1 /* 2 * ARM v8.5-MemTag Operations 3 * 4 * Copyright (c) 2020 Linaro, Ltd. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "internals.h" 24 #include "exec/exec-all.h" 25 #include "exec/page-protection.h" 26 #include "exec/ram_addr.h" 27 #include "exec/cpu_ldst.h" 28 #include "exec/helper-proto.h" 29 #include "hw/core/tcg-cpu-ops.h" 30 #include "qapi/error.h" 31 #include "qemu/guest-random.h" 32 33 34 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude) 35 { 36 if (exclude == 0xffff) { 37 return 0; 38 } 39 if (offset == 0) { 40 while (exclude & (1 << tag)) { 41 tag = (tag + 1) & 15; 42 } 43 } else { 44 do { 45 do { 46 tag = (tag + 1) & 15; 47 } while (exclude & (1 << tag)); 48 } while (--offset > 0); 49 } 50 return tag; 51 } 52 53 /** 54 * allocation_tag_mem_probe: 55 * @env: the cpu environment 56 * @ptr_mmu_idx: the addressing regime to use for the virtual address 57 * @ptr: the virtual address for which to look up tag memory 58 * @ptr_access: the access to use for the virtual address 59 * @ptr_size: the number of bytes in the normal memory access 60 * @tag_access: the access to use for the tag memory 61 * @probe: true to merely probe, never taking an exception 62 * @ra: the return address for exception handling 63 * 64 * Our tag memory is formatted as a sequence of little-endian nibbles. 65 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two 66 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4] 67 * for the higher addr. 68 * 69 * Here, resolve the physical address from the virtual address, and return 70 * a pointer to the corresponding tag byte. 71 * 72 * If there is no tag storage corresponding to @ptr, return NULL. 73 * 74 * If the page is inaccessible for @ptr_access, or has a watchpoint, there are 75 * three options: 76 * (1) probe = true, ra = 0 : pure probe -- we return NULL if the page is not 77 * accessible, and do not take watchpoint traps. The calling code must 78 * handle those cases in the right priority compared to MTE traps. 79 * (2) probe = false, ra = 0 : probe, no fault expected -- the caller guarantees 80 * that the page is going to be accessible. We will take watchpoint traps. 81 * (3) probe = false, ra != 0 : non-probe -- we will take both memory access 82 * traps and watchpoint traps. 83 * (probe = true, ra != 0 is invalid and will assert.) 84 */ 85 static uint8_t *allocation_tag_mem_probe(CPUARMState *env, int ptr_mmu_idx, 86 uint64_t ptr, MMUAccessType ptr_access, 87 int ptr_size, MMUAccessType tag_access, 88 bool probe, uintptr_t ra) 89 { 90 #ifdef CONFIG_USER_ONLY 91 uint64_t clean_ptr = useronly_clean_ptr(ptr); 92 int flags = page_get_flags(clean_ptr); 93 uint8_t *tags; 94 uintptr_t index; 95 96 assert(!(probe && ra)); 97 98 if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) { 99 cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access, 100 !(flags & PAGE_VALID), ra); 101 } 102 103 /* Require both MAP_ANON and PROT_MTE for the page. */ 104 if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) { 105 return NULL; 106 } 107 108 tags = page_get_target_data(clean_ptr); 109 110 index = extract32(ptr, LOG2_TAG_GRANULE + 1, 111 TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1); 112 return tags + index; 113 #else 114 CPUTLBEntryFull *full; 115 MemTxAttrs attrs; 116 int in_page, flags; 117 hwaddr ptr_paddr, tag_paddr, xlat; 118 MemoryRegion *mr; 119 ARMASIdx tag_asi; 120 AddressSpace *tag_as; 121 void *host; 122 123 /* 124 * Probe the first byte of the virtual address. This raises an 125 * exception for inaccessible pages, and resolves the virtual address 126 * into the softmmu tlb. 127 * 128 * When RA == 0, this is either a pure probe or a no-fault-expected probe. 129 * Indicate to probe_access_flags no-fault, then either return NULL 130 * for the pure probe, or assert that we received a valid page for the 131 * no-fault-expected probe. 132 */ 133 flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx, 134 ra == 0, &host, &full, ra); 135 if (probe && (flags & TLB_INVALID_MASK)) { 136 return NULL; 137 } 138 assert(!(flags & TLB_INVALID_MASK)); 139 140 /* If the virtual page MemAttr != Tagged, access unchecked. */ 141 if (full->extra.arm.pte_attrs != 0xf0) { 142 return NULL; 143 } 144 145 /* 146 * If not backed by host ram, there is no tag storage: access unchecked. 