1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "qemu/main-loop.h" 13 #include "exec/exec-all.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "cpu-features.h" 17 #include "idau.h" 18 #ifdef CONFIG_TCG 19 # include "tcg/oversized-guest.h" 20 #endif 21 22 typedef struct S1Translate { 23 /* 24 * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk. 25 * Together with in_space, specifies the architectural translation regime. 26 */ 27 ARMMMUIdx in_mmu_idx; 28 /* 29 * in_ptw_idx: specifies which mmuidx to use for the actual 30 * page table descriptor load operations. This will be one of the 31 * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes. 32 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 33 * this field is updated accordingly. 34 */ 35 ARMMMUIdx in_ptw_idx; 36 /* 37 * in_space: the security space for this walk. This plus 38 * the in_mmu_idx specify the architectural translation regime. 39 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 40 * this field is updated accordingly. 41 * 42 * Note that the security space for the in_ptw_idx may be different 43 * from that for the in_mmu_idx. We do not need to explicitly track 44 * the in_ptw_idx security space because: 45 * - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx 46 * itself specifies the security space 47 * - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security 48 * space used for ptw reads is the same as that of the security 49 * space of the stage 1 translation for all cases except where 50 * stage 1 is Secure; in that case the only possibilities for 51 * the ptw read are Secure and NonSecure, and the in_ptw_idx 52 * value being Stage2 vs Stage2_S distinguishes those. 53 */ 54 ARMSecuritySpace in_space; 55 /* 56 * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug 57 * accesses will not update the guest page table access flags 58 * and will not change the state of the softmmu TLBs. 59 */ 60 bool in_debug; 61 /* 62 * If this is stage 2 of a stage 1+2 page table walk, then this must 63 * be true if stage 1 is an EL0 access; otherwise this is ignored. 64 * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}. 65 */ 66 bool in_s1_is_el0; 67 bool out_rw; 68 bool out_be; 69 ARMSecuritySpace out_space; 70 hwaddr out_virt; 71 hwaddr out_phys; 72 void *out_host; 73 } S1Translate; 74 75 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 76 target_ulong address, 77 MMUAccessType access_type, 78 GetPhysAddrResult *result, 79 ARMMMUFaultInfo *fi); 80 81 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 82 target_ulong address, 83 MMUAccessType access_type, 84 GetPhysAddrResult *result, 85 ARMMMUFaultInfo *fi); 86 87 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 88 static const uint8_t pamax_map[] = { 89 [0] = 32, 90 [1] = 36, 91 [2] = 40, 92 [3] = 42, 93 [4] = 44, 94 [5] = 48, 95 [6] = 52, 96 }; 97 98 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 99 unsigned int arm_pamax(ARMCPU *cpu) 100 { 101 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 102 unsigned int parange = 103 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 104 105 /* 106 * id_aa64mmfr0 is a read-only register so values outside of the 107 * supported mappings can be considered an implementation error. 108 */ 109 assert(parange < ARRAY_SIZE(pamax_map)); 110 return pamax_map[parange]; 111 } 112 113 /* 114 * In machvirt_init, we call arm_pamax on a cpu that is not fully 115 * initialized, so we can't rely on the propagation done in realize. 