1 /* 2 * M-profile MVE Operations 3 * 4 * Copyright (c) 2021 Linaro, Ltd. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "internals.h" 23 #include "vec_internal.h" 24 #include "exec/helper-proto.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/exec-all.h" 27 #include "tcg/tcg.h" 28 #include "fpu/softfloat.h" 29 #include "crypto/clmul.h" 30 31 static uint16_t mve_eci_mask(CPUARMState *env) 32 { 33 /* 34 * Return the mask of which elements in the MVE vector correspond 35 * to beats being executed. The mask has 1 bits for executed lanes 36 * and 0 bits where ECI says this beat was already executed. 37 */ 38 int eci; 39 40 if ((env->condexec_bits & 0xf) != 0) { 41 return 0xffff; 42 } 43 44 eci = env->condexec_bits >> 4; 45 switch (eci) { 46 case ECI_NONE: 47 return 0xffff; 48 case ECI_A0: 49 return 0xfff0; 50 case ECI_A0A1: 51 return 0xff00; 52 case ECI_A0A1A2: 53 case ECI_A0A1A2B0: 54 return 0xf000; 55 default: 56 g_assert_not_reached(); 57 } 58 } 59 60 static uint16_t mve_element_mask(CPUARMState *env) 61 { 62 /* 63 * Return the mask of which elements in the MVE vector should be 64 * updated. This is a combination of multiple things: 65 * (1) by default, we update every lane in the vector 66 * (2) VPT predication stores its state in the VPR register; 67 * (3) low-overhead-branch tail predication will mask out part 68 * the vector on the final iteration of the loop 69 * (4) if EPSR.ECI is set then we must execute only some beats 70 * of the insn 71 * We combine all these into a 16-bit result with the same semantics 72 * as VPR.P0: 0 to mask the lane, 1 if it is active. 73 * 8-bit vector ops will look at all bits of the result; 74 * 16-bit ops will look at bits 0, 2, 4, ...; 75 * 32-bit ops will look at bits 0, 4, 8 and 12. 76 * Compare pseudocode GetCurInstrBeat(), though that only returns 77 * the 4-bit slice of the mask corresponding to a single beat. 78 */ 79 uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0); 80 81 if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) { 82 mask |= 0xff; 83 } 84 if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) { 85 mask |= 0xff00; 86 } 87 88 if (env->v7m.ltpsize < 4 && 89 env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) { 90 /* 91 * Tail predication active, and this is the last loop iteration. 92 * The element size is (1 << ltpsize), and we only want to process 93 * loopcount elements, so we want to retain the least significant 94 * (loopcount * esize) predicate bits and zero out bits above that. 95 */ 96 int masklen = env->regs[14] << env->v7m.ltpsize; 97 assert(masklen <= 16); 98 uint16_t ltpmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0; 99 mask &= ltpmask; 100 } 101 102 /* 103 * ECI bits indicate which beats are already executed; 104 * we handle this by effectively predicating them out. 105 */ 106 mask &= mve_eci_mask(env); 107 return mask; 108 } 109 110 static void mve_advance_vpt(CPUARMState *env) 111 { 112 /* Advance the VPT and ECI state if necessary */ 113 uint32_t vpr = env->v7m.vpr; 114 unsigned mask01, mask23; 115 uint16_t inv_mask; 116 uint16_t eci_mask = mve_eci_mask(env); 117 118 if ((env->condexec_bits & 0xf) == 0) { 119 env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ? 120 (ECI_A0 << 4) : (ECI_NONE << 4); 121 } 122 123 if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) { 124 /* VPT not enabled, nothing to do */ 125 return; 126 } 127 128 /* Invert P0 bits if needed, but only for beats we actually executed */ 129 mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01); 130 mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23); 131 /* Start by assuming we invert all bits corresponding to executed beats */ 132 inv_mask = eci_mask; 133 if (mask01 <= 8) { 134 /* MASK01 says don't invert low half of P0 */ 135 inv_mask &= ~0xff; 136 } 137 if (mask23 <= 8) { 138 /* MASK23 says don't invert high half of P0 */ 139 inv_mask &= ~0xff00; 140 } 141 vpr ^= inv_mask; 142 /* Only update MASK01 if beat 1 executed */ 143 if (eci_mask & 0xf0) { 144 vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1); 145 } 146 /* Beat 3 always executes, so update MASK23 */ 147 vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1); 148 env->v7m.vpr = vpr; 149 } 150 151 /* For loads, predicated lanes are zeroed instead of keeping their old values */ 152 #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE) \ 153 void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \ 154 { \ 155 TYPE *d = vd; \ 156 uint16_t mask = mve_element_mask(env); \ 157 uint16_t eci_mask = mve_eci_mask(env); \ 158 unsigned b, e; \ 159 /* \ 160 * R_SXTM allows the dest reg to become UNKNOWN for abandoned \ 161 * beats so we don't care if we update part of the dest and \ 162 * then take an exception. \ 163 */ \ 164 for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \ 165 if (eci_mask & (1 << b)) { \ 166 d[H##ESIZE(e)] = (mask & (1 << b)) ? \ 167 cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0; \ 168 } \ 169 addr += MSIZE; \ 170 } \ 171 mve_advance_vpt(env); \ 172 } 173 174 #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE) \ 175 void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \ 176 { \ 177 TYPE *d = vd; \ 178 uint16_t mask = mve_element_mask(env); \ 179 unsigned b, e; \ 180 for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \ 181 if (mask & (1 << b)) { \ 182 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \ 183 } \ 184 addr += MSIZE; \ 185 } \ 186 mve_advance_vpt(env); \ 187 } 188 189 DO_VLDR(vldrb, 1, ldub, 1, uint8_t) 190 DO_VLDR(vldrh, 2, lduw, 2, uint16_t) 191 DO_VLDR(vldrw, 4, ldl, 4, uint32_t) 192 193 DO_VSTR(vstrb, 1, stb, 1, uint8_t) 194 DO_VSTR(vstrh, 2, stw, 2, uint16_t) 195 DO_VSTR(vstrw, 4, stl, 4, uint32_t) 196 197 DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t) 198 DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t) 199 DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t) 200 DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t) 201 DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t) 202 DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t) 203 204 DO_VSTR(vstrb_h, 1, stb, 2, int16_t) 205 DO_VSTR(vstrb_w, 1, stb, 4, int32_t) 206 DO_VSTR(vstrh_w, 2, stw, 4, int32_t) 207 208 #undef DO_VLDR 209 #undef DO_VSTR 210 211 /* 212 * Gather loads/scatter stores. Here each element of Qm specifies 213 * an offset to use from the base register Rm. In the _os_ versions 214 * that offset is scaled by the element size. 215 * For loads, predicated lanes are zeroed instead of retaining 216 * their previous values. 217 */ 218 #define DO_VLDR_SG(OP, LDTYPE, ESIZE, TYPE, OFFTYPE, ADDRFN, WB) \ 219 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm, \ 220 uint32_t base) \ 221 { \ 222 TYPE *d = vd; \ 223 OFFTYPE *m = vm; \ 224 uint16_t mask = mve_element_mask(env); \ 225 uint16_t eci_mask = mve_eci_mask(env); \ 226 unsigned e; \ 227 uint32_t addr; \ 228 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \ 229 if (!(eci_mask & 1)) { \ 230 continue; \ 231 } \ 232 addr = ADDRFN(base, m[H##ESIZE(e)]); \ 233 d[H##ESIZE(e)] = (mask & 1) ? \ 234 cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0; \ 235 if (WB) { \ 236 m[H##ESIZE(e)] = addr; \ 237 } \ 238 } \ 239 mve_advance_vpt(env); \ 240 } 241 242 /* We know here TYPE is unsigned so always the same as the offset type */ 243 #define DO_VSTR_SG(OP, STTYPE, ESIZE, TYPE, ADDRFN, WB) \ 244 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm, \ 245 uint32_t base) \ 246 { \ 247 TYPE *d = vd; \ 248 TYPE *m = vm; \ 249 uint16_t mask = mve_element_mask(env); \ 250 uint16_t eci_mask = mve_eci_mask(env); \ 251 unsigned e; \ 252 uint32_t addr; \ 253 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \ 254 if (!(eci_mask & 1)) { \ 255 continue; \ 256 } \ 257 addr = ADDRFN(base, m[H##ESIZE(e)]); \ 258 if (mask & 1) { \ 259 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \ 260 } \ 261 if (WB) { \ 262 m[H##ESIZE(e)] = addr; \ 263 } \ 264 } \ 265 mve_advance_vpt(env); \ 266 } 267 268 /* 269 * 64-bit accesses are slightly different: they are done as two 32-bit 270 * accesses, controlled by the predicate mask for the relevant beat, 271 * and with a single 32-bit offset in the first of the two Qm elements. 272 * Note that for QEMU our IMPDEF AIRCR.ENDIANNESS is always 0 (little). 273 * Address writeback happens on the odd beats and updates the address 274 * stored in the even-beat element. 275 */ 276 #define DO_VLDR64_SG(OP, ADDRFN, WB) \ 277 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm, \ 278 uint32_t base) \ 279 { \ 280 uint32_t *d = vd; \ 281 uint32_t *m = vm; \ 282 uint16_t mask = mve_element_mask(env); \ 283 uint16_t eci_mask = mve_eci_mask(env); \ 284 unsigned e; \ 285 uint32_t addr; \ 286 for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) { \ 287 if (!(eci_mask & 1)) { \ 288 continue; \ 289 } \ 290 addr = ADDRFN(base, m[H4(e & ~1)]); \ 291 addr += 4 * (e & 1); \ 292 d[H4(e)] = (mask & 1) ? cpu_ldl_data_ra(env, addr, GETPC()) : 0; \ 293 if (WB && (e & 1)) { \ 294 m[H4(e & ~1)] = addr - 4; \ 295 } \ 296 } \ 297 mve_advance_vpt(env); \ 298 } 299 300 #define DO_VSTR64_SG(OP, ADDRFN, WB) \ 301 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm, \ 302 uint32_t base) \ 303 { \ 304 uint32_t *d = vd; \ 305 uint32_t *m = vm; \ 306 uint16_t mask = mve_element_mask(env); \ 307 uint16_t eci_mask = mve_eci_mask(env); \ 308 unsigned e; \ 309 uint32_t addr; \ 310 for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) { \ 311 if (!(eci_mask & 1)) { \ 312 continue; \ 313 } \ 314 addr = ADDRFN(base, m[H4(e & ~1)]); \ 315 addr += 4 * (e & 1); \ 316 if (mask & 1) { \ 317 cpu_stl_data_ra(env, addr, d[H4(e)], GETPC()); \ 318 } \ 319 if (WB && (e & 1)) { \ 320 m[H4(e & ~1)] = addr - 4; \ 321 } \ 322 } \ 323 mve_advance_vpt(env); \ 324 } 325 326 #define ADDR_ADD(BASE, OFFSET) ((BASE) + (OFFSET)) 327 #define ADDR_ADD_OSH(BASE, OFFSET) ((BASE) + ((OFFSET) << 1)) 328 #define ADDR_ADD_OSW(BASE, OFFSET) ((BASE) + ((OFFSET) << 2)) 329 #define ADDR_ADD_OSD(BASE, OFFSET) ((BASE) + ((OFFSET) << 3)) 330 331 DO_VLDR_SG(vldrb_sg_sh, ldsb, 2, int16_t, uint16_t, ADDR_ADD, false) 332 DO_VLDR_SG(vldrb_sg_sw, ldsb, 4, int32_t, uint32_t, ADDR_ADD, false) 333 DO_VLDR_SG(vldrh_sg_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD, false) 334 335 DO_VLDR_SG(vldrb_sg_ub, ldub, 1, uint8_t, uint8_t, ADDR_ADD, false) 336 DO_VLDR_SG(vldrb_sg_uh, ldub, 2, uint16_t, uint16_t, ADDR_ADD, false) 337 DO_VLDR_SG(vldrb_sg_uw, ldub, 4, uint32_t, uint32_t, ADDR_ADD, false) 338 DO_VLDR_SG(vldrh_sg_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD, false) 339 DO_VLDR_SG(vldrh_sg_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD, false) 340 DO_VLDR_SG(vldrw_sg_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, false) 341 DO_VLDR64_SG(vldrd_sg_ud, ADDR_ADD, false) 342 343 DO_VLDR_SG(vldrh_sg_os_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD_OSH, false) 344 DO_VLDR_SG(vldrh_sg_os_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD_OSH, false) 345 DO_VLDR_SG(vldrh_sg_os_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD_OSH, false) 346 DO_VLDR_SG(vldrw_sg_os_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD_OSW, false) 347 DO_VLDR64_SG(vldrd_sg_os_ud, ADDR_ADD_OSD, false) 348 349 DO_VSTR_SG(vstrb_sg_ub, stb, 1, uint8_t, ADDR_ADD, false) 350 DO_VSTR_SG(vstrb_sg_uh, stb, 2, uint16_t, ADDR_ADD, false) 351 DO_VSTR_SG(vstrb_sg_uw, stb, 4, uint32_t, ADDR_ADD, false) 352 DO_VSTR_SG(vstrh_sg_uh, stw, 2, uint16_t, ADDR_ADD, false) 353 DO_VSTR_SG(vstrh_sg_uw, stw, 4, uint32_t, ADDR_ADD, false) 354 DO_VSTR_SG(vstrw_sg_uw, stl, 4, uint32_t, ADDR_ADD, false) 355 DO_VSTR64_SG(vstrd_sg_ud, ADDR_ADD, false) 356 357 DO_VSTR_SG(vstrh_sg_os_uh, stw, 2, uint16_t, ADDR_ADD_OSH, false) 358 DO_VSTR_SG(vstrh_sg_os_uw, stw, 4, uint32_t, ADDR_ADD_OSH, false) 359 DO_VSTR_SG(vstrw_sg_os_uw, stl, 4, uint32_t, ADDR_ADD_OSW, false) 360 DO_VSTR64_SG(vstrd_sg_os_ud, ADDR_ADD_OSD, false) 361 362 DO_VLDR_SG(vldrw_sg_wb_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, true) 363 DO_VLDR64_SG(vldrd_sg_wb_ud, ADDR_ADD, true) 364 DO_VSTR_SG(vstrw_sg_wb_uw, stl, 4, uint32_t, ADDR_ADD, true) 365 DO_VSTR64_SG(vstrd_sg_wb_ud, ADDR_ADD, true) 366 367 /* 368 * Deinterleaving loads/interleaving stores. 369 * 370 * For these helpers we are passed the index of the first Qreg 371 * (VLD2/VST2 will also access Qn+1, VLD4/VST4 access Qn .. Qn+3) 372 * and the value of the base address register Rn. 373 * The helpers are specialized for pattern and element size, so 374 * for instance vld42h is VLD4 with pattern 2, element size MO_16. 375 * 376 * These insns are beatwise but not predicated, so we must honour ECI, 377 * but need not look at mve_element_mask(). 