xref: /openbmc/qemu/target/arm/ptw.c (revision fe1a3ace13a8b53fc20c74fb7e3337f754396e6b)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "exec/page-protection.h"
15 #include "exec/target_page.h"
16 #include "exec/tlb-flags.h"
17 #include "accel/tcg/probe.h"
18 #include "cpu.h"
19 #include "internals.h"
20 #include "cpu-features.h"
21 #include "idau.h"
22 
23 typedef struct S1Translate {
24     /*
25      * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
26      * Together with in_space, specifies the architectural translation regime.
27      */
28     ARMMMUIdx in_mmu_idx;
29     /*
30      * in_ptw_idx: specifies which mmuidx to use for the actual
31      * page table descriptor load operations. This will be one of the
32      * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
33      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
34      * this field is updated accordingly.
35      */
36     ARMMMUIdx in_ptw_idx;
37     /*
38      * in_space: the security space for this walk. This plus
39      * the in_mmu_idx specify the architectural translation regime.
40      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
41      * this field is updated accordingly.
42      *
43      * Note that the security space for the in_ptw_idx may be different
44      * from that for the in_mmu_idx. We do not need to explicitly track
45      * the in_ptw_idx security space because:
46      *  - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
47      *    itself specifies the security space
48      *  - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
49      *    space used for ptw reads is the same as that of the security
50      *    space of the stage 1 translation for all cases except where
51      *    stage 1 is Secure; in that case the only possibilities for
52      *    the ptw read are Secure and NonSecure, and the in_ptw_idx
53      *    value being Stage2 vs Stage2_S distinguishes those.
54      */
55     ARMSecuritySpace in_space;
56     /*
57      * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
58      * accesses will not update the guest page table access flags
59      * and will not change the state of the softmmu TLBs.
60      */
61     bool in_debug;
62     /*
63      * If this is stage 2 of a stage 1+2 page table walk, then this must
64      * be true if stage 1 is an EL0 access; otherwise this is ignored.
65      * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
66      */
67     bool in_s1_is_el0;
68     bool out_rw;
69     bool out_be;
70     ARMSecuritySpace out_space;
71     hwaddr out_virt;
72     hwaddr out_phys;
73     void *out_host;
74 } S1Translate;
75 
76 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
77                                 vaddr address,
78                                 MMUAccessType access_type, MemOp memop,
79                                 GetPhysAddrResult *result,
80                                 ARMMMUFaultInfo *fi);
81 
82 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
83                               vaddr address,
84                               MMUAccessType access_type, MemOp memop,
85                               GetPhysAddrResult *result,
86                               ARMMMUFaultInfo *fi);
87 
88 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
89                       int user_rw, int prot_rw, int xn, int pxn,
90                       ARMSecuritySpace in_pa, ARMSecuritySpace out_pa);
91 
92 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
93 static const uint8_t pamax_map[] = {
94     [0] = 32,
95     [1] = 36,
96     [2] = 40,
97     [3] = 42,
98     [4] = 44,
99     [5] = 48,
100     [6] = 52,
101 };
102 
103 uint8_t round_down_to_parange_index(uint8_t bit_size)
104 {
105     for (int i = ARRAY_SIZE(pamax_map) - 1; i >= 0; i--) {
106         if (pamax_map[i] <= bit_size) {
107             return i;
108         }
109     }
110     g_assert_not_reached();
111 }
112 
113 uint8_t round_down_to_parange_bit_size(uint8_t bit_size)
114 {
115     return pamax_map[round_down_to_parange_index(bit_size)];
116 }
117 
118 /*
119  * The cpu-specific constant value of PAMax; also used by hw/arm/virt.
120  * Note that machvirt_init calls this on a CPU that is inited but not realized!
121  */
122 unsigned int arm_pamax(ARMCPU *cpu)
123 {
124     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
125         unsigned int parange =
126             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
127 
128         /*
129          * id_aa64mmfr0 is a read-only register so values outside of the
130          * supported mappings can be considered an implementation error.
131          */
132         assert(parange < ARRAY_SIZE(pamax_map));
133         return pamax_map[parange];
134     }
135 
136     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
137         /* v7 or v8 with LPAE */
138         return 40;
139     }
140     /* Anything else */
141     return 32;
142 }
143 
144 /*
145  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
146  */
147 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
148 {
149     switch (mmu_idx) {
150     case ARMMMUIdx_E10_0:
151         return ARMMMUIdx_Stage1_E0;
152     case ARMMMUIdx_E10_1:
153         return ARMMMUIdx_Stage1_E1;
154     case ARMMMUIdx_E10_1_PAN:
155         return ARMMMUIdx_Stage1_E1_PAN;
156     default:
157         return mmu_idx;
158     }
159 }
160 
161 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
162 {
163     return stage_1_mmu_idx(arm_mmu_idx(env));
164 }
165 
166 /*
167  * Return where we should do ptw loads from for a stage 2 walk.
168  * This depends on whether the address we are looking up is a
169  * Secure IPA or a NonSecure IPA, which we know from whether this is
170  * Stage2 or Stage2_S.
171  * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
172  */
173 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
174 {
175     bool s2walk_secure;
176 
177     /*
178      * We're OK to check the current state of the CPU here because
179      * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit
180      * changes.
181      * (2) there's no way to do a lookup that cares about Stage 2 for a
182      * different security state to the current one for AArch64, and AArch32
183      * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
184      * an NS stage 1+2 lookup while the NS bit is 0.)
185      */
186     if (!arm_el_is_aa64(env, 3)) {
187         return ARMMMUIdx_Phys_NS;
188     }
189 
190     switch (arm_security_space_below_el3(env)) {
191     case ARMSS_NonSecure:
192         return ARMMMUIdx_Phys_NS;
193     case ARMSS_Realm:
194         return ARMMMUIdx_Phys_Realm;
195     case ARMSS_Secure:
196         if (stage2idx == ARMMMUIdx_Stage2_S) {
197             s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
198         } else {
199             s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
200         }
201         return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
202     default:
203         g_assert_not_reached();
204     }
205 }
206 
207 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
208 {
209     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
210 }
211 
212 /* Return the TTBR associated with this translation regime */
213 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
214 {
215     if (mmu_idx == ARMMMUIdx_Stage2) {
216         return env->cp15.vttbr_el2;
217     }
218     if (mmu_idx == ARMMMUIdx_Stage2_S) {
219         return env->cp15.vsttbr_el2;
220     }
221     if (ttbrn == 0) {
222         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
223     } else {
224         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
225     }
226 }
227 
228 /* Return true if the specified stage of address translation is disabled */
229 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
230                                         ARMSecuritySpace space)
231 {
232     uint64_t hcr_el2;
233 
234     if (arm_feature(env, ARM_FEATURE_M)) {
235         bool is_secure = arm_space_is_secure(space);
236         switch (env->v7m.mpu_ctrl[is_secure] &
237                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
238         case R_V7M_MPU_CTRL_ENABLE_MASK:
239             /* Enabled, but not for HardFault and NMI */
240             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
241         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
242             /* Enabled for all cases */
243             return false;
244         case 0:
245         default:
246             /*
247              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
248              * we warned about that in armv7m_nvic.c when the guest set it.
249              */
250             return true;
251         }
252     }
253 
254 
255     switch (mmu_idx) {
256     case ARMMMUIdx_Stage2:
257     case ARMMMUIdx_Stage2_S:
258         /* HCR.DC means HCR.VM behaves as 1 */
259         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
260         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
261 
262     case ARMMMUIdx_E10_0:
263     case ARMMMUIdx_E10_1:
264     case ARMMMUIdx_E10_1_PAN:
265         /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
266         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
267         if (hcr_el2 & HCR_TGE) {
268             return true;
269         }
270         break;
271 
272     case ARMMMUIdx_Stage1_E0:
273     case ARMMMUIdx_Stage1_E1:
274     case ARMMMUIdx_Stage1_E1_PAN:
275         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
276         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
277         if (hcr_el2 & HCR_DC) {
278             return true;
279         }
280         break;
281 
282     case ARMMMUIdx_E20_0:
283     case ARMMMUIdx_E20_2:
284     case ARMMMUIdx_E20_2_PAN:
285     case ARMMMUIdx_E2:
286     case ARMMMUIdx_E3:
287     case ARMMMUIdx_E30_0:
288     case ARMMMUIdx_E30_3_PAN:
289         break;
290 
291     case ARMMMUIdx_Phys_S:
292     case ARMMMUIdx_Phys_NS:
293     case ARMMMUIdx_Phys_Root:
294     case ARMMMUIdx_Phys_Realm:
295         /* No translation for physical address spaces. */
296         return true;
297 
298     default:
299         g_assert_not_reached();
300     }
301 
302     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
303 }
304 
305 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
306                                      ARMSecuritySpace pspace,
307                                      ARMMMUFaultInfo *fi)
308 {
309     MemTxAttrs attrs = {
310         .secure = true,
311         .space = ARMSS_Root,
312     };
313     ARMCPU *cpu = env_archcpu(env);
314     uint64_t gpccr = env->cp15.gpccr_el3;
315     unsigned pps, pgs, l0gptsz, level = 0;
316     uint64_t tableaddr, pps_mask, align, entry, index;
317     AddressSpace *as;
318     MemTxResult result;
319     int gpi;
320 
321     if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
322         return true;
323     }
324 
325     /*
326      * GPC Priority 1 (R_GMGRR):
327      * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
328      * the access fails as GPT walk fault at level 0.
329      */
330 
331     /*
332      * Configuration of PPS to a value exceeding the implemented
333      * physical address size is invalid.
334      */
335     pps = FIELD_EX64(gpccr, GPCCR, PPS);
336     if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
337         goto fault_walk;
338     }
339     pps = pamax_map[pps];
340     pps_mask = MAKE_64BIT_MASK(0, pps);
341 
342     switch (FIELD_EX64(gpccr, GPCCR, SH)) {
343     case 0b10: /* outer shareable */
344         break;
345     case 0b00: /* non-shareable */
346     case 0b11: /* inner shareable */
347         /* Inner and Outer non-cacheable requires Outer shareable. */
348         if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
349             FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
350             goto fault_walk;
351         }
352         break;
353     default:   /* reserved */
354         goto fault_walk;
355     }
356 
357     switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
358     case 0b00: /* 4KB */
359         pgs = 12;
360         break;
361     case 0b01: /* 64KB */
362         pgs = 16;
363         break;
364     case 0b10: /* 16KB */
365         pgs = 14;
366         break;
367     default: /* reserved */
368         goto fault_walk;
369     }
370 
371     /* Note this field is read-only and fixed at reset. */
372     l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
373 
374     /*
375      * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
376      * R_CPDSB: A NonSecure physical address input exceeding PPS
377      * does not experience any fault.
378      */
379     if (paddress & ~pps_mask) {
380         if (pspace == ARMSS_NonSecure) {
381             return true;
382         }
383         goto fault_size;
384     }
385 
386     /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
387     tableaddr = env->cp15.gptbr_el3 << 12;
388     if (tableaddr & ~pps_mask) {
389         goto fault_size;
390     }
391 
392     /*
393      * BADDR is aligned per a function of PPS and L0GPTSZ.
394      * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
395      * unlike the RES0 bits of the GPT entries (R_XNKFZ).
396      */
397     align = MAX(pps - l0gptsz + 3, 12);
398     align = MAKE_64BIT_MASK(0, align);
399     tableaddr &= ~align;
400 
401     as = arm_addressspace(env_cpu(env), attrs);
402 
403     /* Level 0 lookup. */
404     index = extract64(paddress, l0gptsz, pps - l0gptsz);
405     tableaddr += index * 8;
406     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
407     if (result != MEMTX_OK) {
408         goto fault_eabt;
409     }
410 
411     switch (extract32(entry, 0, 4)) {
412     case 1: /* block descriptor */
413         if (entry >> 8) {
414             goto fault_walk; /* RES0 bits not 0 */
415         }
416         gpi = extract32(entry, 4, 4);
417         goto found;
418     case 3: /* table descriptor */
419         tableaddr = entry & ~0xf;
420         align = MAX(l0gptsz - pgs - 1, 12);
421         align = MAKE_64BIT_MASK(0, align);
422         if (tableaddr & (~pps_mask | align)) {
423             goto fault_walk; /* RES0 bits not 0 */
424         }
425         break;
426     default: /* invalid */
427         goto fault_walk;
428     }
429 
430     /* Level 1 lookup */
431     level = 1;
432     index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
433     tableaddr += index * 8;
434     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
435     if (result != MEMTX_OK) {
436         goto fault_eabt;
437     }
438 
439     switch (extract32(entry, 0, 4)) {
440     case 1: /* contiguous descriptor */
441         if (entry >> 10) {
442             goto fault_walk; /* RES0 bits not 0 */
443         }
444         /*
445          * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
446          * and because we cannot invalidate by pa, and thus will always
447          * flush entire tlbs, we don't actually care about the range here
448          * and can simply extract the GPI as the result.
449          */
450         if (extract32(entry, 8, 2) == 0) {
451             goto fault_walk; /* reserved contig */
452         }
453         gpi = extract32(entry, 4, 4);
454         break;
455     default:
456         index = extract64(paddress, pgs, 4);
457         gpi = extract64(entry, index * 4, 4);
458         break;
459     }
460 
461  found:
462     switch (gpi) {
463     case 0b0000: /* no access */
464         break;
465     case 0b1111: /* all access */
466         return true;
467     case 0b1000:
468     case 0b1001:
469     case 0b1010:
470     case 0b1011:
471         if (pspace == (gpi & 3)) {
472             return true;
473         }
474         break;
475     default:
476         goto fault_walk; /* reserved */
477     }
478 
479     fi->gpcf = GPCF_Fail;
480     goto fault_common;
481  fault_eabt:
482     fi->gpcf = GPCF_EABT;
483     goto fault_common;
484  fault_size:
485     fi->gpcf = GPCF_AddressSize;
486     goto fault_common;
487  fault_walk:
488     fi->gpcf = GPCF_Walk;
489  fault_common:
490     fi->level = level;
491     fi->paddr = paddress;
492     fi->paddr_space = pspace;
493     return false;
494 }
495 
496 static bool S1_attrs_are_device(uint8_t attrs)
497 {
498     /*
499      * This slightly under-decodes the MAIR_ELx field:
500      * 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE;
501      * 0b0000dd1x is UNPREDICTABLE.
502      */
503     return (attrs & 0xf0) == 0;
504 }
505 
506 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
507 {
508     /*
509      * For an S1 page table walk, the stage 1 attributes are always
510      * some form of "this is Normal memory". The combined S1+S2
511      * attributes are therefore only Device if stage 2 specifies Device.
