1 /* 2 * ARM v8.5-MemTag Operations 3 * 4 * Copyright (c) 2020 Linaro, Ltd. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "internals.h" 24 #include "exec/exec-all.h" 25 #include "exec/ram_addr.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/helper-proto.h" 28 #include "hw/core/tcg-cpu-ops.h" 29 #include "qapi/error.h" 30 #include "qemu/guest-random.h" 31 32 33 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude) 34 { 35 if (exclude == 0xffff) { 36 return 0; 37 } 38 if (offset == 0) { 39 while (exclude & (1 << tag)) { 40 tag = (tag + 1) & 15; 41 } 42 } else { 43 do { 44 do { 45 tag = (tag + 1) & 15; 46 } while (exclude & (1 << tag)); 47 } while (--offset > 0); 48 } 49 return tag; 50 } 51 52 /** 53 * allocation_tag_mem_probe: 54 * @env: the cpu environment 55 * @ptr_mmu_idx: the addressing regime to use for the virtual address 56 * @ptr: the virtual address for which to look up tag memory 57 * @ptr_access: the access to use for the virtual address 58 * @ptr_size: the number of bytes in the normal memory access 59 * @tag_access: the access to use for the tag memory 60 * @probe: true to merely probe, never taking an exception 61 * @ra: the return address for exception handling 62 * 63 * Our tag memory is formatted as a sequence of little-endian nibbles. 64 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two 65 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4] 66 * for the higher addr. 67 * 68 * Here, resolve the physical address from the virtual address, and return 69 * a pointer to the corresponding tag byte. 70 * 71 * If there is no tag storage corresponding to @ptr, return NULL. 72 * 73 * If the page is inaccessible for @ptr_access, or has a watchpoint, there are 74 * three options: 75 * (1) probe = true, ra = 0 : pure probe -- we return NULL if the page is not 76 * accessible, and do not take watchpoint traps. The calling code must 77 * handle those cases in the right priority compared to MTE traps. 78 * (2) probe = false, ra = 0 : probe, no fault expected -- the caller guarantees 79 * that the page is going to be accessible. We will take watchpoint traps. 80 * (3) probe = false, ra != 0 : non-probe -- we will take both memory access 81 * traps and watchpoint traps. 82 * (probe = true, ra != 0 is invalid and will assert.) 83 */ 84 static uint8_t *allocation_tag_mem_probe(CPUARMState *env, int ptr_mmu_idx, 85 uint64_t ptr, MMUAccessType ptr_access, 86 int ptr_size, MMUAccessType tag_access, 87 bool probe, uintptr_t ra) 88 { 89 #ifdef CONFIG_USER_ONLY 90 uint64_t clean_ptr = useronly_clean_ptr(ptr); 91 int flags = page_get_flags(clean_ptr); 92 uint8_t *tags; 93 uintptr_t index; 94 95 assert(!(probe && ra)); 96 97 if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) { 98 cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access, 99 !(flags & PAGE_VALID), ra); 100 } 101 102 /* Require both MAP_ANON and PROT_MTE for the page. */ 103 if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) { 104 return NULL; 105 } 106 107 tags = page_get_target_data(clean_ptr); 108 109 index = extract32(ptr, LOG2_TAG_GRANULE + 1, 110 TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1); 111 return tags + index; 112 #else 113 CPUTLBEntryFull *full; 114 MemTxAttrs attrs; 115 int in_page, flags; 116 hwaddr ptr_paddr, tag_paddr, xlat; 117 MemoryRegion *mr; 118 ARMASIdx tag_asi; 119 AddressSpace *tag_as; 120 void *host; 121 122 /* 123 * Probe the first byte of the virtual address. This raises an 124 * exception for inaccessible pages, and resolves the virtual address 125 * into the softmmu tlb. 126 * 127 * When RA == 0, this is either a pure probe or a no-fault-expected probe. 128 * Indicate to probe_access_flags no-fault, then either return NULL 129 * for the pure probe, or assert that we received a valid page for the 130 * no-fault-expected probe. 131 */ 132 flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx, 133 ra == 0, &host, &full, ra); 134 if (probe && (flags & TLB_INVALID_MASK)) { 135 return NULL; 136 } 137 assert(!(flags & TLB_INVALID_MASK)); 138 139 /* If the virtual page MemAttr != Tagged, access unchecked. */ 140 if (full->pte_attrs != 0xf0) { 141 return NULL; 142 } 143 144 /* 145 * If not backed by host ram, there is no tag storage: access unchecked. 