1 /* 2 * ARM v8.5-MemTag Operations 3 * 4 * Copyright (c) 2020 Linaro, Ltd. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "internals.h" 24 #include "exec/exec-all.h" 25 #include "exec/page-protection.h" 26 #ifdef CONFIG_USER_ONLY 27 #include "user/cpu_loop.h" 28 #include "user/page-protection.h" 29 #else 30 #include "system/ram_addr.h" 31 #endif 32 #include "accel/tcg/cpu-ldst.h" 33 #include "accel/tcg/probe.h" 34 #include "exec/helper-proto.h" 35 #include "exec/tlb-flags.h" 36 #include "accel/tcg/cpu-ops.h" 37 #include "qapi/error.h" 38 #include "qemu/guest-random.h" 39 #include "mte_helper.h" 40 41 42 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude) 43 { 44 if (exclude == 0xffff) { 45 return 0; 46 } 47 if (offset == 0) { 48 while (exclude & (1 << tag)) { 49 tag = (tag + 1) & 15; 50 } 51 } else { 52 do { 53 do { 54 tag = (tag + 1) & 15; 55 } while (exclude & (1 << tag)); 56 } while (--offset > 0); 57 } 58 return tag; 59 } 60 61 uint8_t *allocation_tag_mem_probe(CPUARMState *env, int ptr_mmu_idx, 62 uint64_t ptr, MMUAccessType ptr_access, 63 int ptr_size, MMUAccessType tag_access, 64 bool probe, uintptr_t ra) 65 { 66 #ifdef CONFIG_USER_ONLY 67 uint64_t clean_ptr = useronly_clean_ptr(ptr); 68 int flags = page_get_flags(clean_ptr); 69 uint8_t *tags; 70 uintptr_t index; 71 72 assert(!(probe && ra)); 73 74 if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) { 75 if (probe) { 76 return NULL; 77 } 78 cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access, 79 !(flags & PAGE_VALID), ra); 80 } 81 82 /* Require both MAP_ANON and PROT_MTE for the page. */ 83 if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) { 84 return NULL; 85 } 86 87 tags = page_get_target_data(clean_ptr); 88 89 index = extract32(ptr, LOG2_TAG_GRANULE + 1, 90 TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1); 91 return tags + index; 92 #else 93 CPUTLBEntryFull *full; 94 MemTxAttrs attrs; 95 int in_page, flags; 96 hwaddr ptr_paddr, tag_paddr, xlat; 97 MemoryRegion *mr; 98 ARMASIdx tag_asi; 99 AddressSpace *tag_as; 100 void *host; 101 102 /* 103 * Probe the first byte of the virtual address. This raises an 104 * exception for inaccessible pages, and resolves the virtual address 105 * into the softmmu tlb. 106 * 107 * When RA == 0, this is either a pure probe or a no-fault-expected probe. 108 * Indicate to probe_access_flags no-fault, then either return NULL 109 * for the pure probe, or assert that we received a valid page for the 110 * no-fault-expected probe. 111 */ 112 flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx, 113 ra == 0, &host, &full, ra); 114 if (probe && (flags & TLB_INVALID_MASK)) { 115 return NULL; 116 } 117 assert(!(flags & TLB_INVALID_MASK)); 118 119 /* If the virtual page MemAttr != Tagged, access unchecked. */ 120 if (full->extra.arm.pte_attrs != 0xf0) { 121 return NULL; 122 } 123 124 /* 125 * If not backed by host ram, there is no tag storage: access unchecked. 126 * This is probably a guest os bug though, so log it. 127 */ 128 if (unlikely(flags & TLB_MMIO)) { 129 qemu_log_mask(LOG_GUEST_ERROR, 130 "Page @ 0x%" PRIx64 " indicates Tagged Normal memory " 131 "but is not backed by host ram\n", ptr); 132 return NULL; 133 } 134 135 /* 136 * Remember these values across the second lookup below, 137 * which may invalidate this pointer via tlb resize. 138 */ 139 ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK); 140 attrs = full->attrs; 141 full = NULL; 142 143 /* 144 * The Normal memory access can extend to the next page. E.g. a single 145 * 8-byte access to the last byte of a page will check only the last 146 * tag on the first page. 147 * Any page access exception has priority over tag check exception. 148 */ 149 in_page = -(ptr | TARGET_PAGE_MASK); 150 if (unlikely(ptr_size > in_page)) { 151 flags |= probe_access_full(env, ptr + in_page, 0, ptr_access, 152 ptr_mmu_idx, ra == 0, &host, &full, ra); 153 assert(!