378 * 379 * The pseudocode implements these insns with multiple memory accesses 380 * of the element size, but rules R_VVVG and R_FXDM permit us to make 381 * one 32-bit memory access per beat. 382 */ 383 #define DO_VLD4B(OP, O1, O2, O3, O4) \ 384 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ 385 uint32_t base) \ 386 { \ 387 int beat, e; \ 388 uint16_t mask = mve_eci_mask(env); \ 389 static const uint8_t off[4] = { O1, O2, O3, O4 }; \ 390 uint32_t addr, data; \ 391 for (beat = 0; beat < 4; beat++, mask >>= 4) { \ 392 if ((mask & 1) == 0) { \ 393 /* ECI says skip this beat */ \ 394 continue; \ 395 } \ 396 addr = base + off[beat] * 4; \ 397 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \ 398 for (e = 0; e < 4; e++, data >>= 8) { \ 399 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \ 400 qd[H1(off[beat])] = data; \ 401 } \ 402 } \ 403 } 404 405 #define DO_VLD4H(OP, O1, O2) \ 406 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ 407 uint32_t base) \ 408 { \ 409 int beat; \ 410 uint16_t mask = mve_eci_mask(env); \ 411 static const uint8_t off[4] = { O1, O1, O2, O2 }; \ 412 uint32_t addr, data; \ 413 int y; /* y counts 0 2 0 2 */ \ 414 uint16_t *qd; \ 415 for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) { \ 416 if ((mask & 1) == 0) { \ 417 /* ECI says skip this beat */ \ 418 continue; \ 419 } \ 420 addr = base + off[beat] * 8 + (beat & 1) * 4; \ 421 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \ 422 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y); \ 423 qd[H2(off[beat])] = data; \ 424 data >>= 16; \ 425 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1); \ 426 qd[H2(off[beat])] = data; \ 427 } \ 428 } 429 430 #define DO_VLD4W(OP, O1, O2, O3, O4) \ 431 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ 432 uint32_t base) \ 433 { \ 434 int beat; \ 435 uint16_t mask = mve_eci_mask(env); \ 436 static const uint8_t off[4] = { O1, O2, O3, O4 }; \ 437 uint32_t addr, data; \ 438 uint32_t *qd; \ 439 int y; \ 440 for (beat = 0; beat < 4; beat++, mask >>= 4) { \ 441 if ((mask & 1) == 0) { \ 442 /* ECI says skip this beat */ \ 443 continue; \ 444 } \ 445 addr = base + off[beat] * 4; \ 446 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \ 447 y = (beat + (O1 & 2)) & 3; \ 448 qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y); \ 449 qd[H4(off[beat] >> 2)] = data; \ 450 } \ 451 } 452 453 DO_VLD4B(vld40b, 0, 1, 10, 11) 454 DO_VLD4B(vld41b, 2, 3, 12, 13) 455 DO_VLD4B(vld42b, 4, 5, 14, 15) 456 DO_VLD4B(vld43b, 6, 7, 8, 9) 457 458 DO_VLD4H(vld40h, 0, 5) 459 DO_VLD4H(vld41h, 1, 6) 460 DO_VLD4H(vld42h, 2, 7) 461 DO_VLD4H(vld43h, 3, 4) 462 463 DO_VLD4W(vld40w, 0, 1, 10, 11) 464 DO_VLD4W(vld41w, 2, 3, 12, 13) 465 DO_VLD4W(vld42w, 4, 5, 14, 15) 466 DO_VLD4W(vld43w, 6, 7, 8, 9) 467 468 #define DO_VLD2B(OP, O1, O2, O3, O4) \ 469 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ 470 uint32_t base) \ 471 { \ 472 int beat, e; \ 473 uint16_t mask = mve_eci_mask(env); \ 474 static const uint8_t off[4] = { O1, O2, O3, O4 }; \ 475 uint32_t addr, data; \ 476 uint8_t *qd; \ 477 for (beat = 0; beat < 4; beat++, mask >>= 4) { \ 478 if ((mask & 1) == 0) { \ 479 /* ECI says skip this beat */ \ 480 continue; \ 481 } \ 482 addr = base + off[beat] * 2; \ 483 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \ 484 for (e = 0; e < 4; e++, data >>= 8) { \ 485 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1)); \ 486 qd[H1(off[beat] + (e >> 1))] = data; \ 487 } \ 488 } \ 489 } 490 491 #define DO_VLD2H(OP, O1, O2, O3, O4) \ 492 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ 493 uint32_t base) \ 494 { \ 495 int beat; \ 496 uint16_t mask = mve_eci_mask(env); \ 497 static const uint8_t off[4] = { O1, O2, O3, O4 }; \ 498 uint32_t addr, data; \ 499 int e; \ 500 uint16_t *qd; \ 501 for (beat = 0; beat < 4; beat++, mask >>= 4) { \ 502 if ((mask & 1) == 0) { \ 503 /* ECI says skip this beat */ \ 504 continue; \ 505 } \ 506 addr = base + off[beat] * 4; \ 507 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \ 508 for (e = 0; e < 2; e++, data >>= 16) { \ 509 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e); \ 510 qd[H2(off[beat])] = data; \ 511 } \ 512 } \ 513 } 514 515 #define DO_VLD2W(OP, O1, O2, O3, O4) \ 516 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ 517 uint32_t base) \ 518 { \ 519 int beat; \ 520 uint16_t mask = mve_eci_mask(env); \ 521 static const uint8_t off[4] = { O1, O2, O3, O4 }; \ 522 uint32_t addr, data; \ 523 uint32_t *qd; \ 524 for (beat = 0; beat < 4; beat++, mask >>= 4) { \ 525 if ((mask & 1) == 0) { \ 526 /* ECI says skip this beat */ \ 527 continue; \ 528 } \ 529 addr = base + off[beat]; \ 530 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \ 531 qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1)); \ 532 qd[H4(off[beat] >> 3)] = data; \ 533 } \ 534 } 535 536 DO_VLD2B(vld20b, 0, 2, 12, 14) 537 DO_VLD2B(vld21b, 4, 6, 8, 10) 538 539 DO_VLD2H(vld20h, 0, 1, 6, 7) 540 DO_VLD2H(vld21h, 2, 3, 4, 5) 541 542 DO_VLD2W(vld20w, 0, 4, 24, 28) 543 DO_VLD2W(vld21w, 8, 12, 16, 20) 544 545 #define DO_VST4B(OP, O1, O2, O3, O4) \ 546 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ 547 uint32_t base) \ 548 { \ 549 int beat, e; \ 550 uint16_t mask = mve_eci_mask(env); \ 551 static const uint8_t off[4] = { O1, O2, O3, O4 }; \ 552 uint32_t addr, data; \ 553 for (beat = 0; beat < 4; beat++, mask >>= 4) { \ 554 if ((mask & 1) == 0) { \ 555 /* ECI says skip this beat */ \ 556 continue; \ 557 } \ 558 addr = base + off[beat] * 4; \ 559 data = 0; \ 560 for (e = 3; e >= 0; e--) { \ 561 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \ 562 data = (data << 8) | qd[H1(off[beat])]; \ 563 } \ 564 cpu_stl_le_data_ra(env, addr, data, GETPC()); \ 565 } \ 566 } 567 568 #define DO_VST4H(OP, O1, O2) \ 569 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ 570 uint32_t base) \ 571 { \ 572 int beat; \ 573 uint16_t mask = mve_eci_mask(env); \ 574 static const uint8_t off[4] = { O1, O1, O2, O2 }; \ 575 uint32_t addr, data; \ 576 int y; /* y counts 0 2 0 2 */ \ 577 uint16_t *qd; \ 578 for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) { \ 579 if ((mask & 1) == 0) { \ 580 /* ECI says skip this beat */ \ 581 continue; \ 582 } \ 583 addr = base + off[beat] * 8 + (beat & 1) * 4; \ 584 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y); \ 585 data = qd[H2(off[beat])]; \ 586 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1); \ 587 data |= qd[H2(off[beat])] << 16; \ 588 cpu_stl_le_data_ra(env, addr, data, GETPC()); \ 589 } \ 590 } 591 592 #define DO_VST4W(OP, O1, O2, O3, O4) \ 593 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ 594 uint32_t base) \ 595 { \ 596 int beat; \ 597 uint16_t mask = mve_eci_mask(env); \ 598 static const uint8_t off[4] = { O1, O2, O3, O4 }; \ 599 uint32_t addr, data; \ 600 uint32_t *qd; \ 601 int y; \ 602 for (beat = 0; beat < 4; beat++, mask >>= 4) { \ 603 if ((mask & 1) == 0) { \ 604 /* ECI says skip this beat */ \ 605 continue; \ 606 } \ 607 addr = base + off[beat] * 4; \ 608 y = (beat + (O1 & 2)) & 3; \ 609 qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y); \ 610 data = qd[H4(off[beat] >> 2)]; \ 611 cpu_stl_le_data_ra(env, addr, data, GETPC()); \ 612 } \ 613 } 614 615 DO_VST4B(vst40b, 0, 1, 10, 11) 616 DO_VST4B(vst41b, 2, 3, 12, 13) 617 DO_VST4B(vst42b, 4, 5, 14, 15) 618 DO_VST4B(vst43b, 6, 7, 8, 9) 619 620 DO_VST4H(vst40h, 0, 5) 621 DO_VST4H(vst41h, 1, 6) 622 DO_VST4H(vst42h, 2, 7) 623 DO_VST4H(vst43h, 3, 4) 624 625 DO_VST4W(vst40w, 0, 1, 10, 11) 626 DO_VST4W(vst41w, 2, 3, 12, 13) 627 DO_VST4W(vst42w, 4, 5, 14, 15) 628 DO_VST4W(vst43w, 6, 7, 8, 9) 629 630 #define DO_VST2B(OP, O1, O2, O3, O4) \ 631 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ 632 uint32_t base) \ 633 { \ 634 int beat, e; \ 635 uint16_t mask = mve_eci_mask(env); \ 636 static const uint8_t off[4] = { O1, O2, O3, O4 }; \ 637 uint32_t addr, data; \ 638 uint8_t *qd; \ 639 for (beat = 0; beat < 4; beat++, mask >>= 4) { \ 640 if ((mask & 1) == 0) { \ 641 /* ECI says skip this beat */ \ 642 continue; \ 643 } \ 644 addr = base + off[beat] * 2; \ 645 data = 0; \ 646 for (e = 3; e >= 0; e--) { \ 647 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1)); \ 648 data = (data << 8) | qd[H1(off[beat] + (e >> 1))]; \ 649 } \ 650 cpu_stl_le_data_ra(env, addr, data, GETPC()); \ 651 } \ 652 } 653 654 #define DO_VST2H(OP, O1, O2, O3, O4) \ 655 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ 656 uint32_t base) \ 657 { \ 658 int beat; \ 659 uint16_t mask = mve_eci_mask(env); \ 660 static const uint8_t off[4] = { O1, O2, O3, O4 }; \ 661 uint32_t addr, data; \ 662 int e; \ 663 uint16_t *qd; \ 664 for (beat = 0; beat < 4; beat++, mask >>= 4) { \ 665 if ((mask & 1) == 0) { \ 666 /* ECI says skip this beat */ \ 667 continue; \ 668 } \ 669 addr = base + off[beat] * 4; \ 670 data = 0; \ 671 for (e = 1; e >= 0; e--) { \ 672 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e); \ 673 data = (data << 16) | qd[H2(off[beat])]; \ 674 } \ 675 cpu_stl_le_data_ra(env, addr, data, GETPC()); \ 676 } \ 677 } 678 679 #define DO_VST2W(OP, O1, O2, O3, O4) \ 680 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ 681 uint32_t base) \ 682 { \ 683 int beat; \ 684 uint16_t mask = mve_eci_mask(env); \ 685 static const uint8_t off[4] = { O1, O2, O3, O4 }; \ 686 uint32_t addr, data; \ 687 uint32_t *qd; \ 688 for (beat = 0; beat < 4; beat++, mask >>= 4) { \ 689 if ((mask & 1) == 0) { \ 690 /* ECI says skip this beat */ \ 691 continue; \ 692 } \ 693 addr = base + off[beat]; \ 694 qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1)); \ 695 data = qd[H4(off[beat] >> 3)]; \ 696 cpu_stl_le_data_ra(env, addr, data, GETPC()); \ 697 } \ 698 } 699 700 DO_VST2B(vst20b, 0, 2, 12, 14) 701 DO_VST2B(vst21b, 4, 6, 8, 10) 702 703 DO_VST2H(vst20h, 0, 1, 6, 7) 704 DO_VST2H(vst21h, 2, 3, 4, 5) 705 706 DO_VST2W(vst20w, 0, 4, 24, 28) 707 DO_VST2W(vst21w, 8, 12, 16, 20) 708 709 /* 710 * The mergemask(D, R, M) macro performs the operation "*D = R" but 711 * storing only the bytes which correspond to 1 bits in M, 712 * leaving other bytes in *D unchanged. We use _Generic 713 * to select the correct implementation based on the type of D. 714 */ 715 716 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask) 717 { 718 if (mask & 1) { 719 *d = r; 720 } 721 } 722 723 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask) 724 { 725 mergemask_ub((uint8_t *)d, r, mask); 726 } 727 728 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask) 729 { 730 uint16_t bmask = expand_pred_b(mask); 731 *d = (*d & ~bmask) | (r & bmask); 732 } 733 734 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask) 735 { 736 mergemask_uh((uint16_t *)d, r, mask); 737 } 738 739 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask) 740 { 741 uint32_t bmask = expand_pred_b(mask); 742 *d = (*d & ~bmask) | (r & bmask); 743 } 744 745 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask) 746 { 747 mergemask_uw((uint32_t *)d, r, mask); 748 } 749 750 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask) 751 { 752 uint64_t bmask = expand_pred_b(mask); 753 *d = (*d & ~bmask) | (r & bmask); 754 } 755 756 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask) 757 { 758 mergemask_uq((uint64_t *)d, r, mask); 759 } 760 761 #define mergemask(D, R, M) \ 762 _Generic(D, \ 763 uint8_t *: mergemask_ub, \ 764 int8_t *: mergemask_sb, \ 765 uint16_t *: mergemask_uh, \ 766 int16_t *: mergemask_sh, \ 767 uint32_t *: mergemask_uw, \ 768 int32_t *: mergemask_sw, \ 769 uint64_t *: mergemask_uq, \ 770 int64_t *: mergemask_sq)(D, R, M) 771 772 void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val) 773 { 774 /* 775 * The generated code already replicated an 8 or 16 bit constant 776 * into the 32-bit value, so we only need to write the 32-bit 777 * value to all elements of the Qreg, allowing for predication. 778 */ 779 uint32_t *d = vd; 780 uint16_t mask = mve_element_mask(env); 781 unsigned e; 782 for (e = 0; e < 16 / 4; e++, mask >>= 4) { 783 mergemask(&d[H4(e)], val, mask); 784 } 785 mve_advance_vpt(env); 786 } 787 788 #define DO_1OP(OP, ESIZE, TYPE, FN) \ 789 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \ 790 { \ 791 TYPE *d = vd, *m = vm; \ 792 uint16_t mask = mve_element_mask(env); \ 793 unsigned e; \ 794 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 795 mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask); \ 796 } \ 797 mve_advance_vpt(env); \ 798 } 799 800 #define DO_CLS_B(N) (clrsb32(N) - 24) 801 #define DO_CLS_H(N) (clrsb32(N) - 16) 802 803 DO_1OP(vclsb, 1, int8_t, DO_CLS_B) 804 DO_1OP(vclsh, 2, int16_t, DO_CLS_H) 805 DO_1OP(vclsw, 4, int32_t, clrsb32) 806 807 #define DO_CLZ_B(N) (clz32(N) - 24) 808 #define DO_CLZ_H(N) (clz32(N) - 16) 809 810 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B) 811 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H) 812 DO_1OP(vclzw, 4, uint32_t, clz32) 813 814 DO_1OP(vrev16b, 2, uint16_t, bswap16) 815 DO_1OP(vrev32b, 4, uint32_t, bswap32) 816 DO_1OP(vrev32h, 4, uint32_t, hswap32) 817 DO_1OP(vrev64b, 8, uint64_t, bswap64) 818 DO_1OP(vrev64h, 8, uint64_t, hswap64) 819 DO_1OP(vrev64w, 8, uint64_t, wswap64) 820 821 #define DO_NOT(N) (~(N)) 822 823 DO_1OP(vmvn, 8, uint64_t, DO_NOT) 824 825 #define DO_ABS(N) ((N) < 0 ? -(N) : (N)) 826 #define DO_FABSH(N) ((N) & dup_const(MO_16, 0x7fff)) 827 #define DO_FABSS(N) ((N) & dup_const(MO_32, 0x7fffffff)) 828 829 DO_1OP(vabsb, 1, int8_t, DO_ABS) 830 DO_1OP(vabsh, 2, int16_t, DO_ABS) 831 DO_1OP(vabsw, 4, int32_t, DO_ABS) 832 833 /* We can do these 64 bits at a time */ 834 DO_1OP(vfabsh, 8, uint64_t, DO_FABSH) 835 DO_1OP(vfabss, 8, uint64_t, DO_FABSS) 836 837 #define DO_NEG(N) (-(N)) 838 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000)) 839 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000)) 840 841 DO_1OP(vnegb, 1, int8_t, DO_NEG) 842 DO_1OP(vnegh, 2, int16_t, DO_NEG) 843 DO_1OP(vnegw, 4, int32_t, DO_NEG) 844 845 /* We can do these 64 bits at a time */ 846 DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH) 847 DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS) 848 849 /* 850 * 1 operand immediates: Vda is destination and possibly also one source. 851 * All these insns work at 64-bit widths. 852 */ 853 #define DO_1OP_IMM(OP, FN) \ 854 void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm) \ 855 { \ 856 uint64_t *da = vda; \ 857 uint16_t mask = mve_element_mask(env); \ 858 unsigned e; \ 859 for (e = 0; e < 16 / 8; e++, mask >>= 8) { \ 860 mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask); \ 861 } \ 862 mve_advance_vpt(env); \ 863 } 864 865 #define DO_MOVI(N, I) (I) 866 #define DO_ANDI(N, I) ((N) & (I)) 867 #define DO_ORRI(N, I) ((N) | (I)) 868 869 DO_1OP_IMM(vmovi, DO_MOVI) 870 DO_1OP_IMM(vandi, DO_ANDI) 871 DO_1OP_IMM(vorri, DO_ORRI) 872 873 #define DO_2OP(OP, ESIZE, TYPE, FN) \ 874 void HELPER(glue(mve_, OP))(CPUARMState *env, \ 875 void *vd, void *vn, void *vm) \ 876 { \ 877 TYPE *d = vd, *n = vn, *m = vm; \ 878 uint16_t mask = mve_element_mask(env); \ 879 unsigned e; \ 880 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 881 mergemask(&d[H##ESIZE(e)], \ 882 FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask); \ 883 } \ 884 mve_advance_vpt(env); \ 885 } 886 887 /* provide unsigned 2-op helpers for all sizes */ 888 #define DO_2OP_U(OP, FN) \ 889 DO_2OP(OP##b, 1, uint8_t, FN) \ 890 DO_2OP(OP##h, 2, uint16_t, FN) \ 891 DO_2OP(OP##w, 4, uint32_t, FN) 892 893 /* provide signed 2-op helpers for all sizes */ 894 #define DO_2OP_S(OP, FN) \ 895 DO_2OP(OP##b, 1, int8_t, FN) \ 896 DO_2OP(OP##h, 2, int16_t, FN) \ 897 DO_2OP(OP##w, 4, int32_t, FN) 898 899 /* 900 * "Long" operations where two half-sized inputs (taken from either the 901 * top or the bottom of the input vector) produce a double-width result. 902 * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output. 