.a D1.10.4) 58 */ 59 target_el = 2; 60 if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) { 61 syndrome = syn_uncategorized(); 62 } 63 } 64 65 assert(!excp_is_internal(excp)); 66 cs->exception_index = excp; 67 env->exception.syndrome = syndrome; 68 env->exception.target_el = target_el; 69 cpu_loop_exit(cs); 70 } 71 72 void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome, 73 uint32_t target_el, uintptr_t ra) 74 { 75 CPUState *cs = env_cpu(env); 76 77 /* 78 * restore_state_to_opc() will set env->exception.syndrome, so 79 * we must restore CPU state here before setting the syndrome 80 * the caller passed us, and cannot use cpu_loop_exit_restore(). 81 */ 82 cpu_restore_state(cs, ra); 83 raise_exception(env, excp, syndrome, target_el); 84 } 85 86 uint64_t HELPER(neon_tbl)(CPUARMState *env, uint32_t desc, 87 uint64_t ireg, uint64_t def) 88 { 89 uint64_t tmp, val = 0; 90 uint32_t maxindex = ((desc & 3) + 1) * 8; 91 uint32_t base_reg = desc >> 2; 92 uint32_t shift, index, reg; 93 94 for (shift = 0; shift < 64; shift += 8) { 95 index = (ireg >> shift) & 0xff; 96 if (index < maxindex) { 97 reg = base_reg + (index >> 3); 98 tmp = *aa32_vfp_dreg(env, reg); 99 tmp = ((tmp >> ((index & 7) << 3)) & 0xff) << shift; 100 } else { 101 tmp = def & (0xffull << shift); 102 } 103 val |= tmp; 104 } 105 return val; 106 } 107 108 void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue) 109 { 110 /* 111 * Perform the v8M stack limit check for SP updates from translated code, 112 * raising an exception if the limit is breached. 113 */ 114 if (newvalue < v7m_sp_limit(env)) { 115 /* 116 * Stack limit exceptions are a rare case, so rather than syncing 117 * PC/condbits before the call, we use raise_exception_ra() so 118 * that cpu_restore_state() will sort them out. 119 */ 120 raise_exception_ra(env, EXCP_STKOF, 0, 1, GETPC()); 121 } 122 } 123 124 /* Sign/zero extend */ 125 uint32_t HELPER(sxtb16)(uint32_t x) 126 { 127 uint32_t res; 128 res = (uint16_t)(int8_t)x; 129 res |= (uint32_t)(int8_t)(x >> 16) << 16; 130 return res; 131 } 132 133 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 134 { 135 /* 136 * Take a division-by-zero exception if necessary; otherwise return 137 * to get the usual non-trapping division behaviour (result of 0) 138 */ 139 if (arm_feature(env, ARM_FEATURE_M) 140 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 141 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 142 } 143 } 144 145 uint32_t HELPER(uxtb16)(uint32_t x) 146 { 147 uint32_t res; 148 res = (uint16_t)(uint8_t)x; 149 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 150 return res; 151 } 152 153 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 154 { 155 if (den == 0) { 156 handle_possible_div0_trap(env, GETPC()); 157 return 0; 158 } 159 if (num == INT_MIN && den == -1) { 160 return INT_MIN; 161 } 162 return num / den; 163 } 164 165 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 166 { 167 if (den == 0) { 168 handle_possible_div0_trap(env, GETPC()); 169 return 0; 170 } 171 return num / den; 172 } 173 174 uint32_t HELPER(rbit)(uint32_t x) 175 { 176 return revbit32(x); 177 } 178 179 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b) 180 { 181 uint32_t res = a + b; 182 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) 183 env->QF = 1; 184 return res; 185 } 186 187 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b) 188 { 189 uint32_t res = a + b; 190 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { 191 env->QF = 1; 192 res = ~(((int32_t)a >> 31) ^ SIGNBIT); 193 } 194 return res; 195 } 196 197 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b) 198 { 199 uint32_t res = a - b; 200 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { 201 env->QF = 1; 202 res = ~(((int32_t)a >> 31) ^ SIGNBIT); 203 } 204 return res; 205 } 206 207 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) 208 { 209 uint32_t res = a + b; 210 if (res < a) { 211 env->QF = 1; 212 res = ~0; 213 } 214 return res; 215 } 216 217 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) 218 { 219 uint32_t res = a - b; 220 if (res > a) { 221 env->QF = 1; 222 res = 0; 223 } 224 return res; 225 } 226 227 /* Signed saturation. */ 228 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift) 