146 * This is probably a guest os bug though, so log it. 147 */ 148 if (unlikely(flags & TLB_MMIO)) { 149 qemu_log_mask(LOG_GUEST_ERROR, 150 "Page @ 0x%" PRIx64 " indicates Tagged Normal memory " 151 "but is not backed by host ram\n", ptr); 152 return NULL; 153 } 154 155 /* 156 * Remember these values across the second lookup below, 157 * which may invalidate this pointer via tlb resize. 158 */ 159 ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK); 160 attrs = full->attrs; 161 full = NULL; 162 163 /* 164 * The Normal memory access can extend to the next page. E.g. a single 165 * 8-byte access to the last byte of a page will check only the last 166 * tag on the first page. 167 * Any page access exception has priority over tag check exception. 168 */ 169 in_page = -(ptr | TARGET_PAGE_MASK); 170 if (unlikely(ptr_size > in_page)) { 171 flags |= probe_access_full(env, ptr + in_page, 0, ptr_access, 172 ptr_mmu_idx, ra == 0, &host, &full, ra); 173 assert(!(flags & TLB_INVALID_MASK)); 174 } 175 176 /* Any debug exception has priority over a tag check exception. */ 177 if (!probe && unlikely(flags & TLB_WATCHPOINT)) { 178 int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE; 179 assert(ra != 0); 180 cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra); 181 } 182 183 /* Convert to the physical address in tag space. */ 184 tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1); 185 186 /* Look up the address in tag space. */ 187 tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS; 188 tag_as = cpu_get_address_space(env_cpu(env), tag_asi); 189 mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL, 190 tag_access == MMU_DATA_STORE, attrs); 191 192 /* 193 * Note that @mr will never be NULL. If there is nothing in the address 194 * space at @tag_paddr, the translation will return the unallocated memory 195 * region. For our purposes, the result must be ram. 196 */ 197 if (unlikely(!memory_region_is_ram(mr))) { 198 /* ??? Failure is a board configuration error. */ 199 qemu_log_mask(LOG_UNIMP, 200 "Tag Memory @ 0x%" HWADDR_PRIx " not found for " 201 "Normal Memory @ 0x%" HWADDR_PRIx "\n", 202 tag_paddr, ptr_paddr); 203 return NULL; 204 } 205 206 /* 207 * Ensure the tag memory is dirty on write, for migration. 208 * Tag memory can never contain code or display memory (vga). 209 */ 210 if (tag_access == MMU_DATA_STORE) { 211 ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat; 212 cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION); 213 } 214 215 return memory_region_get_ram_ptr(mr) + xlat; 216 #endif 217 } 218 219 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx, 220 uint64_t ptr, MMUAccessType ptr_access, 221 int ptr_size, MMUAccessType tag_access, 222 uintptr_t ra) 223 { 224 return allocation_tag_mem_probe(env, ptr_mmu_idx, ptr, ptr_access, 225 ptr_size, tag_access, false, ra); 226 } 227 228 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm) 229 { 230 uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16); 231 int rrnd = extract32(env->cp15.gcr_el1, 16, 1); 232 int start = extract32(env->cp15.rgsr_el1, 0, 4); 233 int seed = extract32(env->cp15.rgsr_el1, 8, 16); 234 int offset, i, rtag; 235 236 /* 237 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the 238 * deterministic algorithm. Except that with RRND==1 the kernel is 239 * not required to have set RGSR_EL1.SEED != 0, which is required for 240 * the deterministic algorithm to function. So we force a non-zero 241 * SEED for that case. 242 */ 243 if (unlikely(seed == 0) && rrnd) { 244 do { 245 Error *err = NULL; 246 uint16_t two; 247 248 if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) { 249 /* 250 * Failed, for unknown reasons in the crypto subsystem. 251 * Best we can do is log the reason and use a constant seed. 252 */ 253 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n", 254 error_get_pretty(err)); 255 error_free(err); 256 two = 1; 257 } 258 seed = two; 259 } while (seed == 0); 260 } 261 262 /* RandomTag */ 263 for (i = offset = 0; i < 4; ++i) { 264 /* NextRandomTagBit */ 265 int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^ 266 extract32(seed, 2, 1) ^ extract32(seed, 0, 1)); 267 seed = (top << 15) | (seed >> 1); 268 offset |= top << i; 269 } 270 rtag = choose_nonexcluded_tag(start, offset, exclude); 271 env->cp15.rgsr_el1 = rtag | (seed << 8); 272 273 return address_with_allocation_tag(rn, rtag); 274 } 275 276 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr, 277 int32_t offset, uint32_t tag_offset) 278 { 279 int start_tag = allocation_tag_from_addr(ptr); 