1 /* 2 * ARM hflags 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 #include "qemu/osdep.h" 9 #include "cpu.h" 10 #include "internals.h" 11 #include "cpu-features.h" 12 #include "exec/helper-proto.h" 13 #include "cpregs.h" 14 15 static inline bool fgt_svc(CPUARMState *env, int el) 16 { 17 /* 18 * Assuming fine-grained-traps are active, return true if we 19 * should be trapping on SVC instructions. Only AArch64 can 20 * trap on an SVC at EL1, but we don't need to special-case this 21 * because if this is AArch32 EL1 then arm_fgt_active() is false. 22 * We also know el is 0 or 1. 23 */ 24 return el == 0 ? 25 FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL0) : 26 FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL1); 27 } 28 29 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 30 ARMMMUIdx mmu_idx, 31 CPUARMTBFlags flags) 32 { 33 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 34 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 35 36 if (arm_singlestep_active(env)) { 37 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 38 } 39 40 return flags; 41 } 42 43 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 44 ARMMMUIdx mmu_idx, 45 CPUARMTBFlags flags) 46 { 47 bool sctlr_b = arm_sctlr_b(env); 48 49 if (sctlr_b) { 50 DP_TBFLAG_A32(flags, SCTLR__B, 1); 51 } 52 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 53 DP_TBFLAG_ANY(flags, BE_DATA, 1); 54 } 55 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 56 57 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 58 } 59 60 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 61 ARMMMUIdx mmu_idx) 62 { 63 CPUARMTBFlags flags = {}; 64 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 65 66 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 67 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 68 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 69 } 70 71 if (arm_v7m_is_handler_mode(env)) { 72 DP_TBFLAG_M32(flags, HANDLER, 1); 73 } 74 75 /* 76 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 77 * is suppressing them because the requested execution priority 78 * is less than 0. 79 */ 80 if (arm_feature(env, ARM_FEATURE_V8) && 81 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 82 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 83 DP_TBFLAG_M32(flags, STACKCHECK, 1); 84 } 85 86 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) { 87 DP_TBFLAG_M32(flags, SECURE, 1); 88 } 89 90 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 91 } 92 93 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */ 94 static bool sme_fa64(CPUARMState *env, int el) 95 { 96 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) { 97 return false; 98 } 99 100 if (el <= 1 && !el_is_in_host(env, el)) { 101 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) { 102 return false; 103 } 104 } 105 if (el <= 2 && arm_is_el2_enabled(env)) { 106 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) { 107 return false; 108 } 109 } 110 if (arm_feature(env, ARM_FEATURE_EL3)) { 111 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) { 112 return false; 113 } 114 } 115 116 return true; 117 } 118 119 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 120 ARMMMUIdx mmu_idx) 121 { 122 CPUARMTBFlags flags = {}; 123 int el = arm_current_el(env); 124 125 if (arm_sctlr(env, el) & SCTLR_A) { 126 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 127 } 128 129 if (arm_el_is_aa64(env, 1)) { 130 DP_TBFLAG_A32(flags, VFPEN, 1); 131 } 132 133 if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) && 134 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 135 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 136 } 137 138 if (arm_fgt_active(env, el)) { 139 DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1); 140 if (fgt_svc(env, el)) { 141 DP_TBFLAG_ANY(flags, FGT_SVC, 1); 142 } 143 } 144 145 if (env->uncached_cpsr & CPSR_IL) { 146 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 147 } 148 149 /* 150 * The SME exception we are testing for is raised via 151 * AArch64.CheckFPAdvSIMDEnabled(), as called from 152 * AArch32.CheckAdvSIMDOrFPEnabled(). 