1 /* 2 * ARM v8.5-MemTag Operations 3 * 4 * Copyright (c) 2020 Linaro, Ltd. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "internals.h" 24 #include "exec/exec-all.h" 25 #include "exec/ram_addr.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/helper-proto.h" 28 #include "qapi/error.h" 29 #include "qemu/guest-random.h" 30 31 32 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude) 33 { 34 if (exclude == 0xffff) { 35 return 0; 36 } 37 if (offset == 0) { 38 while (exclude & (1 << tag)) { 39 tag = (tag + 1) & 15; 40 } 41 } else { 42 do { 43 do { 44 tag = (tag + 1) & 15; 45 } while (exclude & (1 << tag)); 46 } while (--offset > 0); 47 } 48 return tag; 49 } 50 51 /** 52 * allocation_tag_mem: 53 * @env: the cpu environment 54 * @ptr_mmu_idx: the addressing regime to use for the virtual address 55 * @ptr: the virtual address for which to look up tag memory 56 * @ptr_access: the access to use for the virtual address 57 * @ptr_size: the number of bytes in the normal memory access 58 * @tag_access: the access to use for the tag memory 59 * @tag_size: the number of bytes in the tag memory access 60 * @ra: the return address for exception handling 61 * 62 * Our tag memory is formatted as a sequence of little-endian nibbles. 63 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two 64 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4] 65 * for the higher addr. 66 * 67 * Here, resolve the physical address from the virtual address, and return 68 * a pointer to the corresponding tag byte. Exit with exception if the 69 * virtual address is not accessible for @ptr_access. 70 * 71 * The @ptr_size and @tag_size values may not have an obvious relation 72 * due to the alignment of @ptr, and the number of tag checks required. 73 * 74 * If there is no tag storage corresponding to @ptr, return NULL. 75 */ 76 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx, 77 uint64_t ptr, MMUAccessType ptr_access, 78 int ptr_size, MMUAccessType tag_access, 79 int tag_size, uintptr_t ra) 80 { 81 #ifdef CONFIG_USER_ONLY 82 uint64_t clean_ptr = useronly_clean_ptr(ptr); 83 int flags = page_get_flags(clean_ptr); 84 uint8_t *tags; 85 uintptr_t index; 86 87 if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) { 88 cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access, 89 !(flags & PAGE_VALID), ra); 90 } 91 92 /* Require both MAP_ANON and PROT_MTE for the page. */ 93 if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) { 94 return NULL; 95 } 96 97 tags = page_get_target_data(clean_ptr); 98 99 index = extract32(ptr, LOG2_TAG_GRANULE + 1, 100 TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1); 101 return tags + index; 102 #else 103 CPUTLBEntryFull *full; 104 MemTxAttrs attrs; 105 int in_page, flags; 106 hwaddr ptr_paddr, tag_paddr, xlat; 107 MemoryRegion *mr; 108 ARMASIdx tag_asi; 109 AddressSpace *tag_as; 110 void *host; 111 112 /* 113 * Probe the first byte of the virtual address. This raises an 114 * exception for inaccessible pages, and resolves the virtual address 115 * into the softmmu tlb. 116 * 117 * When RA == 0, this is for mte_probe. The page is expected to be 118 * valid. Indicate to probe_access_flags no-fault, then assert that 119 * we received a valid page. 120 */ 121 flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx, 122 ra == 0, &host, &full, ra); 123 assert(!(flags & TLB_INVALID_MASK)); 124 125 /* If the virtual page MemAttr != Tagged, access unchecked. */ 126 if (full->pte_attrs != 0xf0) { 127 return NULL; 128 } 129 130 /* 131 * If not backed by host ram, there is no tag storage: access unchecked. 132 * This is probably a guest os bug though, so log it. 133 */ 134 if (unlikely(flags & TLB_MMIO)) { 135 qemu_log_mask(LOG_GUEST_ERROR, 136 "Page @ 0x%" PRIx64 " indicates Tagged Normal memory " 137 "but is not backed by host ram\n", ptr); 138 return NULL; 139 } 140 141 /* 142 * Remember these values across the second lookup below, 143 * which may invalidate this pointer via tlb resize. 