xref: /openbmc/qemu/target/arm/tcg/gengvec.c (revision 01d5665b)
1 /*
2  *  ARM generic vector expansion
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *  Copyright (c) 2005-2007 CodeSourcery
6  *  Copyright (c) 2007 OpenedHand, Ltd.
7  *
8  * This library is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * This library is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "translate.h"
24 
25 
26 static void gen_gvec_fn3_qc(uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs,
27                             uint32_t opr_sz, uint32_t max_sz,
28                             gen_helper_gvec_3_ptr *fn)
29 {
30     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
31 
32     tcg_debug_assert(opr_sz <= sizeof_field(CPUARMState, vfp.qc));
33     tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
34     tcg_gen_gvec_3_ptr(rd_ofs, rn_ofs, rm_ofs, qc_ptr,
35                        opr_sz, max_sz, 0, fn);
36 }
37 
38 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
39                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
40 {
41     static gen_helper_gvec_3_ptr * const fns[2] = {
42         gen_helper_gvec_qrdmlah_s16, gen_helper_gvec_qrdmlah_s32
43     };
44     tcg_debug_assert(vece >= 1 && vece <= 2);
45     gen_gvec_fn3_qc(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, fns[vece - 1]);
46 }
47 
48 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
49                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
50 {
51     static gen_helper_gvec_3_ptr * const fns[2] = {
52         gen_helper_gvec_qrdmlsh_s16, gen_helper_gvec_qrdmlsh_s32
53     };
54     tcg_debug_assert(vece >= 1 && vece <= 2);
55     gen_gvec_fn3_qc(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, fns[vece - 1]);
56 }
57 
58 #define GEN_CMP0(NAME, COND)                              \
59     void NAME(unsigned vece, uint32_t d, uint32_t m,      \
60               uint32_t opr_sz, uint32_t max_sz)           \
61     { tcg_gen_gvec_cmpi(COND, vece, d, m, 0, opr_sz, max_sz); }
62 
63 GEN_CMP0(gen_gvec_ceq0, TCG_COND_EQ)
64 GEN_CMP0(gen_gvec_cle0, TCG_COND_LE)
65 GEN_CMP0(gen_gvec_cge0, TCG_COND_GE)
66 GEN_CMP0(gen_gvec_clt0, TCG_COND_LT)
67 GEN_CMP0(gen_gvec_cgt0, TCG_COND_GT)
68 
69 #undef GEN_CMP0
70 
71 static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
72 {
73     tcg_gen_vec_sar8i_i64(a, a, shift);
74     tcg_gen_vec_add8_i64(d, d, a);
75 }
76 
77 static void gen_ssra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
78 {
79     tcg_gen_vec_sar16i_i64(a, a, shift);
80     tcg_gen_vec_add16_i64(d, d, a);
81 }
82 
83 static void gen_ssra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
84 {
85     tcg_gen_sari_i32(a, a, shift);
86     tcg_gen_add_i32(d, d, a);
87 }
88 
89 static void gen_ssra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
90 {
91     tcg_gen_sari_i64(a, a, shift);
92     tcg_gen_add_i64(d, d, a);
93 }
94 
95 static void gen_ssra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
96 {
97     tcg_gen_sari_vec(vece, a, a, sh);
98     tcg_gen_add_vec(vece, d, d, a);
99 }
100 
101 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
102                    int64_t shift, uint32_t opr_sz, uint32_t max_sz)
103 {
104     static const TCGOpcode vecop_list[] = {
105         INDEX_op_sari_vec, INDEX_op_add_vec, 0
106     };
107     static const GVecGen2i ops[4] = {
108         { .fni8 = gen_ssra8_i64,
109           .fniv = gen_ssra_vec,
110           .fno = gen_helper_gvec_ssra_b,
111           .load_dest = true,
112           .opt_opc = vecop_list,
113           .vece = MO_8 },
114         { .fni8 = gen_ssra16_i64,
115           .fniv = gen_ssra_vec,
116           .fno = gen_helper_gvec_ssra_h,
117           .load_dest = true,
118           .opt_opc = vecop_list,
119           .vece = MO_16 },
120         { .fni4 = gen_ssra32_i32,
121           .fniv = gen_ssra_vec,
122           .fno = gen_helper_gvec_ssra_s,
123           .load_dest = true,
124           .opt_opc = vecop_list,
125           .vece = MO_32 },
126         { .fni8 = gen_ssra64_i64,
127           .fniv = gen_ssra_vec,
128           .fno = gen_helper_gvec_ssra_d,
129           .prefer_i64 = TCG_TARGET_REG_BITS == 64,
130           .opt_opc = vecop_list,
131           .load_dest = true,
132           .vece = MO_64 },
133     };
134 
135     /* tszimm encoding produces immediates in the range [1..esize]. */
136     tcg_debug_assert(shift > 0);
137     tcg_debug_assert(shift <= (8 << vece));
138 
139     /*
140      * Shifts larger than the element size are architecturally valid.
141      * Signed results in all sign bits.
142      */
143     shift = MIN(shift, (8 << vece) - 1);
144     tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]);
145 }
146 
147 static void gen_usra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
148 {
149     tcg_gen_vec_shr8i_i64(a, a, shift);
150     tcg_gen_vec_add8_i64(d, d, a);
151 }
152 
153 static void gen_usra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
154 {
155     tcg_gen_vec_shr16i_i64(a, a, shift);
156     tcg_gen_vec_add16_i64(d, d, a);
157 }
158 
159 static void gen_usra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
160 {
161     tcg_gen_shri_i32(a, a, shift);
162     tcg_gen_add_i32(d, d, a);
163 }
164 
165 static void gen_usra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
166 {
167     tcg_gen_shri_i64(a, a, shift);
168     tcg_gen_add_i64(d, d, a);
169 }
170 
171 static void gen_usra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
172 {
173     tcg_gen_shri_vec(vece, a, a, sh);
174     tcg_gen_add_vec(vece, d, d, a);
175 }
176 
177 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
178                    int64_t shift, uint32_t opr_sz, uint32_t max_sz)
179 {
180     static const TCGOpcode vecop_list[] = {
181         INDEX_op_shri_vec, INDEX_op_add_vec, 0
182     };
183     static const GVecGen2i ops[4] = {
184         { .fni8 = gen_usra8_i64,
185           .fniv = gen_usra_vec,
186           .fno = gen_helper_gvec_usra_b,
187           .load_dest = true,
188           .opt_opc = vecop_list,
189           .vece = MO_8, },
190         { .fni8 = gen_usra16_i64,
191           .fniv = gen_usra_vec,
192           .fno = gen_helper_gvec_usra_h,
193           .load_dest = true,
194           .opt_opc = vecop_list,
195           .vece = MO_16, },
196         { .fni4 = gen_usra32_i32,
197           .fniv = gen_usra_vec,
198           .fno = gen_helper_gvec_usra_s,
199           .load_dest = true,
200           .opt_opc = vecop_list,
201           .vece = MO_32, },
202         { .fni8 = gen_usra64_i64,
203           .fniv = gen_usra_vec,
204           .fno = gen_helper_gvec_usra_d,
205           .prefer_i64 = TCG_TARGET_REG_BITS == 64,
206           .load_dest = true,
207           .opt_opc = vecop_list,
208           .vece = MO_64, },
209     };
210 
211     /* tszimm encoding produces immediates in the range [1..esize]. */
212     tcg_debug_assert(shift > 0);
213     tcg_debug_assert(shift <= (8 << vece));
214 
215     /*
216      * Shifts larger than the element size are architecturally valid.
217      * Unsigned results in all zeros as input to accumulate: nop.
218      */
219     if (shift < (8 << vece)) {
220         tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]);
221     } else {
222         /* Nop, but we do need to clear the tail. */
223         tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz);
224     }
225 }
226 
227 /*
228  * Shift one less than the requested amount, and the low bit is
229  * the rounding bit.  For the 8 and 16-bit operations, because we
230  * mask the low bit, we can perform a normal integer shift instead
231  * of a vector shift.