512      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
513      * ie when cacheattrs.attrs bits [3:2] are 0b00.
514      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
515      * when cacheattrs.attrs bit [2] is 0.
516      */
517     if (hcr & HCR_FWB) {
518         return (attrs & 0x4) == 0;
519     } else {
520         return (attrs & 0xc) == 0;
521     }
522 }
523 
524 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
525                                           ARMMMUIdx s2_mmu_idx)
526 {
527     /*
528      * Return the security space to use for stage 2 when doing
529      * the S1 page table descriptor load.
530      */
531     if (regime_is_stage2(s2_mmu_idx)) {
532         /*
533          * The security space for ptw reads is almost always the same
534          * as that of the security space of the stage 1 translation.
535          * The only exception is when stage 1 is Secure; in that case
536          * the ptw read might be to the Secure or the NonSecure space
537          * (but never Realm or Root), and the s2_mmu_idx tells us which.
538          * Root translations are always single-stage.
539          */
540         if (s1_space == ARMSS_Secure) {
541             return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
542         } else {
543             assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
544             assert(s1_space != ARMSS_Root);
545             return s1_space;
546         }
547     } else {
548         /* ptw loads are from phys: the mmu idx itself says which space */
549         return arm_phys_to_space(s2_mmu_idx);
550     }
551 }
552 
553 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx)
554 {
555     /*
556      * For stage 2 faults in Secure EL22, S1NS indicates
557      * whether the faulting IPA is in the Secure or NonSecure
558      * IPA space. For all other kinds of fault, it is false.
559      */
560     return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx)
561         && s2_mmu_idx == ARMMMUIdx_Stage2_S;
562 }
563 
564 /* Translate a S1 pagetable walk through S2 if needed.  */
565 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
566                              hwaddr addr, ARMMMUFaultInfo *fi)
567 {
568     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
569     ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
570     uint8_t pte_attrs;
571 
572     ptw->out_virt = addr;
573 
574     if (unlikely(ptw->in_debug)) {
575         /*
576          * From gdbstub, do not use softmmu so that we don't modify the
577          * state of the cpu at all, including softmmu tlb contents.
578          */
579         ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
580         S1Translate s2ptw = {
581             .in_mmu_idx = s2_mmu_idx,
582             .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
583             .in_space = s2_space,
584             .in_debug = true,
585         };
586         GetPhysAddrResult s2 = { };
587 
588         if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, 0, &s2, fi)) {
589             goto fail;
590         }
591 
592         ptw->out_phys = s2.f.phys_addr;
593         pte_attrs = s2.cacheattrs.attrs;
594         ptw->out_host = NULL;
595         ptw->out_rw = false;
596         ptw->out_space = s2.f.attrs.space;
597     } else {
598 #ifdef CONFIG_TCG
599         CPUTLBEntryFull *full;
600         int flags;
601 
602         env->tlb_fi = fi;
603         flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
604                                       arm_to_core_mmu_idx(s2_mmu_idx),
605                                       &ptw->out_host, &full);
606         env->tlb_fi = NULL;
607 
608         if (unlikely(flags & TLB_INVALID_MASK)) {
609             goto fail;
610         }
611         ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
612         ptw->out_rw = full->prot & PAGE_WRITE;
613         pte_attrs = full->extra.arm.pte_attrs;
614         ptw->out_space = full->attrs.space;
615 #else
616         g_assert_not_reached();
617 #endif
618     }
619 
620     if (regime_is_stage2(s2_mmu_idx)) {
621         uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
622 
623         if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
624             /*
625              * PTW set and S1 walk touched S2 Device memory:
626              * generate Permission fault.
627              */
628             fi->type = ARMFault_Permission;
629             fi->s2addr = addr;
630             fi->stage2 = true;
631             fi->s1ptw = true;
632             fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
633             return false;
634         }
635     }
636 
637     ptw->out_be = regime_translation_big_endian(env, mmu_idx);
638     return true;
639 
640  fail:
641     assert(fi->type != ARMFault_None);
642     if (fi->type == ARMFault_GPCFOnOutput) {
643         fi->type = ARMFault_GPCFOnWalk;
644     }
645     fi->s2addr = addr;
646     fi->stage2 = regime_is_stage2(s2_mmu_idx);
647     fi->s1ptw = fi->stage2;
648     fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
649     return false;
650 }
651 
652 /* All loads done in the course of a page table walk go through here. */
653 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
654                             ARMMMUFaultInfo *fi)
655 {
656     CPUState *cs = env_cpu(env);
657     void *host = ptw->out_host;
658     uint32_t data;
659 
660     if (likely(host)) {
661         /* Page tables are in RAM, and we have the host address. */
662         data = qatomic_read((uint32_t *)host);
663         if (ptw->out_be) {
664             data = be32_to_cpu(data);
665         } else {
666             data = le32_to_cpu(data);
667         }
668     } else {
669         /* Page tables are in MMIO. */
670         MemTxAttrs attrs = {
671             .space = ptw->out_space,
672             .secure = arm_space_is_secure(ptw->out_space),
673         };
674         AddressSpace *as = arm_addressspace(cs, attrs);
675         MemTxResult result = MEMTX_OK;
676 
677         if (ptw->out_be) {
678             data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
679         } else {
680             data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
681         }
682         if (unlikely(result != MEMTX_OK)) {
683             fi->type = ARMFault_SyncExternalOnWalk;
684             fi->ea = arm_extabort_type(result);
685             return 0;
686         }
687     }
688     return data;
689 }
690 
691 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
692                             ARMMMUFaultInfo *fi)
693 {
694     CPUState *cs = env_cpu(env);
695     void *host = ptw->out_host;
696     uint64_t data;
697 
698     if (likely(host)) {
699         /* Page tables are in RAM, and we have the host address. */
700 #ifdef CONFIG_ATOMIC64
701         data = qatomic_read__nocheck((uint64_t *)host);
702         if (ptw->out_be) {
703             data = be64_to_cpu(data);
704         } else {
705             data = le64_to_cpu(data);
706         }
707 #else
708         if (ptw->out_be) {
709             data = ldq_be_p(host);
710         } else {
711             data = ldq_le_p(host);
712         }
713 #endif
714     } else {
715         /* Page tables are in MMIO. */
716         MemTxAttrs attrs = {
717             .space = ptw->out_space,
718             .secure = arm_space_is_secure(ptw->out_space),
719         };
720         AddressSpace *as = arm_addressspace(cs, attrs);
721         MemTxResult result = MEMTX_OK;
722 
723         if (ptw->out_be) {
724             data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
725         } else {
726             data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
727         }
728         if (unlikely(result != MEMTX_OK)) {
729             fi->type = ARMFault_SyncExternalOnWalk;
730             fi->ea = arm_extabort_type(result);
731             return 0;
732         }
733     }
734     return data;
735 }
736 
737 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
738                              uint64_t new_val, S1Translate *ptw,
739                              ARMMMUFaultInfo *fi)
740 {
741 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
742     uint64_t cur_val;
743     void *host = ptw->out_host;
744 
745     if (unlikely(!host)) {
746         /* Page table in MMIO Memory Region */
747         CPUState *cs = env_cpu(env);
748         MemTxAttrs attrs = {
749             .space = ptw->out_space,
750             .secure = arm_space_is_secure(ptw->out_space),
751         };
752         AddressSpace *as = arm_addressspace(cs, attrs);
753         MemTxResult result = MEMTX_OK;
754         bool need_lock = !bql_locked();
755 
756         if (need_lock) {
757             bql_lock();
758         }
759         if (ptw->out_be) {
760             cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
761             if (unlikely(result != MEMTX_OK)) {
762                 fi->type = ARMFault_SyncExternalOnWalk;
763                 fi->ea = arm_extabort_type(result);
764                 if (need_lock) {
765                     bql_unlock();
766                 }
767                 return old_val;
768             }
769             if (cur_val == old_val) {
770                 address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result);
771                 if (unlikely(result != MEMTX_OK)) {
772                     fi->type = ARMFault_SyncExternalOnWalk;
773                     fi->ea = arm_extabort_type(result);
774                     if (need_lock) {
775                         bql_unlock();
776                     }
777                     return old_val;
778                 }
779                 cur_val = new_val;
780             }
781         } else {
782             cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
783             if (unlikely(result != MEMTX_OK)) {
784                 fi->type = ARMFault_SyncExternalOnWalk;
785                 fi->ea = arm_extabort_type(result);
786                 if (need_lock) {
787                     bql_unlock();
788                 }
789                 return old_val;
790             }
791             if (cur_val == old_val) {
792                 address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result);
793                 if (unlikely(result != MEMTX_OK)) {
794                     fi->type = ARMFault_SyncExternalOnWalk;
795                     fi->ea = arm_extabort_type(result);
796                     if (need_lock) {
797                         bql_unlock();
798                     }
799                     return old_val;
800                 }
801                 cur_val = new_val;
802             }
803         }
804         if (need_lock) {
805             bql_unlock();
806         }
807         return cur_val;
808     }
809 
810     /*
811      * Raising a stage2 Protection fault for an atomic update to a read-only
812      * page is delayed until it is certain that there is a change to make.
813      */
814     if (unlikely(!ptw->out_rw)) {
815         int flags;
816 
817         env->tlb_fi = fi;
818         flags = probe_access_full_mmu(env, ptw->out_virt, 0,
819                                       MMU_DATA_STORE,
820                                       arm_to_core_mmu_idx(ptw->in_ptw_idx),
821                                       NULL, NULL);
822         env->tlb_fi = NULL;
823 
824         if (unlikely(flags & TLB_INVALID_MASK)) {
825             /*
826              * We know this must be a stage 2 fault because the granule
827              * protection table does not separately track read and write
828              * permission, so all GPC faults are caught in S1_ptw_translate():
829              * we only get here for "readable but not writeable".
830              */
831             assert(fi->type != ARMFault_None);
832             fi->s2addr = ptw->out_virt;
833             fi->stage2 = true;
834             fi->s1ptw = true;
835             fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx);
836             return 0;
837         }
838 
839         /* In case CAS mismatches and we loop, remember writability. */
840         ptw->out_rw = true;
841     }
842 
843     if (ptw->out_be) {
844         old_val = cpu_to_be64(old_val);
845         new_val = cpu_to_be64(new_val);
846         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
847         cur_val = be64_to_cpu(cur_val);
848     } else {
849         old_val = cpu_to_le64(old_val);
850         new_val = cpu_to_le64(new_val);
851         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
852         cur_val = le64_to_cpu(cur_val);
853     }
854     return cur_val;
855 #else
856     /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
857     g_assert_not_reached();
858 #endif
859 }
860 
861 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
862                                      uint32_t *table, uint32_t address)
863 {
864     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
865     uint64_t tcr = regime_tcr(env, mmu_idx);
866     int maskshift = extract32(tcr, 0, 3);
867     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
868     uint32_t base_mask;
869 
870     if (address & mask) {
871         if (tcr & TTBCR_PD1) {
872             /* Translation table walk disabled for TTBR1 */
873             return false;
874         }
875         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
876     } else {
877         if (tcr & TTBCR_PD0) {
878             /* Translation table walk disabled for TTBR0 */
879             return false;
880         }
881         base_mask = ~((uint32_t)0x3fffu >> maskshift);
882         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
883     }
884     *table |= (address >> 18) & 0x3ffc;
885     return true;
886 }
887 
888 /*
889  * Translate section/page access permissions to page R/W protection flags
890  * @env:         CPUARMState
891  * @mmu_idx:     MMU index indicating required translation regime
892  * @ap:          The 3-bit access permissions (AP[2:0])
893  * @domain_prot: The 2-bit domain access permissions
894  * @is_user: TRUE if accessing from PL0
895  */
896 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
897                          int ap, int domain_prot, bool is_user)
898 {
899     if (domain_prot == 3) {
900         return PAGE_READ | PAGE_WRITE;
901     }
902 
903     switch (ap) {
904     case 0:
905         if (arm_feature(env, ARM_FEATURE_V7)) {
906             return 0;
907         }
908         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
909         case SCTLR_S:
910             return is_user ? 0 : PAGE_READ;
911         case SCTLR_R:
912             return PAGE_READ;
913         default:
914             return 0;
915         }
916     case 1:
917         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
918     case 2:
919         if (is_user) {
920             return PAGE_READ;
921         } else {
922             return PAGE_READ | PAGE_WRITE;
923         }
924     case 3:
925         return PAGE_READ | PAGE_WRITE;
926     case 4: /* Reserved.  */
927         return 0;
928     case 5:
929         return is_user ? 0 : PAGE_READ;
930     case 6:
931         return PAGE_READ;
932     case 7:
933         if (!arm_feature(env, ARM_FEATURE_V6K)) {
934             return 0;
935         }
936         return PAGE_READ;
937     default:
938         g_assert_not_reached();
939     }
940 }
941 
942 /*
943  * Translate section/page access permissions to page R/W protection flags
944  * @env:         CPUARMState
945  * @mmu_idx:     MMU index indicating required translation regime
946  * @ap:          The 3-bit access permissions (AP[2:0])
947  * @domain_prot: The 2-bit domain access permissions
948  */
949 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
950                          int ap, int domain_prot)
951 {
952    return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
953                                 regime_is_user(env, mmu_idx));
954 }
955 
956 /*
957  * Translate section/page access permissions to page R/W protection flags.
