1 /* 2 * ARM v8.5-MemTag Operations 3 * 4 * Copyright (c) 2020 Linaro, Ltd. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "internals.h" 24 #include "exec/exec-all.h" 25 #include "exec/ram_addr.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/helper-proto.h" 28 #include "hw/core/tcg-cpu-ops.h" 29 #include "qapi/error.h" 30 #include "qemu/guest-random.h" 31 32 33 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude) 34 { 35 if (exclude == 0xffff) { 36 return 0; 37 } 38 if (offset == 0) { 39 while (exclude & (1 << tag)) { 40 tag = (tag + 1) & 15; 41 } 42 } else { 43 do { 44 do { 45 tag = (tag + 1) & 15; 46 } while (exclude & (1 << tag)); 47 } while (--offset > 0); 48 } 49 return tag; 50 } 51 52 /** 53 * allocation_tag_mem: 54 * @env: the cpu environment 55 * @ptr_mmu_idx: the addressing regime to use for the virtual address 56 * @ptr: the virtual address for which to look up tag memory 57 * @ptr_access: the access to use for the virtual address 58 * @ptr_size: the number of bytes in the normal memory access 59 * @tag_access: the access to use for the tag memory 60 * @tag_size: the number of bytes in the tag memory access 61 * @ra: the return address for exception handling 62 * 63 * Our tag memory is formatted as a sequence of little-endian nibbles. 64 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two 65 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4] 66 * for the higher addr. 67 * 68 * Here, resolve the physical address from the virtual address, and return 69 * a pointer to the corresponding tag byte. Exit with exception if the 70 * virtual address is not accessible for @ptr_access. 71 * 72 * The @ptr_size and @tag_size values may not have an obvious relation 73 * due to the alignment of @ptr, and the number of tag checks required. 74 * 75 * If there is no tag storage corresponding to @ptr, return NULL. 76 */ 77 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx, 78 uint64_t ptr, MMUAccessType ptr_access, 79 int ptr_size, MMUAccessType tag_access, 80 int tag_size, uintptr_t ra) 81 { 82 #ifdef CONFIG_USER_ONLY 83 uint64_t clean_ptr = useronly_clean_ptr(ptr); 84 int flags = page_get_flags(clean_ptr); 85 uint8_t *tags; 86 uintptr_t index; 87 88 if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) { 89 cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access, 90 !(flags & PAGE_VALID), ra); 91 } 92 93 /* Require both MAP_ANON and PROT_MTE for the page. */ 94 if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) { 95 return NULL; 96 } 97 98 tags = page_get_target_data(clean_ptr); 99 100 index = extract32(ptr, LOG2_TAG_GRANULE + 1, 101 TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1); 102 return tags + index; 103 #else 104 CPUTLBEntryFull *full; 105 MemTxAttrs attrs; 106 int in_page, flags; 107 hwaddr ptr_paddr, tag_paddr, xlat; 108 MemoryRegion *mr; 109 ARMASIdx tag_asi; 110 AddressSpace *tag_as; 111 void *host; 112 113 /* 114 * Probe the first byte of the virtual address. This raises an 115 * exception for inaccessible pages, and resolves the virtual address 116 * into the softmmu tlb. 117 * 118 * When RA == 0, this is for mte_probe. The page is expected to be 119 * valid. Indicate to probe_access_flags no-fault, then assert that 120 * we received a valid page. 121 */ 122 flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx, 123 ra == 0, &host, &full, ra); 124 assert(!(flags & TLB_INVALID_MASK)); 125 126 /* If the virtual page MemAttr != Tagged, access unchecked. */ 127 if (full->pte_attrs != 0xf0) { 128 return NULL; 129 } 130 131 /* 132 * If not backed by host ram, there is no tag storage: access unchecked. 133 * This is probably a guest os bug though, so log it. 134 */ 135 if (unlikely(flags & TLB_MMIO)) { 136 qemu_log_mask(LOG_GUEST_ERROR, 137 "Page @ 0x%" PRIx64 " indicates Tagged Normal memory " 138 "but is not backed by host ram\n", ptr); 139 return NULL; 140 } 141 142 /* 143 * Remember these values across the second lookup below, 144 * which may invalidate this pointer via tlb resize. 