903 */ 904 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \ 905 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \ 906 { \ 907 LTYPE *d = vd; \ 908 TYPE *n = vn, *m = vm; \ 909 uint16_t mask = mve_element_mask(env); \ 910 unsigned le; \ 911 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ 912 LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], \ 913 m[H##ESIZE(le * 2 + TOP)]); \ 914 mergemask(&d[H##LESIZE(le)], r, mask); \ 915 } \ 916 mve_advance_vpt(env); \ 917 } 918 919 #define DO_2OP_SAT(OP, ESIZE, TYPE, FN) \ 920 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \ 921 { \ 922 TYPE *d = vd, *n = vn, *m = vm; \ 923 uint16_t mask = mve_element_mask(env); \ 924 unsigned e; \ 925 bool qc = false; \ 926 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 927 bool sat = false; \ 928 TYPE r_ = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat); \ 929 mergemask(&d[H##ESIZE(e)], r_, mask); \ 930 qc |= sat & mask & 1; \ 931 } \ 932 if (qc) { \ 933 env->vfp.qc[0] = qc; \ 934 } \ 935 mve_advance_vpt(env); \ 936 } 937 938 /* provide unsigned 2-op helpers for all sizes */ 939 #define DO_2OP_SAT_U(OP, FN) \ 940 DO_2OP_SAT(OP##b, 1, uint8_t, FN) \ 941 DO_2OP_SAT(OP##h, 2, uint16_t, FN) \ 942 DO_2OP_SAT(OP##w, 4, uint32_t, FN) 943 944 /* provide signed 2-op helpers for all sizes */ 945 #define DO_2OP_SAT_S(OP, FN) \ 946 DO_2OP_SAT(OP##b, 1, int8_t, FN) \ 947 DO_2OP_SAT(OP##h, 2, int16_t, FN) \ 948 DO_2OP_SAT(OP##w, 4, int32_t, FN) 949 950 #define DO_AND(N, M) ((N) & (M)) 951 #define DO_BIC(N, M) ((N) & ~(M)) 952 #define DO_ORR(N, M) ((N) | (M)) 953 #define DO_ORN(N, M) ((N) | ~(M)) 954 #define DO_EOR(N, M) ((N) ^ (M)) 955 956 DO_2OP(vand, 8, uint64_t, DO_AND) 957 DO_2OP(vbic, 8, uint64_t, DO_BIC) 958 DO_2OP(vorr, 8, uint64_t, DO_ORR) 959 DO_2OP(vorn, 8, uint64_t, DO_ORN) 960 DO_2OP(veor, 8, uint64_t, DO_EOR) 961 962 #define DO_ADD(N, M) ((N) + (M)) 963 #define DO_SUB(N, M) ((N) - (M)) 964 #define DO_MUL(N, M) ((N) * (M)) 965 966 DO_2OP_U(vadd, DO_ADD) 967 DO_2OP_U(vsub, DO_SUB) 968 DO_2OP_U(vmul, DO_MUL) 969 970 DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL) 971 DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL) 972 DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL) 973 DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL) 974 DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL) 975 DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL) 976 977 DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL) 978 DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL) 979 DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL) 980 DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL) 981 DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL) 982 DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL) 983 984 /* 985 * Polynomial multiply. We can always do this generating 64 bits 986 * of the result at a time, so we don't need to use DO_2OP_L. 987 */ 988 DO_2OP(vmullpbh, 8, uint64_t, clmul_8x4_even) 989 DO_2OP(vmullpth, 8, uint64_t, clmul_8x4_odd) 990 DO_2OP(vmullpbw, 8, uint64_t, clmul_16x2_even) 991 DO_2OP(vmullptw, 8, uint64_t, clmul_16x2_odd) 992 993 /* 994 * Because the computation type is at least twice as large as required, 995 * these work for both signed and unsigned source types. 996 */ 997 static inline uint8_t do_mulh_b(int32_t n, int32_t m) 998 { 999 return (n * m) >> 8; 1000 } 1001 1002 static inline uint16_t do_mulh_h(int32_t n, int32_t m) 1003 { 1004 return (n * m) >> 16; 1005 } 1006 1007 static inline uint32_t do_mulh_w(int64_t n, int64_t m) 1008 { 1009 return (n * m) >> 32; 1010 } 1011 1012 static inline uint8_t do_rmulh_b(int32_t n, int32_t m) 1013 { 1014 return (n * m + (1U << 7)) >> 8; 1015 } 1016 1017 static inline uint16_t do_rmulh_h(int32_t n, int32_t m) 1018 { 1019 return (n * m + (1U << 15)) >> 16; 1020 } 1021 1022 static inline uint32_t do_rmulh_w(int64_t n, int64_t m) 1023 { 1024 return (n * m + (1U << 31)) >> 32; 1025 } 1026 1027 DO_2OP(vmulhsb, 1, int8_t, do_mulh_b) 1028 DO_2OP(vmulhsh, 2, int16_t, do_mulh_h) 1029 DO_2OP(vmulhsw, 4, int32_t, do_mulh_w) 1030 DO_2OP(vmulhub, 1, uint8_t, do_mulh_b) 1031 DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h) 1032 DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w) 1033 1034 DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b) 1035 DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h) 1036 DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w) 1037 DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b) 1038 DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h) 1039 DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w) 1040 1041 #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M)) 1042 #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N)) 1043 1044 DO_2OP_S(vmaxs, DO_MAX) 1045 DO_2OP_U(vmaxu, DO_MAX) 1046 DO_2OP_S(vmins, DO_MIN) 1047 DO_2OP_U(vminu, DO_MIN) 1048 1049 #define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N)) 1050 1051 DO_2OP_S(vabds, DO_ABD) 1052 DO_2OP_U(vabdu, DO_ABD) 1053 1054 static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m) 1055 { 1056 return ((uint64_t)n + m) >> 1; 1057 } 1058 1059 static inline int32_t do_vhadd_s(int32_t n, int32_t m) 1060 { 1061 return ((int64_t)n + m) >> 1; 1062 } 1063 1064 static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m) 1065 { 1066 return ((uint64_t)n - m) >> 1; 1067 } 1068 1069 static inline int32_t do_vhsub_s(int32_t n, int32_t m) 1070 { 1071 return ((int64_t)n - m) >> 1; 1072 } 1073 1074 DO_2OP_S(vhadds, do_vhadd_s) 1075 DO_2OP_U(vhaddu, do_vhadd_u) 1076 DO_2OP_S(vhsubs, do_vhsub_s) 1077 DO_2OP_U(vhsubu, do_vhsub_u) 1078 1079 #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL) 1080 #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL) 1081 #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL) 1082 #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL) 1083 1084 DO_2OP_S(vshls, DO_VSHLS) 1085 DO_2OP_U(vshlu, DO_VSHLU) 1086 DO_2OP_S(vrshls, DO_VRSHLS) 1087 DO_2OP_U(vrshlu, DO_VRSHLU) 1088 1089 #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1) 1090 #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1) 1091 1092 DO_2OP_S(vrhadds, DO_RHADD_S) 1093 DO_2OP_U(vrhaddu, DO_RHADD_U) 1094 1095 static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m, 1096 uint32_t inv, uint32_t carry_in, bool update_flags) 1097 { 1098 uint16_t mask = mve_element_mask(env); 1099 unsigned e; 1100 1101 /* If any additions trigger, we will update flags. */ 1102 if (mask & 0x1111) { 1103 update_flags = true; 1104 } 1105 1106 for (e = 0; e < 16 / 4; e++, mask >>= 4) { 1107 uint64_t r = carry_in; 1108 r += n[H4(e)]; 1109 r += m[H4(e)] ^ inv; 1110 if (mask & 1) { 1111 carry_in = r >> 32; 1112 } 1113 mergemask(&d[H4(e)], r, mask); 1114 } 1115 1116 if (update_flags) { 1117 /* Store C, clear NZV. */ 1118 env->vfp.fpsr &= ~FPSR_NZCV_MASK; 1119 env->vfp.fpsr |= carry_in * FPSR_C; 1120 } 1121 mve_advance_vpt(env); 1122 } 1123 1124 void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm) 1125 { 1126 bool carry_in = env->vfp.fpsr & FPSR_C; 1127 do_vadc(env, vd, vn, vm, 0, carry_in, false); 1128 } 1129 1130 void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm) 1131 { 1132 bool carry_in = env->vfp.fpsr & FPSR_C; 1133 do_vadc(env, vd, vn, vm, -1, carry_in, false); 1134 } 1135 1136 1137 void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm) 1138 { 1139 do_vadc(env, vd, vn, vm, 0, 0, true); 1140 } 1141 1142 void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm) 1143 { 1144 do_vadc(env, vd, vn, vm, -1, 1, true); 1145 } 1146 1147 #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1) \ 1148 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \ 1149 { \ 1150 TYPE *d = vd, *n = vn, *m = vm; \ 1151 uint16_t mask = mve_element_mask(env); \ 1152 unsigned e; \ 1153 TYPE r[16 / ESIZE]; \ 1154 /* Calculate all results first to avoid overwriting inputs */ \ 1155 for (e = 0; e < 16 / ESIZE; e++) { \ 1156 if (!(e & 1)) { \ 1157 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]); \ 1158 } else { \ 1159 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]); \ 1160 } \ 1161 } \ 1162 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 1163 mergemask(&d[H##ESIZE(e)], r[e], mask); \ 1164 } \ 1165 mve_advance_vpt(env); \ 1166 } 1167 1168 #define DO_VCADD_ALL(OP, FN0, FN1) \ 1169 DO_VCADD(OP##b, 1, int8_t, FN0, FN1) \ 1170 DO_VCADD(OP##h, 2, int16_t, FN0, FN1) \ 1171 DO_VCADD(OP##w, 4, int32_t, FN0, FN1) 1172 1173 DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD) 1174 DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB) 1175 DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s) 1176 DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s) 1177 1178 static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s) 1179 { 1180 if (val > max) { 1181 *s = true; 1182 return max; 1183 } else if (val < min) { 1184 *s = true; 1185 return min; 1186 } 1187 return val; 1188 } 1189 1190 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s) 1191 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s) 1192 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s) 1193 1194 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s) 1195 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s) 1196 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s) 1197 1198 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s) 1199 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s) 1200 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s) 1201 1202 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s) 1203 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s) 1204 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s) 1205 1206 /* 1207 * For QDMULH and QRDMULH we simplify "double and shift by esize" into 1208 * "shift by esize-1", adjusting the QRDMULH rounding constant to match. 1209 */ 1210 #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \ 1211 INT8_MIN, INT8_MAX, s) 1212 #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \ 1213 INT16_MIN, INT16_MAX, s) 1214 #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \ 1215 INT32_MIN, INT32_MAX, s) 1216 1217 #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \ 1218 INT8_MIN, INT8_MAX, s) 1219 #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \ 1220 INT16_MIN, INT16_MAX, s) 1221 #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \ 1222 INT32_MIN, INT32_MAX, s) 1223 1224 DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B) 1225 DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H) 1226 DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W) 1227 1228 DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B) 1229 DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H) 1230 DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W) 1231 1232 DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B) 1233 DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H) 1234 DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W) 1235 DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B) 1236 DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H) 1237 DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W) 1238 1239 DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B) 1240 DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H) 1241 DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W) 1242 DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B) 1243 DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H) 1244 DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W) 1245 1246 /* 1247 * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs() 1248 * and friends wanting a uint32_t* sat and our needing a bool*. 1249 */ 1250 #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp) \ 1251 ({ \ 1252 uint32_t su32 = 0; \ 1253 typeof(N) qrshl_ret = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32); \ 1254 if (su32) { \ 1255 *satp = true; \ 1256 } \ 1257 qrshl_ret; \ 1258 }) 1259 1260 #define DO_SQSHL_OP(N, M, satp) \ 1261 WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp) 1262 #define DO_UQSHL_OP(N, M, satp) \ 1263 WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp) 1264 #define DO_SQRSHL_OP(N, M, satp) \ 1265 WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp) 1266 #define DO_UQRSHL_OP(N, M, satp) \ 1267 WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp) 1268 #define DO_SUQSHL_OP(N, M, satp) \ 1269 WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp) 1270 1271 DO_2OP_SAT_S(vqshls, DO_SQSHL_OP) 1272 DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP) 1273 DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP) 1274 DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP) 1275 1276 /* 1277 * Multiply add dual returning high half 1278 * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of 1279 * whether to add the rounding constant, and the pointer to the 1280 * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant", 1281 * saturate to twice the input size and return the high half; or 1282 * (A * B - C * D) etc for VQDMLSDH. 1283 */ 1284 #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN) \ 1285 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ 1286 void *vm) \ 1287 { \ 1288 TYPE *d = vd, *n = vn, *m = vm; \ 1289 uint16_t mask = mve_element_mask(env); \ 1290 unsigned e; \ 1291 bool qc = false; \ 1292 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 1293 bool sat = false; \ 1294 if ((e & 1) == XCHG) { \ 1295 TYPE vqdmladh_ret = FN(n[H##ESIZE(e)], \ 1296 m[H##ESIZE(e - XCHG)], \ 1297 n[H##ESIZE(e + (1 - 2 * XCHG))], \ 1298 m[H##ESIZE(e + (1 - XCHG))], \ 1299 ROUND, &sat); \ 1300 mergemask(&d[H##ESIZE(e)], vqdmladh_ret, mask); \ 1301 qc |= sat & mask & 1; \ 1302 } \ 1303 } \ 1304 if (qc) { \ 1305 env->vfp.qc[0] = qc; \ 1306 } \ 1307 mve_advance_vpt(env); \ 1308 } 1309 1310 static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d, 1311 int round, bool *sat) 1312 { 1313 int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7); 1314 return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8; 1315 } 1316 1317 static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d, 1318 int round, bool *sat) 1319 { 1320 int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15); 1321 return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16; 1322 } 1323 1324 static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d, 1325 int round, bool *sat) 1326 { 1327 int64_t m1 = (int64_t)a * b; 1328 int64_t m2 = (int64_t)c * d; 1329 int64_t r; 1330 /* 1331 * Architecturally we should do the entire add, double, round 1332 * and then check for saturation. We do three saturating adds, 1333 * but we need to be careful about the order. If the first 1334 * m1 + m2 saturates then it's impossible for the *2+rc to 1335 * bring it back into the non-saturated range. However, if 1336 * m1 + m2 is negative then it's possible that doing the doubling 1337 * would take the intermediate result below INT64_MAX and the 1338 * addition of the rounding constant then brings it back in range. 1339 * So we add half the rounding constant before doubling rather 1340 * than adding the rounding constant after the doubling. 