958  * @ap:      The 2-bit simple AP (AP[2:1])
959  * @is_user: TRUE if accessing from PL0
960  */
961 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
962 {
963     switch (ap) {
964     case 0:
965         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
966     case 1:
967         return PAGE_READ | PAGE_WRITE;
968     case 2:
969         return is_user ? 0 : PAGE_READ;
970     case 3:
971         return PAGE_READ;
972     default:
973         g_assert_not_reached();
974     }
975 }
976 
977 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
978 {
979     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
980 }
981 
982 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
983                              uint32_t address, MMUAccessType access_type,
984                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
985 {
986     int level = 1;
987     uint32_t table;
988     uint32_t desc;
989     int type;
990     int ap;
991     int domain = 0;
992     int domain_prot;
993     hwaddr phys_addr;
994     uint32_t dacr;
995 
996     /* Pagetable walk.  */
997     /* Lookup l1 descriptor.  */
998     if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
999         /* Section translation fault if page walk is disabled by PD0 or PD1 */
1000         fi->type = ARMFault_Translation;
1001         goto do_fault;
1002     }
1003     if (!S1_ptw_translate(env, ptw, table, fi)) {
1004         goto do_fault;
1005     }
1006     desc = arm_ldl_ptw(env, ptw, fi);
1007     if (fi->type != ARMFault_None) {
1008         goto do_fault;
1009     }
1010     type = (desc & 3);
1011     domain = (desc >> 5) & 0x0f;
1012     if (regime_el(env, ptw->in_mmu_idx) == 1) {
1013         dacr = env->cp15.dacr_ns;
1014     } else {
1015         dacr = env->cp15.dacr_s;
1016     }
1017     domain_prot = (dacr >> (domain * 2)) & 3;
1018     if (type == 0) {
1019         /* Section translation fault.  */
1020         fi->type = ARMFault_Translation;
1021         goto do_fault;
1022     }
1023     if (type != 2) {
1024         level = 2;
1025     }
1026     if (domain_prot == 0 || domain_prot == 2) {
1027         fi->type = ARMFault_Domain;
1028         goto do_fault;
1029     }
1030     if (type == 2) {
1031         /* 1Mb section.  */
1032         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1033         ap = (desc >> 10) & 3;
1034         result->f.lg_page_size = 20; /* 1MB */
1035     } else {
1036         /* Lookup l2 entry.  */
1037         if (type == 1) {
1038             /* Coarse pagetable.  */
1039             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1040         } else {
1041             /* Fine pagetable.  */
1042             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1043         }
1044         if (!S1_ptw_translate(env, ptw, table, fi)) {
1045             goto do_fault;
1046         }
1047         desc = arm_ldl_ptw(env, ptw, fi);
1048         if (fi->type != ARMFault_None) {
1049             goto do_fault;
1050         }
1051         switch (desc & 3) {
1052         case 0: /* Page translation fault.  */
1053             fi->type = ARMFault_Translation;
1054             goto do_fault;
1055         case 1: /* 64k page.  */
1056             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1057             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1058             result->f.lg_page_size = 16;
1059             break;
1060         case 2: /* 4k page.  */
1061             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1062             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
1063             result->f.lg_page_size = 12;
1064             break;
1065         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
1066             if (type == 1) {
1067                 /* ARMv6/XScale extended small page format */
1068                 if (arm_feature(env, ARM_FEATURE_XSCALE)
1069                     || arm_feature(env, ARM_FEATURE_V6)) {
1070                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1071                     result->f.lg_page_size = 12;
1072                 } else {
1073                     /*
1074                      * UNPREDICTABLE in ARMv5; we choose to take a
1075                      * page translation fault.
1076                      */
1077                     fi->type = ARMFault_Translation;
1078                     goto do_fault;
1079                 }
1080             } else {
1081                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1082                 result->f.lg_page_size = 10;
1083             }
1084             ap = (desc >> 4) & 3;
1085             break;
1086         default:
1087             /* Never happens, but compiler isn't smart enough to tell.  */
1088             g_assert_not_reached();
1089         }
1090     }
1091     result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
1092     result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
1093     if (!(result->f.prot & (1 << access_type))) {
1094         /* Access permission fault.  */
1095         fi->type = ARMFault_Permission;
1096         goto do_fault;
1097     }
1098     result->f.phys_addr = phys_addr;
1099     return false;
1100 do_fault:
1101     fi->domain = domain;
1102     fi->level = level;
1103     return true;
1104 }
1105 
1106 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
1107                              uint32_t address, MMUAccessType access_type,
1108                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1109 {
1110     ARMCPU *cpu = env_archcpu(env);
1111     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1112     int level = 1;
1113     uint32_t table;
1114     uint32_t desc;
1115     uint32_t xn;
1116     uint32_t pxn = 0;
1117     int type;
1118     int ap;
1119     int domain = 0;
1120     int domain_prot;
1121     hwaddr phys_addr;
1122     uint32_t dacr;
1123     bool ns;
1124     ARMSecuritySpace out_space;
1125 
1126     /* Pagetable walk.  */
1127     /* Lookup l1 descriptor.  */
1128     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
1129         /* Section translation fault if page walk is disabled by PD0 or PD1 */
1130         fi->type = ARMFault_Translation;
1131         goto do_fault;
1132     }
1133     if (!S1_ptw_translate(env, ptw, table, fi)) {
1134         goto do_fault;
1135     }
1136     desc = arm_ldl_ptw(env, ptw, fi);
1137     if (fi->type != ARMFault_None) {
1138         goto do_fault;
1139     }
1140     type = (desc & 3);
1141     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
1142         /* Section translation fault, or attempt to use the encoding
1143          * which is Reserved on implementations without PXN.
1144          */
1145         fi->type = ARMFault_Translation;
1146         goto do_fault;
1147     }
1148     if ((type == 1) || !(desc & (1 << 18))) {
1149         /* Page or Section.  */
1150         domain = (desc >> 5) & 0x0f;
1151     }
1152     if (regime_el(env, mmu_idx) == 1) {
1153         dacr = env->cp15.dacr_ns;
1154     } else {
1155         dacr = env->cp15.dacr_s;
1156     }
1157     if (type == 1) {
1158         level = 2;
1159     }
1160     domain_prot = (dacr >> (domain * 2)) & 3;
1161     if (domain_prot == 0 || domain_prot == 2) {
1162         /* Section or Page domain fault */
1163         fi->type = ARMFault_Domain;
1164         goto do_fault;
1165     }
1166     if (type != 1) {
1167         if (desc & (1 << 18)) {
1168             /* Supersection.  */
1169             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1170             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1171             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1172             result->f.lg_page_size = 24;  /* 16MB */
1173         } else {
1174             /* Section.  */
1175             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1176             result->f.lg_page_size = 20;  /* 1MB */
1177         }
1178         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1179         xn = desc & (1 << 4);
1180         pxn = desc & 1;
1181         ns = extract32(desc, 19, 1);
1182     } else {
1183         if (cpu_isar_feature(aa32_pxn, cpu)) {
1184             pxn = (desc >> 2) & 1;
1185         }
1186         ns = extract32(desc, 3, 1);
1187         /* Lookup l2 entry.  */
1188         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1189         if (!S1_ptw_translate(env, ptw, table, fi)) {
1190             goto do_fault;
1191         }
1192         desc = arm_ldl_ptw(env, ptw, fi);
1193         if (fi->type != ARMFault_None) {
1194             goto do_fault;
1195         }
1196         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1197         switch (desc & 3) {
1198         case 0: /* Page translation fault.  */
1199             fi->type = ARMFault_Translation;
1200             goto do_fault;
1201         case 1: /* 64k page.  */
1202             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1203             xn = desc & (1 << 15);
1204             result->f.lg_page_size = 16;
1205             break;
1206         case 2: case 3: /* 4k page.  */
1207             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1208             xn = desc & 1;
1209             result->f.lg_page_size = 12;
1210             break;
1211         default:
1212             /* Never happens, but compiler isn't smart enough to tell.  */
1213             g_assert_not_reached();
1214         }
1215     }
1216     out_space = ptw->in_space;
1217     if (ns) {
1218         /*
1219          * The NS bit will (as required by the architecture) have no effect if
1220          * the CPU doesn't support TZ or this is a non-secure translation
1221          * regime, because the output space will already be non-secure.
1222          */
1223         out_space = ARMSS_NonSecure;
1224     }
1225     if (domain_prot == 3) {
1226         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1227     } else {
1228         int user_rw, prot_rw;
1229 
1230         if (arm_feature(env, ARM_FEATURE_V6K) &&
1231                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1232             /* The simplified model uses AP[0] as an access control bit.  */
1233             if ((ap & 1) == 0) {
1234                 /* Access flag fault.  */
1235                 fi->type = ARMFault_AccessFlag;
1236                 goto do_fault;
1237             }
1238             prot_rw = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1239             user_rw = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1240         } else {
1241             prot_rw = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1242             user_rw = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1243         }
1244 
1245         result->f.prot = get_S1prot(env, mmu_idx, false, user_rw, prot_rw,
1246                                     xn, pxn, result->f.attrs.space, out_space);
1247         if (!(result->f.prot & (1 << access_type))) {
1248             /* Access permission fault.  */
1249             fi->type = ARMFault_Permission;
1250             goto do_fault;
1251         }
1252     }
1253     result->f.attrs.space = out_space;
1254     result->f.attrs.secure = arm_space_is_secure(out_space);
1255     result->f.phys_addr = phys_addr;
1256     return false;
1257 do_fault:
1258     fi->domain = domain;
1259     fi->level = level;
1260     return true;
1261 }
1262 
1263 /*
1264  * Translate S2 section/page access permissions to protection flags
1265  * @env:     CPUARMState
1266  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
1267  * @xn:      XN (execute-never) bits
1268  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1269  */
1270 static int get_S2prot_noexecute(int s2ap)
1271 {
1272     int prot = 0;
1273 
1274     if (s2ap & 1) {
1275         prot |= PAGE_READ;
1276     }
1277     if (s2ap & 2) {
1278         prot |= PAGE_WRITE;
1279     }
1280     return prot;
1281 }
1282 
1283 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1284 {
1285     int prot = get_S2prot_noexecute(s2ap);
1286 
1287     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1288         switch (xn) {
1289         case 0:
1290             prot |= PAGE_EXEC;
1291             break;
1292         case 1:
1293             if (s1_is_el0) {
1294                 prot |= PAGE_EXEC;
1295             }
1296             break;
1297         case 2:
1298             break;
1299         case 3:
1300             if (!s1_is_el0) {
1301                 prot |= PAGE_EXEC;
1302             }
1303             break;
1304         default:
1305             g_assert_not_reached();
1306         }
1307     } else {
1308         if (!extract32(xn, 1, 1)) {
1309             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1310                 prot |= PAGE_EXEC;
1311             }
1312         }
1313     }
1314     return prot;
1315 }
1316 
1317 /*
1318  * Translate section/page access permissions to protection flags
1319  * @env:     CPUARMState
1320  * @mmu_idx: MMU index indicating required translation regime
1321  * @is_aa64: TRUE if AArch64
1322  * @user_rw: Translated AP for user access
1323  * @prot_rw: Translated AP for privileged access
1324  * @xn:      XN (execute-never) bit
1325  * @pxn:     PXN (privileged execute-never) bit
1326  * @in_pa:   The original input pa space
1327  * @out_pa:  The output pa space, modified by NSTable, NS, and NSE
1328  */
1329 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1330                       int user_rw, int prot_rw, int xn, int pxn,
1331                       ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1332 {
1333     ARMCPU *cpu = env_archcpu(env);
1334     bool is_user = regime_is_user(env, mmu_idx);
1335     bool have_wxn;
1336     int wxn = 0;
1337 
1338     assert(!regime_is_stage2(mmu_idx));
1339 
1340     if (is_user) {
1341         prot_rw = user_rw;
1342     } else {
1343         /*
1344          * PAN controls can forbid data accesses but don't affect insn fetch.
1345          * Plain PAN forbids data accesses if EL0 has data permissions;
1346          * PAN3 forbids data accesses if EL0 has either data or exec perms.
1347          * Note that for AArch64 the 'user can exec' case is exactly !xn.
1348          * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1349          * do not affect EPAN.
1350          */
1351         if (user_rw && regime_is_pan(env, mmu_idx)) {
1352             prot_rw = 0;
1353         } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1354                    regime_is_pan(env, mmu_idx) &&
1355                    (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1356             prot_rw = 0;
1357         }
1358     }
1359 
1360     if (in_pa != out_pa) {
1361         switch (in_pa) {
1362         case ARMSS_Root:
1363             /*
1364              * R_ZWRVD: permission fault for insn fetched from non-Root,
1365              * I_WWBFB: SIF has no effect in EL3.
1366              */
1367             return prot_rw;
1368         case ARMSS_Realm:
1369             /*
1370              * R_PKTDS: permission fault for insn fetched from non-Realm,
1371              * for Realm EL2 or EL2&0.  The corresponding fault for EL1&0
1372              * happens during any stage2 translation.
1373              */
1374             switch (mmu_idx) {
1375             case ARMMMUIdx_E2:
1376             case ARMMMUIdx_E20_0:
1377             case ARMMMUIdx_E20_2:
1378             case ARMMMUIdx_E20_2_PAN:
1379                 return prot_rw;
1380             default:
1381                 break;
1382             }
1383             break;
1384         case ARMSS_Secure:
1385             if (env->cp15.scr_el3 & SCR_SIF) {
1386                 return prot_rw;
1387             }
1388             break;
1389         default:
1390             /* Input NonSecure must have output NonSecure. */
1391             g_assert_not_reached();
1392         }
1393     }
1394 
1395     /* TODO have_wxn should be replaced with
1396      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1397      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1398      * compatible processors have EL2, which is required for [U]WXN.
1399      */
1400     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1401 
1402     if (have_wxn) {
1403         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1404     }
1405 
1406     if (is_aa64) {
1407         if (regime_has_2_ranges(mmu_idx) && !is_user) {
1408             xn = pxn || (user_rw & PAGE_WRITE);
1409         }
1410     } else if (arm_feature(env, ARM_FEATURE_V7)) {
1411         switch (regime_el(env, mmu_idx)) {
1412         case 1:
1413         case 3:
1414             if (is_user) {
1415                 xn = xn || !(user_rw & PAGE_READ);
1416             } else {
1417                 int uwxn = 0;
1418                 if (have_wxn) {
1419                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1420                 }
1421                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1422                      (uwxn && (user_rw & PAGE_WRITE));
1423             }
1424             break;
1425         case 2:
1426             break;
1427         }
1428     } else {
1429         xn = wxn = 0;
1430     }
1431 
1432     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1433         return prot_rw;
1434     }
1435     return prot_rw | PAGE_EXEC;
1436 }
1437 
1438 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1439                                           ARMMMUIdx mmu_idx)
1440 {
1441     uint64_t tcr = regime_tcr(env, mmu_idx);
1442     uint32_t el = regime_el(env, mmu_idx);
1443     int select, tsz;
1444     bool epd, hpd;
1445 
1446     assert(mmu_idx != ARMMMUIdx_Stage2_S);
1447 
1448     if (mmu_idx == ARMMMUIdx_Stage2) {
1449         /* VTCR */
1450         bool sext = extract32(tcr, 4, 1);
1451         bool sign = extract32(tcr, 3, 1);
1452 
1453         /*
1454          * If the sign-extend bit is not the same as t0sz[3], the result
1455          * is unpredictable. Flag this as a guest error.