147 * This is probably a guest os bug though, so log it. 148 */ 149 if (unlikely(flags & TLB_MMIO)) { 150 qemu_log_mask(LOG_GUEST_ERROR, 151 "Page @ 0x%" PRIx64 " indicates Tagged Normal memory " 152 "but is not backed by host ram\n", ptr); 153 return NULL; 154 } 155 156 /* 157 * Remember these values across the second lookup below, 158 * which may invalidate this pointer via tlb resize. 159 */ 160 ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK); 161 attrs = full->attrs; 162 full = NULL; 163 164 /* 165 * The Normal memory access can extend to the next page. E.g. a single 166 * 8-byte access to the last byte of a page will check only the last 167 * tag on the first page. 168 * Any page access exception has priority over tag check exception. 169 */ 170 in_page = -(ptr | TARGET_PAGE_MASK); 171 if (unlikely(ptr_size > in_page)) { 172 flags |= probe_access_full(env, ptr + in_page, 0, ptr_access, 173 ptr_mmu_idx, ra == 0, &host, &full, ra); 174 assert(!(flags & TLB_INVALID_MASK)); 175 } 176 177 /* Any debug exception has priority over a tag check exception. */ 178 if (!probe && unlikely(flags & TLB_WATCHPOINT)) { 179 int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE; 180 assert(ra != 0); 181 cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra); 182 } 183 184 /* Convert to the physical address in tag space. */ 185 tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1); 186 187 /* Look up the address in tag space. */ 188 tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS; 189 tag_as = cpu_get_address_space(env_cpu(env), tag_asi); 190 mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL, 191 tag_access == MMU_DATA_STORE, attrs); 192 193 /* 194 * Note that @mr will never be NULL. If there is nothing in the address 195 * space at @tag_paddr, the translation will return the unallocated memory 196 * region. For our purposes, the result must be ram. 197 */ 198 if (unlikely(!memory_region_is_ram(mr))) { 199 /* ??? Failure is a board configuration error. */ 200 qemu_log_mask(LOG_UNIMP, 201 "Tag Memory @ 0x%" HWADDR_PRIx " not found for " 202 "Normal Memory @ 0x%" HWADDR_PRIx "\n", 203 tag_paddr, ptr_paddr); 204 return NULL; 205 } 206 207 /* 208 * Ensure the tag memory is dirty on write, for migration. 209 * Tag memory can never contain code or display memory (vga). 210 */ 211 if (tag_access == MMU_DATA_STORE) { 212 ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat; 213 cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION); 214 } 215 216 return memory_region_get_ram_ptr(mr) + xlat; 217 #endif 218 } 219 220 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx, 221 uint64_t ptr, MMUAccessType ptr_access, 222 int ptr_size, MMUAccessType tag_access, 223 uintptr_t ra) 224 { 225 return allocation_tag_mem_probe(env, ptr_mmu_idx, ptr, ptr_access, 226 ptr_size, tag_access, false, ra); 227 } 228 229 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm) 230 { 231 uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16); 232 int rrnd = extract32(env->cp15.gcr_el1, 16, 1); 233 int start = extract32(env->cp15.rgsr_el1, 0, 4); 234 int seed = extract32(env->cp15.rgsr_el1, 8, 16); 235 int offset, i, rtag; 236 237 /* 238 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the 239 * deterministic algorithm. Except that with RRND==1 the kernel is 240 * not required to have set RGSR_EL1.SEED != 0, which is required for 241 * the deterministic algorithm to function. So we force a non-zero 242 * SEED for that case. 243 */ 244 if (unlikely(seed == 0) && rrnd) { 245 do { 246 Error *err = NULL; 247 uint16_t two; 248 249 if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) { 250 /* 251 * Failed, for unknown reasons in the crypto subsystem. 252 * Best we can do is log the reason and use a constant seed. 253 */ 254 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n", 255 error_get_pretty(err)); 256 error_free(err); 257 two = 1; 258 } 259 seed = two; 260 } while (seed == 0); 261 } 262 263 /* RandomTag */ 264 for (i = offset = 0; i < 4; ++i) { 265 /* NextRandomTagBit */ 266 int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^ 267 extract32(seed, 2, 1) ^ extract32(seed, 0, 1)); 268 seed = (top << 15) | (seed >> 1); 269 offset |= top << i; 270 } 271 rtag = choose_nonexcluded_tag(start, offset, exclude); 272 env->cp15.rgsr_el1 = rtag | (seed << 8); 273 274 return address_with_allocation_tag(rn, rtag); 275 } 276 277 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr, 278 int32_t offset, uint32_t tag_offset) 279 { 280 int start_tag = allocation_tag_from_addr(ptr); 281 uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16); 282 