280 uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16); 281 int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude); 282 283 return address_with_allocation_tag(ptr + offset, rtag); 284 } 285 286 static int load_tag1(uint64_t ptr, uint8_t *mem) 287 { 288 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 289 return extract32(*mem, ofs, 4); 290 } 291 292 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 293 { 294 int mmu_idx = cpu_mmu_index(env, false); 295 uint8_t *mem; 296 int rtag = 0; 297 298 /* Trap if accessing an invalid page. */ 299 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1, 300 MMU_DATA_LOAD, GETPC()); 301 302 /* Load if page supports tags. */ 303 if (mem) { 304 rtag = load_tag1(ptr, mem); 305 } 306 307 return address_with_allocation_tag(xt, rtag); 308 } 309 310 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra) 311 { 312 if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) { 313 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE, 314 cpu_mmu_index(env, false), ra); 315 g_assert_not_reached(); 316 } 317 } 318 319 /* For use in a non-parallel context, store to the given nibble. */ 320 static void store_tag1(uint64_t ptr, uint8_t *mem, int tag) 321 { 322 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 323 *mem = deposit32(*mem, ofs, 4, tag); 324 } 325 326 /* For use in a parallel context, atomically store to the given nibble. */ 327 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag) 328 { 329 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 330 uint8_t old = qatomic_read(mem); 331 332 while (1) { 333 uint8_t new = deposit32(old, ofs, 4, tag); 334 uint8_t cmp = qatomic_cmpxchg(mem, old, new); 335 if (likely(cmp == old)) { 336 return; 337 } 338 old = cmp; 339 } 340 } 341 342 typedef void stg_store1(uint64_t, uint8_t *, int); 343 344 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt, 345 uintptr_t ra, stg_store1 store1) 346 { 347 int mmu_idx = cpu_mmu_index(env, false); 348 uint8_t *mem; 349 350 check_tag_aligned(env, ptr, ra); 351 352 /* Trap if accessing an invalid page. */ 353 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE, 354 MMU_DATA_STORE, ra); 355 356 /* Store if page supports tags. */ 357 if (mem) { 358 store1(ptr, mem, allocation_tag_from_addr(xt)); 359 } 360 } 361 362 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 363 { 364 do_stg(env, ptr, xt, GETPC(), store_tag1); 365 } 366 367 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 368 { 369 do_stg(env, ptr, xt, GETPC(), store_tag1_parallel); 370 } 371 372 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr) 373 { 374 int mmu_idx = cpu_mmu_index(env, false); 375 uintptr_t ra = GETPC(); 376 377 check_tag_aligned(env, ptr, ra); 378 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 379 } 380 381 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt, 382 uintptr_t ra, stg_store1 store1) 383 { 384 int mmu_idx = cpu_mmu_index(env, false); 385 int tag = allocation_tag_from_addr(xt); 386 uint8_t *mem1, *mem2; 387 388 check_tag_aligned(env, ptr, ra); 389 390 /* 391 * Trap if accessing an invalid page(s). 392 * This takes priority over !allocation_tag_access_enabled. 393 */ 394 if (ptr & TAG_GRANULE) { 395 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */ 396 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 397 TAG_GRANULE, MMU_DATA_STORE, ra); 398 mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE, 399 MMU_DATA_STORE, TAG_GRANULE, 400 MMU_DATA_STORE, ra); 401 402 /* Store if page(s) support tags. */ 403 if (mem1) { 404 store1(TAG_GRANULE, mem1, tag); 405 } 406 if (mem2) { 407 store1(0, mem2, tag); 408 } 409 } else { 410 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */ 411 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 412 2 * TAG_GRANULE, MMU_DATA_STORE, ra); 413 if (mem1) { 414 tag |= tag << 4; 415 qatomic_set(mem1, tag); 416 } 417 } 418 } 419 420 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt) 421 { 422 do_st2g(env, ptr, xt, GETPC(), store_tag1); 423 } 424 425 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 426 { 427 do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel); 428 } 429 430 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr) 431 { 432 int mmu_idx = cpu_mmu_index(env, false); 433 uintptr_t ra = GETPC(); 434 int in_page = -(ptr | TARGET_PAGE_MASK); 435 436 check_tag_aligned(env, ptr, ra); 437 438 if (likely(in_page >= 2 * TAG_GRANULE)) { 439 probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra); 440 } else { 441 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 442 probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra); 443 } 444 } 445 446 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr) 447 { 448 int mmu_idx = cpu_mmu_index(env, false); 449 uintptr_t ra = GETPC(); 450 int gm_bs = env_archcpu(env)->gm_blocksize; 451 int gm_bs_bytes = 4 << gm_bs; 452 void *tag_mem; 453 uint64_t ret; 454 int shift; 455 456 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 457 458 /* Trap if accessing an invalid page. */ 459 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 460 gm_bs_bytes, MMU_DATA_LOAD, ra); 461 462 /* The tag is squashed to zero if the page does not support tags. */ 463 if (!tag_mem) { 464 return 0; 465 } 466 467 /* 468 * The ordering of elements within the word corresponds to 469 * a little-endian operation. Computation of shift comes from 470 * 471 * index = address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE> 472 * data<index*4+3:index*4> = tag 473 * 474 * Because of the alignment of ptr above, BS=6 has shift=0. 475 * All memory operations are aligned. Defer support for BS=2, 476 * requiring insertion or extraction of a nibble, until we 477 * support a cpu that requires it. 478 */ 479 switch (gm_bs) { 480 case 3: 481 /* 32 bytes -> 2 tags -> 8 result bits */ 482 ret = *(uint8_t *)tag_mem; 483 break; 484 case 4: 485 /* 64 bytes -> 4 tags -> 16 result bits */ 486 ret = cpu_to_le16(*(uint16_t *)tag_mem); 487 break; 488 case 5: 489 /* 128 bytes -> 8 tags -> 32 result bits */ 490 ret = cpu_to_le32(*(uint32_t *)tag_mem); 491 break; 492 case 6: 493 /* 256 bytes -> 16 tags -> 64 result bits */ 494 return cpu_to_le64(*(uint64_t *)tag_mem); 495 default: 496 /* 497 * CPU configured with unsupported/invalid gm blocksize. 498 * This is detected early in arm_cpu_realizefn. 499 */ 500 g_assert_not_reached(); 501 } 502 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; 503 return ret << shift; 504 } 505 506 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val) 507 { 508 int mmu_idx = cpu_mmu_index(env, false); 509 uintptr_t ra = GETPC(); 510 int gm_bs = env_archcpu(env)->gm_blocksize; 511 int gm_bs_bytes = 4 << gm_bs; 512 void *tag_mem; 513 int shift; 514 515 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 516 517 /* Trap if accessing an invalid page. */ 518 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 519 gm_bs_bytes, MMU_DATA_LOAD, ra); 520 521 /* 522 * Tag store only happens if the page support tags, 523 * and if the OS has enabled access to the tags. 524 */ 525 if (!tag_mem) { 526 return; 527 } 528 529 /* See LDGM for comments on BS and on shift. */ 530 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; 531 val >>= shift; 532 switch (gm_bs) { 533 case 3: 534 /* 32 bytes -> 2 tags -> 8 result bits */ 535 *(uint8_t *)tag_mem = val; 536 break; 537 case 4: 538 /* 64 bytes -> 4 tags -> 16 result bits */ 539 *(uint16_t *)tag_mem = cpu_to_le16(val); 540 break; 541 case 5: 542 /* 128 bytes -> 8 tags -> 32 result bits */ 543 *(uint32_t *)tag_mem = cpu_to_le32(val); 544 break; 545 case 6: 546 /* 256 bytes -> 16 tags -> 64 result bits */ 547 *(uint64_t *)tag_mem = cpu_to_le64(val); 548 break; 549 default: 550 /* cpu configured with unsupported gm blocksize. */ 551 g_assert_not_reached(); 552 } 553 } 554 555 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val) 556 { 557 uintptr_t ra = GETPC(); 558 int mmu_idx = cpu_mmu_index(env, false); 559 int log2_dcz_bytes, log2_tag_bytes; 560 intptr_t dcz_bytes, tag_bytes; 561 uint8_t *mem; 562 563 /* 564 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1, 565 * i.e. 32 bytes, which is an unreasonably small dcz anyway, 566 * to make sure that we can access one complete tag byte here. 567 */ 568 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 569 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 570 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 571 tag_bytes = (intptr_t)1 << log2_tag_bytes; 572 ptr &= -dcz_bytes; 573 574 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes, 575 MMU_DATA_STORE, ra); 576 if (mem) { 577 int tag_pair = (val & 0xf) * 0x11; 578 memset(mem, tag_pair, tag_bytes); 579 } 580 } 581 582 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc, 583 uint64_t dirty_ptr, uintptr_t ra) 584 { 585 int is_write, syn; 