(flags & TLB_INVALID_MASK)); 154 } 155 156 /* Any debug exception has priority over a tag check exception. */ 157 if (!probe && unlikely(flags & TLB_WATCHPOINT)) { 158 int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE; 159 assert(ra != 0); 160 cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra); 161 } 162 163 /* Convert to the physical address in tag space. */ 164 tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1); 165 166 /* Look up the address in tag space. */ 167 tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS; 168 tag_as = cpu_get_address_space(env_cpu(env), tag_asi); 169 mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL, 170 tag_access == MMU_DATA_STORE, attrs); 171 172 /* 173 * Note that @mr will never be NULL. If there is nothing in the address 174 * space at @tag_paddr, the translation will return the unallocated memory 175 * region. For our purposes, the result must be ram. 176 */ 177 if (unlikely(!memory_region_is_ram(mr))) { 178 /* ??? Failure is a board configuration error. */ 179 qemu_log_mask(LOG_UNIMP, 180 "Tag Memory @ 0x%" HWADDR_PRIx " not found for " 181 "Normal Memory @ 0x%" HWADDR_PRIx "\n", 182 tag_paddr, ptr_paddr); 183 return NULL; 184 } 185 186 /* 187 * Ensure the tag memory is dirty on write, for migration. 188 * Tag memory can never contain code or display memory (vga). 189 */ 190 if (tag_access == MMU_DATA_STORE) { 191 ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat; 192 cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION); 193 } 194 195 return memory_region_get_ram_ptr(mr) + xlat; 196 #endif 197 } 198 199 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx, 200 uint64_t ptr, MMUAccessType ptr_access, 201 int ptr_size, MMUAccessType tag_access, 202 uintptr_t ra) 203 { 204 return allocation_tag_mem_probe(env, ptr_mmu_idx, ptr, ptr_access, 205 ptr_size, tag_access, false, ra); 206 } 207 208 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm) 209 { 210 uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16); 211 int rrnd = extract32(env->cp15.gcr_el1, 16, 1); 212 int start = extract32(env->cp15.rgsr_el1, 0, 4); 213 int seed = extract32(env->cp15.rgsr_el1, 8, 16); 214 int offset, i, rtag; 215 216 /* 217 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the 218 * deterministic algorithm. Except that with RRND==1 the kernel is 219 * not required to have set RGSR_EL1.SEED != 0, which is required for 220 * the deterministic algorithm to function. So we force a non-zero 221 * SEED for that case. 222 */ 223 if (unlikely(seed == 0) && rrnd) { 224 do { 225 Error *err = NULL; 226 uint16_t two; 227 228 if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) { 229 /* 230 * Failed, for unknown reasons in the crypto subsystem. 231 * Best we can do is log the reason and use a constant seed. 232 */ 233 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n", 234 error_get_pretty(err)); 235 error_free(err); 236 two = 1; 237 } 238 seed = two; 239 } while (seed == 0); 240 } 241 242 /* RandomTag */ 243 for (i = offset = 0; i < 4; ++i) { 244 /* NextRandomTagBit */ 245 int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^ 246 extract32(seed, 2, 1) ^ extract32(seed, 0, 1)); 247 seed = (top << 15) | (seed >> 1); 248 offset |= top << i; 249 } 250 rtag = choose_nonexcluded_tag(start, offset, exclude); 251 env->cp15.rgsr_el1 = rtag | (seed << 8); 252 253 return address_with_allocation_tag(rn, rtag); 254 } 255 256 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr, 257 int32_t offset, uint32_t tag_offset) 258 { 259 int start_tag = allocation_tag_from_addr(ptr); 260 uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16); 261 int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude); 262 263 return address_with_allocation_tag(ptr + offset, rtag); 264 } 265 266 int load_tag1(uint64_t ptr, uint8_t *mem) 267 { 268 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 269 return extract32(*mem, ofs, 4); 270 } 271 272 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 273 { 274 int mmu_idx = arm_env_mmu_index(env); 275 uint8_t *mem; 276 int rtag = 0; 277 278 /* Trap if accessing an invalid page. */ 279 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1, 280 MMU_DATA_LOAD, GETPC()); 281 282 /* Load if page supports tags. */ 283 if (mem) { 284 rtag = load_tag1(ptr, mem); 285 } 286 287 return address_with_allocation_tag(xt, rtag); 288 } 289 290 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra) 291 { 292 if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) { 293 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE, 294 arm_env_mmu_index(env), ra); 295 g_assert_not_reached(); 296 } 297 } 298 299 /* For use in a