1456          */
1457         if (sign != sext) {
1458             qemu_log_mask(LOG_GUEST_ERROR,
1459                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1460         }
1461         tsz = sextract32(tcr, 0, 4) + 8;
1462         select = 0;
1463         hpd = false;
1464         epd = false;
1465     } else if (el == 2) {
1466         /* HTCR */
1467         tsz = extract32(tcr, 0, 3);
1468         select = 0;
1469         hpd = extract64(tcr, 24, 1);
1470         epd = false;
1471     } else {
1472         int t0sz = extract32(tcr, 0, 3);
1473         int t1sz = extract32(tcr, 16, 3);
1474 
1475         if (t1sz == 0) {
1476             select = va > (0xffffffffu >> t0sz);
1477         } else {
1478             /* Note that we will detect errors later.  */
1479             select = va >= ~(0xffffffffu >> t1sz);
1480         }
1481         if (!select) {
1482             tsz = t0sz;
1483             epd = extract32(tcr, 7, 1);
1484             hpd = extract64(tcr, 41, 1);
1485         } else {
1486             tsz = t1sz;
1487             epd = extract32(tcr, 23, 1);
1488             hpd = extract64(tcr, 42, 1);
1489         }
1490         /* For aarch32, hpd0 is not enabled without t2e as well.  */
1491         hpd &= extract32(tcr, 6, 1);
1492     }
1493 
1494     return (ARMVAParameters) {
1495         .tsz = tsz,
1496         .select = select,
1497         .epd = epd,
1498         .hpd = hpd,
1499     };
1500 }
1501 
1502 /*
1503  * check_s2_mmu_setup
1504  * @cpu:        ARMCPU
1505  * @is_aa64:    True if the translation regime is in AArch64 state
1506  * @tcr:        VTCR_EL2 or VSTCR_EL2
1507  * @ds:         Effective value of TCR.DS.
1508  * @iasize:     Bitsize of IPAs
1509  * @stride:     Page-table stride (See the ARM ARM)
1510  *
1511  * Decode the starting level of the S2 lookup, returning INT_MIN if
1512  * the configuration is invalid.
1513  */
1514 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1515                               bool ds, int iasize, int stride)
1516 {
1517     int sl0, sl2, startlevel, granulebits, levels;
1518     int s1_min_iasize, s1_max_iasize;
1519 
1520     sl0 = extract32(tcr, 6, 2);
1521     if (is_aa64) {
1522         /*
1523          * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1524          * so interleave AArch64.S2StartLevel.
1525          */
1526         switch (stride) {
1527         case 9: /* 4KB */
1528             /* SL2 is RES0 unless DS=1 & 4KB granule. */
1529             sl2 = extract64(tcr, 33, 1);
1530             if (ds && sl2) {
1531                 if (sl0 != 0) {
1532                     goto fail;
1533                 }
1534                 startlevel = -1;
1535             } else {
1536                 startlevel = 2 - sl0;
1537                 switch (sl0) {
1538                 case 2:
1539                     if (arm_pamax(cpu) < 44) {
1540                         goto fail;
1541                     }
1542                     break;
1543                 case 3:
1544                     if (!cpu_isar_feature(aa64_st, cpu)) {
1545                         goto fail;
1546                     }
1547                     startlevel = 3;
1548                     break;
1549                 }
1550             }
1551             break;
1552         case 11: /* 16KB */
1553             switch (sl0) {
1554             case 2:
1555                 if (arm_pamax(cpu) < 42) {
1556                     goto fail;
1557                 }
1558                 break;
1559             case 3:
1560                 if (!ds) {
1561                     goto fail;
1562                 }
1563                 break;
1564             }
1565             startlevel = 3 - sl0;
1566             break;
1567         case 13: /* 64KB */
1568             switch (sl0) {
1569             case 2:
1570                 if (arm_pamax(cpu) < 44) {
1571                     goto fail;
1572                 }
1573                 break;
1574             case 3:
1575                 goto fail;
1576             }
1577             startlevel = 3 - sl0;
1578             break;
1579         default:
1580             g_assert_not_reached();
1581         }
1582     } else {
1583         /*
1584          * Things are simpler for AArch32 EL2, with only 4k pages.
1585          * There is no separate S2InvalidSL function, but AArch32.S2Walk
1586          * begins with walkparms.sl0 in {'1x'}.
1587          */
1588         assert(stride == 9);
1589         if (sl0 >= 2) {
1590             goto fail;
1591         }
1592         startlevel = 2 - sl0;
1593     }
1594 
1595     /* AArch{64,32}.S2InconsistentSL are functionally equivalent.  */
1596     levels = 3 - startlevel;
1597     granulebits = stride + 3;
1598 
1599     s1_min_iasize = levels * stride + granulebits + 1;
1600     s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1601 
1602     if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1603         return startlevel;
1604     }
1605 
1606  fail:
1607     return INT_MIN;
1608 }
1609 
1610 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
1611                                   ARMGranuleSize gran, int level)
1612 {
1613     /*
1614      * See pseudocode AArch46.BlockDescSupported(): block descriptors
1615      * are not valid at all levels, depending on the page size.
1616      */
1617     switch (gran) {
1618     case Gran4K:
1619         return (level == 0 && ds) || level == 1 || level == 2;
1620     case Gran16K:
1621         return (level == 1 && ds) || level == 2;
1622     case Gran64K:
1623         return (level == 1 && arm_pamax(cpu) == 52) || level == 2;
1624     default:
1625         g_assert_not_reached();
1626     }
1627 }
1628 
1629 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw)
1630 {
1631     uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
1632     return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1);
1633 }
1634 
1635 /**
1636  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1637  *
1638  * Returns false if the translation was successful. Otherwise, phys_ptr,
1639  * attrs, prot and page_size may not be filled in, and the populated fsr
1640  * value provides information on why the translation aborted, in the format
1641  * of a long-format DFSR/IFSR fault register, with the following caveat:
1642  * the WnR bit is never set (the caller must do this).
1643  *
1644  * @env: CPUARMState
1645  * @ptw: Current and next stage parameters for the walk.
1646  * @address: virtual address to get physical address for
1647  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1648  * @memop: memory operation feeding this access, or 0 for none
1649  * @result: set on translation success,
1650  * @fi: set to fault info if the translation fails
1651  */
1652 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1653                                uint64_t address,
1654                                MMUAccessType access_type, MemOp memop,
1655                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1656 {
1657     ARMCPU *cpu = env_archcpu(env);
1658     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1659     int32_t level;
1660     ARMVAParameters param;
1661     uint64_t ttbr;
1662     hwaddr descaddr, indexmask, indexmask_grainsize;
1663     uint32_t tableattrs;
1664     target_ulong page_size;
1665     uint64_t attrs;
1666     int32_t stride;
1667     int addrsize, inputsize, outputsize;
1668     uint64_t tcr = regime_tcr(env, mmu_idx);
1669     int ap, xn, pxn;
1670     uint32_t el = regime_el(env, mmu_idx);
1671     uint64_t descaddrmask;
1672     bool aarch64 = arm_el_is_aa64(env, el);
1673     uint64_t descriptor, new_descriptor;
1674     ARMSecuritySpace out_space;
1675     bool device;
1676 
1677     /* TODO: This code does not support shareability levels. */
1678     if (aarch64) {
1679         int ps;
1680 
1681         param = aa64_va_parameters(env, address, mmu_idx,
1682                                    access_type != MMU_INST_FETCH,
1683                                    !arm_el_is_aa64(env, 1));
1684         level = 0;
1685 
1686         /*
1687          * If TxSZ is programmed to a value larger than the maximum,
1688          * or smaller than the effective minimum, it is IMPLEMENTATION
1689          * DEFINED whether we behave as if the field were programmed
1690          * within bounds, or if a level 0 Translation fault is generated.
1691          *
1692          * With FEAT_LVA, fault on less than minimum becomes required,
1693          * so our choice is to always raise the fault.
1694          */
1695         if (param.tsz_oob) {
1696             goto do_translation_fault;
1697         }
1698 
1699         addrsize = 64 - 8 * param.tbi;
1700         inputsize = 64 - param.tsz;
1701 
1702         /*
1703          * Bound PS by PARANGE to find the effective output address size.
1704          * ID_AA64MMFR0 is a read-only register so values outside of the
1705          * supported mappings can be considered an implementation error.
1706          */
1707         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1708         ps = MIN(ps, param.ps);
1709         assert(ps < ARRAY_SIZE(pamax_map));
1710         outputsize = pamax_map[ps];
1711 
1712         /*
1713          * With LPA2, the effective output address (OA) size is at most 48 bits
1714          * unless TCR.DS == 1
1715          */
1716         if (!param.ds && param.gran != Gran64K) {
1717             outputsize = MIN(outputsize, 48);
1718         }
1719     } else {
1720         param = aa32_va_parameters(env, address, mmu_idx);
1721         level = 1;
1722         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1723         inputsize = addrsize - param.tsz;
1724         outputsize = 40;
1725     }
1726 
1727     /*
1728      * We determined the region when collecting the parameters, but we
1729      * have not yet validated that the address is valid for the region.
1730      * Extract the top bits and verify that they all match select.
1731      *
1732      * For aa32, if inputsize == addrsize, then we have selected the
1733      * region by exclusion in aa32_va_parameters and there is no more
1734      * validation to do here.
1735      */
1736     if (inputsize < addrsize) {
1737         target_ulong top_bits = sextract64(address, inputsize,
1738                                            addrsize - inputsize);
1739         if (-top_bits != param.select) {
1740             /* The gap between the two regions is a Translation fault */
1741             goto do_translation_fault;
1742         }
1743     }
1744 
1745     stride = arm_granule_bits(param.gran) - 3;
1746 
1747     /*
1748      * Note that QEMU ignores shareability and cacheability attributes,
1749      * so we don't need to do anything with the SH, ORGN, IRGN fields
1750      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1751      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1752      * implement any ASID-like capability so we can ignore it (instead
1753      * we will always flush the TLB any time the ASID is changed).
1754      */
1755     ttbr = regime_ttbr(env, mmu_idx, param.select);
1756 
1757     /*
1758      * Here we should have set up all the parameters for the translation:
1759      * inputsize, ttbr, epd, stride, tbi
1760      */
1761 
1762     if (param.epd) {
1763         /*
1764          * Translation table walk disabled => Translation fault on TLB miss
1765          * Note: This is always 0 on 64-bit EL2 and EL3.
1766          */
1767         goto do_translation_fault;
1768     }
1769 
1770     if (!regime_is_stage2(mmu_idx)) {
1771         /*
1772          * The starting level depends on the virtual address size (which can
1773          * be up to 48 bits) and the translation granule size. It indicates
1774          * the number of strides (stride bits at a time) needed to
1775          * consume the bits of the input address. In the pseudocode this is:
1776          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1777          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1778          * our 'stride + 3' and 'stride' is our 'stride'.
1779          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1780          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1781          * = 4 - (inputsize - 4) / stride;
1782          */
1783         level = 4 - (inputsize - 4) / stride;
1784     } else {
1785         int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1786                                             inputsize, stride);
1787         if (startlevel == INT_MIN) {
1788             level = 0;
1789             goto do_translation_fault;
1790         }
1791         level = startlevel;
1792     }
1793 
1794     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1795     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1796 
1797     /* Now we can extract the actual base address from the TTBR */
1798     descaddr = extract64(ttbr, 0, 48);
1799 
1800     /*
1801      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1802      *
1803      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1804      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1805      * but we've just cleared the bits above 47, so simplify the test.
1806      */
1807     if (outputsize > 48) {
1808         descaddr |= extract64(ttbr, 2, 4) << 48;
1809     } else if (descaddr >> outputsize) {
1810         level = 0;
1811         fi->type = ARMFault_AddressSize;
1812         goto do_fault;
1813     }
1814 
1815     /*
1816      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1817      * and also to mask out CnP (bit 0) which could validly be non-zero.
1818      */
1819     descaddr &= ~indexmask;
1820 
1821     /*
1822      * For AArch32, the address field in the descriptor goes up to bit 39
1823      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1824      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1825      * bits as part of the address, which will be checked via outputsize.
1826      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1827      * the highest bits of a 52-bit output are placed elsewhere.
1828      */
1829     if (param.ds) {
1830         descaddrmask = MAKE_64BIT_MASK(0, 50);
1831     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1832         descaddrmask = MAKE_64BIT_MASK(0, 48);
1833     } else {
1834         descaddrmask = MAKE_64BIT_MASK(0, 40);
1835     }
1836     descaddrmask &= ~indexmask_grainsize;
1837     tableattrs = 0;
1838 
1839  next_level:
1840     descaddr |= (address >> (stride * (4 - level))) & indexmask;
1841     descaddr &= ~7ULL;
1842 
1843     /*
1844      * Process the NSTable bit from the previous level.  This changes
1845      * the table address space and the output space from Secure to
1846      * NonSecure.  With RME, the EL3 translation regime does not change
1847      * from Root to NonSecure.
1848      */
1849     if (ptw->in_space == ARMSS_Secure
1850         && !regime_is_stage2(mmu_idx)
1851         && extract32(tableattrs, 4, 1)) {
1852         /*
1853          * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1854          * Assert the relative order of the secure/non-secure indexes.
1855          */
1856         QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1857         QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1858         ptw->in_ptw_idx += 1;
1859         ptw->in_space = ARMSS_NonSecure;
1860     }
1861 
1862     if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1863         goto do_fault;
1864     }
1865     descriptor = arm_ldq_ptw(env, ptw, fi);
1866     if (fi->type != ARMFault_None) {
1867         goto do_fault;
1868     }
1869     new_descriptor = descriptor;
1870 
1871  restart_atomic_update:
1872     if (!(descriptor & 1) ||
1873         (!(descriptor & 2) &&
1874          !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) {
1875         /* Invalid, or a block descriptor at an invalid level */
1876         goto do_translation_fault;
1877     }
1878 
1879     descaddr = descriptor & descaddrmask;
1880 
1881     /*
1882      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1883      * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1884      * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1885      * raise AddressSizeFault.
1886      */
1887     if (outputsize > 48) {
1888         if (param.ds) {
1889             descaddr |= extract64(descriptor, 8, 2) << 50;
1890         } else {
1891             descaddr |= extract64(descriptor, 12, 4) << 48;
1892         }
1893     } else if (descaddr >> outputsize) {
1894         fi->type = ARMFault_AddressSize;
1895         goto do_fault;
1896     }
1897 
1898     if ((descriptor & 2) && (level < 3)) {
1899         /*
1900          * Table entry. The top five bits are attributes which may
1901          * propagate down through lower levels of the table (and
1902          * which are all arranged so that 0 means "no effect", so
1903          * we can gather them up by ORing in the bits at each level).
1904          */
1905         tableattrs |= extract64(descriptor, 59, 5);
1906         level++;
1907         indexmask = indexmask_grainsize;
1908         goto next_level;
1909     }
1910 
1911     /*
1912      * Block entry at level 1 or 2, or page entry at level 3.