int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude); 283 284 return address_with_allocation_tag(ptr + offset, rtag); 285 } 286 287 static int load_tag1(uint64_t ptr, uint8_t *mem) 288 { 289 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 290 return extract32(*mem, ofs, 4); 291 } 292 293 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 294 { 295 int mmu_idx = arm_env_mmu_index(env); 296 uint8_t *mem; 297 int rtag = 0; 298 299 /* Trap if accessing an invalid page. */ 300 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1, 301 MMU_DATA_LOAD, GETPC()); 302 303 /* Load if page supports tags. */ 304 if (mem) { 305 rtag = load_tag1(ptr, mem); 306 } 307 308 return address_with_allocation_tag(xt, rtag); 309 } 310 311 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra) 312 { 313 if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) { 314 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE, 315 arm_env_mmu_index(env), ra); 316 g_assert_not_reached(); 317 } 318 } 319 320 /* For use in a non-parallel context, store to the given nibble. */ 321 static void store_tag1(uint64_t ptr, uint8_t *mem, int tag) 322 { 323 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 324 *mem = deposit32(*mem, ofs, 4, tag); 325 } 326 327 /* For use in a parallel context, atomically store to the given nibble. */ 328 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag) 329 { 330 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 331 uint8_t old = qatomic_read(mem); 332 333 while (1) { 334 uint8_t new = deposit32(old, ofs, 4, tag); 335 uint8_t cmp = qatomic_cmpxchg(mem, old, new); 336 if (likely(cmp == old)) { 337 return; 338 } 339 old = cmp; 340 } 341 } 342 343 typedef void stg_store1(uint64_t, uint8_t *, int); 344 345 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt, 346 uintptr_t ra, stg_store1 store1) 347 { 348 int mmu_idx = arm_env_mmu_index(env); 349 uint8_t *mem; 350 351 check_tag_aligned(env, ptr, ra); 352 353 /* Trap if accessing an invalid page. */ 354 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE, 355 MMU_DATA_STORE, ra); 356 357 /* Store if page supports tags. */ 358 if (mem) { 359 store1(ptr, mem, allocation_tag_from_addr(xt)); 360 } 361 } 362 363 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 364 { 365 do_stg(env, ptr, xt, GETPC(), store_tag1); 366 } 367 368 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 369 { 370 do_stg(env, ptr, xt, GETPC(), store_tag1_parallel); 371 } 372 373 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr) 374 { 375 int mmu_idx = arm_env_mmu_index(env); 376 uintptr_t ra = GETPC(); 377 378 check_tag_aligned(env, ptr, ra); 379 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 380 } 381 382 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt, 383 uintptr_t ra, stg_store1 store1) 384 { 385 int mmu_idx = arm_env_mmu_index(env); 386 int tag = allocation_tag_from_addr(xt); 387 uint8_t *mem1, *mem2; 388 389 check_tag_aligned(env, ptr, ra); 390 391 /* 392 * Trap if accessing an invalid page(s). 393 * This takes priority over !allocation_tag_access_enabled. 394 */ 395 if (ptr & TAG_GRANULE) { 396 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */ 397 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 398 TAG_GRANULE, MMU_DATA_STORE, ra); 399 mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE, 400 MMU_DATA_STORE, TAG_GRANULE, 401 MMU_DATA_STORE, ra); 402 403 /* Store if page(s) support tags. */ 404 if (mem1) { 405 store1(TAG_GRANULE, mem1, tag); 406 } 407 if (mem2) { 408 store1(0, mem2, tag); 409 } 410 } else { 411 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */ 412 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 413 2 * TAG_GRANULE, MMU_DATA_STORE, ra); 414 if (mem1) { 415 tag |= tag << 4; 416 qatomic_set(mem1, tag); 417 } 418 } 419 } 420 421 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt) 422 { 423 do_st2g(env, ptr, xt, GETPC(), store_tag1); 424 } 425 426 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 427 { 428 do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel); 429 } 430 431 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr) 432 { 433 int mmu_idx = arm_env_mmu_index(env); 434 uintptr_t ra = GETPC(); 435 int in_page = -(ptr | TARGET_PAGE_MASK); 436 437 check_tag_aligned(env, ptr, ra); 438 439 if (likely(in_page >= 2 * TAG_GRANULE)) { 440 probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra); 441 } else { 442 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 