non-parallel context, store to the given nibble. */ 300 void store_tag1(uint64_t ptr, uint8_t *mem, int tag) 301 { 302 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 303 *mem = deposit32(*mem, ofs, 4, tag); 304 } 305 306 /* For use in a parallel context, atomically store to the given nibble. */ 307 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag) 308 { 309 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 310 uint8_t old = qatomic_read(mem); 311 312 while (1) { 313 uint8_t new = deposit32(old, ofs, 4, tag); 314 uint8_t cmp = qatomic_cmpxchg(mem, old, new); 315 if (likely(cmp == old)) { 316 return; 317 } 318 old = cmp; 319 } 320 } 321 322 typedef void stg_store1(uint64_t, uint8_t *, int); 323 324 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt, 325 uintptr_t ra, stg_store1 store1) 326 { 327 int mmu_idx = arm_env_mmu_index(env); 328 uint8_t *mem; 329 330 check_tag_aligned(env, ptr, ra); 331 332 /* Trap if accessing an invalid page. */ 333 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE, 334 MMU_DATA_STORE, ra); 335 336 /* Store if page supports tags. */ 337 if (mem) { 338 store1(ptr, mem, allocation_tag_from_addr(xt)); 339 } 340 } 341 342 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 343 { 344 do_stg(env, ptr, xt, GETPC(), store_tag1); 345 } 346 347 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 348 { 349 do_stg(env, ptr, xt, GETPC(), store_tag1_parallel); 350 } 351 352 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr) 353 { 354 int mmu_idx = arm_env_mmu_index(env); 355 uintptr_t ra = GETPC(); 356 357 check_tag_aligned(env, ptr, ra); 358 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 359 } 360 361 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt, 362 uintptr_t ra, stg_store1 store1) 363 { 364 int mmu_idx = arm_env_mmu_index(env); 365 int tag = allocation_tag_from_addr(xt); 366 uint8_t *mem1, *mem2; 367 368 check_tag_aligned(env, ptr, ra); 369 370 /* 371 * Trap if accessing an invalid page(s). 372 * This takes priority over !allocation_tag_access_enabled. 373 */ 374 if (ptr & TAG_GRANULE) { 375 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */ 376 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 377 TAG_GRANULE, MMU_DATA_STORE, ra); 378 mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE, 379 MMU_DATA_STORE, TAG_GRANULE, 380 MMU_DATA_STORE, ra); 381 382 /* Store if page(s) support tags. */ 383 if (mem1) { 384 store1(TAG_GRANULE, mem1, tag); 385 } 386 if (mem2) { 387 store1(0, mem2, tag); 388 } 389 } else { 390 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */ 391 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 392 2 * TAG_GRANULE, MMU_DATA_STORE, ra); 393 if (mem1) { 394 tag |= tag << 4; 395 qatomic_set(mem1, tag); 396 } 397 } 398 } 399 400 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt) 401 { 402 do_st2g(env, ptr, xt, GETPC(), store_tag1); 403 } 404 405 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 406 { 407 do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel); 408 } 409 410 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr) 411 { 412 int mmu_idx = arm_env_mmu_index(env); 413 uintptr_t ra = GETPC(); 414 int in_page = -(ptr | TARGET_PAGE_MASK); 415 416 check_tag_aligned(env, ptr, ra); 417 418 if (likely(in_page >= 2 * TAG_GRANULE)) { 419 probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra); 420 } else { 421 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 422 probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra); 423 } 424 } 425 426 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr) 427 { 428 int mmu_idx = arm_env_mmu_index(env); 429 uintptr_t ra = GETPC(); 430 int gm_bs = env_archcpu(env)->gm_blocksize; 431 int gm_bs_bytes = 4 << gm_bs; 432 void *tag_mem; 433 uint64_t ret; 434 int shift; 435 436 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 437 438 /* Trap if accessing an invalid page. */ 439 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 440 gm_bs_bytes, MMU_DATA_LOAD, ra); 441 442 /* The tag is squashed to zero if the page does not support tags. */ 443 if (!tag_mem) { 444 return 0; 445 } 446 447 /* 448 * The ordering of elements within the word corresponds to 449 * a little-endian operation. Computation of shift comes from 450 * 451 * index = address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE> 452 * data<index*4+3:index*4> = tag 453 * 454 * Because of the alignment of ptr above, BS=6 has shift=0. 