586 587 env->exception.vaddress = dirty_ptr; 588 589 is_write = FIELD_EX32(desc, MTEDESC, WRITE); 590 syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write, 591 0x11); 592 raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra); 593 g_assert_not_reached(); 594 } 595 596 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr, 597 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el) 598 { 599 int select; 600 601 if (regime_has_2_ranges(arm_mmu_idx)) { 602 select = extract64(dirty_ptr, 55, 1); 603 } else { 604 select = 0; 605 } 606 env->cp15.tfsr_el[el] |= 1 << select; 607 #ifdef CONFIG_USER_ONLY 608 /* 609 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT, 610 * which then sends a SIGSEGV when the thread is next scheduled. 611 * This cpu will return to the main loop at the end of the TB, 612 * which is rather sooner than "normal". But the alternative 613 * is waiting until the next syscall. 614 */ 615 qemu_cpu_kick(env_cpu(env)); 616 #endif 617 } 618 619 /* Record a tag check failure. */ 620 void mte_check_fail(CPUARMState *env, uint32_t desc, 621 uint64_t dirty_ptr, uintptr_t ra) 622 { 623 int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 624 ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx); 625 int el, reg_el, tcf; 626 uint64_t sctlr; 627 628 reg_el = regime_el(env, arm_mmu_idx); 629 sctlr = env->cp15.sctlr_el[reg_el]; 630 631 switch (arm_mmu_idx) { 632 case ARMMMUIdx_E10_0: 633 case ARMMMUIdx_E20_0: 634 el = 0; 635 tcf = extract64(sctlr, 38, 2); 636 break; 637 default: 638 el = reg_el; 639 tcf = extract64(sctlr, 40, 2); 640 } 641 642 switch (tcf) { 643 case 1: 644 /* Tag check fail causes a synchronous exception. */ 645 mte_sync_check_fail(env, desc, dirty_ptr, ra); 646 break; 647 648 case 0: 649 /* 650 * Tag check fail does not affect the PE. 651 * We eliminate this case by not setting MTE_ACTIVE 652 * in tb_flags, so that we never make this runtime call. 653 */ 654 g_assert_not_reached(); 655 656 case 2: 657 /* Tag check fail causes asynchronous flag set. */ 658 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 659 break; 660 661 case 3: 662 /* 663 * Tag check fail causes asynchronous flag set for stores, or 664 * a synchronous exception for loads. 665 */ 666 if (FIELD_EX32(desc, MTEDESC, WRITE)) { 667 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 668 } else { 669 mte_sync_check_fail(env, desc, dirty_ptr, ra); 670 } 671 break; 672 } 673 } 674 675 /** 676 * checkN: 677 * @tag: tag memory to test 678 * @odd: true to begin testing at tags at odd nibble 679 * @cmp: the tag to compare against 680 * @count: number of tags to test 681 * 682 * Return the number of successful tests. 683 * Thus a return value < @count indicates a failure. 684 * 685 * A note about sizes: count is expected to be small. 686 * 687 * The most common use will be LDP/STP of two integer registers, 688 * which means 16 bytes of memory touching at most 2 tags, but 689 * often the access is aligned and thus just 1 tag. 690 * 691 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory, 692 * touching at most 5 tags. SVE LDR/STR (vector) with the default 693 * vector length is also 64 bytes; the maximum architectural length 694 * is 256 bytes touching at most 9 tags. 695 * 696 * The loop below uses 7 logical operations and 1 memory operation 697 * per tag pair. An implementation that loads an aligned word and 698 * uses masking to ignore adjacent tags requires 18 logical operations 699 * and thus does not begin to pay off until 6 tags. 700 * Which, according to the survey above, is unlikely to be common. 701 */ 702 static int checkN(uint8_t *mem, int odd, int cmp, int count) 703 { 704 int n = 0, diff; 705 706 /* Replicate the test tag and compare. */ 707 cmp *= 0x11; 708 diff = *mem++ ^ cmp; 709 710 if (odd) { 711 goto start_odd; 712 } 713 714 while (1) { 715 /* Test even tag. */ 716 if (unlikely((diff) & 0x0f)) { 717 break; 718 } 719 if (++n == count) { 720 break; 721 } 722 723 start_odd: 724 /* Test odd tag. */ 725 if (unlikely((diff) & 0xf0)) { 726 break; 727 } 728 if (++n == count) { 729 break; 730 } 731 732 diff = *mem++ ^ cmp; 733 } 734 return n; 735 } 736 737 /** 738 * checkNrev: 739 * @tag: tag memory to test 740 * @odd: true to begin testing at tags at odd nibble 741 * @cmp: the tag to compare against 742 * @count: number of tags to test 743 * 744 * Return the number of successful tests. 