116 */ 117 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) || 118 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) { 119 /* v7 with LPAE */ 120 return 40; 121 } 122 /* Anything else */ 123 return 32; 124 } 125 126 /* 127 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 128 */ 129 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 130 { 131 switch (mmu_idx) { 132 case ARMMMUIdx_E10_0: 133 return ARMMMUIdx_Stage1_E0; 134 case ARMMMUIdx_E10_1: 135 return ARMMMUIdx_Stage1_E1; 136 case ARMMMUIdx_E10_1_PAN: 137 return ARMMMUIdx_Stage1_E1_PAN; 138 default: 139 return mmu_idx; 140 } 141 } 142 143 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 144 { 145 return stage_1_mmu_idx(arm_mmu_idx(env)); 146 } 147 148 /* 149 * Return where we should do ptw loads from for a stage 2 walk. 150 * This depends on whether the address we are looking up is a 151 * Secure IPA or a NonSecure IPA, which we know from whether this is 152 * Stage2 or Stage2_S. 153 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits. 154 */ 155 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx) 156 { 157 bool s2walk_secure; 158 159 /* 160 * We're OK to check the current state of the CPU here because 161 * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit 162 * changes. 163 * (2) there's no way to do a lookup that cares about Stage 2 for a 164 * different security state to the current one for AArch64, and AArch32 165 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do 166 * an NS stage 1+2 lookup while the NS bit is 0.) 167 */ 168 if (!arm_el_is_aa64(env, 3)) { 169 return ARMMMUIdx_Phys_NS; 170 } 171 172 switch (arm_security_space_below_el3(env)) { 173 case ARMSS_NonSecure: 174 return ARMMMUIdx_Phys_NS; 175 case ARMSS_Realm: 176 return ARMMMUIdx_Phys_Realm; 177 case ARMSS_Secure: 178 if (stage2idx == ARMMMUIdx_Stage2_S) { 179 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW); 180 } else { 181 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW); 182 } 183 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 184 default: 185 g_assert_not_reached(); 186 } 187 } 188 189 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 190 { 191 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 192 } 193 194 /* Return the TTBR associated with this translation regime */ 195 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 196 { 197 if (mmu_idx == ARMMMUIdx_Stage2) { 198 return env->cp15.vttbr_el2; 199 } 200 if (mmu_idx == ARMMMUIdx_Stage2_S) { 201 return env->cp15.vsttbr_el2; 202 } 203 if (ttbrn == 0) { 204 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 205 } else { 206 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 207 } 208 } 209 210 /* Return true if the specified stage of address translation is disabled */ 211 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, 212 ARMSecuritySpace space) 213 { 214 uint64_t hcr_el2; 215 216 if (arm_feature(env, ARM_FEATURE_M)) { 217 bool is_secure = arm_space_is_secure(space); 218 switch (env->v7m.mpu_ctrl[is_secure] & 219 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 220 case R_V7M_MPU_CTRL_ENABLE_MASK: 221 /* Enabled, but not for HardFault and NMI */ 222 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 223 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 224 /* Enabled for all cases */ 225 return false; 226 case 0: 227 default: 228 /* 229 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 230 * we warned about that in armv7m_nvic.c when the guest set it. 231 */ 232 return true; 233 } 234 } 235 236 237 switch (mmu_idx) { 238 case ARMMMUIdx_Stage2: 239 case ARMMMUIdx_Stage2_S: 240 /* HCR.DC means HCR.VM behaves as 1 */ 241 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 242 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 243 244 case ARMMMUIdx_E10_0: 245 case ARMMMUIdx_E10_1: 246 case ARMMMUIdx_E10_1_PAN: 247 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ 248 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 249 if (hcr_el2 & HCR_TGE) { 250 return true; 251 } 252 break; 253 254 case ARMMMUIdx_Stage1_E0: 255 case ARMMMUIdx_Stage1_E1: 256 case ARMMMUIdx_Stage1_E1_PAN: 257 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 258 