144 */ 145 ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK); 146 attrs = full->attrs; 147 full = NULL; 148 149 /* 150 * The Normal memory access can extend to the next page. E.g. a single 151 * 8-byte access to the last byte of a page will check only the last 152 * tag on the first page. 153 * Any page access exception has priority over tag check exception. 154 */ 155 in_page = -(ptr | TARGET_PAGE_MASK); 156 if (unlikely(ptr_size > in_page)) { 157 flags |= probe_access_full(env, ptr + in_page, 0, ptr_access, 158 ptr_mmu_idx, ra == 0, &host, &full, ra); 159 assert(!(flags & TLB_INVALID_MASK)); 160 } 161 162 /* Any debug exception has priority over a tag check exception. */ 163 if (unlikely(flags & TLB_WATCHPOINT)) { 164 int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE; 165 assert(ra != 0); 166 cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra); 167 } 168 169 /* Convert to the physical address in tag space. */ 170 tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1); 171 172 /* Look up the address in tag space. */ 173 tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS; 174 tag_as = cpu_get_address_space(env_cpu(env), tag_asi); 175 mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL, 176 tag_access == MMU_DATA_STORE, attrs); 177 178 /* 179 * Note that @mr will never be NULL. If there is nothing in the address 180 * space at @tag_paddr, the translation will return the unallocated memory 181 * region. For our purposes, the result must be ram. 182 */ 183 if (unlikely(!memory_region_is_ram(mr))) { 184 /* ??? Failure is a board configuration error. */ 185 qemu_log_mask(LOG_UNIMP, 186 "Tag Memory @ 0x%" HWADDR_PRIx " not found for " 187 "Normal Memory @ 0x%" HWADDR_PRIx "\n", 188 tag_paddr, ptr_paddr); 189 return NULL; 190 } 191 192 /* 193 * Ensure the tag memory is dirty on write, for migration. 194 * Tag memory can never contain code or display memory (vga). 195 */ 196 if (tag_access == MMU_DATA_STORE) { 197 ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat; 198 cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION); 199 } 200 201 return memory_region_get_ram_ptr(mr) + xlat; 202 #endif 203 } 204 205 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm) 206 { 207 uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16); 208 int rrnd = extract32(env->cp15.gcr_el1, 16, 1); 209 int start = extract32(env->cp15.rgsr_el1, 0, 4); 210 int seed = extract32(env->cp15.rgsr_el1, 8, 16); 211 int offset, i, rtag; 212 213 /* 214 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the 215 * deterministic algorithm. Except that with RRND==1 the kernel is 216 * not required to have set RGSR_EL1.SEED != 0, which is required for 217 * the deterministic algorithm to function. So we force a non-zero 218 * SEED for that case. 219 */ 220 if (unlikely(seed == 0) && rrnd) { 221 do { 222 Error *err = NULL; 223 uint16_t two; 224 225 if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) { 226 /* 227 * Failed, for unknown reasons in the crypto subsystem. 228 * Best we can do is log the reason and use a constant seed. 229 */ 230 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n", 231 error_get_pretty(err)); 232 error_free(err); 233 two = 1; 234 } 235 seed = two; 236 } while (seed == 0); 237 } 238 239 /* RandomTag */ 240 for (i = offset = 0; i < 4; ++i) { 241 /* NextRandomTagBit */ 242 int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^ 243 extract32(seed, 2, 1) ^ extract32(seed, 0, 1)); 244 seed = (top << 15) | (seed >> 1); 245 offset |= top << i; 246 } 247 rtag = choose_nonexcluded_tag(start, offset, exclude); 248 env->cp15.rgsr_el1 = rtag | (seed << 8); 249 250 return address_with_allocation_tag(rn, rtag); 251 } 252 253 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr, 