145 */ 146 ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK); 147 attrs = full->attrs; 148 full = NULL; 149 150 /* 151 * The Normal memory access can extend to the next page. E.g. a single 152 * 8-byte access to the last byte of a page will check only the last 153 * tag on the first page. 154 * Any page access exception has priority over tag check exception. 155 */ 156 in_page = -(ptr | TARGET_PAGE_MASK); 157 if (unlikely(ptr_size > in_page)) { 158 flags |= probe_access_full(env, ptr + in_page, 0, ptr_access, 159 ptr_mmu_idx, ra == 0, &host, &full, ra); 160 assert(!(flags & TLB_INVALID_MASK)); 161 } 162 163 /* Any debug exception has priority over a tag check exception. */ 164 if (unlikely(flags & TLB_WATCHPOINT)) { 165 int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE; 166 assert(ra != 0); 167 cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra); 168 } 169 170 /* Convert to the physical address in tag space. */ 171 tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1); 172 173 /* Look up the address in tag space. */ 174 tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS; 175 tag_as = cpu_get_address_space(env_cpu(env), tag_asi); 176 mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL, 177 tag_access == MMU_DATA_STORE, attrs); 178 179 /* 180 * Note that @mr will never be NULL. If there is nothing in the address 181 * space at @tag_paddr, the translation will return the unallocated memory 182 * region. For our purposes, the result must be ram. 183 */ 184 if (unlikely(!memory_region_is_ram(mr))) { 185 /* ??? Failure is a board configuration error. */ 186 qemu_log_mask(LOG_UNIMP, 187 "Tag Memory @ 0x%" HWADDR_PRIx " not found for " 188 "Normal Memory @ 0x%" HWADDR_PRIx "\n", 189 tag_paddr, ptr_paddr); 190 return NULL; 191 } 192 193 /* 194 * Ensure the tag memory is dirty on write, for migration. 195 * Tag memory can never contain code or display memory (vga). 196 */ 197 if (tag_access == MMU_DATA_STORE) { 198 ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat; 199 cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION); 200 } 201 202 return memory_region_get_ram_ptr(mr) + xlat; 203 #endif 204 } 205 206 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm) 207 { 208 uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16); 209 int rrnd = extract32(env->cp15.gcr_el1, 16, 1); 210 int start = extract32(env->cp15.rgsr_el1, 0, 4); 211 int seed = extract32(env->cp15.rgsr_el1, 8, 16); 212 int offset, i, rtag; 213 214 /* 215 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the 216 * deterministic algorithm. Except that with RRND==1 the kernel is 217 * not required to have set RGSR_EL1.SEED != 0, which is required for 218 * the deterministic algorithm to function. So we force a non-zero 219 * SEED for that case. 220 */ 221 if (unlikely(seed == 0) && rrnd) { 222 do { 223 Error *err = NULL; 224 uint16_t two; 225 226 if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) { 227 /* 228 * Failed, for unknown reasons in the crypto subsystem. 229 * Best we can do is log the reason and use a constant seed. 230 */ 231 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n", 232 error_get_pretty(err)); 233 error_free(err); 234 two = 1; 235 } 236 seed = two; 237 } while (seed == 0); 238 } 239 240 /* RandomTag */ 241 for (i = offset = 0; i < 4; ++i) { 242 /* NextRandomTagBit */ 243 int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^ 244 extract32(seed, 2, 1) ^ extract32(seed, 0, 1)); 245 seed = (top << 15) | (seed >> 1); 246 offset |= top << i; 247 } 248 rtag = choose_nonexcluded_tag(start, offset, exclude); 249 env->cp15.rgsr_el1 = rtag | (seed << 8); 250 251 return address_with_allocation_tag(rn, rtag); 252 } 253 254 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr, 255 int32_t offset, uint32_t tag_offset) 256 { 257 int start_tag = allocation_tag_from_addr(ptr); 258 uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16); 259 int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude); 