232  */
233 static void gen_srshr8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
234 {
235     TCGv_i64 t = tcg_temp_new_i64();
236 
237     tcg_gen_shri_i64(t, a, sh - 1);
238     tcg_gen_andi_i64(t, t, dup_const(MO_8, 1));
239     tcg_gen_vec_sar8i_i64(d, a, sh);
240     tcg_gen_vec_add8_i64(d, d, t);
241 }
242 
243 static void gen_srshr16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
244 {
245     TCGv_i64 t = tcg_temp_new_i64();
246 
247     tcg_gen_shri_i64(t, a, sh - 1);
248     tcg_gen_andi_i64(t, t, dup_const(MO_16, 1));
249     tcg_gen_vec_sar16i_i64(d, a, sh);
250     tcg_gen_vec_add16_i64(d, d, t);
251 }
252 
253 void gen_srshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh)
254 {
255     TCGv_i32 t;
256 
257     /* Handle shift by the input size for the benefit of trans_SRSHR_ri */
258     if (sh == 32) {
259         tcg_gen_movi_i32(d, 0);
260         return;
261     }
262     t = tcg_temp_new_i32();
263     tcg_gen_extract_i32(t, a, sh - 1, 1);
264     tcg_gen_sari_i32(d, a, sh);
265     tcg_gen_add_i32(d, d, t);
266 }
267 
268  void gen_srshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
269 {
270     TCGv_i64 t = tcg_temp_new_i64();
271 
272     tcg_gen_extract_i64(t, a, sh - 1, 1);
273     tcg_gen_sari_i64(d, a, sh);
274     tcg_gen_add_i64(d, d, t);
275 }
276 
277 static void gen_srshr_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
278 {
279     TCGv_vec t = tcg_temp_new_vec_matching(d);
280     TCGv_vec ones = tcg_temp_new_vec_matching(d);
281 
282     tcg_gen_shri_vec(vece, t, a, sh - 1);
283     tcg_gen_dupi_vec(vece, ones, 1);
284     tcg_gen_and_vec(vece, t, t, ones);
285     tcg_gen_sari_vec(vece, d, a, sh);
286     tcg_gen_add_vec(vece, d, d, t);
287 }
288 
289 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
290                     int64_t shift, uint32_t opr_sz, uint32_t max_sz)
291 {
292     static const TCGOpcode vecop_list[] = {
293         INDEX_op_shri_vec, INDEX_op_sari_vec, INDEX_op_add_vec, 0
294     };
295     static const GVecGen2i ops[4] = {
296         { .fni8 = gen_srshr8_i64,
297           .fniv = gen_srshr_vec,
298           .fno = gen_helper_gvec_srshr_b,
299           .opt_opc = vecop_list,
300           .vece = MO_8 },
301         { .fni8 = gen_srshr16_i64,
302           .fniv = gen_srshr_vec,
303           .fno = gen_helper_gvec_srshr_h,
304           .opt_opc = vecop_list,
305           .vece = MO_16 },
306         { .fni4 = gen_srshr32_i32,
307           .fniv = gen_srshr_vec,
308           .fno = gen_helper_gvec_srshr_s,
309           .opt_opc = vecop_list,
310           .vece = MO_32 },
311         { .fni8 = gen_srshr64_i64,
312           .fniv = gen_srshr_vec,
313           .fno = gen_helper_gvec_srshr_d,
314           .prefer_i64 = TCG_TARGET_REG_BITS == 64,
315           .opt_opc = vecop_list,
316           .vece = MO_64 },
317     };
318 
319     /* tszimm encoding produces immediates in the range [1..esize] */
320     tcg_debug_assert(shift > 0);
321     tcg_debug_assert(shift <= (8 << vece));
322 
323     if (shift == (8 << vece)) {
324         /*
325          * Shifts larger than the element size are architecturally valid.
326          * Signed results in all sign bits.  With rounding, this produces
327          *   (-1 + 1) >> 1 == 0, or (0 + 1) >> 1 == 0.
328          * I.e. always zero.
329          */
330         tcg_gen_gvec_dup_imm(vece, rd_ofs, opr_sz, max_sz, 0);
331     } else {
332         tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]);
333     }
334 }
335 
336 static void gen_srsra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
337 {
338     TCGv_i64 t = tcg_temp_new_i64();
339 
340     gen_srshr8_i64(t, a, sh);
341     tcg_gen_vec_add8_i64(d, d, t);
342 }
343 
344 static void gen_srsra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
345 {
346     TCGv_i64 t = tcg_temp_new_i64();
347 
348     gen_srshr16_i64(t, a, sh);
349     tcg_gen_vec_add16_i64(d, d, t);
350 }
351 
352 static void gen_srsra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh)
353 {
354     TCGv_i32 t = tcg_temp_new_i32();
355 
356     gen_srshr32_i32(t, a, sh);
357     tcg_gen_add_i32(d, d, t);
358 }
359 
360 static void gen_srsra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
361 {
362     TCGv_i64 t = tcg_temp_new_i64();
363 
364     gen_srshr64_i64(t, a, sh);
365     tcg_gen_add_i64(d, d, t);
366 }
367 
368 static void gen_srsra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
369 {
370     TCGv_vec t = tcg_temp_new_vec_matching(d);
371 
372     gen_srshr_vec(vece, t, a, sh);
373     tcg_gen_add_vec(vece, d, d, t);
374 }
375 
376 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
377                     int64_t shift, uint32_t opr_sz, uint32_t max_sz)
378 {
379     static const TCGOpcode vecop_list[] = {
380         INDEX_op_shri_vec, INDEX_op_sari_vec, INDEX_op_add_vec, 0
381     };
382     static const GVecGen2i ops[4] = {
383         { .fni8 = gen_srsra8_i64,
384           .fniv = gen_srsra_vec,
385           .fno = gen_helper_gvec_srsra_b,
386           .opt_opc = vecop_list,
387           .load_dest = true,
388           .vece = MO_8 },
389         { .fni8 = gen_srsra16_i64,
390           .fniv = gen_srsra_vec,
391           .fno = gen_helper_gvec_srsra_h,
392           .opt_opc = vecop_list,
393           .load_dest = true,
394           .vece = MO_16 },
395         { .fni4 = gen_srsra32_i32,
396           .fniv = gen_srsra_vec,
397           .fno = gen_helper_gvec_srsra_s,
398           .opt_opc = vecop_list,
399           .load_dest = true,
400           .vece = MO_32 },
401         { .fni8 = gen_srsra64_i64,
402           .fniv = gen_srsra_vec,
403           .fno = gen_helper_gvec_srsra_d,
404           .prefer_i64 = TCG_TARGET_REG_BITS == 64,
405           .opt_opc = vecop_list,
406           .load_dest = true,
407           .vece = MO_64 },
408     };
409 
410     /* tszimm encoding produces immediates in the range [1..esize] */
411     tcg_debug_assert(shift > 0);
412     tcg_debug_assert(shift <= (8 << vece));
413 
414     /*
415      * Shifts larger than the element size are architecturally valid.
416      * Signed results in all sign bits.  With rounding, this produces
417      *   (-1 + 1) >> 1 == 0, or (0 + 1) >> 1 == 0.
418      * I.e. always zero.  With accumulation, this leaves D unchanged.
