xref: /openbmc/qemu/target/arm/tcg/mte_helper.c (revision 851ec6eb)
1 /*
2  * ARM v8.5-MemTag Operations
3  *
4  * Copyright (c) 2020 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "internals.h"
24 #include "exec/exec-all.h"
25 #include "exec/ram_addr.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/helper-proto.h"
28 #include "hw/core/tcg-cpu-ops.h"
29 #include "qapi/error.h"
30 #include "qemu/guest-random.h"
31 
32 
33 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
34 {
35     if (exclude == 0xffff) {
36         return 0;
37     }
38     if (offset == 0) {
39         while (exclude & (1 << tag)) {
40             tag = (tag + 1) & 15;
41         }
42     } else {
43         do {
44             do {
45                 tag = (tag + 1) & 15;
46             } while (exclude & (1 << tag));
47         } while (--offset > 0);
48     }
49     return tag;
50 }
51 
52 /**
53  * allocation_tag_mem:
54  * @env: the cpu environment
55  * @ptr_mmu_idx: the addressing regime to use for the virtual address
56  * @ptr: the virtual address for which to look up tag memory
57  * @ptr_access: the access to use for the virtual address
58  * @ptr_size: the number of bytes in the normal memory access
59  * @tag_access: the access to use for the tag memory
60  * @tag_size: the number of bytes in the tag memory access
61  * @ra: the return address for exception handling
62  *
63  * Our tag memory is formatted as a sequence of little-endian nibbles.
64  * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
65  * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
66  * for the higher addr.
67  *
68  * Here, resolve the physical address from the virtual address, and return
69  * a pointer to the corresponding tag byte.  Exit with exception if the
70  * virtual address is not accessible for @ptr_access.
71  *
72  * The @ptr_size and @tag_size values may not have an obvious relation
73  * due to the alignment of @ptr, and the number of tag checks required.
74  *
75  * If there is no tag storage corresponding to @ptr, return NULL.
76  */
77 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
78                                    uint64_t ptr, MMUAccessType ptr_access,
79                                    int ptr_size, MMUAccessType tag_access,
80                                    int tag_size, uintptr_t ra)
81 {
82 #ifdef CONFIG_USER_ONLY
83     uint64_t clean_ptr = useronly_clean_ptr(ptr);
84     int flags = page_get_flags(clean_ptr);
85     uint8_t *tags;
86     uintptr_t index;
87 
88     if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) {
89         cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access,
90                               !(flags & PAGE_VALID), ra);
91     }
92 
93     /* Require both MAP_ANON and PROT_MTE for the page. */
94     if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
95         return NULL;
96     }
97 
98     tags = page_get_target_data(clean_ptr);
99 
100     index = extract32(ptr, LOG2_TAG_GRANULE + 1,
101                       TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
102     return tags + index;
103 #else
104     CPUTLBEntryFull *full;
105     MemTxAttrs attrs;
106     int in_page, flags;
107     hwaddr ptr_paddr, tag_paddr, xlat;
108     MemoryRegion *mr;
109     ARMASIdx tag_asi;
110     AddressSpace *tag_as;
111     void *host;
112 
113     /*
114      * Probe the first byte of the virtual address.  This raises an
115      * exception for inaccessible pages, and resolves the virtual address
116      * into the softmmu tlb.
117      *
118      * When RA == 0, this is for mte_probe.  The page is expected to be
119      * valid.  Indicate to probe_access_flags no-fault, then assert that
120      * we received a valid page.
121      */
122     flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx,
123                               ra == 0, &host, &full, ra);
124     assert(!(flags & TLB_INVALID_MASK));
125 
126     /* If the virtual page MemAttr != Tagged, access unchecked. */
127     if (full->pte_attrs != 0xf0) {
128         return NULL;
129     }
130 
131     /*
132      * If not backed by host ram, there is no tag storage: access unchecked.
133      * This is probably a guest os bug though, so log it.
