1 /* 2 * ARM helper routines 3 * 4 * Copyright (c) 2005-2007 CodeSourcery, LLC 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu/main-loop.h" 21 #include "cpu.h" 22 #include "exec/helper-proto.h" 23 #include "internals.h" 24 #include "exec/exec-all.h" 25 #include "exec/cpu_ldst.h" 26 #include "cpregs.h" 27 28 #define SIGNBIT (uint32_t)0x80000000 29 #define SIGNBIT64 ((uint64_t)1 << 63) 30 31 int exception_target_el(CPUARMState *env) 32 { 33 int target_el = MAX(1, arm_current_el(env)); 34 35 /* 36 * No such thing as secure EL1 if EL3 is aarch32, 37 * so update the target EL to EL3 in this case. 38 */ 39 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) { 40 target_el = 3; 41 } 42 43 return target_el; 44 } 45 46 void raise_exception(CPUARMState *env, uint32_t excp, 47 uint32_t syndrome, uint32_t target_el) 48 { 49 CPUState *cs = env_cpu(env); 50 51 if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) { 52 /* 53 * Redirect NS EL1 exceptions to NS EL2. These are reported with 54 * their original syndrome register value, with the exception of 55 * SIMD/FP access traps, which are reported as uncategorized 56 * (see DDI0478C.a D1.10.4) 57 */ 58 target_el = 2; 59 if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) { 60 syndrome = syn_uncategorized(); 61 } 62 } 63 64 assert(!excp_is_internal(excp)); 65 cs->exception_index = excp; 66 env->exception.syndrome = syndrome; 67 env->exception.target_el = target_el; 68 cpu_loop_exit(cs); 69 } 70 71 void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome, 72 uint32_t target_el, uintptr_t ra) 73 { 74 CPUState *cs = env_cpu(env); 75 76 /* 77 * restore_state_to_opc() will set env->exception.syndrome, so 78 * we must restore CPU state here before setting the syndrome 79 * the caller passed us, and cannot use cpu_loop_exit_restore(). 80 */ 81 cpu_restore_state(cs, ra); 82 raise_exception(env, excp, syndrome, target_el); 83 } 84 85 uint64_t HELPER(neon_tbl)(CPUARMState *env, uint32_t desc, 86 uint64_t ireg, uint64_t def) 87 { 88 uint64_t tmp, val = 0; 89 uint32_t maxindex = ((desc & 3) + 1) * 8; 90 uint32_t base_reg = desc >> 2; 91 uint32_t shift, index, reg; 92 93 for (shift = 0; shift < 64; shift += 8) { 94 index = (ireg >> shift) & 0xff; 95 if (index < maxindex) { 96 reg = base_reg + (index >> 3); 97 tmp = *aa32_vfp_dreg(env, reg); 98 tmp = ((tmp >> ((index & 7) << 3)) & 0xff) << shift; 99 } else { 100 tmp = def & (0xffull << shift); 101 } 102 val |= tmp; 103 } 104 return val; 105 } 106 107 void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue) 108 { 109 /* 110 * Perform the v8M stack limit check for SP updates from translated code, 111 * raising an exception if the limit is breached. 112 */ 113 if (newvalue < v7m_sp_limit(env)) { 114 /* 115 * Stack limit exceptions are a rare case, so rather than syncing 116 * PC/condbits before the call, we use raise_exception_ra() so 117 * that cpu_restore_state() will sort them out. 118 */ 119 raise_exception_ra(env, EXCP_STKOF, 0, 1, GETPC()); 120 } 121 } 122 123 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b) 124 { 125 uint32_t res = a + b; 126 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) 127 env->QF = 1; 128 return res; 129 } 130 131 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b) 132 { 133 uint32_t res = a + b; 134 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { 135 env->QF = 1; 136 res = ~(((int32_t)a >> 31) ^ SIGNBIT); 137 } 138 return res; 139 } 140 141 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b) 142 { 143 uint32_t res = a - b; 144 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { 145 env->QF = 1; 146 res = ~(((int32_t)a >> 31) ^ SIGNBIT); 