443 probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra); 444 } 445 } 446 447 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr) 448 { 449 int mmu_idx = arm_env_mmu_index(env); 450 uintptr_t ra = GETPC(); 451 int gm_bs = env_archcpu(env)->gm_blocksize; 452 int gm_bs_bytes = 4 << gm_bs; 453 void *tag_mem; 454 uint64_t ret; 455 int shift; 456 457 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 458 459 /* Trap if accessing an invalid page. */ 460 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 461 gm_bs_bytes, MMU_DATA_LOAD, ra); 462 463 /* The tag is squashed to zero if the page does not support tags. */ 464 if (!tag_mem) { 465 return 0; 466 } 467 468 /* 469 * The ordering of elements within the word corresponds to 470 * a little-endian operation. Computation of shift comes from 471 * 472 * index = address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE> 473 * data<index*4+3:index*4> = tag 474 * 475 * Because of the alignment of ptr above, BS=6 has shift=0. 476 * All memory operations are aligned. Defer support for BS=2, 477 * requiring insertion or extraction of a nibble, until we 478 * support a cpu that requires it. 479 */ 480 switch (gm_bs) { 481 case 3: 482 /* 32 bytes -> 2 tags -> 8 result bits */ 483 ret = *(uint8_t *)tag_mem; 484 break; 485 case 4: 486 /* 64 bytes -> 4 tags -> 16 result bits */ 487 ret = cpu_to_le16(*(uint16_t *)tag_mem); 488 break; 489 case 5: 490 /* 128 bytes -> 8 tags -> 32 result bits */ 491 ret = cpu_to_le32(*(uint32_t *)tag_mem); 492 break; 493 case 6: 494 /* 256 bytes -> 16 tags -> 64 result bits */ 495 return cpu_to_le64(*(uint64_t *)tag_mem); 496 default: 497 /* 498 * CPU configured with unsupported/invalid gm blocksize. 499 * This is detected early in arm_cpu_realizefn. 500 */ 501 g_assert_not_reached(); 502 } 503 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; 504 return ret << shift; 505 } 506 507 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val) 508 { 509 int mmu_idx = arm_env_mmu_index(env); 510 uintptr_t ra = GETPC(); 511 int gm_bs = env_archcpu(env)->gm_blocksize; 512 int gm_bs_bytes = 4 << gm_bs; 513 void *tag_mem; 514 int shift; 515 516 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 517 518 /* Trap if accessing an invalid page. */ 519 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 520 gm_bs_bytes, MMU_DATA_LOAD, ra); 521 522 /* 523 * Tag store only happens if the page support tags, 524 * and if the OS has enabled access to the tags. 525 */ 526 if (!tag_mem) { 527 return; 528 } 529 530 /* See LDGM for comments on BS and on shift. */ 531 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; 532 val >>= shift; 533 switch (gm_bs) { 534 case 3: 535 /* 32 bytes -> 2 tags -> 8 result bits */ 536 *(uint8_t *)tag_mem = val; 537 break; 538 case 4: 539 /* 64 bytes -> 4 tags -> 16 result bits */ 540 *(uint16_t *)tag_mem = cpu_to_le16(val); 541 break; 542 case 5: 543 /* 128 bytes -> 8 tags -> 32 result bits */ 544 *(uint32_t *)tag_mem = cpu_to_le32(val); 545 break; 546 case 6: 547 /* 256 bytes -> 16 tags -> 64 result bits */ 548 *(uint64_t *)tag_mem = cpu_to_le64(val); 549 break; 550 default: 551 /* cpu configured with unsupported gm blocksize. */ 552 g_assert_not_reached(); 553 } 554 } 555 556 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val) 557 { 558 uintptr_t ra = GETPC(); 559 int mmu_idx = arm_env_mmu_index(env); 560 int log2_dcz_bytes, log2_tag_bytes; 561 intptr_t dcz_bytes, tag_bytes; 562 uint8_t *mem; 563 564 /* 565 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1, 566 * i.e. 32 bytes, which is an unreasonably small dcz anyway, 567 * to make sure that we can access one complete tag byte here. 568 */ 569 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 570 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 571 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 572 tag_bytes = (intptr_t)1 << log2_tag_bytes; 573 ptr &= -dcz_bytes; 574 575 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes, 576 MMU_DATA_STORE, ra); 577 if (mem) { 578 int tag_pair = (val & 0xf) * 0x11; 579 memset(mem, tag_pair, tag_bytes); 580 } 581 } 582 583 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc, 584 uint64_t dirty_ptr, uintptr_t ra) 585 { 586 int is_write, syn; 587 588 env->exception.vaddress = dirty_ptr; 589 590 is_write = FIELD_EX32(desc, MTEDESC, WRITE); 591 syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write, 592 0x11); 593 raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra); 594 g_assert_not_reached(); 595 } 596 597 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr, 598 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el) 599 { 600 int select; 601 602 if (regime_has_2_ranges(arm_mmu_idx)) { 603 select = extract64(dirty_ptr, 55, 1); 604 } else { 605 select = 0; 606 } 607 env->cp15.tfsr_el[el] |= 1 << select; 608 #ifdef CONFIG_USER_ONLY 609 /* 610 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT, 611 * which then sends a SIGSEGV when the thread is next scheduled. 