153 */ 154 if (el == 0 155 && FIELD_EX64(env->svcr, SVCR, SM) 156 && (!arm_is_el2_enabled(env) 157 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE))) 158 && arm_el_is_aa64(env, 1) 159 && !sme_fa64(env, el)) { 160 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1); 161 } 162 163 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 164 } 165 166 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 167 ARMMMUIdx mmu_idx) 168 { 169 CPUARMTBFlags flags = {}; 170 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 171 uint64_t tcr = regime_tcr(env, mmu_idx); 172 uint64_t hcr = arm_hcr_el2_eff(env); 173 uint64_t sctlr; 174 int tbii, tbid; 175 176 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 177 178 /* Get control bits for tagged addresses. */ 179 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 180 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 181 182 DP_TBFLAG_A64(flags, TBII, tbii); 183 DP_TBFLAG_A64(flags, TBID, tbid); 184 185 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 186 int sve_el = sve_exception_el(env, el); 187 188 /* 189 * If either FP or SVE are disabled, translator does not need len. 190 * If SVE EL > FP EL, FP exception has precedence, and translator 191 * does not need SVE EL. Save potential re-translations by forcing 192 * the unneeded data to zero. 193 */ 194 if (fp_el != 0) { 195 if (sve_el > fp_el) { 196 sve_el = 0; 197 } 198 } else if (sve_el == 0) { 199 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el)); 200 } 201 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 202 } 203 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) { 204 int sme_el = sme_exception_el(env, el); 205 bool sm = FIELD_EX64(env->svcr, SVCR, SM); 206 207 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el); 208 if (sme_el == 0) { 209 /* Similarly, do not compute SVL if SME is disabled. */ 210 int svl = sve_vqm1_for_el_sm(env, el, true); 211 DP_TBFLAG_A64(flags, SVL, svl); 212 if (sm) { 213 /* If SVE is disabled, we will not have set VL above. */ 214 DP_TBFLAG_A64(flags, VL, svl); 215 } 216 } 217 if (sm) { 218 DP_TBFLAG_A64(flags, PSTATE_SM, 1); 219 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el)); 220 } 221 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA)); 222 } 223 224 sctlr = regime_sctlr(env, stage1); 225 226 if (sctlr & SCTLR_A) { 227 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 228 } 229 230 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 231 DP_TBFLAG_ANY(flags, BE_DATA, 1); 232 } 233 234 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 235 /* 236 * In order to save space in flags, we record only whether 237 * pauth is "inactive", meaning all insns are implemented as 238 * a nop, or "active" when some action must be performed. 239 * The decision of which action to take is left to a helper. 240 */ 241 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 242 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 243 } 244 } 245 246 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 247 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 248 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 249 DP_TBFLAG_A64(flags, BT, 1); 250 } 251 } 252 253 if (cpu_isar_feature(aa64_lse2, env_archcpu(env))) { 254 if (sctlr & SCTLR_nAA) { 255 DP_TBFLAG_A64(flags, NAA, 1); 256 } 257 } 258 259 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 260 if (!(env->pstate & PSTATE_UAO)) { 261 switch (mmu_idx) { 262 case ARMMMUIdx_E10_1: 263 case ARMMMUIdx_E10_1_PAN: 264 /* FEAT_NV: NV,NV1 == 1,1 means we don't do UNPRIV accesses */ 265 if ((hcr & (HCR_NV | HCR_NV1)) != (HCR_NV | HCR_NV1)) { 266 DP_TBFLAG_A64(flags, UNPRIV, 1); 267 } 268 break; 269 case ARMMMUIdx_E20_2: 270 case ARMMMUIdx_E20_2_PAN: 271 /* 272 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 273 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 274 */ 275 if (env->cp15.hcr_el2 & HCR_TGE) { 276 DP_TBFLAG_A64(flags, UNPRIV, 1); 277 } 278 break; 279 default: 280 break; 281 } 282 } 283 284 if (env->pstate & PSTATE_IL) { 285 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 286 } 287 288 if (arm_fgt_active(env, el)) { 289 DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1); 290 if (FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, ERET)) { 291 DP_TBFLAG_A64(flags, TRAP_ERET, 1); 292 } 293 if (fgt_svc(env, el)) { 294 DP_TBFLAG_ANY(flags, FGT_SVC, 1); 295 } 296 } 297 298 /* 299 * ERET can also be trapped for FEAT_NV. arm_hcr_el2_eff() takes care 300 * of "is EL2 enabled" and the NV bit can only be set if FEAT_NV is present. 