147 } 148 return res; 149 } 150 151 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) 152 { 153 uint32_t res = a + b; 154 if (res < a) { 155 env->QF = 1; 156 res = ~0; 157 } 158 return res; 159 } 160 161 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) 162 { 163 uint32_t res = a - b; 164 if (res > a) { 165 env->QF = 1; 166 res = 0; 167 } 168 return res; 169 } 170 171 /* Signed saturation. */ 172 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift) 173 { 174 int32_t top; 175 uint32_t mask; 176 177 top = val >> shift; 178 mask = (1u << shift) - 1; 179 if (top > 0) { 180 env->QF = 1; 181 return mask; 182 } else if (top < -1) { 183 env->QF = 1; 184 return ~mask; 185 } 186 return val; 187 } 188 189 /* Unsigned saturation. */ 190 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift) 191 { 192 uint32_t max; 193 194 max = (1u << shift) - 1; 195 if (val < 0) { 196 env->QF = 1; 197 return 0; 198 } else if (val > max) { 199 env->QF = 1; 200 return max; 201 } 202 return val; 203 } 204 205 /* Signed saturate. */ 206 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift) 207 { 208 return do_ssat(env, x, shift); 209 } 210 211 /* Dual halfword signed saturate. */ 212 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift) 213 { 214 uint32_t res; 215 216 res = (uint16_t)do_ssat(env, (int16_t)x, shift); 217 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16; 218 return res; 219 } 220 221 /* Unsigned saturate. */ 222 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift) 223 { 224 return do_usat(env, x, shift); 225 } 226 227 /* Dual halfword unsigned saturate. */ 228 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift) 229 { 230 uint32_t res; 231 232 res = (uint16_t)do_usat(env, (int16_t)x, shift); 233 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16; 234 return res; 235 } 236 237 void HELPER(setend)(CPUARMState *env) 238 { 239 env->uncached_cpsr ^= CPSR_E; 240 arm_rebuild_hflags(env); 241 } 242 243 void HELPER(check_bxj_trap)(CPUARMState *env, uint32_t rm) 244 { 245 /* 246 * Only called if in NS EL0 or EL1 for a BXJ for a v7A CPU; 247 * check if HSTR.TJDBX means we need to trap to EL2. 248 */ 249 if (env->cp15.hstr_el2 & HSTR_TJDBX) { 250 /* 251 * We know the condition code check passed, so take the IMPDEF 252 * choice to always report CV=1 COND 0xe 253 */ 254 uint32_t syn = syn_bxjtrap(1, 0xe, rm); 255 raise_exception_ra(env, EXCP_HYP_TRAP, syn, 2, GETPC()); 256 } 257 } 258 259 #ifndef CONFIG_USER_ONLY 260 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped. 261 * The function returns the target EL (1-3) if the instruction is to be trapped; 262 * otherwise it returns 0 indicating it is not trapped. 263 */ 264 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe) 265 { 266 int cur_el = arm_current_el(env); 267 uint64_t mask; 268 269 if (arm_feature(env, ARM_FEATURE_M)) { 270 /* M profile cores can never trap WFI/WFE. */ 271 return 0; 272 } 273 274 /* If we are currently in EL0 then we need to check if SCTLR is set up for 275 * WFx instructions being trapped to EL1. These trap bits don't exist in v7. 276 */ 277 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) { 278 int target_el; 279 280 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI; 281 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) { 282 /* Secure EL0 and Secure PL1 is at EL3 */ 283 target_el = 3; 284 } else { 285 target_el = 1; 286 } 287 288 if (!