1913      * These are basically the same thing, although the number
1914      * of bits we pull in from the vaddr varies. Note that although
1915      * descaddrmask masks enough of the low bits of the descriptor
1916      * to give a correct page or table address, the address field
1917      * in a block descriptor is smaller; so we need to explicitly
1918      * clear the lower bits here before ORing in the low vaddr bits.
1919      *
1920      * Afterward, descaddr is the final physical address.
1921      */
1922     page_size = (1ULL << ((stride * (4 - level)) + 3));
1923     descaddr &= ~(hwaddr)(page_size - 1);
1924     descaddr |= (address & (page_size - 1));
1925 
1926     if (likely(!ptw->in_debug)) {
1927         /*
1928          * Access flag.
1929          * If HA is enabled, prepare to update the descriptor below.
1930          * Otherwise, pass the access fault on to software.
1931          */
1932         if (!(descriptor & (1 << 10))) {
1933             if (param.ha) {
1934                 new_descriptor |= 1 << 10; /* AF */
1935             } else {
1936                 fi->type = ARMFault_AccessFlag;
1937                 goto do_fault;
1938             }
1939         }
1940 
1941         /*
1942          * Dirty Bit.
1943          * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1944          * bit for writeback. The actual write protection test may still be
1945          * overridden by tableattrs, to be merged below.
1946          */
1947         if (param.hd
1948             && extract64(descriptor, 51, 1)  /* DBM */
1949             && access_type == MMU_DATA_STORE) {
1950             if (regime_is_stage2(mmu_idx)) {
1951                 new_descriptor |= 1ull << 7;    /* set S2AP[1] */
1952             } else {
1953                 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1954             }
1955         }
1956     }
1957 
1958     /*
1959      * Extract attributes from the (modified) descriptor, and apply
1960      * table descriptors. Stage 2 table descriptors do not include
1961      * any attribute fields. HPD disables all the table attributes
1962      * except NSTable (which we have already handled).
1963      */
1964     attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1965     if (!regime_is_stage2(mmu_idx)) {
1966         if (!param.hpd) {
1967             attrs |= extract64(tableattrs, 0, 2) << 53;     /* XN, PXN */
1968             /*
1969              * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1970              * means "force PL1 access only", which means forcing AP[1] to 0.
1971              */
1972             attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1973             attrs |= extract32(tableattrs, 3, 1) << 7;    /* APT[1] => AP[2] */
1974         }
1975     }
1976 
1977     ap = extract32(attrs, 6, 2);
1978     out_space = ptw->in_space;
1979     if (regime_is_stage2(mmu_idx)) {
1980         /*
1981          * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
1982          * The bit remains ignored for other security states.
1983          * R_YMCSL: Executing an insn fetched from non-Realm causes
1984          * a stage2 permission fault.
1985          */
1986         if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
1987             out_space = ARMSS_NonSecure;
1988             result->f.prot = get_S2prot_noexecute(ap);
1989         } else {
1990             xn = extract64(attrs, 53, 2);
1991             result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
1992         }
1993 
1994         result->cacheattrs.is_s2_format = true;
1995         result->cacheattrs.attrs = extract32(attrs, 2, 4);
1996         /*
1997          * Security state does not really affect HCR_EL2.FWB;
1998          * we only need to filter FWB for aa32 or other FEAT.
1999          */
2000         device = S2_attrs_are_device(arm_hcr_el2_eff(env),
2001                                      result->cacheattrs.attrs);
2002     } else {
2003         int nse, ns = extract32(attrs, 5, 1);
2004         uint8_t attrindx;
2005         uint64_t mair;
2006         int user_rw, prot_rw;
2007 
2008         switch (out_space) {
2009         case ARMSS_Root:
2010             /*
2011              * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
2012              * R_XTYPW: NSE and NS together select the output pa space.
2013              */
2014             nse = extract32(attrs, 11, 1);
2015             out_space = (nse << 1) | ns;
2016             if (out_space == ARMSS_Secure &&
2017                 !cpu_isar_feature(aa64_sel2, cpu)) {
2018                 out_space = ARMSS_NonSecure;
2019             }
2020             break;
2021         case ARMSS_Secure:
2022             if (ns) {
2023                 out_space = ARMSS_NonSecure;
2024             }
2025             break;
2026         case ARMSS_Realm:
2027             switch (mmu_idx) {
2028             case ARMMMUIdx_Stage1_E0:
2029             case ARMMMUIdx_Stage1_E1:
2030             case ARMMMUIdx_Stage1_E1_PAN:
2031                 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
2032                 break;
2033             case ARMMMUIdx_E2:
2034             case ARMMMUIdx_E20_0:
2035             case ARMMMUIdx_E20_2:
2036             case ARMMMUIdx_E20_2_PAN:
2037                 /*
2038                  * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
2039                  * NS changes the output to non-secure space.
2040                  */
2041                 if (ns) {
2042                     out_space = ARMSS_NonSecure;
2043                 }
2044                 break;
2045             default:
2046                 g_assert_not_reached();
2047             }
2048             break;
2049         case ARMSS_NonSecure:
2050             /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
2051             break;
2052         default:
2053             g_assert_not_reached();
2054         }
2055         xn = extract64(attrs, 54, 1);
2056         pxn = extract64(attrs, 53, 1);
2057 
2058         if (el == 1 && nv_nv1_enabled(env, ptw)) {
2059             /*
2060              * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page
2061              * descriptor bit 54 holds PXN, 53 is RES0, and the effective value
2062              * of UXN is 0. Similarly for bits 59 and 60 in table descriptors
2063              * (which we have already folded into bits 53 and 54 of attrs).
2064              * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0.
2065              * Similarly, APTable[0] from the table descriptor is treated as 0;
2066              * we already folded this into AP[1] and squashing that to 0 does
2067              * the right thing.
2068              */
2069             pxn = xn;
2070             xn = 0;
2071             ap &= ~1;
2072         }
2073 
2074         user_rw = simple_ap_to_rw_prot_is_user(ap, true);
2075         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
2076         /*
2077          * Note that we modified ptw->in_space earlier for NSTable, but
2078          * result->f.attrs retains a copy of the original security space.
2079          */
2080         result->f.prot = get_S1prot(env, mmu_idx, aarch64, user_rw, prot_rw,
2081                                     xn, pxn, result->f.attrs.space, out_space);
2082 
2083         /* Index into MAIR registers for cache attributes */
2084         attrindx = extract32(attrs, 2, 3);
2085         mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2086         assert(attrindx <= 7);
2087         result->cacheattrs.is_s2_format = false;
2088         result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2089 
2090         /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
2091         if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
2092             result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */
2093         }
2094         device = S1_attrs_are_device(result->cacheattrs.attrs);
2095     }
2096 
2097     /*
2098      * Enable alignment checks on Device memory.
2099      *
2100      * Per R_XCHFJ, the correct ordering for alignment, permission,
2101      * and stage 2 faults is:
2102      *    - Alignment fault caused by the memory type
2103      *    - Permission fault
2104      *    - A stage 2 fault on the memory access
2105      * Perform the alignment check now, so that we recognize it in
2106      * the correct order.  Set TLB_CHECK_ALIGNED so that any subsequent
2107      * softmmu tlb hit will also check the alignment; clear along the
2108      * non-device path so that tlb_fill_flags is consistent in the
2109      * event of restart_atomic_update.
2110      *
2111      * In v7, for a CPU without the Virtualization Extensions this
2112      * access is UNPREDICTABLE; we choose to make it take the alignment
2113      * fault as is required for a v7VE CPU. (QEMU doesn't emulate any
2114      * CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.)
2115      */
2116     if (device) {
2117         unsigned a_bits = memop_atomicity_bits(memop);
2118         if (address & ((1 << a_bits) - 1)) {
2119             fi->type = ARMFault_Alignment;
2120             goto do_fault;
2121         }
2122         result->f.tlb_fill_flags = TLB_CHECK_ALIGNED;
2123     } else {
2124         result->f.tlb_fill_flags = 0;
2125     }
2126 
2127     if (!(result->f.prot & (1 << access_type))) {
2128         fi->type = ARMFault_Permission;
2129         goto do_fault;
2130     }
2131 
2132     /* If FEAT_HAFDBS has made changes, update the PTE. */
2133     if (new_descriptor != descriptor) {
2134         new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
2135         if (fi->type != ARMFault_None) {
2136             goto do_fault;
2137         }
2138         /*
2139          * I_YZSVV says that if the in-memory descriptor has changed,
2140          * then we must use the information in that new value
2141          * (which might include a different output address, different
2142          * attributes, or generate a fault).
2143          * Restart the handling of the descriptor value from scratch.
2144          */
2145         if (new_descriptor != descriptor) {
2146             descriptor = new_descriptor;
2147             goto restart_atomic_update;
2148         }
2149     }
2150 
2151     result->f.attrs.space = out_space;
2152     result->f.attrs.secure = arm_space_is_secure(out_space);
2153 
2154     /*
2155      * For FEAT_LPA2 and effective DS, the SH field in the attributes
2156      * was re-purposed for output address bits.  The SH attribute in
2157      * that case comes from TCR_ELx, which we extracted earlier.
2158      */
2159     if (param.ds) {
2160         result->cacheattrs.shareability = param.sh;
2161     } else {
2162         result->cacheattrs.shareability = extract32(attrs, 8, 2);
2163     }
2164 
2165     result->f.phys_addr = descaddr;
2166     result->f.lg_page_size = ctz64(page_size);
2167     return false;
2168 
2169  do_translation_fault:
2170     fi->type = ARMFault_Translation;
2171  do_fault:
2172     if (fi->s1ptw) {
2173         /* Retain the existing stage 2 fi->level */
2174         assert(fi->stage2);
2175     } else {
2176         fi->level = level;
2177         fi->stage2 = regime_is_stage2(mmu_idx);
2178     }
2179     fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx);
2180     return true;
2181 }
2182 
2183 static bool get_phys_addr_pmsav5(CPUARMState *env,
2184                                  S1Translate *ptw,
2185                                  uint32_t address,
2186                                  MMUAccessType access_type,
2187                                  GetPhysAddrResult *result,
2188                                  ARMMMUFaultInfo *fi)
2189 {
2190     int n;
2191     uint32_t mask;
2192     uint32_t base;
2193     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2194     bool is_user = regime_is_user(env, mmu_idx);
2195 
2196     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
2197         /* MPU disabled.  */
2198         result->f.phys_addr = address;
2199         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2200         return false;
2201     }
2202 
2203     result->f.phys_addr = address;
2204     for (n = 7; n >= 0; n--) {
2205         base = env->cp15.c6_region[n];
2206         if ((base & 1) == 0) {
2207             continue;
2208         }
2209         mask = 1 << ((base >> 1) & 0x1f);
2210         /* Keep this shift separate from the above to avoid an
2211            (undefined) << 32.  */
2212         mask = (mask << 1) - 1;
2213         if (((base ^ address) & ~mask) == 0) {
2214             break;
2215         }
2216     }
2217     if (n < 0) {
2218         fi->type = ARMFault_Background;
2219         return true;
2220     }
2221 
2222     if (access_type == MMU_INST_FETCH) {
2223         mask = env->cp15.pmsav5_insn_ap;
2224     } else {
2225         mask = env->cp15.pmsav5_data_ap;
2226     }
2227     mask = (mask >> (n * 4)) & 0xf;
2228     switch (mask) {
2229     case 0:
2230         fi->type = ARMFault_Permission;
2231         fi->level = 1;
2232         return true;
2233     case 1:
2234         if (is_user) {
2235             fi->type = ARMFault_Permission;
2236             fi->level = 1;
2237             return true;
2238         }
2239         result->f.prot = PAGE_READ | PAGE_WRITE;
2240         break;
2241     case 2:
2242         result->f.prot = PAGE_READ;
2243         if (!is_user) {
2244             result->f.prot |= PAGE_WRITE;
2245         }
2246         break;
2247     case 3:
2248         result->f.prot = PAGE_READ | PAGE_WRITE;
2249         break;
2250     case 5:
2251         if (is_user) {
2252             fi->type = ARMFault_Permission;
2253             fi->level = 1;
2254             return true;
2255         }
2256         result->f.prot = PAGE_READ;
2257         break;
2258     case 6:
2259         result->f.prot = PAGE_READ;
2260         break;
2261     default:
2262         /* Bad permission.  */
2263         fi->type = ARMFault_Permission;
2264         fi->level = 1;
2265         return true;
2266     }
2267     result->f.prot |= PAGE_EXEC;
2268     return false;
2269 }
2270 
2271 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2272                                          int32_t address, uint8_t *prot)
2273 {
2274     if (!arm_feature(env, ARM_FEATURE_M)) {
2275         *prot = PAGE_READ | PAGE_WRITE;
2276         switch (address) {
2277         case 0xF0000000 ... 0xFFFFFFFF:
2278             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2279                 /* hivecs execing is ok */
2280                 *prot |= PAGE_EXEC;
2281             }
2282             break;
2283         case 0x00000000 ... 0x7FFFFFFF:
2284             *prot |= PAGE_EXEC;
2285             break;
2286         }
2287     } else {
2288         /* Default system address map for M profile cores.
2289          * The architecture specifies which regions are execute-never;
2290          * at the MPU level no other checks are defined.
2291          */
2292         switch (address) {
2293         case 0x00000000 ... 0x1fffffff: /* ROM */
2294         case 0x20000000 ... 0x3fffffff: /* SRAM */
2295         case 0x60000000 ... 0x7fffffff: /* RAM */
2296         case 0x80000000 ... 0x9fffffff: /* RAM */
2297             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2298             break;
2299         case 0x40000000 ... 0x5fffffff: /* Peripheral */
2300         case 0xa0000000 ... 0xbfffffff: /* Device */
2301         case 0xc0000000 ... 0xdfffffff: /* Device */
2302         case 0xe0000000 ... 0xffffffff: /* System */
2303             *prot = PAGE_READ | PAGE_WRITE;
2304             break;
2305         default:
2306             g_assert_not_reached();
2307         }
2308     }
2309 }
2310 
2311 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2312 {
2313     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2314     return arm_feature(env, ARM_FEATURE_M) &&
2315         extract32(address, 20, 12) == 0xe00;
2316 }
2317 
2318 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2319 {
2320     /*
2321      * True if address is in the M profile system region
2322      * 0xe0000000 - 0xffffffff
2323      */
2324     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2325 }
2326 
2327 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2328                                          bool is_secure, bool is_user)
2329 {
2330     /*
2331      * Return true if we should use the default memory map as a
2332      * "background" region if there are no hits against any MPU regions.