260 261 return address_with_allocation_tag(ptr + offset, rtag); 262 } 263 264 static int load_tag1(uint64_t ptr, uint8_t *mem) 265 { 266 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 267 return extract32(*mem, ofs, 4); 268 } 269 270 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 271 { 272 int mmu_idx = cpu_mmu_index(env, false); 273 uint8_t *mem; 274 int rtag = 0; 275 276 /* Trap if accessing an invalid page. */ 277 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1, 278 MMU_DATA_LOAD, 1, GETPC()); 279 280 /* Load if page supports tags. */ 281 if (mem) { 282 rtag = load_tag1(ptr, mem); 283 } 284 285 return address_with_allocation_tag(xt, rtag); 286 } 287 288 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra) 289 { 290 if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) { 291 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE, 292 cpu_mmu_index(env, false), ra); 293 g_assert_not_reached(); 294 } 295 } 296 297 /* For use in a non-parallel context, store to the given nibble. */ 298 static void store_tag1(uint64_t ptr, uint8_t *mem, int tag) 299 { 300 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 301 *mem = deposit32(*mem, ofs, 4, tag); 302 } 303 304 /* For use in a parallel context, atomically store to the given nibble. */ 305 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag) 306 { 307 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 308 uint8_t old = qatomic_read(mem); 309 310 while (1) { 311 uint8_t new = deposit32(old, ofs, 4, tag); 312 uint8_t cmp = qatomic_cmpxchg(mem, old, new); 313 if (likely(cmp == old)) { 314 return; 315 } 316 old = cmp; 317 } 318 } 319 320 typedef void stg_store1(uint64_t, uint8_t *, int); 321 322 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt, 323 uintptr_t ra, stg_store1 store1) 324 { 325 int mmu_idx = cpu_mmu_index(env, false); 326 uint8_t *mem; 327 328 check_tag_aligned(env, ptr, ra); 329 330 /* Trap if accessing an invalid page. */ 331 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE, 332 MMU_DATA_STORE, 1, ra); 333 334 /* Store if page supports tags. */ 335 if (mem) { 336 store1(ptr, mem, allocation_tag_from_addr(xt)); 337 } 338 } 339 340 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 341 { 342 do_stg(env, ptr, xt, GETPC(), store_tag1); 343 } 344 345 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 346 { 347 do_stg(env, ptr, xt, GETPC(), store_tag1_parallel); 348 } 349 350 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr) 351 { 352 int mmu_idx = cpu_mmu_index(env, false); 353 uintptr_t ra = GETPC(); 354 355 check_tag_aligned(env, ptr, ra); 356 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 357 } 358 359 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt, 360 uintptr_t ra, stg_store1 store1) 361 { 362 int mmu_idx = cpu_mmu_index(env, false); 363 int tag = allocation_tag_from_addr(xt); 364 uint8_t *mem1, *mem2; 365 366 check_tag_aligned(env, ptr, ra); 367 368 /* 369 * Trap if accessing an invalid page(s). 370 * This takes priority over !allocation_tag_access_enabled. 371 */ 372 if (ptr & TAG_GRANULE) { 373 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */ 374 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 375 TAG_GRANULE, MMU_DATA_STORE, 1, ra); 376 mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE, 377 MMU_DATA_STORE, TAG_GRANULE, 378 MMU_DATA_STORE, 1, ra); 379 380 /* Store if page(s) support tags. */ 381 if (mem1) { 382 store1(TAG_GRANULE, mem1, tag); 383 } 384 if (mem2) { 385 store1(0, mem2, tag); 386 } 387 } else { 388 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */ 389 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 390 2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra); 391 if (mem1) { 392 tag |= tag << 4; 393 qatomic_set(mem1, tag); 394 } 395 } 396 } 397 398 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt) 399 { 400 do_st2g(env, ptr, xt, GETPC(), store_tag1); 401 } 402 403 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 404 { 405 