(env->cp15.sctlr_el[target_el] & mask)) { 289 return target_el; 290 } 291 } 292 293 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it 294 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the 295 * bits will be zero indicating no trap. 296 */ 297 if (cur_el < 2) { 298 mask = is_wfe ? HCR_TWE : HCR_TWI; 299 if (arm_hcr_el2_eff(env) & mask) { 300 return 2; 301 } 302 } 303 304 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */ 305 if (cur_el < 3) { 306 mask = (is_wfe) ? SCR_TWE : SCR_TWI; 307 if (env->cp15.scr_el3 & mask) { 308 return 3; 309 } 310 } 311 312 return 0; 313 } 314 #endif 315 316 void HELPER(wfi)(CPUARMState *env, uint32_t insn_len) 317 { 318 #ifdef CONFIG_USER_ONLY 319 /* 320 * WFI in the user-mode emulator is technically permitted but not 321 * something any real-world code would do. AArch64 Linux kernels 322 * trap it via SCTRL_EL1.nTWI and make it an (expensive) NOP; 323 * AArch32 kernels don't trap it so it will delay a bit. 324 * For QEMU, make it NOP here, because trying to raise EXCP_HLT 325 * would trigger an abort. 326 */ 327 return; 328 #else 329 CPUState *cs = env_cpu(env); 330 int target_el = check_wfx_trap(env, false); 331 332 if (cpu_has_work(cs)) { 333 /* Don't bother to go into our "low power state" if 334 * we would just wake up immediately. 335 */ 336 return; 337 } 338 339 if (target_el) { 340 if (env->aarch64) { 341 env->pc -= insn_len; 342 } else { 343 env->regs[15] -= insn_len; 344 } 345 346 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2), 347 target_el); 348 } 349 350 cs->exception_index = EXCP_HLT; 351 cs->halted = 1; 352 cpu_loop_exit(cs); 353 #endif 354 } 355 356 void HELPER(wfe)(CPUARMState *env) 357 { 358 /* This is a hint instruction that is semantically different 359 * from YIELD even though we currently implement it identically. 360 * Don't actually halt the CPU, just yield back to top 361 * level loop. This is not going into a "low power state" 362 * (ie halting until some event occurs), so we never take 363 * a configurable trap to a different exception level. 364 */ 365 HELPER(yield)(env); 366 } 367 368 void HELPER(yield)(CPUARMState *env) 369 { 370 CPUState *cs = env_cpu(env); 371 372 /* This is a non-trappable hint instruction that generally indicates 373 * that the guest is currently busy-looping. Yield control back to the 374 * top level loop so that a more deserving VCPU has a chance to run. 375 */ 376 cs->exception_index = EXCP_YIELD; 377 cpu_loop_exit(cs); 378 } 379 380 /* Raise an internal-to-QEMU exception. This is limited to only 381 * those EXCP values which are special cases for QEMU to interrupt 382 * execution and not to be used for exceptions which are passed to 383 * the guest (those must all have syndrome information and thus should 384 * use exception_with_syndrome*). 385 */ 386 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp) 387 { 388 CPUState *cs = env_cpu(env); 389 390 assert(excp_is_internal(excp)); 391 cs->exception_index = excp; 392 cpu_loop_exit(cs); 393 } 394 395 /* Raise an exception with the specified syndrome register value */ 396 void HELPER(exception_with_syndrome_el)(CPUARMState *env, uint32_t excp, 397 uint32_t syndrome, uint32_t target_el) 398 { 399 raise_exception(env, excp, syndrome, target_el); 400 } 401 402 /* 403 * Raise an exception with the specified syndrome register value 404 * to the default target el. 405 */ 406 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp, 407 uint32_t syndrome) 408 { 409 raise_exception(env, excp, syndrome, exception_target_el(env)); 410 } 411 412 uint32_t HELPER(cpsr_read)(CPUARMState *env) 413 { 414 return cpsr_read(env) & ~CPSR_EXEC; 415 } 416 417 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask) 418 { 419 cpsr_write(env, val, mask, CPSRWriteByInstr); 420 /* TODO: Not all cpsr bits are relevant to hflags. */ 421 arm_rebuild_hflags(env); 422 } 423 424 /* Write the CPSR for