134      */
135     if (unlikely(flags & TLB_MMIO)) {
136         qemu_log_mask(LOG_GUEST_ERROR,
137                       "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
138                       "but is not backed by host ram\n", ptr);
139         return NULL;
140     }
141 
142     /*
143      * Remember these values across the second lookup below,
144      * which may invalidate this pointer via tlb resize.
145      */
146     ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK);
147     attrs = full->attrs;
148     full = NULL;
149 
150     /*
151      * The Normal memory access can extend to the next page.  E.g. a single
152      * 8-byte access to the last byte of a page will check only the last
153      * tag on the first page.
154      * Any page access exception has priority over tag check exception.
155      */
156     in_page = -(ptr | TARGET_PAGE_MASK);
157     if (unlikely(ptr_size > in_page)) {
158         flags |= probe_access_full(env, ptr + in_page, 0, ptr_access,
159                                    ptr_mmu_idx, ra == 0, &host, &full, ra);
160         assert(!(flags & TLB_INVALID_MASK));
161     }
162 
163     /* Any debug exception has priority over a tag check exception. */
164     if (unlikely(flags & TLB_WATCHPOINT)) {
165         int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
166         assert(ra != 0);
167         cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra);
168     }
169 
170     /* Convert to the physical address in tag space.  */
171     tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
172 
173     /* Look up the address in tag space. */
174     tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
175     tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
176     mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
177                                  tag_access == MMU_DATA_STORE, attrs);
178 
179     /*
180      * Note that @mr will never be NULL.  If there is nothing in the address
181      * space at @tag_paddr, the translation will return the unallocated memory
182      * region.  For our purposes, the result must be ram.
183      */
184     if (unlikely(!memory_region_is_ram(mr))) {
185         /* ??? Failure is a board configuration error. */
186         qemu_log_mask(LOG_UNIMP,
187                       "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
188                       "Normal Memory @ 0x%" HWADDR_PRIx "\n",
189                       tag_paddr, ptr_paddr);
190         return NULL;
191     }
192 
193     /*
194      * Ensure the tag memory is dirty on write, for migration.
195      * Tag memory can never contain code or display memory (vga).
196      */
197     if (tag_access == MMU_DATA_STORE) {
198         ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
199         cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
200     }
201 
202     return memory_region_get_ram_ptr(mr) + xlat;
203 #endif
204 }
205 
206 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
207 {
208     uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
209     int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
210     int start = extract32(env->cp15.rgsr_el1, 0, 4);
211     int seed = extract32(env->cp15.rgsr_el1, 8, 16);
212     int offset, i, rtag;
213 
214     /*
215      * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
216      * deterministic algorithm.  Except that with RRND==1 the kernel is
217      * not required to have set RGSR_EL1.SEED != 0, which is required for
218      * the deterministic algorithm to function.  So we force a non-zero
219      * SEED for that case.
220      */
221     if (unlikely(seed == 0) && rrnd) {
222         do {
223             Error *err = NULL;
224             uint16_t two;
225 
226             if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
227                 /*
228                  * Failed, for unknown reasons in the crypto subsystem.
229                  * Best we can do is log the reason and use a constant seed.
