1 /* 2 * ARM v8.5-MemTag Operations 3 * 4 * Copyright (c) 2020 Linaro, Ltd. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "internals.h" 24 #include "exec/exec-all.h" 25 #include "exec/ram_addr.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/helper-proto.h" 28 #include "hw/core/tcg-cpu-ops.h" 29 #include "qapi/error.h" 30 #include "qemu/guest-random.h" 31 32 33 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude) 34 { 35 if (exclude == 0xffff) { 36 return 0; 37 } 38 if (offset == 0) { 39 while (exclude & (1 << tag)) { 40 tag = (tag + 1) & 15; 41 } 42 } else { 43 do { 44 do { 45 tag = (tag + 1) & 15; 46 } while (exclude & (1 << tag)); 47 } while (--offset > 0); 48 } 49 return tag; 50 } 51 52 /** 53 * allocation_tag_mem: 54 * @env: the cpu environment 55 * @ptr_mmu_idx: the addressing regime to use for the virtual address 56 * @ptr: the virtual address for which to look up tag memory 57 * @ptr_access: the access to use for the virtual address 58 * @ptr_size: the number of bytes in the normal memory access 59 * @tag_access: the access to use for the tag memory 60 * @tag_size: the number of bytes in the tag memory access 61 * @ra: the return address for exception handling 62 * 63 * Our tag memory is formatted as a sequence of little-endian nibbles. 64 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two 65 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4] 66 * for the higher addr. 67 * 68 * Here, resolve the physical address from the virtual address, and return 69 * a pointer to the corresponding tag byte. Exit with exception if the 70 * virtual address is not accessible for @ptr_access. 71 * 72 * The @ptr_size and @tag_size values may not have an obvious relation 73 * due to the alignment of @ptr, and the number of tag checks required. 74 * 75 * If there is no tag storage corresponding to @ptr, return NULL. 76 */ 77 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx, 78 uint64_t ptr, MMUAccessType ptr_access, 79 int ptr_size, MMUAccessType tag_access, 80 int tag_size, uintptr_t ra) 81 { 82 #ifdef CONFIG_USER_ONLY 83 uint64_t clean_ptr = useronly_clean_ptr(ptr); 84 int flags = page_get_flags(clean_ptr); 85 uint8_t *tags; 86 uintptr_t index; 87 88 if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) { 89 cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access, 90 !(flags & PAGE_VALID), ra); 91 } 92 93 /* Require both MAP_ANON and PROT_MTE for the page. */ 94 if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) { 95 return NULL; 96 } 97 98 tags = page_get_target_data(clean_ptr); 99 100 index = extract32(ptr, LOG2_TAG_GRANULE + 1, 101 TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1); 102 return tags + index; 103 #else 104 CPUTLBEntryFull *full; 105 MemTxAttrs attrs; 106 int in_page, flags; 107 hwaddr ptr_paddr, tag_paddr, xlat; 108 MemoryRegion *mr; 109 ARMASIdx tag_asi; 110 AddressSpace *tag_as; 111 void *host; 112 113 /* 114 * Probe the first byte of the virtual address. This raises an 115 * exception for inaccessible pages, and resolves the virtual address 116 * into the softmmu tlb. 117 * 118 * When RA == 0, this is for mte_probe. The page is expected to be 119 * valid. Indicate to probe_access_flags no-fault, then assert that 120 * we received a valid page. 121 */ 122 flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx, 123 ra == 0, &host, &full, ra); 124 assert(!(flags & TLB_INVALID_MASK)); 125 126 /* If the virtual page MemAttr != Tagged, access unchecked. */ 127 if (full->pte_attrs != 0xf0) { 128 return NULL; 129 } 130 131 /* 132 * If not backed by host ram, there is no tag storage: access unchecked. 133 * This is probably a guest os bug though, so log it. 134 */ 135 if (unlikely(flags & TLB_MMIO)) { 136 qemu_log_mask(LOG_GUEST_ERROR, 137 "Page @ 0x%" PRIx64 " indicates Tagged Normal memory " 138 "but is not backed by host ram\n", ptr); 139 return NULL; 140 } 141 142 /* 143 * Remember these values across the second lookup below, 144 * which may invalidate this pointer via tlb resize. 