1 /* 2 * ARM v8.5-MemTag Operations 3 * 4 * Copyright (c) 2020 Linaro, Ltd. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "internals.h" 24 #include "exec/exec-all.h" 25 #include "exec/ram_addr.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/helper-proto.h" 28 #include "hw/core/tcg-cpu-ops.h" 29 #include "qapi/error.h" 30 #include "qemu/guest-random.h" 31 32 33 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude) 34 { 35 if (exclude == 0xffff) { 36 return 0; 37 } 38 if (offset == 0) { 39 while (exclude & (1 << tag)) { 40 tag = (tag + 1) & 15; 41 } 42 } else { 43 do { 44 do { 45 tag = (tag + 1) & 15; 46 } while (exclude & (1 << tag)); 47 } while (--offset > 0); 48 } 49 return tag; 50 } 51 52 /** 53 * allocation_tag_mem: 54 * @env: the cpu environment 55 * @ptr_mmu_idx: the addressing regime to use for the virtual address 56 * @ptr: the virtual address for which to look up tag memory 57 * @ptr_access: the access to use for the virtual address 58 * @ptr_size: the number of bytes in the normal memory access 59 * @tag_access: the access to use for the tag memory 60 * @tag_size: the number of bytes in the tag memory access 61 * @ra: the return address for exception handling 62 * 63 * Our tag memory is formatted as a sequence of little-endian nibbles. 64 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two 65 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4] 66 * for the higher addr. 67 * 68 * Here, resolve the physical address from the virtual address, and return 69 * a pointer to the corresponding tag byte. Exit with exception if the 70 * virtual address is not accessible for @ptr_access. 71 * 72 * The @ptr_size and @tag_size values may not have an obvious relation 73 * due to the alignment of @ptr, and the number of tag checks required. 74 * 75 * If there is no tag storage corresponding to @ptr, return NULL. 76 */ 77 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx, 78 uint64_t ptr, MMUAccessType ptr_access, 79 int ptr_size, MMUAccessType tag_access, 80 int tag_size, uintptr_t ra) 81 { 82 #ifdef CONFIG_USER_ONLY 83 uint64_t clean_ptr = useronly_clean_ptr(ptr); 84 int flags = page_get_flags(clean_ptr); 85 uint8_t *tags; 86 uintptr_t index; 87 88 if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) { 89 cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access, 90 !(flags & PAGE_VALID), ra); 91 } 92 93 /* Require both MAP_ANON and PROT_MTE for the page. */ 94 if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) { 95 return NULL; 96 } 97 98 tags = page_get_target_data(clean_ptr); 99 100 index = extract32(ptr, LOG2_TAG_GRANULE + 1, 101 TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1); 102 return tags + index; 103 #else 104 CPUTLBEntryFull *full; 105 MemTxAttrs attrs; 106 int in_page, flags; 107 hwaddr ptr_paddr, tag_paddr, xlat; 108 MemoryRegion *mr; 109 ARMASIdx tag_asi; 110 AddressSpace *tag_as; 111 void *host; 112 113 /* 114 * Probe the first byte of the virtual address. This raises an 115 * exception for inaccessible pages, and resolves the virtual address 116 * into the softmmu tlb. 117 * 118 * When RA == 0, this is for mte_probe. The page is expected to be 119 * valid. Indicate to probe_access_flags no-fault, then assert that 120 * we received a valid page. 121 */ 122 flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx, 123 ra == 0, &host, &full, ra); 124 assert(!(flags & TLB_INVALID_MASK)); 125 126 /* If the virtual page MemAttr != Tagged, access unchecked. */ 127 if (full->pte_attrs != 0xf0) { 128 return NULL; 129 } 130 131 /* 132 * If not backed by host ram, there is no tag storage: access unchecked. 133 * This is probably a guest os bug though, so log it. 134 */ 135 if (unlikely(flags & TLB_MMIO)) { 136 qemu_log_mask(LOG_GUEST_ERROR, 137 "Page @ 0x%" PRIx64 " indicates Tagged Normal memory " 138 "but is not backed by host ram\n", ptr); 139 return NULL; 140 } 141 142 /* 143 * Remember these values across the second lookup below, 144 * which may invalidate this pointer via tlb resize. 145 */ 146 ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK); 147 attrs = full->attrs; 148 full = NULL; 149 150 /* 151 * The Normal memory access can extend to the next page. E.g. a single 152 * 8-byte access to the last byte of a page will check only the last 153 * tag on the first page. 154 * Any page access exception has priority over tag check exception. 