455 * All memory operations are aligned. Defer support for BS=2, 456 * requiring insertion or extraction of a nibble, until we 457 * support a cpu that requires it. 458 */ 459 switch (gm_bs) { 460 case 3: 461 /* 32 bytes -> 2 tags -> 8 result bits */ 462 ret = *(uint8_t *)tag_mem; 463 break; 464 case 4: 465 /* 64 bytes -> 4 tags -> 16 result bits */ 466 ret = cpu_to_le16(*(uint16_t *)tag_mem); 467 break; 468 case 5: 469 /* 128 bytes -> 8 tags -> 32 result bits */ 470 ret = cpu_to_le32(*(uint32_t *)tag_mem); 471 break; 472 case 6: 473 /* 256 bytes -> 16 tags -> 64 result bits */ 474 return cpu_to_le64(*(uint64_t *)tag_mem); 475 default: 476 /* 477 * CPU configured with unsupported/invalid gm blocksize. 478 * This is detected early in arm_cpu_realizefn. 479 */ 480 g_assert_not_reached(); 481 } 482 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; 483 return ret << shift; 484 } 485 486 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val) 487 { 488 int mmu_idx = arm_env_mmu_index(env); 489 uintptr_t ra = GETPC(); 490 int gm_bs = env_archcpu(env)->gm_blocksize; 491 int gm_bs_bytes = 4 << gm_bs; 492 void *tag_mem; 493 int shift; 494 495 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 496 497 /* Trap if accessing an invalid page. */ 498 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 499 gm_bs_bytes, MMU_DATA_LOAD, ra); 500 501 /* 502 * Tag store only happens if the page support tags, 503 * and if the OS has enabled access to the tags. 504 */ 505 if (!tag_mem) { 506 return; 507 } 508 509 /* See LDGM for comments on BS and on shift. */ 510 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; 511 val >>= shift; 512 switch (gm_bs) { 513 case 3: 514 /* 32 bytes -> 2 tags -> 8 result bits */ 515 *(uint8_t *)tag_mem = val; 516 break; 517 case 4: 518 /* 64 bytes -> 4 tags -> 16 result bits */ 519 *(uint16_t *)tag_mem = cpu_to_le16(val); 520 break; 521 case 5: 522 /* 128 bytes -> 8 tags -> 32 result bits */ 523 *(uint32_t *)tag_mem = cpu_to_le32(val); 524 break; 525 case 6: 526 /* 256 bytes -> 16 tags -> 64 result bits */ 527 *(uint64_t *)tag_mem = cpu_to_le64(val); 528 break; 529 default: 530 /* cpu configured with unsupported gm blocksize. */ 531 g_assert_not_reached(); 532 } 533 } 534 535 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val) 536 { 537 uintptr_t ra = GETPC(); 538 int mmu_idx = arm_env_mmu_index(env); 539 int log2_dcz_bytes, log2_tag_bytes; 540 intptr_t dcz_bytes, tag_bytes; 541 uint8_t *mem; 542 543 /* 544 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1, 545 * i.e. 32 bytes, which is an unreasonably small dcz anyway, 546 * to make sure that we can access one complete tag byte here. 547 */ 548 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 549 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 550 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 551 tag_bytes = (intptr_t)1 << log2_tag_bytes; 552 ptr &= -dcz_bytes; 553 554 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes, 555 MMU_DATA_STORE, ra); 556 if (mem) { 557 int tag_pair = (val & 0xf) * 0x11; 558 memset(mem, tag_pair, tag_bytes); 559 } 560 } 561 562 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc, 563 uint64_t dirty_ptr, uintptr_t ra) 564 { 565 int is_write, syn; 566 567 env->exception.vaddress = dirty_ptr; 568 569 is_write = FIELD_EX32(desc, MTEDESC, WRITE); 570 syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write, 571 0x11); 572 raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra); 573 g_assert_not_reached(); 574 } 575 576 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr, 577 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el) 578 { 579 int select; 580 581 if (regime_has_2_ranges(arm_mmu_idx)) { 582 select = extract64(dirty_ptr, 55, 1); 583 } else { 584 select = 0; 585 } 586 env->cp15.tfsr_el[el] |= 1 << select; 587 #ifdef CONFIG_USER_ONLY 588 /* 589 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT, 590 * which then sends a SIGSEGV when the thread is next scheduled. 591 * This cpu will return to the main loop at the end of the TB, 592 * which is rather sooner than "normal". But the alternative 593 * is waiting until the next syscall. 