xref: /openbmc/qemu/target/arm/tcg/mve_helper.c (revision 243975c0)
1 /*
2  * M-profile MVE Operations
3  *
4  * Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "vec_internal.h"
24 #include "exec/helper-proto.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/exec-all.h"
27 #include "tcg/tcg.h"
28 #include "fpu/softfloat.h"
29 
30 static uint16_t mve_eci_mask(CPUARMState *env)
31 {
32     /*
33      * Return the mask of which elements in the MVE vector correspond
34      * to beats being executed. The mask has 1 bits for executed lanes
35      * and 0 bits where ECI says this beat was already executed.
36      */
37     int eci;
38 
39     if ((env->condexec_bits & 0xf) != 0) {
40         return 0xffff;
41     }
42 
43     eci = env->condexec_bits >> 4;
44     switch (eci) {
45     case ECI_NONE:
46         return 0xffff;
47     case ECI_A0:
48         return 0xfff0;
49     case ECI_A0A1:
50         return 0xff00;
51     case ECI_A0A1A2:
52     case ECI_A0A1A2B0:
53         return 0xf000;
54     default:
55         g_assert_not_reached();
56     }
57 }
58 
59 static uint16_t mve_element_mask(CPUARMState *env)
60 {
61     /*
62      * Return the mask of which elements in the MVE vector should be
63      * updated. This is a combination of multiple things:
64      *  (1) by default, we update every lane in the vector
65      *  (2) VPT predication stores its state in the VPR register;
66      *  (3) low-overhead-branch tail predication will mask out part
67      *      the vector on the final iteration of the loop
68      *  (4) if EPSR.ECI is set then we must execute only some beats
69      *      of the insn
70      * We combine all these into a 16-bit result with the same semantics
71      * as VPR.P0: 0 to mask the lane, 1 if it is active.
72      * 8-bit vector ops will look at all bits of the result;
73      * 16-bit ops will look at bits 0, 2, 4, ...;
74      * 32-bit ops will look at bits 0, 4, 8 and 12.
75      * Compare pseudocode GetCurInstrBeat(), though that only returns
76      * the 4-bit slice of the mask corresponding to a single beat.
77      */
78     uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
79 
80     if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
81         mask |= 0xff;
82     }
83     if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
84         mask |= 0xff00;
85     }
86 
87     if (env->v7m.ltpsize < 4 &&
88         env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
89         /*
90          * Tail predication active, and this is the last loop iteration.
91          * The element size is (1 << ltpsize), and we only want to process
92          * loopcount elements, so we want to retain the least significant
93          * (loopcount * esize) predicate bits and zero out bits above that.
94          */
95         int masklen = env->regs[14] << env->v7m.ltpsize;
96         assert(masklen <= 16);
97         uint16_t ltpmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
98         mask &= ltpmask;
99     }
100 
101     /*
102      * ECI bits indicate which beats are already executed;
103      * we handle this by effectively predicating them out.
104      */
105     mask &= mve_eci_mask(env);
106     return mask;
107 }
108 
109 static void mve_advance_vpt(CPUARMState *env)
110 {
111     /* Advance the VPT and ECI state if necessary */
112     uint32_t vpr = env->v7m.vpr;
113     unsigned mask01, mask23;
114     uint16_t inv_mask;
115     uint16_t eci_mask = mve_eci_mask(env);
116 
117     if ((env->condexec_bits & 0xf) == 0) {
118         env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
119             (ECI_A0 << 4) : (ECI_NONE << 4);
120     }
121 
122     if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
123         /* VPT not enabled, nothing to do */
124         return;
125     }
126 
127     /* Invert P0 bits if needed, but only for beats we actually executed */
128     mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
129     mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
130     /* Start by assuming we invert all bits corresponding to executed beats */
131     inv_mask = eci_mask;
132     if (mask01 <= 8) {
133         /* MASK01 says don't invert low half of P0 */
134         inv_mask &= ~0xff;
135     }
136     if (mask23 <= 8) {
137         /* MASK23 says don't invert high half of P0 */
138         inv_mask &= ~0xff00;
139     }
140     vpr ^= inv_mask;
141     /* Only update MASK01 if beat 1 executed */
142     if (eci_mask & 0xf0) {
143         vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
144     }
145     /* Beat 3 always executes, so update MASK23 */
146     vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
147     env->v7m.vpr = vpr;
148 }
149 
150 /* For loads, predicated lanes are zeroed instead of keeping their old values */
151 #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE)                         \
152     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
153     {                                                                   \
154         TYPE *d = vd;                                                   \
155         uint16_t mask = mve_element_mask(env);                          \
156         uint16_t eci_mask = mve_eci_mask(env);                          \
157         unsigned b, e;                                                  \
158         /*                                                              \
159          * R_SXTM allows the dest reg to become UNKNOWN for abandoned   \
160          * beats so we don't care if we update part of the dest and     \
161          * then take an exception.                                      \
162          */                                                             \
163         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
164             if (eci_mask & (1 << b)) {                                  \
165                 d[H##ESIZE(e)] = (mask & (1 << b)) ?                    \
166                     cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0;     \
167             }                                                           \
168             addr += MSIZE;                                              \
169         }                                                               \
170         mve_advance_vpt(env);                                           \
171     }
172 
173 #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE)                         \
174     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
175     {                                                                   \
176         TYPE *d = vd;                                                   \
177         uint16_t mask = mve_element_mask(env);                          \
178         unsigned b, e;                                                  \
179         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
180             if (mask & (1 << b)) {                                      \
181                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
182             }                                                           \
183             addr += MSIZE;                                              \
184         }                                                               \
185         mve_advance_vpt(env);                                           \
186     }
187 
188 DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
189 DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
190 DO_VLDR(vldrw, 4, ldl, 4, uint32_t)
191 
192 DO_VSTR(vstrb, 1, stb, 1, uint8_t)
193 DO_VSTR(vstrh, 2, stw, 2, uint16_t)
194 DO_VSTR(vstrw, 4, stl, 4, uint32_t)
195 
196 DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
197 DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
198 DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
199 DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
200 DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
201 DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)
202 
203 DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
204 DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
205 DO_VSTR(vstrh_w, 2, stw, 4, int32_t)
206 
207 #undef DO_VLDR
208 #undef DO_VSTR
209 
210 /*
211  * Gather loads/scatter stores. Here each element of Qm specifies
212  * an offset to use from the base register Rm. In the _os_ versions
213  * that offset is scaled by the element size.
214  * For loads, predicated lanes are zeroed instead of retaining
215  * their previous values.
216  */
217 #define DO_VLDR_SG(OP, LDTYPE, ESIZE, TYPE, OFFTYPE, ADDRFN, WB)        \
218     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
219                           uint32_t base)                                \
220     {                                                                   \
221         TYPE *d = vd;                                                   \
222         OFFTYPE *m = vm;                                                \
223         uint16_t mask = mve_element_mask(env);                          \
224         uint16_t eci_mask = mve_eci_mask(env);                          \
225         unsigned e;                                                     \
226         uint32_t addr;                                                  \
227         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
228             if (!(eci_mask & 1)) {                                      \
229                 continue;                                               \
230             }                                                           \
231             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
232             d[H##ESIZE(e)] = (mask & 1) ?                               \
233                 cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0;         \
234             if (WB) {                                                   \
235                 m[H##ESIZE(e)] = addr;                                  \
236             }                                                           \
237         }                                                               \
238         mve_advance_vpt(env);                                           \
239     }
240 
241 /* We know here TYPE is unsigned so always the same as the offset type */
242 #define DO_VSTR_SG(OP, STTYPE, ESIZE, TYPE, ADDRFN, WB)                 \
243     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
244                           uint32_t base)                                \
245     {                                                                   \
246         TYPE *d = vd;                                                   \
247         TYPE *m = vm;                                                   \
248         uint16_t mask = mve_element_mask(env);                          \
249         uint16_t eci_mask = mve_eci_mask(env);                          \
250         unsigned e;                                                     \
251         uint32_t addr;                                                  \
252         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
253             if (!(eci_mask & 1)) {                                      \
254                 continue;                                               \
255             }                                                           \
256             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
257             if (mask & 1) {                                             \
258                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
259             }                                                           \
260             if (WB) {                                                   \
261                 m[H##ESIZE(e)] = addr;                                  \
262             }                                                           \
263         }                                                               \
264         mve_advance_vpt(env);                                           \
265     }
266 
267 /*
268  * 64-bit accesses are slightly different: they are done as two 32-bit
269  * accesses, controlled by the predicate mask for the relevant beat,
270  * and with a single 32-bit offset in the first of the two Qm elements.
271  * Note that for QEMU our IMPDEF AIRCR.ENDIANNESS is always 0 (little).
272  * Address writeback happens on the odd beats and updates the address
273  * stored in the even-beat element.
274  */
275 #define DO_VLDR64_SG(OP, ADDRFN, WB)                                    \
276     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
277                           uint32_t base)                                \
278     {                                                                   \
279         uint32_t *d = vd;                                               \
280         uint32_t *m = vm;                                               \
281         uint16_t mask = mve_element_mask(env);                          \
282         uint16_t eci_mask = mve_eci_mask(env);                          \
283         unsigned e;                                                     \
284         uint32_t addr;                                                  \
285         for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
286             if (!(eci_mask & 1)) {                                      \
287                 continue;                                               \
288             }                                                           \
289             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
290             addr += 4 * (e & 1);                                        \
291             d[H4(e)] = (mask & 1) ? cpu_ldl_data_ra(env, addr, GETPC()) : 0; \
292             if (WB && (e & 1)) {                                        \
293                 m[H4(e & ~1)] = addr - 4;                               \
294             }                                                           \
295         }                                                               \
296         mve_advance_vpt(env);                                           \
297     }
298 
299 #define DO_VSTR64_SG(OP, ADDRFN, WB)                                    \
300     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
301                           uint32_t base)                                \
302     {                                                                   \
303         uint32_t *d = vd;                                               \
304         uint32_t *m = vm;                                               \
305         uint16_t mask = mve_element_mask(env);                          \
306         uint16_t eci_mask = mve_eci_mask(env);                          \
307         unsigned e;                                                     \
308         uint32_t addr;                                                  \
309         for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
310             if (!(eci_mask & 1)) {                                      \
311                 continue;                                               \
312             }                                                           \
313             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
314             addr += 4 * (e & 1);                                        \
315             if (mask & 1) {                                             \
316                 cpu_stl_data_ra(env, addr, d[H4(e)], GETPC());          \
317             }                                                           \
318             if (WB && (e & 1)) {                                        \
319                 m[H4(e & ~1)] = addr - 4;                               \
320             }                                                           \
321         }                                                               \
322         mve_advance_vpt(env);                                           \
323     }
324 
325 #define ADDR_ADD(BASE, OFFSET) ((BASE) + (OFFSET))
326 #define ADDR_ADD_OSH(BASE, OFFSET) ((BASE) + ((OFFSET) << 1))
327 #define ADDR_ADD_OSW(BASE, OFFSET) ((BASE) + ((OFFSET) << 2))
328 #define ADDR_ADD_OSD(BASE, OFFSET) ((BASE) + ((OFFSET) << 3))
329 
330 DO_VLDR_SG(vldrb_sg_sh, ldsb, 2, int16_t, uint16_t, ADDR_ADD, false)
331 DO_VLDR_SG(vldrb_sg_sw, ldsb, 4, int32_t, uint32_t, ADDR_ADD, false)
332 DO_VLDR_SG(vldrh_sg_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD, false)
333 
334 DO_VLDR_SG(vldrb_sg_ub, ldub, 1, uint8_t, uint8_t, ADDR_ADD, false)
335 DO_VLDR_SG(vldrb_sg_uh, ldub, 2, uint16_t, uint16_t, ADDR_ADD, false)
336 DO_VLDR_SG(vldrb_sg_uw, ldub, 4, uint32_t, uint32_t, ADDR_ADD, false)
337 DO_VLDR_SG(vldrh_sg_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD, false)
338 DO_VLDR_SG(vldrh_sg_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD, false)
339 DO_VLDR_SG(vldrw_sg_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, false)
340 DO_VLDR64_SG(vldrd_sg_ud, ADDR_ADD, false)
341 
342 DO_VLDR_SG(vldrh_sg_os_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD_OSH, false)
343 DO_VLDR_SG(vldrh_sg_os_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD_OSH, false)
344 DO_VLDR_SG(vldrh_sg_os_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD_OSH, false)
345 DO_VLDR_SG(vldrw_sg_os_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD_OSW, false)
346 DO_VLDR64_SG(vldrd_sg_os_ud, ADDR_ADD_OSD, false)
347 
348 DO_VSTR_SG(vstrb_sg_ub, stb, 1, uint8_t, ADDR_ADD, false)
349 DO_VSTR_SG(vstrb_sg_uh, stb, 2, uint16_t, ADDR_ADD, false)
350 DO_VSTR_SG(vstrb_sg_uw, stb, 4, uint32_t, ADDR_ADD, false)
351 DO_VSTR_SG(vstrh_sg_uh, stw, 2, uint16_t, ADDR_ADD, false)
352 DO_VSTR_SG(vstrh_sg_uw, stw, 4, uint32_t, ADDR_ADD, false)
353 DO_VSTR_SG(vstrw_sg_uw, stl, 4, uint32_t, ADDR_ADD, false)
354 DO_VSTR64_SG(vstrd_sg_ud, ADDR_ADD, false)
355 
356 DO_VSTR_SG(vstrh_sg_os_uh, stw, 2, uint16_t, ADDR_ADD_OSH, false)
357 DO_VSTR_SG(vstrh_sg_os_uw, stw, 4, uint32_t, ADDR_ADD_OSH, false)
358 DO_VSTR_SG(vstrw_sg_os_uw, stl, 4, uint32_t, ADDR_ADD_OSW, false)
359 DO_VSTR64_SG(vstrd_sg_os_ud, ADDR_ADD_OSD, false)
360 
361 DO_VLDR_SG(vldrw_sg_wb_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, true)
362 DO_VLDR64_SG(vldrd_sg_wb_ud, ADDR_ADD, true)
363 DO_VSTR_SG(vstrw_sg_wb_uw, stl, 4, uint32_t, ADDR_ADD, true)
364 DO_VSTR64_SG(vstrd_sg_wb_ud, ADDR_ADD, true)
365 
366 /*
367  * Deinterleaving loads/interleaving stores.
368  *
369  * For these helpers we are passed the index of the first Qreg
370  * (VLD2/VST2 will also access Qn+1, VLD4/VST4 access Qn .. Qn+3)
371  * and the value of the base address register Rn.
372  * The helpers are specialized for pattern and element size, so
373  * for instance vld42h is VLD4 with pattern 2, element size MO_16.
374  *
375  * These insns are beatwise but not predicated, so we must honour ECI,
376  * but need not look at mve_element_mask().
377  *
378  * The pseudocode implements these insns with multiple memory accesses
379  * of the element size, but rules R_VVVG and R_FXDM permit us to make
380  * one 32-bit memory access per beat.