229 { 230 int32_t top; 231 uint32_t mask; 232 233 top = val >> shift; 234 mask = (1u << shift) - 1; 235 if (top > 0) { 236 env->QF = 1; 237 return mask; 238 } else if (top < -1) { 239 env->QF = 1; 240 return ~mask; 241 } 242 return val; 243 } 244 245 /* Unsigned saturation. */ 246 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift) 247 { 248 uint32_t max; 249 250 max = (1u << shift) - 1; 251 if (val < 0) { 252 env->QF = 1; 253 return 0; 254 } else if (val > max) { 255 env->QF = 1; 256 return max; 257 } 258 return val; 259 } 260 261 /* Signed saturate. */ 262 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift) 263 { 264 return do_ssat(env, x, shift); 265 } 266 267 /* Dual halfword signed saturate. */ 268 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift) 269 { 270 uint32_t res; 271 272 res = (uint16_t)do_ssat(env, (int16_t)x, shift); 273 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16; 274 return res; 275 } 276 277 /* Unsigned saturate. */ 278 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift) 279 { 280 return do_usat(env, x, shift); 281 } 282 283 /* Dual halfword unsigned saturate. */ 284 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift) 285 { 286 uint32_t res; 287 288 res = (uint16_t)do_usat(env, (int16_t)x, shift); 289 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16; 290 return res; 291 } 292 293 void HELPER(setend)(CPUARMState *env) 294 { 295 env->uncached_cpsr ^= CPSR_E; 296 arm_rebuild_hflags(env); 297 } 298 299 void HELPER(check_bxj_trap)(CPUARMState *env, uint32_t rm) 300 { 301 /* 302 * Only called if in NS EL0 or EL1 for a BXJ for a v7A CPU; 303 * check if HSTR.TJDBX means we need to trap to EL2. 304 */ 305 if (env->cp15.hstr_el2 & HSTR_TJDBX) { 306 /* 307 * We know the condition code check passed, so take the IMPDEF 308 * choice to always report CV=1 COND 0xe 309 */ 310 uint32_t syn = syn_bxjtrap(1, 0xe, rm); 311 raise_exception_ra(env, EXCP_HYP_TRAP, syn, 2, GETPC()); 312 } 313 } 314 315 #ifndef CONFIG_USER_ONLY 316 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped. 317 * The function returns the target EL (1-3) if the instruction is to be trapped; 318 * otherwise it returns 0 indicating it is not trapped. 319 */ 320 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe) 321 { 322 int cur_el = arm_current_el(env); 323 uint64_t mask; 324 325 if (arm_feature(env, ARM_FEATURE_M)) { 326 /* M profile cores can never trap WFI/WFE. */ 327 return 0; 328 } 329 330 /* If we are currently in EL0 then we need to check if SCTLR is set up for 331 * WFx instructions being trapped to EL1. These trap bits don't exist in v7. 332 */ 333 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) { 334 int target_el; 335 336 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI; 337 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) { 338 /* Secure EL0 and Secure PL1 is at EL3 */ 339 target_el = 3; 340 } else { 341 target_el = 1; 342 } 343 344 if (!(env->cp15.sctlr_el[target_el] & mask)) { 345 return target_el; 346 } 347 } 348 349 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it 350 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the 351 * bits will be zero indicating no trap. 352 */ 353 if (cur_el < 2) { 354 mask = is_wfe ? HCR_TWE : HCR_TWI; 355 if (arm_hcr_el2_eff(env) & mask) { 356 return 2; 357 } 358 } 359 360 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */ 361 if (cur_el < 3) { 362 mask = (is_wfe) ? SCR_TWE : SCR_TWI; 363 if (env->cp15.scr_el3 & mask) { 364 return 3; 365 } 366 } 367 368 return 0; 369 } 370 #endif 371 372 void HELPER(wfi)(CPUARMState *env, uint32_t insn_len) 373 { 374 #ifdef CONFIG_USER_ONLY 375 /* 376 * WFI in the user-mode emulator is technically permitted but not 377 * something any real-world code would do. AArch64 Linux kernels 378 * trap it via SCTRL_EL1.nTWI and make it an (expensive) NOP; 379 * AArch32 kernels don't trap it so it will delay a bit. 380 * For QEMU, make it NOP here, because trying to raise EXCP_HLT 381 * would trigger an abort. 382 */ 383 return; 384 #else 385 CPUState *cs = env_cpu(env); 386 int target_el = check_wfx_trap(env, false); 387 388 if (cpu_has_work(cs)) { 389 /* Don't bother to go into our "low power state" if 390 * we would just wake up immediately. 