612 * This cpu will return to the main loop at the end of the TB, 613 * which is rather sooner than "normal". But the alternative 614 * is waiting until the next syscall. 615 */ 616 qemu_cpu_kick(env_cpu(env)); 617 #endif 618 } 619 620 /* Record a tag check failure. */ 621 void mte_check_fail(CPUARMState *env, uint32_t desc, 622 uint64_t dirty_ptr, uintptr_t ra) 623 { 624 int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 625 ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx); 626 int el, reg_el, tcf; 627 uint64_t sctlr; 628 629 reg_el = regime_el(env, arm_mmu_idx); 630 sctlr = env->cp15.sctlr_el[reg_el]; 631 632 switch (arm_mmu_idx) { 633 case ARMMMUIdx_E10_0: 634 case ARMMMUIdx_E20_0: 635 el = 0; 636 tcf = extract64(sctlr, 38, 2); 637 break; 638 default: 639 el = reg_el; 640 tcf = extract64(sctlr, 40, 2); 641 } 642 643 switch (tcf) { 644 case 1: 645 /* Tag check fail causes a synchronous exception. */ 646 mte_sync_check_fail(env, desc, dirty_ptr, ra); 647 break; 648 649 case 0: 650 /* 651 * Tag check fail does not affect the PE. 652 * We eliminate this case by not setting MTE_ACTIVE 653 * in tb_flags, so that we never make this runtime call. 654 */ 655 g_assert_not_reached(); 656 657 case 2: 658 /* Tag check fail causes asynchronous flag set. */ 659 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 660 break; 661 662 case 3: 663 /* 664 * Tag check fail causes asynchronous flag set for stores, or 665 * a synchronous exception for loads. 666 */ 667 if (FIELD_EX32(desc, MTEDESC, WRITE)) { 668 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 669 } else { 670 mte_sync_check_fail(env, desc, dirty_ptr, ra); 671 } 672 break; 673 } 674 } 675 676 /** 677 * checkN: 678 * @tag: tag memory to test 679 * @odd: true to begin testing at tags at odd nibble 680 * @cmp: the tag to compare against 681 * @count: number of tags to test 682 * 683 * Return the number of successful tests. 684 * Thus a return value < @count indicates a failure. 685 * 686 * A note about sizes: count is expected to be small. 687 * 688 * The most common use will be LDP/STP of two integer registers, 689 * which means 16 bytes of memory touching at most 2 tags, but 690 * often the access is aligned and thus just 1 tag. 691 * 692 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory, 693 * touching at most 5 tags. SVE LDR/STR (vector) with the default 694 * vector length is also 64 bytes; the maximum architectural length 695 * is 256 bytes touching at most 9 tags. 696 * 697 * The loop below uses 7 logical operations and 1 memory operation 698 * per tag pair. An implementation that loads an aligned word and 699 * uses masking to ignore adjacent tags requires 18 logical operations 700 * and thus does not begin to pay off until 6 tags. 701 * Which, according to the survey above, is unlikely to be common. 702 */ 703 static int checkN(uint8_t *mem, int odd, int cmp, int count) 704 { 705 int n = 0, diff; 706 707 /* Replicate the test tag and compare. */ 708 cmp *= 0x11; 709 diff = *mem++ ^ cmp; 710 711 if (odd) { 712 goto start_odd; 713 } 714 715 while (1) { 716 /* Test even tag. */ 717 if (unlikely((diff) & 0x0f)) { 718 break; 719 } 720 if (++n == count) { 721 break; 722 } 723 724 start_odd: 725 /* Test odd tag. */ 726 if (unlikely((diff) & 0xf0)) { 727 break; 728 } 729 if (++n == count) { 730 break; 731 } 732 733 diff = *mem++ ^ cmp; 734 } 735 return n; 736 } 737 738 /** 739 * checkNrev: 740 * @tag: tag memory to test 741 * @odd: true to begin testing at tags at odd nibble 742 * @cmp: the tag to compare against 743 * @count: number of tags to test 744 * 745 * Return the number of successful tests. 746 * Thus a return value < @count indicates a failure. 747 * 748 * This is like checkN, but it runs backwards, checking the 749 * tags starting with @tag and then the tags preceding it. 750 * This is needed by the backwards-memory-copying operations. 