745 * Thus a return value < @count indicates a failure. 746 * 747 * This is like checkN, but it runs backwards, checking the 748 * tags starting with @tag and then the tags preceding it. 749 * This is needed by the backwards-memory-copying operations. 750 */ 751 static int checkNrev(uint8_t *mem, int odd, int cmp, int count) 752 { 753 int n = 0, diff; 754 755 /* Replicate the test tag and compare. */ 756 cmp *= 0x11; 757 diff = *mem-- ^ cmp; 758 759 if (!odd) { 760 goto start_even; 761 } 762 763 while (1) { 764 /* Test odd tag. */ 765 if (unlikely((diff) & 0xf0)) { 766 break; 767 } 768 if (++n == count) { 769 break; 770 } 771 772 start_even: 773 /* Test even tag. */ 774 if (unlikely((diff) & 0x0f)) { 775 break; 776 } 777 if (++n == count) { 778 break; 779 } 780 781 diff = *mem-- ^ cmp; 782 } 783 return n; 784 } 785 786 /** 787 * mte_probe_int() - helper for mte_probe and mte_check 788 * @env: CPU environment 789 * @desc: MTEDESC descriptor 790 * @ptr: virtual address of the base of the access 791 * @fault: return virtual address of the first check failure 792 * 793 * Internal routine for both mte_probe and mte_check. 794 * Return zero on failure, filling in *fault. 795 * Return negative on trivial success for tbi disabled. 796 * Return positive on success with tbi enabled. 797 */ 798 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr, 799 uintptr_t ra, uint64_t *fault) 800 { 801 int mmu_idx, ptr_tag, bit55; 802 uint64_t ptr_last, prev_page, next_page; 803 uint64_t tag_first, tag_last; 804 uint32_t sizem1, tag_count, n, c; 805 uint8_t *mem1, *mem2; 806 MMUAccessType type; 807 808 bit55 = extract64(ptr, 55, 1); 809 *fault = ptr; 810 811 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 812 if (unlikely(!tbi_check(desc, bit55))) { 813 return -1; 814 } 815 816 ptr_tag = allocation_tag_from_addr(ptr); 817 818 if (tcma_check(desc, bit55, ptr_tag)) { 819 return 1; 820 } 821 822 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 823 type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD; 824 sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1); 825 826 /* Find the addr of the end of the access */ 827 ptr_last = ptr + sizem1; 828 829 /* Round the bounds to the tag granule, and compute the number of tags. */ 830 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 831 tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE); 832 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 833 834 /* Locate the page boundaries. */ 835 prev_page = ptr & TARGET_PAGE_MASK; 836 next_page = prev_page + TARGET_PAGE_SIZE; 837 838 if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) { 839 /* Memory access stays on one page. */ 840 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1, 841 MMU_DATA_LOAD, ra); 842 if (!mem1) { 843 return 1; 844 } 845 /* Perform all of the comparisons. */ 846 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count); 847 } else { 848 /* Memory access crosses to next page. */ 849 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr, 850 MMU_DATA_LOAD, ra); 851 852 mem2 = allocation_tag_mem(env, mmu_idx, next_page, type, 853 ptr_last - next_page + 1, 854 MMU_DATA_LOAD, ra); 855 856 /* 857 * Perform all of the comparisons. 858 * Note the possible but unlikely case of the operation spanning 859 * two pages that do not both have tagging enabled. 860 */ 861 n = c = (next_page - tag_first) / TAG_GRANULE; 862 if (mem1) { 863 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c); 864 } 865 if (n == c) { 866 if (!mem2) { 867 return 1; 868 } 869 n += checkN(mem2, 0, ptr_tag, tag_count - c); 870 } 871 } 872 873 if (likely(n == tag_count)) { 874 return 1; 875 } 876 877 /* 878 * If we failed, we know which granule. For the first granule, the 879 * failure address is @ptr, the first byte accessed. Otherwise the 880 * failure address is the first byte of the nth granule. 