419      */
420     if (shift == (8 << vece)) {
421         /* Nop, but we do need to clear the tail. */
422         tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz);
423     } else {
424         tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]);
425     }
426 }
427 
428 static void gen_urshr8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
429 {
430     TCGv_i64 t = tcg_temp_new_i64();
431 
432     tcg_gen_shri_i64(t, a, sh - 1);
433     tcg_gen_andi_i64(t, t, dup_const(MO_8, 1));
434     tcg_gen_vec_shr8i_i64(d, a, sh);
435     tcg_gen_vec_add8_i64(d, d, t);
436 }
437 
438 static void gen_urshr16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
439 {
440     TCGv_i64 t = tcg_temp_new_i64();
441 
442     tcg_gen_shri_i64(t, a, sh - 1);
443     tcg_gen_andi_i64(t, t, dup_const(MO_16, 1));
444     tcg_gen_vec_shr16i_i64(d, a, sh);
445     tcg_gen_vec_add16_i64(d, d, t);
446 }
447 
448 void gen_urshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh)
449 {
450     TCGv_i32 t;
451 
452     /* Handle shift by the input size for the benefit of trans_URSHR_ri */
453     if (sh == 32) {
454         tcg_gen_extract_i32(d, a, sh - 1, 1);
455         return;
456     }
457     t = tcg_temp_new_i32();
458     tcg_gen_extract_i32(t, a, sh - 1, 1);
459     tcg_gen_shri_i32(d, a, sh);
460     tcg_gen_add_i32(d, d, t);
461 }
462 
463 void gen_urshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
464 {
465     TCGv_i64 t = tcg_temp_new_i64();
466 
467     tcg_gen_extract_i64(t, a, sh - 1, 1);
468     tcg_gen_shri_i64(d, a, sh);
469     tcg_gen_add_i64(d, d, t);
470 }
471 
472 static void gen_urshr_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t shift)
473 {
474     TCGv_vec t = tcg_temp_new_vec_matching(d);
475     TCGv_vec ones = tcg_temp_new_vec_matching(d);
476 
477     tcg_gen_shri_vec(vece, t, a, shift - 1);
478     tcg_gen_dupi_vec(vece, ones, 1);
479     tcg_gen_and_vec(vece, t, t, ones);
480     tcg_gen_shri_vec(vece, d, a, shift);
481     tcg_gen_add_vec(vece, d, d, t);
482 }
483 
484 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
485                     int64_t shift, uint32_t opr_sz, uint32_t max_sz)
486 {
487     static const TCGOpcode vecop_list[] = {
488         INDEX_op_shri_vec, INDEX_op_add_vec, 0
489     };
490     static const GVecGen2i ops[4] = {
491         { .fni8 = gen_urshr8_i64,
492           .fniv = gen_urshr_vec,
493           .fno = gen_helper_gvec_urshr_b,
494           .opt_opc = vecop_list,
495           .vece = MO_8 },
496         { .fni8 = gen_urshr16_i64,
497           .fniv = gen_urshr_vec,
498           .fno = gen_helper_gvec_urshr_h,
499           .opt_opc = vecop_list,
500           .vece = MO_16 },
501         { .fni4 = gen_urshr32_i32,
502           .fniv = gen_urshr_vec,
503           .fno = gen_helper_gvec_urshr_s,
504           .opt_opc = vecop_list,
505           .vece = MO_32 },
506         { .fni8 = gen_urshr64_i64,
507           .fniv = gen_urshr_vec,
508           .fno = gen_helper_gvec_urshr_d,
509           .prefer_i64 = TCG_TARGET_REG_BITS == 64,
510           .opt_opc = vecop_list,
511           .vece = MO_64 },
512     };
513 
514     /* tszimm encoding produces immediates in the range [1..esize] */
515     tcg_debug_assert(shift > 0);
516     tcg_debug_assert(shift <= (8 << vece));
517 
518     if (shift == (8 << vece)) {
519         /*
520          * Shifts larger than the element size are architecturally valid.
521          * Unsigned results in zero.  With rounding, this produces a
522          * copy of the most significant bit.
523          */
524         tcg_gen_gvec_shri(vece, rd_ofs, rm_ofs, shift - 1, opr_sz, max_sz);
525     } else {
526         tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]);
527     }
528 }
529 
530 static void gen_ursra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
531 {
532     TCGv_i64 t = tcg_temp_new_i64();
533 
534     if (sh == 8) {
535         tcg_gen_vec_shr8i_i64(t, a, 7);
536     } else {
537         gen_urshr8_i64(t, a, sh);
538     }
539     tcg_gen_vec_add8_i64(d, d, t);
540 }
541 
542 static void gen_ursra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
543 {
544     TCGv_i64 t = tcg_temp_new_i64();
545 
546     if (sh == 16) {
547         tcg_gen_vec_shr16i_i64(t, a, 15);
548     } else {
549         gen_urshr16_i64(t, a, sh);
550     }
551     tcg_gen_vec_add16_i64(d, d, t);
552 }
553 
554 static void gen_ursra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh)
555 {
556     TCGv_i32 t = tcg_temp_new_i32();
557 
558     if (sh == 32) {
559         tcg_gen_shri_i32(t, a, 31);
560     } else {
561         gen_urshr32_i32(t, a, sh);
562     }
563     tcg_gen_add_i32(d, d, t);
564 }
565 
566 static void gen_ursra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
567 {
568     TCGv_i64 t = tcg_temp_new_i64();
569 
570     if (sh == 64) {
571         tcg_gen_shri_i64(t, a, 63);
572     } else {
573         gen_urshr64_i64(t, a, sh);
574     }
575     tcg_gen_add_i64(d, d, t);
576 }
577 
578 static void gen_ursra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
579 {
580     TCGv_vec t = tcg_temp_new_vec_matching(d);
581 
582     if (sh == (8 << vece)) {
583         tcg_gen_shri_vec(vece, t, a, sh - 1);
584     } else {
585         gen_urshr_vec(vece, t, a, sh);
586     }
587     tcg_gen_add_vec(vece, d, d, t);
588 }
589 
590 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
591                     int64_t shift, uint32_t opr_sz, uint32_t max_sz)
592 {
593     static const TCGOpcode vecop_list[] = {
594         INDEX_op_shri_vec, INDEX_op_add_vec, 0
595     };
596     static const GVecGen2i ops[4] = {
597         { .fni8 = gen_ursra8_i64,
598           .fniv = gen_ursra_vec,
599           .fno = gen_helper_gvec_ursra_b,
600           .opt_opc = vecop_list,
601           .load_dest = true,
602           .vece = MO_8 },
603         { .fni8 = gen_ursra16_i64,
604           .fniv = gen_ursra_vec,
605           .fno = gen_helper_gvec_ursra_h,
606           .opt_opc = vecop_list,
607           .load_dest = true,
608           .vece = MO_16 },
609         { .fni4 = gen_ursra32_i32,
610           .fniv = gen_ursra_vec,
611           .fno = gen_helper_gvec_ursra_s,
612           .opt_opc = vecop_list,
613           .load_dest = true,
614           .vece = MO_32 },
615         { .fni8 = gen_ursra64_i64,
616           .fniv = gen_ursra_vec,
617           .fno = gen_helper_gvec_ursra_d,
618           .prefer_i64 = TCG_TARGET_REG_BITS == 64,
619           .opt_opc = vecop_list,
620           .load_dest = true,
621           .vece = MO_64 },
622     };
623 
624     /* tszimm encoding produces immediates in the range [1..esize] */
625     tcg_debug_assert(shift > 0);
626     tcg_debug_assert(shift <= (8 << vece));
627 
628     tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]);
629 }
630 
631 static void gen_shr8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
632 {
633     uint64_t mask = dup_const(MO_8, 0xff >> shift);
634     TCGv_i64 t = tcg_temp_new_i64();
635 
636     tcg_gen_shri_i64(t, a, shift);
637     tcg_gen_andi_i64(t, t, mask);
638     tcg_gen_andi_i64(d, d, ~mask);
639     tcg_gen_or_i64(d, d, t);
640 }
641 
642 static void gen_shr16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
643 {
644     uint64_t mask = dup_const(MO_16, 0xffff >> shift);
645     TCGv_i64 t = tcg_temp_new_i64();
646 
647     tcg_gen_shri_i64(t, a, shift);