254 int32_t offset, uint32_t tag_offset) 255 { 256 int start_tag = allocation_tag_from_addr(ptr); 257 uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16); 258 int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude); 259 260 return address_with_allocation_tag(ptr + offset, rtag); 261 } 262 263 static int load_tag1(uint64_t ptr, uint8_t *mem) 264 { 265 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 266 return extract32(*mem, ofs, 4); 267 } 268 269 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 270 { 271 int mmu_idx = cpu_mmu_index(env, false); 272 uint8_t *mem; 273 int rtag = 0; 274 275 /* Trap if accessing an invalid page. */ 276 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1, 277 MMU_DATA_LOAD, 1, GETPC()); 278 279 /* Load if page supports tags. */ 280 if (mem) { 281 rtag = load_tag1(ptr, mem); 282 } 283 284 return address_with_allocation_tag(xt, rtag); 285 } 286 287 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra) 288 { 289 if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) { 290 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE, 291 cpu_mmu_index(env, false), ra); 292 g_assert_not_reached(); 293 } 294 } 295 296 /* For use in a non-parallel context, store to the given nibble. */ 297 static void store_tag1(uint64_t ptr, uint8_t *mem, int tag) 298 { 299 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 300 *mem = deposit32(*mem, ofs, 4, tag); 301 } 302 303 /* For use in a parallel context, atomically store to the given nibble. */ 304 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag) 305 { 306 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 307 uint8_t old = qatomic_read(mem); 308 309 while (1) { 310 uint8_t new = deposit32(old, ofs, 4, tag); 311 uint8_t cmp = qatomic_cmpxchg(mem, old, new); 312 if (likely(cmp == old)) { 313 return; 314 } 315 old = cmp; 316 } 317 } 318 319 typedef void stg_store1(uint64_t, uint8_t *, int); 320 321 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt, 322 uintptr_t ra, stg_store1 store1) 323 { 324 int mmu_idx = cpu_mmu_index(env, false); 325 uint8_t *mem; 326 327 check_tag_aligned(env, ptr, ra); 328 329 /* Trap if accessing an invalid page. */ 330 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE, 331 MMU_DATA_STORE, 1, ra); 332 333 /* Store if page supports tags. */ 334 if (mem) { 335 store1(ptr, mem, allocation_tag_from_addr(xt)); 336 } 337 } 338 339 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 340 { 341 do_stg(env, ptr, xt, GETPC(), store_tag1); 342 } 343 344 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 345 { 346 do_stg(env, ptr, xt, GETPC(), store_tag1_parallel); 347 } 348 349 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr) 350 { 351 int mmu_idx = cpu_mmu_index(env, false); 352 uintptr_t ra = GETPC(); 353 354 check_tag_aligned(env, ptr, ra); 355 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 356 } 357 358 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt, 359 uintptr_t ra, stg_store1 store1) 360 { 361 int mmu_idx = cpu_mmu_index(env, false); 362 int tag = allocation_tag_from_addr(xt); 363 uint8_t *mem1, *mem2; 364 365 check_tag_aligned(env, ptr, ra); 366 367 /* 368 * Trap if accessing an invalid page(s). 369 * This takes priority over !allocation_tag_access_enabled. 370 */ 371 if (ptr & TAG_GRANULE) { 372 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */ 373 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 374 TAG_GRANULE, MMU_DATA_STORE, 1, ra); 375 mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE, 376 MMU_DATA_STORE, TAG_GRANULE, 377 MMU_DATA_STORE, 1, ra); 378 379 /* Store if page(s) support tags. */ 380 if (mem1) { 381 store1(TAG_GRANULE, mem1, tag); 382 } 383 if (mem2) { 384 store1(0, mem2, tag); 385 } 386 } else { 387 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */ 388 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 