do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel); 406 } 407 408 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr) 409 { 410 int mmu_idx = cpu_mmu_index(env, false); 411 uintptr_t ra = GETPC(); 412 int in_page = -(ptr | TARGET_PAGE_MASK); 413 414 check_tag_aligned(env, ptr, ra); 415 416 if (likely(in_page >= 2 * TAG_GRANULE)) { 417 probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra); 418 } else { 419 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 420 probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra); 421 } 422 } 423 424 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr) 425 { 426 int mmu_idx = cpu_mmu_index(env, false); 427 uintptr_t ra = GETPC(); 428 int gm_bs = env_archcpu(env)->gm_blocksize; 429 int gm_bs_bytes = 4 << gm_bs; 430 void *tag_mem; 431 432 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 433 434 /* Trap if accessing an invalid page. */ 435 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 436 gm_bs_bytes, MMU_DATA_LOAD, 437 gm_bs_bytes / (2 * TAG_GRANULE), ra); 438 439 /* The tag is squashed to zero if the page does not support tags. */ 440 if (!tag_mem) { 441 return 0; 442 } 443 444 /* 445 * The ordering of elements within the word corresponds to 446 * a little-endian operation. 447 */ 448 switch (gm_bs) { 449 case 6: 450 /* 256 bytes -> 16 tags -> 64 result bits */ 451 return ldq_le_p(tag_mem); 452 default: 453 /* cpu configured with unsupported gm blocksize. */ 454 g_assert_not_reached(); 455 } 456 } 457 458 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val) 459 { 460 int mmu_idx = cpu_mmu_index(env, false); 461 uintptr_t ra = GETPC(); 462 int gm_bs = env_archcpu(env)->gm_blocksize; 463 int gm_bs_bytes = 4 << gm_bs; 464 void *tag_mem; 465 466 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 467 468 /* Trap if accessing an invalid page. */ 469 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 470 gm_bs_bytes, MMU_DATA_LOAD, 471 gm_bs_bytes / (2 * TAG_GRANULE), ra); 472 473 /* 474 * Tag store only happens if the page support tags, 475 * and if the OS has enabled access to the tags. 476 */ 477 if (!tag_mem) { 478 return; 479 } 480 481 /* 482 * The ordering of elements within the word corresponds to 483 * a little-endian operation. 484 */ 485 switch (gm_bs) { 486 case 6: 487 stq_le_p(tag_mem, val); 488 break; 489 default: 490 /* cpu configured with unsupported gm blocksize. */ 491 g_assert_not_reached(); 492 } 493 } 494 495 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val) 496 { 497 uintptr_t ra = GETPC(); 498 int mmu_idx = cpu_mmu_index(env, false); 499 int log2_dcz_bytes, log2_tag_bytes; 500 intptr_t dcz_bytes, tag_bytes; 501 uint8_t *mem; 502 503 /* 504 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1, 505 * i.e. 32 bytes, which is an unreasonably small dcz anyway, 506 * to make sure that we can access one complete tag byte here. 507 */ 508 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 509 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 510 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 511 tag_bytes = (intptr_t)1 << log2_tag_bytes; 512 ptr &= -dcz_bytes; 513 514 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes, 515 MMU_DATA_STORE, tag_bytes, ra); 516 if (mem) { 517 int tag_pair = (val & 0xf) * 0x11; 518 memset(mem, tag_pair, tag_bytes); 519 } 520 } 521 522 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc, 523 uint64_t dirty_ptr, uintptr_t ra) 524 { 525 int is_write, syn; 526 527 env->exception.vaddress = dirty_ptr; 528 529 is_write = FIELD_EX32(desc, MTEDESC, WRITE); 530 syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write, 531 0x11); 532 raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra); 533 g_assert_not_reached(); 534 } 535 536 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr, 537 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el) 538 { 539 int select; 540 541 if (regime_has_2_ranges(arm_mmu_idx)) { 542 select = extract64(dirty_ptr, 55, 1); 543 } else { 544 select = 0; 545 } 546 env->cp15.tfsr_el[el] |= 1 << select; 547 #ifdef CONFIG_USER_ONLY 548 /* 549 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT, 550 * which then sends a SIGSEGV when the thread is next scheduled. 