648     tcg_gen_andi_i64(t, t, mask);
649     tcg_gen_andi_i64(d, d, ~mask);
650     tcg_gen_or_i64(d, d, t);
651 }
652 
653 static void gen_shr32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
654 {
655     tcg_gen_shri_i32(a, a, shift);
656     tcg_gen_deposit_i32(d, d, a, 0, 32 - shift);
657 }
658 
659 static void gen_shr64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
660 {
661     tcg_gen_shri_i64(a, a, shift);
662     tcg_gen_deposit_i64(d, d, a, 0, 64 - shift);
663 }
664 
665 static void gen_shr_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
666 {
667     TCGv_vec t = tcg_temp_new_vec_matching(d);
668     TCGv_vec m = tcg_temp_new_vec_matching(d);
669 
670     tcg_gen_dupi_vec(vece, m, MAKE_64BIT_MASK((8 << vece) - sh, sh));
671     tcg_gen_shri_vec(vece, t, a, sh);
672     tcg_gen_and_vec(vece, d, d, m);
673     tcg_gen_or_vec(vece, d, d, t);
674 }
675 
676 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
677                   int64_t shift, uint32_t opr_sz, uint32_t max_sz)
678 {
679     static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 };
680     const GVecGen2i ops[4] = {
681         { .fni8 = gen_shr8_ins_i64,
682           .fniv = gen_shr_ins_vec,
683           .fno = gen_helper_gvec_sri_b,
684           .load_dest = true,
685           .opt_opc = vecop_list,
686           .vece = MO_8 },
687         { .fni8 = gen_shr16_ins_i64,
688           .fniv = gen_shr_ins_vec,
689           .fno = gen_helper_gvec_sri_h,
690           .load_dest = true,
691           .opt_opc = vecop_list,
692           .vece = MO_16 },
693         { .fni4 = gen_shr32_ins_i32,
694           .fniv = gen_shr_ins_vec,
695           .fno = gen_helper_gvec_sri_s,
696           .load_dest = true,
697           .opt_opc = vecop_list,
698           .vece = MO_32 },
699         { .fni8 = gen_shr64_ins_i64,
700           .fniv = gen_shr_ins_vec,
701           .fno = gen_helper_gvec_sri_d,
702           .prefer_i64 = TCG_TARGET_REG_BITS == 64,
703           .load_dest = true,
704           .opt_opc = vecop_list,
705           .vece = MO_64 },
706     };
707 
708     /* tszimm encoding produces immediates in the range [1..esize]. */
709     tcg_debug_assert(shift > 0);
710     tcg_debug_assert(shift <= (8 << vece));
711 
712     /* Shift of esize leaves destination unchanged. */
713     if (shift < (8 << vece)) {
714         tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]);
715     } else {
716         /* Nop, but we do need to clear the tail. */
717         tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz);
718     }
719 }
720 
721 static void gen_shl8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
722 {
723     uint64_t mask = dup_const(MO_8, 0xff << shift);
724     TCGv_i64 t = tcg_temp_new_i64();
725 
726     tcg_gen_shli_i64(t, a, shift);
727     tcg_gen_andi_i64(t, t, mask);
728     tcg_gen_andi_i64(d, d, ~mask);
729     tcg_gen_or_i64(d, d, t);
730 }
731 
732 static void gen_shl16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
733 {
734     uint64_t mask = dup_const(MO_16, 0xffff << shift);
735     TCGv_i64 t = tcg_temp_new_i64();
736 
737     tcg_gen_shli_i64(t, a, shift);
738     tcg_gen_andi_i64(t, t, mask);
739     tcg_gen_andi_i64(d, d, ~mask);
740     tcg_gen_or_i64(d, d, t);
741 }
742 
743 static void gen_shl32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
744 {
745     tcg_gen_deposit_i32(d, d, a, shift, 32 - shift);
746 }
747 
748 static void gen_shl64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
749 {
750     tcg_gen_deposit_i64(d, d, a, shift, 64 - shift);
751 }
752 
753 static void gen_shl_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
754 {
755     TCGv_vec t = tcg_temp_new_vec_matching(d);
756     TCGv_vec m = tcg_temp_new_vec_matching(d);
757 
758     tcg_gen_shli_vec(vece, t, a, sh);
759     tcg_gen_dupi_vec(vece, m, MAKE_64BIT_MASK(0, sh));
760     tcg_gen_and_vec(vece, d, d, m);
761     tcg_gen_or_vec(vece, d, d, t);
762 }
763 
764 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
765                   int64_t shift, uint32_t opr_sz, uint32_t max_sz)
766 {
767     static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
768     const GVecGen2i ops[4] = {
769         { .fni8 = gen_shl8_ins_i64,
770           .fniv = gen_shl_ins_vec,
771           .fno = gen_helper_gvec_sli_b,
772           .load_dest = true,
773           .opt_opc = vecop_list,
774           .vece = MO_8 },
775         { .fni8 = gen_shl16_ins_i64,
776           .fniv = gen_shl_ins_vec,
777           .fno = gen_helper_gvec_sli_h,
778           .load_dest = true,
779           .opt_opc = vecop_list,
780           .vece = MO_16 },
781         { .fni4 = gen_shl32_ins_i32,
782           .fniv = gen_shl_ins_vec,
783           .fno = gen_helper_gvec_sli_s,
784           .load_dest = true,
785           .opt_opc = vecop_list,
786           .vece = MO_32 },
787         { .fni8 = gen_shl64_ins_i64,
788           .fniv = gen_shl_ins_vec,
789           .fno = gen_helper_gvec_sli_d,
790           .prefer_i64 = TCG_TARGET_REG_BITS == 64,
791           .load_dest = true,
792           .opt_opc = vecop_list,
793           .vece = MO_64 },
794     };
795 
796     /* tszimm encoding produces immediates in the range [0..esize-1]. */
797     tcg_debug_assert(shift >= 0);
798     tcg_debug_assert(shift < (8 << vece));
799 
800     if (shift == 0) {
801         tcg_gen_gvec_mov(vece, rd_ofs, rm_ofs, opr_sz, max_sz);
802     } else {
803         tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]);
804     }
805 }
806 
807 static void gen_mla8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
808 {
809     gen_helper_neon_mul_u8(a, a, b);
810     gen_helper_neon_add_u8(d, d, a);
811 }
812 
813 static void gen_mls8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
814 {
815     gen_helper_neon_mul_u8(a, a, b);
816     gen_helper_neon_sub_u8(d, d, a);
817 }
818 
819 static void gen_mla16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
820 {
821     gen_helper_neon_mul_u16(a, a, b);
822     gen_helper_neon_add_u16(d, d, a);
823 }
824 
825 static void gen_mls16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
826 {
827     gen_helper_neon_mul_u16(a, a, b);
828     gen_helper_neon_sub_u16(d, d, a);
829 }
830 
831 static void gen_mla32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
832 {
833     tcg_gen_mul_i32(a, a, b);
834     tcg_gen_add_i32(d, d, a);
835 }
836 
837 static void gen_mls32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
838 {
839     tcg_gen_mul_i32(a, a, b);
840     tcg_gen_sub_i32(d, d, a);
841 }
842 
843 static void gen_mla64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
844 {
845     tcg_gen_mul_i64(a, a, b);
846     tcg_gen_add_i64(d, d, a);
847 }
848 
849 static void gen_mls64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
850 {
851     tcg_gen_mul_i64(a, a, b);
852     tcg_gen_sub_i64(d, d, a);
853 }
854 
855 static void gen_mla_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
856 {
857     tcg_gen_mul_vec(vece, a, a, b);
858     tcg_gen_add_vec(vece, d, d, a);
859 }
860 
861 static void gen_mls_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
862 {
863     tcg_gen_mul_vec(vece, a, a, b);
864     tcg_gen_sub_vec(vece, d, d, a);
865 }
866 
867 /* Note that while NEON does not support VMLA and VMLS as 64-bit ops,
868  * these tables are shared with AArch64 which does support them.