1341 */ 1342 if (sadd64_overflow(m1, m2, &r) || 1343 sadd64_overflow(r, (round << 30), &r) || 1344 sadd64_overflow(r, r, &r)) { 1345 *sat = true; 1346 return r < 0 ? INT32_MAX : INT32_MIN; 1347 } 1348 return r >> 32; 1349 } 1350 1351 static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d, 1352 int round, bool *sat) 1353 { 1354 int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7); 1355 return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8; 1356 } 1357 1358 static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d, 1359 int round, bool *sat) 1360 { 1361 int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15); 1362 return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16; 1363 } 1364 1365 static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d, 1366 int round, bool *sat) 1367 { 1368 int64_t m1 = (int64_t)a * b; 1369 int64_t m2 = (int64_t)c * d; 1370 int64_t r; 1371 /* The same ordering issue as in do_vqdmladh_w applies here too */ 1372 if (ssub64_overflow(m1, m2, &r) || 1373 sadd64_overflow(r, (round << 30), &r) || 1374 sadd64_overflow(r, r, &r)) { 1375 *sat = true; 1376 return r < 0 ? INT32_MAX : INT32_MIN; 1377 } 1378 return r >> 32; 1379 } 1380 1381 DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b) 1382 DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h) 1383 DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w) 1384 DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b) 1385 DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h) 1386 DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w) 1387 1388 DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b) 1389 DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h) 1390 DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w) 1391 DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b) 1392 DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h) 1393 DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w) 1394 1395 DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b) 1396 DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h) 1397 DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w) 1398 DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b) 1399 DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h) 1400 DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w) 1401 1402 DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b) 1403 DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h) 1404 DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w) 1405 DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b) 1406 DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h) 1407 DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w) 1408 1409 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN) \ 1410 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ 1411 uint32_t rm) \ 1412 { \ 1413 TYPE *d = vd, *n = vn; \ 1414 TYPE m = rm; \ 1415 uint16_t mask = mve_element_mask(env); \ 1416 unsigned e; \ 1417 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 1418 mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask); \ 1419 } \ 1420 mve_advance_vpt(env); \ 1421 } 1422 1423 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN) \ 1424 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ 1425 uint32_t rm) \ 1426 { \ 1427 TYPE *d = vd, *n = vn; \ 1428 TYPE m = rm; \ 1429 uint16_t mask = mve_element_mask(env); \ 1430 unsigned e; \ 1431 bool qc = false; \ 1432 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 1433 bool sat = false; \ 1434 mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat), \ 1435 mask); \ 1436 qc |= sat & mask & 1; \ 1437 } \ 1438 if (qc) { \ 1439 env->vfp.qc[0] = qc; \ 1440 } \ 1441 mve_advance_vpt(env); \ 1442 } 1443 1444 /* "accumulating" version where FN takes d as well as n and m */ 1445 #define DO_2OP_ACC_SCALAR(OP, ESIZE, TYPE, FN) \ 1446 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ 1447 uint32_t rm) \ 1448 { \ 1449 TYPE *d = vd, *n = vn; \ 1450 TYPE m = rm; \ 1451 uint16_t mask = mve_element_mask(env); \ 1452 unsigned e; \ 1453 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 1454 mergemask(&d[H##ESIZE(e)], \ 1455 FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m), mask); \ 1456 } \ 1457 mve_advance_vpt(env); \ 1458 } 1459 1460 #define DO_2OP_SAT_ACC_SCALAR(OP, ESIZE, TYPE, FN) \ 1461 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ 1462 uint32_t rm) \ 1463 { \ 1464 TYPE *d = vd, *n = vn; \ 1465 TYPE m = rm; \ 1466 uint16_t mask = mve_element_mask(env); \ 1467 unsigned e; \ 1468 bool qc = false; \ 1469 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 1470 bool sat = false; \ 1471 mergemask(&d[H##ESIZE(e)], \ 1472 FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m, &sat), \ 1473 mask); \ 1474 qc |= sat & mask & 1; \ 1475 } \ 1476 if (qc) { \ 1477 env->vfp.qc[0] = qc; \ 1478 } \ 1479 mve_advance_vpt(env); \ 1480 } 1481 1482 /* provide unsigned 2-op scalar helpers for all sizes */ 1483 #define DO_2OP_SCALAR_U(OP, FN) \ 1484 DO_2OP_SCALAR(OP##b, 1, uint8_t, FN) \ 1485 DO_2OP_SCALAR(OP##h, 2, uint16_t, FN) \ 1486 DO_2OP_SCALAR(OP##w, 4, uint32_t, FN) 1487 #define DO_2OP_SCALAR_S(OP, FN) \ 1488 DO_2OP_SCALAR(OP##b, 1, int8_t, FN) \ 1489 DO_2OP_SCALAR(OP##h, 2, int16_t, FN) \ 1490 DO_2OP_SCALAR(OP##w, 4, int32_t, FN) 1491 1492 #define DO_2OP_ACC_SCALAR_U(OP, FN) \ 1493 DO_2OP_ACC_SCALAR(OP##b, 1, uint8_t, FN) \ 1494 DO_2OP_ACC_SCALAR(OP##h, 2, uint16_t, FN) \ 1495 DO_2OP_ACC_SCALAR(OP##w, 4, uint32_t, FN) 1496 1497 DO_2OP_SCALAR_U(vadd_scalar, DO_ADD) 1498 DO_2OP_SCALAR_U(vsub_scalar, DO_SUB) 1499 DO_2OP_SCALAR_U(vmul_scalar, DO_MUL) 1500 DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s) 1501 DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u) 1502 DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s) 1503 DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u) 1504 1505 DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B) 1506 DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H) 1507 DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W) 1508 DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B) 1509 DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H) 1510 DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W) 1511 1512 DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B) 1513 DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H) 1514 DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W) 1515 DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B) 1516 DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H) 1517 DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W) 1518 1519 DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B) 1520 DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H) 1521 DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W) 1522 DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B) 1523 DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H) 1524 DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W) 1525 1526 static int8_t do_vqdmlah_b(int8_t a, int8_t b, int8_t c, int round, bool *sat) 1527 { 1528 int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 8) + (round << 7); 1529 return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8; 1530 } 1531 1532 static int16_t do_vqdmlah_h(int16_t a, int16_t b, int16_t c, 1533 int round, bool *sat) 1534 { 1535 int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 16) + (round << 15); 1536 return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16; 1537 } 1538 1539 static int32_t do_vqdmlah_w(int32_t a, int32_t b, int32_t c, 1540 int round, bool *sat) 1541 { 1542 /* 1543 * Architecturally we should do the entire add, double, round 1544 * and then check for saturation. We do three saturating adds, 1545 * but we need to be careful about the order. If the first 1546 * m1 + m2 saturates then it's impossible for the *2+rc to 1547 * bring it back into the non-saturated range. However, if 1548 * m1 + m2 is negative then it's possible that doing the doubling 1549 * would take the intermediate result below INT64_MAX and the 1550 * addition of the rounding constant then brings it back in range. 1551 * So we add half the rounding constant and half the "c << esize" 1552 * before doubling rather than adding the rounding constant after 1553 * the doubling. 1554 */ 1555 int64_t m1 = (int64_t)a * b; 1556 int64_t m2 = (int64_t)c << 31; 1557 int64_t r; 1558 if (sadd64_overflow(m1, m2, &r) || 1559 sadd64_overflow(r, (round << 30), &r) || 1560 sadd64_overflow(r, r, &r)) { 1561 *sat = true; 1562 return r < 0 ? INT32_MAX : INT32_MIN; 1563 } 1564 return r >> 32; 1565 } 1566 1567 /* 1568 * The *MLAH insns are vector * scalar + vector; 1569 * the *MLASH insns are vector * vector + scalar 1570 */ 1571 #define DO_VQDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 0, S) 1572 #define DO_VQDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 0, S) 1573 #define DO_VQDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 0, S) 1574 #define DO_VQRDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 1, S) 1575 #define DO_VQRDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 1, S) 1576 #define DO_VQRDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 1, S) 1577 1578 #define DO_VQDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 0, S) 1579 #define DO_VQDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 0, S) 1580 #define DO_VQDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 0, S) 1581 #define DO_VQRDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 1, S) 1582 #define DO_VQRDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 1, S) 1583 #define DO_VQRDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 1, S) 1584 1585 DO_2OP_SAT_ACC_SCALAR(vqdmlahb, 1, int8_t, DO_VQDMLAH_B) 1586 DO_2OP_SAT_ACC_SCALAR(vqdmlahh, 2, int16_t, DO_VQDMLAH_H) 1587 DO_2OP_SAT_ACC_SCALAR(vqdmlahw, 4, int32_t, DO_VQDMLAH_W) 1588 DO_2OP_SAT_ACC_SCALAR(vqrdmlahb, 1, int8_t, DO_VQRDMLAH_B) 1589 DO_2OP_SAT_ACC_SCALAR(vqrdmlahh, 2, int16_t, DO_VQRDMLAH_H) 1590 DO_2OP_SAT_ACC_SCALAR(vqrdmlahw, 4, int32_t, DO_VQRDMLAH_W) 1591 1592 DO_2OP_SAT_ACC_SCALAR(vqdmlashb, 1, int8_t, DO_VQDMLASH_B) 1593 DO_2OP_SAT_ACC_SCALAR(vqdmlashh, 2, int16_t, DO_VQDMLASH_H) 1594 DO_2OP_SAT_ACC_SCALAR(vqdmlashw, 4, int32_t, DO_VQDMLASH_W) 1595 DO_2OP_SAT_ACC_SCALAR(vqrdmlashb, 1, int8_t, DO_VQRDMLASH_B) 1596 DO_2OP_SAT_ACC_SCALAR(vqrdmlashh, 2, int16_t, DO_VQRDMLASH_H) 1597 DO_2OP_SAT_ACC_SCALAR(vqrdmlashw, 4, int32_t, DO_VQRDMLASH_W) 1598 1599 /* Vector by scalar plus vector */ 1600 #define DO_VMLA(D, N, M) ((N) * (M) + (D)) 1601 1602 DO_2OP_ACC_SCALAR_U(vmla, DO_VMLA) 1603 1604 /* Vector by vector plus scalar */ 1605 #define DO_VMLAS(D, N, M) ((N) * (D) + (M)) 1606 1607 DO_2OP_ACC_SCALAR_U(vmlas, DO_VMLAS) 1608 1609 /* 1610 * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the 1611 * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type. 1612 * SATMASK specifies which bits of the predicate mask matter for determining 1613 * whether to propagate a saturation indication into FPSCR.QC -- for 1614 * the 16x16->32 case we must check only the bit corresponding to the T or B 1615 * half that we used, but for the 32x32->64 case we propagate if the mask 1616 * bit is set for either half. 1617 */ 1618 #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \ 1619 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ 1620 uint32_t rm) \ 1621 { \ 1622 LTYPE *d = vd; \ 1623 TYPE *n = vn; \ 1624 TYPE m = rm; \ 1625 uint16_t mask = mve_element_mask(env); \ 1626 unsigned le; \ 1627 bool qc = false; \ 1628 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ 1629 bool sat = false; \ 1630 LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat); \ 1631 mergemask(&d[H##LESIZE(le)], r, mask); \ 1632 qc |= sat && (mask & SATMASK); \ 1633 } \ 1634 if (qc) { \ 1635 env->vfp.qc[0] = qc; \ 1636 } \ 1637 mve_advance_vpt(env); \ 1638 } 1639 1640 static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat) 1641 { 1642 int64_t r = ((int64_t)n * m) * 2; 1643 return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat); 1644 } 1645 1646 static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat) 1647 { 1648 /* The multiply can't overflow, but the doubling might */ 1649 int64_t r = (int64_t)n * m; 1650 if (r > INT64_MAX / 2) { 1651 *sat = true; 1652 return INT64_MAX; 1653 } else if (r < INT64_MIN / 2) { 1654 *sat = true; 1655 return INT64_MIN; 1656 } else { 1657 return r * 2; 1658 } 1659 } 1660 1661 #define SATMASK16B 1 1662 #define SATMASK16T (1 << 2) 1663 #define SATMASK32 ((1 << 4) | 1) 1664 1665 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \ 1666 do_qdmullh, SATMASK16B) 1667 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \ 1668 do_qdmullw, SATMASK32) 1669 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \ 1670 do_qdmullh, SATMASK16T) 1671 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \ 1672 do_qdmullw, SATMASK32) 1673 1674 /* 1675 * Long saturating ops 1676 */ 1677 #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \ 1678 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ 1679 void *vm) \ 1680 { \ 1681 LTYPE *d = vd; \ 1682 TYPE *n = vn, *m = vm; \ 1683 uint16_t mask = mve_element_mask(env); \ 1684 unsigned le; \ 1685 bool qc = false; \ 1686 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ 1687 bool sat = false; \ 1688 LTYPE op1 = n[H##ESIZE(le * 2 + TOP)]; \ 1689 LTYPE op2 = m[H##ESIZE(le * 2 + TOP)]; \ 1690 mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask); \ 1691 qc |= sat && (mask & SATMASK); \ 1692 } \ 1693 if (qc) { \ 1694 env->vfp.qc[0] = qc; \ 1695 } \ 1696 mve_advance_vpt(env); \ 1697 } 1698 1699 DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B) 1700 DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32) 1701 DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T) 1702 DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32) 1703 1704 static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m) 1705 { 1706 m &= 0xff; 1707 if (m == 0) { 1708 return 0; 1709 } 1710 n = revbit8(n); 1711 if (m < 8) { 1712 n >>= 8 - m; 1713 } 1714 return n; 1715 } 1716 1717 static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m) 1718 { 1719 m &= 0xff; 1720 if (m == 0) { 1721 return 0; 1722 } 1723 n = revbit16(n); 1724 if (m < 16) { 1725 n >>= 16 - m; 1726 } 1727 return n; 1728 } 1729 1730 static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m) 1731 { 1732 m &= 0xff; 1733 if (m == 0) { 1734 return 0; 1735 } 1736 n = revbit32(n); 1737 if (m < 32) { 