381  */
382 #define DO_VLD4B(OP, O1, O2, O3, O4)                                    \
383     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
384                           uint32_t base)                                \
385     {                                                                   \
386         int beat, e;                                                    \
387         uint16_t mask = mve_eci_mask(env);                              \
388         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
389         uint32_t addr, data;                                            \
390         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
391             if ((mask & 1) == 0) {                                      \
392                 /* ECI says skip this beat */                           \
393                 continue;                                               \
394             }                                                           \
395             addr = base + off[beat] * 4;                                \
396             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
397             for (e = 0; e < 4; e++, data >>= 8) {                       \
398                 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
399                 qd[H1(off[beat])] = data;                               \
400             }                                                           \
401         }                                                               \
402     }
403 
404 #define DO_VLD4H(OP, O1, O2)                                            \
405     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
406                           uint32_t base)                                \
407     {                                                                   \
408         int beat;                                                       \
409         uint16_t mask = mve_eci_mask(env);                              \
410         static const uint8_t off[4] = { O1, O1, O2, O2 };               \
411         uint32_t addr, data;                                            \
412         int y; /* y counts 0 2 0 2 */                                   \
413         uint16_t *qd;                                                   \
414         for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) {   \
415             if ((mask & 1) == 0) {                                      \
416                 /* ECI says skip this beat */                           \
417                 continue;                                               \
418             }                                                           \
419             addr = base + off[beat] * 8 + (beat & 1) * 4;               \
420             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
421             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y);             \
422             qd[H2(off[beat])] = data;                                   \
423             data >>= 16;                                                \
424             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1);         \
425             qd[H2(off[beat])] = data;                                   \
426         }                                                               \
427     }
428 
429 #define DO_VLD4W(OP, O1, O2, O3, O4)                                    \
430     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
431                           uint32_t base)                                \
432     {                                                                   \
433         int beat;                                                       \
434         uint16_t mask = mve_eci_mask(env);                              \
435         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
436         uint32_t addr, data;                                            \
437         uint32_t *qd;                                                   \
438         int y;                                                          \
439         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
440             if ((mask & 1) == 0) {                                      \
441                 /* ECI says skip this beat */                           \
442                 continue;                                               \
443             }                                                           \
444             addr = base + off[beat] * 4;                                \
445             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
446             y = (beat + (O1 & 2)) & 3;                                  \
447             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y);             \
448             qd[H4(off[beat] >> 2)] = data;                              \
449         }                                                               \
450     }
451 
452 DO_VLD4B(vld40b, 0, 1, 10, 11)
453 DO_VLD4B(vld41b, 2, 3, 12, 13)
454 DO_VLD4B(vld42b, 4, 5, 14, 15)
455 DO_VLD4B(vld43b, 6, 7, 8, 9)
456 
457 DO_VLD4H(vld40h, 0, 5)
458 DO_VLD4H(vld41h, 1, 6)
459 DO_VLD4H(vld42h, 2, 7)
460 DO_VLD4H(vld43h, 3, 4)
461 
462 DO_VLD4W(vld40w, 0, 1, 10, 11)
463 DO_VLD4W(vld41w, 2, 3, 12, 13)
464 DO_VLD4W(vld42w, 4, 5, 14, 15)
465 DO_VLD4W(vld43w, 6, 7, 8, 9)
466 
467 #define DO_VLD2B(OP, O1, O2, O3, O4)                                    \
468     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
469                           uint32_t base)                                \
470     {                                                                   \
471         int beat, e;                                                    \
472         uint16_t mask = mve_eci_mask(env);                              \
473         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
474         uint32_t addr, data;                                            \
475         uint8_t *qd;                                                    \
476         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
477             if ((mask & 1) == 0) {                                      \
478                 /* ECI says skip this beat */                           \
479                 continue;                                               \
480             }                                                           \
481             addr = base + off[beat] * 2;                                \
482             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
483             for (e = 0; e < 4; e++, data >>= 8) {                       \
484                 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1));    \
485                 qd[H1(off[beat] + (e >> 1))] = data;                    \
486             }                                                           \
487         }                                                               \
488     }
489 
490 #define DO_VLD2H(OP, O1, O2, O3, O4)                                    \
491     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
492                           uint32_t base)                                \
493     {                                                                   \
494         int beat;                                                       \
495         uint16_t mask = mve_eci_mask(env);                              \
496         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
497         uint32_t addr, data;                                            \
498         int e;                                                          \
499         uint16_t *qd;                                                   \
500         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
501             if ((mask & 1) == 0) {                                      \
502                 /* ECI says skip this beat */                           \
503                 continue;                                               \
504             }                                                           \
505             addr = base + off[beat] * 4;                                \
506             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
507             for (e = 0; e < 2; e++, data >>= 16) {                      \
508                 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e);         \
509                 qd[H2(off[beat])] = data;                               \
510             }                                                           \
511         }                                                               \
512     }
513 
514 #define DO_VLD2W(OP, O1, O2, O3, O4)                                    \
515     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
516                           uint32_t base)                                \
517     {                                                                   \
518         int beat;                                                       \
519         uint16_t mask = mve_eci_mask(env);                              \
520         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
521         uint32_t addr, data;                                            \
522         uint32_t *qd;                                                   \
523         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
524             if ((mask & 1) == 0) {                                      \
525                 /* ECI says skip this beat */                           \
526                 continue;                                               \
527             }                                                           \
528             addr = base + off[beat];                                    \
529             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
530             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1));    \
531             qd[H4(off[beat] >> 3)] = data;                              \
532         }                                                               \
533     }
534 
535 DO_VLD2B(vld20b, 0, 2, 12, 14)
536 DO_VLD2B(vld21b, 4, 6, 8, 10)
537 
538 DO_VLD2H(vld20h, 0, 1, 6, 7)
539 DO_VLD2H(vld21h, 2, 3, 4, 5)
540 
541 DO_VLD2W(vld20w, 0, 4, 24, 28)
542 DO_VLD2W(vld21w, 8, 12, 16, 20)
543 
544 #define DO_VST4B(OP, O1, O2, O3, O4)                                    \
545     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
546                           uint32_t base)                                \
547     {                                                                   \
548         int beat, e;                                                    \
549         uint16_t mask = mve_eci_mask(env);                              \
550         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
551         uint32_t addr, data;                                            \
552         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
553             if ((mask & 1) == 0) {                                      \
554                 /* ECI says skip this beat */                           \
555                 continue;                                               \
556             }                                                           \
557             addr = base + off[beat] * 4;                                \
558             data = 0;                                                   \
559             for (e = 3; e >= 0; e--) {                                  \
560                 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
561                 data = (data << 8) | qd[H1(off[beat])];                 \
562             }                                                           \
563             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
564         }                                                               \
565     }
566 
567 #define DO_VST4H(OP, O1, O2)                                            \
568     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
569                           uint32_t base)                                \
570     {                                                                   \
571         int beat;                                                       \
572         uint16_t mask = mve_eci_mask(env);                              \
573         static const uint8_t off[4] = { O1, O1, O2, O2 };               \
574         uint32_t addr, data;                                            \
575         int y; /* y counts 0 2 0 2 */                                   \
576         uint16_t *qd;                                                   \
577         for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) {   \
578             if ((mask & 1) == 0) {                                      \
579                 /* ECI says skip this beat */                           \
580                 continue;                                               \
581             }                                                           \
582             addr = base + off[beat] * 8 + (beat & 1) * 4;               \
583             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y);             \
584             data = qd[H2(off[beat])];                                   \
585             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1);         \
586             data |= qd[H2(off[beat])] << 16;                            \
587             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
588         }                                                               \
589     }
590 
591 #define DO_VST4W(OP, O1, O2, O3, O4)                                    \
592     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
593                           uint32_t base)                                \
594     {                                                                   \
595         int beat;                                                       \
596         uint16_t mask = mve_eci_mask(env);                              \
597         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
598         uint32_t addr, data;                                            \
599         uint32_t *qd;                                                   \
600         int y;                                                          \
601         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
602             if ((mask & 1) == 0) {                                      \
603                 /* ECI says skip this beat */                           \
604                 continue;                                               \
605             }                                                           \
606             addr = base + off[beat] * 4;                                \
607             y = (beat + (O1 & 2)) & 3;                                  \
608             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y);             \
609             data = qd[H4(off[beat] >> 2)];                              \
610             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
611         }                                                               \
612     }
613 
614 DO_VST4B(vst40b, 0, 1, 10, 11)
615 DO_VST4B(vst41b, 2, 3, 12, 13)
616 DO_VST4B(vst42b, 4, 5, 14, 15)
617 DO_VST4B(vst43b, 6, 7, 8, 9)
618 
619 DO_VST4H(vst40h, 0, 5)
620 DO_VST4H(vst41h, 1, 6)
621 DO_VST4H(vst42h, 2, 7)
622 DO_VST4H(vst43h, 3, 4)
623 
624 DO_VST4W(vst40w, 0, 1, 10, 11)
625 DO_VST4W(vst41w, 2, 3, 12, 13)
626 DO_VST4W(vst42w, 4, 5, 14, 15)
627 DO_VST4W(vst43w, 6, 7, 8, 9)
628 
629 #define DO_VST2B(OP, O1, O2, O3, O4)                                    \
630     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
631                           uint32_t base)                                \
632     {                                                                   \
633         int beat, e;                                                    \
634         uint16_t mask = mve_eci_mask(env);                              \
635         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
636         uint32_t addr, data;                                            \
637         uint8_t *qd;                                                    \
638         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
639             if ((mask & 1) == 0) {                                      \
640                 /* ECI says skip this beat */                           \
641                 continue;                                               \
642             }                                                           \
643             addr = base + off[beat] * 2;                                \
644             data = 0;                                                   \
645             for (e = 3; e >= 0; e--) {                                  \
646                 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1));    \
647                 data = (data << 8) | qd[H1(off[beat] + (e >> 1))];      \
648             }                                                           \
649             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
650         }                                                               \
651     }
652 
653 #define DO_VST2H(OP, O1, O2, O3, O4)                                    \
654     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
655                           uint32_t base)                                \
656     {                                                                   \
657         int beat;                                                       \
658         uint16_t mask = mve_eci_mask(env);                              \
659         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
660         uint32_t addr, data;                                            \
661         int e;                                                          \
662         uint16_t *qd;                                                   \
663         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
664             if ((mask & 1) == 0) {                                      \
665                 /* ECI says skip this beat */                           \
666                 continue;                                               \
667             }                                                           \
668             addr = base + off[beat] * 4;                                \
669             data = 0;                                                   \
670             for (e = 1; e >= 0; e--) {                                  \
671                 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e);         \
672                 data = (data << 16) | qd[H2(off[beat])];                \
673             }                                                           \
674             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
675         }                                                               \
676     }
677 
678 #define DO_VST2W(OP, O1, O2, O3, O4)                                    \
679     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
680                           uint32_t base)                                \
681     {                                                                   \
682         int beat;                                                       \
683         uint16_t mask = mve_eci_mask(env);                              \
684         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
685         uint32_t addr, data;                                            \
686         uint32_t *qd;                                                   \
687         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
688             if ((mask & 1) == 0) {                                      \
689                 /* ECI says skip this beat */                           \
690                 continue;                                               \
691             }                                                           \
692             addr = base + off[beat];                                    \
693             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1));    \
694             data = qd[H4(off[beat] >> 3)];                              \
695             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
696         }                                                               \
697     }
698 
699 DO_VST2B(vst20b, 0, 2, 12, 14)
700 DO_VST2B(vst21b, 4, 6, 8, 10)
701 
702 DO_VST2H(vst20h, 0, 1, 6, 7)
703 DO_VST2H(vst21h, 2, 3, 4, 5)
704 
705 DO_VST2W(vst20w, 0, 4, 24, 28)
706 DO_VST2W(vst21w, 8, 12, 16, 20)
707 
708 /*
709  * The mergemask(D, R, M) macro performs the operation "*D = R" but
710  * storing only the bytes which correspond to 1 bits in M,
711  * leaving other bytes in *D unchanged. We use _Generic
712  * to select the correct implementation based on the type of D.
713  */
714 
715 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
716 {
717     if (mask & 1) {
718         *d = r;
719     }
720 }
721 
722 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
723 {
724     mergemask_ub((uint8_t *)d, r, mask);
725 }
726 
727 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
728 {
729     uint16_t bmask = expand_pred_b(mask);
730     *d = (*d & ~bmask) | (r & bmask);
731 }
732 
733 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
734 {
735     mergemask_uh((uint16_t *)d, r, mask);
736 }
737 
738 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
739 {
740     uint32_t bmask = expand_pred_b(mask);
741     *d = (*d & ~bmask) | (r & bmask);
742 }
743 
744 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
745 {
746     mergemask_uw((uint32_t *)d, r, mask);
747 }
748 
749 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
750 {
751     uint64_t bmask = expand_pred_b(mask);
752     *d = (*d & ~bmask) | (r & bmask);
753 }
754 
755 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
756 {
757     mergemask_uq((uint64_t *)d, r, mask);
758 }
759 
760 #define mergemask(D, R, M)                      \
761     _Generic(D,                                 \
762              uint8_t *: mergemask_ub,           \
763              int8_t *:  mergemask_sb,           \
764              uint16_t *: mergemask_uh,          \
765              int16_t *:  mergemask_sh,          \
766              uint32_t *: mergemask_uw,          \
767              int32_t *:  mergemask_sw,          \
768              uint64_t *: mergemask_uq,          \
769              int64_t *:  mergemask_sq)(D, R, M)
770 
771 void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
772 {
773     /*
774      * The generated code already replicated an 8 or 16 bit constant
775      * into the 32-bit value, so we only need to write the 32-bit
776      * value to all elements of the Qreg, allowing for predication.
777      */
778     uint32_t *d = vd;
779     uint16_t mask = mve_element_mask(env);
780     unsigned e;
781     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
782         mergemask(&d[H4(e)], val, mask);
783     }
784     mve_advance_vpt(env);
785 }
786 
787 #define DO_1OP(OP, ESIZE, TYPE, FN)                                     \
788     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
789     {                                                                   \
790         TYPE *d = vd, *m = vm;                                          \
791         uint16_t mask = mve_element_mask(env);                          \
792         unsigned e;                                                     \
793         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
794             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask);       \
795         }                                                               \
796         mve_advance_vpt(env);                                           \
797     }
798 
799 #define DO_CLS_B(N)   (clrsb32(N) - 24)
800 #define DO_CLS_H(N)   (clrsb32(N) - 16)
801 
802 DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
803 DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
804 DO_1OP(vclsw, 4, int32_t, clrsb32)
805 
806 #define DO_CLZ_B(N)   (clz32(N) - 24)
807 #define DO_CLZ_H(N)   (clz32(N) - 16)
808 
809 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
810 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
811 DO_1OP(vclzw, 4, uint32_t, clz32)
812 
813 DO_1OP(vrev16b, 2, uint16_t, bswap16)
814 DO_1OP(vrev32b, 4, uint32_t, bswap32)
815 DO_1OP(vrev32h, 4, uint32_t, hswap32)
816 DO_1OP(vrev64b, 8, uint64_t, bswap64)
817 DO_1OP(vrev64h, 8, uint64_t, hswap64)
818 DO_1OP(vrev64w, 8, uint64_t, wswap64)
819 
820 #define DO_NOT(N) (~(N))
821 
822 DO_1OP(vmvn, 8, uint64_t, DO_NOT)
823 
824 #define DO_ABS(N) ((N) < 0 ? -(N) : (N))
825 #define DO_FABSH(N)  ((N) & dup_const(MO_16, 0x7fff))
826 #define DO_FABSS(N)  ((N) & dup_const(MO_32, 0x7fffffff))
827 
828 DO_1OP(vabsb, 1, int8_t, DO_ABS)
829 DO_1OP(vabsh, 2, int16_t, DO_ABS)
830 DO_1OP(vabsw, 4, int32_t, DO_ABS)
831 
832 /* We can do these 64 bits at a time */
833 DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
834 DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
835 
836 #define DO_NEG(N)    (-(N))
837 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
838 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
839 
840 DO_1OP(vnegb, 1, int8_t, DO_NEG)
841 DO_1OP(vnegh, 2, int16_t, DO_NEG)
842 DO_1OP(vnegw, 4, int32_t, DO_NEG)
843 
844 /* We can do these 64 bits at a time */
845 DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
846 DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
847 
848 /*
849  * 1 operand immediates: Vda is destination and possibly also one source.
850  * All these insns work at 64-bit widths.
851  */
852 #define DO_1OP_IMM(OP, FN)                                              \
853     void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm)    \
854     {                                                                   \
855         uint64_t *da = vda;                                             \
856         uint16_t mask = mve_element_mask(env);                          \
857         unsigned e;                                                     \
858         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
859             mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask);            \
860         }                                                               \
861         mve_advance_vpt(env);                                           \
862     }
863 
864 #define DO_MOVI(N, I) (I)
865 #define DO_ANDI(N, I) ((N) & (I))
866 #define DO_ORRI(N, I) ((N) | (I))
867 
868 DO_1OP_IMM(vmovi, DO_MOVI)
869 DO_1OP_IMM(vandi, DO_ANDI)
870 DO_1OP_IMM(vorri, DO_ORRI)
871 
872 #define DO_2OP(OP, ESIZE, TYPE, FN)                                     \
873     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
874                                 void *vd, void *vn, void *vm)           \
875     {                                                                   \
876         TYPE *d = vd, *n = vn, *m = vm;                                 \
877         uint16_t mask = mve_element_mask(env);                          \
878         unsigned e;                                                     \
879         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
880             mergemask(&d[H##ESIZE(e)],                                  \
881                       FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask);        \
882         }                                                               \
883         mve_advance_vpt(env);                                           \
884     }
885 
886 /* provide unsigned 2-op helpers for all sizes */
887 #define DO_2OP_U(OP, FN)                        \
888     DO_2OP(OP##b, 1, uint8_t, FN)               \
889     DO_2OP(OP##h, 2, uint16_t, FN)              \
890     DO_2OP(OP##w, 4, uint32_t, FN)
891 
892 /* provide signed 2-op helpers for all sizes */
893 #define DO_2OP_S(OP, FN)                        \
894     DO_2OP(OP##b, 1, int8_t, FN)                \
895     DO_2OP(OP##h, 2, int16_t, FN)               \
896     DO_2OP(OP##w, 4, int32_t, FN)
897 
898 /*
899  * "Long" operations where two half-sized inputs (taken from either the
900  * top or the bottom of the input vector) produce a double-width result.