389 2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra); 390 if (mem1) { 391 tag |= tag << 4; 392 qatomic_set(mem1, tag); 393 } 394 } 395 } 396 397 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt) 398 { 399 do_st2g(env, ptr, xt, GETPC(), store_tag1); 400 } 401 402 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 403 { 404 do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel); 405 } 406 407 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr) 408 { 409 int mmu_idx = cpu_mmu_index(env, false); 410 uintptr_t ra = GETPC(); 411 int in_page = -(ptr | TARGET_PAGE_MASK); 412 413 check_tag_aligned(env, ptr, ra); 414 415 if (likely(in_page >= 2 * TAG_GRANULE)) { 416 probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra); 417 } else { 418 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 419 probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra); 420 } 421 } 422 423 #define LDGM_STGM_SIZE (4 << GMID_EL1_BS) 424 425 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr) 426 { 427 int mmu_idx = cpu_mmu_index(env, false); 428 uintptr_t ra = GETPC(); 429 void *tag_mem; 430 431 ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE); 432 433 /* Trap if accessing an invalid page. */ 434 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 435 LDGM_STGM_SIZE, MMU_DATA_LOAD, 436 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra); 437 438 /* The tag is squashed to zero if the page does not support tags. */ 439 if (!tag_mem) { 440 return 0; 441 } 442 443 QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6); 444 /* 445 * We are loading 64-bits worth of tags. The ordering of elements 446 * within the word corresponds to a 64-bit little-endian operation. 447 */ 448 return ldq_le_p(tag_mem); 449 } 450 451 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val) 452 { 453 int mmu_idx = cpu_mmu_index(env, false); 454 uintptr_t ra = GETPC(); 455 void *tag_mem; 456 457 ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE); 458 459 /* Trap if accessing an invalid page. */ 460 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 461 LDGM_STGM_SIZE, MMU_DATA_LOAD, 462 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra); 463 464 /* 465 * Tag store only happens if the page support tags, 466 * and if the OS has enabled access to the tags. 467 */ 468 if (!tag_mem) { 469 return; 470 } 471 472 QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6); 473 /* 474 * We are storing 64-bits worth of tags. The ordering of elements 475 * within the word corresponds to a 64-bit little-endian operation. 476 */ 477 stq_le_p(tag_mem, val); 478 } 479 480 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val) 481 { 482 uintptr_t ra = GETPC(); 483 int mmu_idx = cpu_mmu_index(env, false); 484 int log2_dcz_bytes, log2_tag_bytes; 485 intptr_t dcz_bytes, tag_bytes; 486 uint8_t *mem; 487 488 /* 489 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1, 490 * i.e. 32 bytes, which is an unreasonably small dcz anyway, 491 * to make sure that we can access one complete tag byte here. 492 */ 493 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 494 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 495 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 496 tag_bytes = (intptr_t)1 << log2_tag_bytes; 497 ptr &= -dcz_bytes; 498 499 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes, 500 MMU_DATA_STORE, tag_bytes, ra); 501 if (mem) { 502 int tag_pair = (val & 0xf) * 0x11; 503 memset(mem, tag_pair, tag_bytes); 504 } 505 } 506 507 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc, 508 uint64_t dirty_ptr, uintptr_t ra) 509 { 510 int is_write, syn; 511 512 env->exception.vaddress = dirty_ptr; 513 514 is_write = FIELD_EX32(desc, MTEDESC, WRITE); 515 syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write, 516 0x11); 517 raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra); 518 g_assert_not_reached(); 519 } 520 521 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr, 522 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el) 523 { 524 int select; 525 526 if (regime_has_2_ranges(arm_mmu_idx)) { 527 select = extract64(dirty_ptr, 55, 1); 528 } else { 529 select = 0; 530 } 531 env->cp15.tfsr_el[el] |= 1 << select; 532 #ifdef CONFIG_USER_ONLY 533 /* 534 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT, 535 * which then sends a SIGSEGV when the thread is next scheduled. 