1738 n >>= 32 - m; 1739 } 1740 return n; 1741 } 1742 1743 DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb) 1744 DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh) 1745 DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw) 1746 1747 /* 1748 * Multiply add long dual accumulate ops. 1749 */ 1750 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \ 1751 uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \ 1752 void *vm, uint64_t a) \ 1753 { \ 1754 uint16_t mask = mve_element_mask(env); \ 1755 unsigned e; \ 1756 TYPE *n = vn, *m = vm; \ 1757 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 1758 if (mask & 1) { \ 1759 if (e & 1) { \ 1760 a ODDACC \ 1761 (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \ 1762 } else { \ 1763 a EVENACC \ 1764 (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \ 1765 } \ 1766 } \ 1767 } \ 1768 mve_advance_vpt(env); \ 1769 return a; \ 1770 } 1771 1772 DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=) 1773 DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=) 1774 DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=) 1775 DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=) 1776 1777 DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=) 1778 DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=) 1779 1780 DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=) 1781 DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=) 1782 DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=) 1783 DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=) 1784 1785 /* 1786 * Multiply add dual accumulate ops 1787 */ 1788 #define DO_DAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \ 1789 uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \ 1790 void *vm, uint32_t a) \ 1791 { \ 1792 uint16_t mask = mve_element_mask(env); \ 1793 unsigned e; \ 1794 TYPE *n = vn, *m = vm; \ 1795 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 1796 if (mask & 1) { \ 1797 if (e & 1) { \ 1798 a ODDACC \ 1799 n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \ 1800 } else { \ 1801 a EVENACC \ 1802 n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \ 1803 } \ 1804 } \ 1805 } \ 1806 mve_advance_vpt(env); \ 1807 return a; \ 1808 } 1809 1810 #define DO_DAV_S(INSN, XCHG, EVENACC, ODDACC) \ 1811 DO_DAV(INSN##b, 1, int8_t, XCHG, EVENACC, ODDACC) \ 1812 DO_DAV(INSN##h, 2, int16_t, XCHG, EVENACC, ODDACC) \ 1813 DO_DAV(INSN##w, 4, int32_t, XCHG, EVENACC, ODDACC) 1814 1815 #define DO_DAV_U(INSN, XCHG, EVENACC, ODDACC) \ 1816 DO_DAV(INSN##b, 1, uint8_t, XCHG, EVENACC, ODDACC) \ 1817 DO_DAV(INSN##h, 2, uint16_t, XCHG, EVENACC, ODDACC) \ 1818 DO_DAV(INSN##w, 4, uint32_t, XCHG, EVENACC, ODDACC) 1819 1820 DO_DAV_S(vmladavs, false, +=, +=) 1821 DO_DAV_U(vmladavu, false, +=, +=) 1822 DO_DAV_S(vmlsdav, false, +=, -=) 1823 DO_DAV_S(vmladavsx, true, +=, +=) 1824 DO_DAV_S(vmlsdavx, true, +=, -=) 1825 1826 /* 1827 * Rounding multiply add long dual accumulate high. In the pseudocode 1828 * this is implemented with a 72-bit internal accumulator value of which 1829 * the top 64 bits are returned. We optimize this to avoid having to 1830 * use 128-bit arithmetic -- we can do this because the 74-bit accumulator 1831 * is squashed back into 64-bits after each beat. 1832 */ 1833 #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB) \ 1834 uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \ 1835 void *vm, uint64_t a) \ 1836 { \ 1837 uint16_t mask = mve_element_mask(env); \ 1838 unsigned e; \ 1839 TYPE *n = vn, *m = vm; \ 1840 for (e = 0; e < 16 / 4; e++, mask >>= 4) { \ 1841 if (mask & 1) { \ 1842 LTYPE mul; \ 1843 if (e & 1) { \ 1844 mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)]; \ 1845 if (SUB) { \ 1846 mul = -mul; \ 1847 } \ 1848 } else { \ 1849 mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)]; \ 1850 } \ 1851 mul = (mul >> 8) + ((mul >> 7) & 1); \ 1852 a += mul; \ 1853 } \ 1854 } \ 1855 mve_advance_vpt(env); \ 1856 return a; \ 1857 } 1858 1859 DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false) 1860 DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false) 1861 1862 DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false) 1863 1864 DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true) 1865 DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true) 1866 1867 /* Vector add across vector */ 1868 #define DO_VADDV(OP, ESIZE, TYPE) \ 1869 uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \ 1870 uint32_t ra) \ 1871 { \ 1872 uint16_t mask = mve_element_mask(env); \ 1873 unsigned e; \ 1874 TYPE *m = vm; \ 1875 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 1876 if (mask & 1) { \ 1877 ra += m[H##ESIZE(e)]; \ 1878 } \ 1879 } \ 1880 mve_advance_vpt(env); \ 1881 return ra; \ 1882 } \ 1883 1884 DO_VADDV(vaddvsb, 1, int8_t) 1885 DO_VADDV(vaddvsh, 2, int16_t) 1886 DO_VADDV(vaddvsw, 4, int32_t) 1887 DO_VADDV(vaddvub, 1, uint8_t) 1888 DO_VADDV(vaddvuh, 2, uint16_t) 1889 DO_VADDV(vaddvuw, 4, uint32_t) 1890 1891 /* 1892 * Vector max/min across vector. Unlike VADDV, we must 1893 * read ra as the element size, not its full width. 1894 * We work with int64_t internally for simplicity. 1895 */ 1896 #define DO_VMAXMINV(OP, ESIZE, TYPE, RATYPE, FN) \ 1897 uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \ 1898 uint32_t ra_in) \ 1899 { \ 1900 uint16_t mask = mve_element_mask(env); \ 1901 unsigned e; \ 1902 TYPE *m = vm; \ 1903 int64_t ra = (RATYPE)ra_in; \ 1904 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 1905 if (mask & 1) { \ 1906 ra = FN(ra, m[H##ESIZE(e)]); \ 1907 } \ 1908 } \ 1909 mve_advance_vpt(env); \ 1910 return ra; \ 1911 } \ 1912 1913 #define DO_VMAXMINV_U(INSN, FN) \ 1914 DO_VMAXMINV(INSN##b, 1, uint8_t, uint8_t, FN) \ 1915 DO_VMAXMINV(INSN##h, 2, uint16_t, uint16_t, FN) \ 1916 DO_VMAXMINV(INSN##w, 4, uint32_t, uint32_t, FN) 1917 #define DO_VMAXMINV_S(INSN, FN) \ 1918 DO_VMAXMINV(INSN##b, 1, int8_t, int8_t, FN) \ 1919 DO_VMAXMINV(INSN##h, 2, int16_t, int16_t, FN) \ 1920 DO_VMAXMINV(INSN##w, 4, int32_t, int32_t, FN) 1921 1922 /* 1923 * Helpers for max and min of absolute values across vector: 1924 * note that we only take the absolute value of 'm', not 'n' 1925 */ 1926 static int64_t do_maxa(int64_t n, int64_t m) 1927 { 1928 if (m < 0) { 1929 m = -m; 1930 } 1931 return MAX(n, m); 1932 } 1933 1934 static int64_t do_mina(int64_t n, int64_t m) 1935 { 1936 if (m < 0) { 1937 m = -m; 1938 } 1939 return MIN(n, m); 1940 } 1941 1942 DO_VMAXMINV_S(vmaxvs, DO_MAX) 1943 DO_VMAXMINV_U(vmaxvu, DO_MAX) 1944 DO_VMAXMINV_S(vminvs, DO_MIN) 1945 DO_VMAXMINV_U(vminvu, DO_MIN) 1946 /* 1947 * VMAXAV, VMINAV treat the general purpose input as unsigned 1948 * and the vector elements as signed. 1949 */ 1950 DO_VMAXMINV(vmaxavb, 1, int8_t, uint8_t, do_maxa) 1951 DO_VMAXMINV(vmaxavh, 2, int16_t, uint16_t, do_maxa) 1952 DO_VMAXMINV(vmaxavw, 4, int32_t, uint32_t, do_maxa) 1953 DO_VMAXMINV(vminavb, 1, int8_t, uint8_t, do_mina) 1954 DO_VMAXMINV(vminavh, 2, int16_t, uint16_t, do_mina) 1955 DO_VMAXMINV(vminavw, 4, int32_t, uint32_t, do_mina) 1956 1957 #define DO_VABAV(OP, ESIZE, TYPE) \ 1958 uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \ 1959 void *vm, uint32_t ra) \ 1960 { \ 1961 uint16_t mask = mve_element_mask(env); \ 1962 unsigned e; \ 1963 TYPE *m = vm, *n = vn; \ 1964 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 1965 if (mask & 1) { \ 1966 int64_t n0 = n[H##ESIZE(e)]; \ 1967 int64_t m0 = m[H##ESIZE(e)]; \ 1968 uint32_t r = n0 >= m0 ? (n0 - m0) : (m0 - n0); \ 1969 ra += r; \ 1970 } \ 1971 } \ 1972 mve_advance_vpt(env); \ 1973 return ra; \ 1974 } 1975 1976 DO_VABAV(vabavsb, 1, int8_t) 1977 DO_VABAV(vabavsh, 2, int16_t) 1978 DO_VABAV(vabavsw, 4, int32_t) 1979 DO_VABAV(vabavub, 1, uint8_t) 1980 DO_VABAV(vabavuh, 2, uint16_t) 1981 DO_VABAV(vabavuw, 4, uint32_t) 1982 1983 #define DO_VADDLV(OP, TYPE, LTYPE) \ 1984 uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \ 1985 uint64_t ra) \ 1986 { \ 1987 uint16_t mask = mve_element_mask(env); \ 1988 unsigned e; \ 1989 TYPE *m = vm; \ 1990 for (e = 0; e < 16 / 4; e++, mask >>= 4) { \ 1991 if (mask & 1) { \ 1992 ra += (LTYPE)m[H4(e)]; \ 1993 } \ 1994 } \ 1995 mve_advance_vpt(env); \ 1996 return ra; \ 1997 } \ 1998 1999 DO_VADDLV(vaddlv_s, int32_t, int64_t) 2000 DO_VADDLV(vaddlv_u, uint32_t, uint64_t) 2001 2002 /* Shifts by immediate */ 2003 #define DO_2SHIFT(OP, ESIZE, TYPE, FN) \ 2004 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ 2005 void *vm, uint32_t shift) \ 2006 { \ 2007 TYPE *d = vd, *m = vm; \ 2008 uint16_t mask = mve_element_mask(env); \ 2009 unsigned e; \ 2010 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 2011 mergemask(&d[H##ESIZE(e)], \ 2012 FN(m[H##ESIZE(e)], shift), mask); \ 2013 } \ 2014 mve_advance_vpt(env); \ 2015 } 2016 2017 #define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN) \ 2018 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ 2019 void *vm, uint32_t shift) \ 2020 { \ 2021 TYPE *d = vd, *m = vm; \ 2022 uint16_t mask = mve_element_mask(env); \ 2023 unsigned e; \ 2024 bool qc = false; \ 2025 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 2026 bool sat = false; \ 2027 mergemask(&d[H##ESIZE(e)], \ 2028 FN(m[H##ESIZE(e)], shift, &sat), mask); \ 2029 qc |= sat & mask & 1; \ 2030 } \ 2031 if (qc) { \ 2032 env->vfp.qc[0] = qc; \ 2033 } \ 2034 mve_advance_vpt(env); \ 2035 } 2036 2037 /* provide unsigned 2-op shift helpers for all sizes */ 2038 #define DO_2SHIFT_U(OP, FN) \ 2039 DO_2SHIFT(OP##b, 1, uint8_t, FN) \ 2040 DO_2SHIFT(OP##h, 2, uint16_t, FN) \ 2041 DO_2SHIFT(OP##w, 4, uint32_t, FN) 2042 #define DO_2SHIFT_S(OP, FN) \ 2043 DO_2SHIFT(OP##b, 1, int8_t, FN) \ 2044 DO_2SHIFT(OP##h, 2, int16_t, FN) \ 2045 DO_2SHIFT(OP##w, 4, int32_t, FN) 2046 2047 #define DO_2SHIFT_SAT_U(OP, FN) \ 2048 DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN) \ 2049 DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN) \ 2050 DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN) 2051 #define DO_2SHIFT_SAT_S(OP, FN) \ 2052 DO_2SHIFT_SAT(OP##b, 1, int8_t, FN) \ 2053 DO_2SHIFT_SAT(OP##h, 2, int16_t, FN) \ 2054 DO_2SHIFT_SAT(OP##w, 4, int32_t, FN) 2055 2056 DO_2SHIFT_U(vshli_u, DO_VSHLU) 2057 DO_2SHIFT_S(vshli_s, DO_VSHLS) 2058 DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP) 2059 DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP) 2060 DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP) 2061 DO_2SHIFT_U(vrshli_u, DO_VRSHLU) 2062 DO_2SHIFT_S(vrshli_s, DO_VRSHLS) 2063 DO_2SHIFT_SAT_U(vqrshli_u, DO_UQRSHL_OP) 2064 DO_2SHIFT_SAT_S(vqrshli_s, DO_SQRSHL_OP) 2065 2066 /* Shift-and-insert; we always work with 64 bits at a time */ 2067 #define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN) \ 2068 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ 2069 void *vm, uint32_t shift) \ 2070 { \ 2071 uint64_t *d = vd, *m = vm; \ 2072 uint16_t mask; \ 2073 uint64_t shiftmask; \ 2074 unsigned e; \ 2075 if (shift == ESIZE * 8) { \ 2076 /* \ 2077 * Only VSRI can shift by <dt>; it should mean "don't \ 2078 * update the destination". The generic logic can't handle \ 2079 * this because it would try to shift by an out-of-range \ 2080 * amount, so special case it here. \ 2081 */ \ 2082 goto done; \ 2083 } \ 2084 assert(shift < ESIZE * 8); \ 2085 mask = mve_element_mask(env); \ 2086 /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */ \ 2087 shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift)); \ 2088 for (e = 0; e < 16 / 8; e++, mask >>= 8) { \ 2089 uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) | \ 2090 (d[H8(e)] & ~shiftmask); \ 2091 mergemask(&d[H8(e)], r, mask); \ 2092 } \ 2093 done: \ 2094 mve_advance_vpt(env); \ 2095 } 2096 2097 #define DO_SHL(N, SHIFT) ((N) << (SHIFT)) 2098 #define DO_SHR(N, SHIFT) ((N) >> (SHIFT)) 2099 #define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT)) 2100 #define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT)) 2101 2102 DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK) 2103 DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK) 2104 DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK) 2105 DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK) 2106 DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK) 2107 DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK) 2108 2109 /* 2110 * Long shifts taking half-sized inputs from top or bottom of the input 2111 * vector and producing a double-width result. ESIZE, TYPE are for 2112 * the input, and LESIZE, LTYPE for the output. 2113 * Unlike the normal shift helpers, we do not handle negative shift counts, 2114 * because the long shift is strictly left-only. 2115 */ 2116 #define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE) \ 2117 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ 2118 void *vm, uint32_t shift) \ 2119 { \ 2120 LTYPE *d = vd; \ 2121 TYPE *m = vm; \ 2122 uint16_t mask = mve_element_mask(env); \ 2123 unsigned le; \ 2124 assert(shift <= 16); \ 2125 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ 2126 LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift; \ 2127 mergemask(&d[H##LESIZE(le)], r, mask); \ 2128 } \ 2129 mve_advance_vpt(env); \ 2130 } 2131 2132 #define DO_VSHLL_ALL(OP, TOP) \ 2133 DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t) \ 2134 DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t) \ 2135 DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t) \ 2136 DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t) \ 2137 2138 DO_VSHLL_ALL(vshllb, false) 2139 DO_VSHLL_ALL(vshllt, true) 2140 2141 /* 2142 * Narrowing right shifts, taking a double sized input, shifting it 2143 * and putting the result in either the top or bottom half of the output. 2144 * ESIZE, TYPE are the output, and LESIZE, LTYPE the input. 