751 */ 752 static int checkNrev(uint8_t *mem, int odd, int cmp, int count) 753 { 754 int n = 0, diff; 755 756 /* Replicate the test tag and compare. */ 757 cmp *= 0x11; 758 diff = *mem-- ^ cmp; 759 760 if (!odd) { 761 goto start_even; 762 } 763 764 while (1) { 765 /* Test odd tag. */ 766 if (unlikely((diff) & 0xf0)) { 767 break; 768 } 769 if (++n == count) { 770 break; 771 } 772 773 start_even: 774 /* Test even tag. */ 775 if (unlikely((diff) & 0x0f)) { 776 break; 777 } 778 if (++n == count) { 779 break; 780 } 781 782 diff = *mem-- ^ cmp; 783 } 784 return n; 785 } 786 787 /** 788 * mte_probe_int() - helper for mte_probe and mte_check 789 * @env: CPU environment 790 * @desc: MTEDESC descriptor 791 * @ptr: virtual address of the base of the access 792 * @fault: return virtual address of the first check failure 793 * 794 * Internal routine for both mte_probe and mte_check. 795 * Return zero on failure, filling in *fault. 796 * Return negative on trivial success for tbi disabled. 797 * Return positive on success with tbi enabled. 798 */ 799 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr, 800 uintptr_t ra, uint64_t *fault) 801 { 802 int mmu_idx, ptr_tag, bit55; 803 uint64_t ptr_last, prev_page, next_page; 804 uint64_t tag_first, tag_last; 805 uint32_t sizem1, tag_count, n, c; 806 uint8_t *mem1, *mem2; 807 MMUAccessType type; 808 809 bit55 = extract64(ptr, 55, 1); 810 *fault = ptr; 811 812 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 813 if (unlikely(!tbi_check(desc, bit55))) { 814 return -1; 815 } 816 817 ptr_tag = allocation_tag_from_addr(ptr); 818 819 if (tcma_check(desc, bit55, ptr_tag)) { 820 return 1; 821 } 822 823 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 824 type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD; 825 sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1); 826 827 /* Find the addr of the end of the access */ 828 ptr_last = ptr + sizem1; 829 830 /* Round the bounds to the tag granule, and compute the number of tags. */ 831 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 832 tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE); 833 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 834 835 /* Locate the page boundaries. */ 836 prev_page = ptr & TARGET_PAGE_MASK; 837 next_page = prev_page + TARGET_PAGE_SIZE; 838 839 if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) { 840 /* Memory access stays on one page. */ 841 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1, 842 MMU_DATA_LOAD, ra); 843 if (!mem1) { 844 return 1; 845 } 846 /* Perform all of the comparisons. */ 847 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count); 848 } else { 849 /* Memory access crosses to next page. */ 850 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr, 851 MMU_DATA_LOAD, ra); 852 853 mem2 = allocation_tag_mem(env, mmu_idx, next_page, type, 854 ptr_last - next_page + 1, 855 MMU_DATA_LOAD, ra); 856 857 /* 858 * Perform all of the comparisons. 859 * Note the possible but unlikely case of the operation spanning 860 * two pages that do not both have tagging enabled. 861 */ 862 n = c = (next_page - tag_first) / TAG_GRANULE; 863 if (mem1) { 864 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c); 865 } 866 if (n == c) { 867 if (!mem2) { 868 return 1; 869 } 870 n += checkN(mem2, 0, ptr_tag, tag_count - c); 871 } 872 } 873 874 if (likely(n == tag_count)) { 875 return 1; 876 } 877 878 /* 879 * If we failed, we know which granule. For the first granule, the 880 * failure address is @ptr, the first byte accessed. Otherwise the 881 * failure address is the first byte of the nth granule. 882 */ 883 if (n > 0) { 884 *fault = tag_first + n * TAG_GRANULE; 885 } 886 return 0; 887 } 888 889 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra) 890 { 891 uint64_t fault; 892 int ret = mte_probe_int(env, desc, ptr, ra, &fault); 893 894 if (unlikely(ret == 0)) { 895 mte_check_fail(env, desc, fault, ra); 896 } else if (ret < 0) { 897 return ptr; 898 } 899 return useronly_clean_ptr(ptr); 900 } 901 902 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr) 903 { 904 /* 905 * R_XCHFJ: Alignment check not caused by memory type is priority 1, 906 * higher than any translation fault. When MTE is disabled, tcg 907 * performs the alignment check during the code generated for the 908 * memory access. With MTE enabled, we must check this here before 909 * raising any translation fault in allocation_tag_mem. 910 */ 911 unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN); 912 if (unlikely(align)) { 913 align = (1u << align) - 1; 914 if (unlikely(ptr & align)) { 915 int idx = FIELD_EX32(desc, MTEDESC, MIDX); 916 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 917 MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD; 918 arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC()); 919 } 920 } 921 922 return mte_check(env, desc, ptr, GETPC()); 923 } 924 925 /* 926 * No-fault version of mte_check, to be used by SVE for MemSingleNF. 