901  * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
902  */
903 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)               \
904     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
905     {                                                                   \
906         LTYPE *d = vd;                                                  \
907         TYPE *n = vn, *m = vm;                                          \
908         uint16_t mask = mve_element_mask(env);                          \
909         unsigned le;                                                    \
910         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
911             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)],              \
912                          m[H##ESIZE(le * 2 + TOP)]);                    \
913             mergemask(&d[H##LESIZE(le)], r, mask);                      \
914         }                                                               \
915         mve_advance_vpt(env);                                           \
916     }
917 
918 #define DO_2OP_SAT(OP, ESIZE, TYPE, FN)                                 \
919     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
920     {                                                                   \
921         TYPE *d = vd, *n = vn, *m = vm;                                 \
922         uint16_t mask = mve_element_mask(env);                          \
923         unsigned e;                                                     \
924         bool qc = false;                                                \
925         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
926             bool sat = false;                                           \
927             TYPE r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat);          \
928             mergemask(&d[H##ESIZE(e)], r, mask);                        \
929             qc |= sat & mask & 1;                                       \
930         }                                                               \
931         if (qc) {                                                       \
932             env->vfp.qc[0] = qc;                                        \
933         }                                                               \
934         mve_advance_vpt(env);                                           \
935     }
936 
937 /* provide unsigned 2-op helpers for all sizes */
938 #define DO_2OP_SAT_U(OP, FN)                    \
939     DO_2OP_SAT(OP##b, 1, uint8_t, FN)           \
940     DO_2OP_SAT(OP##h, 2, uint16_t, FN)          \
941     DO_2OP_SAT(OP##w, 4, uint32_t, FN)
942 
943 /* provide signed 2-op helpers for all sizes */
944 #define DO_2OP_SAT_S(OP, FN)                    \
945     DO_2OP_SAT(OP##b, 1, int8_t, FN)            \
946     DO_2OP_SAT(OP##h, 2, int16_t, FN)           \
947     DO_2OP_SAT(OP##w, 4, int32_t, FN)
948 
949 #define DO_AND(N, M)  ((N) & (M))
950 #define DO_BIC(N, M)  ((N) & ~(M))
951 #define DO_ORR(N, M)  ((N) | (M))
952 #define DO_ORN(N, M)  ((N) | ~(M))
953 #define DO_EOR(N, M)  ((N) ^ (M))
954 
955 DO_2OP(vand, 8, uint64_t, DO_AND)
956 DO_2OP(vbic, 8, uint64_t, DO_BIC)
957 DO_2OP(vorr, 8, uint64_t, DO_ORR)
958 DO_2OP(vorn, 8, uint64_t, DO_ORN)
959 DO_2OP(veor, 8, uint64_t, DO_EOR)
960 
961 #define DO_ADD(N, M) ((N) + (M))
962 #define DO_SUB(N, M) ((N) - (M))
963 #define DO_MUL(N, M) ((N) * (M))
964 
965 DO_2OP_U(vadd, DO_ADD)
966 DO_2OP_U(vsub, DO_SUB)
967 DO_2OP_U(vmul, DO_MUL)
968 
969 DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
970 DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
971 DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
972 DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
973 DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
974 DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
975 
976 DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
977 DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
978 DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
979 DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
980 DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
981 DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
982 
983 /*
984  * Polynomial multiply. We can always do this generating 64 bits
985  * of the result at a time, so we don't need to use DO_2OP_L.
986  */
987 #define VMULLPH_MASK 0x00ff00ff00ff00ffULL
988 #define VMULLPW_MASK 0x0000ffff0000ffffULL
989 #define DO_VMULLPBH(N, M) pmull_h((N) & VMULLPH_MASK, (M) & VMULLPH_MASK)
990 #define DO_VMULLPTH(N, M) DO_VMULLPBH((N) >> 8, (M) >> 8)
991 #define DO_VMULLPBW(N, M) pmull_w((N) & VMULLPW_MASK, (M) & VMULLPW_MASK)
992 #define DO_VMULLPTW(N, M) DO_VMULLPBW((N) >> 16, (M) >> 16)
993 
994 DO_2OP(vmullpbh, 8, uint64_t, DO_VMULLPBH)
995 DO_2OP(vmullpth, 8, uint64_t, DO_VMULLPTH)
996 DO_2OP(vmullpbw, 8, uint64_t, DO_VMULLPBW)
997 DO_2OP(vmullptw, 8, uint64_t, DO_VMULLPTW)
998 
999 /*
1000  * Because the computation type is at least twice as large as required,
1001  * these work for both signed and unsigned source types.
1002  */
1003 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
1004 {
1005     return (n * m) >> 8;
1006 }
1007 
1008 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
1009 {
1010     return (n * m) >> 16;
1011 }
1012 
1013 static inline uint32_t do_mulh_w(int64_t n, int64_t m)
1014 {
1015     return (n * m) >> 32;
1016 }
1017 
1018 static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
1019 {
1020     return (n * m + (1U << 7)) >> 8;
1021 }
1022 
1023 static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
1024 {
1025     return (n * m + (1U << 15)) >> 16;
1026 }
1027 
1028 static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
1029 {
1030     return (n * m + (1U << 31)) >> 32;
1031 }
1032 
1033 DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
1034 DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
1035 DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
1036 DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
1037 DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
1038 DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
1039 
1040 DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
1041 DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
1042 DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
1043 DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
1044 DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
1045 DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
1046 
1047 #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
1048 #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
1049 
1050 DO_2OP_S(vmaxs, DO_MAX)
1051 DO_2OP_U(vmaxu, DO_MAX)
1052 DO_2OP_S(vmins, DO_MIN)
1053 DO_2OP_U(vminu, DO_MIN)
1054 
1055 #define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))
1056 
1057 DO_2OP_S(vabds, DO_ABD)
1058 DO_2OP_U(vabdu, DO_ABD)
1059 
1060 static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
1061 {
1062     return ((uint64_t)n + m) >> 1;
1063 }
1064 
1065 static inline int32_t do_vhadd_s(int32_t n, int32_t m)
1066 {
1067     return ((int64_t)n + m) >> 1;
1068 }
1069 
1070 static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
1071 {
1072     return ((uint64_t)n - m) >> 1;
1073 }
1074 
1075 static inline int32_t do_vhsub_s(int32_t n, int32_t m)
1076 {
1077     return ((int64_t)n - m) >> 1;
1078 }
1079 
1080 DO_2OP_S(vhadds, do_vhadd_s)
1081 DO_2OP_U(vhaddu, do_vhadd_u)
1082 DO_2OP_S(vhsubs, do_vhsub_s)
1083 DO_2OP_U(vhsubu, do_vhsub_u)
1084 
1085 #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1086 #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1087 #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1088 #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1089 
1090 DO_2OP_S(vshls, DO_VSHLS)
1091 DO_2OP_U(vshlu, DO_VSHLU)
1092 DO_2OP_S(vrshls, DO_VRSHLS)
1093 DO_2OP_U(vrshlu, DO_VRSHLU)
1094 
1095 #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
1096 #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
1097 
1098 DO_2OP_S(vrhadds, DO_RHADD_S)
1099 DO_2OP_U(vrhaddu, DO_RHADD_U)
1100 
1101 static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
1102                     uint32_t inv, uint32_t carry_in, bool update_flags)
1103 {
1104     uint16_t mask = mve_element_mask(env);
1105     unsigned e;
1106 
1107     /* If any additions trigger, we will update flags. */
1108     if (mask & 0x1111) {
1109         update_flags = true;
1110     }
1111 
1112     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
1113         uint64_t r = carry_in;
1114         r += n[H4(e)];
1115         r += m[H4(e)] ^ inv;
1116         if (mask & 1) {
1117             carry_in = r >> 32;
1118         }
1119         mergemask(&d[H4(e)], r, mask);
1120     }
1121 
1122     if (update_flags) {
1123         /* Store C, clear NZV. */
1124         env->vfp.xregs[ARM_VFP_FPSCR] &= ~FPCR_NZCV_MASK;
1125         env->vfp.xregs[ARM_VFP_FPSCR] |= carry_in * FPCR_C;
1126     }
1127     mve_advance_vpt(env);
1128 }
1129 
1130 void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
1131 {
1132     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
1133     do_vadc(env, vd, vn, vm, 0, carry_in, false);
1134 }
1135 
1136 void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
1137 {
1138     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
1139     do_vadc(env, vd, vn, vm, -1, carry_in, false);
1140 }
1141 
1142 
1143 void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
1144 {
1145     do_vadc(env, vd, vn, vm, 0, 0, true);
1146 }
1147 
1148 void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
1149 {
1150     do_vadc(env, vd, vn, vm, -1, 1, true);
1151 }
1152 
1153 #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1)                             \
1154     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
1155     {                                                                   \
1156         TYPE *d = vd, *n = vn, *m = vm;                                 \
1157         uint16_t mask = mve_element_mask(env);                          \
1158         unsigned e;                                                     \
1159         TYPE r[16 / ESIZE];                                             \
1160         /* Calculate all results first to avoid overwriting inputs */   \
1161         for (e = 0; e < 16 / ESIZE; e++) {                              \
1162             if (!(e & 1)) {                                             \
1163                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]);         \
1164             } else {                                                    \
1165                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]);         \
1166             }                                                           \
1167         }                                                               \
1168         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1169             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
1170         }                                                               \
1171         mve_advance_vpt(env);                                           \
1172     }
1173 
1174 #define DO_VCADD_ALL(OP, FN0, FN1)              \
1175     DO_VCADD(OP##b, 1, int8_t, FN0, FN1)        \
1176     DO_VCADD(OP##h, 2, int16_t, FN0, FN1)       \
1177     DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
1178 
1179 DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
1180 DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
1181 DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
1182 DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)
1183 
1184 static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
1185 {
1186     if (val > max) {
1187         *s = true;
1188         return max;
1189     } else if (val < min) {
1190         *s = true;
1191         return min;
1192     }
1193     return val;
1194 }
1195 
1196 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
1197 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
1198 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
1199 
1200 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
1201 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
1202 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
1203 
1204 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
1205 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
1206 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
1207 
1208 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
1209 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
1210 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
1211 
1212 /*
1213  * For QDMULH and QRDMULH we simplify "double and shift by esize" into
1214  * "shift by esize-1", adjusting the QRDMULH rounding constant to match.
1215  */
1216 #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
1217                                         INT8_MIN, INT8_MAX, s)
1218 #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
1219                                         INT16_MIN, INT16_MAX, s)
1220 #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
1221                                         INT32_MIN, INT32_MAX, s)
1222 
1223 #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
1224                                          INT8_MIN, INT8_MAX, s)
1225 #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
1226                                          INT16_MIN, INT16_MAX, s)
1227 #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
1228                                          INT32_MIN, INT32_MAX, s)
1229 
1230 DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
1231 DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
1232 DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)
1233 
1234 DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
1235 DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
1236 DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)
1237 
1238 DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
1239 DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
1240 DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
1241 DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
1242 DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
1243 DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)
1244 
1245 DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
1246 DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
1247 DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
1248 DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
1249 DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
1250 DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)
1251 
1252 /*
1253  * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
1254  * and friends wanting a uint32_t* sat and our needing a bool*.
1255  */
1256 #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp)                        \
1257     ({                                                                  \
1258         uint32_t su32 = 0;                                              \
1259         typeof(N) r = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32);  \
1260         if (su32) {                                                     \
1261             *satp = true;                                               \
1262         }                                                               \
1263         r;                                                              \
1264     })
1265 
1266 #define DO_SQSHL_OP(N, M, satp) \
1267     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
1268 #define DO_UQSHL_OP(N, M, satp) \
1269     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
1270 #define DO_SQRSHL_OP(N, M, satp) \
1271     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
1272 #define DO_UQRSHL_OP(N, M, satp) \
1273     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
1274 #define DO_SUQSHL_OP(N, M, satp) \
1275     WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp)
1276 
1277 DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
1278 DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
1279 DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
1280 DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)
1281 
1282 /*
1283  * Multiply add dual returning high half
1284  * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
1285  * whether to add the rounding constant, and the pointer to the
1286  * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
1287  * saturate to twice the input size and return the high half; or
1288  * (A * B - C * D) etc for VQDMLSDH.
1289  */
1290 #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN)                \
1291     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1292                                 void *vm)                               \
1293     {                                                                   \
1294         TYPE *d = vd, *n = vn, *m = vm;                                 \
1295         uint16_t mask = mve_element_mask(env);                          \
1296         unsigned e;                                                     \
1297         bool qc = false;                                                \
1298         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1299             bool sat = false;                                           \
1300             if ((e & 1) == XCHG) {                                      \
1301                 TYPE r = FN(n[H##ESIZE(e)],                             \
1302                             m[H##ESIZE(e - XCHG)],                      \
1303                             n[H##ESIZE(e + (1 - 2 * XCHG))],            \
1304                             m[H##ESIZE(e + (1 - XCHG))],                \
1305                             ROUND, &sat);                               \
1306                 mergemask(&d[H##ESIZE(e)], r, mask);                    \
1307                 qc |= sat & mask & 1;                                   \
1308             }                                                           \
1309         }                                                               \
1310         if (qc) {                                                       \
1311             env->vfp.qc[0] = qc;                                        \
1312         }                                                               \
1313         mve_advance_vpt(env);                                           \
1314     }
1315 
1316 static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
1317                             int round, bool *sat)
1318 {
1319     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
1320     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1321 }
1322 
1323 static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
1324                              int round, bool *sat)
1325 {
1326     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
1327     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1328 }
1329 
1330 static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1331                              int round, bool *sat)
1332 {
1333     int64_t m1 = (int64_t)a * b;
1334     int64_t m2 = (int64_t)c * d;
1335     int64_t r;
1336     /*
1337      * Architecturally we should do the entire add, double, round
1338      * and then check for saturation. We do three saturating adds,
1339      * but we need to be careful about the order. If the first
1340      * m1 + m2 saturates then it's impossible for the *2+rc to
1341      * bring it back into the non-saturated range. However, if
1342      * m1 + m2 is negative then it's possible that doing the doubling
1343      * would take the intermediate result below INT64_MAX and the
1344      * addition of the rounding constant then brings it back in range.
1345      * So we add half the rounding constant before doubling rather
1346      * than adding the rounding constant after the doubling.
1347      */
1348     if (sadd64_overflow(m1, m2, &r) ||
1349         sadd64_overflow(r, (round << 30), &r) ||
1350         sadd64_overflow(r, r, &r)) {
1351         *sat = true;
1352         return r < 0 ? INT32_MAX : INT32_MIN;
1353     }
1354     return r >> 32;
1355 }
1356 
1357 static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
1358                             int round, bool *sat)
1359 {
1360     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
1361     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1362 }
1363 
1364 static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
1365                              int round, bool *sat)
1366 {
1367     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
1368     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1369 }
1370 
1371 static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1372                              int round, bool *sat)
1373 {
1374     int64_t m1 = (int64_t)a * b;
1375     int64_t m2 = (int64_t)c * d;
1376     int64_t r;
1377     /* The same ordering issue as in do_vqdmladh_w applies here too */
1378     if (ssub64_overflow(m1, m2, &r) ||
1379         sadd64_overflow(r, (round << 30), &r) ||
1380         sadd64_overflow(r, r, &r)) {
1381         *sat = true;
1382         return r < 0 ? INT32_MAX : INT32_MIN;
1383     }
1384     return r >> 32;
1385 }
1386 
1387 DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
1388 DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
1389 DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
1390 DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
1391 DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
1392 DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)
1393 
1394 DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
1395 DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
1396 DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
1397 DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
1398 DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
1399 DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)
1400 
1401 DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
1402 DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
1403 DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
1404 DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
1405 DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
1406 DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)
1407 
1408 DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
1409 DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
1410 DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
1411 DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
1412 DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
1413 DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)
1414 
1415 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN)                              \
1416     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1417                                 uint32_t rm)                            \
1418     {                                                                   \
1419         TYPE *d = vd, *n = vn;                                          \
1420         TYPE m = rm;                                                    \
1421         uint16_t mask = mve_element_mask(env);                          \
1422         unsigned e;                                                     \
1423         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1424             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask);    \
1425         }                                                               \
1426         mve_advance_vpt(env);                                           \
1427     }
1428 
1429 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN)                          \
1430     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1431                                 uint32_t rm)                            \
1432     {                                                                   \
1433         TYPE *d = vd, *n = vn;                                          \
1434         TYPE m = rm;                                                    \
1435         uint16_t mask = mve_element_mask(env);                          \
1436         unsigned e;                                                     \
1437         bool qc = false;                                                \
1438         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1439             bool sat = false;                                           \
1440             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat),     \
1441                       mask);                                            \
1442             qc |= sat & mask & 1;                                       \
1443         }                                                               \
1444         if (qc) {                                                       \
1445             env->vfp.qc[0] = qc;                                        \
1446         }                                                               \
1447         mve_advance_vpt(env);                                           \
1448     }
1449 
1450 /* "accumulating" version where FN takes d as well as n and m */
1451 #define DO_2OP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                          \
1452     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1453                                 uint32_t rm)                            \
1454     {                                                                   \
1455         TYPE *d = vd, *n = vn;                                          \
1456         TYPE m = rm;                                                    \
1457         uint16_t mask = mve_element_mask(env);                          \
1458         unsigned e;                                                     \
1459         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1460             mergemask(&d[H##ESIZE(e)],                                  \
1461                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m), mask);     \
1462         }                                                               \
1463         mve_advance_vpt(env);                                           \
1464     }
1465 
1466 #define DO_2OP_SAT_ACC_SCALAR(OP, ESIZE, TYPE, FN)                      \
1467     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1468                                 uint32_t rm)                            \
1469     {                                                                   \
1470         TYPE *d = vd, *n = vn;                                          \
1471         TYPE m = rm;                                                    \
1472         uint16_t mask = mve_element_mask(env);                          \
1473         unsigned e;                                                     \
1474         bool qc = false;                                                \
1475         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1476             bool sat = false;                                           \
1477             mergemask(&d[H##ESIZE(e)],                                  \
1478                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m, &sat),      \
1479                       mask);                                            \
1480             qc |= sat & mask & 1;                                       \
1481         }                                                               \
1482         if (qc) {                                                       \
1483             env->vfp.qc[0] = qc;                                        \
1484         }                                                               \
1485         mve_advance_vpt(env);                                           \
1486     }
1487 
1488 /* provide unsigned 2-op scalar helpers for all sizes */
1489 #define DO_2OP_SCALAR_U(OP, FN)                 \
1490     DO_2OP_SCALAR(OP##b, 1, uint8_t, FN)        \
1491     DO_2OP_SCALAR(OP##h, 2, uint16_t, FN)       \
1492     DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
1493 #define DO_2OP_SCALAR_S(OP, FN)                 \
1494     DO_2OP_SCALAR(OP##b, 1, int8_t, FN)         \
1495     DO_2OP_SCALAR(OP##h, 2, int16_t, FN)        \
1496     DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
1497 
1498 #define DO_2OP_ACC_SCALAR_U(OP, FN)             \
1499     DO_2OP_ACC_SCALAR(OP##b, 1, uint8_t, FN)    \
1500     DO_2OP_ACC_SCALAR(OP##h, 2, uint16_t, FN)   \
1501     DO_2OP_ACC_SCALAR(OP##w, 4, uint32_t, FN)
1502 
1503 DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
1504 DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
1505 DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
1506 DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
1507 DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
1508 DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
1509 DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
1510 
1511 DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
1512 DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
1513 DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
1514 DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
1515 DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
1516 DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
1517 
1518 DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
1519 DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
1520 DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
1521 DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
1522 DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
1523 DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
1524 
1525 DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
1526 DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
1527 DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
1528 DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
1529 DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
1530 DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
1531 
1532 static int8_t do_vqdmlah_b(int8_t a, int8_t b, int8_t c, int round, bool *sat)
1533 {
1534     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 8) + (round << 7);
1535     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1536 }
1537 
1538 static int16_t do_vqdmlah_h(int16_t a, int16_t b, int16_t c,
1539                            int round, bool *sat)
1540 {
1541     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 16) + (round << 15);
1542     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1543 }
1544 
1545 static int32_t do_vqdmlah_w(int32_t a, int32_t b, int32_t c,
1546                             int round, bool *sat)
1547 {
1548     /*
1549      * Architecturally we should do the entire add, double, round
1550      * and then check for saturation. We do three saturating adds,
1551      * but we need to be careful about the order. If the first
1552      * m1 + m2 saturates then it's impossible for the *2+rc to
1553      * bring it back into the non-saturated range. However, if
1554      * m1 + m2 is negative then it's possible that doing the doubling
1555      * would take the intermediate result below INT64_MAX and the
1556      * addition of the rounding constant then brings it back in range.