869  */
870 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
871                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
872 {
873     static const TCGOpcode vecop_list[] = {
874         INDEX_op_mul_vec, INDEX_op_add_vec, 0
875     };
876     static const GVecGen3 ops[4] = {
877         { .fni4 = gen_mla8_i32,
878           .fniv = gen_mla_vec,
879           .load_dest = true,
880           .opt_opc = vecop_list,
881           .vece = MO_8 },
882         { .fni4 = gen_mla16_i32,
883           .fniv = gen_mla_vec,
884           .load_dest = true,
885           .opt_opc = vecop_list,
886           .vece = MO_16 },
887         { .fni4 = gen_mla32_i32,
888           .fniv = gen_mla_vec,
889           .load_dest = true,
890           .opt_opc = vecop_list,
891           .vece = MO_32 },
892         { .fni8 = gen_mla64_i64,
893           .fniv = gen_mla_vec,
894           .prefer_i64 = TCG_TARGET_REG_BITS == 64,
895           .load_dest = true,
896           .opt_opc = vecop_list,
897           .vece = MO_64 },
898     };
899     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
900 }
901 
902 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
903                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
904 {
905     static const TCGOpcode vecop_list[] = {
906         INDEX_op_mul_vec, INDEX_op_sub_vec, 0
907     };
908     static const GVecGen3 ops[4] = {
909         { .fni4 = gen_mls8_i32,
910           .fniv = gen_mls_vec,
911           .load_dest = true,
912           .opt_opc = vecop_list,
913           .vece = MO_8 },
914         { .fni4 = gen_mls16_i32,
915           .fniv = gen_mls_vec,
916           .load_dest = true,
917           .opt_opc = vecop_list,
918           .vece = MO_16 },
919         { .fni4 = gen_mls32_i32,
920           .fniv = gen_mls_vec,
921           .load_dest = true,
922           .opt_opc = vecop_list,
923           .vece = MO_32 },
924         { .fni8 = gen_mls64_i64,
925           .fniv = gen_mls_vec,
926           .prefer_i64 = TCG_TARGET_REG_BITS == 64,
927           .load_dest = true,
928           .opt_opc = vecop_list,
929           .vece = MO_64 },
930     };
931     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
932 }
933 
934 /* CMTST : test is "if (X & Y != 0)". */
935 static void gen_cmtst_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
936 {
937     tcg_gen_and_i32(d, a, b);
938     tcg_gen_negsetcond_i32(TCG_COND_NE, d, d, tcg_constant_i32(0));
939 }
940 
941 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
942 {
943     tcg_gen_and_i64(d, a, b);
944     tcg_gen_negsetcond_i64(TCG_COND_NE, d, d, tcg_constant_i64(0));
945 }
946 
947 static void gen_cmtst_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
948 {
949     tcg_gen_and_vec(vece, d, a, b);
950     tcg_gen_dupi_vec(vece, a, 0);
951     tcg_gen_cmp_vec(TCG_COND_NE, vece, d, d, a);
952 }
953 
954 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
955                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
956 {
957     static const TCGOpcode vecop_list[] = { INDEX_op_cmp_vec, 0 };
958     static const GVecGen3 ops[4] = {
959         { .fni4 = gen_helper_neon_tst_u8,
960           .fniv = gen_cmtst_vec,
961           .opt_opc = vecop_list,
962           .vece = MO_8 },
963         { .fni4 = gen_helper_neon_tst_u16,
964           .fniv = gen_cmtst_vec,
965           .opt_opc = vecop_list,
966           .vece = MO_16 },
967         { .fni4 = gen_cmtst_i32,
968           .fniv = gen_cmtst_vec,
969           .opt_opc = vecop_list,
970           .vece = MO_32 },
971         { .fni8 = gen_cmtst_i64,
972           .fniv = gen_cmtst_vec,
973           .prefer_i64 = TCG_TARGET_REG_BITS == 64,
974           .opt_opc = vecop_list,
975           .vece = MO_64 },
976     };
977     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
978 }
979 
980 void gen_ushl_i32(TCGv_i32 dst, TCGv_i32 src, TCGv_i32 shift)
981 {
982     TCGv_i32 lval = tcg_temp_new_i32();
983     TCGv_i32 rval = tcg_temp_new_i32();
984     TCGv_i32 lsh = tcg_temp_new_i32();
985     TCGv_i32 rsh = tcg_temp_new_i32();
986     TCGv_i32 zero = tcg_constant_i32(0);
987     TCGv_i32 max = tcg_constant_i32(32);
988 
989     /*
990      * Rely on the TCG guarantee that out of range shifts produce
991      * unspecified results, not undefined behaviour (i.e. no trap).
992      * Discard out-of-range results after the fact.
993      */
994     tcg_gen_ext8s_i32(lsh, shift);
995     tcg_gen_neg_i32(rsh, lsh);
996     tcg_gen_shl_i32(lval, src, lsh);
997     tcg_gen_shr_i32(rval, src, rsh);
998     tcg_gen_movcond_i32(TCG_COND_LTU, dst, lsh, max, lval, zero);
999     tcg_gen_movcond_i32(TCG_COND_LTU, dst, rsh, max, rval, dst);
1000 }
1001 
1002 void gen_ushl_i64(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 shift)
1003 {
1004     TCGv_i64 lval = tcg_temp_new_i64();
1005     TCGv_i64 rval = tcg_temp_new_i64();
1006     TCGv_i64 lsh = tcg_temp_new_i64();
1007     TCGv_i64 rsh = tcg_temp_new_i64();
1008     TCGv_i64 zero = tcg_constant_i64(0);
1009     TCGv_i64 max = tcg_constant_i64(64);
1010 
1011     /*
1012      * Rely on the TCG guarantee that out of range shifts produce
1013      * unspecified results, not undefined behaviour (i.e. no trap).
1014      * Discard out-of-range results after the fact.
1015      */
1016     tcg_gen_ext8s_i64(lsh, shift);
1017     tcg_gen_neg_i64(rsh, lsh);
1018     tcg_gen_shl_i64(lval, src, lsh);
1019     tcg_gen_shr_i64(rval, src, rsh);
1020     tcg_gen_movcond_i64(TCG_COND_LTU, dst, lsh, max, lval, zero);
1021     tcg_gen_movcond_i64(TCG_COND_LTU, dst, rsh, max, rval, dst);
1022 }
1023 
1024 static void gen_ushl_vec(unsigned vece, TCGv_vec dst,
1025                          TCGv_vec src, TCGv_vec shift)
1026 {
1027     TCGv_vec lval = tcg_temp_new_vec_matching(dst);
1028     TCGv_vec rval = tcg_temp_new_vec_matching(dst);
1029     TCGv_vec lsh = tcg_temp_new_vec_matching(dst);
1030     TCGv_vec rsh = tcg_temp_new_vec_matching(dst);
1031     TCGv_vec msk, max;
1032 
1033     tcg_gen_neg_vec(vece, rsh, shift);
1034     if (vece == MO_8) {
1035         tcg_gen_mov_vec(lsh, shift);
1036     } else {
1037         msk = tcg_temp_new_vec_matching(dst);
1038         tcg_gen_dupi_vec(vece, msk, 0xff);
1039         tcg_gen_and_vec(vece, lsh, shift, msk);
1040         tcg_gen_and_vec(vece, rsh, rsh, msk);
1041     }
1042 
1043     /*
1044      * Rely on the TCG guarantee that out of range shifts produce
1045      * unspecified results, not undefined behaviour (i.e. no trap).
1046      * Discard out-of-range results after the fact.
1047      */
1048     tcg_gen_shlv_vec(vece, lval, src, lsh);
1049     tcg_gen_shrv_vec(vece, rval, src, rsh);
1050 
1051     max = tcg_temp_new_vec_matching(dst);
1052     tcg_gen_dupi_vec(vece, max, 8 << vece);
1053 
1054     /*
1055      * The choice of LT (signed) and GEU (unsigned) are biased toward
1056      * the instructions of the x86_64 host.  For MO_8, the whole byte
1057      * is significant so we must use an unsigned compare; otherwise we
1058      * have already masked to a byte and so a signed compare works.
1059      * Other tcg hosts have a full set of comparisons and do not care.