145 */ 146 ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK); 147 attrs = full->attrs; 148 full = NULL; 149 150 /* 151 * The Normal memory access can extend to the next page. E.g. a single 152 * 8-byte access to the last byte of a page will check only the last 153 * tag on the first page. 154 * Any page access exception has priority over tag check exception. 155 */ 156 in_page = -(ptr | TARGET_PAGE_MASK); 157 if (unlikely(ptr_size > in_page)) { 158 flags |= probe_access_full(env, ptr + in_page, 0, ptr_access, 159 ptr_mmu_idx, ra == 0, &host, &full, ra); 160 assert(!(flags & TLB_INVALID_MASK)); 161 } 162 163 /* Any debug exception has priority over a tag check exception. */ 164 if (unlikely(flags & TLB_WATCHPOINT)) { 165 int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE; 166 assert(ra != 0); 167 cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra); 168 } 169 170 /* Convert to the physical address in tag space. */ 171 tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1); 172 173 /* Look up the address in tag space. */ 174 tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS; 175 tag_as = cpu_get_address_space(env_cpu(env), tag_asi); 176 mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL, 177 tag_access == MMU_DATA_STORE, attrs); 178 179 /* 180 * Note that @mr will never be NULL. If there is nothing in the address 181 * space at @tag_paddr, the translation will return the unallocated memory 182 * region. For our purposes, the result must be ram. 183 */ 184 if (unlikely(!memory_region_is_ram(mr))) { 185 /* ??? Failure is a board configuration error. */ 186 qemu_log_mask(LOG_UNIMP, 187 "Tag Memory @ 0x%" HWADDR_PRIx " not found for " 188 "Normal Memory @ 0x%" HWADDR_PRIx "\n", 189 tag_paddr, ptr_paddr); 190 return NULL; 191 } 192 193 /* 194 * Ensure the tag memory is dirty on write, for migration. 195 * Tag memory can never contain code or display memory (vga). 196 */ 197 if (tag_access == MMU_DATA_STORE) { 198 ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat; 199 cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION); 200 } 201 202 return memory_region_get_ram_ptr(mr) + xlat; 203 #endif 204 } 205 206 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm) 207 { 208 uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16); 209 int rrnd = extract32(env->cp15.gcr_el1, 16, 1); 210 int start = extract32(env->cp15.rgsr_el1, 0, 4); 211 int seed = extract32(env->cp15.rgsr_el1, 8, 16); 212 int offset, i, rtag; 213 214 /* 215 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the 216 * deterministic algorithm. Except that with RRND==1 the kernel is 217 * not required to have set RGSR_EL1.SEED != 0, which is required for 218 * the deterministic algorithm to function. So we force a non-zero 219 * SEED for that case. 220 */ 221 if (unlikely(seed == 0) && rrnd) { 222 do { 223 Error *err = NULL; 224 uint16_t two; 225 226 if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) { 227 /* 228 * Failed, for unknown reasons in the crypto subsystem. 229 * Best we can do is log the reason and use a constant seed. 230 */ 231 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n", 232 error_get_pretty(err)); 233 error_free(err); 234 two = 1; 235 } 236 seed = two; 237 } while (seed == 0); 238 } 239 240 /* RandomTag */ 241 for (i = offset = 0; i < 4; ++i) { 242 /* NextRandomTagBit */ 243 int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^ 244 extract32(seed, 2, 1) ^ extract32(seed, 0, 1)); 245 seed = (top << 15) | (seed >> 1); 246 offset |= top << i; 247 } 248 rtag = choose_nonexcluded_tag(start, offset, exclude); 249 env->cp15.rgsr_el1 = rtag | (seed << 8); 250 251 return address_with_allocation_tag(rn, rtag); 252 } 253 254 