2333      */
2334     CPUARMState *env = &cpu->env;
2335 
2336     if (is_user) {
2337         return false;
2338     }
2339 
2340     if (arm_feature(env, ARM_FEATURE_M)) {
2341         return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2342     }
2343 
2344     if (mmu_idx == ARMMMUIdx_Stage2) {
2345         return false;
2346     }
2347 
2348     return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2349 }
2350 
2351 static bool get_phys_addr_pmsav7(CPUARMState *env,
2352                                  S1Translate *ptw,
2353                                  uint32_t address,
2354                                  MMUAccessType access_type,
2355                                  GetPhysAddrResult *result,
2356                                  ARMMMUFaultInfo *fi)
2357 {
2358     ARMCPU *cpu = env_archcpu(env);
2359     int n;
2360     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2361     bool is_user = regime_is_user(env, mmu_idx);
2362     bool secure = arm_space_is_secure(ptw->in_space);
2363 
2364     result->f.phys_addr = address;
2365     result->f.lg_page_size = TARGET_PAGE_BITS;
2366     result->f.prot = 0;
2367 
2368     if (regime_translation_disabled(env, mmu_idx, ptw->in_space) ||
2369         m_is_ppb_region(env, address)) {
2370         /*
2371          * MPU disabled or M profile PPB access: use default memory map.
2372          * The other case which uses the default memory map in the
2373          * v7M ARM ARM pseudocode is exception vector reads from the vector
2374          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2375          * which always does a direct read using address_space_ldl(), rather
2376          * than going via this function, so we don't need to check that here.
2377          */
2378         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2379     } else { /* MPU enabled */
2380         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2381             /* region search */
2382             uint32_t base = env->pmsav7.drbar[n];
2383             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2384             uint32_t rmask;
2385             bool srdis = false;
2386 
2387             if (!(env->pmsav7.drsr[n] & 0x1)) {
2388                 continue;
2389             }
2390 
2391             if (!rsize) {
2392                 qemu_log_mask(LOG_GUEST_ERROR,
2393                               "DRSR[%d]: Rsize field cannot be 0\n", n);
2394                 continue;
2395             }
2396             rsize++;
2397             rmask = (1ull << rsize) - 1;
2398 
2399             if (base & rmask) {
2400                 qemu_log_mask(LOG_GUEST_ERROR,
2401                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2402                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
2403                               n, base, rmask);
2404                 continue;
2405             }
2406 
2407             if (address < base || address > base + rmask) {
2408                 /*
2409                  * Address not in this region. We must check whether the
2410                  * region covers addresses in the same page as our address.
2411                  * In that case we must not report a size that covers the
2412                  * whole page for a subsequent hit against a different MPU
2413                  * region or the background region, because it would result in
2414                  * incorrect TLB hits for subsequent accesses to addresses that
2415                  * are in this MPU region.
2416                  */
2417                 if (ranges_overlap(base, rmask,
2418                                    address & TARGET_PAGE_MASK,
2419                                    TARGET_PAGE_SIZE)) {
2420                     result->f.lg_page_size = 0;
2421                 }
2422                 continue;
2423             }
2424 
2425             /* Region matched */
2426 
2427             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2428                 int i, snd;
2429                 uint32_t srdis_mask;
2430 
2431                 rsize -= 3; /* sub region size (power of 2) */
2432                 snd = ((address - base) >> rsize) & 0x7;
2433                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2434 
2435                 srdis_mask = srdis ? 0x3 : 0x0;
2436                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2437                     /*
2438                      * This will check in groups of 2, 4 and then 8, whether
2439                      * the subregion bits are consistent. rsize is incremented
2440                      * back up to give the region size, considering consistent
2441                      * adjacent subregions as one region. Stop testing if rsize
2442                      * is already big enough for an entire QEMU page.
2443                      */
2444                     int snd_rounded = snd & ~(i - 1);
2445                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2446                                                      snd_rounded + 8, i);
2447                     if (srdis_mask ^ srdis_multi) {
2448                         break;
2449                     }
2450                     srdis_mask = (srdis_mask << i) | srdis_mask;
2451                     rsize++;
2452                 }
2453             }
2454             if (srdis) {
2455                 continue;
2456             }
2457             if (rsize < TARGET_PAGE_BITS) {
2458                 result->f.lg_page_size = rsize;
2459             }
2460             break;
2461         }
2462 
2463         if (n == -1) { /* no hits */
2464             if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2465                 /* background fault */
2466                 fi->type = ARMFault_Background;
2467                 return true;
2468             }
2469             get_phys_addr_pmsav7_default(env, mmu_idx, address,
2470                                          &result->f.prot);
2471         } else { /* a MPU hit! */
2472             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2473             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2474 
2475             if (m_is_system_region(env, address)) {
2476                 /* System space is always execute never */
2477                 xn = 1;
2478             }
2479 
2480             if (is_user) { /* User mode AP bit decoding */
2481                 switch (ap) {
2482                 case 0:
2483                 case 1:
2484                 case 5:
2485                     break; /* no access */
2486                 case 3:
2487                     result->f.prot |= PAGE_WRITE;
2488                     /* fall through */
2489                 case 2:
2490                 case 6:
2491                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2492                     break;
2493                 case 7:
2494                     /* for v7M, same as 6; for R profile a reserved value */
2495                     if (arm_feature(env, ARM_FEATURE_M)) {
2496                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2497                         break;
2498                     }
2499                     /* fall through */
2500                 default:
2501                     qemu_log_mask(LOG_GUEST_ERROR,
2502                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2503                                   PRIx32 "\n", n, ap);
2504                 }
2505             } else { /* Priv. mode AP bits decoding */
2506                 switch (ap) {
2507                 case 0:
2508                     break; /* no access */
2509                 case 1:
2510                 case 2:
2511                 case 3:
2512                     result->f.prot |= PAGE_WRITE;
2513                     /* fall through */
2514                 case 5:
2515                 case 6:
2516                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2517                     break;
2518                 case 7:
2519                     /* for v7M, same as 6; for R profile a reserved value */
2520                     if (arm_feature(env, ARM_FEATURE_M)) {
2521                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2522                         break;
2523                     }
2524                     /* fall through */
2525                 default:
2526                     qemu_log_mask(LOG_GUEST_ERROR,
2527                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2528                                   PRIx32 "\n", n, ap);
2529                 }
2530             }
2531 
2532             /* execute never */
2533             if (xn) {
2534                 result->f.prot &= ~PAGE_EXEC;
2535             }
2536         }
2537     }
2538 
2539     fi->type = ARMFault_Permission;
2540     fi->level = 1;
2541     return !(result->f.prot & (1 << access_type));
2542 }
2543 
2544 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2545                              uint32_t secure)
2546 {
2547     if (regime_el(env, mmu_idx) == 2) {
2548         return env->pmsav8.hprbar;
2549     } else {
2550         return env->pmsav8.rbar[secure];
2551     }
2552 }
2553 
2554 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2555                              uint32_t secure)
2556 {
2557     if (regime_el(env, mmu_idx) == 2) {
2558         return env->pmsav8.hprlar;
2559     } else {
2560         return env->pmsav8.rlar[secure];
2561     }
2562 }
2563 
2564 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2565                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
2566                        bool secure, GetPhysAddrResult *result,
2567                        ARMMMUFaultInfo *fi, uint32_t *mregion)
2568 {
2569     /*
2570      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2571      * that a full phys-to-virt translation does).
2572      * mregion is (if not NULL) set to the region number which matched,
2573      * or -1 if no region number is returned (MPU off, address did not
2574      * hit a region, address hit in multiple regions).
2575      * If the region hit doesn't cover the entire TARGET_PAGE the address
2576      * is within, then we set the result page_size to 1 to force the
2577      * memory system to use a subpage.
2578      */
2579     ARMCPU *cpu = env_archcpu(env);
2580     bool is_user = regime_is_user(env, mmu_idx);
2581     int n;
2582     int matchregion = -1;
2583     bool hit = false;
2584     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2585     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2586     int region_counter;
2587 
2588     if (regime_el(env, mmu_idx) == 2) {
2589         region_counter = cpu->pmsav8r_hdregion;
2590     } else {
2591         region_counter = cpu->pmsav7_dregion;
2592     }
2593 
2594     result->f.lg_page_size = TARGET_PAGE_BITS;
2595     result->f.phys_addr = address;
2596     result->f.prot = 0;
2597     if (mregion) {
2598         *mregion = -1;
2599     }
2600 
2601     if (mmu_idx == ARMMMUIdx_Stage2) {
2602         fi->stage2 = true;
2603     }
2604 
2605     /*
2606      * Unlike the ARM ARM pseudocode, we don't need to check whether this
2607      * was an exception vector read from the vector table (which is always
2608      * done using the default system address map), because those accesses
2609      * are done in arm_v7m_load_vector(), which always does a direct
2610      * read using address_space_ldl(), rather than going via this function.
2611      */
2612     if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) {
2613         /* MPU disabled */
2614         hit = true;
2615     } else if (m_is_ppb_region(env, address)) {
2616         hit = true;
2617     } else {
2618         if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2619             hit = true;
2620         }
2621 
2622         uint32_t bitmask;
2623         if (arm_feature(env, ARM_FEATURE_M)) {
2624             bitmask = 0x1f;
2625         } else {
2626             bitmask = 0x3f;
2627             fi->level = 0;
2628         }
2629 
2630         for (n = region_counter - 1; n >= 0; n--) {
2631             /* region search */
2632             /*
2633              * Note that the base address is bits [31:x] from the register
2634              * with bits [x-1:0] all zeroes, but the limit address is bits
2635              * [31:x] from the register with bits [x:0] all ones. Where x is
2636              * 5 for Cortex-M and 6 for Cortex-R
2637              */
2638             uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2639             uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2640 
2641             if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2642                 /* Region disabled */
2643                 continue;
2644             }
2645 
2646             if (address < base || address > limit) {
2647                 /*
2648                  * Address not in this region. We must check whether the
2649                  * region covers addresses in the same page as our address.
2650                  * In that case we must not report a size that covers the
2651                  * whole page for a subsequent hit against a different MPU
2652                  * region or the background region, because it would result in
2653                  * incorrect TLB hits for subsequent accesses to addresses that
2654                  * are in this MPU region.
2655                  */
2656                 if (limit >= base &&
2657                     ranges_overlap(base, limit - base + 1,
2658                                    addr_page_base,
2659                                    TARGET_PAGE_SIZE)) {
2660                     result->f.lg_page_size = 0;
2661                 }
2662                 continue;
2663             }
2664 
2665             if (base > addr_page_base || limit < addr_page_limit) {
2666                 result->f.lg_page_size = 0;
2667             }
2668 
2669             if (matchregion != -1) {
2670                 /*
2671                  * Multiple regions match -- always a failure (unlike
2672                  * PMSAv7 where highest-numbered-region wins)
2673                  */
2674                 fi->type = ARMFault_Permission;
2675                 if (arm_feature(env, ARM_FEATURE_M)) {
2676                     fi->level = 1;
2677                 }
2678                 return true;
2679             }
2680 
2681             matchregion = n;
2682             hit = true;
2683         }
2684     }
2685 
2686     if (!hit) {
2687         if (arm_feature(env, ARM_FEATURE_M)) {
2688             fi->type = ARMFault_Background;
2689         } else {
2690             fi->type = ARMFault_Permission;
2691         }
2692         return true;
2693     }
2694 
2695     if (matchregion == -1) {
2696         /* hit using the background region */
2697         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2698     } else {
2699         uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2700         uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2701         uint32_t ap = extract32(matched_rbar, 1, 2);
2702         uint32_t xn = extract32(matched_rbar, 0, 1);
2703         bool pxn = false;
2704 
2705         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2706             pxn = extract32(matched_rlar, 4, 1);
2707         }
2708 
2709         if (m_is_system_region(env, address)) {
2710             /* System space is always execute never */
2711             xn = 1;
2712         }
2713 
2714         if (regime_el(env, mmu_idx) == 2) {
2715             result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2716                                             mmu_idx != ARMMMUIdx_E2);
2717         } else {
2718             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2719         }
2720 
2721         if (!arm_feature(env, ARM_FEATURE_M)) {
2722             uint8_t attrindx = extract32(matched_rlar, 1, 3);
2723             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2724             uint8_t sh = extract32(matched_rlar, 3, 2);
2725 
2726             if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2727                 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2728                 xn = 0x1;
2729             }
2730 
2731             if ((regime_el(env, mmu_idx) == 1) &&
2732                 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2733                 pxn = 0x1;
2734             }
2735 
2736             result->cacheattrs.is_s2_format = false;
2737             result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2738             result->cacheattrs.shareability = sh;
2739         }
2740 
2741         if (result->f.prot && !xn && !(pxn && !is_user)) {
2742             result->f.prot |= PAGE_EXEC;
2743         }
2744 
2745         if (mregion) {
2746             *mregion = matchregion;
2747         }
2748     }
2749 
2750     fi->type = ARMFault_Permission;
2751     if (arm_feature(env, ARM_FEATURE_M)) {
2752         fi->level = 1;
2753     }
2754     return !(result->f.prot & (1 << access_type));
2755 }
2756 
2757 static bool v8m_is_sau_exempt(CPUARMState *env,
2758                               uint32_t address, MMUAccessType access_type)
2759 {
2760     /*
2761      * The architecture specifies that certain address ranges are
2762      * exempt from v8M SAU/IDAU checks.
2763      */
2764     return
2765         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2766         (address >= 0xe0000000 && address <= 0xe0002fff) ||
2767         (address >= 0xe000e000 && address <= 0xe000efff) ||
2768         (address >= 0xe002e000 && address <= 0xe002efff) ||
2769         (address >= 0xe0040000 && address <= 0xe0041fff) ||
2770         (address >= 0xe00ff000 && address <= 0xe00fffff);
2771 }
2772 
2773 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2774                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
2775                          bool is_secure, V8M_SAttributes *sattrs)
2776 {
2777     /*
2778      * Look up the security attributes for this address. Compare the
2779      * pseudocode SecurityCheck() function.
2780      * We assume the caller has zero-initialized *sattrs.