2145 */ 2146 #define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \ 2147 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ 2148 void *vm, uint32_t shift) \ 2149 { \ 2150 LTYPE *m = vm; \ 2151 TYPE *d = vd; \ 2152 uint16_t mask = mve_element_mask(env); \ 2153 unsigned le; \ 2154 mask >>= ESIZE * TOP; \ 2155 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ 2156 TYPE r = FN(m[H##LESIZE(le)], shift); \ 2157 mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask); \ 2158 } \ 2159 mve_advance_vpt(env); \ 2160 } 2161 2162 #define DO_VSHRN_ALL(OP, FN) \ 2163 DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN) \ 2164 DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN) \ 2165 DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN) \ 2166 DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN) 2167 2168 static inline uint64_t do_urshr(uint64_t x, unsigned sh) 2169 { 2170 if (likely(sh < 64)) { 2171 return (x >> sh) + ((x >> (sh - 1)) & 1); 2172 } else if (sh == 64) { 2173 return x >> 63; 2174 } else { 2175 return 0; 2176 } 2177 } 2178 2179 static inline int64_t do_srshr(int64_t x, unsigned sh) 2180 { 2181 if (likely(sh < 64)) { 2182 return (x >> sh) + ((x >> (sh - 1)) & 1); 2183 } else { 2184 /* Rounding the sign bit always produces 0. */ 2185 return 0; 2186 } 2187 } 2188 2189 DO_VSHRN_ALL(vshrn, DO_SHR) 2190 DO_VSHRN_ALL(vrshrn, do_urshr) 2191 2192 static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max, 2193 bool *satp) 2194 { 2195 if (val > max) { 2196 *satp = true; 2197 return max; 2198 } else if (val < min) { 2199 *satp = true; 2200 return min; 2201 } else { 2202 return val; 2203 } 2204 } 2205 2206 /* Saturating narrowing right shifts */ 2207 #define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \ 2208 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ 2209 void *vm, uint32_t shift) \ 2210 { \ 2211 LTYPE *m = vm; \ 2212 TYPE *d = vd; \ 2213 uint16_t mask = mve_element_mask(env); \ 2214 bool qc = false; \ 2215 unsigned le; \ 2216 mask >>= ESIZE * TOP; \ 2217 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ 2218 bool sat = false; \ 2219 TYPE r = FN(m[H##LESIZE(le)], shift, &sat); \ 2220 mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask); \ 2221 qc |= sat & mask & 1; \ 2222 } \ 2223 if (qc) { \ 2224 env->vfp.qc[0] = qc; \ 2225 } \ 2226 mve_advance_vpt(env); \ 2227 } 2228 2229 #define DO_VSHRN_SAT_UB(BOP, TOP, FN) \ 2230 DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN) \ 2231 DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN) 2232 2233 #define DO_VSHRN_SAT_UH(BOP, TOP, FN) \ 2234 DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN) \ 2235 DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN) 2236 2237 #define DO_VSHRN_SAT_SB(BOP, TOP, FN) \ 2238 DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN) \ 2239 DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN) 2240 2241 #define DO_VSHRN_SAT_SH(BOP, TOP, FN) \ 2242 DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN) \ 2243 DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN) 2244 2245 #define DO_SHRN_SB(N, M, SATP) \ 2246 do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP) 2247 #define DO_SHRN_UB(N, M, SATP) \ 2248 do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP) 2249 #define DO_SHRUN_B(N, M, SATP) \ 2250 do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP) 2251 2252 #define DO_SHRN_SH(N, M, SATP) \ 2253 do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP) 2254 #define DO_SHRN_UH(N, M, SATP) \ 2255 do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP) 2256 #define DO_SHRUN_H(N, M, SATP) \ 2257 do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP) 2258 2259 #define DO_RSHRN_SB(N, M, SATP) \ 2260 do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP) 2261 #define DO_RSHRN_UB(N, M, SATP) \ 2262 do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP) 2263 #define DO_RSHRUN_B(N, M, SATP) \ 2264 do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP) 2265 2266 #define DO_RSHRN_SH(N, M, SATP) \ 2267 do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP) 2268 #define DO_RSHRN_UH(N, M, SATP) \ 2269 do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP) 2270 #define DO_RSHRUN_H(N, M, SATP) \ 2271 do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP) 2272 2273 DO_VSHRN_SAT_SB(vqshrnb_sb, vqshrnt_sb, DO_SHRN_SB) 2274 DO_VSHRN_SAT_SH(vqshrnb_sh, vqshrnt_sh, DO_SHRN_SH) 2275 DO_VSHRN_SAT_UB(vqshrnb_ub, vqshrnt_ub, DO_SHRN_UB) 2276 DO_VSHRN_SAT_UH(vqshrnb_uh, vqshrnt_uh, DO_SHRN_UH) 2277 DO_VSHRN_SAT_SB(vqshrunbb, vqshruntb, DO_SHRUN_B) 2278 DO_VSHRN_SAT_SH(vqshrunbh, vqshrunth, DO_SHRUN_H) 2279 2280 DO_VSHRN_SAT_SB(vqrshrnb_sb, vqrshrnt_sb, DO_RSHRN_SB) 2281 DO_VSHRN_SAT_SH(vqrshrnb_sh, vqrshrnt_sh, DO_RSHRN_SH) 2282 DO_VSHRN_SAT_UB(vqrshrnb_ub, vqrshrnt_ub, DO_RSHRN_UB) 2283 DO_VSHRN_SAT_UH(vqrshrnb_uh, vqrshrnt_uh, DO_RSHRN_UH) 2284 DO_VSHRN_SAT_SB(vqrshrunbb, vqrshruntb, DO_RSHRUN_B) 2285 DO_VSHRN_SAT_SH(vqrshrunbh, vqrshrunth, DO_RSHRUN_H) 2286 2287 #define DO_VMOVN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE) \ 2288 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \ 2289 { \ 2290 LTYPE *m = vm; \ 2291 TYPE *d = vd; \ 2292 uint16_t mask = mve_element_mask(env); \ 2293 unsigned le; \ 2294 mask >>= ESIZE * TOP; \ 2295 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ 2296 mergemask(&d[H##ESIZE(le * 2 + TOP)], \ 2297 m[H##LESIZE(le)], mask); \ 2298 } \ 2299 mve_advance_vpt(env); \ 2300 } 2301 2302 DO_VMOVN(vmovnbb, false, 1, uint8_t, 2, uint16_t) 2303 DO_VMOVN(vmovnbh, false, 2, uint16_t, 4, uint32_t) 2304 DO_VMOVN(vmovntb, true, 1, uint8_t, 2, uint16_t) 2305 DO_VMOVN(vmovnth, true, 2, uint16_t, 4, uint32_t) 2306 2307 #define DO_VMOVN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \ 2308 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \ 2309 { \ 2310 LTYPE *m = vm; \ 2311 TYPE *d = vd; \ 2312 uint16_t mask = mve_element_mask(env); \ 2313 bool qc = false; \ 2314 unsigned le; \ 2315 mask >>= ESIZE * TOP; \ 2316 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ 2317 bool sat = false; \ 2318 TYPE r = FN(m[H##LESIZE(le)], &sat); \ 2319 mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask); \ 2320 qc |= sat & mask & 1; \ 2321 } \ 2322 if (qc) { \ 2323 env->vfp.qc[0] = qc; \ 2324 } \ 2325 mve_advance_vpt(env); \ 2326 } 2327 2328 #define DO_VMOVN_SAT_UB(BOP, TOP, FN) \ 2329 DO_VMOVN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN) \ 2330 DO_VMOVN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN) 2331 2332 #define DO_VMOVN_SAT_UH(BOP, TOP, FN) \ 2333 DO_VMOVN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN) \ 2334 DO_VMOVN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN) 2335 2336 #define DO_VMOVN_SAT_SB(BOP, TOP, FN) \ 2337 DO_VMOVN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN) \ 2338 DO_VMOVN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN) 2339 2340 #define DO_VMOVN_SAT_SH(BOP, TOP, FN) \ 2341 DO_VMOVN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN) \ 2342 DO_VMOVN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN) 2343 2344 #define DO_VQMOVN_SB(N, SATP) \ 2345 do_sat_bhs((int64_t)(N), INT8_MIN, INT8_MAX, SATP) 2346 #define DO_VQMOVN_UB(N, SATP) \ 2347 do_sat_bhs((uint64_t)(N), 0, UINT8_MAX, SATP) 2348 #define DO_VQMOVUN_B(N, SATP) \ 2349 do_sat_bhs((int64_t)(N), 0, UINT8_MAX, SATP) 2350 2351 #define DO_VQMOVN_SH(N, SATP) \ 2352 do_sat_bhs((int64_t)(N), INT16_MIN, INT16_MAX, SATP) 2353 #define DO_VQMOVN_UH(N, SATP) \ 2354 do_sat_bhs((uint64_t)(N), 0, UINT16_MAX, SATP) 2355 #define DO_VQMOVUN_H(N, SATP) \ 2356 do_sat_bhs((int64_t)(N), 0, UINT16_MAX, SATP) 2357 2358 DO_VMOVN_SAT_SB(vqmovnbsb, vqmovntsb, DO_VQMOVN_SB) 2359 DO_VMOVN_SAT_SH(vqmovnbsh, vqmovntsh, DO_VQMOVN_SH) 2360 DO_VMOVN_SAT_UB(vqmovnbub, vqmovntub, DO_VQMOVN_UB) 2361 DO_VMOVN_SAT_UH(vqmovnbuh, vqmovntuh, DO_VQMOVN_UH) 2362 DO_VMOVN_SAT_SB(vqmovunbb, vqmovuntb, DO_VQMOVUN_B) 2363 DO_VMOVN_SAT_SH(vqmovunbh, vqmovunth, DO_VQMOVUN_H) 2364 2365 uint32_t HELPER(mve_vshlc)(CPUARMState *env, void *vd, uint32_t rdm, 2366 uint32_t shift) 2367 { 2368 uint32_t *d = vd; 2369 uint16_t mask = mve_element_mask(env); 2370 unsigned e; 2371 uint32_t r; 2372 2373 /* 2374 * For each 32-bit element, we shift it left, bringing in the 2375 * low 'shift' bits of rdm at the bottom. Bits shifted out at 2376 * the top become the new rdm, if the predicate mask permits. 2377 * The final rdm value is returned to update the register. 2378 * shift == 0 here means "shift by 32 bits". 2379 */ 2380 if (shift == 0) { 2381 for (e = 0; e < 16 / 4; e++, mask >>= 4) { 2382 r = rdm; 2383 if (mask & 1) { 2384 rdm = d[H4(e)]; 2385 } 2386 mergemask(&d[H4(e)], r, mask); 2387 } 2388 } else { 2389 uint32_t shiftmask = MAKE_64BIT_MASK(0, shift); 2390 2391 for (e = 0; e < 16 / 4; e++, mask >>= 4) { 2392 r = (d[H4(e)] << shift) | (rdm & shiftmask); 2393 if (mask & 1) { 2394 rdm = d[H4(e)] >> (32 - shift); 2395 } 2396 mergemask(&d[H4(e)], r, mask); 2397 } 2398 } 2399 mve_advance_vpt(env); 2400 return rdm; 2401 } 2402 2403 uint64_t HELPER(mve_sshrl)(CPUARMState *env, uint64_t n, uint32_t shift) 2404 { 2405 return do_sqrshl_d(n, -(int8_t)shift, false, NULL); 2406 } 2407 2408 uint64_t HELPER(mve_ushll)(CPUARMState *env, uint64_t n, uint32_t shift) 2409 { 2410 return do_uqrshl_d(n, (int8_t)shift, false, NULL); 2411 } 2412 2413 uint64_t HELPER(mve_sqshll)(CPUARMState *env, uint64_t n, uint32_t shift) 2414 { 2415 return do_sqrshl_d(n, (int8_t)shift, false, &env->QF); 2416 } 2417 2418 uint64_t HELPER(mve_uqshll)(CPUARMState *env, uint64_t n, uint32_t shift) 2419 { 2420 return do_uqrshl_d(n, (int8_t)shift, false, &env->QF); 2421 } 2422 2423 uint64_t HELPER(mve_sqrshrl)(CPUARMState *env, uint64_t n, uint32_t shift) 2424 { 2425 return do_sqrshl_d(n, -(int8_t)shift, true, &env->QF); 2426 } 2427 2428 uint64_t HELPER(mve_uqrshll)(CPUARMState *env, uint64_t n, uint32_t shift) 2429 { 2430 return do_uqrshl_d(n, (int8_t)shift, true, &env->QF); 2431 } 2432 2433 /* Operate on 64-bit values, but saturate at 48 bits */ 2434 static inline int64_t do_sqrshl48_d(int64_t src, int64_t shift, 2435 bool round, uint32_t *sat) 2436 { 2437 int64_t val, extval; 2438 2439 if (shift <= -48) { 2440 /* Rounding the sign bit always produces 0. */ 2441 if (round) { 2442 return 0; 2443 } 2444 return src >> 63; 2445 } else if (shift < 0) { 2446 if (round) { 2447 src >>= -shift - 1; 2448 val = (src >> 1) + (src & 1); 2449 } else { 2450 val = src >> -shift; 2451 } 2452 extval = sextract64(val, 0, 48); 2453 if (!sat || val == extval) { 2454 return extval; 2455 } 2456 } else if (shift < 48) { 2457 extval = sextract64(src << shift, 0, 48); 2458 if (!sat || src == (extval >> shift)) { 2459 return extval; 2460 } 2461 } else if (!sat || src == 0) { 2462 return 0; 2463 } 2464 2465 *sat = 1; 2466 return src >= 0 ? MAKE_64BIT_MASK(0, 47) : MAKE_64BIT_MASK(47, 17); 2467 } 2468 2469 /* Operate on 64-bit values, but saturate at 48 bits */ 2470 static inline uint64_t do_uqrshl48_d(uint64_t src, int64_t shift, 2471 bool round, uint32_t *sat) 2472 { 2473 uint64_t val, extval; 2474 2475 if (shift <= -(48 + round)) { 2476 return 0; 2477 } else if (shift < 0) { 2478 if (round) { 2479 val = src >> (-shift - 1); 2480 val = (val >> 1) + (val & 1); 2481 } else { 2482 val = src >> -shift; 2483 } 2484 extval = extract64(val, 0, 48); 2485 if (!sat || val == extval) { 2486 return extval; 2487 } 2488 } else if (shift < 48) { 2489 extval = extract64(src << shift, 0, 48); 2490 if (!sat || src == (extval >> shift)) { 2491 return extval; 2492 } 2493 } else if (!sat || src == 0) { 2494 return 0; 2495 } 2496 2497 *sat = 1; 2498 return MAKE_64BIT_MASK(0, 48); 2499 } 2500 2501 uint64_t HELPER(mve_sqrshrl48)(CPUARMState *env, uint64_t n, uint32_t shift) 2502 { 2503 return do_sqrshl48_d(n, -(int8_t)shift, true, &env->QF); 2504 } 2505 2506 uint64_t HELPER(mve_uqrshll48)(CPUARMState *env, uint64_t n, uint32_t shift) 2507 { 2508 return do_uqrshl48_d(n, (int8_t)shift, true, &env->QF); 2509 } 2510 2511 uint32_t HELPER(mve_uqshl)(CPUARMState *env, uint32_t n, uint32_t shift) 2512 { 2513 return do_uqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF); 2514 } 2515 2516 uint32_t HELPER(mve_sqshl)(CPUARMState *env, uint32_t n, uint32_t shift) 2517 { 2518 return do_sqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF); 2519 } 2520 2521 uint32_t HELPER(mve_uqrshl)(CPUARMState *env, uint32_t n, uint32_t shift) 2522 { 2523 return do_uqrshl_bhs(n, (int8_t)shift, 32, true, &env->QF); 2524 } 2525 2526 uint32_t HELPER(mve_sqrshr)(CPUARMState *env, uint32_t n, uint32_t shift) 2527 { 2528 return do_sqrshl_bhs(n, -(int8_t)shift, 32, true, &env->QF); 2529 } 2530 2531 #define DO_VIDUP(OP, ESIZE, TYPE, FN) \ 2532 uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd, \ 2533 uint32_t offset, uint32_t imm) \ 2534 { \ 2535 TYPE *d = vd; \ 2536 uint16_t mask = mve_element_mask(env); \ 2537 unsigned e; \ 2538 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 2539 mergemask(&d[H##ESIZE(e)], offset, mask); \ 2540 offset = FN(offset, imm); \ 2541 } \ 2542 mve_advance_vpt(env); \ 2543 return offset; \ 2544 } 2545 2546 #define DO_VIWDUP(OP, ESIZE, TYPE, FN) \ 2547 uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd, \ 2548 uint32_t offset, uint32_t wrap, \ 2549 uint32_t imm) \ 2550 { \ 2551 TYPE *d = vd; \ 2552 uint16_t mask = mve_element_mask(env); \ 2553 unsigned e; \ 2554 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 2555 mergemask(&d[H##ESIZE(e)], offset, mask); \ 2556 offset = FN(offset, wrap, imm); \ 2557 } \ 2558 mve_advance_vpt(env); \ 2559 return offset; \ 2560 } 2561 2562 #define DO_VIDUP_ALL(OP, FN) \ 2563 DO_VIDUP(OP##b, 1, int8_t, FN) \ 2564 DO_VIDUP(OP##h, 2, int16_t, FN) \ 2565 DO_VIDUP(OP##w, 4, int32_t, FN) 2566 2567 #define DO_VIWDUP_ALL(OP, FN) \ 2568 DO_VIWDUP(OP##b, 1, int8_t, FN) \ 2569 DO_VIWDUP(OP##h, 2, int16_t, FN) \ 2570 DO_VIWDUP(OP##w, 4, int32_t, FN) 2571 2572 static uint32_t do_add_wrap(uint32_t offset, uint32_t wrap, uint32_t imm) 2573 { 2574 offset += imm; 2575 if (offset == wrap) { 2576 offset = 0; 2577 } 2578 return offset; 2579 } 2580 2581 static uint32_t do_sub_wrap(uint32_t offset, uint32_t wrap, uint32_t imm) 2582 { 2583 if (offset == 0) { 2584 offset = wrap; 2585 } 2586 offset -= imm; 2587 return offset; 2588 } 2589 2590 DO_VIDUP_ALL(vidup, DO_ADD) 2591 DO_VIWDUP_ALL(viwdup, do_add_wrap) 2592 DO_VIWDUP_ALL(vdwdup, do_sub_wrap) 2593 2594 /* 2595 * Vector comparison. 2596 * P0 bits for non-executed beats (where eci_mask is 0) are unchanged. 2597 * P0 bits for predicated lanes in executed beats (where mask is 0) are 0. 2598 * P0 bits otherwise are updated with the results of the comparisons. 