536 * This cpu will return to the main loop at the end of the TB, 537 * which is rather sooner than "normal". But the alternative 538 * is waiting until the next syscall. 539 */ 540 qemu_cpu_kick(env_cpu(env)); 541 #endif 542 } 543 544 /* Record a tag check failure. */ 545 static void mte_check_fail(CPUARMState *env, uint32_t desc, 546 uint64_t dirty_ptr, uintptr_t ra) 547 { 548 int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 549 ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx); 550 int el, reg_el, tcf; 551 uint64_t sctlr; 552 553 reg_el = regime_el(env, arm_mmu_idx); 554 sctlr = env->cp15.sctlr_el[reg_el]; 555 556 switch (arm_mmu_idx) { 557 case ARMMMUIdx_E10_0: 558 case ARMMMUIdx_E20_0: 559 el = 0; 560 tcf = extract64(sctlr, 38, 2); 561 break; 562 default: 563 el = reg_el; 564 tcf = extract64(sctlr, 40, 2); 565 } 566 567 switch (tcf) { 568 case 1: 569 /* Tag check fail causes a synchronous exception. */ 570 mte_sync_check_fail(env, desc, dirty_ptr, ra); 571 break; 572 573 case 0: 574 /* 575 * Tag check fail does not affect the PE. 576 * We eliminate this case by not setting MTE_ACTIVE 577 * in tb_flags, so that we never make this runtime call. 578 */ 579 g_assert_not_reached(); 580 581 case 2: 582 /* Tag check fail causes asynchronous flag set. */ 583 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 584 break; 585 586 case 3: 587 /* 588 * Tag check fail causes asynchronous flag set for stores, or 589 * a synchronous exception for loads. 590 */ 591 if (FIELD_EX32(desc, MTEDESC, WRITE)) { 592 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 593 } else { 594 mte_sync_check_fail(env, desc, dirty_ptr, ra); 595 } 596 break; 597 } 598 } 599 600 /** 601 * checkN: 602 * @tag: tag memory to test 603 * @odd: true to begin testing at tags at odd nibble 604 * @cmp: the tag to compare against 605 * @count: number of tags to test 606 * 607 * Return the number of successful tests. 608 * Thus a return value < @count indicates a failure. 609 * 610 * A note about sizes: count is expected to be small. 611 * 612 * The most common use will be LDP/STP of two integer registers, 613 * which means 16 bytes of memory touching at most 2 tags, but 614 * often the access is aligned and thus just 1 tag. 615 * 616 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory, 617 * touching at most 5 tags. SVE LDR/STR (vector) with the default 618 * vector length is also 64 bytes; the maximum architectural length 619 * is 256 bytes touching at most 9 tags. 620 * 621 * The loop below uses 7 logical operations and 1 memory operation 622 * per tag pair. An implementation that loads an aligned word and 623 * uses masking to ignore adjacent tags requires 18 logical operations 624 * and thus does not begin to pay off until 6 tags. 625 * Which, according to the survey above, is unlikely to be common. 626 */ 627 static int checkN(uint8_t *mem, int odd, int cmp, int count) 628 { 629 int n = 0, diff; 630 631 /* Replicate the test tag and compare. */ 632 cmp *= 0x11; 633 diff = *mem++ ^ cmp; 634 635 if (odd) { 636 goto start_odd; 637 } 638 639 while (1) { 640 /* Test even tag. */ 641 if (unlikely((diff) & 0x0f)) { 642 break; 643 } 644 if (++n == count) { 645 break; 646 } 647 648 start_odd: 649 /* Test odd tag. */ 650 if (unlikely((diff) & 0xf0)) { 651 break; 652 } 653 if (++n == count) { 654 break; 655 } 656 657 diff = *mem++ ^ cmp; 658 } 659 return n; 660 } 661 662 /** 663 * mte_probe_int() - helper for mte_probe and mte_check 664 * @env: CPU environment 665 * @desc: MTEDESC descriptor 666 * @ptr: virtual address of the base of the access 667 * @fault: return virtual address of the first check failure 668 * 669 * Internal routine for both mte_probe and mte_check. 