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 259 if (hcr_el2 & HCR_DC) { 260 return true; 261 } 262 break; 263 264 case ARMMMUIdx_E20_0: 265 case ARMMMUIdx_E20_2: 266 case ARMMMUIdx_E20_2_PAN: 267 case ARMMMUIdx_E2: 268 case ARMMMUIdx_E3: 269 break; 270 271 case ARMMMUIdx_Phys_S: 272 case ARMMMUIdx_Phys_NS: 273 case ARMMMUIdx_Phys_Root: 274 case ARMMMUIdx_Phys_Realm: 275 /* No translation for physical address spaces. */ 276 return true; 277 278 default: 279 g_assert_not_reached(); 280 } 281 282 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 283 } 284 285 static bool granule_protection_check(CPUARMState *env, uint64_t paddress, 286 ARMSecuritySpace pspace, 287 ARMMMUFaultInfo *fi) 288 { 289 MemTxAttrs attrs = { 290 .secure = true, 291 .space = ARMSS_Root, 292 }; 293 ARMCPU *cpu = env_archcpu(env); 294 uint64_t gpccr = env->cp15.gpccr_el3; 295 unsigned pps, pgs, l0gptsz, level = 0; 296 uint64_t tableaddr, pps_mask, align, entry, index; 297 AddressSpace *as; 298 MemTxResult result; 299 int gpi; 300 301 if (!FIELD_EX64(gpccr, GPCCR, GPC)) { 302 return true; 303 } 304 305 /* 306 * GPC Priority 1 (R_GMGRR): 307 * R_JWCSM: If the configuration of GPCCR_EL3 is invalid, 308 * the access fails as GPT walk fault at level 0. 309 */ 310 311 /* 312 * Configuration of PPS to a value exceeding the implemented 313 * physical address size is invalid. 314 */ 315 pps = FIELD_EX64(gpccr, GPCCR, PPS); 316 if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) { 317 goto fault_walk; 318 } 319 pps = pamax_map[pps]; 320 pps_mask = MAKE_64BIT_MASK(0, pps); 321 322 switch (FIELD_EX64(gpccr, GPCCR, SH)) { 323 case 0b10: /* outer shareable */ 324 break; 325 case 0b00: /* non-shareable */ 326 case 0b11: /* inner shareable */ 327 /* Inner and Outer non-cacheable requires Outer shareable. */ 328 if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 && 329 FIELD_EX64(gpccr, GPCCR, IRGN) == 0) { 330 goto fault_walk; 331 } 332 break; 333 default: /* reserved */ 334 goto fault_walk; 335 } 336 337 switch (FIELD_EX64(gpccr, GPCCR, PGS)) { 338 case 0b00: /* 4KB */ 339 pgs = 12; 340 break; 341 case 0b01: /* 64KB */ 342 pgs = 16; 343 break; 344 case 0b10: /* 16KB */ 345 pgs = 14; 346 break; 347 default: /* reserved */ 348 goto fault_walk; 349 } 350 351 /* Note this field is read-only and fixed at reset. */ 352 l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ); 353 354 /* 355 * GPC Priority 2: Secure, Realm or Root address exceeds PPS. 356 * R_CPDSB: A NonSecure physical address input exceeding PPS 357 * does not experience any fault. 358 */ 359 if (paddress & ~pps_mask) { 360 if (pspace == ARMSS_NonSecure) { 361 return true; 362 } 363 goto fault_size; 364 } 365 366 /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */ 367 tableaddr = env->cp15.gptbr_el3 << 12; 368 if (tableaddr & ~pps_mask) { 369 goto fault_size; 370 } 371 372 /* 373 * BADDR is aligned per a function of PPS and L0GPTSZ. 374 * These bits of GPTBR_EL3 are RES0, but are not a configuration error, 375 * unlike the RES0 bits of the GPT entries (R_XNKFZ). 376 */ 377 align = MAX(pps - l0gptsz + 3, 12); 378 align = MAKE_64BIT_MASK(0, align); 379 tableaddr &= ~align; 380 381 as = arm_addressspace(env_cpu(env), attrs); 382 383 /* Level 0 lookup. */ 384 index = extract64(paddress, l0gptsz, pps - l0gptsz); 385 tableaddr += index * 8; 386 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 387 if (result != MEMTX_OK) { 388 goto fault_eabt; 389 } 390 391 switch (extract32(entry, 0, 4)) { 392 case 1: /* block descriptor */ 393 if (entry >> 8) { 394 goto fault_walk; /* RES0 bits not 0 */ 395 } 396 gpi = extract32(entry, 4, 4); 397 goto found; 398 case 3: /* table descriptor */ 399 tableaddr = entry & ~0xf; 400 align = MAX(l0gptsz - pgs - 1, 12); 401 align = MAKE_64BIT_MASK(0, align); 402 if (tableaddr & (~pps_mask | align)) { 403 goto