230                  */
231                 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
232                               error_get_pretty(err));
233                 error_free(err);
234                 two = 1;
235             }
236             seed = two;
237         } while (seed == 0);
238     }
239 
240     /* RandomTag */
241     for (i = offset = 0; i < 4; ++i) {
242         /* NextRandomTagBit */
243         int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
244                    extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
245         seed = (top << 15) | (seed >> 1);
246         offset |= top << i;
247     }
248     rtag = choose_nonexcluded_tag(start, offset, exclude);
249     env->cp15.rgsr_el1 = rtag | (seed << 8);
250 
251     return address_with_allocation_tag(rn, rtag);
252 }
253 
254 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
255                          int32_t offset, uint32_t tag_offset)
256 {
257     int start_tag = allocation_tag_from_addr(ptr);
258     uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
259     int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
260 
261     return address_with_allocation_tag(ptr + offset, rtag);
262 }
263 
264 static int load_tag1(uint64_t ptr, uint8_t *mem)
265 {
266     int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
267     return extract32(*mem, ofs, 4);
268 }
269 
270 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
271 {
272     int mmu_idx = cpu_mmu_index(env, false);
273     uint8_t *mem;
274     int rtag = 0;
275 
276     /* Trap if accessing an invalid page.  */
277     mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
278                              MMU_DATA_LOAD, 1, GETPC());
279 
280     /* Load if page supports tags. */
281     if (mem) {
282         rtag = load_tag1(ptr, mem);
283     }
284 
285     return address_with_allocation_tag(xt, rtag);
286 }
287 
288 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
289 {
290     if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
291         arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
292                                     cpu_mmu_index(env, false), ra);
293         g_assert_not_reached();
294     }
295 }
296 
297 /* For use in a non-parallel context, store to the given nibble.  */
298 static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
299 {
300     int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
301     *mem = deposit32(*mem, ofs, 4, tag);
302 }
303 
304 /* For use in a parallel context, atomically store to the given nibble.  */
305 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
306 {
307     int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
308     uint8_t old = qatomic_read(mem);
309 
310     while (1) {
311         uint8_t new = deposit32(old, ofs, 4, tag);
312         uint8_t cmp = qatomic_cmpxchg(mem, old, new);
313         if (likely(cmp == old)) {
314             return;
315         }
316         old = cmp;
317     }
318 }
319 
320 typedef void stg_store1(uint64_t, uint8_t *, int);
321 
322 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
323                           uintptr_t ra, stg_store1 store1)
324 {
325     int mmu_idx = cpu_mmu_index(env, false);
326     uint8_t *mem;
327 
328     check_tag_aligned(env, ptr, ra);
329 
330     /* Trap if accessing an invalid page.  */
331     mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
332                              MMU_DATA_STORE, 1, ra);
333 
334     /* Store if page supports tags. */
335     if (mem) {
336         store1(ptr, mem, allocation_tag_from_addr(xt));
337     }
338 }
339 
340 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
341 {
342     do_stg(env, ptr, xt, GETPC(), store_tag1);
343 }
344 
345 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
346 {
347     do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
348 }
349 
350 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
351 {
352     int mmu_idx = cpu_mmu_index(env, false);
353     uintptr_t ra = GETPC();
354 
355     check_tag_aligned(env, ptr, ra);
356     probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
357 }
358 
359 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
360                            uintptr_t ra, stg_store1 store1)
361 {
362     int mmu_idx = cpu_mmu_index(env, false);
363     int tag = allocation_tag_from_addr(xt);
364     uint8_t *mem1, *mem2;
365 
366     check_tag_aligned(env, ptr, ra);
367 
368     /*
369      * Trap if accessing an invalid page(s).
370      * This takes priority over !allocation_tag_access_enabled.
371      */
372     if (ptr & TAG_GRANULE) {
373         /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
374         mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
375                                   TAG_GRANULE, MMU_DATA_STORE, 1, ra);
376         mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
377                                   MMU_DATA_STORE, TAG_GRANULE,
378                                   MMU_DATA_STORE, 1, ra);
379 
380         /* Store if page(s) support tags. */
381         if (mem1) {
382             store1(TAG_GRANULE, mem1, tag);
383         }
384         if (mem2) {
385             store1(0, mem2, tag);
386         }
387     } else {
388         /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
389         mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
390                                   2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra);
391         if (mem1) {
392             tag |= tag << 4;
393             qatomic_set(mem1, tag);
394         }
395     }
396 }
397 
398 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
399 {
400     do_st2g(env, ptr, xt, GETPC(), store_tag1);
401 }
402 
403 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
404 {
405     do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
406 }
407 
408 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
409 {
410     int mmu_idx = cpu_mmu_index(env, false);
411     uintptr_t ra = GETPC();
412     int in_page = -(ptr | TARGET_PAGE_MASK);
413 
414     check_tag_aligned(env, ptr, ra);
415 
416     if (likely(in_page >= 2 * TAG_GRANULE)) {
417         probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
418     } else {
419         probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
420         probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
421     }
422 }
423 
424 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
425 {
426     int mmu_idx = cpu_mmu_index(env, false);
427     uintptr_t ra = GETPC();
428     int gm_bs = env_archcpu(env)->gm_blocksize;
429     int gm_bs_bytes = 4 << gm_bs;
430     void *tag_mem;
431 
432     ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes);
433 
434     /* Trap if accessing an invalid page.  */
435     tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
436                                  gm_bs_bytes, MMU_DATA_LOAD,
437                                  gm_bs_bytes / (2 * TAG_GRANULE), ra);
438 
439     /* The tag is squashed to zero if the page does not support tags.  */
440     if (!tag_mem) {
441         return 0;
442     }
443 
444     /*
445      * The ordering of elements within the word corresponds to
446      * a little-endian operation.