594 */ 595 qemu_cpu_kick(env_cpu(env)); 596 #endif 597 } 598 599 /* Record a tag check failure. */ 600 void mte_check_fail(CPUARMState *env, uint32_t desc, 601 uint64_t dirty_ptr, uintptr_t ra) 602 { 603 int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 604 ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx); 605 int el, reg_el, tcf; 606 uint64_t sctlr; 607 608 reg_el = regime_el(env, arm_mmu_idx); 609 sctlr = env->cp15.sctlr_el[reg_el]; 610 611 switch (arm_mmu_idx) { 612 case ARMMMUIdx_E10_0: 613 case ARMMMUIdx_E20_0: 614 el = 0; 615 tcf = extract64(sctlr, 38, 2); 616 break; 617 default: 618 el = reg_el; 619 tcf = extract64(sctlr, 40, 2); 620 } 621 622 switch (tcf) { 623 case 1: 624 /* Tag check fail causes a synchronous exception. */ 625 mte_sync_check_fail(env, desc, dirty_ptr, ra); 626 break; 627 628 case 0: 629 /* 630 * Tag check fail does not affect the PE. 631 * We eliminate this case by not setting MTE_ACTIVE 632 * in tb_flags, so that we never make this runtime call. 633 */ 634 g_assert_not_reached(); 635 636 case 2: 637 /* Tag check fail causes asynchronous flag set. */ 638 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 639 break; 640 641 case 3: 642 /* 643 * Tag check fail causes asynchronous flag set for stores, or 644 * a synchronous exception for loads. 645 */ 646 if (FIELD_EX32(desc, MTEDESC, WRITE)) { 647 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 648 } else { 649 mte_sync_check_fail(env, desc, dirty_ptr, ra); 650 } 651 break; 652 } 653 } 654 655 /** 656 * checkN: 657 * @tag: tag memory to test 658 * @odd: true to begin testing at tags at odd nibble 659 * @cmp: the tag to compare against 660 * @count: number of tags to test 661 * 662 * Return the number of successful tests. 663 * Thus a return value < @count indicates a failure. 664 * 665 * A note about sizes: count is expected to be small. 666 * 667 * The most common use will be LDP/STP of two integer registers, 668 * which means 16 bytes of memory touching at most 2 tags, but 669 * often the access is aligned and thus just 1 tag. 670 * 671 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory, 672 * touching at most 5 tags. SVE LDR/STR (vector) with the default 673 * vector length is also 64 bytes; the maximum architectural length 674 * is 256 bytes touching at most 9 tags. 675 * 676 * The loop below uses 7 logical operations and 1 memory operation 677 * per tag pair. An implementation that loads an aligned word and 678 * uses masking to ignore adjacent tags requires 18 logical operations 679 * and thus does not begin to pay off until 6 tags. 680 * Which, according to the survey above, is unlikely to be common. 681 */ 682 static int checkN(uint8_t *mem, int odd, int cmp, int count) 683 { 684 int n = 0, diff; 685 686 /* Replicate the test tag and compare. */ 687 cmp *= 0x11; 688 diff = *mem++ ^ cmp; 689 690 if (odd) { 691 goto start_odd; 692 } 693 694 while (1) { 695 /* Test even tag. */ 696 if (unlikely((diff) & 0x0f)) { 697 break; 698 } 699 if (++n == count) { 700 break; 701 } 702 703 start_odd: 704 /* Test odd tag. */ 705 if (unlikely((diff) & 0xf0)) { 706 break; 707 } 708 if (++n == count) { 709 break; 710 } 711 712 diff = *mem++ ^ cmp; 713 } 714 return n; 715 } 716 717 /** 718 * checkNrev: 719 * @tag: tag memory to test 720 * @odd: true to begin testing at tags at odd nibble 721 * @cmp: the tag to compare against 722 * @count: number of tags to test 723 * 724 * Return the number of successful tests. 725 * Thus a return value < @count indicates a failure. 726 * 727 * This is like checkN, but it runs backwards, checking the 728 * tags starting with @tag and then the tags preceding it. 729 * This is needed by the backwards-memory-copying operations. 730 */ 731 static int checkNrev(uint8_t *mem, int odd, int cmp, int count) 732 { 733 int n = 0, diff; 734 735 /* Replicate the test tag and compare. */ 736 cmp *= 0x11; 737 diff = *mem-- ^ cmp; 738 739 if (!odd) { 740 goto start_even; 741 } 742 743 while (1) { 744 /* Test odd tag. */ 745 if (unlikely((diff) & 0xf0)) { 746 break; 747 } 748 if (++n == count) { 749 break; 750 } 751 752 start_even: 753 /* Test even tag. */ 754 if (unlikely((diff) & 0x0f)) { 755 break; 756 } 757 if (++n == count) { 758 break; 759 } 760 761 diff = *mem-- ^ cmp; 762 } 763 return n; 764 } 765 766 /** 767 * mte_probe_int() - helper for mte_probe and mte_check 768 * @env: CPU environment 769 * @desc: MTEDESC descriptor 770 * @ptr: virtual address of the base of the access 771 * @fault: return virtual address of the first check failure 772 * 773 * Internal routine for both mte_probe and mte_check. 