551 * This cpu will return to the main loop at the end of the TB, 552 * which is rather sooner than "normal". But the alternative 553 * is waiting until the next syscall. 554 */ 555 qemu_cpu_kick(env_cpu(env)); 556 #endif 557 } 558 559 /* Record a tag check failure. */ 560 static void mte_check_fail(CPUARMState *env, uint32_t desc, 561 uint64_t dirty_ptr, uintptr_t ra) 562 { 563 int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 564 ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx); 565 int el, reg_el, tcf; 566 uint64_t sctlr; 567 568 reg_el = regime_el(env, arm_mmu_idx); 569 sctlr = env->cp15.sctlr_el[reg_el]; 570 571 switch (arm_mmu_idx) { 572 case ARMMMUIdx_E10_0: 573 case ARMMMUIdx_E20_0: 574 el = 0; 575 tcf = extract64(sctlr, 38, 2); 576 break; 577 default: 578 el = reg_el; 579 tcf = extract64(sctlr, 40, 2); 580 } 581 582 switch (tcf) { 583 case 1: 584 /* Tag check fail causes a synchronous exception. */ 585 mte_sync_check_fail(env, desc, dirty_ptr, ra); 586 break; 587 588 case 0: 589 /* 590 * Tag check fail does not affect the PE. 591 * We eliminate this case by not setting MTE_ACTIVE 592 * in tb_flags, so that we never make this runtime call. 593 */ 594 g_assert_not_reached(); 595 596 case 2: 597 /* Tag check fail causes asynchronous flag set. */ 598 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 599 break; 600 601 case 3: 602 /* 603 * Tag check fail causes asynchronous flag set for stores, or 604 * a synchronous exception for loads. 605 */ 606 if (FIELD_EX32(desc, MTEDESC, WRITE)) { 607 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 608 } else { 609 mte_sync_check_fail(env, desc, dirty_ptr, ra); 610 } 611 break; 612 } 613 } 614 615 /** 616 * checkN: 617 * @tag: tag memory to test 618 * @odd: true to begin testing at tags at odd nibble 619 * @cmp: the tag to compare against 620 * @count: number of tags to test 621 * 622 * Return the number of successful tests. 623 * Thus a return value < @count indicates a failure. 624 * 625 * A note about sizes: count is expected to be small. 626 * 627 * The most common use will be LDP/STP of two integer registers, 628 * which means 16 bytes of memory touching at most 2 tags, but 629 * often the access is aligned and thus just 1 tag. 630 * 631 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory, 632 * touching at most 5 tags. SVE LDR/STR (vector) with the default 633 * vector length is also 64 bytes; the maximum architectural length 634 * is 256 bytes touching at most 9 tags. 635 * 636 * The loop below uses 7 logical operations and 1 memory operation 637 * per tag pair. An implementation that loads an aligned word and 638 * uses masking to ignore adjacent tags requires 18 logical operations 639 * and thus does not begin to pay off until 6 tags. 640 * Which, according to the survey above, is unlikely to be common. 641 */ 642 static int checkN(uint8_t *mem, int odd, int cmp, int count) 643 { 644 int n = 0, diff; 645 646 /* Replicate the test tag and compare. */ 647 cmp *= 0x11; 648 diff = *mem++ ^ cmp; 649 650 if (odd) { 651 goto start_odd; 652 } 653 654 while (1) { 655 /* Test even tag. */ 656 if (unlikely((diff) & 0x0f)) { 657 break; 658 } 659 if (++n == count) { 660 break; 661 } 662 663 start_odd: 664 /* Test odd tag. */ 665 if (unlikely((diff) & 0xf0)) { 666 break; 667 } 668 if (++n == count) { 669 break; 670 } 671 672 diff = *mem++ ^ cmp; 673 } 674 return n; 675 } 676 677 /** 678 * mte_probe_int() - helper for mte_probe and mte_check 679 * @env: CPU environment 680 * @desc: MTEDESC descriptor 681 * @ptr: virtual address of the base of the access 682 * @fault: return virtual address of the first check failure 683 * 684 * Internal routine for both mte_probe and mte_check. 685 * Return zero on failure, filling in *fault. 686 * Return negative on trivial success for tbi disabled. 