2599 * We must also keep unchanged the MASK fields at the top of v7m.vpr. 2600 */ 2601 #define DO_VCMP(OP, ESIZE, TYPE, FN) \ 2602 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm) \ 2603 { \ 2604 TYPE *n = vn, *m = vm; \ 2605 uint16_t mask = mve_element_mask(env); \ 2606 uint16_t eci_mask = mve_eci_mask(env); \ 2607 uint16_t beatpred = 0; \ 2608 uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \ 2609 unsigned e; \ 2610 for (e = 0; e < 16 / ESIZE; e++) { \ 2611 bool r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)]); \ 2612 /* Comparison sets 0/1 bits for each byte in the element */ \ 2613 beatpred |= r * emask; \ 2614 emask <<= ESIZE; \ 2615 } \ 2616 beatpred &= mask; \ 2617 env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \ 2618 (beatpred & eci_mask); \ 2619 mve_advance_vpt(env); \ 2620 } 2621 2622 #define DO_VCMP_SCALAR(OP, ESIZE, TYPE, FN) \ 2623 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \ 2624 uint32_t rm) \ 2625 { \ 2626 TYPE *n = vn; \ 2627 uint16_t mask = mve_element_mask(env); \ 2628 uint16_t eci_mask = mve_eci_mask(env); \ 2629 uint16_t beatpred = 0; \ 2630 uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \ 2631 unsigned e; \ 2632 for (e = 0; e < 16 / ESIZE; e++) { \ 2633 bool r = FN(n[H##ESIZE(e)], (TYPE)rm); \ 2634 /* Comparison sets 0/1 bits for each byte in the element */ \ 2635 beatpred |= r * emask; \ 2636 emask <<= ESIZE; \ 2637 } \ 2638 beatpred &= mask; \ 2639 env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \ 2640 (beatpred & eci_mask); \ 2641 mve_advance_vpt(env); \ 2642 } 2643 2644 #define DO_VCMP_S(OP, FN) \ 2645 DO_VCMP(OP##b, 1, int8_t, FN) \ 2646 DO_VCMP(OP##h, 2, int16_t, FN) \ 2647 DO_VCMP(OP##w, 4, int32_t, FN) \ 2648 DO_VCMP_SCALAR(OP##_scalarb, 1, int8_t, FN) \ 2649 DO_VCMP_SCALAR(OP##_scalarh, 2, int16_t, FN) \ 2650 DO_VCMP_SCALAR(OP##_scalarw, 4, int32_t, FN) 2651 2652 #define DO_VCMP_U(OP, FN) \ 2653 DO_VCMP(OP##b, 1, uint8_t, FN) \ 2654 DO_VCMP(OP##h, 2, uint16_t, FN) \ 2655 DO_VCMP(OP##w, 4, uint32_t, FN) \ 2656 DO_VCMP_SCALAR(OP##_scalarb, 1, uint8_t, FN) \ 2657 DO_VCMP_SCALAR(OP##_scalarh, 2, uint16_t, FN) \ 2658 DO_VCMP_SCALAR(OP##_scalarw, 4, uint32_t, FN) 2659 2660 #define DO_EQ(N, M) ((N) == (M)) 2661 #define DO_NE(N, M) ((N) != (M)) 2662 #define DO_EQ(N, M) ((N) == (M)) 2663 #define DO_EQ(N, M) ((N) == (M)) 2664 #define DO_GE(N, M) ((N) >= (M)) 2665 #define DO_LT(N, M) ((N) < (M)) 2666 #define DO_GT(N, M) ((N) > (M)) 2667 #define DO_LE(N, M) ((N) <= (M)) 2668 2669 DO_VCMP_U(vcmpeq, DO_EQ) 2670 DO_VCMP_U(vcmpne, DO_NE) 2671 DO_VCMP_U(vcmpcs, DO_GE) 2672 DO_VCMP_U(vcmphi, DO_GT) 2673 DO_VCMP_S(vcmpge, DO_GE) 2674 DO_VCMP_S(vcmplt, DO_LT) 2675 DO_VCMP_S(vcmpgt, DO_GT) 2676 DO_VCMP_S(vcmple, DO_LE) 2677 2678 void HELPER(mve_vpsel)(CPUARMState *env, void *vd, void *vn, void *vm) 2679 { 2680 /* 2681 * Qd[n] = VPR.P0[n] ? Qn[n] : Qm[n] 2682 * but note that whether bytes are written to Qd is still subject 2683 * to (all forms of) predication in the usual way. 2684 */ 2685 uint64_t *d = vd, *n = vn, *m = vm; 2686 uint16_t mask = mve_element_mask(env); 2687 uint16_t p0 = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0); 2688 unsigned e; 2689 for (e = 0; e < 16 / 8; e++, mask >>= 8, p0 >>= 8) { 2690 uint64_t r = m[H8(e)]; 2691 mergemask(&r, n[H8(e)], p0); 2692 mergemask(&d[H8(e)], r, mask); 2693 } 2694 mve_advance_vpt(env); 2695 } 2696 2697 void HELPER(mve_vpnot)(CPUARMState *env) 2698 { 2699 /* 2700 * P0 bits for unexecuted beats (where eci_mask is 0) are unchanged. 2701 * P0 bits for predicated lanes in executed bits (where mask is 0) are 0. 2702 * P0 bits otherwise are inverted. 2703 * (This is the same logic as VCMP.) 2704 * This insn is itself subject to predication and to beat-wise execution, 2705 * and after it executes VPT state advances in the usual way. 2706 */ 2707 uint16_t mask = mve_element_mask(env); 2708 uint16_t eci_mask = mve_eci_mask(env); 2709 uint16_t beatpred = ~env->v7m.vpr & mask; 2710 env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (beatpred & eci_mask); 2711 mve_advance_vpt(env); 2712 } 2713 2714 /* 2715 * VCTP: P0 unexecuted bits unchanged, predicated bits zeroed, 2716 * otherwise set according to value of Rn. The calculation of 2717 * newmask here works in the same way as the calculation of the 2718 * ltpmask in mve_element_mask(), but we have pre-calculated 2719 * the masklen in the generated code. 2720 */ 2721 void HELPER(mve_vctp)(CPUARMState *env, uint32_t masklen) 2722 { 2723 uint16_t mask = mve_element_mask(env); 2724 uint16_t eci_mask = mve_eci_mask(env); 2725 uint16_t newmask; 2726 2727 assert(masklen <= 16); 2728 newmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0; 2729 newmask &= mask; 2730 env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (newmask & eci_mask); 2731 mve_advance_vpt(env); 2732 } 2733 2734 #define DO_1OP_SAT(OP, ESIZE, TYPE, FN) \ 2735 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \ 2736 { \ 2737 TYPE *d = vd, *m = vm; \ 2738 uint16_t mask = mve_element_mask(env); \ 2739 unsigned e; \ 2740 bool qc = false; \ 2741 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 2742 bool sat = false; \ 2743 mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)], &sat), mask); \ 2744 qc |= sat & mask & 1; \ 2745 } \ 2746 if (qc) { \ 2747 env->vfp.qc[0] = qc; \ 2748 } \ 2749 mve_advance_vpt(env); \ 2750 } 2751 2752 #define DO_VQABS_B(N, SATP) \ 2753 do_sat_bhs(DO_ABS((int64_t)N), INT8_MIN, INT8_MAX, SATP) 2754 #define DO_VQABS_H(N, SATP) \ 2755 do_sat_bhs(DO_ABS((int64_t)N), INT16_MIN, INT16_MAX, SATP) 2756 #define DO_VQABS_W(N, SATP) \ 2757 do_sat_bhs(DO_ABS((int64_t)N), INT32_MIN, INT32_MAX, SATP) 2758 2759 #define DO_VQNEG_B(N, SATP) do_sat_bhs(-(int64_t)N, INT8_MIN, INT8_MAX, SATP) 2760 #define DO_VQNEG_H(N, SATP) do_sat_bhs(-(int64_t)N, INT16_MIN, INT16_MAX, SATP) 2761 #define DO_VQNEG_W(N, SATP) do_sat_bhs(-(int64_t)N, INT32_MIN, INT32_MAX, SATP) 2762 2763 DO_1OP_SAT(vqabsb, 1, int8_t, DO_VQABS_B) 2764 DO_1OP_SAT(vqabsh, 2, int16_t, DO_VQABS_H) 2765 DO_1OP_SAT(vqabsw, 4, int32_t, DO_VQABS_W) 2766 2767 DO_1OP_SAT(vqnegb, 1, int8_t, DO_VQNEG_B) 2768 DO_1OP_SAT(vqnegh, 2, int16_t, DO_VQNEG_H) 2769 DO_1OP_SAT(vqnegw, 4, int32_t, DO_VQNEG_W) 2770 2771 /* 2772 * VMAXA, VMINA: vd is unsigned; vm is signed, and we take its 2773 * absolute value; we then do an unsigned comparison. 2774 */ 2775 #define DO_VMAXMINA(OP, ESIZE, STYPE, UTYPE, FN) \ 2776 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \ 2777 { \ 2778 UTYPE *d = vd; \ 2779 STYPE *m = vm; \ 2780 uint16_t mask = mve_element_mask(env); \ 2781 unsigned e; \ 2782 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 2783 UTYPE r = DO_ABS(m[H##ESIZE(e)]); \ 2784 r = FN(d[H##ESIZE(e)], r); \ 2785 mergemask(&d[H##ESIZE(e)], r, mask); \ 2786 } \ 2787 mve_advance_vpt(env); \ 2788 } 2789 2790 DO_VMAXMINA(vmaxab, 1, int8_t, uint8_t, DO_MAX) 2791 DO_VMAXMINA(vmaxah, 2, int16_t, uint16_t, DO_MAX) 2792 DO_VMAXMINA(vmaxaw, 4, int32_t, uint32_t, DO_MAX) 2793 DO_VMAXMINA(vminab, 1, int8_t, uint8_t, DO_MIN) 2794 DO_VMAXMINA(vminah, 2, int16_t, uint16_t, DO_MIN) 2795 DO_VMAXMINA(vminaw, 4, int32_t, uint32_t, DO_MIN) 2796 2797 /* 2798 * 2-operand floating point. Note that if an element is partially 2799 * predicated we must do the FP operation to update the non-predicated 2800 * bytes, but we must be careful to avoid updating the FP exception 2801 * state unless byte 0 of the element was unpredicated. 2802 */ 2803 #define DO_2OP_FP(OP, ESIZE, TYPE, FN) \ 2804 void HELPER(glue(mve_, OP))(CPUARMState *env, \ 2805 void *vd, void *vn, void *vm) \ 2806 { \ 2807 TYPE *d = vd, *n = vn, *m = vm; \ 2808 TYPE r; \ 2809 uint16_t mask = mve_element_mask(env); \ 2810 unsigned e; \ 2811 float_status *fpst; \ 2812 float_status scratch_fpst; \ 2813 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 2814 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \ 2815 continue; \ 2816 } \ 2817 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ 2818 &env->vfp.standard_fp_status; \ 2819 if (!(mask & 1)) { \ 2820 /* We need the result but without updating flags */ \ 2821 scratch_fpst = *fpst; \ 2822 fpst = &scratch_fpst; \ 2823 } \ 2824 r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst); \ 2825 mergemask(&d[H##ESIZE(e)], r, mask); \ 2826 } \ 2827 mve_advance_vpt(env); \ 2828 } 2829 2830 #define DO_2OP_FP_ALL(OP, FN) \ 2831 DO_2OP_FP(OP##h, 2, float16, float16_##FN) \ 2832 DO_2OP_FP(OP##s, 4, float32, float32_##FN) 2833 2834 DO_2OP_FP_ALL(vfadd, add) 2835 DO_2OP_FP_ALL(vfsub, sub) 2836 DO_2OP_FP_ALL(vfmul, mul) 2837 2838 static inline float16 float16_abd(float16 a, float16 b, float_status *s) 2839 { 2840 return float16_abs(float16_sub(a, b, s)); 2841 } 2842 2843 static inline float32 float32_abd(float32 a, float32 b, float_status *s) 2844 { 2845 return float32_abs(float32_sub(a, b, s)); 2846 } 2847 2848 DO_2OP_FP_ALL(vfabd, abd) 2849 DO_2OP_FP_ALL(vmaxnm, maxnum) 2850 DO_2OP_FP_ALL(vminnm, minnum) 2851 2852 static inline float16 float16_maxnuma(float16 a, float16 b, float_status *s) 2853 { 2854 return float16_maxnum(float16_abs(a), float16_abs(b), s); 2855 } 2856 2857 static inline float32 float32_maxnuma(float32 a, float32 b, float_status *s) 2858 { 2859 return float32_maxnum(float32_abs(a), float32_abs(b), s); 2860 } 2861 2862 static inline float16 float16_minnuma(float16 a, float16 b, float_status *s) 2863 { 2864 return float16_minnum(float16_abs(a), float16_abs(b), s); 2865 } 2866 2867 static inline float32 float32_minnuma(float32 a, float32 b, float_status *s) 2868 { 2869 return float32_minnum(float32_abs(a), float32_abs(b), s); 2870 } 2871 2872 DO_2OP_FP_ALL(vmaxnma, maxnuma) 2873 DO_2OP_FP_ALL(vminnma, minnuma) 2874 2875 #define DO_VCADD_FP(OP, ESIZE, TYPE, FN0, FN1) \ 2876 void HELPER(glue(mve_, OP))(CPUARMState *env, \ 2877 void *vd, void *vn, void *vm) \ 2878 { \ 2879 TYPE *d = vd, *n = vn, *m = vm; \ 2880 TYPE r[16 / ESIZE]; \ 2881 uint16_t tm, mask = mve_element_mask(env); \ 2882 unsigned e; \ 2883 float_status *fpst; \ 2884 float_status scratch_fpst; \ 2885 /* Calculate all results first to avoid overwriting inputs */ \ 2886 for (e = 0, tm = mask; e < 16 / ESIZE; e++, tm >>= ESIZE) { \ 2887 if ((tm & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \ 2888 r[e] = 0; \ 2889 continue; \ 2890 } \ 2891 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ 2892 &env->vfp.standard_fp_status; \ 2893 if (!(tm & 1)) { \ 2894 /* We need the result but without updating flags */ \ 2895 scratch_fpst = *fpst; \ 2896 fpst = &scratch_fpst; \ 2897 } \ 2898 if (!(e & 1)) { \ 2899 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)], fpst); \ 2900 } else { \ 2901 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)], fpst); \ 2902 } \ 2903 } \ 2904 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 2905 mergemask(&d[H##ESIZE(e)], r[e], mask); \ 2906 } \ 2907 mve_advance_vpt(env); \ 2908 } 2909 2910 DO_VCADD_FP(vfcadd90h, 2, float16, float16_sub, float16_add) 2911 DO_VCADD_FP(vfcadd90s, 4, float32, float32_sub, float32_add) 2912 DO_VCADD_FP(vfcadd270h, 2, float16, float16_add, float16_sub) 2913 DO_VCADD_FP(vfcadd270s, 4, float32, float32_add, float32_sub) 2914 2915 #define DO_VFMA(OP, ESIZE, TYPE, CHS) \ 2916 void HELPER(glue(mve_, OP))(CPUARMState *env, \ 2917 void *vd, void *vn, void *vm) \ 2918 { \ 2919 TYPE *d = vd, *n = vn, *m = vm; \ 2920 TYPE r; \ 2921 uint16_t mask = mve_element_mask(env); \ 2922 unsigned e; \ 2923 float_status *fpst; \ 2924 float_status scratch_fpst; \ 2925 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 2926 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \ 2927 continue; \ 2928 } \ 2929 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ 2930 &env->vfp.standard_fp_status; \ 2931 if (!(mask & 1)) { \ 2932 /* We need the result but without updating flags */ \ 2933 scratch_fpst = *fpst; \ 2934 fpst = &scratch_fpst; \ 2935 } \ 2936 r = n[H##ESIZE(e)]; \ 2937 if (CHS) { \ 2938 r = TYPE##_chs(r); \ 2939 } \ 2940 r = TYPE##_muladd(r, m[H##ESIZE(e)], d[H##ESIZE(e)], \ 2941 0, fpst); \ 2942 mergemask(&d[H##ESIZE(e)], r, mask); \ 2943 } \ 2944 mve_advance_vpt(env); \ 2945 } 2946 2947 DO_VFMA(vfmah, 2, float16, false) 2948 DO_VFMA(vfmas, 4, float32, false) 2949 DO_VFMA(vfmsh, 2, float16, true) 2950 DO_VFMA(vfmss, 4, float32, true) 2951 2952 #define DO_VCMLA(OP, ESIZE, TYPE, ROT, FN) \ 2953 void HELPER(glue(mve_, OP))(CPUARMState *env, \ 2954 void *vd, void *vn, void *vm) \ 2955 { \ 2956 TYPE *d = vd, *n = vn, *m = vm; \ 2957 TYPE r0, r1, e1, e2, e3, e4; \ 2958 uint16_t mask = mve_element_mask(env); \ 2959 unsigned e; \ 2960 float_status *fpst0, *fpst1; \ 2961 float_status scratch_fpst; \ 2962 /* We loop through pairs of elements at a time */ \ 2963 for (e = 0; e < 16 / ESIZE; e += 2, mask >>= ESIZE * 2) { \ 2964 if ((mask & MAKE_64BIT_MASK(0, ESIZE * 2)) == 0) { \ 2965 continue; \ 2966 } \ 2967 fpst0 = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ 2968 &env->vfp.standard_fp_status; \ 2969 fpst1 = fpst0; \ 2970 if (!(mask & 1)) { \ 2971 scratch_fpst = *fpst0; \ 2972 fpst0 = &scratch_fpst; \ 2973 } \ 2974 if (!(mask & (1 << ESIZE))) { \ 2975 scratch_fpst = *fpst1; \ 2976 fpst1 = &scratch_fpst; \ 2977 } \ 2978 switch (ROT) { \ 2979 case 0: \ 2980 e1 = m[H##ESIZE(e)]; \ 2981 e2 = n[H##ESIZE(e)]; \ 2982 e3 = m[H##ESIZE(e + 1)]; \ 2983 e4 = n[H##ESIZE(e)]; \ 2984 break; \ 2985 case 1: \ 2986 e1 = TYPE##_chs(m[H##ESIZE(e + 1)]); \ 2987 e2 = n[H##ESIZE(e + 1)]; \ 2988 e3 = m[H##ESIZE(e)]; \ 2989 e4 = n[H##ESIZE(e + 1)]; \ 2990 break; \ 2991 case 2: \ 2992 e1 = TYPE##_chs(m[H##ESIZE(e)]); \ 2993 e2 = n[H##ESIZE(e)]; \ 2994 e3 = TYPE##_chs(m[H##ESIZE(e + 1)]); \ 2995 e4 = n[H##ESIZE(e)]; \ 2996 break; \ 2997 case 3: \ 2998 e1 = m[H##ESIZE(e + 1)]; \ 2999 e2 = n[H##ESIZE(e + 1)]; \ 3000 e3 = TYPE##_chs(m[H##ESIZE(e)]); \ 3001 e4 = n[H##ESIZE(e + 1)]; \ 3002 break; \ 3003 default: \ 3004 g_assert_not_reached(); \ 3005 } \ 3006 r0 = FN(e2, e1, d[H##ESIZE(e)], fpst0); \ 3007 r1 = FN(e4, e3, d[H##ESIZE(e + 1)], fpst1); \ 3008 mergemask(&d[H##ESIZE(e)], r0, mask); \ 3009 mergemask(&d[H##ESIZE(e + 1)], r1, mask >> ESIZE); \ 3010 } \ 3011 mve_advance_vpt(env); \ 3012 } 3013 3014 #define DO_VCMULH(N, M, D, S) float16_mul(N, M, S) 3015 #define DO_VCMULS(N, M, D, S) float32_mul(N, M, S) 3016 3017 #define DO_VCMLAH(N, M, D, S) float16_muladd(N, M, D, 0, S) 3018 #define DO_VCMLAS(N, M, D, S) float32_muladd(N, M, D, 0, S) 3019 3020 DO_VCMLA(vcmul0h, 2, float16, 0, DO_VCMULH) 3021 DO_VCMLA(vcmul0s, 4, float32, 0, DO_VCMULS) 3022 DO_VCMLA(vcmul90h, 2, float16, 1, DO_VCMULH) 3023 DO_VCMLA(vcmul90s, 4, float32, 1, DO_VCMULS) 3024 DO_VCMLA(vcmul180h, 2, float16, 2, DO_VCMULH) 3025 DO_VCMLA(vcmul180s, 4, float32, 2, DO_VCMULS) 3026 DO_VCMLA(vcmul270h, 2, float16, 3, DO_VCMULH) 3027 DO_VCMLA(vcmul270s, 4, float32, 3, DO_VCMULS) 3028 3029 DO_VCMLA(vcmla0h, 2, float16, 0, DO_VCMLAH) 3030 DO_VCMLA(vcmla0s, 4, float32, 0, DO_VCMLAS) 3031 DO_VCMLA(vcmla90h, 2, float16, 1, DO_VCMLAH) 3032 DO_VCMLA(vcmla90s, 4, float32, 1, DO_VCMLAS) 3033 DO_VCMLA(vcmla180h, 2, float16, 2, DO_VCMLAH) 3034 DO_VCMLA(vcmla180s, 4, float32, 2, DO_VCMLAS) 3035 DO_VCMLA(vcmla270h, 2, float16, 3, DO_VCMLAH) 3036 DO_VCMLA(vcmla270s, 4, float32, 3, DO_VCMLAS) 3037 3038 #define DO_2OP_FP_SCALAR(OP, ESIZE, TYPE, FN) \ 3039 void HELPER(glue(mve_, OP))(CPUARMState *env, \ 3040 void *vd, void *vn, uint32_t rm) \ 3041 { \ 3042 TYPE *d = vd, *n = vn; \ 3043 TYPE r, m = rm; \ 3044 uint16_t mask = mve_element_mask(env); \ 3045 unsigned e; \ 3046 float_status *fpst; \ 3047 float_status scratch_fpst; \ 3048 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 3049 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \ 3050 continue; \ 3051 } \ 3052 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ 3053 &env->vfp.standard_fp_status; \ 3054 if (!