a 32-bit exception return */ 425 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val) 426 { 427 uint32_t mask; 428 429 qemu_mutex_lock_iothread(); 430 arm_call_pre_el_change_hook(env_archcpu(env)); 431 qemu_mutex_unlock_iothread(); 432 433 mask = aarch32_cpsr_valid_mask(env->features, &env_archcpu(env)->isar); 434 cpsr_write(env, val, mask, CPSRWriteExceptionReturn); 435 436 /* Generated code has already stored the new PC value, but 437 * without masking out its low bits, because which bits need 438 * masking depends on whether we're returning to Thumb or ARM 439 * state. Do the masking now. 440 */ 441 env->regs[15] &= (env->thumb ? ~1 : ~3); 442 arm_rebuild_hflags(env); 443 444 qemu_mutex_lock_iothread(); 445 arm_call_el_change_hook(env_archcpu(env)); 446 qemu_mutex_unlock_iothread(); 447 } 448 449 /* Access to user mode registers from privileged modes. */ 450 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno) 451 { 452 uint32_t val; 453 454 if (regno == 13) { 455 val = env->banked_r13[BANK_USRSYS]; 456 } else if (regno == 14) { 457 val = env->banked_r14[BANK_USRSYS]; 458 } else if (regno >= 8 459 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { 460 val = env->usr_regs[regno - 8]; 461 } else { 462 val = env->regs[regno]; 463 } 464 return val; 465 } 466 467 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val) 468 { 469 if (regno == 13) { 470 env->banked_r13[BANK_USRSYS] = val; 471 } else if (regno == 14) { 472 env->banked_r14[BANK_USRSYS] = val; 473 } else if (regno >= 8 474 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { 475 env->usr_regs[regno - 8] = val; 476 } else { 477 env->regs[regno] = val; 478 } 479 } 480 481 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) 482 { 483 if ((env->uncached_cpsr & CPSR_M) == mode) { 484 env->regs[13] = val; 485 } else { 486 env->banked_r13[bank_number(mode)] = val; 487 } 488 } 489 490 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) 491 { 492 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) { 493 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF. 494 * Other UNPREDICTABLE and UNDEF cases were caught at translate time. 495 */ 496 raise_exception(env, EXCP_UDEF, syn_uncategorized(), 497 exception_target_el(env)); 498 } 499 500 if ((env->uncached_cpsr & CPSR_M) == mode) { 501 return env->regs[13]; 502 } else { 503 return env->banked_r13[bank_number(mode)]; 504 } 505 } 506 507 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode, 508 uint32_t regno) 509 { 510 /* Raise an exception if the requested access is one of the UNPREDICTABLE 511 * cases; otherwise return. This broadly corresponds to the pseudocode 512 * BankedRegisterAccessValid() and SPSRAccessValid(), 513 * except that we have already handled some cases at translate time. 514 */ 515 int curmode = env->uncached_cpsr & CPSR_M; 516 517 if (regno == 17) { 518 /* ELR_Hyp: a special case because access from tgtmode is OK */ 519 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) { 520 goto undef; 521 } 522 return; 523 } 524 525 if (curmode == tgtmode) { 526 goto undef; 527 } 528 529 if (tgtmode == ARM_CPU_MODE_USR) { 530 switch (regno) { 531 case 8 ... 