1060      */
1061     if (vece == MO_8) {
1062         tcg_gen_cmp_vec(TCG_COND_GEU, vece, lsh, lsh, max);
1063         tcg_gen_cmp_vec(TCG_COND_GEU, vece, rsh, rsh, max);
1064         tcg_gen_andc_vec(vece, lval, lval, lsh);
1065         tcg_gen_andc_vec(vece, rval, rval, rsh);
1066     } else {
1067         tcg_gen_cmp_vec(TCG_COND_LT, vece, lsh, lsh, max);
1068         tcg_gen_cmp_vec(TCG_COND_LT, vece, rsh, rsh, max);
1069         tcg_gen_and_vec(vece, lval, lval, lsh);
1070         tcg_gen_and_vec(vece, rval, rval, rsh);
1071     }
1072     tcg_gen_or_vec(vece, dst, lval, rval);
1073 }
1074 
1075 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
1076                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
1077 {
1078     static const TCGOpcode vecop_list[] = {
1079         INDEX_op_neg_vec, INDEX_op_shlv_vec,
1080         INDEX_op_shrv_vec, INDEX_op_cmp_vec, 0
1081     };
1082     static const GVecGen3 ops[4] = {
1083         { .fniv = gen_ushl_vec,
1084           .fno = gen_helper_gvec_ushl_b,
1085           .opt_opc = vecop_list,
1086           .vece = MO_8 },
1087         { .fniv = gen_ushl_vec,
1088           .fno = gen_helper_gvec_ushl_h,
1089           .opt_opc = vecop_list,
1090           .vece = MO_16 },
1091         { .fni4 = gen_ushl_i32,
1092           .fniv = gen_ushl_vec,
1093           .opt_opc = vecop_list,
1094           .vece = MO_32 },
1095         { .fni8 = gen_ushl_i64,
1096           .fniv = gen_ushl_vec,
1097           .opt_opc = vecop_list,
1098           .vece = MO_64 },
1099     };
1100     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
1101 }
1102 
1103 void gen_sshl_i32(TCGv_i32 dst, TCGv_i32 src, TCGv_i32 shift)
1104 {
1105     TCGv_i32 lval = tcg_temp_new_i32();
1106     TCGv_i32 rval = tcg_temp_new_i32();
1107     TCGv_i32 lsh = tcg_temp_new_i32();
1108     TCGv_i32 rsh = tcg_temp_new_i32();
1109     TCGv_i32 zero = tcg_constant_i32(0);
1110     TCGv_i32 max = tcg_constant_i32(31);
1111 
1112     /*
1113      * Rely on the TCG guarantee that out of range shifts produce
1114      * unspecified results, not undefined behaviour (i.e. no trap).
1115      * Discard out-of-range results after the fact.
1116      */
1117     tcg_gen_ext8s_i32(lsh, shift);
1118     tcg_gen_neg_i32(rsh, lsh);
1119     tcg_gen_shl_i32(lval, src, lsh);
1120     tcg_gen_umin_i32(rsh, rsh, max);
1121     tcg_gen_sar_i32(rval, src, rsh);
1122     tcg_gen_movcond_i32(TCG_COND_LEU, lval, lsh, max, lval, zero);
1123     tcg_gen_movcond_i32(TCG_COND_LT, dst, lsh, zero, rval, lval);
1124 }
1125 
1126 void gen_sshl_i64(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 shift)
1127 {
1128     TCGv_i64 lval = tcg_temp_new_i64();
1129     TCGv_i64 rval = tcg_temp_new_i64();
1130     TCGv_i64 lsh = tcg_temp_new_i64();
1131     TCGv_i64 rsh = tcg_temp_new_i64();
1132     TCGv_i64 zero = tcg_constant_i64(0);
1133     TCGv_i64 max = tcg_constant_i64(63);
1134 
1135     /*
1136      * Rely on the TCG guarantee that out of range shifts produce
1137      * unspecified results, not undefined behaviour (i.e. no trap).
1138      * Discard out-of-range results after the fact.
1139      */
1140     tcg_gen_ext8s_i64(lsh, shift);
1141     tcg_gen_neg_i64(rsh, lsh);
1142     tcg_gen_shl_i64(lval, src, lsh);
1143     tcg_gen_umin_i64(rsh, rsh, max);
1144     tcg_gen_sar_i64(rval, src, rsh);
1145     tcg_gen_movcond_i64(TCG_COND_LEU, lval, lsh, max, lval, zero);
1146     tcg_gen_movcond_i64(TCG_COND_LT, dst, lsh, zero, rval, lval);
1147 }
1148 
1149 static void gen_sshl_vec(unsigned vece, TCGv_vec dst,
1150                          TCGv_vec src, TCGv_vec shift)
1151 {
1152     TCGv_vec lval = tcg_temp_new_vec_matching(dst);
1153     TCGv_vec rval = tcg_temp_new_vec_matching(dst);
1154     TCGv_vec lsh = tcg_temp_new_vec_matching(dst);
1155     TCGv_vec rsh = tcg_temp_new_vec_matching(dst);
1156     TCGv_vec tmp = tcg_temp_new_vec_matching(dst);
1157 
1158     /*
1159      * Rely on the TCG guarantee that out of range shifts produce
1160      * unspecified results, not undefined behaviour (i.e. no trap).
1161      * Discard out-of-range results after the fact.
1162      */
1163     tcg_gen_neg_vec(vece, rsh, shift);
1164     if (vece == MO_8) {
1165         tcg_gen_mov_vec(lsh, shift);
1166     } else {
1167         tcg_gen_dupi_vec(vece, tmp, 0xff);
1168         tcg_gen_and_vec(vece, lsh, shift, tmp);
1169         tcg_gen_and_vec(vece, rsh, rsh, tmp);
1170     }
1171 
1172     /* Bound rsh so out of bound right shift gets -1.  */
1173     tcg_gen_dupi_vec(vece, tmp, (8 << vece) - 1);
1174     tcg_gen_umin_vec(vece, rsh, rsh, tmp);
1175     tcg_gen_cmp_vec(TCG_COND_GT, vece, tmp, lsh, tmp);
1176 
1177     tcg_gen_shlv_vec(vece, lval, src, lsh);
1178     tcg_gen_sarv_vec(vece, rval, src, rsh);
1179 
1180     /* Select in-bound left shift.  */
1181     tcg_gen_andc_vec(vece, lval, lval, tmp);
1182 
1183     /* Select between left and right shift.  */
1184     if (vece == MO_8) {
1185         tcg_gen_dupi_vec(vece, tmp, 0);
1186         tcg_gen_cmpsel_vec(TCG_COND_LT, vece, dst, lsh, tmp, rval, lval);
1187     } else {
1188         tcg_gen_dupi_vec(vece, tmp, 0x80);
1189         tcg_gen_cmpsel_vec(TCG_COND_LT, vece, dst, lsh, tmp, lval, rval);
1190     }
1191 }
1192 
1193 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
1194                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
1195 {
1196     static const TCGOpcode vecop_list[] = {
1197         INDEX_op_neg_vec, INDEX_op_umin_vec, INDEX_op_shlv_vec,
1198         INDEX_op_sarv_vec, INDEX_op_cmp_vec, INDEX_op_cmpsel_vec, 0
1199     };
1200     static const GVecGen3 ops[4] = {
1201         { .fniv = gen_sshl_vec,
1202           .fno = gen_helper_gvec_sshl_b,
1203           .opt_opc = vecop_list,
1204           .vece = MO_8 },
1205         { .fniv = gen_sshl_vec,
1206           .fno = gen_helper_gvec_sshl_h,
1207           .opt_opc = vecop_list,
1208           .vece = MO_16 },
1209         { .fni4 = gen_sshl_i32,
1210           .fniv = gen_sshl_vec,
1211           .opt_opc = vecop_list,
1212           .vece = MO_32 },
1213         { .fni8 = gen_sshl_i64,
1214           .fniv = gen_sshl_vec,
1215           .opt_opc = vecop_list,
1216           .vece = MO_64 },
1217     };
1218     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
1219 }
1220 
1221 static void gen_uqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec qc,
1222                           TCGv_vec a, TCGv_vec b)
1223 {
1224     TCGv_vec x = tcg_temp_new_vec_matching(t);
1225     tcg_gen_add_vec(vece, x, a, b);
1226     tcg_gen_usadd_vec(vece, t, a, b);
1227     tcg_gen_xor_vec(vece, x, x, t);
1228     tcg_gen_or_vec(vece, qc, qc, x);
1229 }
1230 
1231 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
1232                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
1233 {
1234     static const TCGOpcode vecop_list[] = {
1235         INDEX_op_usadd_vec, INDEX_op_add_vec, 0
1236     };
1237     static const GVecGen4 ops[4] = {
1238         { .fniv = gen_uqadd_vec,
1239           .fno = gen_helper_gvec_uqadd_b,
1240           .write_aofs = true,
1241           .opt_opc = vecop_list,
1242           .vece = MO_8 },
1243         { .fniv = gen_uqadd_vec,
1244           .fno = gen_helper_gvec_uqadd_h,
1245           .write_aofs = true,
1246           .opt_opc = vecop_list,
1247           .vece = MO_16 },
1248         { .fniv = gen_uqadd_vec,
1249           .fno = gen_helper_gvec_uqadd_s,
1250           .write_aofs = true,
1251           .opt_opc = vecop_list,
1252           .vece = MO_32 },
1253         { .fniv = gen_uqadd_vec,
1254           .fno = gen_helper_gvec_uqadd_d,
1255           .write_aofs = true,
1256           .opt_opc = vecop_list,
1257           .vece = MO_64 },