391 */ 392 return; 393 } 394 395 if (target_el) { 396 if (env->aarch64) { 397 env->pc -= insn_len; 398 } else { 399 env->regs[15] -= insn_len; 400 } 401 402 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2), 403 target_el); 404 } 405 406 cs->exception_index = EXCP_HLT; 407 cs->halted = 1; 408 cpu_loop_exit(cs); 409 #endif 410 } 411 412 void HELPER(wfit)(CPUARMState *env, uint64_t timeout) 413 { 414 #ifdef CONFIG_USER_ONLY 415 /* 416 * WFI in the user-mode emulator is technically permitted but not 417 * something any real-world code would do. AArch64 Linux kernels 418 * trap it via SCTRL_EL1.nTWI and make it an (expensive) NOP; 419 * AArch32 kernels don't trap it so it will delay a bit. 420 * For QEMU, make it NOP here, because trying to raise EXCP_HLT 421 * would trigger an abort. 422 */ 423 return; 424 #else 425 ARMCPU *cpu = env_archcpu(env); 426 CPUState *cs = env_cpu(env); 427 int target_el = check_wfx_trap(env, false); 428 /* The WFIT should time out when CNTVCT_EL0 >= the specified value. */ 429 uint64_t cntval = gt_get_countervalue(env); 430 uint64_t offset = gt_virt_cnt_offset(env); 431 uint64_t cntvct = cntval - offset; 432 uint64_t nexttick; 433 434 if (cpu_has_work(cs) || cntvct >= timeout) { 435 /* 436 * Don't bother to go into our "low power state" if 437 * we would just wake up immediately. 438 */ 439 return; 440 } 441 442 if (target_el) { 443 env->pc -= 4; 444 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, false), 445 target_el); 446 } 447 448 if (uadd64_overflow(timeout, offset, &nexttick)) { 449 nexttick = UINT64_MAX; 450 } 451 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 452 /* 453 * If the timeout is too long for the signed 64-bit range 454 * of a QEMUTimer, let it expire early. 455 */ 456 timer_mod_ns(cpu->wfxt_timer, INT64_MAX); 457 } else { 458 timer_mod(cpu->wfxt_timer, nexttick); 459 } 460 cs->exception_index = EXCP_HLT; 461 cs->halted = 1; 462 cpu_loop_exit(cs); 463 #endif 464 } 465 466 void HELPER(wfe)(CPUARMState *env) 467 { 468 /* This is a hint instruction that is semantically different 469 * from YIELD even though we currently implement it identically. 470 * Don't actually halt the CPU, just yield back to top 471 * level loop. This is not going into a "low power state" 472 * (ie halting until some event occurs), so we never take 473 * a configurable trap to a different exception level. 474 */ 475 HELPER(yield)(env); 476 } 477 478 void HELPER(yield)(CPUARMState *env) 479 { 480 CPUState *cs = env_cpu(env); 481 482 /* This is a non-trappable hint instruction that generally indicates 483 * that the guest is currently busy-looping. Yield control back to the 484 * top level loop so that a more deserving VCPU has a chance to run. 485 */ 486 cs->exception_index = EXCP_YIELD; 487 cpu_loop_exit(cs); 488 } 489 490 /* Raise an internal-to-QEMU exception. This is limited to only 491 * those EXCP values which are special cases for QEMU to interrupt 492 * execution and not to be used for exceptions which are passed to 493 * the guest (those must all have syndrome information and thus should 494 * use exception_with_syndrome*). 495 */ 496 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp) 497 { 498 CPUState *cs = env_cpu(env); 499 500 assert(excp_is_internal(excp)); 501 cs->exception_index = excp; 502 cpu_loop_exit(cs); 503 } 504 505 /* Raise an exception with the specified syndrome register value */ 506 void HELPER(exception_with_syndrome_el)(CPUARMState *env, uint32_t excp, 507 uint32_t syndrome, uint32_t target_el) 508 { 509 raise_exception(env, excp, syndrome, target_el); 510 } 511 512 /* 513 * Raise an exception with the specified syndrome register value 514 * to the default target el. 515 */ 516 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp, 517 uint32_t syndrome) 518 { 519 raise_exception(env, excp, syndrome, exception_target_el(env)); 520 } 521 522 uint32_t HELPER(cpsr_read)(CPUARMState *env) 523 { 524 return cpsr_read(env) & ~CPSR_EXEC; 525 } 526 527 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask) 528 { 529 cpsr_write(env, val, mask, CPSRWriteByInstr); 530 /* TODO: Not all cpsr bits are relevant to hflags. */ 531 arm_rebuild_hflags(env); 532 } 533 534 /* Write