881 */ 882 if (n > 0) { 883 *fault = tag_first + n * TAG_GRANULE; 884 } 885 return 0; 886 } 887 888 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra) 889 { 890 uint64_t fault; 891 int ret = mte_probe_int(env, desc, ptr, ra, &fault); 892 893 if (unlikely(ret == 0)) { 894 mte_check_fail(env, desc, fault, ra); 895 } else if (ret < 0) { 896 return ptr; 897 } 898 return useronly_clean_ptr(ptr); 899 } 900 901 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr) 902 { 903 /* 904 * R_XCHFJ: Alignment check not caused by memory type is priority 1, 905 * higher than any translation fault. When MTE is disabled, tcg 906 * performs the alignment check during the code generated for the 907 * memory access. With MTE enabled, we must check this here before 908 * raising any translation fault in allocation_tag_mem. 909 */ 910 unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN); 911 if (unlikely(align)) { 912 align = (1u << align) - 1; 913 if (unlikely(ptr & align)) { 914 int idx = FIELD_EX32(desc, MTEDESC, MIDX); 915 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 916 MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD; 917 arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC()); 918 } 919 } 920 921 return mte_check(env, desc, ptr, GETPC()); 922 } 923 924 /* 925 * No-fault version of mte_check, to be used by SVE for MemSingleNF. 926 * Returns false if the access is Checked and the check failed. This 927 * is only intended to probe the tag -- the validity of the page must 928 * be checked beforehand. 929 */ 930 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr) 931 { 932 uint64_t fault; 933 int ret = mte_probe_int(env, desc, ptr, 0, &fault); 934 935 return ret != 0; 936 } 937 938 /* 939 * Perform an MTE checked access for DC_ZVA. 940 */ 941 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr) 942 { 943 uintptr_t ra = GETPC(); 944 int log2_dcz_bytes, log2_tag_bytes; 945 int mmu_idx, bit55; 946 intptr_t dcz_bytes, tag_bytes, i; 947 void *mem; 948 uint64_t ptr_tag, mem_tag, align_ptr; 949 950 bit55 = extract64(ptr, 55, 1); 951 952 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 953 if (unlikely(!tbi_check(desc, bit55))) { 954 return ptr; 955 } 956 957 ptr_tag = allocation_tag_from_addr(ptr); 958 959 if (tcma_check(desc, bit55, ptr_tag)) { 960 goto done; 961 } 962 963 /* 964 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1, 965 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make 966 * sure that we can access one complete tag byte here. 967 */ 968 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 969 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 970 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 971 tag_bytes = (intptr_t)1 << log2_tag_bytes; 972 align_ptr = ptr & -dcz_bytes; 973 974 /* 975 * Trap if accessing an invalid page. DC_ZVA requires that we supply 976 * the original pointer for an invalid page. But watchpoints require 977 * that we probe the actual space. So do both. 978 */ 979 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 980 (void) probe_write(env, ptr, 1, mmu_idx, ra); 981 mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE, 982 dcz_bytes, MMU_DATA_LOAD, ra); 983 if (!mem) { 984 goto done; 985 } 986 987 /* 988 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus 989 * it is quite easy to perform all of the comparisons at once without 990 * any extra masking. 991 * 992 * The most common zva block size is 64; some of the thunderx cpus use 993 * a block size of 128. For user-only, aarch64_max_initfn will set the 994 * block size to 512. Fill out the other cases for future-proofing. 995 * 996 * In order to be able to find the first miscompare later, we want the 997 * tag bytes to be in little-endian order. 998 */ 999 switch (log2_tag_bytes) { 1000 case 0: /* zva_blocksize 32 */ 1001 mem_tag = *(uint8_t *)mem; 1002 ptr_tag *= 0x11u; 1003 break; 1004 case 1: /* zva_blocksize 64 */ 1005 mem_tag = cpu_to_le16(*(uint16_t *)mem); 1006 ptr_tag *= 0x1111u; 1007 break; 1008 case 2: /* zva_blocksize 128 */ 1009 mem_tag = cpu_to_le32(*(uint32_t *)mem); 1010 ptr_tag *= 0x11111111u; 1011 break; 1012 case 3: /* zva_blocksize 256 */ 1013 mem_tag = cpu_to_le64(*(uint64_t *)mem); 1014 ptr_tag *= 0x1111111111111111ull; 1015 break; 1016 1017 default: /* zva_blocksize 512, 1024, 2048 */ 1018 ptr_tag *= 0x1111111111111111ull; 1019 i = 0; 1020 do { 1021 mem_tag = cpu_to_le64(*(uint64_t *)(mem + i)); 1022 if (unlikely(mem_tag != ptr_tag)) { 1023 goto fail; 1024 } 1025 i += 8; 1026 align_ptr += 16 * TAG_GRANULE; 1027 } while (i < tag_bytes); 1028 goto done; 1029 } 1030 1031 if (likely(mem_tag == ptr_tag)) { 1032 goto done; 1033 } 1034 1035 fail: 1036 /* Locate the first nibble that differs. */ 1037 i = ctz64(mem_tag ^ ptr_tag) >> 4; 1038 mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra); 1039 1040 done: 1041 return useronly_clean_ptr(ptr); 1042 } 1043 1044 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size, 1045 uint32_t desc) 1046 { 1047 int mmu_idx, tag_count; 1048 uint64_t ptr_tag, tag_first, tag_last; 1049 void *mem; 1050 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 1051 uint32_t n; 1052 1053 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1054 /* True probe; this will never fault */ 1055 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, 1056 w ? MMU_DATA_STORE : MMU_DATA_LOAD, 1057 size, MMU_DATA_LOAD, true, 0); 1058 if (!mem) { 1059 return size; 1060 } 1061 1062 /* 1063 * TODO: checkN() is not designed for checks of the size we expect 1064 * for FEAT_MOPS operations, so we should implement this differently. 