(mask & 1)) { \ 3055 /* We need the result but without updating flags */ \ 3056 scratch_fpst = *fpst; \ 3057 fpst = &scratch_fpst; \ 3058 } \ 3059 r = FN(n[H##ESIZE(e)], m, fpst); \ 3060 mergemask(&d[H##ESIZE(e)], r, mask); \ 3061 } \ 3062 mve_advance_vpt(env); \ 3063 } 3064 3065 #define DO_2OP_FP_SCALAR_ALL(OP, FN) \ 3066 DO_2OP_FP_SCALAR(OP##h, 2, float16, float16_##FN) \ 3067 DO_2OP_FP_SCALAR(OP##s, 4, float32, float32_##FN) 3068 3069 DO_2OP_FP_SCALAR_ALL(vfadd_scalar, add) 3070 DO_2OP_FP_SCALAR_ALL(vfsub_scalar, sub) 3071 DO_2OP_FP_SCALAR_ALL(vfmul_scalar, mul) 3072 3073 #define DO_2OP_FP_ACC_SCALAR(OP, ESIZE, TYPE, FN) \ 3074 void HELPER(glue(mve_, OP))(CPUARMState *env, \ 3075 void *vd, void *vn, uint32_t rm) \ 3076 { \ 3077 TYPE *d = vd, *n = vn; \ 3078 TYPE r, m = rm; \ 3079 uint16_t mask = mve_element_mask(env); \ 3080 unsigned e; \ 3081 float_status *fpst; \ 3082 float_status scratch_fpst; \ 3083 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 3084 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \ 3085 continue; \ 3086 } \ 3087 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ 3088 &env->vfp.standard_fp_status; \ 3089 if (!(mask & 1)) { \ 3090 /* We need the result but without updating flags */ \ 3091 scratch_fpst = *fpst; \ 3092 fpst = &scratch_fpst; \ 3093 } \ 3094 r = FN(n[H##ESIZE(e)], m, d[H##ESIZE(e)], 0, fpst); \ 3095 mergemask(&d[H##ESIZE(e)], r, mask); \ 3096 } \ 3097 mve_advance_vpt(env); \ 3098 } 3099 3100 /* VFMAS is vector * vector + scalar, so swap op2 and op3 */ 3101 #define DO_VFMAS_SCALARH(N, M, D, F, S) float16_muladd(N, D, M, F, S) 3102 #define DO_VFMAS_SCALARS(N, M, D, F, S) float32_muladd(N, D, M, F, S) 3103 3104 /* VFMA is vector * scalar + vector */ 3105 DO_2OP_FP_ACC_SCALAR(vfma_scalarh, 2, float16, float16_muladd) 3106 DO_2OP_FP_ACC_SCALAR(vfma_scalars, 4, float32, float32_muladd) 3107 DO_2OP_FP_ACC_SCALAR(vfmas_scalarh, 2, float16, DO_VFMAS_SCALARH) 3108 DO_2OP_FP_ACC_SCALAR(vfmas_scalars, 4, float32, DO_VFMAS_SCALARS) 3109 3110 /* Floating point max/min across vector. */ 3111 #define DO_FP_VMAXMINV(OP, ESIZE, TYPE, ABS, FN) \ 3112 uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \ 3113 uint32_t ra_in) \ 3114 { \ 3115 uint16_t mask = mve_element_mask(env); \ 3116 unsigned e; \ 3117 TYPE *m = vm; \ 3118 TYPE ra = (TYPE)ra_in; \ 3119 float_status *fpst = (ESIZE == 2) ? \ 3120 &env->vfp.standard_fp_status_f16 : \ 3121 &env->vfp.standard_fp_status; \ 3122 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 3123 if (mask & 1) { \ 3124 TYPE v = m[H##ESIZE(e)]; \ 3125 if (TYPE##_is_signaling_nan(ra, fpst)) { \ 3126 ra = TYPE##_silence_nan(ra, fpst); \ 3127 float_raise(float_flag_invalid, fpst); \ 3128 } \ 3129 if (TYPE##_is_signaling_nan(v, fpst)) { \ 3130 v = TYPE##_silence_nan(v, fpst); \ 3131 float_raise(float_flag_invalid, fpst); \ 3132 } \ 3133 if (ABS) { \ 3134 v = TYPE##_abs(v); \ 3135 } \ 3136 ra = FN(ra, v, fpst); \ 3137 } \ 3138 } \ 3139 mve_advance_vpt(env); \ 3140 return ra; \ 3141 } \ 3142 3143 #define NOP(X) (X) 3144 3145 DO_FP_VMAXMINV(vmaxnmvh, 2, float16, false, float16_maxnum) 3146 DO_FP_VMAXMINV(vmaxnmvs, 4, float32, false, float32_maxnum) 3147 DO_FP_VMAXMINV(vminnmvh, 2, float16, false, float16_minnum) 3148 DO_FP_VMAXMINV(vminnmvs, 4, float32, false, float32_minnum) 3149 DO_FP_VMAXMINV(vmaxnmavh, 2, float16, true, float16_maxnum) 3150 DO_FP_VMAXMINV(vmaxnmavs, 4, float32, true, float32_maxnum) 3151 DO_FP_VMAXMINV(vminnmavh, 2, float16, true, float16_minnum) 3152 DO_FP_VMAXMINV(vminnmavs, 4, float32, true, float32_minnum) 3153 3154 /* FP compares; note that all comparisons signal InvalidOp for QNaNs */ 3155 #define DO_VCMP_FP(OP, ESIZE, TYPE, FN) \ 3156 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm) \ 3157 { \ 3158 TYPE *n = vn, *m = vm; \ 3159 uint16_t mask = mve_element_mask(env); \ 3160 uint16_t eci_mask = mve_eci_mask(env); \ 3161 uint16_t beatpred = 0; \ 3162 uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \ 3163 unsigned e; \ 3164 float_status *fpst; \ 3165 float_status scratch_fpst; \ 3166 bool r; \ 3167 for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) { \ 3168 if ((mask & emask) == 0) { \ 3169 continue; \ 3170 } \ 3171 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ 3172 &env->vfp.standard_fp_status; \ 3173 if (!(mask & (1 << (e * ESIZE)))) { \ 3174 /* We need the result but without updating flags */ \ 3175 scratch_fpst = *fpst; \ 3176 fpst = &scratch_fpst; \ 3177 } \ 3178 r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst); \ 3179 /* Comparison sets 0/1 bits for each byte in the element */ \ 3180 beatpred |= r * emask; \ 3181 } \ 3182 beatpred &= mask; \ 3183 env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \ 3184 (beatpred & eci_mask); \ 3185 mve_advance_vpt(env); \ 3186 } 3187 3188 #define DO_VCMP_FP_SCALAR(OP, ESIZE, TYPE, FN) \ 3189 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \ 3190 uint32_t rm) \ 3191 { \ 3192 TYPE *n = vn; \ 3193 uint16_t mask = mve_element_mask(env); \ 3194 uint16_t eci_mask = mve_eci_mask(env); \ 3195 uint16_t beatpred = 0; \ 3196 uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \ 3197 unsigned e; \ 3198 float_status *fpst; \ 3199 float_status scratch_fpst; \ 3200 bool r; \ 3201 for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) { \ 3202 if ((mask & emask) == 0) { \ 3203 continue; \ 3204 } \ 3205 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ 3206 &env->vfp.standard_fp_status; \ 3207 if (!(mask & (1 << (e * ESIZE)))) { \ 3208 /* We need the result but without updating flags */ \ 3209 scratch_fpst = *fpst; \ 3210 fpst = &scratch_fpst; \ 3211 } \ 3212 r = FN(n[H##ESIZE(e)], (TYPE)rm, fpst); \ 3213 /* Comparison sets 0/1 bits for each byte in the element */ \ 3214 beatpred |= r * emask; \ 3215 } \ 3216 beatpred &= mask; \ 3217 env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \ 3218 (beatpred & eci_mask); \ 3219 mve_advance_vpt(env); \ 3220 } 3221 3222 #define DO_VCMP_FP_BOTH(VOP, SOP, ESIZE, TYPE, FN) \ 3223 DO_VCMP_FP(VOP, ESIZE, TYPE, FN) \ 3224 DO_VCMP_FP_SCALAR(SOP, ESIZE, TYPE, FN) 3225 3226 /* 3227 * Some care is needed here to get the correct result for the unordered case. 3228 * Architecturally EQ, GE and GT are defined to be false for unordered, but 3229 * the NE, LT and LE comparisons are defined as simple logical inverses of 3230 * EQ, GE and GT and so they must return true for unordered. The softfloat 3231 * comparison functions float*_{eq,le,lt} all return false for unordered. 3232 */ 3233 #define DO_GE16(X, Y, S) float16_le(Y, X, S) 3234 #define DO_GE32(X, Y, S) float32_le(Y, X, S) 3235 #define DO_GT16(X, Y, S) float16_lt(Y, X, S) 3236 #define DO_GT32(X, Y, S) float32_lt(Y, X, S) 3237 3238 DO_VCMP_FP_BOTH(vfcmpeqh, vfcmpeq_scalarh, 2, float16, float16_eq) 3239 DO_VCMP_FP_BOTH(vfcmpeqs, vfcmpeq_scalars, 4, float32, float32_eq) 3240 3241 DO_VCMP_FP_BOTH(vfcmpneh, vfcmpne_scalarh, 2, float16, !float16_eq) 3242 DO_VCMP_FP_BOTH(vfcmpnes, vfcmpne_scalars, 4, float32, !float32_eq) 3243 3244 DO_VCMP_FP_BOTH(vfcmpgeh, vfcmpge_scalarh, 2, float16, DO_GE16) 3245 DO_VCMP_FP_BOTH(vfcmpges, vfcmpge_scalars, 4, float32, DO_GE32) 3246 3247 DO_VCMP_FP_BOTH(vfcmplth, vfcmplt_scalarh, 2, float16, !DO_GE16) 3248 DO_VCMP_FP_BOTH(vfcmplts, vfcmplt_scalars, 4, float32, !DO_GE32) 3249 3250 DO_VCMP_FP_BOTH(vfcmpgth, vfcmpgt_scalarh, 2, float16, DO_GT16) 3251 DO_VCMP_FP_BOTH(vfcmpgts, vfcmpgt_scalars, 4, float32, DO_GT32) 3252 3253 DO_VCMP_FP_BOTH(vfcmpleh, vfcmple_scalarh, 2, float16, !DO_GT16) 3254 DO_VCMP_FP_BOTH(vfcmples, vfcmple_scalars, 4, float32, !DO_GT32) 3255 3256 #define DO_VCVT_FIXED(OP, ESIZE, TYPE, FN) \ 3257 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm, \ 3258 uint32_t shift) \ 3259 { \ 3260 TYPE *d = vd, *m = vm; \ 3261 TYPE r; \ 3262 uint16_t mask = mve_element_mask(env); \ 3263 unsigned e; \ 3264 float_status *fpst; \ 3265 float_status scratch_fpst; \ 3266 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 3267 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \ 3268 continue; \ 3269 } \ 3270 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ 3271 &env->vfp.standard_fp_status; \ 3272 if (!(mask & 1)) { \ 3273 /* We need the result but without updating flags */ \ 3274 scratch_fpst = *fpst; \ 3275 fpst = &scratch_fpst; \ 3276 } \ 3277 r = FN(m[H##ESIZE(e)], shift, fpst); \ 3278 mergemask(&d[H##ESIZE(e)], r, mask); \ 3279 } \ 3280 mve_advance_vpt(env); \ 3281 } 3282 3283 DO_VCVT_FIXED(vcvt_sh, 2, int16_t, helper_vfp_shtoh) 3284 DO_VCVT_FIXED(vcvt_uh, 2, uint16_t, helper_vfp_uhtoh) 3285 DO_VCVT_FIXED(vcvt_hs, 2, int16_t, helper_vfp_toshh_round_to_zero) 3286 DO_VCVT_FIXED(vcvt_hu, 2, uint16_t, helper_vfp_touhh_round_to_zero) 3287 DO_VCVT_FIXED(vcvt_sf, 4, int32_t, helper_vfp_sltos) 3288 DO_VCVT_FIXED(vcvt_uf, 4, uint32_t, helper_vfp_ultos) 3289 DO_VCVT_FIXED(vcvt_fs, 4, int32_t, helper_vfp_tosls_round_to_zero) 3290 DO_VCVT_FIXED(vcvt_fu, 4, uint32_t, helper_vfp_touls_round_to_zero) 3291 3292 /* VCVT with specified rmode */ 3293 #define DO_VCVT_RMODE(OP, ESIZE, TYPE, FN) \ 3294 void HELPER(glue(mve_, OP))(CPUARMState *env, \ 3295 void *vd, void *vm, uint32_t rmode) \ 3296 { \ 3297 TYPE *d = vd, *m = vm; \ 3298 TYPE r; \ 3299 uint16_t mask = mve_element_mask(env); \ 3300 unsigned e; \ 3301 float_status *fpst; \ 3302 float_status scratch_fpst; \ 3303 float_status *base_fpst = (ESIZE == 2) ? \ 3304 &env->vfp.standard_fp_status_f16 : \ 3305 &env->vfp.standard_fp_status; \ 3306 uint32_t prev_rmode = get_float_rounding_mode(base_fpst); \ 3307 set_float_rounding_mode(rmode, base_fpst); \ 3308 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 3309 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \ 3310 continue; \ 3311 } \ 3312 fpst = base_fpst; \ 3313 if (!(mask & 1)) { \ 3314 /* We need the result but without updating flags */ \ 3315 scratch_fpst = *fpst; \ 3316 fpst = &scratch_fpst; \ 3317 } \ 3318 r = FN(m[H##ESIZE(e)], 0, fpst); \ 3319 mergemask(&d[H##ESIZE(e)], r, mask); \ 3320 } \ 3321 set_float_rounding_mode(prev_rmode, base_fpst); \ 3322 mve_advance_vpt(env); \ 3323 } 3324 3325 DO_VCVT_RMODE(vcvt_rm_sh, 2, uint16_t, helper_vfp_toshh) 3326 DO_VCVT_RMODE(vcvt_rm_uh, 2, uint16_t, helper_vfp_touhh) 3327 DO_VCVT_RMODE(vcvt_rm_ss, 4, uint32_t, helper_vfp_tosls) 3328 DO_VCVT_RMODE(vcvt_rm_us, 4, uint32_t, helper_vfp_touls) 3329 3330 #define DO_VRINT_RM_H(M, F, S) helper_rinth(M, S) 3331 #define DO_VRINT_RM_S(M, F, S) helper_rints(M, S) 3332 3333 DO_VCVT_RMODE(vrint_rm_h, 2, uint16_t, DO_VRINT_RM_H) 3334 DO_VCVT_RMODE(vrint_rm_s, 4, uint32_t, DO_VRINT_RM_S) 3335 3336 /* 3337 * VCVT between halfprec and singleprec. As usual for halfprec 3338 * conversions, FZ16 is ignored and AHP is observed. 3339 */ 3340 static void do_vcvt_sh(CPUARMState *env, void *vd, void *vm, int top) 3341 { 3342 uint16_t *d = vd; 3343 uint32_t *m = vm; 3344 uint16_t r; 3345 uint16_t mask = mve_element_mask(env); 3346 bool ieee = !(env->vfp.fpcr & FPCR_AHP); 3347 unsigned e; 3348 float_status *fpst; 3349 float_status scratch_fpst; 3350 float_status *base_fpst = &env->vfp.standard_fp_status; 3351 bool old_fz = get_flush_to_zero(base_fpst); 3352 set_flush_to_zero(false, base_fpst); 3353 for (e = 0; e < 16 / 4; e++, mask >>= 4) { 3354 if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) { 3355 continue; 3356 } 3357 fpst = base_fpst; 3358 if (!(mask & 1)) { 3359 /* We need the result but without updating flags */ 3360 scratch_fpst = *fpst; 3361 fpst = &scratch_fpst; 3362 } 3363 r = float32_to_float16(m[H4(e)], ieee, fpst); 3364 mergemask(&d[H2(e * 2 + top)], r, mask >> (top * 2)); 3365 } 3366 set_flush_to_zero(old_fz, base_fpst); 3367 mve_advance_vpt(env); 3368 } 3369 3370 static void do_vcvt_hs(CPUARMState *env, void *vd, void *vm, int top) 3371 { 3372 uint32_t *d = vd; 3373 uint16_t *m = vm; 3374 uint32_t r; 3375 uint16_t mask = mve_element_mask(env); 3376 bool ieee = !(env->vfp.fpcr & FPCR_AHP); 3377 unsigned e; 3378 float_status *fpst; 3379 float_status scratch_fpst; 3380 float_status *base_fpst = &env->vfp.standard_fp_status; 3381 bool old_fiz = get_flush_inputs_to_zero(base_fpst); 3382 set_flush_inputs_to_zero(false, base_fpst); 3383 for (e = 0; e < 16 / 4; e++, mask >>= 4) { 3384 if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) { 3385 continue; 3386 } 3387 fpst = base_fpst; 3388 if (!(mask & (1 << (top * 2)))) { 3389 /* We need the result but without updating flags */ 3390 scratch_fpst = *fpst; 3391 fpst = &scratch_fpst; 3392 } 3393 r = float16_to_float32(m[H2(e * 2 + top)], ieee, fpst); 3394 mergemask(&d[H4(e)], r, mask); 3395 } 3396 set_flush_inputs_to_zero(old_fiz, base_fpst); 3397 mve_advance_vpt(env); 3398 } 3399 3400 void HELPER(mve_vcvtb_sh)(CPUARMState *env, void *vd, void *vm) 3401 { 3402 do_vcvt_sh(env, vd, vm, 0); 3403 } 3404 void HELPER(mve_vcvtt_sh)(CPUARMState *env, void *vd, void *vm) 3405 { 3406 do_vcvt_sh(env, vd, vm, 1); 3407 } 3408 void HELPER(mve_vcvtb_hs)(CPUARMState *env, void *vd, void *vm) 3409 { 3410 do_vcvt_hs(env, vd, vm, 0); 3411 } 3412 void HELPER(mve_vcvtt_hs)(CPUARMState *env, void *vd, void *vm) 3413 { 3414 do_vcvt_hs(env, vd, vm, 1); 3415 } 3416 3417 #define DO_1OP_FP(OP, ESIZE, TYPE, FN) \ 3418 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm) \ 3419 { \ 3420 TYPE *d = vd, *m = vm; \ 3421 TYPE r; \ 3422 uint16_t mask = mve_element_mask(env); \ 3423 unsigned e; \ 3424 float_status *fpst; \ 3425 float_status scratch_fpst; \ 3426 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 3427 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \ 3428 continue; \ 3429 } \ 3430 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ 3431 &env->vfp.standard_fp_status; \ 3432 if (!(mask & 1)) { \ 3433 /* We need the result but without updating flags */ \ 3434 scratch_fpst = *fpst; \ 3435 fpst = &scratch_fpst; \ 3436 } \ 3437 r = FN(m[H##ESIZE(e)], fpst); \ 3438 mergemask(&d[H##ESIZE(e)], r, mask); \ 3439 } \ 3440 mve_advance_vpt(env); \ 3441 } 3442 3443 DO_1OP_FP(vrintx_h, 2, float16, float16_round_to_int) 3444 DO_1OP_FP(vrintx_s, 4, float32, float32_round_to_int) 3445