155 */ 156 in_page = -(ptr | TARGET_PAGE_MASK); 157 if (unlikely(ptr_size > in_page)) { 158 flags |= probe_access_full(env, ptr + in_page, 0, ptr_access, 159 ptr_mmu_idx, ra == 0, &host, &full, ra); 160 assert(!(flags & TLB_INVALID_MASK)); 161 } 162 163 /* Any debug exception has priority over a tag check exception. */ 164 if (unlikely(flags & TLB_WATCHPOINT)) { 165 int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE; 166 assert(ra != 0); 167 cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra); 168 } 169 170 /* Convert to the physical address in tag space. */ 171 tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1); 172 173 /* Look up the address in tag space. */ 174 tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS; 175 tag_as = cpu_get_address_space(env_cpu(env), tag_asi); 176 mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL, 177 tag_access == MMU_DATA_STORE, attrs); 178 179 /* 180 * Note that @mr will never be NULL. If there is nothing in the address 181 * space at @tag_paddr, the translation will return the unallocated memory 182 * region. For our purposes, the result must be ram. 183 */ 184 if (unlikely(!memory_region_is_ram(mr))) { 185 /* ??? Failure is a board configuration error. */ 186 qemu_log_mask(LOG_UNIMP, 187 "Tag Memory @ 0x%" HWADDR_PRIx " not found for " 188 "Normal Memory @ 0x%" HWADDR_PRIx "\n", 189 tag_paddr, ptr_paddr); 190 return NULL; 191 } 192 193 /* 194 * Ensure the tag memory is dirty on write, for migration. 195 * Tag memory can never contain code or display memory (vga). 196 */ 197 if (tag_access == MMU_DATA_STORE) { 198 ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat; 199 cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION); 200 } 201 202 return memory_region_get_ram_ptr(mr) + xlat; 203 #endif 204 } 205 206 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm) 207 { 208 uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16); 209 int rrnd = extract32(env->cp15.gcr_el1, 16, 1); 210 int start = extract32(env->cp15.rgsr_el1, 0, 4); 211 int seed = extract32(env->cp15.rgsr_el1, 8, 16); 212 int offset, i, rtag; 213 214 /* 215 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the 216 * deterministic algorithm. Except that with RRND==1 the kernel is 217 * not required to have set RGSR_EL1.SEED != 0, which is required for 218 * the deterministic algorithm to function. So we force a non-zero 219 * SEED for that case. 220 */ 221 if (unlikely(seed == 0) && rrnd) { 222 do { 223 Error *err = NULL; 224 uint16_t two; 225 226 if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) { 227 /* 228 * Failed, for unknown reasons in the crypto subsystem. 229 * Best we can do is log the reason and use a constant seed. 230 */ 231 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n", 232 error_get_pretty(err)); 233 error_free(err); 234 two = 1; 235 } 236 seed = two; 237 } while (seed == 0); 238 } 239 240 /* RandomTag */ 241 for (i = offset = 0; i < 4; ++i) { 242 /* NextRandomTagBit */ 243 int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^ 244 extract32(seed, 2, 1) ^ extract32(seed, 0, 1)); 245 seed = (top << 15) | (seed >> 1); 246 offset |= top << i; 247 } 248 rtag = choose_nonexcluded_tag(start, offset, exclude); 249 env->cp15.rgsr_el1 = rtag | (seed << 8); 250 251 return address_with_allocation_tag(rn, rtag); 252 } 253 254 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr, 255 int32_t offset, uint32_t tag_offset) 256 { 257 int start_tag = allocation_tag_from_addr(ptr); 258 uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16); 259 int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude); 260 261 return address_with_allocation_tag(ptr + offset, rtag); 262 } 263 264 static int load_tag1(uint64_t ptr, uint8_t *mem) 265 { 266 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 267 return extract32(*mem, ofs, 4); 268 } 269 270 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 271 { 272 int mmu_idx = cpu_mmu_index(env, false); 273 uint8_t *mem; 274 int rtag = 0; 275 