the CPSR for a 32-bit exception return */ 535 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val) 536 { 537 uint32_t mask; 538 539 bql_lock(); 540 arm_call_pre_el_change_hook(env_archcpu(env)); 541 bql_unlock(); 542 543 mask = aarch32_cpsr_valid_mask(env->features, &env_archcpu(env)->isar); 544 cpsr_write(env, val, mask, CPSRWriteExceptionReturn); 545 546 /* Generated code has already stored the new PC value, but 547 * without masking out its low bits, because which bits need 548 * masking depends on whether we're returning to Thumb or ARM 549 * state. Do the masking now. 550 */ 551 env->regs[15] &= (env->thumb ? ~1 : ~3); 552 arm_rebuild_hflags(env); 553 554 bql_lock(); 555 arm_call_el_change_hook(env_archcpu(env)); 556 bql_unlock(); 557 } 558 559 /* Access to user mode registers from privileged modes. */ 560 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno) 561 { 562 uint32_t val; 563 564 if (regno == 13) { 565 val = env->banked_r13[BANK_USRSYS]; 566 } else if (regno == 14) { 567 val = env->banked_r14[BANK_USRSYS]; 568 } else if (regno >= 8 569 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { 570 val = env->usr_regs[regno - 8]; 571 } else { 572 val = env->regs[regno]; 573 } 574 return val; 575 } 576 577 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val) 578 { 579 if (regno == 13) { 580 env->banked_r13[BANK_USRSYS] = val; 581 } else if (regno == 14) { 582 env->banked_r14[BANK_USRSYS] = val; 583 } else if (regno >= 8 584 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { 585 env->usr_regs[regno - 8] = val; 586 } else { 587 env->regs[regno] = val; 588 } 589 } 590 591 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) 592 { 593 if ((env->uncached_cpsr & CPSR_M) == mode) { 594 env->regs[13] = val; 595 } else { 596 env->banked_r13[bank_number(mode)] = val; 597 } 598 } 599 600 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) 601 { 602 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) { 603 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF. 604 * Other UNPREDICTABLE and UNDEF cases were caught at translate time. 605 */ 606 raise_exception(env, EXCP_UDEF, syn_uncategorized(), 607 exception_target_el(env)); 608 } 609 610 if ((env->uncached_cpsr & CPSR_M) == mode) { 611 return env->regs[13]; 612 } else { 613 return env->banked_r13[bank_number(mode)]; 614 } 615 } 616 617 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode, 618 uint32_t regno) 619 { 620 /* Raise an exception if the requested access is one of the UNPREDICTABLE 621 * cases; otherwise return. This broadly corresponds to the pseudocode 622 * BankedRegisterAccessValid() and SPSRAccessValid(), 623 * except that we have already handled some cases at translate time. 624 */ 625 int curmode = env->uncached_cpsr & CPSR_M; 626 627 if (tgtmode == ARM_CPU_MODE_HYP) { 628 /* 629 * Handle Hyp target regs first because some are special cases 630 * which don't want the usual "not accessible from tgtmode" check. 631 */ 632 switch (regno) { 633 case 16 ... 17: /* ELR_Hyp, SPSR_Hyp */ 634 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) { 635 goto undef; 636 } 637 break; 638 case 13: 639 if (curmode != ARM_CPU_MODE_MON) { 640 goto undef; 641 } 642 break; 643 default: 644 g_assert_not_reached(); 645 } 646 return; 647 } 648 649 if (curmode == tgtmode) { 650 goto undef; 651 } 652 653 if (tgtmode == ARM_CPU_MODE_USR) { 654 switch (regno) { 655 case 8 ... 12: 656 if (curmode != ARM_CPU_MODE_FIQ) { 657 goto undef; 658 } 659 break; 660 case 13: 661 if (curmode == ARM_CPU_MODE_SYS) { 662 goto undef; 663 } 664 break; 665 case 14: 666 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) { 667 goto undef; 668 } 669 break; 670 default: 671 break; 672 } 673 } 674 675 return; 676 677 undef: 678 raise_exception(env, EXCP_UDEF, syn_uncategorized(), 679 exception_target_el(env)); 680 } 681 682 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode, 683 uint32_t regno) 684 { 685 msr_mrs_banked_exc_checks(env, tgtmode, regno); 686 687 switch (regno) { 688 case 16: /* SPSRs */ 689 if (tgtmode == (env->uncached_cpsr & CPSR_M)) { 690 /* Only happens for SPSR_Hyp access in Hyp mode */ 691 env->spsr = value; 692 } else { 693 env->banked_spsr[bank_number(tgtmode)] = value; 694 } 695 break; 696 case 17: /* ELR_Hyp */ 697 env->elr_el[2] = value; 698 break; 699 case 13: 700 env->banked_r13[bank_number(tgtmode)] = value; 701 break; 702 case 14: 703 env->banked_r14[r14_bank_number(tgtmode)] = value; 704 break; 705 case 8 ... 