670 * Return zero on failure, filling in *fault. 671 * Return negative on trivial success for tbi disabled. 672 * Return positive on success with tbi enabled. 673 */ 674 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr, 675 uintptr_t ra, uint64_t *fault) 676 { 677 int mmu_idx, ptr_tag, bit55; 678 uint64_t ptr_last, prev_page, next_page; 679 uint64_t tag_first, tag_last; 680 uint64_t tag_byte_first, tag_byte_last; 681 uint32_t sizem1, tag_count, tag_size, n, c; 682 uint8_t *mem1, *mem2; 683 MMUAccessType type; 684 685 bit55 = extract64(ptr, 55, 1); 686 *fault = ptr; 687 688 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 689 if (unlikely(!tbi_check(desc, bit55))) { 690 return -1; 691 } 692 693 ptr_tag = allocation_tag_from_addr(ptr); 694 695 if (tcma_check(desc, bit55, ptr_tag)) { 696 return 1; 697 } 698 699 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 700 type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD; 701 sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1); 702 703 /* Find the addr of the end of the access */ 704 ptr_last = ptr + sizem1; 705 706 /* Round the bounds to the tag granule, and compute the number of tags. */ 707 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 708 tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE); 709 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 710 711 /* Round the bounds to twice the tag granule, and compute the bytes. */ 712 tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE); 713 tag_byte_last = QEMU_ALIGN_DOWN(ptr_last, 2 * TAG_GRANULE); 714 715 /* Locate the page boundaries. */ 716 prev_page = ptr & TARGET_PAGE_MASK; 717 next_page = prev_page + TARGET_PAGE_SIZE; 718 719 if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) { 720 /* Memory access stays on one page. */ 721 tag_size = ((tag_byte_last - tag_byte_first) / (2 * TAG_GRANULE)) + 1; 722 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1, 723 MMU_DATA_LOAD, tag_size, ra); 724 if (!mem1) { 725 return 1; 726 } 727 /* Perform all of the comparisons. */ 728 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count); 729 } else { 730 /* Memory access crosses to next page. */ 731 tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE); 732 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr, 733 MMU_DATA_LOAD, tag_size, ra); 734 735 tag_size = ((tag_byte_last - next_page) / (2 * TAG_GRANULE)) + 1; 736 mem2 = allocation_tag_mem(env, mmu_idx, next_page, type, 737 ptr_last - next_page + 1, 738 MMU_DATA_LOAD, tag_size, ra); 739 740 /* 741 * Perform all of the comparisons. 742 * Note the possible but unlikely case of the operation spanning 743 * two pages that do not both have tagging enabled. 744 */ 745 n = c = (next_page - tag_first) / TAG_GRANULE; 746 if (mem1) { 747 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c); 748 } 749 if (n == c) { 750 if (!mem2) { 751 return 1; 752 } 753 n += checkN(mem2, 0, ptr_tag, tag_count - c); 754 } 755 } 756 757 if (likely(n == tag_count)) { 758 return 1; 759 } 760 761 /* 762 * If we failed, we know which granule. For the first granule, the 763 * failure address is @ptr, the first byte accessed. Otherwise the 764 * failure address is the first byte of the nth granule. 