774 * Return zero on failure, filling in *fault. 775 * Return negative on trivial success for tbi disabled. 776 * Return positive on success with tbi enabled. 777 */ 778 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr, 779 uintptr_t ra, uint64_t *fault) 780 { 781 int mmu_idx, ptr_tag, bit55; 782 uint64_t ptr_last, prev_page, next_page; 783 uint64_t tag_first, tag_last; 784 uint32_t sizem1, tag_count, n, c; 785 uint8_t *mem1, *mem2; 786 MMUAccessType type; 787 788 bit55 = extract64(ptr, 55, 1); 789 *fault = ptr; 790 791 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 792 if (unlikely(!tbi_check(desc, bit55))) { 793 return -1; 794 } 795 796 ptr_tag = allocation_tag_from_addr(ptr); 797 798 if (tcma_check(desc, bit55, ptr_tag)) { 799 return 1; 800 } 801 802 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 803 type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD; 804 sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1); 805 806 /* Find the addr of the end of the access */ 807 ptr_last = ptr + sizem1; 808 809 /* Round the bounds to the tag granule, and compute the number of tags. */ 810 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 811 tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE); 812 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 813 814 /* Locate the page boundaries. */ 815 prev_page = ptr & TARGET_PAGE_MASK; 816 next_page = prev_page + TARGET_PAGE_SIZE; 817 818 if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) { 819 /* Memory access stays on one page. */ 820 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1, 821 MMU_DATA_LOAD, ra); 822 if (!mem1) { 823 return 1; 824 } 825 /* Perform all of the comparisons. */ 826 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count); 827 } else { 828 /* Memory access crosses to next page. */ 829 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr, 830 MMU_DATA_LOAD, ra); 831 832 mem2 = allocation_tag_mem(env, mmu_idx, next_page, type, 833 ptr_last - next_page + 1, 834 MMU_DATA_LOAD, ra); 835 836 /* 837 * Perform all of the comparisons. 838 * Note the possible but unlikely case of the operation spanning 839 * two pages that do not both have tagging enabled. 840 */ 841 n = c = (next_page - tag_first) / TAG_GRANULE; 842 if (mem1) { 843 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c); 844 } 845 if (n == c) { 846 if (!mem2) { 847 return 1; 848 } 849 n += checkN(mem2, 0, ptr_tag, tag_count - c); 850 } 851 } 852 853 if (likely(n == tag_count)) { 854 return 1; 855 } 856 857 /* 858 * If we failed, we know which granule. For the first granule, the 859 * failure address is @ptr, the first byte accessed. Otherwise the 860 * failure address is the first byte of the nth granule. 861 */ 862 if (n > 0) { 863 *fault = tag_first + n * TAG_GRANULE; 864 } 865 return 0; 866 } 867 868 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra) 869 { 870 uint64_t fault; 871 int ret = mte_probe_int(env, desc, ptr, ra, &fault); 872 873 if (unlikely(ret == 0)) { 874 mte_check_fail(env, desc, fault, ra); 875 } else if (ret < 0) { 876 return ptr; 877 } 878 return useronly_clean_ptr(ptr); 879 } 880 881 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr) 882 { 883 /* 884 * R_XCHFJ: Alignment check not caused by memory type is priority 1, 885 * higher than any translation fault. When MTE is disabled, tcg 886 * performs the alignment check during the code generated for the 887 * memory access. With MTE enabled, we must check this here before 888 * raising any translation fault in allocation_tag_mem. 889 */ 890 unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN); 891 if (unlikely(align)) { 892 align = (1u << align) - 1; 893 if (unlikely(ptr & align)) { 894 int idx = FIELD_EX32(desc, MTEDESC, MIDX); 895 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 896 MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD; 897 arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC()); 898 } 899 } 900 901 return mte_check(env, desc, ptr, GETPC()); 902 } 903 904 /* 905 * No-fault version of mte_check, to be used by SVE for MemSingleNF. 