12: 532 if (curmode != ARM_CPU_MODE_FIQ) { 533 goto undef; 534 } 535 break; 536 case 13: 537 if (curmode == ARM_CPU_MODE_SYS) { 538 goto undef; 539 } 540 break; 541 case 14: 542 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) { 543 goto undef; 544 } 545 break; 546 default: 547 break; 548 } 549 } 550 551 if (tgtmode == ARM_CPU_MODE_HYP) { 552 /* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */ 553 if (curmode != ARM_CPU_MODE_MON) { 554 goto undef; 555 } 556 } 557 558 return; 559 560 undef: 561 raise_exception(env, EXCP_UDEF, syn_uncategorized(), 562 exception_target_el(env)); 563 } 564 565 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode, 566 uint32_t regno) 567 { 568 msr_mrs_banked_exc_checks(env, tgtmode, regno); 569 570 switch (regno) { 571 case 16: /* SPSRs */ 572 env->banked_spsr[bank_number(tgtmode)] = value; 573 break; 574 case 17: /* ELR_Hyp */ 575 env->elr_el[2] = value; 576 break; 577 case 13: 578 env->banked_r13[bank_number(tgtmode)] = value; 579 break; 580 case 14: 581 env->banked_r14[r14_bank_number(tgtmode)] = value; 582 break; 583 case 8 ... 12: 584 switch (tgtmode) { 585 case ARM_CPU_MODE_USR: 586 env->usr_regs[regno - 8] = value; 587 break; 588 case ARM_CPU_MODE_FIQ: 589 env->fiq_regs[regno - 8] = value; 590 break; 591 default: 592 g_assert_not_reached(); 593 } 594 break; 595 default: 596 g_assert_not_reached(); 597 } 598 } 599 600 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno) 601 { 602 msr_mrs_banked_exc_checks(env, tgtmode, regno); 603 604 switch (regno) { 605 case 16: /* SPSRs */ 606 return env->banked_spsr[bank_number(tgtmode)]; 607 case 17: /* ELR_Hyp */ 608 return env->elr_el[2]; 609 case 13: 610 return env->banked_r13[bank_number(tgtmode)]; 611 case 14: 612 return env->banked_r14[r14_bank_number(tgtmode)]; 613 case 8 ... 12: 614 switch (tgtmode) { 615 case ARM_CPU_MODE_USR: 616 return env->usr_regs[regno - 8]; 617 case ARM_CPU_MODE_FIQ: 618 return env->fiq_regs[regno - 8]; 619 default: 620 g_assert_not_reached(); 621 } 622 default: 623 g_assert_not_reached(); 624 } 625 } 626 627 const void *HELPER(access_check_cp_reg)(CPUARMState *env, uint32_t key, 628 uint32_t syndrome, uint32_t isread) 629 { 630 ARMCPU *cpu = env_archcpu(env); 631 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, key); 632 CPAccessResult res = CP_ACCESS_OK; 633 int target_el; 634 635 assert(ri != NULL); 636 637 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14 638 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) { 639 res = CP_ACCESS_TRAP; 640 goto fail; 641 } 642 643 if (ri->accessfn) { 644 res = ri->accessfn(env, ri, isread); 645 } 646 647 /* 648 * If the access function indicates a trap from EL0 to EL1 then 649 * that always takes priority over the HSTR_EL2 trap. (If it indicates 650 * a trap to EL3, then the HSTR_EL2 trap takes priority; if it indicates 651 * a trap to EL2, then the syndrome is the same either way so we don't 652 * care whether technically the architecture says that HSTR_EL2 trap or 653 * the other trap takes priority. So we take the "check HSTR_EL2" path 654 * for all of those cases.) 655 */ 656 if (res != CP_ACCESS_OK && ((res & CP_ACCESS_EL_MASK) == 0) && 657 arm_current_el(env) == 0) { 658 goto fail; 659 } 660 661 /* 662 * HSTR_EL2 traps from EL1 are checked earlier, in generated code; 663 * we only need to check here for traps from EL0. 664 */ 665 if (!is_a64(env) && arm_current_el(env) == 0 && ri->cp == 15 && 666 arm_is_el2_enabled(env) && 667 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 668 uint32_t mask = 1 << ri->crn; 669 670 if (ri->type & ARM_CP_64BIT) { 671 mask = 1 << ri->crm; 672 } 673 674 /* T4 and T14 are RES0 */ 675 mask &= ~((1 << 4) | (1 << 14)); 676 677 if (env->cp15.hstr_el2 & mask) { 678 res = CP_ACCESS_TRAP_EL2; 679 goto fail; 680 } 681 } 682 683 /* 684 * Fine-grained traps also are lower priority than undef-to-EL1, 685 * higher priority than trap-to-EL3, and we don't care about priority 686 * order with other EL2 traps because the syndrome value is the same. 687 */ 688 if (arm_fgt_active(env, arm_current_el(env))) { 689 uint64_t trapword = 0; 690 unsigned int idx = FIELD_EX32(ri->fgt, FGT, IDX); 