1557      * So we add half the rounding constant and half the "c << esize"
1558      * before doubling rather than adding the rounding constant after
1559      * the doubling.
1560      */
1561     int64_t m1 = (int64_t)a * b;
1562     int64_t m2 = (int64_t)c << 31;
1563     int64_t r;
1564     if (sadd64_overflow(m1, m2, &r) ||
1565         sadd64_overflow(r, (round << 30), &r) ||
1566         sadd64_overflow(r, r, &r)) {
1567         *sat = true;
1568         return r < 0 ? INT32_MAX : INT32_MIN;
1569     }
1570     return r >> 32;
1571 }
1572 
1573 /*
1574  * The *MLAH insns are vector * scalar + vector;
1575  * the *MLASH insns are vector * vector + scalar
1576  */
1577 #define DO_VQDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 0, S)
1578 #define DO_VQDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 0, S)
1579 #define DO_VQDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 0, S)
1580 #define DO_VQRDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 1, S)
1581 #define DO_VQRDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 1, S)
1582 #define DO_VQRDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 1, S)
1583 
1584 #define DO_VQDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 0, S)
1585 #define DO_VQDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 0, S)
1586 #define DO_VQDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 0, S)
1587 #define DO_VQRDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 1, S)
1588 #define DO_VQRDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 1, S)
1589 #define DO_VQRDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 1, S)
1590 
1591 DO_2OP_SAT_ACC_SCALAR(vqdmlahb, 1, int8_t, DO_VQDMLAH_B)
1592 DO_2OP_SAT_ACC_SCALAR(vqdmlahh, 2, int16_t, DO_VQDMLAH_H)
1593 DO_2OP_SAT_ACC_SCALAR(vqdmlahw, 4, int32_t, DO_VQDMLAH_W)
1594 DO_2OP_SAT_ACC_SCALAR(vqrdmlahb, 1, int8_t, DO_VQRDMLAH_B)
1595 DO_2OP_SAT_ACC_SCALAR(vqrdmlahh, 2, int16_t, DO_VQRDMLAH_H)
1596 DO_2OP_SAT_ACC_SCALAR(vqrdmlahw, 4, int32_t, DO_VQRDMLAH_W)
1597 
1598 DO_2OP_SAT_ACC_SCALAR(vqdmlashb, 1, int8_t, DO_VQDMLASH_B)
1599 DO_2OP_SAT_ACC_SCALAR(vqdmlashh, 2, int16_t, DO_VQDMLASH_H)
1600 DO_2OP_SAT_ACC_SCALAR(vqdmlashw, 4, int32_t, DO_VQDMLASH_W)
1601 DO_2OP_SAT_ACC_SCALAR(vqrdmlashb, 1, int8_t, DO_VQRDMLASH_B)
1602 DO_2OP_SAT_ACC_SCALAR(vqrdmlashh, 2, int16_t, DO_VQRDMLASH_H)
1603 DO_2OP_SAT_ACC_SCALAR(vqrdmlashw, 4, int32_t, DO_VQRDMLASH_W)
1604 
1605 /* Vector by scalar plus vector */
1606 #define DO_VMLA(D, N, M) ((N) * (M) + (D))
1607 
1608 DO_2OP_ACC_SCALAR_U(vmla, DO_VMLA)
1609 
1610 /* Vector by vector plus scalar */
1611 #define DO_VMLAS(D, N, M) ((N) * (D) + (M))
1612 
1613 DO_2OP_ACC_SCALAR_U(vmlas, DO_VMLAS)
1614 
1615 /*
1616  * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
1617  * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
1618  * SATMASK specifies which bits of the predicate mask matter for determining
1619  * whether to propagate a saturation indication into FPSCR.QC -- for
1620  * the 16x16->32 case we must check only the bit corresponding to the T or B
1621  * half that we used, but for the 32x32->64 case we propagate if the mask
1622  * bit is set for either half.
1623  */
1624 #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
1625     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1626                                 uint32_t rm)                            \
1627     {                                                                   \
1628         LTYPE *d = vd;                                                  \
1629         TYPE *n = vn;                                                   \
1630         TYPE m = rm;                                                    \
1631         uint16_t mask = mve_element_mask(env);                          \
1632         unsigned le;                                                    \
1633         bool qc = false;                                                \
1634         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1635             bool sat = false;                                           \
1636             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat);    \
1637             mergemask(&d[H##LESIZE(le)], r, mask);                      \
1638             qc |= sat && (mask & SATMASK);                              \
1639         }                                                               \
1640         if (qc) {                                                       \
1641             env->vfp.qc[0] = qc;                                        \
1642         }                                                               \
1643         mve_advance_vpt(env);                                           \
1644     }
1645 
1646 static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
1647 {
1648     int64_t r = ((int64_t)n * m) * 2;
1649     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
1650 }
1651 
1652 static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
1653 {
1654     /* The multiply can't overflow, but the doubling might */
1655     int64_t r = (int64_t)n * m;
1656     if (r > INT64_MAX / 2) {
1657         *sat = true;
1658         return INT64_MAX;
1659     } else if (r < INT64_MIN / 2) {
1660         *sat = true;
1661         return INT64_MIN;
1662     } else {
1663         return r * 2;
1664     }
1665 }
1666 
1667 #define SATMASK16B 1
1668 #define SATMASK16T (1 << 2)
1669 #define SATMASK32 ((1 << 4) | 1)
1670 
1671 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
1672                     do_qdmullh, SATMASK16B)
1673 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
1674                     do_qdmullw, SATMASK32)
1675 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
1676                     do_qdmullh, SATMASK16T)
1677 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
1678                     do_qdmullw, SATMASK32)
1679 
1680 /*
1681  * Long saturating ops
1682  */
1683 #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK)  \
1684     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1685                                 void *vm)                               \
1686     {                                                                   \
1687         LTYPE *d = vd;                                                  \
1688         TYPE *n = vn, *m = vm;                                          \
1689         uint16_t mask = mve_element_mask(env);                          \
1690         unsigned le;                                                    \
1691         bool qc = false;                                                \
1692         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1693             bool sat = false;                                           \
1694             LTYPE op1 = n[H##ESIZE(le * 2 + TOP)];                      \
1695             LTYPE op2 = m[H##ESIZE(le * 2 + TOP)];                      \
1696             mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask);     \
1697             qc |= sat && (mask & SATMASK);                              \
1698         }                                                               \
1699         if (qc) {                                                       \
1700             env->vfp.qc[0] = qc;                                        \
1701         }                                                               \
1702         mve_advance_vpt(env);                                           \
1703     }
1704 
1705 DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
1706 DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1707 DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
1708 DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1709 
1710 static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
1711 {
1712     m &= 0xff;
1713     if (m == 0) {
1714         return 0;
1715     }
1716     n = revbit8(n);
1717     if (m < 8) {
1718         n >>= 8 - m;
1719     }
1720     return n;
1721 }
1722 
1723 static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
1724 {
1725     m &= 0xff;
1726     if (m == 0) {
1727         return 0;
1728     }
1729     n = revbit16(n);
1730     if (m < 16) {
1731         n >>= 16 - m;
1732     }
1733     return n;
1734 }
1735 
1736 static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
1737 {
1738     m &= 0xff;
1739     if (m == 0) {
1740         return 0;
1741     }
1742     n = revbit32(n);
1743     if (m < 32) {
1744         n >>= 32 - m;
1745     }
1746     return n;
1747 }
1748 
1749 DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
1750 DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
1751 DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
1752 
1753 /*
1754  * Multiply add long dual accumulate ops.
1755  */
1756 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC)                 \
1757     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1758                                     void *vm, uint64_t a)               \
1759     {                                                                   \
1760         uint16_t mask = mve_element_mask(env);                          \
1761         unsigned e;                                                     \
1762         TYPE *n = vn, *m = vm;                                          \
1763         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1764             if (mask & 1) {                                             \
1765                 if (e & 1) {                                            \
1766                     a ODDACC                                            \
1767                         (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
1768                 } else {                                                \
1769                     a EVENACC                                           \
1770                         (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
1771                 }                                                       \
1772             }                                                           \
1773         }                                                               \
1774         mve_advance_vpt(env);                                           \
1775         return a;                                                       \
1776     }
1777 
1778 DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
1779 DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
1780 DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
1781 DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
1782 
1783 DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
1784 DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
1785 
1786 DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
1787 DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
1788 DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
1789 DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
1790 
1791 /*
1792  * Multiply add dual accumulate ops
1793  */
1794 #define DO_DAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \
1795     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1796                                     void *vm, uint32_t a)               \
1797     {                                                                   \
1798         uint16_t mask = mve_element_mask(env);                          \
1799         unsigned e;                                                     \
1800         TYPE *n = vn, *m = vm;                                          \
1801         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1802             if (mask & 1) {                                             \
1803                 if (e & 1) {                                            \
1804                     a ODDACC                                            \
1805                         n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)];     \
1806                 } else {                                                \
1807                     a EVENACC                                           \
1808                         n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)];     \
1809                 }                                                       \
1810             }                                                           \
1811         }                                                               \
1812         mve_advance_vpt(env);                                           \
1813         return a;                                                       \
1814     }
1815 
1816 #define DO_DAV_S(INSN, XCHG, EVENACC, ODDACC)           \
1817     DO_DAV(INSN##b, 1, int8_t, XCHG, EVENACC, ODDACC)   \
1818     DO_DAV(INSN##h, 2, int16_t, XCHG, EVENACC, ODDACC)  \
1819     DO_DAV(INSN##w, 4, int32_t, XCHG, EVENACC, ODDACC)
1820 
1821 #define DO_DAV_U(INSN, XCHG, EVENACC, ODDACC)           \
1822     DO_DAV(INSN##b, 1, uint8_t, XCHG, EVENACC, ODDACC)  \
1823     DO_DAV(INSN##h, 2, uint16_t, XCHG, EVENACC, ODDACC) \
1824     DO_DAV(INSN##w, 4, uint32_t, XCHG, EVENACC, ODDACC)
1825 
1826 DO_DAV_S(vmladavs, false, +=, +=)
1827 DO_DAV_U(vmladavu, false, +=, +=)
1828 DO_DAV_S(vmlsdav, false, +=, -=)
1829 DO_DAV_S(vmladavsx, true, +=, +=)
1830 DO_DAV_S(vmlsdavx, true, +=, -=)
1831 
1832 /*
1833  * Rounding multiply add long dual accumulate high. In the pseudocode
1834  * this is implemented with a 72-bit internal accumulator value of which
1835  * the top 64 bits are returned. We optimize this to avoid having to
1836  * use 128-bit arithmetic -- we can do this because the 74-bit accumulator
1837  * is squashed back into 64-bits after each beat.
1838  */
1839 #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB)                            \
1840     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1841                                     void *vm, uint64_t a)               \
1842     {                                                                   \
1843         uint16_t mask = mve_element_mask(env);                          \
1844         unsigned e;                                                     \
1845         TYPE *n = vn, *m = vm;                                          \
1846         for (e = 0; e < 16 / 4; e++, mask >>= 4) {                      \
1847             if (mask & 1) {                                             \
1848                 LTYPE mul;                                              \
1849                 if (e & 1) {                                            \
1850                     mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)];        \
1851                     if (SUB) {                                          \
1852                         mul = -mul;                                     \
1853                     }                                                   \
1854                 } else {                                                \
1855                     mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)];        \
1856                 }                                                       \
1857                 mul = (mul >> 8) + ((mul >> 7) & 1);                    \
1858                 a += mul;                                               \
1859             }                                                           \
1860         }                                                               \
1861         mve_advance_vpt(env);                                           \
1862         return a;                                                       \
1863     }
1864 
1865 DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
1866 DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)
1867 
1868 DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)
1869 
1870 DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
1871 DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)
1872 
1873 /* Vector add across vector */
1874 #define DO_VADDV(OP, ESIZE, TYPE)                               \
1875     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1876                                     uint32_t ra)                \
1877     {                                                           \
1878         uint16_t mask = mve_element_mask(env);                  \
1879         unsigned e;                                             \
1880         TYPE *m = vm;                                           \
1881         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1882             if (mask & 1) {                                     \
1883                 ra += m[H##ESIZE(e)];                           \
1884             }                                                   \
1885         }                                                       \
1886         mve_advance_vpt(env);                                   \
1887         return ra;                                              \
1888     }                                                           \
1889 
1890 DO_VADDV(vaddvsb, 1, int8_t)
1891 DO_VADDV(vaddvsh, 2, int16_t)
1892 DO_VADDV(vaddvsw, 4, int32_t)
1893 DO_VADDV(vaddvub, 1, uint8_t)
1894 DO_VADDV(vaddvuh, 2, uint16_t)
1895 DO_VADDV(vaddvuw, 4, uint32_t)
1896 
1897 /*
1898  * Vector max/min across vector. Unlike VADDV, we must
1899  * read ra as the element size, not its full width.
1900  * We work with int64_t internally for simplicity.
1901  */
1902 #define DO_VMAXMINV(OP, ESIZE, TYPE, RATYPE, FN)                \
1903     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1904                                     uint32_t ra_in)             \
1905     {                                                           \
1906         uint16_t mask = mve_element_mask(env);                  \
1907         unsigned e;                                             \
1908         TYPE *m = vm;                                           \
1909         int64_t ra = (RATYPE)ra_in;                             \
1910         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1911             if (mask & 1) {                                     \
1912                 ra = FN(ra, m[H##ESIZE(e)]);                    \
1913             }                                                   \
1914         }                                                       \
1915         mve_advance_vpt(env);                                   \
1916         return ra;                                              \
1917     }                                                           \
1918 
1919 #define DO_VMAXMINV_U(INSN, FN)                         \
1920     DO_VMAXMINV(INSN##b, 1, uint8_t, uint8_t, FN)       \
1921     DO_VMAXMINV(INSN##h, 2, uint16_t, uint16_t, FN)     \
1922     DO_VMAXMINV(INSN##w, 4, uint32_t, uint32_t, FN)
1923 #define DO_VMAXMINV_S(INSN, FN)                         \
1924     DO_VMAXMINV(INSN##b, 1, int8_t, int8_t, FN)         \
1925     DO_VMAXMINV(INSN##h, 2, int16_t, int16_t, FN)       \
1926     DO_VMAXMINV(INSN##w, 4, int32_t, int32_t, FN)
1927 
1928 /*
1929  * Helpers for max and min of absolute values across vector:
1930  * note that we only take the absolute value of 'm', not 'n'
1931  */
1932 static int64_t do_maxa(int64_t n, int64_t m)
1933 {
1934     if (m < 0) {
1935         m = -m;
1936     }
1937     return MAX(n, m);
1938 }
1939 
1940 static int64_t do_mina(int64_t n, int64_t m)
1941 {
1942     if (m < 0) {
1943         m = -m;
1944     }
1945     return MIN(n, m);
1946 }
1947 
1948 DO_VMAXMINV_S(vmaxvs, DO_MAX)
1949 DO_VMAXMINV_U(vmaxvu, DO_MAX)
1950 DO_VMAXMINV_S(vminvs, DO_MIN)
1951 DO_VMAXMINV_U(vminvu, DO_MIN)
1952 /*
1953  * VMAXAV, VMINAV treat the general purpose input as unsigned
1954  * and the vector elements as signed.