687 * Return positive on success with tbi enabled. 688 */ 689 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr, 690 uintptr_t ra, uint64_t *fault) 691 { 692 int mmu_idx, ptr_tag, bit55; 693 uint64_t ptr_last, prev_page, next_page; 694 uint64_t tag_first, tag_last; 695 uint64_t tag_byte_first, tag_byte_last; 696 uint32_t sizem1, tag_count, tag_size, n, c; 697 uint8_t *mem1, *mem2; 698 MMUAccessType type; 699 700 bit55 = extract64(ptr, 55, 1); 701 *fault = ptr; 702 703 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 704 if (unlikely(!tbi_check(desc, bit55))) { 705 return -1; 706 } 707 708 ptr_tag = allocation_tag_from_addr(ptr); 709 710 if (tcma_check(desc, bit55, ptr_tag)) { 711 return 1; 712 } 713 714 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 715 type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD; 716 sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1); 717 718 /* Find the addr of the end of the access */ 719 ptr_last = ptr + sizem1; 720 721 /* Round the bounds to the tag granule, and compute the number of tags. */ 722 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 723 tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE); 724 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 725 726 /* Round the bounds to twice the tag granule, and compute the bytes. */ 727 tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE); 728 tag_byte_last = QEMU_ALIGN_DOWN(ptr_last, 2 * TAG_GRANULE); 729 730 /* Locate the page boundaries. */ 731 prev_page = ptr & TARGET_PAGE_MASK; 732 next_page = prev_page + TARGET_PAGE_SIZE; 733 734 if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) { 735 /* Memory access stays on one page. */ 736 tag_size = ((tag_byte_last - tag_byte_first) / (2 * TAG_GRANULE)) + 1; 737 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1, 738 MMU_DATA_LOAD, tag_size, ra); 739 if (!mem1) { 740 return 1; 741 } 742 /* Perform all of the comparisons. */ 743 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count); 744 } else { 745 /* Memory access crosses to next page. */ 746 tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE); 747 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr, 748 MMU_DATA_LOAD, tag_size, ra); 749 750 tag_size = ((tag_byte_last - next_page) / (2 * TAG_GRANULE)) + 1; 751 mem2 = allocation_tag_mem(env, mmu_idx, next_page, type, 752 ptr_last - next_page + 1, 753 MMU_DATA_LOAD, tag_size, ra); 754 755 /* 756 * Perform all of the comparisons. 757 * Note the possible but unlikely case of the operation spanning 758 * two pages that do not both have tagging enabled. 759 */ 760 n = c = (next_page - tag_first) / TAG_GRANULE; 761 if (mem1) { 762 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c); 763 } 764 if (n == c) { 765 if (!mem2) { 766 return 1; 767 } 768 n += checkN(mem2, 0, ptr_tag, tag_count - c); 769 } 770 } 771 772 if (likely(n == tag_count)) { 773 return 1; 774 } 775 776 /* 777 * If we failed, we know which granule. For the first granule, the 778 * failure address is @ptr, the first byte accessed. Otherwise the 779 * failure address is the first byte of the nth granule. 780 */ 781 if (n > 0) { 782 *fault = tag_first + n * TAG_GRANULE; 783 } 784 return 0; 785 } 786 787 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra) 788 { 789 uint64_t fault; 790 int ret = mte_probe_int(env, desc, ptr, ra, &fault); 791 792 if (unlikely(ret == 0)) { 793 mte_check_fail(env, desc, fault, ra); 794 } else if (ret < 0) { 795 return ptr; 796 } 797 return useronly_clean_ptr(ptr); 798 } 799 800 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr) 801 { 802 /* 803 * R_XCHFJ: Alignment check not caused by memory type is priority 1, 804 * higher than any translation fault. When MTE is disabled, tcg 805 * performs the alignment check during the code generated for the 806 * memory access. With MTE enabled, we must check this here before 807 * raising any translation fault in allocation_tag_mem. 808 */ 809 unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN); 810 if (unlikely(align)) { 811 align = (1u << align) - 1; 812 if (unlikely(ptr & align)) { 813 int idx = FIELD_EX32(desc, MTEDESC, MIDX); 814 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 815 MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD; 816 arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC()); 817 } 818 } 819 820 return mte_check(env, desc, ptr, GETPC()); 821 } 822 823 /* 824 * No-fault version of mte_check, to be used by SVE for MemSingleNF. 