12: 706 switch (tgtmode) { 707 case ARM_CPU_MODE_USR: 708 env->usr_regs[regno - 8] = value; 709 break; 710 case ARM_CPU_MODE_FIQ: 711 env->fiq_regs[regno - 8] = value; 712 break; 713 default: 714 g_assert_not_reached(); 715 } 716 break; 717 default: 718 g_assert_not_reached(); 719 } 720 } 721 722 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno) 723 { 724 msr_mrs_banked_exc_checks(env, tgtmode, regno); 725 726 switch (regno) { 727 case 16: /* SPSRs */ 728 if (tgtmode == (env->uncached_cpsr & CPSR_M)) { 729 /* Only happens for SPSR_Hyp access in Hyp mode */ 730 return env->spsr; 731 } else { 732 return env->banked_spsr[bank_number(tgtmode)]; 733 } 734 case 17: /* ELR_Hyp */ 735 return env->elr_el[2]; 736 case 13: 737 return env->banked_r13[bank_number(tgtmode)]; 738 case 14: 739 return env->banked_r14[r14_bank_number(tgtmode)]; 740 case 8 ... 12: 741 switch (tgtmode) { 742 case ARM_CPU_MODE_USR: 743 return env->usr_regs[regno - 8]; 744 case ARM_CPU_MODE_FIQ: 745 return env->fiq_regs[regno - 8]; 746 default: 747 g_assert_not_reached(); 748 } 749 default: 750 g_assert_not_reached(); 751 } 752 } 753 754 const void *HELPER(access_check_cp_reg)(CPUARMState *env, uint32_t key, 755 uint32_t syndrome, uint32_t isread) 756 { 757 ARMCPU *cpu = env_archcpu(env); 758 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, key); 759 CPAccessResult res = CP_ACCESS_OK; 760 int target_el; 761 uint32_t excp; 762 763 assert(ri != NULL); 764 765 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14 766 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) { 767 res = CP_ACCESS_TRAP; 768 goto fail; 769 } 770 771 if (ri->accessfn) { 772 res = ri->accessfn(env, ri, isread); 773 } 774 775 /* 776 * If the access function indicates a trap from EL0 to EL1 then 777 * that always takes priority over the HSTR_EL2 trap. (If it indicates 778 * a trap to EL3, then the HSTR_EL2 trap takes priority; if it indicates 779 * a trap to EL2, then the syndrome is the same either way so we don't 780 * care whether technically the architecture says that HSTR_EL2 trap or 781 * the other trap takes priority. So we take the "check HSTR_EL2" path 782 * for all of those cases.) 783 */ 784 if (res != CP_ACCESS_OK && ((res & CP_ACCESS_EL_MASK) == 0) && 785 arm_current_el(env) == 0) { 786 goto fail; 787 } 788 789 /* 790 * HSTR_EL2 traps from EL1 are checked earlier, in generated code; 791 * we only need to check here for traps from EL0. 792 */ 793 if (!is_a64(env) && arm_current_el(env) == 0 && ri->cp == 15 && 794 arm_is_el2_enabled(env) && 795 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 796 uint32_t mask = 1 << ri->crn; 797 798 if (ri->type & ARM_CP_64BIT) { 799 mask = 1 << ri->crm; 800 } 801 802 /* T4 and T14 are RES0 */ 803 mask &= ~((1 << 4) | (1 << 14)); 804 805 if (env->cp15.hstr_el2 & mask) { 806 res = CP_ACCESS_TRAP_EL2; 807 goto fail; 808 } 809 } 810 811 /* 812 * Fine-grained traps also are lower priority than undef-to-EL1, 813 * higher priority than trap-to-EL3, and we don't care about priority 814 * order with other EL2 traps because the syndrome value is the same. 815 */ 816 if (arm_fgt_active(env, arm_current_el(env))) { 817 uint64_t trapword = 0; 818 unsigned int idx = FIELD_EX32(ri->fgt, FGT, IDX); 819 unsigned int bitpos = FIELD_EX32(ri->fgt, FGT, BITPOS); 820 bool rev = FIELD_EX32(ri->fgt, FGT, REV); 821 bool nxs = FIELD_EX32(ri->fgt, FGT, NXS); 822 bool trapbit; 823 824 if (ri->fgt & FGT_EXEC) { 825 assert(idx < ARRAY_SIZE(env->cp15.fgt_exec)); 826 trapword = env->cp15.fgt_exec[idx]; 827 } else if (isread && (ri->fgt & FGT_R)) { 828 assert(idx < ARRAY_SIZE(env->cp15.fgt_read)); 829 trapword = env->cp15.fgt_read[idx]; 830 } else if (!isread && (ri->fgt & FGT_W)) { 831 assert(idx < ARRAY_SIZE(env->cp15.fgt_write)); 832 trapword = env->cp15.fgt_write[idx]; 833 } 834 835 if (nxs && (arm_hcrx_el2_eff(env) & HCRX_FGTNXS)) { 836 /* 837 * If HCRX_EL2.FGTnXS is 1 then the fine-grained trap for 838 * TLBI maintenance insns does *not* apply to the nXS variant. 