1955  */
1956 DO_VMAXMINV(vmaxavb, 1, int8_t, uint8_t, do_maxa)
1957 DO_VMAXMINV(vmaxavh, 2, int16_t, uint16_t, do_maxa)
1958 DO_VMAXMINV(vmaxavw, 4, int32_t, uint32_t, do_maxa)
1959 DO_VMAXMINV(vminavb, 1, int8_t, uint8_t, do_mina)
1960 DO_VMAXMINV(vminavh, 2, int16_t, uint16_t, do_mina)
1961 DO_VMAXMINV(vminavw, 4, int32_t, uint32_t, do_mina)
1962 
1963 #define DO_VABAV(OP, ESIZE, TYPE)                               \
1964     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1965                                     void *vm, uint32_t ra)      \
1966     {                                                           \
1967         uint16_t mask = mve_element_mask(env);                  \
1968         unsigned e;                                             \
1969         TYPE *m = vm, *n = vn;                                  \
1970         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1971             if (mask & 1) {                                     \
1972                 int64_t n0 = n[H##ESIZE(e)];                    \
1973                 int64_t m0 = m[H##ESIZE(e)];                    \
1974                 uint32_t r = n0 >= m0 ? (n0 - m0) : (m0 - n0);  \
1975                 ra += r;                                        \
1976             }                                                   \
1977         }                                                       \
1978         mve_advance_vpt(env);                                   \
1979         return ra;                                              \
1980     }
1981 
1982 DO_VABAV(vabavsb, 1, int8_t)
1983 DO_VABAV(vabavsh, 2, int16_t)
1984 DO_VABAV(vabavsw, 4, int32_t)
1985 DO_VABAV(vabavub, 1, uint8_t)
1986 DO_VABAV(vabavuh, 2, uint16_t)
1987 DO_VABAV(vabavuw, 4, uint32_t)
1988 
1989 #define DO_VADDLV(OP, TYPE, LTYPE)                              \
1990     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1991                                     uint64_t ra)                \
1992     {                                                           \
1993         uint16_t mask = mve_element_mask(env);                  \
1994         unsigned e;                                             \
1995         TYPE *m = vm;                                           \
1996         for (e = 0; e < 16 / 4; e++, mask >>= 4) {              \
1997             if (mask & 1) {                                     \
1998                 ra += (LTYPE)m[H4(e)];                          \
1999             }                                                   \
2000         }                                                       \
2001         mve_advance_vpt(env);                                   \
2002         return ra;                                              \
2003     }                                                           \
2004 
2005 DO_VADDLV(vaddlv_s, int32_t, int64_t)
2006 DO_VADDLV(vaddlv_u, uint32_t, uint64_t)
2007 
2008 /* Shifts by immediate */
2009 #define DO_2SHIFT(OP, ESIZE, TYPE, FN)                          \
2010     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2011                                 void *vm, uint32_t shift)       \
2012     {                                                           \
2013         TYPE *d = vd, *m = vm;                                  \
2014         uint16_t mask = mve_element_mask(env);                  \
2015         unsigned e;                                             \
2016         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2017             mergemask(&d[H##ESIZE(e)],                          \
2018                       FN(m[H##ESIZE(e)], shift), mask);         \
2019         }                                                       \
2020         mve_advance_vpt(env);                                   \
2021     }
2022 
2023 #define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN)                      \
2024     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2025                                 void *vm, uint32_t shift)       \
2026     {                                                           \
2027         TYPE *d = vd, *m = vm;                                  \
2028         uint16_t mask = mve_element_mask(env);                  \
2029         unsigned e;                                             \
2030         bool qc = false;                                        \
2031         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2032             bool sat = false;                                   \
2033             mergemask(&d[H##ESIZE(e)],                          \
2034                       FN(m[H##ESIZE(e)], shift, &sat), mask);   \
2035             qc |= sat & mask & 1;                               \
2036         }                                                       \
2037         if (qc) {                                               \
2038             env->vfp.qc[0] = qc;                                \
2039         }                                                       \
2040         mve_advance_vpt(env);                                   \
2041     }
2042 
2043 /* provide unsigned 2-op shift helpers for all sizes */
2044 #define DO_2SHIFT_U(OP, FN)                     \
2045     DO_2SHIFT(OP##b, 1, uint8_t, FN)            \
2046     DO_2SHIFT(OP##h, 2, uint16_t, FN)           \
2047     DO_2SHIFT(OP##w, 4, uint32_t, FN)
2048 #define DO_2SHIFT_S(OP, FN)                     \
2049     DO_2SHIFT(OP##b, 1, int8_t, FN)             \
2050     DO_2SHIFT(OP##h, 2, int16_t, FN)            \
2051     DO_2SHIFT(OP##w, 4, int32_t, FN)
2052 
2053 #define DO_2SHIFT_SAT_U(OP, FN)                 \
2054     DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN)        \
2055     DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN)       \
2056     DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN)
2057 #define DO_2SHIFT_SAT_S(OP, FN)                 \
2058     DO_2SHIFT_SAT(OP##b, 1, int8_t, FN)         \
2059     DO_2SHIFT_SAT(OP##h, 2, int16_t, FN)        \
2060     DO_2SHIFT_SAT(OP##w, 4, int32_t, FN)
2061 
2062 DO_2SHIFT_U(vshli_u, DO_VSHLU)
2063 DO_2SHIFT_S(vshli_s, DO_VSHLS)
2064 DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP)
2065 DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP)
2066 DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP)
2067 DO_2SHIFT_U(vrshli_u, DO_VRSHLU)
2068 DO_2SHIFT_S(vrshli_s, DO_VRSHLS)
2069 DO_2SHIFT_SAT_U(vqrshli_u, DO_UQRSHL_OP)
2070 DO_2SHIFT_SAT_S(vqrshli_s, DO_SQRSHL_OP)
2071 
2072 /* Shift-and-insert; we always work with 64 bits at a time */
2073 #define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN)                    \
2074     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
2075                                 void *vm, uint32_t shift)               \
2076     {                                                                   \
2077         uint64_t *d = vd, *m = vm;                                      \
2078         uint16_t mask;                                                  \
2079         uint64_t shiftmask;                                             \
2080         unsigned e;                                                     \
2081         if (shift == ESIZE * 8) {                                       \
2082             /*                                                          \
2083              * Only VSRI can shift by <dt>; it should mean "don't       \
2084              * update the destination". The generic logic can't handle  \
2085              * this because it would try to shift by an out-of-range    \
2086              * amount, so special case it here.                         \
2087              */                                                         \
2088             goto done;                                                  \
2089         }                                                               \
2090         assert(shift < ESIZE * 8);                                      \
2091         mask = mve_element_mask(env);                                   \
2092         /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */     \
2093         shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift));     \
2094         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
2095             uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) |       \
2096                 (d[H8(e)] & ~shiftmask);                                \
2097             mergemask(&d[H8(e)], r, mask);                              \
2098         }                                                               \
2099 done:                                                                   \
2100         mve_advance_vpt(env);                                           \
2101     }
2102 
2103 #define DO_SHL(N, SHIFT) ((N) << (SHIFT))
2104 #define DO_SHR(N, SHIFT) ((N) >> (SHIFT))
2105 #define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT))
2106 #define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT))
2107 
2108 DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK)
2109 DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK)
2110 DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK)
2111 DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK)
2112 DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK)
2113 DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK)
2114 
2115 /*
2116  * Long shifts taking half-sized inputs from top or bottom of the input
2117  * vector and producing a double-width result. ESIZE, TYPE are for
2118  * the input, and LESIZE, LTYPE for the output.
2119  * Unlike the normal shift helpers, we do not handle negative shift counts,
2120  * because the long shift is strictly left-only.
2121  */
2122 #define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
2123     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
2124                                 void *vm, uint32_t shift)               \
2125     {                                                                   \
2126         LTYPE *d = vd;                                                  \
2127         TYPE *m = vm;                                                   \
2128         uint16_t mask = mve_element_mask(env);                          \
2129         unsigned le;                                                    \
2130         assert(shift <= 16);                                            \
2131         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2132             LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift;        \
2133             mergemask(&d[H##LESIZE(le)], r, mask);                      \
2134         }                                                               \
2135         mve_advance_vpt(env);                                           \
2136     }
2137 
2138 #define DO_VSHLL_ALL(OP, TOP)                                \
2139     DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t)             \
2140     DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t)           \
2141     DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t)            \
2142     DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t)          \
2143 
2144 DO_VSHLL_ALL(vshllb, false)
2145 DO_VSHLL_ALL(vshllt, true)
2146 
2147 /*
2148  * Narrowing right shifts, taking a double sized input, shifting it
2149  * and putting the result in either the top or bottom half of the output.
2150  * ESIZE, TYPE are the output, and LESIZE, LTYPE the input.
2151  */
2152 #define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)       \
2153     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2154                                 void *vm, uint32_t shift)       \
2155     {                                                           \
2156         LTYPE *m = vm;                                          \
2157         TYPE *d = vd;                                           \
2158         uint16_t mask = mve_element_mask(env);                  \
2159         unsigned le;                                            \
2160         mask >>= ESIZE * TOP;                                   \
2161         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2162             TYPE r = FN(m[H##LESIZE(le)], shift);               \
2163             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
2164         }                                                       \
2165         mve_advance_vpt(env);                                   \
2166     }
2167 
2168 #define DO_VSHRN_ALL(OP, FN)                                    \
2169     DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN)        \
2170     DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN)       \
2171     DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN)         \
2172     DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN)
2173 
2174 static inline uint64_t do_urshr(uint64_t x, unsigned sh)
2175 {
2176     if (likely(sh < 64)) {
2177         return (x >> sh) + ((x >> (sh - 1)) & 1);
2178     } else if (sh == 64) {
2179         return x >> 63;
2180     } else {
2181         return 0;
2182     }
2183 }
2184 
2185 static inline int64_t do_srshr(int64_t x, unsigned sh)
2186 {
2187     if (likely(sh < 64)) {
2188         return (x >> sh) + ((x >> (sh - 1)) & 1);
2189     } else {
2190         /* Rounding the sign bit always produces 0. */
2191         return 0;
2192     }
2193 }
2194 
2195 DO_VSHRN_ALL(vshrn, DO_SHR)
2196 DO_VSHRN_ALL(vrshrn, do_urshr)
2197 
2198 static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max,
2199                                  bool *satp)
2200 {
2201     if (val > max) {
2202         *satp = true;
2203         return max;
2204     } else if (val < min) {
2205         *satp = true;
2206         return min;
2207     } else {
2208         return val;
2209     }
2210 }
2211 
2212 /* Saturating narrowing right shifts */
2213 #define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)   \
2214     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2215                                 void *vm, uint32_t shift)       \
2216     {                                                           \
2217         LTYPE *m = vm;                                          \
2218         TYPE *d = vd;                                           \
2219         uint16_t mask = mve_element_mask(env);                  \
2220         bool qc = false;                                        \
2221         unsigned le;                                            \
2222         mask >>= ESIZE * TOP;                                   \
2223         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2224             bool sat = false;                                   \
2225             TYPE r = FN(m[H##LESIZE(le)], shift, &sat);         \
2226             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
2227             qc |= sat & mask & 1;                               \
2228         }                                                       \
2229         if (qc) {                                               \
2230             env->vfp.qc[0] = qc;                                \
2231         }                                                       \
2232         mve_advance_vpt(env);                                   \
2233     }
2234 
2235 #define DO_VSHRN_SAT_UB(BOP, TOP, FN)                           \
2236     DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
2237     DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2238 
2239 #define DO_VSHRN_SAT_UH(BOP, TOP, FN)                           \
2240     DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
2241     DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2242 
2243 #define DO_VSHRN_SAT_SB(BOP, TOP, FN)                           \
2244     DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
2245     DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2246 
2247 #define DO_VSHRN_SAT_SH(BOP, TOP, FN)                           \
2248     DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
2249     DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2250 
2251 #define DO_SHRN_SB(N, M, SATP)                                  \
2252     do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP)
2253 #define DO_SHRN_UB(N, M, SATP)                                  \
2254     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2255 #define DO_SHRUN_B(N, M, SATP)                                  \
2256     do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2257 
2258 #define DO_SHRN_SH(N, M, SATP)                                  \
2259     do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP)
2260 #define DO_SHRN_UH(N, M, SATP)                                  \
2261     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2262 #define DO_SHRUN_H(N, M, SATP)                                  \
2263     do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2264 
2265 #define DO_RSHRN_SB(N, M, SATP)                                 \
2266     do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP)
2267 #define DO_RSHRN_UB(N, M, SATP)                                 \
2268     do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP)
2269 #define DO_RSHRUN_B(N, M, SATP)                                 \
2270     do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP)
2271 
2272 #define DO_RSHRN_SH(N, M, SATP)                                 \
2273     do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP)
2274 #define DO_RSHRN_UH(N, M, SATP)                                 \
2275     do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP)
2276 #define DO_RSHRUN_H(N, M, SATP)                                 \
2277     do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP)
2278 
2279 DO_VSHRN_SAT_SB(vqshrnb_sb, vqshrnt_sb, DO_SHRN_SB)
2280 DO_VSHRN_SAT_SH(vqshrnb_sh, vqshrnt_sh, DO_SHRN_SH)
2281 DO_VSHRN_SAT_UB(vqshrnb_ub, vqshrnt_ub, DO_SHRN_UB)
2282 DO_VSHRN_SAT_UH(vqshrnb_uh, vqshrnt_uh, DO_SHRN_UH)
2283 DO_VSHRN_SAT_SB(vqshrunbb, vqshruntb, DO_SHRUN_B)
2284 DO_VSHRN_SAT_SH(vqshrunbh, vqshrunth, DO_SHRUN_H)
2285 
2286 DO_VSHRN_SAT_SB(vqrshrnb_sb, vqrshrnt_sb, DO_RSHRN_SB)
2287 DO_VSHRN_SAT_SH(vqrshrnb_sh, vqrshrnt_sh, DO_RSHRN_SH)
2288 DO_VSHRN_SAT_UB(vqrshrnb_ub, vqrshrnt_ub, DO_RSHRN_UB)
2289 DO_VSHRN_SAT_UH(vqrshrnb_uh, vqrshrnt_uh, DO_RSHRN_UH)
2290 DO_VSHRN_SAT_SB(vqrshrunbb, vqrshruntb, DO_RSHRUN_B)
2291 DO_VSHRN_SAT_SH(vqrshrunbh, vqrshrunth, DO_RSHRUN_H)
2292 
2293 #define DO_VMOVN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
2294     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2295     {                                                                   \
2296         LTYPE *m = vm;                                                  \
2297         TYPE *d = vd;                                                   \
2298         uint16_t mask = mve_element_mask(env);                          \
2299         unsigned le;                                                    \
2300         mask >>= ESIZE * TOP;                                           \
2301         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2302             mergemask(&d[H##ESIZE(le * 2 + TOP)],                       \
2303                       m[H##LESIZE(le)], mask);                          \
2304         }                                                               \
2305         mve_advance_vpt(env);                                           \
2306     }
2307 
2308 DO_VMOVN(vmovnbb, false, 1, uint8_t, 2, uint16_t)
2309 DO_VMOVN(vmovnbh, false, 2, uint16_t, 4, uint32_t)
2310 DO_VMOVN(vmovntb, true, 1, uint8_t, 2, uint16_t)
2311 DO_VMOVN(vmovnth, true, 2, uint16_t, 4, uint32_t)
2312 
2313 #define DO_VMOVN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)           \
2314     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2315     {                                                                   \
2316         LTYPE *m = vm;                                                  \
2317         TYPE *d = vd;                                                   \
2318         uint16_t mask = mve_element_mask(env);                          \
2319         bool qc = false;                                                \
2320         unsigned le;                                                    \
2321         mask >>= ESIZE * TOP;                                           \
2322         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2323             bool sat = false;                                           \
2324             TYPE r = FN(m[H##LESIZE(le)], &sat);                        \
2325             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);             \
2326             qc |= sat & mask & 1;                                       \
2327         }                                                               \
2328         if (qc) {                                                       \
2329             env->vfp.qc[0] = qc;                                        \
2330         }                                                               \
2331         mve_advance_vpt(env);                                           \
2332     }
2333 
2334 #define DO_VMOVN_SAT_UB(BOP, TOP, FN)                           \
2335     DO_VMOVN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
2336     DO_VMOVN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2337 
2338 #define DO_VMOVN_SAT_UH(BOP, TOP, FN)                           \
2339     DO_VMOVN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
2340     DO_VMOVN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2341 
2342 #define DO_VMOVN_SAT_SB(BOP, TOP, FN)                           \
2343     DO_VMOVN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
2344     DO_VMOVN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2345 
2346 #define DO_VMOVN_SAT_SH(BOP, TOP, FN)                           \
2347     DO_VMOVN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
2348     DO_VMOVN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2349 
2350 #define DO_VQMOVN_SB(N, SATP)                           \
2351     do_sat_bhs((int64_t)(N), INT8_MIN, INT8_MAX, SATP)
2352 #define DO_VQMOVN_UB(N, SATP)                           \
2353     do_sat_bhs((uint64_t)(N), 0, UINT8_MAX, SATP)
2354 #define DO_VQMOVUN_B(N, SATP)                           \
2355     do_sat_bhs((int64_t)(N), 0, UINT8_MAX, SATP)
2356 
2357 #define DO_VQMOVN_SH(N, SATP)                           \
2358     do_sat_bhs((int64_t)(N), INT16_MIN, INT16_MAX, SATP)
2359 #define DO_VQMOVN_UH(N, SATP)                           \
2360     do_sat_bhs((uint64_t)(N), 0, UINT16_MAX, SATP)
2361 #define DO_VQMOVUN_H(N, SATP)                           \
2362     do_sat_bhs((int64_t)(N), 0, UINT16_MAX, SATP)
2363 
2364 DO_VMOVN_SAT_SB(vqmovnbsb, vqmovntsb, DO_VQMOVN_SB)
2365 DO_VMOVN_SAT_SH(vqmovnbsh, vqmovntsh, DO_VQMOVN_SH)
2366 DO_VMOVN_SAT_UB(vqmovnbub, vqmovntub, DO_VQMOVN_UB)
2367 DO_VMOVN_SAT_UH(vqmovnbuh, vqmovntuh, DO_VQMOVN_UH)
2368 DO_VMOVN_SAT_SB(vqmovunbb, vqmovuntb, DO_VQMOVUN_B)
2369 DO_VMOVN_SAT_SH(vqmovunbh, vqmovunth, DO_VQMOVUN_H)
2370 
2371 uint32_t HELPER(mve_vshlc)(CPUARMState *env, void *vd, uint32_t rdm,
2372                            uint32_t shift)
2373 {
2374     uint32_t *d = vd;
2375     uint16_t mask = mve_element_mask(env);
2376     unsigned e;
2377     uint32_t r;
2378 
2379     /*
2380      * For each 32-bit element, we shift it left, bringing in the
2381      * low 'shift' bits of rdm at the bottom. Bits shifted out at
2382      * the top become the new rdm, if the predicate mask permits.