825 * Returns false if the access is Checked and the check failed. This 826 * is only intended to probe the tag -- the validity of the page must 827 * be checked beforehand. 828 */ 829 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr) 830 { 831 uint64_t fault; 832 int ret = mte_probe_int(env, desc, ptr, 0, &fault); 833 834 return ret != 0; 835 } 836 837 /* 838 * Perform an MTE checked access for DC_ZVA. 839 */ 840 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr) 841 { 842 uintptr_t ra = GETPC(); 843 int log2_dcz_bytes, log2_tag_bytes; 844 int mmu_idx, bit55; 845 intptr_t dcz_bytes, tag_bytes, i; 846 void *mem; 847 uint64_t ptr_tag, mem_tag, align_ptr; 848 849 bit55 = extract64(ptr, 55, 1); 850 851 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 852 if (unlikely(!tbi_check(desc, bit55))) { 853 return ptr; 854 } 855 856 ptr_tag = allocation_tag_from_addr(ptr); 857 858 if (tcma_check(desc, bit55, ptr_tag)) { 859 goto done; 860 } 861 862 /* 863 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1, 864 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make 865 * sure that we can access one complete tag byte here. 866 */ 867 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 868 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 869 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 870 tag_bytes = (intptr_t)1 << log2_tag_bytes; 871 align_ptr = ptr & -dcz_bytes; 872 873 /* 874 * Trap if accessing an invalid page. DC_ZVA requires that we supply 875 * the original pointer for an invalid page. But watchpoints require 876 * that we probe the actual space. So do both. 877 */ 878 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 879 (void) probe_write(env, ptr, 1, mmu_idx, ra); 880 mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE, 881 dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra); 882 if (!mem) { 883 goto done; 884 } 885 886 /* 887 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus 888 * it is quite easy to perform all of the comparisons at once without 889 * any extra masking. 890 * 891 * The most common zva block size is 64; some of the thunderx cpus use 892 * a block size of 128. For user-only, aarch64_max_initfn will set the 893 * block size to 512. Fill out the other cases for future-proofing. 894 * 895 * In order to be able to find the first miscompare later, we want the 896 * tag bytes to be in little-endian order. 897 */ 898 switch (log2_tag_bytes) { 899 case 0: /* zva_blocksize 32 */ 900 mem_tag = *(uint8_t *)mem; 901 ptr_tag *= 0x11u; 902 break; 903 case 1: /* zva_blocksize 64 */ 904 mem_tag = cpu_to_le16(*(uint16_t *)mem); 905 ptr_tag *= 0x1111u; 906 break; 907 case 2: /* zva_blocksize 128 */ 908 mem_tag = cpu_to_le32(*(uint32_t *)mem); 909 ptr_tag *= 0x11111111u; 910 break; 911 case 3: /* zva_blocksize 256 */ 912 mem_tag = cpu_to_le64(*(uint64_t *)mem); 913 ptr_tag *= 0x1111111111111111ull; 914 break; 915 916 default: /* zva_blocksize 512, 1024, 2048 */ 917 ptr_tag *= 0x1111111111111111ull; 918 i = 0; 919 do { 920 mem_tag = cpu_to_le64(*(uint64_t *)(mem + i)); 921 if (unlikely(mem_tag != ptr_tag)) { 922 goto fail; 923 } 924 i += 8; 925 align_ptr += 16 * TAG_GRANULE; 926 } while (i < tag_bytes); 927 goto done; 928 } 929 930 if (likely(mem_tag == ptr_tag)) { 931 goto done; 932 } 933 934 fail: 935 /* Locate the first nibble that differs. */ 936 i = ctz64(mem_tag ^ ptr_tag) >> 4; 937 mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra); 938 939 done: 940 return useronly_clean_ptr(ptr); 941 } 942