301 */ 302 if (el == 1 && (hcr & HCR_NV)) { 303 DP_TBFLAG_A64(flags, TRAP_ERET, 1); 304 DP_TBFLAG_A64(flags, NV, 1); 305 if (hcr & HCR_NV1) { 306 DP_TBFLAG_A64(flags, NV1, 1); 307 } 308 if (hcr & HCR_NV2) { 309 DP_TBFLAG_A64(flags, NV2, 1); 310 } 311 } 312 313 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 314 /* 315 * Set MTE_ACTIVE if any access may be Checked, and leave clear 316 * if all accesses must be Unchecked: 317 * 1) If no TBI, then there are no tags in the address to check, 318 * 2) If Tag Check Override, then all accesses are Unchecked, 319 * 3) If Tag Check Fail == 0, then Checked access have no effect, 320 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 321 */ 322 if (allocation_tag_access_enabled(env, el, sctlr)) { 323 DP_TBFLAG_A64(flags, ATA, 1); 324 if (tbid 325 && !(env->pstate & PSTATE_TCO) 326 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 327 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 328 if (!EX_TBFLAG_A64(flags, UNPRIV)) { 329 /* 330 * In non-unpriv contexts (eg EL0), unpriv load/stores 331 * act like normal ones; duplicate the MTE info to 332 * avoid translate-a64.c having to check UNPRIV to see 333 * whether it is OK to index into MTE_ACTIVE[]. 334 */ 335 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 336 } 337 } 338 } 339 /* And again for unprivileged accesses, if required. */ 340 if (EX_TBFLAG_A64(flags, UNPRIV) 341 && tbid 342 && !(env->pstate & PSTATE_TCO) 343 && (sctlr & SCTLR_TCF0) 344 && allocation_tag_access_enabled(env, 0, sctlr)) { 345 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 346 } 347 /* 348 * For unpriv tag-setting accesses we also need ATA0. Again, in 349 * contexts where unpriv and normal insns are the same we 350 * duplicate the ATA bit to save effort for translate-a64.c. 351 */ 352 if (EX_TBFLAG_A64(flags, UNPRIV)) { 353 if (allocation_tag_access_enabled(env, 0, sctlr)) { 354 DP_TBFLAG_A64(flags, ATA0, 1); 355 } 356 } else { 357 DP_TBFLAG_A64(flags, ATA0, EX_TBFLAG_A64(flags, ATA)); 358 } 359 /* Cache TCMA as well as TBI. */ 360 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 361 } 362 363 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 364 } 365 366 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 367 { 368 int el = arm_current_el(env); 369 int fp_el = fp_exception_el(env, el); 370 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 371 372 if (is_a64(env)) { 373 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 374 } else if (arm_feature(env, ARM_FEATURE_M)) { 375 return rebuild_hflags_m32(env, fp_el, mmu_idx); 376 } else { 377 return rebuild_hflags_a32(env, fp_el, mmu_idx); 378 } 379 } 380 381 void arm_rebuild_hflags(CPUARMState *env) 382 { 383 env->hflags = rebuild_hflags_internal(env); 384 } 385 386 /* 387 * If we have triggered a EL state change we can't rely on the 388 * translator having passed it to us, we need to recompute. 389 */ 390 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 391 { 392 int el = arm_current_el(env); 393 int fp_el = fp_exception_el(env, el); 394 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 395 396 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 397 } 398 399 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 400 { 401 int fp_el = fp_exception_el(env, el); 402 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 403 404 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 405 } 406 407 /* 408 * If we have triggered a EL state change we can't rely on the 409 * translator having passed it to us, we need to recompute. 410 */ 411 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 412 { 413 int el = arm_current_el(env); 414 int fp_el = fp_exception_el(env, el); 415 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 416 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 417 } 418 419 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 420 { 421 int fp_el = fp_exception_el(env, el); 422 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 423 424 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 425 } 426 427 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 428 { 429 int fp_el = fp_exception_el(env, el); 430 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 431 432 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 433 } 434 435 void assert_hflags_rebuild_correctly(CPUARMState *env) 436 { 437 #ifdef CONFIG_DEBUG_TCG 438 CPUARMTBFlags c = env->hflags; 439 CPUARMTBFlags r = rebuild_hflags_internal(env); 440 441 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 442 fprintf(stderr, "TCG hflags mismatch " 443 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 444 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 445 c.flags, c.flags2, r.flags, r.flags2); 446 abort(); 447 } 448 #endif 449 } 450