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr, 255 int32_t offset, uint32_t tag_offset) 256 { 257 int start_tag = allocation_tag_from_addr(ptr); 258 uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16); 259 int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude); 260 261 return address_with_allocation_tag(ptr + offset, rtag); 262 } 263 264 static int load_tag1(uint64_t ptr, uint8_t *mem) 265 { 266 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 267 return extract32(*mem, ofs, 4); 268 } 269 270 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 271 { 272 int mmu_idx = cpu_mmu_index(env, false); 273 uint8_t *mem; 274 int rtag = 0; 275 276 /* Trap if accessing an invalid page. */ 277 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1, 278 MMU_DATA_LOAD, 1, GETPC()); 279 280 /* Load if page supports tags. */ 281 if (mem) { 282 rtag = load_tag1(ptr, mem); 283 } 284 285 return address_with_allocation_tag(xt, rtag); 286 } 287 288 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra) 289 { 290 if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) { 291 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE, 292 cpu_mmu_index(env, false), ra); 293 g_assert_not_reached(); 294 } 295 } 296 297 /* For use in a non-parallel context, store to the given nibble. */ 298 static void store_tag1(uint64_t ptr, uint8_t *mem, int tag) 299 { 300 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 301 *mem = deposit32(*mem, ofs, 4, tag); 302 } 303 304 /* For use in a parallel context, atomically store to the given nibble. */ 305 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag) 306 { 307 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 308 uint8_t old = qatomic_read(mem); 309 310 while (1) { 311 uint8_t new = deposit32(old, ofs, 4, tag); 312 uint8_t cmp = qatomic_cmpxchg(mem, old, new); 313 if (likely(cmp == old)) { 314 return; 315 } 316 old = cmp; 317 } 318 } 319 320 typedef void stg_store1(uint64_t, uint8_t *, int); 321 322 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt, 323 uintptr_t ra, stg_store1 store1) 324 { 325 int mmu_idx = cpu_mmu_index(env, false); 326 uint8_t *mem; 327 328 check_tag_aligned(env, ptr, ra); 329 330 /* Trap if accessing an invalid page. */ 331 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE, 332 MMU_DATA_STORE, 1, ra); 333 334 /* Store if page supports tags. */ 335 if (mem) { 336 store1(ptr, mem, allocation_tag_from_addr(xt)); 337 } 338 } 339 340 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 341 { 342 do_stg(env, ptr, xt, GETPC(), store_tag1); 343 } 344 345 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 346 { 347 do_stg(env, ptr, xt, GETPC(), store_tag1_parallel); 348 } 349 350 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr) 351 { 352 int mmu_idx = cpu_mmu_index(env, false); 353 uintptr_t ra = GETPC(); 354 355 check_tag_aligned(env, ptr, ra); 356 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 357 } 358 359 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt, 360 uintptr_t ra, stg_store1 store1) 361 { 362 int mmu_idx = cpu_mmu_index(env, false); 363 int tag = allocation_tag_from_addr(xt); 364 uint8_t *mem1, *mem2; 365 366 check_tag_aligned(env, ptr, ra); 367 368 /* 369 * Trap if accessing an invalid page(s). 370 * This takes priority over !allocation_tag_access_enabled. 