276 /* Trap if accessing an invalid page. */ 277 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1, 278 MMU_DATA_LOAD, 1, GETPC()); 279 280 /* Load if page supports tags. */ 281 if (mem) { 282 rtag = load_tag1(ptr, mem); 283 } 284 285 return address_with_allocation_tag(xt, rtag); 286 } 287 288 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra) 289 { 290 if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) { 291 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE, 292 cpu_mmu_index(env, false), ra); 293 g_assert_not_reached(); 294 } 295 } 296 297 /* For use in a non-parallel context, store to the given nibble. */ 298 static void store_tag1(uint64_t ptr, uint8_t *mem, int tag) 299 { 300 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 301 *mem = deposit32(*mem, ofs, 4, tag); 302 } 303 304 /* For use in a parallel context, atomically store to the given nibble. */ 305 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag) 306 { 307 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 308 uint8_t old = qatomic_read(mem); 309 310 while (1) { 311 uint8_t new = deposit32(old, ofs, 4, tag); 312 uint8_t cmp = qatomic_cmpxchg(mem, old, new); 313 if (likely(cmp == old)) { 314 return; 315 } 316 old = cmp; 317 } 318 } 319 320 typedef void stg_store1(uint64_t, uint8_t *, int); 321 322 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt, 323 uintptr_t ra, stg_store1 store1) 324 { 325 int mmu_idx = cpu_mmu_index(env, false); 326 uint8_t *mem; 327 328 check_tag_aligned(env, ptr, ra); 329 330 /* Trap if accessing an invalid page. */ 331 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE, 332 MMU_DATA_STORE, 1, ra); 333 334 /* Store if page supports tags. */ 335 if (mem) { 336 store1(ptr, mem, allocation_tag_from_addr(xt)); 337 } 338 } 339 340 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 341 { 342 do_stg(env, ptr, xt, GETPC(), store_tag1); 343 } 344 345 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 346 { 347 do_stg(env, ptr, xt, GETPC(), store_tag1_parallel); 348 } 349 350 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr) 351 { 352 int mmu_idx = cpu_mmu_index(env, false); 353 uintptr_t ra = GETPC(); 354 355 check_tag_aligned(env, ptr, ra); 356 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 357 } 358 359 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt, 360 uintptr_t ra, stg_store1 store1) 361 { 362 int mmu_idx = cpu_mmu_index(env, false); 363 int tag = allocation_tag_from_addr(xt); 364 uint8_t *mem1, *mem2; 365 366 check_tag_aligned(env, ptr, ra); 367 368 /* 369 * Trap if accessing an invalid page(s). 370 * This takes priority over !allocation_tag_access_enabled. 371 */ 372 if (ptr & TAG_GRANULE) { 373 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */ 374 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 375 TAG_GRANULE, MMU_DATA_STORE, 1, ra); 376 mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE, 377 MMU_DATA_STORE, TAG_GRANULE, 378 MMU_DATA_STORE, 1, ra); 379 380 /* Store if page(s) support tags. */ 381 if (mem1) { 382 store1(TAG_GRANULE, mem1, tag); 383 } 384 if (mem2) { 385 store1(0, mem2, tag); 386 } 387 } else { 388 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */ 389 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 390 2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra); 391 if (mem1) { 392 tag |= tag << 4; 393 qatomic_set(mem1, tag); 394 } 395 } 396 } 397 398 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt) 399 { 400 do_st2g(env, ptr, xt, GETPC(), store_tag1); 401 } 402 403 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 404 { 405 do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel); 406 } 407 408 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr) 409 { 410 int mmu_idx = cpu_mmu_index(env, false); 411 uintptr_t ra = GETPC(); 412 int in_page = -(ptr | TARGET_PAGE_MASK); 413 414 check_tag_aligned(env, ptr, ra); 415 416 if (likely(in_page >= 2 * TAG_GRANULE)) { 417 probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra); 418 } else { 419 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 420 probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra); 421 } 422 } 423 424 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr) 