1258     };
1259 
1260     tcg_debug_assert(opr_sz <= sizeof_field(CPUARMState, vfp.qc));
1261     tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc),
1262                    rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
1263 }
1264 
1265 static void gen_sqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec qc,
1266                           TCGv_vec a, TCGv_vec b)
1267 {
1268     TCGv_vec x = tcg_temp_new_vec_matching(t);
1269     tcg_gen_add_vec(vece, x, a, b);
1270     tcg_gen_ssadd_vec(vece, t, a, b);
1271     tcg_gen_xor_vec(vece, x, x, t);
1272     tcg_gen_or_vec(vece, qc, qc, x);
1273 }
1274 
1275 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
1276                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
1277 {
1278     static const TCGOpcode vecop_list[] = {
1279         INDEX_op_ssadd_vec, INDEX_op_add_vec, 0
1280     };
1281     static const GVecGen4 ops[4] = {
1282         { .fniv = gen_sqadd_vec,
1283           .fno = gen_helper_gvec_sqadd_b,
1284           .opt_opc = vecop_list,
1285           .write_aofs = true,
1286           .vece = MO_8 },
1287         { .fniv = gen_sqadd_vec,
1288           .fno = gen_helper_gvec_sqadd_h,
1289           .opt_opc = vecop_list,
1290           .write_aofs = true,
1291           .vece = MO_16 },
1292         { .fniv = gen_sqadd_vec,
1293           .fno = gen_helper_gvec_sqadd_s,
1294           .opt_opc = vecop_list,
1295           .write_aofs = true,
1296           .vece = MO_32 },
1297         { .fniv = gen_sqadd_vec,
1298           .fno = gen_helper_gvec_sqadd_d,
1299           .opt_opc = vecop_list,
1300           .write_aofs = true,
1301           .vece = MO_64 },
1302     };
1303 
1304     tcg_debug_assert(opr_sz <= sizeof_field(CPUARMState, vfp.qc));
1305     tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc),
1306                    rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
1307 }
1308 
1309 static void gen_uqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec qc,
1310                           TCGv_vec a, TCGv_vec b)
1311 {
1312     TCGv_vec x = tcg_temp_new_vec_matching(t);
1313     tcg_gen_sub_vec(vece, x, a, b);
1314     tcg_gen_ussub_vec(vece, t, a, b);
1315     tcg_gen_xor_vec(vece, x, x, t);
1316     tcg_gen_or_vec(vece, qc, qc, x);
1317 }
1318 
1319 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
1320                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
1321 {
1322     static const TCGOpcode vecop_list[] = {
1323         INDEX_op_ussub_vec, INDEX_op_sub_vec, 0
1324     };
1325     static const GVecGen4 ops[4] = {
1326         { .fniv = gen_uqsub_vec,
1327           .fno = gen_helper_gvec_uqsub_b,
1328           .opt_opc = vecop_list,
1329           .write_aofs = true,
1330           .vece = MO_8 },
1331         { .fniv = gen_uqsub_vec,
1332           .fno = gen_helper_gvec_uqsub_h,
1333           .opt_opc = vecop_list,
1334           .write_aofs = true,
1335           .vece = MO_16 },
1336         { .fniv = gen_uqsub_vec,
1337           .fno = gen_helper_gvec_uqsub_s,
1338           .opt_opc = vecop_list,
1339           .write_aofs = true,
1340           .vece = MO_32 },
1341         { .fniv = gen_uqsub_vec,
1342           .fno = gen_helper_gvec_uqsub_d,
1343           .opt_opc = vecop_list,
1344           .write_aofs = true,
1345           .vece = MO_64 },
1346     };
1347 
1348     tcg_debug_assert(opr_sz <= sizeof_field(CPUARMState, vfp.qc));
1349     tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc),
1350                    rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
1351 }
1352 
1353 static void gen_sqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec qc,
1354                           TCGv_vec a, TCGv_vec b)
1355 {
1356     TCGv_vec x = tcg_temp_new_vec_matching(t);
1357     tcg_gen_sub_vec(vece, x, a, b);
1358     tcg_gen_sssub_vec(vece, t, a, b);
1359     tcg_gen_xor_vec(vece, x, x, t);
1360     tcg_gen_or_vec(vece, qc, qc, x);
1361 }
1362 
1363 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
1364                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
1365 {
1366     static const TCGOpcode vecop_list[] = {
1367         INDEX_op_sssub_vec, INDEX_op_sub_vec, 0
1368     };
1369     static const GVecGen4 ops[4] = {
1370         { .fniv = gen_sqsub_vec,
1371           .fno = gen_helper_gvec_sqsub_b,
1372           .opt_opc = vecop_list,
1373           .write_aofs = true,
1374           .vece = MO_8 },
1375         { .fniv = gen_sqsub_vec,
1376           .fno = gen_helper_gvec_sqsub_h,
1377           .opt_opc = vecop_list,
1378           .write_aofs = true,
1379           .vece = MO_16 },
1380         { .fniv = gen_sqsub_vec,
1381           .fno = gen_helper_gvec_sqsub_s,
1382           .opt_opc = vecop_list,
1383           .write_aofs = true,
1384           .vece = MO_32 },
1385         { .fniv = gen_sqsub_vec,
1386           .fno = gen_helper_gvec_sqsub_d,
1387           .opt_opc = vecop_list,
1388           .write_aofs = true,
1389           .vece = MO_64 },
1390     };
1391 
1392     tcg_debug_assert(opr_sz <= sizeof_field(CPUARMState, vfp.qc));
1393     tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc),
1394                    rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
1395 }
1396 
1397 static void gen_sabd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1398 {
1399     TCGv_i32 t = tcg_temp_new_i32();
1400 
1401     tcg_gen_sub_i32(t, a, b);
1402     tcg_gen_sub_i32(d, b, a);
1403     tcg_gen_movcond_i32(TCG_COND_LT, d, a, b, d, t);
1404 }
1405 
1406 static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1407 {
1408     TCGv_i64 t = tcg_temp_new_i64();
1409 
1410     tcg_gen_sub_i64(t, a, b);
1411     tcg_gen_sub_i64(d, b, a);
1412     tcg_gen_movcond_i64(TCG_COND_LT, d, a, b, d, t);
1413 }
1414 
1415 static void gen_sabd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
1416 {
1417     TCGv_vec t = tcg_temp_new_vec_matching(d);
1418 
1419     tcg_gen_smin_vec(vece, t, a, b);
1420     tcg_gen_smax_vec(vece, d, a, b);
1421     tcg_gen_sub_vec(vece, d, d, t);
1422 }
1423 
1424 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
1425                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
1426 {
1427     static const TCGOpcode vecop_list[] = {
1428         INDEX_op_sub_vec, INDEX_op_smin_vec, INDEX_op_smax_vec, 0
1429     };
1430     static const GVecGen3 ops[4] = {
1431         { .fniv = gen_sabd_vec,
1432           .fno = gen_helper_gvec_sabd_b,
1433           .opt_opc = vecop_list,
1434           .vece = MO_8 },
1435         { .fniv = gen_sabd_vec,
1436           .fno = gen_helper_gvec_sabd_h,
1437           .opt_opc = vecop_list,
1438           .vece = MO_16 },
1439         { .fni4 = gen_sabd_i32,
1440           .fniv = gen_sabd_vec,
1441           .fno = gen_helper_gvec_sabd_s,
1442           .opt_opc = vecop_list,
1443           .vece = MO_32 },
1444         { .fni8 = gen_sabd_i64,
1445           .fniv = gen_sabd_vec,
1446           .fno = gen_helper_gvec_sabd_d,
1447           .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1448           .opt_opc = vecop_list,
1449           .vece = MO_64 },
1450     };
1451     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
1452 }
1453 
1454 static void gen_uabd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1455 {
1456     TCGv_i32 t = tcg_temp_new_i32();
1457 
1458     tcg_gen_sub_i32(t, a, b);
1459     tcg_gen_sub_i32(d, b, a);
1460     tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, d, t);
1461 }
1462 
1463 static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1464 {
1465     TCGv_i64 t = tcg_temp_new_i64();
1466 
1467     tcg_gen_sub_i64(t, a, b);
1468     tcg_gen_sub_i64(d, b, a);