371 */ 372 if (ptr & TAG_GRANULE) { 373 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */ 374 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 375 TAG_GRANULE, MMU_DATA_STORE, 1, ra); 376 mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE, 377 MMU_DATA_STORE, TAG_GRANULE, 378 MMU_DATA_STORE, 1, ra); 379 380 /* Store if page(s) support tags. */ 381 if (mem1) { 382 store1(TAG_GRANULE, mem1, tag); 383 } 384 if (mem2) { 385 store1(0, mem2, tag); 386 } 387 } else { 388 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */ 389 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 390 2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra); 391 if (mem1) { 392 tag |= tag << 4; 393 qatomic_set(mem1, tag); 394 } 395 } 396 } 397 398 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt) 399 { 400 do_st2g(env, ptr, xt, GETPC(), store_tag1); 401 } 402 403 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 404 { 405 do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel); 406 } 407 408 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr) 409 { 410 int mmu_idx = cpu_mmu_index(env, false); 411 uintptr_t ra = GETPC(); 412 int in_page = -(ptr | TARGET_PAGE_MASK); 413 414 check_tag_aligned(env, ptr, ra); 415 416 if (likely(in_page >= 2 * TAG_GRANULE)) { 417 probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra); 418 } else { 419 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 420 probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra); 421 } 422 } 423 424 #define LDGM_STGM_SIZE (4 << GMID_EL1_BS) 425 426 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr) 427 { 428 int mmu_idx = cpu_mmu_index(env, false); 429 uintptr_t ra = GETPC(); 430 void *tag_mem; 431 432 ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE); 433 434 /* Trap if accessing an invalid page. */ 435 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 436 LDGM_STGM_SIZE, MMU_DATA_LOAD, 437 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra); 438 439 /* The tag is squashed to zero if the page does not support tags. */ 440 if (!tag_mem) { 441 return 0; 442 } 443 444 QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6); 445 /* 446 * We are loading 64-bits worth of tags. The ordering of elements 447 * within the word corresponds to a 64-bit little-endian operation. 448 */ 449 return ldq_le_p(tag_mem); 450 } 451 452 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val) 453 { 454 int mmu_idx = cpu_mmu_index(env, false); 455 uintptr_t ra = GETPC(); 456 void *tag_mem; 457 458 ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE); 459 460 /* Trap if accessing an invalid page. */ 461 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 462 LDGM_STGM_SIZE, MMU_DATA_LOAD, 463 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra); 464 465 /* 466 * Tag store only happens if the page support tags, 467 * and if the OS has enabled access to the tags. 468 */ 469 if (!tag_mem) { 470 return; 471 } 472 473 QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6); 474 /* 475 * We are storing 64-bits worth of tags. The ordering of elements 476 * within the word corresponds to a 64-bit little-endian operation. 477 */ 478 stq_le_p(tag_mem, val); 479 } 480 481 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val) 482 { 483 uintptr_t ra = GETPC(); 484 int mmu_idx = cpu_mmu_index(env, false); 485 int log2_dcz_bytes, log2_tag_bytes; 486 intptr_t dcz_bytes, tag_bytes; 487 uint8_t *mem; 488 489 /* 490 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1, 491 * i.e. 32 bytes, which is an unreasonably small dcz anyway, 492 * to make sure that we can access one complete tag byte here. 493 */ 494 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 495 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 496 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 497 tag_bytes = (intptr_t)1 << log2_tag_bytes; 498 ptr &= -dcz_bytes; 499 500 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes, 501 MMU_DATA_STORE, tag_bytes, ra); 502 if (mem) { 503 int tag_pair = (val & 0xf) * 0x11; 504 memset(mem, tag_pair, tag_bytes); 505 } 506 } 507 508 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc, 509 uint64_t dirty_ptr, uintptr_t ra) 510 { 511 int is_write, syn; 512 513 env->exception.vaddress = dirty_ptr; 514 515 is_write = FIELD_EX32(desc, MTEDESC, WRITE); 516 syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write, 517 0x11); 518 raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra); 519 g_assert_not_reached(); 520 } 521 522 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr, 523 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el) 524 { 525 int select; 526 527 if (regime_has_2_ranges(arm_mmu_idx)) { 528 select = extract64(dirty_ptr, 55, 1); 529 } else { 530 select = 0; 531 } 532 env->cp15.tfsr_el[el] |= 1 << select; 533 #ifdef CONFIG_USER_ONLY 534 /* 535 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT, 536 * which then sends a SIGSEGV when the thread is next scheduled. 