839 */ 840 trapbit = 0; 841 } else { 842 trapbit = extract64(trapword, bitpos, 1); 843 } 844 if (trapbit != rev) { 845 res = CP_ACCESS_TRAP_EL2; 846 goto fail; 847 } 848 } 849 850 if (likely(res == CP_ACCESS_OK)) { 851 return ri; 852 } 853 854 fail: 855 excp = EXCP_UDEF; 856 switch (res & ~CP_ACCESS_EL_MASK) { 857 case CP_ACCESS_TRAP: 858 /* 859 * If EL3 is AArch32 then there's no syndrome register; the cases 860 * where we would raise a SystemAccessTrap to AArch64 EL3 all become 861 * raising a Monitor trap exception. (Because there's no visible 862 * syndrome it doesn't matter what we pass to raise_exception().) 863 */ 864 if ((res & CP_ACCESS_EL_MASK) == 3 && !arm_el_is_aa64(env, 3)) { 865 excp = EXCP_MON_TRAP; 866 } 867 break; 868 case CP_ACCESS_TRAP_UNCATEGORIZED: 869 /* Only CP_ACCESS_TRAP traps are direct to a specified EL */ 870 assert((res & CP_ACCESS_EL_MASK) == 0); 871 if (cpu_isar_feature(aa64_ids, cpu) && isread && 872 arm_cpreg_in_idspace(ri)) { 873 /* 874 * FEAT_IDST says this should be reported as EC_SYSTEMREGISTERTRAP, 875 * not EC_UNCATEGORIZED 876 */ 877 break; 878 } 879 syndrome = syn_uncategorized(); 880 break; 881 default: 882 g_assert_not_reached(); 883 } 884 885 target_el = res & CP_ACCESS_EL_MASK; 886 switch (target_el) { 887 case 0: 888 target_el = exception_target_el(env); 889 break; 890 case 2: 891 assert(arm_current_el(env) != 3); 892 assert(arm_is_el2_enabled(env)); 893 break; 894 case 3: 895 assert(arm_feature(env, ARM_FEATURE_EL3)); 896 break; 897 default: 898 /* No "direct" traps to EL1 */ 899 g_assert_not_reached(); 900 } 901 902 raise_exception(env, excp, syndrome, target_el); 903 } 904 905 const void *HELPER(lookup_cp_reg)(CPUARMState *env, uint32_t key) 906 { 907 ARMCPU *cpu = env_archcpu(env); 908 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, key); 909 910 assert(ri != NULL); 911 return ri; 912 } 913 914 /* 915 * Test for HCR_EL2.TIDCP at EL1. 916 * Since implementation defined registers are rare, and within QEMU 917 * most of them are no-op, do not waste HFLAGS space for this and 918 * always use a helper. 919 */ 920 void HELPER(tidcp_el1)(CPUARMState *env, uint32_t syndrome) 921 { 922 if (arm_hcr_el2_eff(env) & HCR_TIDCP) { 923 raise_exception_ra(env, EXCP_UDEF, syndrome, 2, GETPC()); 924 } 925 } 926 927 /* 928 * Similarly, for FEAT_TIDCP1 at EL0. 929 * We have already checked for the presence of the feature. 930 */ 931 void HELPER(tidcp_el0)(CPUARMState *env, uint32_t syndrome) 932 { 933 /* See arm_sctlr(), but we also need the sctlr el. */ 934 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 935 int target_el; 936 937 switch (mmu_idx) { 938 case ARMMMUIdx_E20_0: 939 target_el = 2; 940 break; 941 case ARMMMUIdx_E30_0: 942 target_el = 3; 943 break; 944 default: 945 target_el = 1; 946 break; 947 } 948 949 /* 950 * The bit is not valid unless the target el is aa64, but since the 951 * bit test is simpler perform that first and check validity after. 952 */ 953 if ((env->cp15.sctlr_el[target_el] & SCTLR_TIDCP) 954 && arm_el_is_aa64(env, target_el)) { 955 raise_exception_ra(env, EXCP_UDEF, syndrome, target_el, GETPC()); 956 } 957 } 958 959 void HELPER(set_cp_reg)(CPUARMState *env, const void *rip, uint32_t value) 960 { 961 const ARMCPRegInfo *ri = rip; 962 963 if (ri->type & ARM_CP_IO) { 964 bql_lock(); 965 ri->writefn(env, ri, value); 966 bql_unlock(); 967 } else { 968 ri->writefn(env, ri, value); 969 } 970 } 971 972 uint32_t HELPER(get_cp_reg)(CPUARMState *env, const void *rip) 973 { 974 const ARMCPRegInfo *ri = rip; 975 uint32_t res; 976 977 if (ri->type & ARM_CP_IO) { 978 bql_lock(); 979 res = ri->readfn(env, ri); 980 bql_unlock(); 981 } else { 982 res = ri->readfn(env, ri); 983 } 984 985 return res; 986 } 987 988 void HELPER(set_cp_reg64)(CPUARMState *env, const void *rip, uint64_t value) 989 { 990 const ARMCPRegInfo *ri = rip; 991 992 if (ri->type & ARM_CP_IO) { 993 bql_lock(); 994 ri->writefn(env, ri, value); 995 bql_unlock(); 996 } else { 997 ri->writefn(env, ri, value); 998 } 999 } 1000 1001 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, const void *rip) 1002 { 1003 const ARMCPRegInfo *ri = rip; 1004 uint64_t res; 1005 1006 if (ri->type & ARM_CP_IO) { 1007 bql_lock(); 1008 res = ri->readfn(env, ri); 1009 bql_unlock(); 1010 } else { 1011 res = ri->readfn(env, ri); 1012 } 1013 1014 return res; 1015 } 1016 1017 void HELPER(pre_hvc)(CPUARMState *env) 1018 { 1019 ARMCPU *cpu = env_archcpu(env); 1020 int cur_el = arm_current_el(env); 1021 /* FIXME: Use actual secure state. */ 1022 bool secure = false; 1023 bool undef; 1024 1025 if (arm_is_psci_call(cpu, EXCP_HVC)) { 1026 /* If PSCI is enabled and this looks like a valid PSCI call then 1027 * that overrides the architecturally mandated HVC behaviour. 