765 */ 766 if (n > 0) { 767 *fault = tag_first + n * TAG_GRANULE; 768 } 769 return 0; 770 } 771 772 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra) 773 { 774 uint64_t fault; 775 int ret = mte_probe_int(env, desc, ptr, ra, &fault); 776 777 if (unlikely(ret == 0)) { 778 mte_check_fail(env, desc, fault, ra); 779 } else if (ret < 0) { 780 return ptr; 781 } 782 return useronly_clean_ptr(ptr); 783 } 784 785 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr) 786 { 787 return mte_check(env, desc, ptr, GETPC()); 788 } 789 790 /* 791 * No-fault version of mte_check, to be used by SVE for MemSingleNF. 792 * Returns false if the access is Checked and the check failed. This 793 * is only intended to probe the tag -- the validity of the page must 794 * be checked beforehand. 795 */ 796 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr) 797 { 798 uint64_t fault; 799 int ret = mte_probe_int(env, desc, ptr, 0, &fault); 800 801 return ret != 0; 802 } 803 804 /* 805 * Perform an MTE checked access for DC_ZVA. 806 */ 807 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr) 808 { 809 uintptr_t ra = GETPC(); 810 int log2_dcz_bytes, log2_tag_bytes; 811 int mmu_idx, bit55; 812 intptr_t dcz_bytes, tag_bytes, i; 813 void *mem; 814 uint64_t ptr_tag, mem_tag, align_ptr; 815 816 bit55 = extract64(ptr, 55, 1); 817 818 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 819 if (unlikely(!tbi_check(desc, bit55))) { 820 return ptr; 821 } 822 823 ptr_tag = allocation_tag_from_addr(ptr); 824 825 if (tcma_check(desc, bit55, ptr_tag)) { 826 goto done; 827 } 828 829 /* 830 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1, 831 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make 832 * sure that we can access one complete tag byte here. 833 */ 834 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 835 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 836 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 837 tag_bytes = (intptr_t)1 << log2_tag_bytes; 838 align_ptr = ptr & -dcz_bytes; 839 840 /* 841 * Trap if accessing an invalid page. DC_ZVA requires that we supply 842 * the original pointer for an invalid page. But watchpoints require 843 * that we probe the actual space. So do both. 844 */ 845 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 846 (void) probe_write(env, ptr, 1, mmu_idx, ra); 847 mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE, 848 dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra); 849 if (!mem) { 850 goto done; 851 } 852 853 /* 854 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus 855 * it is quite easy to perform all of the comparisons at once without 856 * any extra masking. 857 * 858 * The most common zva block size is 64; some of the thunderx cpus use 859 * a block size of 128. For user-only, aarch64_max_initfn will set the 860 * block size to 512. Fill out the other cases for future-proofing. 861 * 862 * In order to be able to find the first miscompare later, we want the 863 * tag bytes to be in little-endian order. 864 */ 865 switch (log2_tag_bytes) { 866 case 0: /* zva_blocksize 32 */ 867 mem_tag = *(uint8_t *)mem; 868 ptr_tag *= 0x11u; 869 break; 870 case 1: /* zva_blocksize 64 */ 871 mem_tag = cpu_to_le16(*(uint16_t *)mem); 872 ptr_tag *= 0x1111u; 873 break; 874 case 2: /* zva_blocksize 128 */ 875 mem_tag = cpu_to_le32(*(uint32_t *)mem); 876 ptr_tag *= 0x11111111u; 877 break; 878 case 3: /* zva_blocksize 256 */ 879 mem_tag = cpu_to_le64(*(uint64_t *)mem); 880 ptr_tag *= 0x1111111111111111ull; 881 break; 882 883 default: /* zva_blocksize 512, 1024, 2048 */ 884 ptr_tag *= 0x1111111111111111ull; 885 i = 0; 886 do { 887 mem_tag = cpu_to_le64(*(uint64_t *)(mem + i)); 888 if (unlikely(mem_tag != ptr_tag)) { 889 goto fail; 890 } 891 i += 8; 892 align_ptr += 16 * TAG_GRANULE; 893 } while (i < tag_bytes); 894 goto done; 895 } 896 897 if (likely(mem_tag == ptr_tag)) { 898 goto done; 899 } 900 901 fail: 902 /* Locate the first nibble that differs. */ 903 i = ctz64(mem_tag ^ ptr_tag) >> 4; 904 mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra); 905 906 done: 907 return useronly_clean_ptr(ptr); 908 } 909