2781      */
2782     ARMCPU *cpu = env_archcpu(env);
2783     int r;
2784     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2785     int idau_region = IREGION_NOTVALID;
2786     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2787     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2788 
2789     if (cpu->idau) {
2790         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2791         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2792 
2793         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2794                    &idau_nsc);
2795     }
2796 
2797     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2798         /* 0xf0000000..0xffffffff is always S for insn fetches */
2799         return;
2800     }
2801 
2802     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2803         sattrs->ns = !is_secure;
2804         return;
2805     }
2806 
2807     if (idau_region != IREGION_NOTVALID) {
2808         sattrs->irvalid = true;
2809         sattrs->iregion = idau_region;
2810     }
2811 
2812     switch (env->sau.ctrl & 3) {
2813     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2814         break;
2815     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2816         sattrs->ns = true;
2817         break;
2818     default: /* SAU.ENABLE == 1 */
2819         for (r = 0; r < cpu->sau_sregion; r++) {
2820             if (env->sau.rlar[r] & 1) {
2821                 uint32_t base = env->sau.rbar[r] & ~0x1f;
2822                 uint32_t limit = env->sau.rlar[r] | 0x1f;
2823 
2824                 if (base <= address && limit >= address) {
2825                     if (base > addr_page_base || limit < addr_page_limit) {
2826                         sattrs->subpage = true;
2827                     }
2828                     if (sattrs->srvalid) {
2829                         /*
2830                          * If we hit in more than one region then we must report
2831                          * as Secure, not NS-Callable, with no valid region
2832                          * number info.
2833                          */
2834                         sattrs->ns = false;
2835                         sattrs->nsc = false;
2836                         sattrs->sregion = 0;
2837                         sattrs->srvalid = false;
2838                         break;
2839                     } else {
2840                         if (env->sau.rlar[r] & 2) {
2841                             sattrs->nsc = true;
2842                         } else {
2843                             sattrs->ns = true;
2844                         }
2845                         sattrs->srvalid = true;
2846                         sattrs->sregion = r;
2847                     }
2848                 } else {
2849                     /*
2850                      * Address not in this region. We must check whether the
2851                      * region covers addresses in the same page as our address.
2852                      * In that case we must not report a size that covers the
2853                      * whole page for a subsequent hit against a different MPU
2854                      * region or the background region, because it would result
2855                      * in incorrect TLB hits for subsequent accesses to
2856                      * addresses that are in this MPU region.
2857                      */
2858                     if (limit >= base &&
2859                         ranges_overlap(base, limit - base + 1,
2860                                        addr_page_base,
2861                                        TARGET_PAGE_SIZE)) {
2862                         sattrs->subpage = true;
2863                     }
2864                 }
2865             }
2866         }
2867         break;
2868     }
2869 
2870     /*
2871      * The IDAU will override the SAU lookup results if it specifies
2872      * higher security than the SAU does.
2873      */
2874     if (!idau_ns) {
2875         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2876             sattrs->ns = false;
2877             sattrs->nsc = idau_nsc;
2878         }
2879     }
2880 }
2881 
2882 static bool get_phys_addr_pmsav8(CPUARMState *env,
2883                                  S1Translate *ptw,
2884                                  uint32_t address,
2885                                  MMUAccessType access_type,
2886                                  GetPhysAddrResult *result,
2887                                  ARMMMUFaultInfo *fi)
2888 {
2889     V8M_SAttributes sattrs = {};
2890     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2891     bool secure = arm_space_is_secure(ptw->in_space);
2892     bool ret;
2893 
2894     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2895         v8m_security_lookup(env, address, access_type, mmu_idx,
2896                             secure, &sattrs);
2897         if (access_type == MMU_INST_FETCH) {
2898             /*
2899              * Instruction fetches always use the MMU bank and the
2900              * transaction attribute determined by the fetch address,
2901              * regardless of CPU state. This is painful for QEMU
2902              * to handle, because it would mean we need to encode
2903              * into the mmu_idx not just the (user, negpri) information
2904              * for the current security state but also that for the
2905              * other security state, which would balloon the number
2906              * of mmu_idx values needed alarmingly.
2907              * Fortunately we can avoid this because it's not actually
2908              * possible to arbitrarily execute code from memory with
2909              * the wrong security attribute: it will always generate
2910              * an exception of some kind or another, apart from the
2911              * special case of an NS CPU executing an SG instruction
2912              * in S&NSC memory. So we always just fail the translation
2913              * here and sort things out in the exception handler
2914              * (including possibly emulating an SG instruction).
2915              */
2916             if (sattrs.ns != !secure) {
2917                 if (sattrs.nsc) {
2918                     fi->type = ARMFault_QEMU_NSCExec;
2919                 } else {
2920                     fi->type = ARMFault_QEMU_SFault;
2921                 }
2922                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2923                 result->f.phys_addr = address;
2924                 result->f.prot = 0;
2925                 return true;
2926             }
2927         } else {
2928             /*
2929              * For data accesses we always use the MMU bank indicated
2930              * by the current CPU state, but the security attributes
2931              * might downgrade a secure access to nonsecure.
2932              */
2933             if (sattrs.ns) {
2934                 result->f.attrs.secure = false;
2935                 result->f.attrs.space = ARMSS_NonSecure;
2936             } else if (!secure) {
2937                 /*
2938                  * NS access to S memory must fault.
2939                  * Architecturally we should first check whether the
2940                  * MPU information for this address indicates that we
2941                  * are doing an unaligned access to Device memory, which
2942                  * should generate a UsageFault instead. QEMU does not
2943                  * currently check for that kind of unaligned access though.
2944                  * If we added it we would need to do so as a special case
2945                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2946                  */
2947                 fi->type = ARMFault_QEMU_SFault;
2948                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2949                 result->f.phys_addr = address;
2950                 result->f.prot = 0;
2951                 return true;
2952             }
2953         }
2954     }
2955 
2956     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2957                             result, fi, NULL);
2958     if (sattrs.subpage) {
2959         result->f.lg_page_size = 0;
2960     }
2961     return ret;
2962 }
2963 
2964 /*
2965  * Translate from the 4-bit stage 2 representation of
2966  * memory attributes (without cache-allocation hints) to
2967  * the 8-bit representation of the stage 1 MAIR registers
2968  * (which includes allocation hints).
2969  *
2970  * ref: shared/translation/attrs/S2AttrDecode()
2971  *      .../S2ConvertAttrsHints()
2972  */
2973 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2974 {
2975     uint8_t hiattr = extract32(s2attrs, 2, 2);
2976     uint8_t loattr = extract32(s2attrs, 0, 2);
2977     uint8_t hihint = 0, lohint = 0;
2978 
2979     if (hiattr != 0) { /* normal memory */
2980         if (hcr & HCR_CD) { /* cache disabled */
2981             hiattr = loattr = 1; /* non-cacheable */
2982         } else {
2983             if (hiattr != 1) { /* Write-through or write-back */
2984                 hihint = 3; /* RW allocate */
2985             }
2986             if (loattr != 1) { /* Write-through or write-back */
2987                 lohint = 3; /* RW allocate */
2988             }
2989         }
2990     }
2991 
2992     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2993 }
2994 
2995 /*
2996  * Combine either inner or outer cacheability attributes for normal
2997  * memory, according to table D4-42 and pseudocode procedure
2998  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2999  *
3000  * NB: only stage 1 includes allocation hints (RW bits), leading to
3001  * some asymmetry.
3002  */
3003 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
3004 {
3005     if (s1 == 4 || s2 == 4) {
3006         /* non-cacheable has precedence */
3007         return 4;
3008     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
3009         /* stage 1 write-through takes precedence */
3010         return s1;
3011     } else if (extract32(s2, 2, 2) == 2) {
3012         /* stage 2 write-through takes precedence, but the allocation hint
3013          * is still taken from stage 1
3014          */
3015         return (2 << 2) | extract32(s1, 0, 2);
3016     } else { /* write-back */
3017         return s1;
3018     }
3019 }
3020 
3021 /*
3022  * Combine the memory type and cacheability attributes of
3023  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
3024  * combined attributes in MAIR_EL1 format.
3025  */
3026 static uint8_t combined_attrs_nofwb(uint64_t hcr,
3027                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
3028 {
3029     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
3030 
3031     if (s2.is_s2_format) {
3032         s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
3033     } else {
3034         s2_mair_attrs = s2.attrs;
3035     }
3036 
3037     s1lo = extract32(s1.attrs, 0, 4);
3038     s2lo = extract32(s2_mair_attrs, 0, 4);
3039     s1hi = extract32(s1.attrs, 4, 4);
3040     s2hi = extract32(s2_mair_attrs, 4, 4);
3041 
3042     /* Combine memory type and cacheability attributes */
3043     if (s1hi == 0 || s2hi == 0) {
3044         /* Device has precedence over normal */
3045         if (s1lo == 0 || s2lo == 0) {
3046             /* nGnRnE has precedence over anything */
3047             ret_attrs = 0;
3048         } else if (s1lo == 4 || s2lo == 4) {
3049             /* non-Reordering has precedence over Reordering */
3050             ret_attrs = 4;  /* nGnRE */
3051         } else if (s1lo == 8 || s2lo == 8) {
3052             /* non-Gathering has precedence over Gathering */
3053             ret_attrs = 8;  /* nGRE */
3054         } else {
3055             ret_attrs = 0xc; /* GRE */
3056         }
3057     } else { /* Normal memory */
3058         /* Outer/inner cacheability combine independently */
3059         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
3060                   | combine_cacheattr_nibble(s1lo, s2lo);
3061     }
3062     return ret_attrs;
3063 }
3064 
3065 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
3066 {
3067     /*
3068      * Given the 4 bits specifying the outer or inner cacheability
3069      * in MAIR format, return a value specifying Normal Write-Back,
3070      * with the allocation and transient hints taken from the input
3071      * if the input specified some kind of cacheable attribute.
3072      */
3073     if (attr == 0 || attr == 4) {
3074         /*
3075          * 0 == an UNPREDICTABLE encoding
3076          * 4 == Non-cacheable
3077          * Either way, force Write-Back RW allocate non-transient
3078          */
3079         return 0xf;
3080     }
3081     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
3082     return attr | 4;
3083 }
3084 
3085 /*
3086  * Combine the memory type and cacheability attributes of
3087  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
3088  * combined attributes in MAIR_EL1 format.
3089  */
3090 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
3091 {
3092     assert(s2.is_s2_format && !s1.is_s2_format);
3093 
3094     switch (s2.attrs) {
3095     case 7:
3096         /* Use stage 1 attributes */
3097         return s1.attrs;
3098     case 6:
3099         /*
3100          * Force Normal Write-Back. Note that if S1 is Normal cacheable
3101          * then we take the allocation hints from it; otherwise it is
3102          * RW allocate, non-transient.
3103          */
3104         if ((s1.attrs & 0xf0) == 0) {
3105             /* S1 is Device */
3106             return 0xff;
3107         }
3108         /* Need to check the Inner and Outer nibbles separately */
3109         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
3110             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
3111     case 5:
3112         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
3113         if ((s1.attrs & 0xf0) == 0) {
3114             return s1.attrs;
3115         }
3116         return 0x44;
3117     case 0 ... 3:
3118         /* Force Device, of subtype specified by S2 */
3119         return s2.attrs << 2;
3120     default:
3121         /*
3122          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
3123          * arbitrarily force Device.
3124          */
3125         return 0;
3126     }
3127 }
3128 
3129 /*
3130  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
3131  * and CombineS1S2Desc()
3132  *
3133  * @env:     CPUARMState
3134  * @s1:      Attributes from stage 1 walk
3135  * @s2:      Attributes from stage 2 walk
3136  */
3137 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
3138                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
3139 {
3140     ARMCacheAttrs ret;
3141     bool tagged = false;
3142 
3143     assert(!s1.is_s2_format);
3144     ret.is_s2_format = false;
3145 
3146     if (s1.attrs == 0xf0) {
3147         tagged = true;
3148         s1.attrs = 0xff;
3149     }
3150 
3151     /* Combine shareability attributes (table D4-43) */
3152     if (s1.shareability == 2 || s2.shareability == 2) {
3153         /* if either are outer-shareable, the result is outer-shareable */
3154         ret.shareability = 2;
3155     } else if (s1.shareability == 3 || s2.shareability == 3) {
3156         /* if either are inner-shareable, the result is inner-shareable */
3157         ret.shareability = 3;
3158     } else {
3159         /* both non-shareable */
3160         ret.shareability = 0;
3161     }
3162 
3163     /* Combine memory type and cacheability attributes */
3164     if (hcr & HCR_FWB) {
3165         ret.attrs = combined_attrs_fwb(s1, s2);
3166     } else {
3167         ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
3168     }
3169 
3170     /*
3171      * Any location for which the resultant memory type is any
3172      * type of Device memory is always treated as Outer Shareable.
3173      * Any location for which the resultant memory type is Normal
3174      * Inner Non-cacheable, Outer Non-cacheable is always treated
3175      * as Outer Shareable.
3176      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
3177      */
3178     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
3179         ret.shareability = 2;
3180     }
3181 
3182     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
3183     if (tagged && ret.attrs == 0xff) {
3184         ret.attrs = 0xf0;
3185     }
3186 
3187     return ret;
3188 }
3189 
3190 /*
3191  * MMU disabled.  S1 addresses within aa64 translation regimes are
3192  * still checked for bounds -- see AArch64.S1DisabledOutput().
3193  */
3194 static bool get_phys_addr_disabled(CPUARMState *env,
3195                                    S1Translate *ptw,
3196                                    vaddr address,
3197                                    MMUAccessType access_type,
3198                                    GetPhysAddrResult *result,
3199                                    ARMMMUFaultInfo *fi)
3200 {
3201     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3202     uint8_t memattr = 0x00;    /* Device nGnRnE */
3203     uint8_t shareability = 0;  /* non-shareable */
3204     int r_el;
3205 
3206     switch (mmu_idx) {
3207     case ARMMMUIdx_Stage2:
3208     case ARMMMUIdx_Stage2_S:
3209     case ARMMMUIdx_Phys_S:
3210     case ARMMMUIdx_Phys_NS:
3211     case ARMMMUIdx_Phys_Root:
3212     case ARMMMUIdx_Phys_Realm:
3213         break;
3214 
3215     default:
3216         r_el = regime_el(env, mmu_idx);
3217         if (arm_el_is_aa64(env, r_el)) {
3218             int pamax = arm_pamax(env_archcpu(env));
3219             uint64_t tcr = env->cp15.tcr_el[r_el];
3220             int addrtop, tbi;
3221 
3222             tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
3223             if (access_type == MMU_INST_FETCH) {
3224                 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
3225             }
3226             tbi = (tbi >> extract64(address, 55, 1)) & 1;
3227             addrtop = (tbi ? 55 : 63);
3228 
3229             if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
3230                 fi->type = ARMFault_AddressSize;
3231                 fi->level = 0;
3232                 fi->stage2 = false;
3233                 return 1;
3234             }
3235 
3236             /*
3237              * When TBI is disabled, we've just validated that all of the
3238              * bits above PAMax are zero, so logically we only need to
3239              * clear the top byte for TBI.  But it's clearer to follow
3240              * the pseudocode set of addrdesc.paddress.