2383      * The final rdm value is returned to update the register.
2384      * shift == 0 here means "shift by 32 bits".
2385      */
2386     if (shift == 0) {
2387         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2388             r = rdm;
2389             if (mask & 1) {
2390                 rdm = d[H4(e)];
2391             }
2392             mergemask(&d[H4(e)], r, mask);
2393         }
2394     } else {
2395         uint32_t shiftmask = MAKE_64BIT_MASK(0, shift);
2396 
2397         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2398             r = (d[H4(e)] << shift) | (rdm & shiftmask);
2399             if (mask & 1) {
2400                 rdm = d[H4(e)] >> (32 - shift);
2401             }
2402             mergemask(&d[H4(e)], r, mask);
2403         }
2404     }
2405     mve_advance_vpt(env);
2406     return rdm;
2407 }
2408 
2409 uint64_t HELPER(mve_sshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2410 {
2411     return do_sqrshl_d(n, -(int8_t)shift, false, NULL);
2412 }
2413 
2414 uint64_t HELPER(mve_ushll)(CPUARMState *env, uint64_t n, uint32_t shift)
2415 {
2416     return do_uqrshl_d(n, (int8_t)shift, false, NULL);
2417 }
2418 
2419 uint64_t HELPER(mve_sqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2420 {
2421     return do_sqrshl_d(n, (int8_t)shift, false, &env->QF);
2422 }
2423 
2424 uint64_t HELPER(mve_uqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2425 {
2426     return do_uqrshl_d(n, (int8_t)shift, false, &env->QF);
2427 }
2428 
2429 uint64_t HELPER(mve_sqrshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2430 {
2431     return do_sqrshl_d(n, -(int8_t)shift, true, &env->QF);
2432 }
2433 
2434 uint64_t HELPER(mve_uqrshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2435 {
2436     return do_uqrshl_d(n, (int8_t)shift, true, &env->QF);
2437 }
2438 
2439 /* Operate on 64-bit values, but saturate at 48 bits */
2440 static inline int64_t do_sqrshl48_d(int64_t src, int64_t shift,
2441                                     bool round, uint32_t *sat)
2442 {
2443     int64_t val, extval;
2444 
2445     if (shift <= -48) {
2446         /* Rounding the sign bit always produces 0. */
2447         if (round) {
2448             return 0;
2449         }
2450         return src >> 63;
2451     } else if (shift < 0) {
2452         if (round) {
2453             src >>= -shift - 1;
2454             val = (src >> 1) + (src & 1);
2455         } else {
2456             val = src >> -shift;
2457         }
2458         extval = sextract64(val, 0, 48);
2459         if (!sat || val == extval) {
2460             return extval;
2461         }
2462     } else if (shift < 48) {
2463         int64_t extval = sextract64(src << shift, 0, 48);
2464         if (!sat || src == (extval >> shift)) {
2465             return extval;
2466         }
2467     } else if (!sat || src == 0) {
2468         return 0;
2469     }
2470 
2471     *sat = 1;
2472     return src >= 0 ? MAKE_64BIT_MASK(0, 47) : MAKE_64BIT_MASK(47, 17);
2473 }
2474 
2475 /* Operate on 64-bit values, but saturate at 48 bits */
2476 static inline uint64_t do_uqrshl48_d(uint64_t src, int64_t shift,
2477                                      bool round, uint32_t *sat)
2478 {
2479     uint64_t val, extval;
2480 
2481     if (shift <= -(48 + round)) {
2482         return 0;
2483     } else if (shift < 0) {
2484         if (round) {
2485             val = src >> (-shift - 1);
2486             val = (val >> 1) + (val & 1);
2487         } else {
2488             val = src >> -shift;
2489         }
2490         extval = extract64(val, 0, 48);
2491         if (!sat || val == extval) {
2492             return extval;
2493         }
2494     } else if (shift < 48) {
2495         uint64_t extval = extract64(src << shift, 0, 48);
2496         if (!sat || src == (extval >> shift)) {
2497             return extval;
2498         }
2499     } else if (!sat || src == 0) {
2500         return 0;
2501     }
2502 
2503     *sat = 1;
2504     return MAKE_64BIT_MASK(0, 48);
2505 }
2506 
2507 uint64_t HELPER(mve_sqrshrl48)(CPUARMState *env, uint64_t n, uint32_t shift)
2508 {
2509     return do_sqrshl48_d(n, -(int8_t)shift, true, &env->QF);
2510 }
2511 
2512 uint64_t HELPER(mve_uqrshll48)(CPUARMState *env, uint64_t n, uint32_t shift)
2513 {
2514     return do_uqrshl48_d(n, (int8_t)shift, true, &env->QF);
2515 }
2516 
2517 uint32_t HELPER(mve_uqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2518 {
2519     return do_uqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2520 }
2521 
2522 uint32_t HELPER(mve_sqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2523 {
2524     return do_sqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2525 }
2526 
2527 uint32_t HELPER(mve_uqrshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2528 {
2529     return do_uqrshl_bhs(n, (int8_t)shift, 32, true, &env->QF);
2530 }
2531 
2532 uint32_t HELPER(mve_sqrshr)(CPUARMState *env, uint32_t n, uint32_t shift)
2533 {
2534     return do_sqrshl_bhs(n, -(int8_t)shift, 32, true, &env->QF);
2535 }
2536 
2537 #define DO_VIDUP(OP, ESIZE, TYPE, FN)                           \
2538     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2539                            uint32_t offset, uint32_t imm)       \
2540     {                                                           \
2541         TYPE *d = vd;                                           \
2542         uint16_t mask = mve_element_mask(env);                  \
2543         unsigned e;                                             \
2544         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2545             mergemask(&d[H##ESIZE(e)], offset, mask);           \
2546             offset = FN(offset, imm);                           \
2547         }                                                       \
2548         mve_advance_vpt(env);                                   \
2549         return offset;                                          \
2550     }
2551 
2552 #define DO_VIWDUP(OP, ESIZE, TYPE, FN)                          \
2553     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2554                               uint32_t offset, uint32_t wrap,   \
2555                               uint32_t imm)                     \
2556     {                                                           \
2557         TYPE *d = vd;                                           \
2558         uint16_t mask = mve_element_mask(env);                  \
2559         unsigned e;                                             \
2560         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2561             mergemask(&d[H##ESIZE(e)], offset, mask);           \
2562             offset = FN(offset, wrap, imm);                     \
2563         }                                                       \
2564         mve_advance_vpt(env);                                   \
2565         return offset;                                          \
2566     }
2567 
2568 #define DO_VIDUP_ALL(OP, FN)                    \
2569     DO_VIDUP(OP##b, 1, int8_t, FN)              \
2570     DO_VIDUP(OP##h, 2, int16_t, FN)             \
2571     DO_VIDUP(OP##w, 4, int32_t, FN)
2572 
2573 #define DO_VIWDUP_ALL(OP, FN)                   \
2574     DO_VIWDUP(OP##b, 1, int8_t, FN)             \
2575     DO_VIWDUP(OP##h, 2, int16_t, FN)            \
2576     DO_VIWDUP(OP##w, 4, int32_t, FN)
2577 
2578 static uint32_t do_add_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2579 {
2580     offset += imm;
2581     if (offset == wrap) {
2582         offset = 0;
2583     }
2584     return offset;
2585 }
2586 
2587 static uint32_t do_sub_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2588 {
2589     if (offset == 0) {
2590         offset = wrap;
2591     }
2592     offset -= imm;
2593     return offset;
2594 }
2595 
2596 DO_VIDUP_ALL(vidup, DO_ADD)
2597 DO_VIWDUP_ALL(viwdup, do_add_wrap)
2598 DO_VIWDUP_ALL(vdwdup, do_sub_wrap)
2599 
2600 /*
2601  * Vector comparison.
2602  * P0 bits for non-executed beats (where eci_mask is 0) are unchanged.
2603  * P0 bits for predicated lanes in executed beats (where mask is 0) are 0.
2604  * P0 bits otherwise are updated with the results of the comparisons.
2605  * We must also keep unchanged the MASK fields at the top of v7m.vpr.
2606  */
2607 #define DO_VCMP(OP, ESIZE, TYPE, FN)                                    \
2608     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
2609     {                                                                   \
2610         TYPE *n = vn, *m = vm;                                          \
2611         uint16_t mask = mve_element_mask(env);                          \
2612         uint16_t eci_mask = mve_eci_mask(env);                          \
2613         uint16_t beatpred = 0;                                          \
2614         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2615         unsigned e;                                                     \
2616         for (e = 0; e < 16 / ESIZE; e++) {                              \
2617             bool r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)]);                \
2618             /* Comparison sets 0/1 bits for each byte in the element */ \
2619             beatpred |= r * emask;                                      \
2620             emask <<= ESIZE;                                            \
2621         }                                                               \
2622         beatpred &= mask;                                               \
2623         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2624             (beatpred & eci_mask);                                      \
2625         mve_advance_vpt(env);                                           \
2626     }
2627 
2628 #define DO_VCMP_SCALAR(OP, ESIZE, TYPE, FN)                             \
2629     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
2630                                 uint32_t rm)                            \
2631     {                                                                   \
2632         TYPE *n = vn;                                                   \
2633         uint16_t mask = mve_element_mask(env);                          \
2634         uint16_t eci_mask = mve_eci_mask(env);                          \
2635         uint16_t beatpred = 0;                                          \
2636         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2637         unsigned e;                                                     \
2638         for (e = 0; e < 16 / ESIZE; e++) {                              \
2639             bool r = FN(n[H##ESIZE(e)], (TYPE)rm);                      \
2640             /* Comparison sets 0/1 bits for each byte in the element */ \
2641             beatpred |= r * emask;                                      \
2642             emask <<= ESIZE;                                            \
2643         }                                                               \
2644         beatpred &= mask;                                               \
2645         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2646             (beatpred & eci_mask);                                      \
2647         mve_advance_vpt(env);                                           \
2648     }
2649 
2650 #define DO_VCMP_S(OP, FN)                               \
2651     DO_VCMP(OP##b, 1, int8_t, FN)                       \
2652     DO_VCMP(OP##h, 2, int16_t, FN)                      \
2653     DO_VCMP(OP##w, 4, int32_t, FN)                      \
2654     DO_VCMP_SCALAR(OP##_scalarb, 1, int8_t, FN)         \
2655     DO_VCMP_SCALAR(OP##_scalarh, 2, int16_t, FN)        \
2656     DO_VCMP_SCALAR(OP##_scalarw, 4, int32_t, FN)
2657 
2658 #define DO_VCMP_U(OP, FN)                               \
2659     DO_VCMP(OP##b, 1, uint8_t, FN)                      \
2660     DO_VCMP(OP##h, 2, uint16_t, FN)                     \
2661     DO_VCMP(OP##w, 4, uint32_t, FN)                     \
2662     DO_VCMP_SCALAR(OP##_scalarb, 1, uint8_t, FN)        \
2663     DO_VCMP_SCALAR(OP##_scalarh, 2, uint16_t, FN)       \
2664     DO_VCMP_SCALAR(OP##_scalarw, 4, uint32_t, FN)
2665 
2666 #define DO_EQ(N, M) ((N) == (M))
2667 #define DO_NE(N, M) ((N) != (M))
2668 #define DO_EQ(N, M) ((N) == (M))
2669 #define DO_EQ(N, M) ((N) == (M))
2670 #define DO_GE(N, M) ((N) >= (M))
2671 #define DO_LT(N, M) ((N) < (M))
2672 #define DO_GT(N, M) ((N) > (M))
2673 #define DO_LE(N, M) ((N) <= (M))
2674 
2675 DO_VCMP_U(vcmpeq, DO_EQ)
2676 DO_VCMP_U(vcmpne, DO_NE)
2677 DO_VCMP_U(vcmpcs, DO_GE)
2678 DO_VCMP_U(vcmphi, DO_GT)
2679 DO_VCMP_S(vcmpge, DO_GE)
2680 DO_VCMP_S(vcmplt, DO_LT)
2681 DO_VCMP_S(vcmpgt, DO_GT)
2682 DO_VCMP_S(vcmple, DO_LE)
2683 
2684 void HELPER(mve_vpsel)(CPUARMState *env, void *vd, void *vn, void *vm)
2685 {
2686     /*
2687      * Qd[n] = VPR.P0[n] ? Qn[n] : Qm[n]
2688      * but note that whether bytes are written to Qd is still subject
2689      * to (all forms of) predication in the usual way.
2690      */
2691     uint64_t *d = vd, *n = vn, *m = vm;
2692     uint16_t mask = mve_element_mask(env);
2693     uint16_t p0 = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
2694     unsigned e;
2695     for (e = 0; e < 16 / 8; e++, mask >>= 8, p0 >>= 8) {
2696         uint64_t r = m[H8(e)];
2697         mergemask(&r, n[H8(e)], p0);
2698         mergemask(&d[H8(e)], r, mask);
2699     }
2700     mve_advance_vpt(env);
2701 }
2702 
2703 void HELPER(mve_vpnot)(CPUARMState *env)
2704 {
2705     /*
2706      * P0 bits for unexecuted beats (where eci_mask is 0) are unchanged.
2707      * P0 bits for predicated lanes in executed bits (where mask is 0) are 0.
2708      * P0 bits otherwise are inverted.
2709      * (This is the same logic as VCMP.)
2710      * This insn is itself subject to predication and to beat-wise execution,
2711      * and after it executes VPT state advances in the usual way.
2712      */
2713     uint16_t mask = mve_element_mask(env);
2714     uint16_t eci_mask = mve_eci_mask(env);
2715     uint16_t beatpred = ~env->v7m.vpr & mask;
2716     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (beatpred & eci_mask);
2717     mve_advance_vpt(env);
2718 }
2719 
2720 /*
2721  * VCTP: P0 unexecuted bits unchanged, predicated bits zeroed,
2722  * otherwise set according to value of Rn. The calculation of
2723  * newmask here works in the same way as the calculation of the
2724  * ltpmask in mve_element_mask(), but we have pre-calculated
2725  * the masklen in the generated code.
2726  */
2727 void HELPER(mve_vctp)(CPUARMState *env, uint32_t masklen)
2728 {
2729     uint16_t mask = mve_element_mask(env);
2730     uint16_t eci_mask = mve_eci_mask(env);
2731     uint16_t newmask;
2732 
2733     assert(masklen <= 16);
2734     newmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
2735     newmask &= mask;
2736     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (newmask & eci_mask);
2737     mve_advance_vpt(env);
2738 }
2739 
2740 #define DO_1OP_SAT(OP, ESIZE, TYPE, FN)                                 \
2741     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2742     {                                                                   \
2743         TYPE *d = vd, *m = vm;                                          \
2744         uint16_t mask = mve_element_mask(env);                          \
2745         unsigned e;                                                     \
2746         bool qc = false;                                                \
2747         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2748             bool sat = false;                                           \
2749             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)], &sat), mask); \
2750             qc |= sat & mask & 1;                                       \
2751         }                                                               \
2752         if (qc) {                                                       \
2753             env->vfp.qc[0] = qc;                                        \
2754         }                                                               \
2755         mve_advance_vpt(env);                                           \
2756     }
2757 
2758 #define DO_VQABS_B(N, SATP) \
2759     do_sat_bhs(DO_ABS((int64_t)N), INT8_MIN, INT8_MAX, SATP)
2760 #define DO_VQABS_H(N, SATP) \
2761     do_sat_bhs(DO_ABS((int64_t)N), INT16_MIN, INT16_MAX, SATP)
2762 #define DO_VQABS_W(N, SATP) \
2763     do_sat_bhs(DO_ABS((int64_t)N), INT32_MIN, INT32_MAX, SATP)
2764 
2765 #define DO_VQNEG_B(N, SATP) do_sat_bhs(-(int64_t)N, INT8_MIN, INT8_MAX, SATP)
2766 #define DO_VQNEG_H(N, SATP) do_sat_bhs(-(int64_t)N, INT16_MIN, INT16_MAX, SATP)
2767 #define DO_VQNEG_W(N, SATP) do_sat_bhs(-(int64_t)N, INT32_MIN, INT32_MAX, SATP)
2768 
2769 DO_1OP_SAT(vqabsb, 1, int8_t, DO_VQABS_B)
2770 DO_1OP_SAT(vqabsh, 2, int16_t, DO_VQABS_H)
2771 DO_1OP_SAT(vqabsw, 4, int32_t, DO_VQABS_W)
2772 
2773 DO_1OP_SAT(vqnegb, 1, int8_t, DO_VQNEG_B)
2774 DO_1OP_SAT(vqnegh, 2, int16_t, DO_VQNEG_H)
2775 DO_1OP_SAT(vqnegw, 4, int32_t, DO_VQNEG_W)
2776 
2777 /*
2778  * VMAXA, VMINA: vd is unsigned; vm is signed, and we take its
2779  * absolute value; we then do an unsigned comparison.