537 * This cpu will return to the main loop at the end of the TB, 538 * which is rather sooner than "normal". But the alternative 539 * is waiting until the next syscall. 540 */ 541 qemu_cpu_kick(env_cpu(env)); 542 #endif 543 } 544 545 /* Record a tag check failure. */ 546 static void mte_check_fail(CPUARMState *env, uint32_t desc, 547 uint64_t dirty_ptr, uintptr_t ra) 548 { 549 int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 550 ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx); 551 int el, reg_el, tcf; 552 uint64_t sctlr; 553 554 reg_el = regime_el(env, arm_mmu_idx); 555 sctlr = env->cp15.sctlr_el[reg_el]; 556 557 switch (arm_mmu_idx) { 558 case ARMMMUIdx_E10_0: 559 case ARMMMUIdx_E20_0: 560 el = 0; 561 tcf = extract64(sctlr, 38, 2); 562 break; 563 default: 564 el = reg_el; 565 tcf = extract64(sctlr, 40, 2); 566 } 567 568 switch (tcf) { 569 case 1: 570 /* Tag check fail causes a synchronous exception. */ 571 mte_sync_check_fail(env, desc, dirty_ptr, ra); 572 break; 573 574 case 0: 575 /* 576 * Tag check fail does not affect the PE. 577 * We eliminate this case by not setting MTE_ACTIVE 578 * in tb_flags, so that we never make this runtime call. 579 */ 580 g_assert_not_reached(); 581 582 case 2: 583 /* Tag check fail causes asynchronous flag set. */ 584 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 585 break; 586 587 case 3: 588 /* 589 * Tag check fail causes asynchronous flag set for stores, or 590 * a synchronous exception for loads. 591 */ 592 if (FIELD_EX32(desc, MTEDESC, WRITE)) { 593 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 594 } else { 595 mte_sync_check_fail(env, desc, dirty_ptr, ra); 596 } 597 break; 598 } 599 } 600 601 /** 602 * checkN: 603 * @tag: tag memory to test 604 * @odd: true to begin testing at tags at odd nibble 605 * @cmp: the tag to compare against 606 * @count: number of tags to test 607 * 608 * Return the number of successful tests. 609 * Thus a return value < @count indicates a failure. 610 * 611 * A note about sizes: count is expected to be small. 612 * 613 * The most common use will be LDP/STP of two integer registers, 614 * which means 16 bytes of memory touching at most 2 tags, but 615 * often the access is aligned and thus just 1 tag. 616 * 617 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory, 618 * touching at most 5 tags. SVE LDR/STR (vector) with the default 619 * vector length is also 64 bytes; the maximum architectural length 620 * is 256 bytes touching at most 9 tags. 621 * 622 * The loop below uses 7 logical operations and 1 memory operation 623 * per tag pair. An implementation that loads an aligned word and 624 * uses masking to ignore adjacent tags requires 18 logical operations 625 * and thus does not begin to pay off until 6 tags. 626 * Which, according to the survey above, is unlikely to be common. 627 */ 628 static int checkN(uint8_t *mem, int odd, int cmp, int count) 629 { 630 int n = 0, diff; 631 632 /* Replicate the test tag and compare. */ 633 cmp *= 0x11; 634 diff = *mem++ ^ cmp; 635 636 if (odd) { 637 goto start_odd; 638 } 639 640 while (1) { 641 /* Test even tag. */ 642 if (unlikely((diff) & 0x0f)) { 643 break; 644 } 645 if (++n == count) { 646 break; 647 } 648 649 start_odd: 650 /* Test odd tag. */ 651 if (unlikely((diff) & 0xf0)) { 652 break; 653 } 654 if (++n == count) { 655 break; 656 } 657 658 diff = *mem++ ^ cmp; 659 } 660 return n; 661 } 662 663 /** 664 * mte_probe_int() - helper for mte_probe and mte_check 665 * @env: CPU environment 666 * @desc: MTEDESC descriptor 667 * @ptr: virtual address of the base of the access 668 * @fault: return virtual address of the first check failure 669 * 670 * Internal routine for both mte_probe and mte_check. 