906 * Returns false if the access is Checked and the check failed. This 907 * is only intended to probe the tag -- the validity of the page must 908 * be checked beforehand. 909 */ 910 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr) 911 { 912 uint64_t fault; 913 int ret = mte_probe_int(env, desc, ptr, 0, &fault); 914 915 return ret != 0; 916 } 917 918 /* 919 * Perform an MTE checked access for DC_ZVA. 920 */ 921 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr) 922 { 923 uintptr_t ra = GETPC(); 924 int log2_dcz_bytes, log2_tag_bytes; 925 int mmu_idx, bit55; 926 intptr_t dcz_bytes, tag_bytes, i; 927 void *mem; 928 uint64_t ptr_tag, mem_tag, align_ptr; 929 930 bit55 = extract64(ptr, 55, 1); 931 932 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 933 if (unlikely(!tbi_check(desc, bit55))) { 934 return ptr; 935 } 936 937 ptr_tag = allocation_tag_from_addr(ptr); 938 939 if (tcma_check(desc, bit55, ptr_tag)) { 940 goto done; 941 } 942 943 /* 944 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1, 945 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make 946 * sure that we can access one complete tag byte here. 947 */ 948 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 949 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 950 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 951 tag_bytes = (intptr_t)1 << log2_tag_bytes; 952 align_ptr = ptr & -dcz_bytes; 953 954 /* 955 * Trap if accessing an invalid page. DC_ZVA requires that we supply 956 * the original pointer for an invalid page. But watchpoints require 957 * that we probe the actual space. So do both. 958 */ 959 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 960 (void) probe_write(env, ptr, 1, mmu_idx, ra); 961 mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE, 962 dcz_bytes, MMU_DATA_LOAD, ra); 963 if (!mem) { 964 goto done; 965 } 966 967 /* 968 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus 969 * it is quite easy to perform all of the comparisons at once without 970 * any extra masking. 971 * 972 * The most common zva block size is 64; some of the thunderx cpus use 973 * a block size of 128. For user-only, aarch64_max_initfn will set the 974 * block size to 512. Fill out the other cases for future-proofing. 975 * 976 * In order to be able to find the first miscompare later, we want the 977 * tag bytes to be in little-endian order. 978 */ 979 switch (log2_tag_bytes) { 980 case 0: /* zva_blocksize 32 */ 981 mem_tag = *(uint8_t *)mem; 982 ptr_tag *= 0x11u; 983 break; 984 case 1: /* zva_blocksize 64 */ 985 mem_tag = cpu_to_le16(*(uint16_t *)mem); 986 ptr_tag *= 0x1111u; 987 break; 988 case 2: /* zva_blocksize 128 */ 989 mem_tag = cpu_to_le32(*(uint32_t *)mem); 990 ptr_tag *= 0x11111111u; 991 break; 992 case 3: /* zva_blocksize 256 */ 993 mem_tag = cpu_to_le64(*(uint64_t *)mem); 994 ptr_tag *= 0x1111111111111111ull; 995 break; 996 997 default: /* zva_blocksize 512, 1024, 2048 */ 998 ptr_tag *= 0x1111111111111111ull; 999 i = 0; 1000 do { 1001 mem_tag = cpu_to_le64(*(uint64_t *)(mem + i)); 1002 if (unlikely(mem_tag != ptr_tag)) { 1003 goto fail; 1004 } 1005 i += 8; 1006 align_ptr += 16 * TAG_GRANULE; 1007 } while (i < tag_bytes); 1008 goto done; 1009 } 1010 1011 if (likely(mem_tag == ptr_tag)) { 1012 goto done; 1013 } 1014 1015 fail: 1016 /* Locate the first nibble that differs. */ 1017 i = ctz64(mem_tag ^ ptr_tag) >> 4; 1018 mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra); 1019 1020 done: 1021 return useronly_clean_ptr(ptr); 1022 } 1023 1024 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size, 1025 uint32_t desc) 1026 { 1027 int mmu_idx, tag_count; 1028 uint64_t ptr_tag, tag_first, tag_last; 1029 void *mem; 1030 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 1031 uint32_t n; 1032 1033 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1034 /* True probe; this will never fault */ 1035 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, 1036 w ? MMU_DATA_STORE : MMU_DATA_LOAD, 1037 size, MMU_DATA_LOAD, true, 0); 1038 if (!mem) { 1039 return size; 1040 } 1041 1042 /* 1043 * TODO: checkN() is not designed for checks of the size we expect 1044 * for FEAT_MOPS operations, so we should implement this differently. 