1065 * Maybe we should do something like 1066 * if (region start and size are aligned nicely) { 1067 * do direct loads of 64 tag bits at a time; 1068 * } else { 1069 * call checkN() 1070 * } 1071 */ 1072 /* Round the bounds to the tag granule, and compute the number of tags. */ 1073 ptr_tag = allocation_tag_from_addr(ptr); 1074 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 1075 tag_last = QEMU_ALIGN_DOWN(ptr + size - 1, TAG_GRANULE); 1076 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 1077 n = checkN(mem, ptr & TAG_GRANULE, ptr_tag, tag_count); 1078 if (likely(n == tag_count)) { 1079 return size; 1080 } 1081 1082 /* 1083 * Failure; for the first granule, it's at @ptr. Otherwise 1084 * it's at the first byte of the nth granule. Calculate how 1085 * many bytes we can access without hitting that failure. 1086 */ 1087 if (n == 0) { 1088 return 0; 1089 } else { 1090 return n * TAG_GRANULE - (ptr - tag_first); 1091 } 1092 } 1093 1094 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size, 1095 uint32_t desc) 1096 { 1097 int mmu_idx, tag_count; 1098 uint64_t ptr_tag, tag_first, tag_last; 1099 void *mem; 1100 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 1101 uint32_t n; 1102 1103 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1104 /* True probe; this will never fault */ 1105 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, 1106 w ? MMU_DATA_STORE : MMU_DATA_LOAD, 1107 size, MMU_DATA_LOAD, true, 0); 1108 if (!mem) { 1109 return size; 1110 } 1111 1112 /* 1113 * TODO: checkNrev() is not designed for checks of the size we expect 1114 * for FEAT_MOPS operations, so we should implement this differently. 1115 * Maybe we should do something like 1116 * if (region start and size are aligned nicely) { 1117 * do direct loads of 64 tag bits at a time; 1118 * } else { 1119 * call checkN() 1120 * } 1121 */ 1122 /* Round the bounds to the tag granule, and compute the number of tags. */ 1123 ptr_tag = allocation_tag_from_addr(ptr); 1124 tag_first = QEMU_ALIGN_DOWN(ptr - (size - 1), TAG_GRANULE); 1125 tag_last = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 1126 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 1127 n = checkNrev(mem, ptr & TAG_GRANULE, ptr_tag, tag_count); 1128 if (likely(n == tag_count)) { 1129 return size; 1130 } 1131 1132 /* 1133 * Failure; for the first granule, it's at @ptr. Otherwise 1134 * it's at the last byte of the nth granule. Calculate how 1135 * many bytes we can access without hitting that failure. 1136 */ 1137 if (n == 0) { 1138 return 0; 1139 } else { 1140 return (n - 1) * TAG_GRANULE + ((ptr + 1) - tag_last); 1141 } 1142 } 1143 1144 void mte_mops_set_tags(CPUARMState *env, uint64_t ptr, uint64_t size, 1145 uint32_t desc) 1146 { 1147 int mmu_idx, tag_count; 1148 uint64_t ptr_tag; 1149 void *mem; 1150 1151 if (!desc) { 1152 /* Tags not actually enabled */ 1153 return; 1154 } 1155 1156 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1157 /* True probe: this will never fault */ 1158 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, MMU_DATA_STORE, size, 1159 MMU_DATA_STORE, true, 0); 1160 if (!mem) { 1161 return; 1162 } 1163 1164 /* 1165 * We know that ptr and size are both TAG_GRANULE aligned; store 1166 * the tag from the pointer value into the tag memory. 1167 */ 1168 ptr_tag = allocation_tag_from_addr(ptr); 1169 tag_count = size / TAG_GRANULE; 1170 if (ptr & TAG_GRANULE) { 1171 /* Not 2*TAG_GRANULE-aligned: store tag to first nibble */ 1172 store_tag1_parallel(TAG_GRANULE, mem, ptr_tag); 1173 mem++; 1174 tag_count--; 1175 } 1176 memset(mem, ptr_tag | (ptr_tag << 4), tag_count / 2); 1177 if (tag_count & 1) { 1178 /* Final trailing unaligned nibble */ 1179 mem += tag_count / 2; 1180 store_tag1_parallel(0, mem, ptr_tag); 1181 } 1182 } 1183