927 * Returns false if the access is Checked and the check failed. This 928 * is only intended to probe the tag -- the validity of the page must 929 * be checked beforehand. 930 */ 931 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr) 932 { 933 uint64_t fault; 934 int ret = mte_probe_int(env, desc, ptr, 0, &fault); 935 936 return ret != 0; 937 } 938 939 /* 940 * Perform an MTE checked access for DC_ZVA. 941 */ 942 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr) 943 { 944 uintptr_t ra = GETPC(); 945 int log2_dcz_bytes, log2_tag_bytes; 946 int mmu_idx, bit55; 947 intptr_t dcz_bytes, tag_bytes, i; 948 void *mem; 949 uint64_t ptr_tag, mem_tag, align_ptr; 950 951 bit55 = extract64(ptr, 55, 1); 952 953 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 954 if (unlikely(!tbi_check(desc, bit55))) { 955 return ptr; 956 } 957 958 ptr_tag = allocation_tag_from_addr(ptr); 959 960 if (tcma_check(desc, bit55, ptr_tag)) { 961 goto done; 962 } 963 964 /* 965 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1, 966 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make 967 * sure that we can access one complete tag byte here. 968 */ 969 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 970 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 971 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 972 tag_bytes = (intptr_t)1 << log2_tag_bytes; 973 align_ptr = ptr & -dcz_bytes; 974 975 /* 976 * Trap if accessing an invalid page. DC_ZVA requires that we supply 977 * the original pointer for an invalid page. But watchpoints require 978 * that we probe the actual space. So do both. 979 */ 980 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 981 (void) probe_write(env, ptr, 1, mmu_idx, ra); 982 mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE, 983 dcz_bytes, MMU_DATA_LOAD, ra); 984 if (!mem) { 985 goto done; 986 } 987 988 /* 989 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus 990 * it is quite easy to perform all of the comparisons at once without 991 * any extra masking. 992 * 993 * The most common zva block size is 64; some of the thunderx cpus use 994 * a block size of 128. For user-only, aarch64_max_initfn will set the 995 * block size to 512. Fill out the other cases for future-proofing. 996 * 997 * In order to be able to find the first miscompare later, we want the 998 * tag bytes to be in little-endian order. 999 */ 1000 switch (log2_tag_bytes) { 1001 case 0: /* zva_blocksize 32 */ 1002 mem_tag = *(uint8_t *)mem; 1003 ptr_tag *= 0x11u; 1004 break; 1005 case 1: /* zva_blocksize 64 */ 1006 mem_tag = cpu_to_le16(*(uint16_t *)mem); 1007 ptr_tag *= 0x1111u; 1008 break; 1009 case 2: /* zva_blocksize 128 */ 1010 mem_tag = cpu_to_le32(*(uint32_t *)mem); 1011 ptr_tag *= 0x11111111u; 1012 break; 1013 case 3: /* zva_blocksize 256 */ 1014 mem_tag = cpu_to_le64(*(uint64_t *)mem); 1015 ptr_tag *= 0x1111111111111111ull; 1016 break; 1017 1018 default: /* zva_blocksize 512, 1024, 2048 */ 1019 ptr_tag *= 0x1111111111111111ull; 1020 i = 0; 1021 do { 1022 mem_tag = cpu_to_le64(*(uint64_t *)(mem + i)); 1023 if (unlikely(mem_tag != ptr_tag)) { 1024 goto fail; 1025 } 1026 i += 8; 1027 align_ptr += 16 * TAG_GRANULE; 1028 } while (i < tag_bytes); 1029 goto done; 1030 } 1031 1032 if (likely(mem_tag == ptr_tag)) { 1033 goto done; 1034 } 1035 1036 fail: 1037 /* Locate the first nibble that differs. */ 1038 i = ctz64(mem_tag ^ ptr_tag) >> 4; 1039 mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra); 1040 1041 done: 1042 return useronly_clean_ptr(ptr); 1043 } 1044 1045 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size, 1046 uint32_t desc) 1047 { 1048 int mmu_idx, tag_count; 1049 uint64_t ptr_tag, tag_first, tag_last; 1050 void *mem; 1051 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 1052 uint32_t n; 1053 1054 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1055 /* True probe; this will never fault */ 1056 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, 1057 w ? MMU_DATA_STORE : MMU_DATA_LOAD, 1058 size, MMU_DATA_LOAD, true, 0); 1059 if (!mem) { 1060 return size; 1061 } 1062 1063 /* 1064 * TODO: checkN() is not designed for checks of the size we expect 1065 * for FEAT_MOPS operations, so we should implement this differently. 