1045 * Maybe we should do something like 1046 * if (region start and size are aligned nicely) { 1047 * do direct loads of 64 tag bits at a time; 1048 * } else { 1049 * call checkN() 1050 * } 1051 */ 1052 /* Round the bounds to the tag granule, and compute the number of tags. */ 1053 ptr_tag = allocation_tag_from_addr(ptr); 1054 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 1055 tag_last = QEMU_ALIGN_DOWN(ptr + size - 1, TAG_GRANULE); 1056 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 1057 n = checkN(mem, ptr & TAG_GRANULE, ptr_tag, tag_count); 1058 if (likely(n == tag_count)) { 1059 return size; 1060 } 1061 1062 /* 1063 * Failure; for the first granule, it's at @ptr. Otherwise 1064 * it's at the first byte of the nth granule. Calculate how 1065 * many bytes we can access without hitting that failure. 1066 */ 1067 if (n == 0) { 1068 return 0; 1069 } else { 1070 return n * TAG_GRANULE - (ptr - tag_first); 1071 } 1072 } 1073 1074 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size, 1075 uint32_t desc) 1076 { 1077 int mmu_idx, tag_count; 1078 uint64_t ptr_tag, tag_first, tag_last; 1079 void *mem; 1080 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 1081 uint32_t n; 1082 1083 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1084 /* 1085 * True probe; this will never fault. Note that our caller passes 1086 * us a pointer to the end of the region, but allocation_tag_mem_probe() 1087 * wants a pointer to the start. Because we know we don't span a page 1088 * boundary and that allocation_tag_mem_probe() doesn't otherwise care 1089 * about the size, pass in a size of 1 byte. This is simpler than 1090 * adjusting the ptr to point to the start of the region and then having 1091 * to adjust the returned 'mem' to get the end of the tag memory. 1092 */ 1093 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, 1094 w ? MMU_DATA_STORE : MMU_DATA_LOAD, 1095 1, MMU_DATA_LOAD, true, 0); 1096 if (!mem) { 1097 return size; 1098 } 1099 1100 /* 1101 * TODO: checkNrev() is not designed for checks of the size we expect 1102 * for FEAT_MOPS operations, so we should implement this differently. 1103 * Maybe we should do something like 1104 * if (region start and size are aligned nicely) { 1105 * do direct loads of 64 tag bits at a time; 1106 * } else { 1107 * call checkN() 1108 * } 1109 */ 1110 /* Round the bounds to the tag granule, and compute the number of tags. */ 1111 ptr_tag = allocation_tag_from_addr(ptr); 1112 tag_first = QEMU_ALIGN_DOWN(ptr - (size - 1), TAG_GRANULE); 1113 tag_last = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 1114 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 1115 n = checkNrev(mem, ptr & TAG_GRANULE, ptr_tag, tag_count); 1116 if (likely(n == tag_count)) { 1117 return size; 1118 } 1119 1120 /* 1121 * Failure; for the first granule, it's at @ptr. Otherwise 1122 * it's at the last byte of the nth granule. Calculate how 1123 * many bytes we can access without hitting that failure. 1124 */ 1125 if (n == 0) { 1126 return 0; 1127 } else { 1128 return (n - 1) * TAG_GRANULE + ((ptr + 1) - tag_last); 1129 } 1130 } 1131 1132 void mte_mops_set_tags(CPUARMState *env, uint64_t ptr, uint64_t size, 1133 uint32_t desc) 1134 { 1135 int mmu_idx, tag_count; 1136 uint64_t ptr_tag; 1137 void *mem; 1138 1139 if (!desc) { 1140 /* Tags not actually enabled */ 1141 return; 1142 } 1143 1144 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1145 /* True probe: this will never fault */ 1146 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, MMU_DATA_STORE, size, 1147 MMU_DATA_STORE, true, 0); 1148 if (!mem) { 1149 return; 1150 } 1151 1152 /* 1153 * We know that ptr and size are both TAG_GRANULE aligned; store 1154 * the tag from the pointer value into the tag memory. 1155 */ 1156 ptr_tag = allocation_tag_from_addr(ptr); 1157 tag_count = size / TAG_GRANULE; 1158 if (ptr & TAG_GRANULE) { 1159 /* Not 2*TAG_GRANULE-aligned: store tag to first nibble */ 1160 store_tag1_parallel(TAG_GRANULE, mem, ptr_tag); 1161 mem++; 1162 tag_count--; 1163 } 1164 memset(mem, ptr_tag | (ptr_tag << 4), tag_count / 2); 1165 if (tag_count & 1) { 1166 /* Final trailing unaligned nibble */ 1167 mem += tag_count / 2; 1168 store_tag1_parallel(0, mem, ptr_tag); 1169 } 1170 } 1171