425 { 426 int mmu_idx = cpu_mmu_index(env, false); 427 uintptr_t ra = GETPC(); 428 int gm_bs = env_archcpu(env)->gm_blocksize; 429 int gm_bs_bytes = 4 << gm_bs; 430 void *tag_mem; 431 uint64_t ret; 432 int shift; 433 434 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 435 436 /* Trap if accessing an invalid page. */ 437 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 438 gm_bs_bytes, MMU_DATA_LOAD, 439 gm_bs_bytes / (2 * TAG_GRANULE), ra); 440 441 /* The tag is squashed to zero if the page does not support tags. */ 442 if (!tag_mem) { 443 return 0; 444 } 445 446 /* 447 * The ordering of elements within the word corresponds to 448 * a little-endian operation. Computation of shift comes from 449 * 450 * index = address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE> 451 * data<index*4+3:index*4> = tag 452 * 453 * Because of the alignment of ptr above, BS=6 has shift=0. 454 * All memory operations are aligned. Defer support for BS=2, 455 * requiring insertion or extraction of a nibble, until we 456 * support a cpu that requires it. 457 */ 458 switch (gm_bs) { 459 case 3: 460 /* 32 bytes -> 2 tags -> 8 result bits */ 461 ret = *(uint8_t *)tag_mem; 462 break; 463 case 4: 464 /* 64 bytes -> 4 tags -> 16 result bits */ 465 ret = cpu_to_le16(*(uint16_t *)tag_mem); 466 break; 467 case 5: 468 /* 128 bytes -> 8 tags -> 32 result bits */ 469 ret = cpu_to_le32(*(uint32_t *)tag_mem); 470 break; 471 case 6: 472 /* 256 bytes -> 16 tags -> 64 result bits */ 473 return cpu_to_le64(*(uint64_t *)tag_mem); 474 default: 475 /* 476 * CPU configured with unsupported/invalid gm blocksize. 477 * This is detected early in arm_cpu_realizefn. 478 */ 479 g_assert_not_reached(); 480 } 481 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; 482 return ret << shift; 483 } 484 485 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val) 486 { 487 int mmu_idx = cpu_mmu_index(env, false); 488 uintptr_t ra = GETPC(); 489 int gm_bs = env_archcpu(env)->gm_blocksize; 490 int gm_bs_bytes = 4 << gm_bs; 491 void *tag_mem; 492 int shift; 493 494 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 495 496 /* Trap if accessing an invalid page. */ 497 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 498 gm_bs_bytes, MMU_DATA_LOAD, 499 gm_bs_bytes / (2 * TAG_GRANULE), ra); 500 501 /* 502 * Tag store only happens if the page support tags, 503 * and if the OS has enabled access to the tags. 504 */ 505 if (!tag_mem) { 506 return; 507 } 508 509 /* See LDGM for comments on BS and on shift. */ 510 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; 511 val >>= shift; 512 switch (gm_bs) { 513 case 3: 514 /* 32 bytes -> 2 tags -> 8 result bits */ 515 *(uint8_t *)tag_mem = val; 516 break; 517 case 4: 518 /* 64 bytes -> 4 tags -> 16 result bits */ 519 *(uint16_t *)tag_mem = cpu_to_le16(val); 520 break; 521 case 5: 522 /* 128 bytes -> 8 tags -> 32 result bits */ 523 *(uint32_t *)tag_mem = cpu_to_le32(val); 524 break; 525 case 6: 526 /* 256 bytes -> 16 tags -> 64 result bits */ 527 *(uint64_t *)tag_mem = cpu_to_le64(val); 528 break; 529 default: 530 /* cpu configured with unsupported gm blocksize. */ 531 g_assert_not_reached(); 532 } 533 } 534 535 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val) 536 { 537 uintptr_t ra = GETPC(); 538 int mmu_idx = cpu_mmu_index(env, false); 539 int log2_dcz_bytes, log2_tag_bytes; 540 intptr_t dcz_bytes, tag_bytes; 541 uint8_t *mem; 542 543 /* 544 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1, 545 * i.e. 32 bytes, which is an unreasonably small dcz anyway, 546 * to make sure that we can access one complete tag byte here. 547 */ 548 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 549 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 550 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 551 tag_bytes = (intptr_t)1 << log2_tag_bytes; 552 ptr &= -dcz_bytes; 553 554 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes, 555 MMU_DATA_STORE, tag_bytes, ra); 556 if (mem) { 557 int tag_pair = (val & 0xf) * 0x11; 558 memset(mem, tag_pair, tag_bytes); 559 } 560 } 561 562 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc, 563 uint64_t dirty_ptr, uintptr_t ra) 564 { 565 int is_write, syn; 566 567 env->exception.vaddress = dirty_ptr; 568 569 is_write = FIELD_EX32(desc, MTEDESC, WRITE); 570 syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write, 571 0x11); 572 raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra); 573 g_assert_not_reached(); 574 } 575 576 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr, 577 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el) 578 { 579 int select; 580 581 if (regime_has_2_ranges(arm_mmu_idx)) { 582 select = extract64(dirty_ptr, 55, 1); 583 } else { 584 select = 0; 585 } 586 env->cp15.tfsr_el[el] |= 1 << select; 587 #ifdef CONFIG_USER_ONLY 588 /* 589 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT, 590 * which then sends a SIGSEGV when the thread is next scheduled. 591 * This cpu will return to the main loop at the end of the TB, 592 * which is rather sooner than "normal". But the alternative 593 * is waiting until the next syscall. 594 */ 595 qemu_cpu_kick(env_cpu(env)); 596 #endif 597 } 598 599 /* Record a tag check failure. */ 600 static void mte_check_fail(CPUARMState *env, uint32_t desc, 601 uint64_t dirty_ptr, uintptr_t ra) 602 { 603 int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 604 ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx); 605 int el, reg_el, tcf; 606 uint64_t sctlr; 607 608 reg_el = regime_el(env, arm_mmu_idx); 609 sctlr = env->cp15.sctlr_el[reg_el]; 610 611 switch (arm_mmu_idx) { 612 case ARMMMUIdx_E10_0: 613 case ARMMMUIdx_E20_0: 614 el = 0; 615 tcf = extract64(sctlr, 38, 2); 616 break; 617 default: 618 el = reg_el; 619 tcf = extract64(sctlr, 40, 2); 620 } 621 622 switch (tcf) { 623 case 1: 624 /* Tag check fail causes a synchronous exception. */ 625 mte_sync_check_fail(env, desc, dirty_ptr, ra); 626 break; 627 628 case 0: 629 /* 630 * Tag check fail does not affect the PE. 631 * We eliminate this case by not setting MTE_ACTIVE 632 * in tb_flags, so that we never make this runtime call. 633 */ 634 g_assert_not_reached(); 635 636 case 2: 637 /* Tag check fail causes asynchronous flag set. */ 638 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 639 break; 640 641 case 3: 642 /* 643 * Tag check fail causes asynchronous flag set for stores, or 644 * a synchronous exception for loads. 645 */ 646 if (FIELD_EX32(desc, MTEDESC, WRITE)) { 647 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 648 } else { 649 mte_sync_check_fail(env, desc, dirty_ptr, ra); 650 } 651 break; 652 } 653 } 654 655 /** 656 * checkN: 657 * @tag: tag memory to test 658 * @odd: true to begin testing at tags at odd nibble 659 * @cmp: the tag to compare against 660 * @count: number of tags to test 661 * 662 * Return the number of successful tests. 663 * Thus a return value < @count indicates a failure. 664 * 665 * A note about sizes: count is expected to be small. 666 * 667 * The most common use will be LDP/STP of two integer registers, 668 * which means 16 bytes of memory touching at most 2 tags, but 669 * often the access is aligned and thus just 1 tag. 670 * 671 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory, 672 * touching at most 5 tags. SVE LDR/STR (vector) with the default 673 * vector length is also 64 bytes; the maximum architectural length 674 * is 256 bytes touching at most 9 tags. 675 * 676 * The loop below uses 7 logical operations and 1 memory operation 677 * per tag pair. An implementation that loads an aligned word and 678 * uses masking to ignore adjacent tags requires 18 logical operations 679 * and thus does not begin to pay off until 6 tags. 680 * Which, according to the survey above, is unlikely to be common. 681 */ 682 static int checkN(uint8_t *mem, int odd, int cmp, int count) 683 { 684 int n = 0, diff; 685 686 /* Replicate the test tag and compare. */ 687 cmp *= 0x11; 688 diff = *mem++ ^ cmp; 689 690 if (odd) { 691 goto start_odd; 692 } 693 694 while (1) { 695 /* Test even tag. */ 696 if (unlikely((diff) & 0x0f)) { 697 break; 698 } 699 if (++n == count) { 700 break; 701 } 702 703 start_odd: 704 /* Test odd tag. */ 705 if (unlikely((diff) & 0xf0)) { 706 break; 707 } 708 if (++n == count) { 709 break; 710 } 711 712 diff = *mem++ ^ cmp; 713 } 714 return n; 715 } 716 717 /** 718 * mte_probe_int() - helper for mte_probe and mte_check 719 * @env: CPU environment 720 * @desc: MTEDESC descriptor 721 * @ptr: virtual address of the base of the access 722 * @fault: return virtual address of the first check failure 723 * 724 * Internal routine for both mte_probe and mte_check. 