447      */
448     switch (gm_bs) {
449     case 6:
450         /* 256 bytes -> 16 tags -> 64 result bits */
451         return ldq_le_p(tag_mem);
452     default:
453         /* cpu configured with unsupported gm blocksize. */
454         g_assert_not_reached();
455     }
456 }
457 
458 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
459 {
460     int mmu_idx = cpu_mmu_index(env, false);
461     uintptr_t ra = GETPC();
462     int gm_bs = env_archcpu(env)->gm_blocksize;
463     int gm_bs_bytes = 4 << gm_bs;
464     void *tag_mem;
465 
466     ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes);
467 
468     /* Trap if accessing an invalid page.  */
469     tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
470                                  gm_bs_bytes, MMU_DATA_LOAD,
471                                  gm_bs_bytes / (2 * TAG_GRANULE), ra);
472 
473     /*
474      * Tag store only happens if the page support tags,
475      * and if the OS has enabled access to the tags.
476      */
477     if (!tag_mem) {
478         return;
479     }
480 
481     /*
482      * The ordering of elements within the word corresponds to
483      * a little-endian operation.
484      */
485     switch (gm_bs) {
486     case 6:
487         stq_le_p(tag_mem, val);
488         break;
489     default:
490         /* cpu configured with unsupported gm blocksize. */
491         g_assert_not_reached();
492     }
493 }
494 
495 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
496 {
497     uintptr_t ra = GETPC();
498     int mmu_idx = cpu_mmu_index(env, false);
499     int log2_dcz_bytes, log2_tag_bytes;
500     intptr_t dcz_bytes, tag_bytes;
501     uint8_t *mem;
502 
503     /*
504      * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
505      * i.e. 32 bytes, which is an unreasonably small dcz anyway,
506      * to make sure that we can access one complete tag byte here.
507      */
508     log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
509     log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
510     dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
511     tag_bytes = (intptr_t)1 << log2_tag_bytes;
512     ptr &= -dcz_bytes;
513 
514     mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
515                              MMU_DATA_STORE, tag_bytes, ra);
516     if (mem) {
517         int tag_pair = (val & 0xf) * 0x11;
518         memset(mem, tag_pair, tag_bytes);
519     }
520 }
521 
522 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc,
523                                 uint64_t dirty_ptr, uintptr_t ra)
524 {
525     int is_write, syn;
526 
527     env->exception.vaddress = dirty_ptr;
528 
529     is_write = FIELD_EX32(desc, MTEDESC, WRITE);
530     syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write,
531                                 0x11);
532     raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra);
533     g_assert_not_reached();
534 }
535 
536 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr,
537                                  uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el)
538 {
539     int select;
540 
541     if (regime_has_2_ranges(arm_mmu_idx)) {
542         select = extract64(dirty_ptr, 55, 1);
543     } else {
544         select = 0;
545     }
546     env->cp15.tfsr_el[el] |= 1 << select;
547 #ifdef CONFIG_USER_ONLY
548     /*
549      * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
550      * which then sends a SIGSEGV when the thread is next scheduled.
551      * This cpu will return to the main loop at the end of the TB,
552      * which is rather sooner than "normal".  But the alternative
553      * is waiting until the next syscall.