1066 * Maybe we should do something like 1067 * if (region start and size are aligned nicely) { 1068 * do direct loads of 64 tag bits at a time; 1069 * } else { 1070 * call checkN() 1071 * } 1072 */ 1073 /* Round the bounds to the tag granule, and compute the number of tags. */ 1074 ptr_tag = allocation_tag_from_addr(ptr); 1075 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 1076 tag_last = QEMU_ALIGN_DOWN(ptr + size - 1, TAG_GRANULE); 1077 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 1078 n = checkN(mem, ptr & TAG_GRANULE, ptr_tag, tag_count); 1079 if (likely(n == tag_count)) { 1080 return size; 1081 } 1082 1083 /* 1084 * Failure; for the first granule, it's at @ptr. Otherwise 1085 * it's at the first byte of the nth granule. Calculate how 1086 * many bytes we can access without hitting that failure. 1087 */ 1088 if (n == 0) { 1089 return 0; 1090 } else { 1091 return n * TAG_GRANULE - (ptr - tag_first); 1092 } 1093 } 1094 1095 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size, 1096 uint32_t desc) 1097 { 1098 int mmu_idx, tag_count; 1099 uint64_t ptr_tag, tag_first, tag_last; 1100 void *mem; 1101 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 1102 uint32_t n; 1103 1104 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1105 /* 1106 * True probe; this will never fault. Note that our caller passes 1107 * us a pointer to the end of the region, but allocation_tag_mem_probe() 1108 * wants a pointer to the start. Because we know we don't span a page 1109 * boundary and that allocation_tag_mem_probe() doesn't otherwise care 1110 * about the size, pass in a size of 1 byte. This is simpler than 1111 * adjusting the ptr to point to the start of the region and then having 1112 * to adjust the returned 'mem' to get the end of the tag memory. 1113 */ 1114 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, 1115 w ? MMU_DATA_STORE : MMU_DATA_LOAD, 1116 1, MMU_DATA_LOAD, true, 0); 1117 if (!mem) { 1118 return size; 1119 } 1120 1121 /* 1122 * TODO: checkNrev() is not designed for checks of the size we expect 1123 * for FEAT_MOPS operations, so we should implement this differently. 1124 * Maybe we should do something like 1125 * if (region start and size are aligned nicely) { 1126 * do direct loads of 64 tag bits at a time; 1127 * } else { 1128 * call checkN() 1129 * } 1130 */ 1131 /* Round the bounds to the tag granule, and compute the number of tags. */ 1132 ptr_tag = allocation_tag_from_addr(ptr); 1133 tag_first = QEMU_ALIGN_DOWN(ptr - (size - 1), TAG_GRANULE); 1134 tag_last = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 1135 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 1136 n = checkNrev(mem, ptr & TAG_GRANULE, ptr_tag, tag_count); 1137 if (likely(n == tag_count)) { 1138 return size; 1139 } 1140 1141 /* 1142 * Failure; for the first granule, it's at @ptr. Otherwise 1143 * it's at the last byte of the nth granule. Calculate how 1144 * many bytes we can access without hitting that failure. 1145 */ 1146 if (n == 0) { 1147 return 0; 1148 } else { 1149 return (n - 1) * TAG_GRANULE + ((ptr + 1) - tag_last); 1150 } 1151 } 1152 1153 void mte_mops_set_tags(CPUARMState *env, uint64_t ptr, uint64_t size, 1154 uint32_t desc) 1155 { 1156 int mmu_idx, tag_count; 1157 uint64_t ptr_tag; 1158 void *mem; 1159 1160 if (!desc) { 1161 /* Tags not actually enabled */ 1162 return; 1163 } 1164 1165 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1166 /* True probe: this will never fault */ 1167 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, MMU_DATA_STORE, size, 1168 MMU_DATA_STORE, true, 0); 1169 if (!mem) { 1170 return; 1171 } 1172 1173 /* 1174 * We know that ptr and size are both TAG_GRANULE aligned; store 1175 * the tag from the pointer value into the tag memory. 1176 */ 1177 ptr_tag = allocation_tag_from_addr(ptr); 1178 tag_count = size / TAG_GRANULE; 1179 if (ptr & TAG_GRANULE) { 1180 /* Not 2*TAG_GRANULE-aligned: store tag to first nibble */ 1181 store_tag1_parallel(TAG_GRANULE, mem, ptr_tag); 1182 mem++; 1183 tag_count--; 1184 } 1185 memset(mem, ptr_tag | (ptr_tag << 4), tag_count / 2); 1186 if (tag_count & 1) { 1187 /* Final trailing unaligned nibble */ 1188 mem += tag_count / 2; 1189 store_tag1_parallel(0, mem, ptr_tag); 1190 } 1191 } 1192