1028 */ 1029 return; 1030 } 1031 1032 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1033 /* If EL2 doesn't exist, HVC always UNDEFs */ 1034 undef = true; 1035 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 1036 /* EL3.HCE has priority over EL2.HCD. */ 1037 undef = !(env->cp15.scr_el3 & SCR_HCE); 1038 } else { 1039 undef = env->cp15.hcr_el2 & HCR_HCD; 1040 } 1041 1042 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state. 1043 * For ARMv8/AArch64, HVC is allowed in EL3. 1044 * Note that we've already trapped HVC from EL0 at translation 1045 * time. 1046 */ 1047 if (secure && (!is_a64(env) || cur_el == 1)) { 1048 undef = true; 1049 } 1050 1051 if (undef) { 1052 raise_exception(env, EXCP_UDEF, syn_uncategorized(), 1053 exception_target_el(env)); 1054 } 1055 } 1056 1057 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome) 1058 { 1059 ARMCPU *cpu = env_archcpu(env); 1060 int cur_el = arm_current_el(env); 1061 bool secure = arm_is_secure(env); 1062 bool smd_flag = env->cp15.scr_el3 & SCR_SMD; 1063 1064 /* 1065 * SMC behaviour is summarized in the following table. 1066 * This helper handles the "Trap to EL2" and "Undef insn" cases. 1067 * The "Trap to EL3" and "PSCI call" cases are handled in the exception 1068 * helper. 1069 * 1070 * -> ARM_FEATURE_EL3 and !SMD 1071 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1 1072 * 1073 * Conduit SMC, valid call Trap to EL2 PSCI Call 1074 * Conduit SMC, inval call Trap to EL2 Trap to EL3 1075 * Conduit not SMC Trap to EL2 Trap to EL3 1076 * 1077 * 1078 * -> ARM_FEATURE_EL3 and SMD 1079 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1 1080 * 1081 * Conduit SMC, valid call Trap to EL2 PSCI Call 1082 * Conduit SMC, inval call Trap to EL2 Undef insn 1083 * Conduit not SMC Trap to EL2 Undef insn 1084 * 1085 * 1086 * -> !ARM_FEATURE_EL3 1087 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1 1088 * 1089 * Conduit SMC, valid call Trap to EL2 PSCI Call 1090 * Conduit SMC, inval call Trap to EL2 Undef insn 1091 * Conduit not SMC Undef or trap[1] Undef insn 1092 * 1093 * [1] In this case: 1094 * - if HCR_EL2.NV == 1 we must trap to EL2 1095 * - if HCR_EL2.NV == 0 then newer architecture revisions permit 1096 * AArch64 (but not AArch32) to trap to EL2 as an IMPDEF choice 1097 * - otherwise we must UNDEF 1098 * We take the IMPDEF choice to always UNDEF if HCR_EL2.NV == 0. 1099 */ 1100 1101 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state. 1102 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization 1103 * extensions, SMD only applies to NS state. 1104 * On ARMv7 without the Virtualization extensions, the SMD bit 1105 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(), 1106 * so we need not special case this here. 1107 */ 1108 bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag 1109 : smd_flag && !secure; 1110 1111 if (!arm_feature(env, ARM_FEATURE_EL3) && 1112 !(arm_hcr_el2_eff(env) & HCR_NV) && 1113 cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 1114 /* 1115 * If we have no EL3 then traditionally SMC always UNDEFs and can't be 1116 * trapped to EL2. For nested virtualization, SMC can be trapped to 1117 * the outer hypervisor. PSCI-via-SMC is a sort of ersatz EL3 1118 * firmware within QEMU, and we want an EL2 guest to be able 1119 * to forbid its EL1 from making PSCI calls into QEMU's 1120 * "firmware" via HCR.TSC, so for these purposes treat 1121 * PSCI-via-SMC as implying an EL3. 1122 * This handles the very last line of the previous table. 1123 */ 1124 raise_exception(env, EXCP_UDEF, syn_uncategorized(), 1125 exception_target_el(env)); 1126 } 1127 1128 if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) { 1129 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. 