554      */
555     qemu_cpu_kick(env_cpu(env));
556 #endif
557 }
558 
559 /* Record a tag check failure.  */
560 static void mte_check_fail(CPUARMState *env, uint32_t desc,
561                            uint64_t dirty_ptr, uintptr_t ra)
562 {
563     int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
564     ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
565     int el, reg_el, tcf;
566     uint64_t sctlr;
567 
568     reg_el = regime_el(env, arm_mmu_idx);
569     sctlr = env->cp15.sctlr_el[reg_el];
570 
571     switch (arm_mmu_idx) {
572     case ARMMMUIdx_E10_0:
573     case ARMMMUIdx_E20_0:
574         el = 0;
575         tcf = extract64(sctlr, 38, 2);
576         break;
577     default:
578         el = reg_el;
579         tcf = extract64(sctlr, 40, 2);
580     }
581 
582     switch (tcf) {
583     case 1:
584         /* Tag check fail causes a synchronous exception. */
585         mte_sync_check_fail(env, desc, dirty_ptr, ra);
586         break;
587 
588     case 0:
589         /*
590          * Tag check fail does not affect the PE.
591          * We eliminate this case by not setting MTE_ACTIVE
592          * in tb_flags, so that we never make this runtime call.
593          */
594         g_assert_not_reached();
595 
596     case 2:
597         /* Tag check fail causes asynchronous flag set.  */
598         mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
599         break;
600 
601     case 3:
602         /*
603          * Tag check fail causes asynchronous flag set for stores, or
604          * a synchronous exception for loads.
605          */
606         if (FIELD_EX32(desc, MTEDESC, WRITE)) {
607             mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
608         } else {
609             mte_sync_check_fail(env, desc, dirty_ptr, ra);
610         }
611         break;
612     }
613 }
614 
615 /**
616  * checkN:
617  * @tag: tag memory to test
618  * @odd: true to begin testing at tags at odd nibble
619  * @cmp: the tag to compare against
620  * @count: number of tags to test
621  *
622  * Return the number of successful tests.
623  * Thus a return value < @count indicates a failure.
624  *
625  * A note about sizes: count is expected to be small.
626  *
627  * The most common use will be LDP/STP of two integer registers,
628  * which means 16 bytes of memory touching at most 2 tags, but
629  * often the access is aligned and thus just 1 tag.
630  *
631  * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
632  * touching at most 5 tags.  SVE LDR/STR (vector) with the default
633  * vector length is also 64 bytes; the maximum architectural length
634  * is 256 bytes touching at most 9 tags.
635  *
636  * The loop below uses 7 logical operations and 1 memory operation
637  * per tag pair.  An implementation that loads an aligned word and
638  * uses masking to ignore adjacent tags requires 18 logical operations
639  * and thus does not begin to pay off until 6 tags.
640  * Which, according to the survey above, is unlikely to be common.
641  */
642 static int checkN(uint8_t *mem, int odd, int cmp, int count)
643 {
644     int n = 0, diff;
645 
646     /* Replicate the test tag and compare.  */
647     cmp *= 0x11;
648     diff = *mem++ ^ cmp;
649 
650     if (odd) {
651         goto start_odd;
652     }
653 
654     while (1) {
655         /* Test even tag. */
656         if (unlikely((diff) & 0x0f)) {
657             break;
658         }
659         if (++n == count) {
660             break;
661         }
662 
663     start_odd:
664         /* Test odd tag. */
665         if (unlikely((diff) & 0xf0)) {
666             break;
667         }
668         if (++n == count) {
669             break;
670         }
671 
672         diff = *mem++ ^ cmp;
673     }
674     return n;
675 }
676 
677 /**
678  * mte_probe_int() - helper for mte_probe and mte_check
679  * @env: CPU environment
680  * @desc: MTEDESC descriptor
681  * @ptr: virtual address of the base of the access
682  * @fault: return virtual address of the first check failure
683  *
684  * Internal routine for both mte_probe and mte_check.
685  * Return zero on failure, filling in *fault.
686  * Return negative on trivial success for tbi disabled.
687  * Return positive on success with tbi enabled.