691 unsigned int bitpos = FIELD_EX32(ri->fgt, FGT, BITPOS); 692 bool rev = FIELD_EX32(ri->fgt, FGT, REV); 693 bool trapbit; 694 695 if (ri->fgt & FGT_EXEC) { 696 assert(idx < ARRAY_SIZE(env->cp15.fgt_exec)); 697 trapword = env->cp15.fgt_exec[idx]; 698 } else if (isread && (ri->fgt & FGT_R)) { 699 assert(idx < ARRAY_SIZE(env->cp15.fgt_read)); 700 trapword = env->cp15.fgt_read[idx]; 701 } else if (!isread && (ri->fgt & FGT_W)) { 702 assert(idx < ARRAY_SIZE(env->cp15.fgt_write)); 703 trapword = env->cp15.fgt_write[idx]; 704 } 705 706 trapbit = extract64(trapword, bitpos, 1); 707 if (trapbit != rev) { 708 res = CP_ACCESS_TRAP_EL2; 709 goto fail; 710 } 711 } 712 713 if (likely(res == CP_ACCESS_OK)) { 714 return ri; 715 } 716 717 fail: 718 switch (res & ~CP_ACCESS_EL_MASK) { 719 case CP_ACCESS_TRAP: 720 break; 721 case CP_ACCESS_TRAP_UNCATEGORIZED: 722 /* Only CP_ACCESS_TRAP traps are direct to a specified EL */ 723 assert((res & CP_ACCESS_EL_MASK) == 0); 724 if (cpu_isar_feature(aa64_ids, cpu) && isread && 725 arm_cpreg_in_idspace(ri)) { 726 /* 727 * FEAT_IDST says this should be reported as EC_SYSTEMREGISTERTRAP, 728 * not EC_UNCATEGORIZED 729 */ 730 break; 731 } 732 syndrome = syn_uncategorized(); 733 break; 734 default: 735 g_assert_not_reached(); 736 } 737 738 target_el = res & CP_ACCESS_EL_MASK; 739 switch (target_el) { 740 case 0: 741 target_el = exception_target_el(env); 742 break; 743 case 2: 744 assert(arm_current_el(env) != 3); 745 assert(arm_is_el2_enabled(env)); 746 break; 747 case 3: 748 assert(arm_feature(env, ARM_FEATURE_EL3)); 749 break; 750 default: 751 /* No "direct" traps to EL1 */ 752 g_assert_not_reached(); 753 } 754 755 raise_exception(env, EXCP_UDEF, syndrome, target_el); 756 } 757 758 const void *HELPER(lookup_cp_reg)(CPUARMState *env, uint32_t key) 759 { 760 ARMCPU *cpu = env_archcpu(env); 761 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, key); 762 763 assert(ri != NULL); 764 return ri; 765 } 766 767 void HELPER(set_cp_reg)(CPUARMState *env, const void *rip, uint32_t value) 768 { 769 const ARMCPRegInfo *ri = rip; 770 771 if (ri->type & ARM_CP_IO) { 772 qemu_mutex_lock_iothread(); 773 ri->writefn(env, ri, value); 774 qemu_mutex_unlock_iothread(); 775 } else { 776 ri->writefn(env, ri, value); 777 } 778 } 779 780 uint32_t HELPER(get_cp_reg)(CPUARMState *env, const void *rip) 781 { 782 const ARMCPRegInfo *ri = rip; 783 uint32_t res; 784 785 if (ri->type & ARM_CP_IO) { 786 qemu_mutex_lock_iothread(); 787 res = ri->readfn(env, ri); 788 qemu_mutex_unlock_iothread(); 789 } else { 790 res = ri->readfn(env, ri); 791 } 792 793 return res; 794 } 795 796 void HELPER(set_cp_reg64)(CPUARMState *env, const void *rip, uint64_t value) 797 { 798 const ARMCPRegInfo *ri = rip; 799 800 if (ri->type & ARM_CP_IO) { 801 qemu_mutex_lock_iothread(); 802 ri->writefn(env, ri, value); 803 qemu_mutex_unlock_iothread(); 804 } else { 805 ri->writefn(env, ri, value); 806 } 807 } 808 809 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, const void *rip) 810 { 811 const ARMCPRegInfo *ri = rip; 812 uint64_t res; 813 814 if (ri->type & ARM_CP_IO) { 815 qemu_mutex_lock_iothread(); 816 res = ri->readfn(env, ri); 817 qemu_mutex_unlock_iothread(); 818 } else { 819 res = ri->readfn(env, ri); 820 } 821 822 return res; 823 } 824 825 void HELPER(pre_hvc)(CPUARMState *env) 826 { 827 ARMCPU *cpu = env_archcpu(env); 828 int cur_el = arm_current_el(env); 829 /* FIXME: Use actual secure state. */ 830 bool secure = false; 831 bool undef; 832 833 if (arm_is_psci_call(cpu, EXCP_HVC)) { 834 /* If PSCI is enabled and this looks like a valid PSCI call then 835 * that overrides the architecturally mandated HVC behaviour. 