671 * Return zero on failure, filling in *fault. 672 * Return negative on trivial success for tbi disabled. 673 * Return positive on success with tbi enabled. 674 */ 675 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr, 676 uintptr_t ra, uint64_t *fault) 677 { 678 int mmu_idx, ptr_tag, bit55; 679 uint64_t ptr_last, prev_page, next_page; 680 uint64_t tag_first, tag_last; 681 uint64_t tag_byte_first, tag_byte_last; 682 uint32_t sizem1, tag_count, tag_size, n, c; 683 uint8_t *mem1, *mem2; 684 MMUAccessType type; 685 686 bit55 = extract64(ptr, 55, 1); 687 *fault = ptr; 688 689 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 690 if (unlikely(!tbi_check(desc, bit55))) { 691 return -1; 692 } 693 694 ptr_tag = allocation_tag_from_addr(ptr); 695 696 if (tcma_check(desc, bit55, ptr_tag)) { 697 return 1; 698 } 699 700 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 701 type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD; 702 sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1); 703 704 /* Find the addr of the end of the access */ 705 ptr_last = ptr + sizem1; 706 707 /* Round the bounds to the tag granule, and compute the number of tags. */ 708 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 709 tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE); 710 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 711 712 /* Round the bounds to twice the tag granule, and compute the bytes. */ 713 tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE); 714 tag_byte_last = QEMU_ALIGN_DOWN(ptr_last, 2 * TAG_GRANULE); 715 716 /* Locate the page boundaries. */ 717 prev_page = ptr & TARGET_PAGE_MASK; 718 next_page = prev_page + TARGET_PAGE_SIZE; 719 720 if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) { 721 /* Memory access stays on one page. */ 722 tag_size = ((tag_byte_last - tag_byte_first) / (2 * TAG_GRANULE)) + 1; 723 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1, 724 MMU_DATA_LOAD, tag_size, ra); 725 if (!mem1) { 726 return 1; 727 } 728 /* Perform all of the comparisons. */ 729 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count); 730 } else { 731 /* Memory access crosses to next page. */ 732 tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE); 733 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr, 734 MMU_DATA_LOAD, tag_size, ra); 735 736 tag_size = ((tag_byte_last - next_page) / (2 * TAG_GRANULE)) + 1; 737 mem2 = allocation_tag_mem(env, mmu_idx, next_page, type, 738 ptr_last - next_page + 1, 739 MMU_DATA_LOAD, tag_size, ra); 740 741 /* 742 * Perform all of the comparisons. 743 * Note the possible but unlikely case of the operation spanning 744 * two pages that do not both have tagging enabled. 745 */ 746 n = c = (next_page - tag_first) / TAG_GRANULE; 747 if (mem1) { 748 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c); 749 } 750 if (n == c) { 751 if (!mem2) { 752 return 1; 753 } 754 n += checkN(mem2, 0, ptr_tag, tag_count - c); 755 } 756 } 757 758 if (likely(n == tag_count)) { 759 return 1; 760 } 761 762 /* 763 * If we failed, we know which granule. For the first granule, the 764 * failure address is @ptr, the first byte accessed. Otherwise the 765 * failure address is the first byte of the nth granule. 