725 * Return zero on failure, filling in *fault. 726 * Return negative on trivial success for tbi disabled. 727 * Return positive on success with tbi enabled. 728 */ 729 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr, 730 uintptr_t ra, uint64_t *fault) 731 { 732 int mmu_idx, ptr_tag, bit55; 733 uint64_t ptr_last, prev_page, next_page; 734 uint64_t tag_first, tag_last; 735 uint64_t tag_byte_first, tag_byte_last; 736 uint32_t sizem1, tag_count, tag_size, n, c; 737 uint8_t *mem1, *mem2; 738 MMUAccessType type; 739 740 bit55 = extract64(ptr, 55, 1); 741 *fault = ptr; 742 743 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 744 if (unlikely(!tbi_check(desc, bit55))) { 745 return -1; 746 } 747 748 ptr_tag = allocation_tag_from_addr(ptr); 749 750 if (tcma_check(desc, bit55, ptr_tag)) { 751 return 1; 752 } 753 754 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 755 type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD; 756 sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1); 757 758 /* Find the addr of the end of the access */ 759 ptr_last = ptr + sizem1; 760 761 /* Round the bounds to the tag granule, and compute the number of tags. */ 762 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 763 tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE); 764 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 765 766 /* Round the bounds to twice the tag granule, and compute the bytes. */ 767 tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE); 768 tag_byte_last = QEMU_ALIGN_DOWN(ptr_last, 2 * TAG_GRANULE); 769 770 /* Locate the page boundaries. */ 771 prev_page = ptr & TARGET_PAGE_MASK; 772 next_page = prev_page + TARGET_PAGE_SIZE; 773 774 if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) { 775 /* Memory access stays on one page. */ 776 tag_size = ((tag_byte_last - tag_byte_first) / (2 * TAG_GRANULE)) + 1; 777 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1, 778 MMU_DATA_LOAD, tag_size, ra); 779 if (!mem1) { 780 return 1; 781 } 782 /* Perform all of the comparisons. */ 783 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count); 784 } else { 785 /* Memory access crosses to next page. */ 786 tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE); 787 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr, 788 MMU_DATA_LOAD, tag_size, ra); 789 790 tag_size = ((tag_byte_last - next_page) / (2 * TAG_GRANULE)) + 1; 791 mem2 = allocation_tag_mem(env, mmu_idx, next_page, type, 792 ptr_last - next_page + 1, 793 MMU_DATA_LOAD, tag_size, ra); 794 795 /* 796 * Perform all of the comparisons. 797 * Note the possible but unlikely case of the operation spanning 798 * two pages that do not both have tagging enabled. 799 */ 800 n = c = (next_page - tag_first) / TAG_GRANULE; 801 if (mem1) { 802 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c); 803 } 804 if (n == c) { 805 if (!mem2) { 806 return 1; 807 } 808 n += checkN(mem2, 0, ptr_tag, tag_count - c); 809 } 810 } 811 812 if (likely(n == tag_count)) { 813 return 1; 814 } 815 816 /* 817 * If we failed, we know which granule. For the first granule, the 818 * failure address is @ptr, the first byte accessed. Otherwise the 819 * failure address is the first byte of the nth granule. 820 */ 821 if (n > 0) { 822 *fault = tag_first + n * TAG_GRANULE; 823 } 824 return 0; 825 } 826 827 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra) 828 { 829 uint64_t fault; 830 int ret = mte_probe_int(env, desc, ptr, ra, &fault); 831 832 if (unlikely(ret == 0)) { 833 mte_check_fail(env, desc, fault, ra); 834 } else if (ret < 0) { 835 return ptr; 836 } 837 return useronly_clean_ptr(ptr); 838 } 839 840 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr) 841 { 842 /* 843 * R_XCHFJ: Alignment check not caused by memory type is priority 1, 844 * higher than any translation fault. When MTE is disabled, tcg 845 * performs the alignment check during the code generated for