836 */ 837 return; 838 } 839 840 if (!arm_feature(env, ARM_FEATURE_EL2)) { 841 /* If EL2 doesn't exist, HVC always UNDEFs */ 842 undef = true; 843 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 844 /* EL3.HCE has priority over EL2.HCD. */ 845 undef = !(env->cp15.scr_el3 & SCR_HCE); 846 } else { 847 undef = env->cp15.hcr_el2 & HCR_HCD; 848 } 849 850 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state. 851 * For ARMv8/AArch64, HVC is allowed in EL3. 852 * Note that we've already trapped HVC from EL0 at translation 853 * time. 854 */ 855 if (secure && (!is_a64(env) || cur_el == 1)) { 856 undef = true; 857 } 858 859 if (undef) { 860 raise_exception(env, EXCP_UDEF, syn_uncategorized(), 861 exception_target_el(env)); 862 } 863 } 864 865 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome) 866 { 867 ARMCPU *cpu = env_archcpu(env); 868 int cur_el = arm_current_el(env); 869 bool secure = arm_is_secure(env); 870 bool smd_flag = env->cp15.scr_el3 & SCR_SMD; 871 872 /* 873 * SMC behaviour is summarized in the following table. 874 * This helper handles the "Trap to EL2" and "Undef insn" cases. 875 * The "Trap to EL3" and "PSCI call" cases are handled in the exception 876 * helper. 877 * 878 * -> ARM_FEATURE_EL3 and !SMD 879 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1 880 * 881 * Conduit SMC, valid call Trap to EL2 PSCI Call 882 * Conduit SMC, inval call Trap to EL2 Trap to EL3 883 * Conduit not SMC Trap to EL2 Trap to EL3 884 * 885 * 886 * -> ARM_FEATURE_EL3 and SMD 887 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1 888 * 889 * Conduit SMC, valid call Trap to EL2 PSCI Call 890 * Conduit SMC, inval call Trap to EL2 Undef insn 891 * Conduit not SMC Trap to EL2 Undef insn 892 * 893 * 894 * -> !ARM_FEATURE_EL3 895 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1 896 * 897 * Conduit SMC, valid call Trap to EL2 PSCI Call 898 * Conduit SMC, inval call Trap to EL2 Undef insn 899 * Conduit not SMC Undef insn Undef insn 900 */ 901 902 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state. 903 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization 904 * extensions, SMD only applies to NS state. 905 * On ARMv7 without the Virtualization extensions, the SMD bit 906 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(), 907 * so we need not special case this here. 908 */ 909 bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag 910 : smd_flag && !secure; 911 912 if (!arm_feature(env, ARM_FEATURE_EL3) && 913 cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 914 /* If we have no EL3 then SMC always UNDEFs and can't be 915 * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3 916 * firmware within QEMU, and we want an EL2 guest to be able 917 * to forbid its EL1 from making PSCI calls into QEMU's 918 * "firmware" via HCR.TSC, so for these purposes treat 919 * PSCI-via-SMC as implying an EL3. 920 * This handles the very last line of the previous table. 921 */ 922 raise_exception(env, EXCP_UDEF, syn_uncategorized(), 923 exception_target_el(env)); 924 } 925 926 if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) { 927 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. 928 * We also want an EL2 guest to be able to forbid its EL1 from 929 * making PSCI calls into QEMU's "firmware" via HCR.TSC. 930 * This handles all the "Trap to EL2" cases of the previous table. 931 */ 932 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2); 933 } 934 935 /* Catch the two remaining "Undef insn" cases of the previous table: 936 * - PSCI conduit is SMC but we don't have a valid PCSI call, 937 * - We don't have EL3 or SMD is set. 938 */ 939 if (!arm_is_psci_call(cpu, EXCP_SMC) && 940 (smd || !arm_feature(env, ARM_FEATURE_EL3))) { 941 raise_exception(env, EXCP_UDEF, syn_uncategorized(), 942 exception_target_el(env)); 943 } 944 } 945 946 /* ??? Flag setting arithmetic is awkward because we need to do comparisons. 