2780  */
2781 #define DO_VMAXMINA(OP, ESIZE, STYPE, UTYPE, FN)                        \
2782     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2783     {                                                                   \
2784         UTYPE *d = vd;                                                  \
2785         STYPE *m = vm;                                                  \
2786         uint16_t mask = mve_element_mask(env);                          \
2787         unsigned e;                                                     \
2788         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2789             UTYPE r = DO_ABS(m[H##ESIZE(e)]);                           \
2790             r = FN(d[H##ESIZE(e)], r);                                  \
2791             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2792         }                                                               \
2793         mve_advance_vpt(env);                                           \
2794     }
2795 
2796 DO_VMAXMINA(vmaxab, 1, int8_t, uint8_t, DO_MAX)
2797 DO_VMAXMINA(vmaxah, 2, int16_t, uint16_t, DO_MAX)
2798 DO_VMAXMINA(vmaxaw, 4, int32_t, uint32_t, DO_MAX)
2799 DO_VMAXMINA(vminab, 1, int8_t, uint8_t, DO_MIN)
2800 DO_VMAXMINA(vminah, 2, int16_t, uint16_t, DO_MIN)
2801 DO_VMAXMINA(vminaw, 4, int32_t, uint32_t, DO_MIN)
2802 
2803 /*
2804  * 2-operand floating point. Note that if an element is partially
2805  * predicated we must do the FP operation to update the non-predicated
2806  * bytes, but we must be careful to avoid updating the FP exception
2807  * state unless byte 0 of the element was unpredicated.
2808  */
2809 #define DO_2OP_FP(OP, ESIZE, TYPE, FN)                                  \
2810     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2811                                 void *vd, void *vn, void *vm)           \
2812     {                                                                   \
2813         TYPE *d = vd, *n = vn, *m = vm;                                 \
2814         TYPE r;                                                         \
2815         uint16_t mask = mve_element_mask(env);                          \
2816         unsigned e;                                                     \
2817         float_status *fpst;                                             \
2818         float_status scratch_fpst;                                      \
2819         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2820             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
2821                 continue;                                               \
2822             }                                                           \
2823             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
2824                 &env->vfp.standard_fp_status;                           \
2825             if (!(mask & 1)) {                                          \
2826                 /* We need the result but without updating flags */     \
2827                 scratch_fpst = *fpst;                                   \
2828                 fpst = &scratch_fpst;                                   \
2829             }                                                           \
2830             r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst);               \
2831             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2832         }                                                               \
2833         mve_advance_vpt(env);                                           \
2834     }
2835 
2836 #define DO_2OP_FP_ALL(OP, FN)                  \
2837     DO_2OP_FP(OP##h, 2, float16, float16_##FN) \
2838     DO_2OP_FP(OP##s, 4, float32, float32_##FN)
2839 
2840 DO_2OP_FP_ALL(vfadd, add)
2841 DO_2OP_FP_ALL(vfsub, sub)
2842 DO_2OP_FP_ALL(vfmul, mul)
2843 
2844 static inline float16 float16_abd(float16 a, float16 b, float_status *s)
2845 {
2846     return float16_abs(float16_sub(a, b, s));
2847 }
2848 
2849 static inline float32 float32_abd(float32 a, float32 b, float_status *s)
2850 {
2851     return float32_abs(float32_sub(a, b, s));
2852 }
2853 
2854 DO_2OP_FP_ALL(vfabd, abd)
2855 DO_2OP_FP_ALL(vmaxnm, maxnum)
2856 DO_2OP_FP_ALL(vminnm, minnum)
2857 
2858 static inline float16 float16_maxnuma(float16 a, float16 b, float_status *s)
2859 {
2860     return float16_maxnum(float16_abs(a), float16_abs(b), s);
2861 }
2862 
2863 static inline float32 float32_maxnuma(float32 a, float32 b, float_status *s)
2864 {
2865     return float32_maxnum(float32_abs(a), float32_abs(b), s);
2866 }
2867 
2868 static inline float16 float16_minnuma(float16 a, float16 b, float_status *s)
2869 {
2870     return float16_minnum(float16_abs(a), float16_abs(b), s);
2871 }
2872 
2873 static inline float32 float32_minnuma(float32 a, float32 b, float_status *s)
2874 {
2875     return float32_minnum(float32_abs(a), float32_abs(b), s);
2876 }
2877 
2878 DO_2OP_FP_ALL(vmaxnma, maxnuma)
2879 DO_2OP_FP_ALL(vminnma, minnuma)
2880 
2881 #define DO_VCADD_FP(OP, ESIZE, TYPE, FN0, FN1)                          \
2882     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2883                                 void *vd, void *vn, void *vm)           \
2884     {                                                                   \
2885         TYPE *d = vd, *n = vn, *m = vm;                                 \
2886         TYPE r[16 / ESIZE];                                             \
2887         uint16_t tm, mask = mve_element_mask(env);                      \
2888         unsigned e;                                                     \
2889         float_status *fpst;                                             \
2890         float_status scratch_fpst;                                      \
2891         /* Calculate all results first to avoid overwriting inputs */   \
2892         for (e = 0, tm = mask; e < 16 / ESIZE; e++, tm >>= ESIZE) {     \
2893             if ((tm & MAKE_64BIT_MASK(0, ESIZE)) == 0) {                \
2894                 r[e] = 0;                                               \
2895                 continue;                                               \
2896             }                                                           \
2897             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
2898                 &env->vfp.standard_fp_status;                           \
2899             if (!(tm & 1)) {                                            \
2900                 /* We need the result but without updating flags */     \
2901                 scratch_fpst = *fpst;                                   \
2902                 fpst = &scratch_fpst;                                   \
2903             }                                                           \
2904             if (!(e & 1)) {                                             \
2905                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)], fpst);   \
2906             } else {                                                    \
2907                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)], fpst);   \
2908             }                                                           \
2909         }                                                               \
2910         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2911             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
2912         }                                                               \
2913         mve_advance_vpt(env);                                           \
2914     }
2915 
2916 DO_VCADD_FP(vfcadd90h, 2, float16, float16_sub, float16_add)
2917 DO_VCADD_FP(vfcadd90s, 4, float32, float32_sub, float32_add)
2918 DO_VCADD_FP(vfcadd270h, 2, float16, float16_add, float16_sub)
2919 DO_VCADD_FP(vfcadd270s, 4, float32, float32_add, float32_sub)
2920 
2921 #define DO_VFMA(OP, ESIZE, TYPE, CHS)                                   \
2922     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2923                                 void *vd, void *vn, void *vm)           \
2924     {                                                                   \
2925         TYPE *d = vd, *n = vn, *m = vm;                                 \
2926         TYPE r;                                                         \
2927         uint16_t mask = mve_element_mask(env);                          \
2928         unsigned e;                                                     \
2929         float_status *fpst;                                             \
2930         float_status scratch_fpst;                                      \
2931         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2932             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
2933                 continue;                                               \
2934             }                                                           \
2935             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
2936                 &env->vfp.standard_fp_status;                           \
2937             if (!(mask & 1)) {                                          \
2938                 /* We need the result but without updating flags */     \
2939                 scratch_fpst = *fpst;                                   \
2940                 fpst = &scratch_fpst;                                   \
2941             }                                                           \
2942             r = n[H##ESIZE(e)];                                         \
2943             if (CHS) {                                                  \
2944                 r = TYPE##_chs(r);                                      \
2945             }                                                           \
2946             r = TYPE##_muladd(r, m[H##ESIZE(e)], d[H##ESIZE(e)],        \
2947                               0, fpst);                                 \
2948             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2949         }                                                               \
2950         mve_advance_vpt(env);                                           \
2951     }
2952 
2953 DO_VFMA(vfmah, 2, float16, false)
2954 DO_VFMA(vfmas, 4, float32, false)
2955 DO_VFMA(vfmsh, 2, float16, true)
2956 DO_VFMA(vfmss, 4, float32, true)
2957 
2958 #define DO_VCMLA(OP, ESIZE, TYPE, ROT, FN)                              \
2959     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2960                                 void *vd, void *vn, void *vm)           \
2961     {                                                                   \
2962         TYPE *d = vd, *n = vn, *m = vm;                                 \
2963         TYPE r0, r1, e1, e2, e3, e4;                                    \
2964         uint16_t mask = mve_element_mask(env);                          \
2965         unsigned e;                                                     \
2966         float_status *fpst0, *fpst1;                                    \
2967         float_status scratch_fpst;                                      \
2968         /* We loop through pairs of elements at a time */               \
2969         for (e = 0; e < 16 / ESIZE; e += 2, mask >>= ESIZE * 2) {       \
2970             if ((mask & MAKE_64BIT_MASK(0, ESIZE * 2)) == 0) {          \
2971                 continue;                                               \
2972             }                                                           \
2973             fpst0 = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :   \
2974                 &env->vfp.standard_fp_status;                           \
2975             fpst1 = fpst0;                                              \
2976             if (!(mask & 1)) {                                          \
2977                 scratch_fpst = *fpst0;                                  \
2978                 fpst0 = &scratch_fpst;                                  \
2979             }                                                           \
2980             if (!(mask & (1 << ESIZE))) {                               \
2981                 scratch_fpst = *fpst1;                                  \
2982                 fpst1 = &scratch_fpst;                                  \
2983             }                                                           \
2984             switch (ROT) {                                              \
2985             case 0:                                                     \
2986                 e1 = m[H##ESIZE(e)];                                    \
2987                 e2 = n[H##ESIZE(e)];                                    \
2988                 e3 = m[H##ESIZE(e + 1)];                                \
2989                 e4 = n[H##ESIZE(e)];                                    \
2990                 break;                                                  \
2991             case 1:                                                     \
2992                 e1 = TYPE##_chs(m[H##ESIZE(e + 1)]);                    \
2993                 e2 = n[H##ESIZE(e + 1)];                                \
2994                 e3 = m[H##ESIZE(e)];                                    \
2995                 e4 = n[H##ESIZE(e + 1)];                                \
2996                 break;                                                  \
2997             case 2:                                                     \
2998                 e1 = TYPE##_chs(m[H##ESIZE(e)]);                        \
2999                 e2 = n[H##ESIZE(e)];                                    \
3000                 e3 = TYPE##_chs(m[H##ESIZE(e + 1)]);                    \
3001                 e4 = n[H##ESIZE(e)];                                    \
3002                 break;                                                  \
3003             case 3:                                                     \
3004                 e1 = m[H##ESIZE(e + 1)];                                \
3005                 e2 = n[H##ESIZE(e + 1)];                                \
3006                 e3 = TYPE##_chs(m[H##ESIZE(e)]);                        \
3007                 e4 = n[H##ESIZE(e + 1)];                                \
3008                 break;                                                  \
3009             default:                                                    \
3010                 g_assert_not_reached();                                 \
3011             }                                                           \
3012             r0 = FN(e2, e1, d[H##ESIZE(e)], fpst0);                     \
3013             r1 = FN(e4, e3, d[H##ESIZE(e + 1)], fpst1);                 \
3014             mergemask(&d[H##ESIZE(e)], r0, mask);                       \
3015             mergemask(&d[H##ESIZE(e + 1)], r1, mask >> ESIZE);          \
3016         }                                                               \
3017         mve_advance_vpt(env);                                           \
3018     }
3019 
3020 #define DO_VCMULH(N, M, D, S) float16_mul(N, M, S)
3021 #define DO_VCMULS(N, M, D, S) float32_mul(N, M, S)
3022 
3023 #define DO_VCMLAH(N, M, D, S) float16_muladd(N, M, D, 0, S)
3024 #define DO_VCMLAS(N, M, D, S) float32_muladd(N, M, D, 0, S)
3025 
3026 DO_VCMLA(vcmul0h, 2, float16, 0, DO_VCMULH)
3027 DO_VCMLA(vcmul0s, 4, float32, 0, DO_VCMULS)
3028 DO_VCMLA(vcmul90h, 2, float16, 1, DO_VCMULH)
3029 DO_VCMLA(vcmul90s, 4, float32, 1, DO_VCMULS)
3030 DO_VCMLA(vcmul180h, 2, float16, 2, DO_VCMULH)
3031 DO_VCMLA(vcmul180s, 4, float32, 2, DO_VCMULS)
3032 DO_VCMLA(vcmul270h, 2, float16, 3, DO_VCMULH)
3033 DO_VCMLA(vcmul270s, 4, float32, 3, DO_VCMULS)
3034 
3035 DO_VCMLA(vcmla0h, 2, float16, 0, DO_VCMLAH)
3036 DO_VCMLA(vcmla0s, 4, float32, 0, DO_VCMLAS)
3037 DO_VCMLA(vcmla90h, 2, float16, 1, DO_VCMLAH)
3038 DO_VCMLA(vcmla90s, 4, float32, 1, DO_VCMLAS)
3039 DO_VCMLA(vcmla180h, 2, float16, 2, DO_VCMLAH)
3040 DO_VCMLA(vcmla180s, 4, float32, 2, DO_VCMLAS)
3041 DO_VCMLA(vcmla270h, 2, float16, 3, DO_VCMLAH)
3042 DO_VCMLA(vcmla270s, 4, float32, 3, DO_VCMLAS)
3043 
3044 #define DO_2OP_FP_SCALAR(OP, ESIZE, TYPE, FN)                           \
3045     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3046                                 void *vd, void *vn, uint32_t rm)        \
3047     {                                                                   \
3048         TYPE *d = vd, *n = vn;                                          \
3049         TYPE r, m = rm;                                                 \
3050         uint16_t mask = mve_element_mask(env);                          \
3051         unsigned e;                                                     \
3052         float_status *fpst;                                             \
3053         float_status scratch_fpst;                                      \
3054         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3055             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3056                 continue;                                               \
3057             }                                                           \
3058             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3059                 &env->vfp.standard_fp_status;                           \
3060             if (!(mask & 1)) {                                          \
3061                 /* We need the result but without updating flags */     \
3062                 scratch_fpst = *fpst;                                   \
3063                 fpst = &scratch_fpst;                                   \
3064             }                                                           \
3065             r = FN(n[H##ESIZE(e)], m, fpst);                            \
3066             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3067         }                                                               \
3068         mve_advance_vpt(env);                                           \
3069     }
3070 
3071 #define DO_2OP_FP_SCALAR_ALL(OP, FN)                    \
3072     DO_2OP_FP_SCALAR(OP##h, 2, float16, float16_##FN)   \
3073     DO_2OP_FP_SCALAR(OP##s, 4, float32, float32_##FN)
3074 
3075 DO_2OP_FP_SCALAR_ALL(vfadd_scalar, add)
3076 DO_2OP_FP_SCALAR_ALL(vfsub_scalar, sub)
3077 DO_2OP_FP_SCALAR_ALL(vfmul_scalar, mul)
3078 
3079 #define DO_2OP_FP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                       \
3080     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3081                                 void *vd, void *vn, uint32_t rm)        \
3082     {                                                                   \
3083         TYPE *d = vd, *n = vn;                                          \
3084         TYPE r, m = rm;                                                 \
3085         uint16_t mask = mve_element_mask(env);                          \
3086         unsigned e;                                                     \
3087         float_status *fpst;                                             \
3088         float_status scratch_fpst;                                      \
3089         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3090             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3091                 continue;                                               \
3092             }                                                           \
3093             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3094                 &env->vfp.standard_fp_status;                           \
3095             if (!(mask & 1)) {                                          \
3096                 /* We need the result but without updating flags */     \
3097                 scratch_fpst = *fpst;                                   \
3098                 fpst = &scratch_fpst;                                   \
3099             }                                                           \
3100             r = FN(n[H##ESIZE(e)], m, d[H##ESIZE(e)], 0, fpst);         \
3101             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3102         }                                                               \
3103         mve_advance_vpt(env);                                           \