688  */
689 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
690                          uintptr_t ra, uint64_t *fault)
691 {
692     int mmu_idx, ptr_tag, bit55;
693     uint64_t ptr_last, prev_page, next_page;
694     uint64_t tag_first, tag_last;
695     uint64_t tag_byte_first, tag_byte_last;
696     uint32_t sizem1, tag_count, tag_size, n, c;
697     uint8_t *mem1, *mem2;
698     MMUAccessType type;
699 
700     bit55 = extract64(ptr, 55, 1);
701     *fault = ptr;
702 
703     /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
704     if (unlikely(!tbi_check(desc, bit55))) {
705         return -1;
706     }
707 
708     ptr_tag = allocation_tag_from_addr(ptr);
709 
710     if (tcma_check(desc, bit55, ptr_tag)) {
711         return 1;
712     }
713 
714     mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
715     type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
716     sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1);
717 
718     /* Find the addr of the end of the access */
719     ptr_last = ptr + sizem1;
720 
721     /* Round the bounds to the tag granule, and compute the number of tags. */
722     tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
723     tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
724     tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
725 
726     /* Round the bounds to twice the tag granule, and compute the bytes. */
727     tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE);
728     tag_byte_last = QEMU_ALIGN_DOWN(ptr_last, 2 * TAG_GRANULE);
729 
730     /* Locate the page boundaries. */
731     prev_page = ptr & TARGET_PAGE_MASK;
732     next_page = prev_page + TARGET_PAGE_SIZE;
733 
734     if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) {
735         /* Memory access stays on one page. */
736         tag_size = ((tag_byte_last - tag_byte_first) / (2 * TAG_GRANULE)) + 1;
737         mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1,
738                                   MMU_DATA_LOAD, tag_size, ra);
739         if (!mem1) {
740             return 1;
741         }
742         /* Perform all of the comparisons. */
743         n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
744     } else {
745         /* Memory access crosses to next page. */
746         tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE);
747         mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
748                                   MMU_DATA_LOAD, tag_size, ra);
749 
750         tag_size = ((tag_byte_last - next_page) / (2 * TAG_GRANULE)) + 1;
751         mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
752                                   ptr_last - next_page + 1,
753                                   MMU_DATA_LOAD, tag_size, ra);
754 
755         /*
756          * Perform all of the comparisons.
757          * Note the possible but unlikely case of the operation spanning
758          * two pages that do not both have tagging enabled.
759          */
760         n = c = (next_page - tag_first) / TAG_GRANULE;
761         if (mem1) {
762             n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
763         }
764         if (n == c) {
765             if (!mem2) {
766                 return 1;
767             }
768             n += checkN(mem2, 0, ptr_tag, tag_count - c);
769         }
770     }
771 
772     if (likely(n == tag_count)) {
773         return 1;
774     }
775 
776     /*
777      * If we failed, we know which granule.  For the first granule, the
778      * failure address is @ptr, the first byte accessed.  Otherwise the
779      * failure address is the first byte of the nth granule.
780      */
781     if (n > 0) {
782         *fault = tag_first + n * TAG_GRANULE;
783     }
784     return 0;
785 }
786 
787 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra)
788 {
789     uint64_t fault;
790     int ret = mte_probe_int(env, desc, ptr, ra, &fault);
791 
792     if (unlikely(ret == 0)) {
793         mte_check_fail(env, desc, fault, ra);
794     } else if (ret < 0) {
795         return ptr;
796     }
797     return useronly_clean_ptr(ptr);
798 }
799 
800 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr)
801 {
802     /*
803      * R_XCHFJ: Alignment check not caused by memory type is priority 1,
804      * higher than any translation fault.  When MTE is disabled, tcg
805      * performs the alignment check during the code generated for the
806      * memory access.  With MTE enabled, we must check this here before
807      * raising any translation fault in allocation_tag_mem.