947 The only way to do that in TCG is a conditional branch, which clobbers 948 all our temporaries. For now implement these as helper functions. */ 949 950 /* Similarly for variable shift instructions. */ 951 952 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i) 953 { 954 int shift = i & 0xff; 955 if (shift >= 32) { 956 if (shift == 32) 957 env->CF = x & 1; 958 else 959 env->CF = 0; 960 return 0; 961 } else if (shift != 0) { 962 env->CF = (x >> (32 - shift)) & 1; 963 return x << shift; 964 } 965 return x; 966 } 967 968 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i) 969 { 970 int shift = i & 0xff; 971 if (shift >= 32) { 972 if (shift == 32) 973 env->CF = (x >> 31) & 1; 974 else 975 env->CF = 0; 976 return 0; 977 } else if (shift != 0) { 978 env->CF = (x >> (shift - 1)) & 1; 979 return x >> shift; 980 } 981 return x; 982 } 983 984 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i) 985 { 986 int shift = i & 0xff; 987 if (shift >= 32) { 988 env->CF = (x >> 31) & 1; 989 return (int32_t)x >> 31; 990 } else if (shift != 0) { 991 env->CF = (x >> (shift - 1)) & 1; 992 return (int32_t)x >> shift; 993 } 994 return x; 995 } 996 997 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i) 998 { 999 int shift1, shift; 1000 shift1 = i & 0xff; 1001 shift = shift1 & 0x1f; 1002 if (shift == 0) { 1003 if (shift1 != 0) 1004 env->CF = (x >> 31) & 1; 1005 return x; 1006 } else { 1007 env->CF = (x >> (shift - 1)) & 1; 1008 return ((uint32_t)x >> shift) | (x << (32 - shift)); 1009 } 1010 } 1011 1012 void HELPER(probe_access)(CPUARMState *env, target_ulong ptr, 1013 uint32_t access_type, uint32_t mmu_idx, 1014 uint32_t size) 1015 { 1016 uint32_t in_page = -((uint32_t)ptr | TARGET_PAGE_SIZE); 1017 uintptr_t ra = GETPC(); 1018 1019 if (likely(size <= in_page)) { 1020 probe_access(env, ptr, size, access_type, mmu_idx, ra); 1021 } else { 1022 probe_access(env, ptr, in_page, access_type, mmu_idx, ra); 1023 probe_access(env, ptr + in_page, size - in_page, 1024 access_type, mmu_idx, ra); 1025 } 1026 } 1027 1028 /* 1029 * This function corresponds to AArch64.vESBOperation(). 1030 * Note that the AArch32 version is not functionally different. 1031 */ 1032 void HELPER(vesb)(CPUARMState *env) 1033 { 1034 /* 1035 * The EL2Enabled() check is done inside arm_hcr_el2_eff, 1036 * and will return HCR_EL2.VSE == 0, so nothing happens. 1037 */ 1038 uint64_t hcr = arm_hcr_el2_eff(env); 1039 bool enabled = !(hcr & HCR_TGE) && (hcr & HCR_AMO); 1040 bool pending = enabled && (hcr & HCR_VSE); 1041 bool masked = (env->daif & PSTATE_A); 1042 1043 /* If VSE pending and masked, defer the exception. */ 1044 if (pending && masked) { 1045 uint32_t syndrome; 1046 1047 if (arm_el_is_aa64(env, 1)) { 1048 /* Copy across IDS and ISS from VSESR. */ 1049 syndrome = env->cp15.vsesr_el2 & 0x1ffffff; 1050 } else { 1051 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal }; 1052 1053 if (extended_addresses_enabled(env)) { 1054 syndrome = arm_fi_to_lfsc(&fi); 1055 } else { 1056 syndrome = arm_fi_to_sfsc(&fi); 1057 } 1058 /* Copy across AET and ExT from VSESR. */ 1059 syndrome |= env->cp15.vsesr_el2 & 0xd000; 1060 } 1061 1062 /* Set VDISR_EL2.A along with the syndrome. */ 1063 env->cp15.vdisr_el2 = syndrome | (1u << 31); 1064 1065 /* Clear pending virtual SError */ 1066 env->cp15.hcr_el2 &= ~HCR_VSE; 1067 cpu_reset_interrupt(env_cpu(env), CPU_INTERRUPT_VSERR); 1068 } 1069 } 1070