the 846 * memory access. With MTE enabled, we must check this here before 847 * raising any translation fault in allocation_tag_mem. 848 */ 849 unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN); 850 if (unlikely(align)) { 851 align = (1u << align) - 1; 852 if (unlikely(ptr & align)) { 853 int idx = FIELD_EX32(desc, MTEDESC, MIDX); 854 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 855 MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD; 856 arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC()); 857 } 858 } 859 860 return mte_check(env, desc, ptr, GETPC()); 861 } 862 863 /* 864 * No-fault version of mte_check, to be used by SVE for MemSingleNF. 865 * Returns false if the access is Checked and the check failed. This 866 * is only intended to probe the tag -- the validity of the page must 867 * be checked beforehand. 868 */ 869 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr) 870 { 871 uint64_t fault; 872 int ret = mte_probe_int(env, desc, ptr, 0, &fault); 873 874 return ret != 0; 875 } 876 877 /* 878 * Perform an MTE checked access for DC_ZVA. 879 */ 880 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr) 881 { 882 uintptr_t ra = GETPC(); 883 int log2_dcz_bytes, log2_tag_bytes; 884 int mmu_idx, bit55; 885 intptr_t dcz_bytes, tag_bytes, i; 886 void *mem; 887 uint64_t ptr_tag, mem_tag, align_ptr; 888 889 bit55 = extract64(ptr, 55, 1); 890 891 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 892 if (unlikely(!tbi_check(desc, bit55))) { 893 return ptr; 894 } 895 896 ptr_tag = allocation_tag_from_addr(ptr); 897 898 if (tcma_check(desc, bit55, ptr_tag)) { 899 goto done; 900 } 901 902 /* 903 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1, 904 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make 905 * sure that we can access one complete tag byte here. 906 */ 907 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 908 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 909 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 910 tag_bytes = (intptr_t)1 << log2_tag_bytes; 911 align_ptr = ptr & -dcz_bytes; 912 913 /* 914 * Trap if accessing an invalid page. DC_ZVA requires that we supply 915 * the original pointer for an invalid page. But watchpoints require 916 * that we probe the actual space. So do both. 917 */ 918 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 919 (void) probe_write(env, ptr, 1, mmu_idx, ra); 920 mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE, 921 dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra); 922 if (!mem) { 923 goto done; 924 } 925 926 /* 927 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus 928 * it is quite easy to perform all of the comparisons at once without 929 * any extra masking. 930 * 931 * The most common zva block size is 64; some of the thunderx cpus use 932 * a block size of 128. For user-only, aarch64_max_initfn will set the 933 * block size to 512. Fill out the other cases for future-proofing. 934 * 935 * In order to be able to find the first miscompare later, we want the 936 * tag bytes to be in little-endian order. 937 */ 938 switch (log2_tag_bytes) { 939 case 0: /* zva_blocksize 32 */ 940 mem_tag = *(uint8_t *)mem; 941 ptr_tag *= 0x11u; 942 break; 943 case 1: /* zva_blocksize 64 */ 944 mem_tag = cpu_to_le16(*(uint16_t *)mem); 945 ptr_tag *= 0x1111u; 946 break; 947 case 2: /* zva_blocksize 128 */ 948 mem_tag = cpu_to_le32(*(uint32_t *)mem); 949 ptr_tag *= 0x11111111u; 950 break; 951 case 3: /* zva_blocksize 256 */ 952 mem_tag = cpu_to_le64(*(uint64_t *)mem); 953 ptr_tag *= 0x1111111111111111ull; 954 break; 955 956 default: /* zva_blocksize 512, 1024, 2048 */ 957 ptr_tag *= 0x1111111111111111ull; 958 i = 0; 959 do { 960 mem_tag = cpu_to_le64(*(uint64_t *)(mem + i)); 961 if (unlikely(mem_tag != ptr_tag)) { 962 goto fail; 963 } 964 i += 8; 965 align_ptr += 16 * TAG_GRANULE; 966 } while (i < tag_bytes); 967 goto done; 968 } 969 970 if (likely(mem_tag == ptr_tag)) { 971 goto done; 972 } 973 974 fail: 975 /* Locate the first nibble that differs. */ 976 i = ctz64(mem_tag ^ ptr_tag) >> 4; 977 mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra); 978 979 done: 980 return useronly_clean_ptr(ptr); 981 } 982