808      */
809     unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN);
810     if (unlikely(align)) {
811         align = (1u << align) - 1;
812         if (unlikely(ptr & align)) {
813             int idx = FIELD_EX32(desc, MTEDESC, MIDX);
814             bool w = FIELD_EX32(desc, MTEDESC, WRITE);
815             MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD;
816             arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC());
817         }
818     }
819 
820     return mte_check(env, desc, ptr, GETPC());
821 }
822 
823 /*
824  * No-fault version of mte_check, to be used by SVE for MemSingleNF.
825  * Returns false if the access is Checked and the check failed.  This
826  * is only intended to probe the tag -- the validity of the page must
827  * be checked beforehand.
828  */
829 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr)
830 {
831     uint64_t fault;
832     int ret = mte_probe_int(env, desc, ptr, 0, &fault);
833 
834     return ret != 0;
835 }
836 
837 /*
838  * Perform an MTE checked access for DC_ZVA.
839  */
840 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
841 {
842     uintptr_t ra = GETPC();
843     int log2_dcz_bytes, log2_tag_bytes;
844     int mmu_idx, bit55;
845     intptr_t dcz_bytes, tag_bytes, i;
846     void *mem;
847     uint64_t ptr_tag, mem_tag, align_ptr;
848 
849     bit55 = extract64(ptr, 55, 1);
850 
851     /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
852     if (unlikely(!tbi_check(desc, bit55))) {
853         return ptr;
854     }
855 
856     ptr_tag = allocation_tag_from_addr(ptr);
857 
858     if (tcma_check(desc, bit55, ptr_tag)) {
859         goto done;
860     }
861 
862     /*
863      * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
864      * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
865      * sure that we can access one complete tag byte here.
866      */
867     log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
868     log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
869     dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
870     tag_bytes = (intptr_t)1 << log2_tag_bytes;
871     align_ptr = ptr & -dcz_bytes;
872 
873     /*
874      * Trap if accessing an invalid page.  DC_ZVA requires that we supply
875      * the original pointer for an invalid page.  But watchpoints require
876      * that we probe the actual space.  So do both.
877      */
878     mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
879     (void) probe_write(env, ptr, 1, mmu_idx, ra);
880     mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
881                              dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra);
882     if (!mem) {
883         goto done;
884     }
885 
886     /*
887      * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
888      * it is quite easy to perform all of the comparisons at once without
889      * any extra masking.
890      *
891      * The most common zva block size is 64; some of the thunderx cpus use
892      * a block size of 128.  For user-only, aarch64_max_initfn will set the
893      * block size to 512.  Fill out the other cases for future-proofing.
894      *
895      * In order to be able to find the first miscompare later, we want the
896      * tag bytes to be in little-endian order.
897      */
898     switch (log2_tag_bytes) {
899     case 0: /* zva_blocksize 32 */
900         mem_tag = *(uint8_t *)mem;
901         ptr_tag *= 0x11u;
902         break;
903     case 1: /* zva_blocksize 64 */
904         mem_tag = cpu_to_le16(*(uint16_t *)mem);
905         ptr_tag *= 0x1111u;
906         break;
907     case 2: /* zva_blocksize 128 */
908         mem_tag = cpu_to_le32(*(uint32_t *)mem);
909         ptr_tag *= 0x11111111u;
910         break;
911     case 3: /* zva_blocksize 256 */
912         mem_tag = cpu_to_le64(*(uint64_t *)mem);
913         ptr_tag *= 0x1111111111111111ull;
914         break;
915 
916     default: /* zva_blocksize 512, 1024, 2048 */
917         ptr_tag *= 0x1111111111111111ull;
918         i = 0;
919         do {
920             mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
921             if (unlikely(mem_tag != ptr_tag)) {
922                 goto fail;
923             }
924             i += 8;
925             align_ptr += 16 * TAG_GRANULE;
926         } while (i < tag_bytes);
927         goto done;
928     }
929 
930     if (likely(mem_tag == ptr_tag)) {
931         goto done;
932     }
933 
934  fail:
935     /* Locate the first nibble that differs. */
936     i = ctz64(mem_tag ^ ptr_tag) >> 4;
937     mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
938 
939  done:
940     return useronly_clean_ptr(ptr);
941 }
942