1130 * We also want an EL2 guest to be able to forbid its EL1 from 1131 * making PSCI calls into QEMU's "firmware" via HCR.TSC. 1132 * This handles all the "Trap to EL2" cases of the previous table. 1133 */ 1134 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2); 1135 } 1136 1137 /* Catch the two remaining "Undef insn" cases of the previous table: 1138 * - PSCI conduit is SMC but we don't have a valid PCSI call, 1139 * - We don't have EL3 or SMD is set. 1140 */ 1141 if (!arm_is_psci_call(cpu, EXCP_SMC) && 1142 (smd || !arm_feature(env, ARM_FEATURE_EL3))) { 1143 raise_exception(env, EXCP_UDEF, syn_uncategorized(), 1144 exception_target_el(env)); 1145 } 1146 } 1147 1148 /* ??? Flag setting arithmetic is awkward because we need to do comparisons. 1149 The only way to do that in TCG is a conditional branch, which clobbers 1150 all our temporaries. For now implement these as helper functions. */ 1151 1152 /* Similarly for variable shift instructions. */ 1153 1154 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i) 1155 { 1156 int shift = i & 0xff; 1157 if (shift >= 32) { 1158 if (shift == 32) 1159 env->CF = x & 1; 1160 else 1161 env->CF = 0; 1162 return 0; 1163 } else if (shift != 0) { 1164 env->CF = (x >> (32 - shift)) & 1; 1165 return x << shift; 1166 } 1167 return x; 1168 } 1169 1170 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i) 1171 { 1172 int shift = i & 0xff; 1173 if (shift >= 32) { 1174 if (shift == 32) 1175 env->CF = (x >> 31) & 1; 1176 else 1177 env->CF = 0; 1178 return 0; 1179 } else if (shift != 0) { 1180 env->CF = (x >> (shift - 1)) & 1; 1181 return x >> shift; 1182 } 1183 return x; 1184 } 1185 1186 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i) 1187 { 1188 int shift = i & 0xff; 1189 if (shift >= 32) { 1190 env->CF = (x >> 31) & 1; 1191 return (int32_t)x >> 31; 1192 } else if (shift != 0) { 1193 env->CF = (x >> (shift - 1)) & 1; 1194 return (int32_t)x >> shift; 1195 } 1196 return x; 1197 } 1198 1199 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i) 1200 { 1201 int shift1, shift; 1202 shift1 = i & 0xff; 1203 shift = shift1 & 0x1f; 1204 if (shift == 0) { 1205 if (shift1 != 0) 1206 env->CF = (x >> 31) & 1; 1207 return x; 1208 } else { 1209 env->CF = (x >> (shift - 1)) & 1; 1210 return ((uint32_t)x >> shift) | (x << (32 - shift)); 1211 } 1212 } 1213 1214 void HELPER(probe_access)(CPUARMState *env, target_ulong ptr, 1215 uint32_t access_type, uint32_t mmu_idx, 1216 uint32_t size) 1217 { 1218 uint32_t in_page = -((uint32_t)ptr | TARGET_PAGE_SIZE); 1219 uintptr_t ra = GETPC(); 1220 1221 if (likely(size <= in_page)) { 1222 probe_access(env, ptr, size, access_type, mmu_idx, ra); 1223 } else { 1224 probe_access(env, ptr, in_page, access_type, mmu_idx, ra); 1225 probe_access(env, ptr + in_page, size - in_page, 1226 access_type, mmu_idx, ra); 1227 } 1228 } 1229 1230 /* 1231 * This function corresponds to AArch64.vESBOperation(). 1232 * Note that the AArch32 version is not functionally different. 1233 */ 1234 void HELPER(vesb)(CPUARMState *env) 1235 { 1236 /* 1237 * The EL2Enabled() check is done inside arm_hcr_el2_eff, 1238 * and will return HCR_EL2.VSE == 0, so nothing happens. 1239 */ 1240 uint64_t hcr = arm_hcr_el2_eff(env); 1241 bool enabled = !(hcr & HCR_TGE) && (hcr & HCR_AMO); 1242 bool pending = enabled && (hcr & HCR_VSE); 1243 bool masked = (env->daif & PSTATE_A); 1244 1245 /* If VSE pending and masked, defer the exception. */ 1246 if (pending && masked) { 1247 uint32_t syndrome; 1248 1249 if (arm_el_is_aa64(env, 1)) { 1250 /* Copy across IDS and ISS from VSESR. */ 1251 syndrome = env->cp15.vsesr_el2 & 0x1ffffff; 1252 } else { 1253 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal }; 1254 1255 if (extended_addresses_enabled(env)) { 1256 syndrome = arm_fi_to_lfsc(&fi); 1257 } else { 1258 syndrome = arm_fi_to_sfsc(&fi); 1259 } 1260 /* Copy across AET and ExT from VSESR. */ 1261 syndrome |= env->cp15.vsesr_el2 & 0xd000; 1262 } 1263 1264 /* Set VDISR_EL2.A along with the syndrome. */ 1265 env->cp15.vdisr_el2 = syndrome | (1u << 31); 1266 1267 /* Clear pending virtual SError */ 1268 env->cp15.hcr_el2 &= ~HCR_VSE; 1269 cpu_reset_interrupt(env_cpu(env), CPU_INTERRUPT_VSERR); 1270 } 1271 } 1272