3241              */
3242             address = extract64(address, 0, 52);
3243         }
3244 
3245         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3246         if (r_el == 1) {
3247             uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
3248             if (hcr & HCR_DC) {
3249                 if (hcr & HCR_DCT) {
3250                     memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
3251                 } else {
3252                     memattr = 0xff;  /* Normal, WB, RWA */
3253                 }
3254             }
3255         }
3256         if (memattr == 0) {
3257             if (access_type == MMU_INST_FETCH) {
3258                 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3259                     memattr = 0xee;  /* Normal, WT, RA, NT */
3260                 } else {
3261                     memattr = 0x44;  /* Normal, NC, No */
3262                 }
3263             }
3264             shareability = 2; /* outer shareable */
3265         }
3266         result->cacheattrs.is_s2_format = false;
3267         break;
3268     }
3269 
3270     result->f.phys_addr = address;
3271     result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3272     result->f.lg_page_size = TARGET_PAGE_BITS;
3273     result->cacheattrs.shareability = shareability;
3274     result->cacheattrs.attrs = memattr;
3275     return false;
3276 }
3277 
3278 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3279                                    vaddr address,
3280                                    MMUAccessType access_type, MemOp memop,
3281                                    GetPhysAddrResult *result,
3282                                    ARMMMUFaultInfo *fi)
3283 {
3284     hwaddr ipa;
3285     int s1_prot, s1_lgpgsz;
3286     ARMSecuritySpace in_space = ptw->in_space;
3287     bool ret, ipa_secure, s1_guarded;
3288     ARMCacheAttrs cacheattrs1;
3289     ARMSecuritySpace ipa_space;
3290     uint64_t hcr;
3291 
3292     ret = get_phys_addr_nogpc(env, ptw, address, access_type,
3293                               memop, result, fi);
3294 
3295     /* If S1 fails, return early.  */
3296     if (ret) {
3297         return ret;
3298     }
3299 
3300     ipa = result->f.phys_addr;
3301     ipa_secure = result->f.attrs.secure;
3302     ipa_space = result->f.attrs.space;
3303 
3304     ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3305     ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3306     ptw->in_space = ipa_space;
3307     ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3308 
3309     /*
3310      * S1 is done, now do S2 translation.
3311      * Save the stage1 results so that we may merge prot and cacheattrs later.
3312      */
3313     s1_prot = result->f.prot;
3314     s1_lgpgsz = result->f.lg_page_size;
3315     s1_guarded = result->f.extra.arm.guarded;
3316     cacheattrs1 = result->cacheattrs;
3317     memset(result, 0, sizeof(*result));
3318 
3319     ret = get_phys_addr_nogpc(env, ptw, ipa, access_type,
3320                               memop, result, fi);
3321     fi->s2addr = ipa;
3322 
3323     /* Combine the S1 and S2 perms.  */
3324     result->f.prot &= s1_prot;
3325 
3326     /* If S2 fails, return early.  */
3327     if (ret) {
3328         return ret;
3329     }
3330 
3331     /*
3332      * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3333      * this means "don't put this in the TLB"; in this case, return a
3334      * result with lg_page_size == 0 to achieve that. Otherwise,
3335      * use the maximum of the S1 & S2 page size, so that invalidation
3336      * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3337      * we know the combined result permissions etc only cover the minimum
3338      * of the S1 and S2 page size, because we know that the common TLB code
3339      * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3340      * and passing a larger page size value only affects invalidations.)
3341      */
3342     if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3343         s1_lgpgsz < TARGET_PAGE_BITS) {
3344         result->f.lg_page_size = 0;
3345     } else if (result->f.lg_page_size < s1_lgpgsz) {
3346         result->f.lg_page_size = s1_lgpgsz;
3347     }
3348 
3349     /* Combine the S1 and S2 cache attributes. */
3350     hcr = arm_hcr_el2_eff_secstate(env, in_space);
3351     if (hcr & HCR_DC) {
3352         /*
3353          * HCR.DC forces the first stage attributes to
3354          *  Normal Non-Shareable,
3355          *  Inner Write-Back Read-Allocate Write-Allocate,
3356          *  Outer Write-Back Read-Allocate Write-Allocate.
3357          * Do not overwrite Tagged within attrs.
3358          */
3359         if (cacheattrs1.attrs != 0xf0) {
3360             cacheattrs1.attrs = 0xff;
3361         }
3362         cacheattrs1.shareability = 0;
3363     }
3364     result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3365                                             result->cacheattrs);
3366 
3367     /* No BTI GP information in stage 2, we just use the S1 value */
3368     result->f.extra.arm.guarded = s1_guarded;
3369 
3370     /*
3371      * Check if IPA translates to secure or non-secure PA space.
3372      * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3373      */
3374     if (in_space == ARMSS_Secure) {
3375         result->f.attrs.secure =
3376             !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3377             && (ipa_secure
3378                 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
3379         result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
3380     }
3381 
3382     return false;
3383 }
3384 
3385 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3386                                       vaddr address,
3387                                       MMUAccessType access_type, MemOp memop,
3388                                       GetPhysAddrResult *result,
3389                                       ARMMMUFaultInfo *fi)
3390 {
3391     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3392     ARMMMUIdx s1_mmu_idx;
3393 
3394     /*
3395      * The page table entries may downgrade Secure to NonSecure, but
3396      * cannot upgrade a NonSecure translation regime's attributes
3397      * to Secure or Realm.
3398      */
3399     result->f.attrs.space = ptw->in_space;
3400     result->f.attrs.secure = arm_space_is_secure(ptw->in_space);
3401 
3402     switch (mmu_idx) {
3403     case ARMMMUIdx_Phys_S:
3404     case ARMMMUIdx_Phys_NS:
3405     case ARMMMUIdx_Phys_Root:
3406     case ARMMMUIdx_Phys_Realm:
3407         /* Checking Phys early avoids special casing later vs regime_el. */
3408         return get_phys_addr_disabled(env, ptw, address, access_type,
3409                                       result, fi);
3410 
3411     case ARMMMUIdx_Stage1_E0:
3412     case ARMMMUIdx_Stage1_E1:
3413     case ARMMMUIdx_Stage1_E1_PAN:
3414         /*
3415          * First stage lookup uses second stage for ptw; only
3416          * Secure has both S and NS IPA and starts with Stage2_S.
3417          */
3418         ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ?
3419             ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3420         break;
3421 
3422     case ARMMMUIdx_Stage2:
3423     case ARMMMUIdx_Stage2_S:
3424         /*
3425          * Second stage lookup uses physical for ptw; whether this is S or
3426          * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3427          * the Secure EL2&0 regime.
3428          */
3429         ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3430         break;
3431 
3432     case ARMMMUIdx_E10_0:
3433         s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3434         goto do_twostage;
3435     case ARMMMUIdx_E10_1:
3436         s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3437         goto do_twostage;
3438     case ARMMMUIdx_E10_1_PAN:
3439         s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3440     do_twostage:
3441         /*
3442          * Call ourselves recursively to do the stage 1 and then stage 2
3443          * translations if mmu_idx is a two-stage regime, and EL2 present.
3444          * Otherwise, a stage1+stage2 translation is just stage 1.
3445          */
3446         ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3447         if (arm_feature(env, ARM_FEATURE_EL2) &&
3448             !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) {
3449             return get_phys_addr_twostage(env, ptw, address, access_type,
3450                                           memop, result, fi);
3451         }
3452         /* fall through */
3453 
3454     default:
3455         /* Single stage uses physical for ptw. */
3456         ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3457         break;
3458     }
3459 
3460     result->f.attrs.user = regime_is_user(env, mmu_idx);
3461 
3462     /*
3463      * Fast Context Switch Extension. This doesn't exist at all in v8.
3464      * In v7 and earlier it affects all stage 1 translations.
3465      */
3466     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3467         && !arm_feature(env, ARM_FEATURE_V8)) {
3468         if (regime_el(env, mmu_idx) == 3) {
3469             address += env->cp15.fcseidr_s;
3470         } else {
3471             address += env->cp15.fcseidr_ns;
3472         }
3473     }
3474 
3475     if (arm_feature(env, ARM_FEATURE_PMSA)) {
3476         bool ret;
3477         result->f.lg_page_size = TARGET_PAGE_BITS;
3478 
3479         if (arm_feature(env, ARM_FEATURE_V8)) {
3480             /* PMSAv8 */
3481             ret = get_phys_addr_pmsav8(env, ptw, address, access_type,
3482                                        result, fi);
3483         } else if (arm_feature(env, ARM_FEATURE_V7)) {
3484             /* PMSAv7 */
3485             ret = get_phys_addr_pmsav7(env, ptw, address, access_type,
3486                                        result, fi);
3487         } else {
3488             /* Pre-v7 MPU */
3489             ret = get_phys_addr_pmsav5(env, ptw, address, access_type,
3490                                        result, fi);
3491         }
3492         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3493                       " mmu_idx %u -> %s (prot %c%c%c)\n",
3494                       access_type == MMU_DATA_LOAD ? "reading" :
3495                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3496                       (uint32_t)address, mmu_idx,
3497                       ret ? "Miss" : "Hit",
3498                       result->f.prot & PAGE_READ ? 'r' : '-',
3499                       result->f.prot & PAGE_WRITE ? 'w' : '-',
3500                       result->f.prot & PAGE_EXEC ? 'x' : '-');
3501 
3502         return ret;
3503     }
3504 
3505     /* Definitely a real MMU, not an MPU */
3506 
3507     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
3508         return get_phys_addr_disabled(env, ptw, address, access_type,
3509                                       result, fi);
3510     }
3511 
3512     if (regime_using_lpae_format(env, mmu_idx)) {
3513         return get_phys_addr_lpae(env, ptw, address, access_type,
3514                                   memop, result, fi);
3515     } else if (arm_feature(env, ARM_FEATURE_V7) ||
3516                regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3517         return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3518     } else {
3519         return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3520     }
3521 }
3522 
3523 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3524                               vaddr address,
3525                               MMUAccessType access_type, MemOp memop,
3526                               GetPhysAddrResult *result,
3527                               ARMMMUFaultInfo *fi)
3528 {
3529     if (get_phys_addr_nogpc(env, ptw, address, access_type,
3530                             memop, result, fi)) {
3531         return true;
3532     }
3533     if (!granule_protection_check(env, result->f.phys_addr,
3534                                   result->f.attrs.space, fi)) {
3535         fi->type = ARMFault_GPCFOnOutput;
3536         return true;
3537     }
3538     return false;
3539 }
3540 
3541 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address,
3542                                     MMUAccessType access_type, MemOp memop,
3543                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
3544                                     GetPhysAddrResult *result,
3545                                     ARMMMUFaultInfo *fi)
3546 {
3547     S1Translate ptw = {
3548         .in_mmu_idx = mmu_idx,
3549         .in_space = space,
3550     };
3551     return get_phys_addr_nogpc(env, &ptw, address, access_type,
3552                                memop, result, fi);
3553 }
3554 
3555 bool get_phys_addr(CPUARMState *env, vaddr address,
3556                    MMUAccessType access_type, MemOp memop, ARMMMUIdx mmu_idx,
3557                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3558 {
3559     S1Translate ptw = {
3560         .in_mmu_idx = mmu_idx,
3561     };
3562     ARMSecuritySpace ss;
3563 
3564     switch (mmu_idx) {
3565     case ARMMMUIdx_E10_0:
3566     case ARMMMUIdx_E10_1:
3567     case ARMMMUIdx_E10_1_PAN:
3568     case ARMMMUIdx_E20_0:
3569     case ARMMMUIdx_E20_2:
3570     case ARMMMUIdx_E20_2_PAN:
3571     case ARMMMUIdx_Stage1_E0:
3572     case ARMMMUIdx_Stage1_E1:
3573     case ARMMMUIdx_Stage1_E1_PAN:
3574     case ARMMMUIdx_E2:
3575         ss = arm_security_space_below_el3(env);
3576         break;
3577     case ARMMMUIdx_Stage2:
3578         /*
3579          * For Secure EL2, we need this index to be NonSecure;
3580          * otherwise this will already be NonSecure or Realm.
3581          */
3582         ss = arm_security_space_below_el3(env);
3583         if (ss == ARMSS_Secure) {
3584             ss = ARMSS_NonSecure;
3585         }
3586         break;
3587     case ARMMMUIdx_Phys_NS:
3588     case ARMMMUIdx_MPrivNegPri:
3589     case ARMMMUIdx_MUserNegPri:
3590     case ARMMMUIdx_MPriv:
3591     case ARMMMUIdx_MUser:
3592         ss = ARMSS_NonSecure;
3593         break;
3594     case ARMMMUIdx_Stage2_S:
3595     case ARMMMUIdx_Phys_S:
3596     case ARMMMUIdx_MSPrivNegPri:
3597     case ARMMMUIdx_MSUserNegPri:
3598     case ARMMMUIdx_MSPriv:
3599     case ARMMMUIdx_MSUser:
3600         ss = ARMSS_Secure;
3601         break;
3602     case ARMMMUIdx_E3:
3603     case ARMMMUIdx_E30_0:
3604     case ARMMMUIdx_E30_3_PAN:
3605         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3606             cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3607             ss = ARMSS_Root;
3608         } else {
3609             ss = ARMSS_Secure;
3610         }
3611         break;
3612     case ARMMMUIdx_Phys_Root:
3613         ss = ARMSS_Root;
3614         break;
3615     case ARMMMUIdx_Phys_Realm:
3616         ss = ARMSS_Realm;
3617         break;
3618     default:
3619         g_assert_not_reached();
3620     }
3621 
3622     ptw.in_space = ss;
3623     return get_phys_addr_gpc(env, &ptw, address, access_type,
3624                              memop, result, fi);
3625 }
3626 
3627 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3628                                          MemTxAttrs *attrs)
3629 {
3630     ARMCPU *cpu = ARM_CPU(cs);
3631     CPUARMState *env = &cpu->env;
3632     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3633     ARMSecuritySpace ss = arm_security_space(env);
3634     S1Translate ptw = {
3635         .in_mmu_idx = mmu_idx,
3636         .in_space = ss,
3637         .in_debug = true,
3638     };
3639     GetPhysAddrResult res = {};
3640     ARMMMUFaultInfo fi = {};
3641     bool ret;
3642 
3643     ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, 0, &res, &fi);
3644     *attrs = res.f.attrs;
3645 
3646     if (ret) {
3647         return -1;
3648     }
3649     return res.f.phys_addr;
3650 }
3651