fault_walk; /* RES0 bits not 0 */ 404 } 405 break; 406 default: /* invalid */ 407 goto fault_walk; 408 } 409 410 /* Level 1 lookup */ 411 level = 1; 412 index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4); 413 tableaddr += index * 8; 414 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 415 if (result != MEMTX_OK) { 416 goto fault_eabt; 417 } 418 419 switch (extract32(entry, 0, 4)) { 420 case 1: /* contiguous descriptor */ 421 if (entry >> 10) { 422 goto fault_walk; /* RES0 bits not 0 */ 423 } 424 /* 425 * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE, 426 * and because we cannot invalidate by pa, and thus will always 427 * flush entire tlbs, we don't actually care about the range here 428 * and can simply extract the GPI as the result. 429 */ 430 if (extract32(entry, 8, 2) == 0) { 431 goto fault_walk; /* reserved contig */ 432 } 433 gpi = extract32(entry, 4, 4); 434 break; 435 default: 436 index = extract64(paddress, pgs, 4); 437 gpi = extract64(entry, index * 4, 4); 438 break; 439 } 440 441 found: 442 switch (gpi) { 443 case 0b0000: /* no access */ 444 break; 445 case 0b1111: /* all access */ 446 return true; 447 case 0b1000: 448 case 0b1001: 449 case 0b1010: 450 case 0b1011: 451 if (pspace == (gpi & 3)) { 452 return true; 453 } 454 break; 455 default: 456 goto fault_walk; /* reserved */ 457 } 458 459 fi->gpcf = GPCF_Fail; 460 goto fault_common; 461 fault_eabt: 462 fi->gpcf = GPCF_EABT; 463 goto fault_common; 464 fault_size: 465 fi->gpcf = GPCF_AddressSize; 466 goto fault_common; 467 fault_walk: 468 fi->gpcf = GPCF_Walk; 469 fault_common: 470 fi->level = level; 471 fi->paddr = paddress; 472 fi->paddr_space = pspace; 473 return false; 474 } 475 476 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) 477 { 478 /* 479 * For an S1 page table walk, the stage 1 attributes are always 480 * some form of "this is Normal memory". The combined S1+S2 481 * attributes are therefore only Device if stage 2 specifies Device. 482 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 483 * ie when cacheattrs.attrs bits [3:2] are 0b00. 484 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 485 * when cacheattrs.attrs bit [2] is 0. 486 */ 487 if (hcr & HCR_FWB) { 488 return (attrs & 0x4) == 0; 489 } else { 490 return (attrs & 0xc) == 0; 491 } 492 } 493 494 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space, 495 ARMMMUIdx s2_mmu_idx) 496 { 497 /* 498 * Return the security space to use for stage 2 when doing 499 * the S1 page table descriptor load. 500 */ 501 if (regime_is_stage2(s2_mmu_idx)) { 502 /* 503 * The security space for ptw reads is almost always the same 504 * as that of the security space of the stage 1 translation. 505 * The only exception is when stage 1 is Secure; in that case 506 * the ptw read might be to the Secure or the NonSecure space 507 * (but never Realm or Root), and the s2_mmu_idx tells us which. 508 * Root translations are always single-stage. 509 */ 510 if (s1_space == ARMSS_Secure) { 511 return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S); 512 } else { 513 assert(s2_mmu_idx != ARMMMUIdx_Stage2_S); 514 assert(s1_space != ARMSS_Root); 515 return s1_space; 516 } 517 } else { 518 /* ptw loads are from phys: the mmu idx itself says which space */ 519 return arm_phys_to_space(s2_mmu_idx); 520 } 521 } 522 523 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx) 524 { 525 /* 526 * For stage 2 faults in Secure EL22, S1NS indicates 527 * whether the faulting IPA is in the Secure or NonSecure 528 * IPA space. For all other kinds of fault, it is false. 