1469     tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, d, t);
1470 }
1471 
1472 static void gen_uabd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
1473 {
1474     TCGv_vec t = tcg_temp_new_vec_matching(d);
1475 
1476     tcg_gen_umin_vec(vece, t, a, b);
1477     tcg_gen_umax_vec(vece, d, a, b);
1478     tcg_gen_sub_vec(vece, d, d, t);
1479 }
1480 
1481 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
1482                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
1483 {
1484     static const TCGOpcode vecop_list[] = {
1485         INDEX_op_sub_vec, INDEX_op_umin_vec, INDEX_op_umax_vec, 0
1486     };
1487     static const GVecGen3 ops[4] = {
1488         { .fniv = gen_uabd_vec,
1489           .fno = gen_helper_gvec_uabd_b,
1490           .opt_opc = vecop_list,
1491           .vece = MO_8 },
1492         { .fniv = gen_uabd_vec,
1493           .fno = gen_helper_gvec_uabd_h,
1494           .opt_opc = vecop_list,
1495           .vece = MO_16 },
1496         { .fni4 = gen_uabd_i32,
1497           .fniv = gen_uabd_vec,
1498           .fno = gen_helper_gvec_uabd_s,
1499           .opt_opc = vecop_list,
1500           .vece = MO_32 },
1501         { .fni8 = gen_uabd_i64,
1502           .fniv = gen_uabd_vec,
1503           .fno = gen_helper_gvec_uabd_d,
1504           .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1505           .opt_opc = vecop_list,
1506           .vece = MO_64 },
1507     };
1508     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
1509 }
1510 
1511 static void gen_saba_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1512 {
1513     TCGv_i32 t = tcg_temp_new_i32();
1514     gen_sabd_i32(t, a, b);
1515     tcg_gen_add_i32(d, d, t);
1516 }
1517 
1518 static void gen_saba_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1519 {
1520     TCGv_i64 t = tcg_temp_new_i64();
1521     gen_sabd_i64(t, a, b);
1522     tcg_gen_add_i64(d, d, t);
1523 }
1524 
1525 static void gen_saba_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
1526 {
1527     TCGv_vec t = tcg_temp_new_vec_matching(d);
1528     gen_sabd_vec(vece, t, a, b);
1529     tcg_gen_add_vec(vece, d, d, t);
1530 }
1531 
1532 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
1533                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
1534 {
1535     static const TCGOpcode vecop_list[] = {
1536         INDEX_op_sub_vec, INDEX_op_add_vec,
1537         INDEX_op_smin_vec, INDEX_op_smax_vec, 0
1538     };
1539     static const GVecGen3 ops[4] = {
1540         { .fniv = gen_saba_vec,
1541           .fno = gen_helper_gvec_saba_b,
1542           .opt_opc = vecop_list,
1543           .load_dest = true,
1544           .vece = MO_8 },
1545         { .fniv = gen_saba_vec,
1546           .fno = gen_helper_gvec_saba_h,
1547           .opt_opc = vecop_list,
1548           .load_dest = true,
1549           .vece = MO_16 },
1550         { .fni4 = gen_saba_i32,
1551           .fniv = gen_saba_vec,
1552           .fno = gen_helper_gvec_saba_s,
1553           .opt_opc = vecop_list,
1554           .load_dest = true,
1555           .vece = MO_32 },
1556         { .fni8 = gen_saba_i64,
1557           .fniv = gen_saba_vec,
1558           .fno = gen_helper_gvec_saba_d,
1559           .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1560           .opt_opc = vecop_list,
1561           .load_dest = true,
1562           .vece = MO_64 },
1563     };
1564     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
1565 }
1566 
1567 static void gen_uaba_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1568 {
1569     TCGv_i32 t = tcg_temp_new_i32();
1570     gen_uabd_i32(t, a, b);
1571     tcg_gen_add_i32(d, d, t);
1572 }
1573 
1574 static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1575 {
1576     TCGv_i64 t = tcg_temp_new_i64();
1577     gen_uabd_i64(t, a, b);
1578     tcg_gen_add_i64(d, d, t);
1579 }
1580 
1581 static void gen_uaba_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
1582 {
1583     TCGv_vec t = tcg_temp_new_vec_matching(d);
1584     gen_uabd_vec(vece, t, a, b);
1585     tcg_gen_add_vec(vece, d, d, t);
1586 }
1587 
1588 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
1589                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
1590 {
1591     static const TCGOpcode vecop_list[] = {
1592         INDEX_op_sub_vec, INDEX_op_add_vec,
1593         INDEX_op_umin_vec, INDEX_op_umax_vec, 0
1594     };
1595     static const GVecGen3 ops[4] = {
1596         { .fniv = gen_uaba_vec,
1597           .fno = gen_helper_gvec_uaba_b,
1598           .opt_opc = vecop_list,
1599           .load_dest = true,
1600           .vece = MO_8 },
1601         { .fniv = gen_uaba_vec,
1602           .fno = gen_helper_gvec_uaba_h,
1603           .opt_opc = vecop_list,
1604           .load_dest = true,
1605           .vece = MO_16 },
1606         { .fni4 = gen_uaba_i32,
1607           .fniv = gen_uaba_vec,
1608           .fno = gen_helper_gvec_uaba_s,
1609           .opt_opc = vecop_list,
1610           .load_dest = true,
1611           .vece = MO_32 },
1612         { .fni8 = gen_uaba_i64,
1613           .fniv = gen_uaba_vec,
1614           .fno = gen_helper_gvec_uaba_d,
1615           .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1616           .opt_opc = vecop_list,
1617           .load_dest = true,
1618           .vece = MO_64 },
1619     };
1620     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
1621 }
1622 
1623 void gen_gvec_addp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
1624                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
1625 {
1626     static gen_helper_gvec_3 * const fns[4] = {
1627         gen_helper_gvec_addp_b,
1628         gen_helper_gvec_addp_h,
1629         gen_helper_gvec_addp_s,
1630         gen_helper_gvec_addp_d,
1631     };
1632     tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, 0, fns[vece]);
1633 }
1634 
1635 void gen_gvec_smaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
1636                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
1637 {
1638     static gen_helper_gvec_3 * const fns[4] = {
1639         gen_helper_gvec_smaxp_b,
1640         gen_helper_gvec_smaxp_h,
1641         gen_helper_gvec_smaxp_s,
1642     };
1643     tcg_debug_assert(vece <= MO_32);
1644     tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, 0, fns[vece]);
1645 }
1646 
1647 void gen_gvec_sminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
1648                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
1649 {
1650     static gen_helper_gvec_3 * const fns[4] = {
1651         gen_helper_gvec_sminp_b,
1652         gen_helper_gvec_sminp_h,
1653         gen_helper_gvec_sminp_s,
1654     };
1655     tcg_debug_assert(vece <= MO_32);
1656     tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, 0, fns[vece]);
1657 }
1658 
1659 void gen_gvec_umaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
1660                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
1661 {
1662     static gen_helper_gvec_3 * const fns[4] = {
1663         gen_helper_gvec_umaxp_b,
1664         gen_helper_gvec_umaxp_h,
1665         gen_helper_gvec_umaxp_s,
1666     };
1667     tcg_debug_assert(vece <= MO_32);
1668     tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, 0, fns[vece]);
1669 }
1670 
1671 void gen_gvec_uminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
1672                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
1673 {
1674     static gen_helper_gvec_3 * const fns[4] = {
1675         gen_helper_gvec_uminp_b,
1676         gen_helper_gvec_uminp_h,
1677         gen_helper_gvec_uminp_s,
1678     };
1679     tcg_debug_assert(vece <= MO_32);
1680     tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, 0, fns[vece]);
1681 }
1682