3104     }
3105 
3106 /* VFMAS is vector * vector + scalar, so swap op2 and op3 */
3107 #define DO_VFMAS_SCALARH(N, M, D, F, S) float16_muladd(N, D, M, F, S)
3108 #define DO_VFMAS_SCALARS(N, M, D, F, S) float32_muladd(N, D, M, F, S)
3109 
3110 /* VFMA is vector * scalar + vector */
3111 DO_2OP_FP_ACC_SCALAR(vfma_scalarh, 2, float16, float16_muladd)
3112 DO_2OP_FP_ACC_SCALAR(vfma_scalars, 4, float32, float32_muladd)
3113 DO_2OP_FP_ACC_SCALAR(vfmas_scalarh, 2, float16, DO_VFMAS_SCALARH)
3114 DO_2OP_FP_ACC_SCALAR(vfmas_scalars, 4, float32, DO_VFMAS_SCALARS)
3115 
3116 /* Floating point max/min across vector. */
3117 #define DO_FP_VMAXMINV(OP, ESIZE, TYPE, ABS, FN)                \
3118     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
3119                                     uint32_t ra_in)             \
3120     {                                                           \
3121         uint16_t mask = mve_element_mask(env);                  \
3122         unsigned e;                                             \
3123         TYPE *m = vm;                                           \
3124         TYPE ra = (TYPE)ra_in;                                  \
3125         float_status *fpst = (ESIZE == 2) ?                     \
3126             &env->vfp.standard_fp_status_f16 :                  \
3127             &env->vfp.standard_fp_status;                       \
3128         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
3129             if (mask & 1) {                                     \
3130                 TYPE v = m[H##ESIZE(e)];                        \
3131                 if (TYPE##_is_signaling_nan(ra, fpst)) {        \
3132                     ra = TYPE##_silence_nan(ra, fpst);          \
3133                     float_raise(float_flag_invalid, fpst);      \
3134                 }                                               \
3135                 if (TYPE##_is_signaling_nan(v, fpst)) {         \
3136                     v = TYPE##_silence_nan(v, fpst);            \
3137                     float_raise(float_flag_invalid, fpst);      \
3138                 }                                               \
3139                 if (ABS) {                                      \
3140                     v = TYPE##_abs(v);                          \
3141                 }                                               \
3142                 ra = FN(ra, v, fpst);                           \
3143             }                                                   \
3144         }                                                       \
3145         mve_advance_vpt(env);                                   \
3146         return ra;                                              \
3147     }                                                           \
3148 
3149 #define NOP(X) (X)
3150 
3151 DO_FP_VMAXMINV(vmaxnmvh, 2, float16, false, float16_maxnum)
3152 DO_FP_VMAXMINV(vmaxnmvs, 4, float32, false, float32_maxnum)
3153 DO_FP_VMAXMINV(vminnmvh, 2, float16, false, float16_minnum)
3154 DO_FP_VMAXMINV(vminnmvs, 4, float32, false, float32_minnum)
3155 DO_FP_VMAXMINV(vmaxnmavh, 2, float16, true, float16_maxnum)
3156 DO_FP_VMAXMINV(vmaxnmavs, 4, float32, true, float32_maxnum)
3157 DO_FP_VMAXMINV(vminnmavh, 2, float16, true, float16_minnum)
3158 DO_FP_VMAXMINV(vminnmavs, 4, float32, true, float32_minnum)
3159 
3160 /* FP compares; note that all comparisons signal InvalidOp for QNaNs */
3161 #define DO_VCMP_FP(OP, ESIZE, TYPE, FN)                                 \
3162     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
3163     {                                                                   \
3164         TYPE *n = vn, *m = vm;                                          \
3165         uint16_t mask = mve_element_mask(env);                          \
3166         uint16_t eci_mask = mve_eci_mask(env);                          \
3167         uint16_t beatpred = 0;                                          \
3168         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
3169         unsigned e;                                                     \
3170         float_status *fpst;                                             \
3171         float_status scratch_fpst;                                      \
3172         bool r;                                                         \
3173         for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) {             \
3174             if ((mask & emask) == 0) {                                  \
3175                 continue;                                               \
3176             }                                                           \
3177             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3178                 &env->vfp.standard_fp_status;                           \
3179             if (!(mask & (1 << (e * ESIZE)))) {                         \
3180                 /* We need the result but without updating flags */     \
3181                 scratch_fpst = *fpst;                                   \
3182                 fpst = &scratch_fpst;                                   \
3183             }                                                           \
3184             r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst);               \
3185             /* Comparison sets 0/1 bits for each byte in the element */ \
3186             beatpred |= r * emask;                                      \
3187         }                                                               \
3188         beatpred &= mask;                                               \
3189         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
3190             (beatpred & eci_mask);                                      \
3191         mve_advance_vpt(env);                                           \
3192     }
3193 
3194 #define DO_VCMP_FP_SCALAR(OP, ESIZE, TYPE, FN)                          \
3195     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
3196                                 uint32_t rm)                            \
3197     {                                                                   \
3198         TYPE *n = vn;                                                   \
3199         uint16_t mask = mve_element_mask(env);                          \
3200         uint16_t eci_mask = mve_eci_mask(env);                          \
3201         uint16_t beatpred = 0;                                          \
3202         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
3203         unsigned e;                                                     \
3204         float_status *fpst;                                             \
3205         float_status scratch_fpst;                                      \
3206         bool r;                                                         \
3207         for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) {             \
3208             if ((mask & emask) == 0) {                                  \
3209                 continue;                                               \
3210             }                                                           \
3211             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3212                 &env->vfp.standard_fp_status;                           \
3213             if (!(mask & (1 << (e * ESIZE)))) {                         \
3214                 /* We need the result but without updating flags */     \
3215                 scratch_fpst = *fpst;                                   \
3216                 fpst = &scratch_fpst;                                   \
3217             }                                                           \
3218             r = FN(n[H##ESIZE(e)], (TYPE)rm, fpst);                     \
3219             /* Comparison sets 0/1 bits for each byte in the element */ \
3220             beatpred |= r * emask;                                      \
3221         }                                                               \
3222         beatpred &= mask;                                               \
3223         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
3224             (beatpred & eci_mask);                                      \
3225         mve_advance_vpt(env);                                           \
3226     }
3227 
3228 #define DO_VCMP_FP_BOTH(VOP, SOP, ESIZE, TYPE, FN)      \
3229     DO_VCMP_FP(VOP, ESIZE, TYPE, FN)                    \
3230     DO_VCMP_FP_SCALAR(SOP, ESIZE, TYPE, FN)
3231 
3232 /*
3233  * Some care is needed here to get the correct result for the unordered case.
3234  * Architecturally EQ, GE and GT are defined to be false for unordered, but
3235  * the NE, LT and LE comparisons are defined as simple logical inverses of
3236  * EQ, GE and GT and so they must return true for unordered. The softfloat
3237  * comparison functions float*_{eq,le,lt} all return false for unordered.
3238  */
3239 #define DO_GE16(X, Y, S) float16_le(Y, X, S)
3240 #define DO_GE32(X, Y, S) float32_le(Y, X, S)
3241 #define DO_GT16(X, Y, S) float16_lt(Y, X, S)
3242 #define DO_GT32(X, Y, S) float32_lt(Y, X, S)
3243 
3244 DO_VCMP_FP_BOTH(vfcmpeqh, vfcmpeq_scalarh, 2, float16, float16_eq)
3245 DO_VCMP_FP_BOTH(vfcmpeqs, vfcmpeq_scalars, 4, float32, float32_eq)
3246 
3247 DO_VCMP_FP_BOTH(vfcmpneh, vfcmpne_scalarh, 2, float16, !float16_eq)
3248 DO_VCMP_FP_BOTH(vfcmpnes, vfcmpne_scalars, 4, float32, !float32_eq)
3249 
3250 DO_VCMP_FP_BOTH(vfcmpgeh, vfcmpge_scalarh, 2, float16, DO_GE16)
3251 DO_VCMP_FP_BOTH(vfcmpges, vfcmpge_scalars, 4, float32, DO_GE32)
3252 
3253 DO_VCMP_FP_BOTH(vfcmplth, vfcmplt_scalarh, 2, float16, !DO_GE16)
3254 DO_VCMP_FP_BOTH(vfcmplts, vfcmplt_scalars, 4, float32, !DO_GE32)
3255 
3256 DO_VCMP_FP_BOTH(vfcmpgth, vfcmpgt_scalarh, 2, float16, DO_GT16)
3257 DO_VCMP_FP_BOTH(vfcmpgts, vfcmpgt_scalars, 4, float32, DO_GT32)
3258 
3259 DO_VCMP_FP_BOTH(vfcmpleh, vfcmple_scalarh, 2, float16, !DO_GT16)
3260 DO_VCMP_FP_BOTH(vfcmples, vfcmple_scalars, 4, float32, !DO_GT32)
3261 
3262 #define DO_VCVT_FIXED(OP, ESIZE, TYPE, FN)                              \
3263     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm,   \
3264                                 uint32_t shift)                         \
3265     {                                                                   \
3266         TYPE *d = vd, *m = vm;                                          \
3267         TYPE r;                                                         \
3268         uint16_t mask = mve_element_mask(env);                          \
3269         unsigned e;                                                     \
3270         float_status *fpst;                                             \
3271         float_status scratch_fpst;                                      \
3272         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3273             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3274                 continue;                                               \
3275             }                                                           \
3276             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3277                 &env->vfp.standard_fp_status;                           \
3278             if (!(mask & 1)) {                                          \
3279                 /* We need the result but without updating flags */     \
3280                 scratch_fpst = *fpst;                                   \
3281                 fpst = &scratch_fpst;                                   \
3282             }                                                           \
3283             r = FN(m[H##ESIZE(e)], shift, fpst);                        \
3284             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3285         }                                                               \
3286         mve_advance_vpt(env);                                           \
3287     }
3288 
3289 DO_VCVT_FIXED(vcvt_sh, 2, int16_t, helper_vfp_shtoh)
3290 DO_VCVT_FIXED(vcvt_uh, 2, uint16_t, helper_vfp_uhtoh)
3291 DO_VCVT_FIXED(vcvt_hs, 2, int16_t, helper_vfp_toshh_round_to_zero)
3292 DO_VCVT_FIXED(vcvt_hu, 2, uint16_t, helper_vfp_touhh_round_to_zero)
3293 DO_VCVT_FIXED(vcvt_sf, 4, int32_t, helper_vfp_sltos)
3294 DO_VCVT_FIXED(vcvt_uf, 4, uint32_t, helper_vfp_ultos)
3295 DO_VCVT_FIXED(vcvt_fs, 4, int32_t, helper_vfp_tosls_round_to_zero)
3296 DO_VCVT_FIXED(vcvt_fu, 4, uint32_t, helper_vfp_touls_round_to_zero)
3297 
3298 /* VCVT with specified rmode */
3299 #define DO_VCVT_RMODE(OP, ESIZE, TYPE, FN)                              \
3300     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3301                                 void *vd, void *vm, uint32_t rmode)     \
3302     {                                                                   \
3303         TYPE *d = vd, *m = vm;                                          \
3304         TYPE r;                                                         \
3305         uint16_t mask = mve_element_mask(env);                          \
3306         unsigned e;                                                     \
3307         float_status *fpst;                                             \
3308         float_status scratch_fpst;                                      \
3309         float_status *base_fpst = (ESIZE == 2) ?                        \
3310             &env->vfp.standard_fp_status_f16 :                          \
3311             &env->vfp.standard_fp_status;                               \
3312         uint32_t prev_rmode = get_float_rounding_mode(base_fpst);       \
3313         set_float_rounding_mode(rmode, base_fpst);                      \
3314         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3315             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3316                 continue;                                               \
3317             }                                                           \
3318             fpst = base_fpst;                                           \
3319             if (!(mask & 1)) {                                          \
3320                 /* We need the result but without updating flags */     \
3321                 scratch_fpst = *fpst;                                   \
3322                 fpst = &scratch_fpst;                                   \
3323             }                                                           \
3324             r = FN(m[H##ESIZE(e)], 0, fpst);                            \
3325             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3326         }                                                               \
3327         set_float_rounding_mode(prev_rmode, base_fpst);                 \
3328         mve_advance_vpt(env);                                           \
3329     }
3330 
3331 DO_VCVT_RMODE(vcvt_rm_sh, 2, uint16_t, helper_vfp_toshh)
3332 DO_VCVT_RMODE(vcvt_rm_uh, 2, uint16_t, helper_vfp_touhh)
3333 DO_VCVT_RMODE(vcvt_rm_ss, 4, uint32_t, helper_vfp_tosls)
3334 DO_VCVT_RMODE(vcvt_rm_us, 4, uint32_t, helper_vfp_touls)
3335 
3336 #define DO_VRINT_RM_H(M, F, S) helper_rinth(M, S)
3337 #define DO_VRINT_RM_S(M, F, S) helper_rints(M, S)
3338 
3339 DO_VCVT_RMODE(vrint_rm_h, 2, uint16_t, DO_VRINT_RM_H)
3340 DO_VCVT_RMODE(vrint_rm_s, 4, uint32_t, DO_VRINT_RM_S)
3341 
3342 /*
3343  * VCVT between halfprec and singleprec. As usual for halfprec
3344  * conversions, FZ16 is ignored and AHP is observed.
3345  */
3346 static void do_vcvt_sh(CPUARMState *env, void *vd, void *vm, int top)
3347 {
3348     uint16_t *d = vd;
3349     uint32_t *m = vm;
3350     uint16_t r;
3351     uint16_t mask = mve_element_mask(env);
3352     bool ieee = !(env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_AHP);
3353     unsigned e;
3354     float_status *fpst;
3355     float_status scratch_fpst;
3356     float_status *base_fpst = &env->vfp.standard_fp_status;
3357     bool old_fz = get_flush_to_zero(base_fpst);
3358     set_flush_to_zero(false, base_fpst);
3359     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
3360         if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
3361             continue;
3362         }
3363         fpst = base_fpst;
3364         if (!(mask & 1)) {
3365             /* We need the result but without updating flags */
3366             scratch_fpst = *fpst;
3367             fpst = &scratch_fpst;
3368         }
3369         r = float32_to_float16(m[H4(e)], ieee, fpst);
3370         mergemask(&d[H2(e * 2 + top)], r, mask >> (top * 2));
3371     }
3372     set_flush_to_zero(old_fz, base_fpst);
3373     mve_advance_vpt(env);
3374 }
3375 
3376 static void do_vcvt_hs(CPUARMState *env, void *vd, void *vm, int top)
3377 {
3378     uint32_t *d = vd;
3379     uint16_t *m = vm;
3380     uint32_t r;
3381     uint16_t mask = mve_element_mask(env);
3382     bool ieee = !(env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_AHP);
3383     unsigned e;
3384     float_status *fpst;
3385     float_status scratch_fpst;
3386     float_status *base_fpst = &env->vfp.standard_fp_status;
3387     bool old_fiz = get_flush_inputs_to_zero(base_fpst);
3388     set_flush_inputs_to_zero(false, base_fpst);
3389     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
3390         if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
3391             continue;
3392         }
3393         fpst = base_fpst;
3394         if (!(mask & (1 << (top * 2)))) {
3395             /* We need the result but without updating flags */
3396             scratch_fpst = *fpst;
3397             fpst = &scratch_fpst;
3398         }
3399         r = float16_to_float32(m[H2(e * 2 + top)], ieee, fpst);
3400         mergemask(&d[H4(e)], r, mask);
3401     }
3402     set_flush_inputs_to_zero(old_fiz, base_fpst);
3403     mve_advance_vpt(env);
3404 }
3405 
3406 void HELPER(mve_vcvtb_sh)(CPUARMState *env, void *vd, void *vm)
3407 {
3408     do_vcvt_sh(env, vd, vm, 0);
3409 }
3410 void HELPER(mve_vcvtt_sh)(CPUARMState *env, void *vd, void *vm)
3411 {
3412     do_vcvt_sh(env, vd, vm, 1);
3413 }
3414 void HELPER(mve_vcvtb_hs)(CPUARMState *env, void *vd, void *vm)
3415 {
3416     do_vcvt_hs(env, vd, vm, 0);
3417 }
3418 void HELPER(mve_vcvtt_hs)(CPUARMState *env, void *vd, void *vm)
3419 {
3420     do_vcvt_hs(env, vd, vm, 1);
3421 }
3422 
3423 #define DO_1OP_FP(OP, ESIZE, TYPE, FN)                                  \
3424     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm)   \
3425     {                                                                   \
3426         TYPE *d = vd, *m = vm;                                          \
3427         TYPE r;                                                         \
3428         uint16_t mask = mve_element_mask(env);                          \
3429         unsigned e;                                                     \
3430         float_status *fpst;                                             \
3431         float_status scratch_fpst;                                      \
3432         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3433             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3434                 continue;                                               \
3435             }                                                           \
3436             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3437                 &env->vfp.standard_fp_status;                           \
3438             if (!(mask & 1)) {                                          \
3439                 /* We need the result but without updating flags */     \
3440                 scratch_fpst = *fpst;                                   \
3441                 fpst = &scratch_fpst;                                   \
3442             }                                                           \
3443             r = FN(m[H##ESIZE(e)], fpst);                               \
3444             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3445         }                                                               \
3446         mve_advance_vpt(env);                                           \
3447     }
3448 
3449 DO_1OP_FP(vrintx_h, 2, float16, float16_round_to_int)
3450 DO_1OP_FP(vrintx_s, 4, float32, float32_round_to_int)
3451