766 */ 767 if (n > 0) { 768 *fault = tag_first + n * TAG_GRANULE; 769 } 770 return 0; 771 } 772 773 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra) 774 { 775 uint64_t fault; 776 int ret = mte_probe_int(env, desc, ptr, ra, &fault); 777 778 if (unlikely(ret == 0)) { 779 mte_check_fail(env, desc, fault, ra); 780 } else if (ret < 0) { 781 return ptr; 782 } 783 return useronly_clean_ptr(ptr); 784 } 785 786 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr) 787 { 788 return mte_check(env, desc, ptr, GETPC()); 789 } 790 791 /* 792 * No-fault version of mte_check, to be used by SVE for MemSingleNF. 793 * Returns false if the access is Checked and the check failed. This 794 * is only intended to probe the tag -- the validity of the page must 795 * be checked beforehand. 796 */ 797 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr) 798 { 799 uint64_t fault; 800 int ret = mte_probe_int(env, desc, ptr, 0, &fault); 801 802 return ret != 0; 803 } 804 805 /* 806 * Perform an MTE checked access for DC_ZVA. 807 */ 808 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr) 809 { 810 uintptr_t ra = GETPC(); 811 int log2_dcz_bytes, log2_tag_bytes; 812 int mmu_idx, bit55; 813 intptr_t dcz_bytes, tag_bytes, i; 814 void *mem; 815 uint64_t ptr_tag, mem_tag, align_ptr; 816 817 bit55 = extract64(ptr, 55, 1); 818 819 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 820 if (unlikely(!tbi_check(desc, bit55))) { 821 return ptr; 822 } 823 824 ptr_tag = allocation_tag_from_addr(ptr); 825 826 if (tcma_check(desc, bit55, ptr_tag)) { 827 goto done; 828 } 829 830 /* 831 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1, 832 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make 833 * sure that we can access one complete tag byte here. 834 */ 835 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 836 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 837 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 838 tag_bytes = (intptr_t)1 << log2_tag_bytes; 839 align_ptr = ptr & -dcz_bytes; 840 841 /* 842 * Trap if accessing an invalid page. DC_ZVA requires that we supply 843 * the original pointer for an invalid page. But watchpoints require 844 * that we probe the actual space. So do both. 845 */ 846 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 847 (void) probe_write(env, ptr, 1, mmu_idx, ra); 848 mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE, 849 dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra); 850 if (!mem) { 851 goto done; 852 } 853 854 /* 855 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus 856 * it is quite easy to perform all of the comparisons at once without 857 * any extra masking. 858 * 859 * The most common zva block size is 64; some of the thunderx cpus use 860 * a block size of 128. For user-only, aarch64_max_initfn will set the 861 * block size to 512. Fill out the other cases for future-proofing. 862 * 863 * In order to be able to find the first miscompare later, we want the 864 * tag bytes to be in little-endian order. 865 */ 866 switch (log2_tag_bytes) { 867 case 0: /* zva_blocksize 32 */ 868 mem_tag = *(uint8_t *)mem; 869 ptr_tag *= 0x11u; 870 break; 871 case 1: /* zva_blocksize 64 */ 872 mem_tag = cpu_to_le16(*(uint16_t *)mem); 873 ptr_tag *= 0x1111u; 874 break; 875 case 2: /* zva_blocksize 128 */ 876 mem_tag = cpu_to_le32(*(uint32_t *)mem); 877 ptr_tag *= 0x11111111u; 878 break; 879 case 3: /* zva_blocksize 256 */ 880 mem_tag = cpu_to_le64(*(uint64_t *)mem); 881 ptr_tag *= 0x1111111111111111ull; 882 break; 883 884 default: /* zva_blocksize 512, 1024, 2048 */ 885 ptr_tag *= 0x1111111111111111ull; 886 i = 0; 887 do { 888 mem_tag = cpu_to_le64(*(uint64_t *)(mem + i)); 889 if (unlikely(mem_tag != ptr_tag)) { 890 goto fail; 891 } 892 i += 8; 893 align_ptr += 16 * TAG_GRANULE; 894 } while (i < tag_bytes); 895 goto done; 896 } 897 898 if (likely(mem_tag == ptr_tag)) { 899 goto done; 900 } 901 902 fail: 903 /* Locate the first nibble that differs. */ 904 i = ctz64(mem_tag ^ ptr_tag) >> 4; 905 mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra); 906 907 done: 908 return useronly_clean_ptr(ptr); 909 } 910