529 */ 530 return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx) 531 && s2_mmu_idx == ARMMMUIdx_Stage2_S; 532 } 533 534 /* Translate a S1 pagetable walk through S2 if needed. */ 535 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, 536 hwaddr addr, ARMMMUFaultInfo *fi) 537 { 538 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 539 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx; 540 uint8_t pte_attrs; 541 542 ptw->out_virt = addr; 543 544 if (unlikely(ptw->in_debug)) { 545 /* 546 * From gdbstub, do not use softmmu so that we don't modify the 547 * state of the cpu at all, including softmmu tlb contents. 548 */ 549 ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx); 550 S1Translate s2ptw = { 551 .in_mmu_idx = s2_mmu_idx, 552 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx), 553 .in_space = s2_space, 554 .in_debug = true, 555 }; 556 GetPhysAddrResult s2 = { }; 557 558 if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) { 559 goto fail; 560 } 561 562 ptw->out_phys = s2.f.phys_addr; 563 pte_attrs = s2.cacheattrs.attrs; 564 ptw->out_host = NULL; 565 ptw->out_rw = false; 566 ptw->out_space = s2.f.attrs.space; 567 } else { 568 #ifdef CONFIG_TCG 569 CPUTLBEntryFull *full; 570 int flags; 571 572 env->tlb_fi = fi; 573 flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD, 574 arm_to_core_mmu_idx(s2_mmu_idx), 575 &ptw->out_host, &full); 576 env->tlb_fi = NULL; 577 578 if (unlikely(flags & TLB_INVALID_MASK)) { 579 goto fail; 580 } 581 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 582 ptw->out_rw = full->prot & PAGE_WRITE; 583 pte_attrs = full->extra.arm.pte_attrs; 584 ptw->out_space = full->attrs.space; 585 #else 586 g_assert_not_reached(); 587 #endif 588 } 589 590 if (regime_is_stage2(s2_mmu_idx)) { 591 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 592 593 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { 594 /* 595 * PTW set and S1 walk touched S2 Device memory: 596 * generate Permission fault. 597 */ 598 fi->type = ARMFault_Permission; 599 fi->s2addr = addr; 600 fi->stage2 = true; 601 fi->s1ptw = true; 602 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 603 return false; 604 } 605 } 606 607 ptw->out_be = regime_translation_big_endian(env, mmu_idx); 608 return true; 609 610 fail: 611 assert(fi->type != ARMFault_None); 612 if (fi->type == ARMFault_GPCFOnOutput) { 613 fi->type = ARMFault_GPCFOnWalk; 614 } 615 fi->s2addr = addr; 616 fi->stage2 = regime_is_stage2(s2_mmu_idx); 617 fi->s1ptw = fi->stage2; 618 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 619 return false; 620 } 621 622 /* All loads done in the course of a page table walk go through here. */ 623 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, 624 ARMMMUFaultInfo *fi) 625 { 626 CPUState *cs = env_cpu(env); 627 void *host = ptw->out_host; 628 uint32_t data; 629 630 if (likely(host)) { 631 /* Page tables are in RAM, and we have the host address. */ 632 data = qatomic_read((uint32_t *)host); 633 if (ptw->out_be) { 634 data = be32_to_cpu(data); 635 } else { 636 data = le32_to_cpu(data); 637 } 638 } else { 639 /* Page tables are in MMIO. */ 640 MemTxAttrs attrs = { 641 .space = ptw->out_space, 642 .secure = arm_space_is_secure(ptw->out_space), 643 }; 644 AddressSpace *as = arm_addressspace(cs, attrs); 645 MemTxResult result = MEMTX_OK; 646 647 if (ptw->out_be) { 648 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); 649 } else { 650 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); 651 } 652 if (unlikely(result != MEMTX_OK)) { 653 fi->type = ARMFault_SyncExternalOnWalk; 654 fi->ea = arm_extabort_type(result); 655 return 0; 656 } 657 } 658 return data; 659 } 660 661 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, 662 ARMMMUFaultInfo *fi) 663 { 664 CPUState *cs = env_cpu(env); 665 void *host = ptw->out_host; 666 uint64_t data; 667 668 if (likely(host)) { 669 /* Page tables are in RAM, and we have the host address. */ 670 #ifdef CONFIG_ATOMIC64 671 data = qatomic_read__nocheck((uint64_t *)host); 672 if (ptw->out_be) { 673 data = be64_to_cpu(data); 674 } else { 675 data = le64_to_cpu(data); 676 } 677 #else 678 if (ptw->out_be) { 679 data = ldq_be_p(host); 680 } else { 681 data = ldq_le_p(host); 682 } 683 #endif 684 } else { 685 /* Page tables are in MMIO. */ 686 MemTxAttrs attrs = { 687 .space = ptw->out_space, 688 .secure = arm_space_is_secure(ptw->out_space), 689 }; 690 AddressSpace *as = arm_addressspace(cs, attrs); 691 MemTxResult result = MEMTX_OK; 692 693 if (ptw->out_be) { 694 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 695 } else { 696 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 697 } 698 if (unlikely(result != MEMTX_OK)) { 699 fi->type = ARMFault_SyncExternalOnWalk; 700 fi->ea = arm_extabort_type(result); 701 return 0; 702 } 703 } 704 return data; 705 } 706 707 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val, 708 uint64_t new_val, S1Translate *ptw, 709 ARMMMUFaultInfo *fi) 710 { 711 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG) 712 uint64_t cur_val; 713 void *host = ptw->out_host; 714 715 if (unlikely(!host)) { 716 fi->type = ARMFault_UnsuppAtomicUpdate; 717 return 0; 718 } 719 720 /* 721 * Raising a stage2 Protection fault for an atomic update to a read-only 722 * page is delayed until it is certain that there is a change to make. 723 */ 724 if (unlikely(!ptw->out_rw)) { 725 int flags; 726 727 env->tlb_fi = fi; 728 flags = probe_access_full_mmu(env, ptw->out_virt, 0, 729 MMU_DATA_STORE, 730 arm_to_core_mmu_idx(ptw->in_ptw_idx), 731 NULL, NULL); 732 env->tlb_fi = NULL; 733 734 if (unlikely(flags & TLB_INVALID_MASK)) { 735 /* 736 * We know this must be a stage 2 fault because the granule 737 * protection table does not separately track read and write 738 * permission, so all GPC faults are caught in S1_ptw_translate(): 739 * we only get here for "readable but not writeable". 740 */ 741 assert(fi->type != ARMFault_None); 742 fi->s2addr = ptw->out_virt; 743 fi->stage2 = true; 744 fi->s1ptw = true; 745 fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx); 746 return 0; 747 } 748 749 /* In case CAS mismatches and we loop, remember writability. */ 750 ptw->out_rw = true; 751 } 752 753 #ifdef CONFIG_ATOMIC64 754 if (ptw->out_be) { 755 old_val = cpu_to_be64(old_val); 756 new_val = cpu_to_be64(new_val); 757 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 758 cur_val = be64_to_cpu(cur_val); 759 } else { 760 old_val = cpu_to_le64(old_val); 761 new_val = cpu_to_le64(new_val); 762 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 763 cur_val = le64_to_cpu(cur_val); 764 } 765 #else 766 /* 767 * We can't support the full 64-bit atomic cmpxchg on the host. 768 * Because this is only used for FEAT_HAFDBS, which is only for AA64, 769 * we know that TCG_OVERSIZED_GUEST is set, which means that we are 770 * running in round-robin mode and could only race with dma i/o. 771 */ 772 #if !TCG_OVERSIZED_GUEST 773 # error "Unexpected configuration" 774 #endif 775 bool locked = qemu_mutex_iothread_locked(); 776 if (!locked) { 777 qemu_mutex_lock_iothread(); 778 } 779 if (ptw->out_be) { 780 cur_val = ldq_be_p(host); 781 if (cur_val == old_val) { 782 stq_be_p(host, new_val); 783 } 784 } else { 785 cur_val = ldq_le_p(host); 786 if (cur_val == old_val) { 787 stq_le_p(host, new_val); 788 } 789 } 790 if (!locked) { 791 qemu_mutex_unlock_iothread(); 792 } 793 #endif 794 795 return cur_val; 796 #else 797 /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */ 798 g_assert_not_reached(); 799 #endif 800 } 801 802 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 803 uint32_t *table, uint32_t address) 804 { 805 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 806 uint64_t tcr = regime_tcr(env, mmu_idx); 807 int maskshift = extract32(tcr, 0, 3); 808 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 809 uint32_t base_mask; 810 811 if (address & mask) { 812 if (tcr & TTBCR_PD1) { 813 /* Translation table walk disabled for TTBR1 */ 814 return false; 815 } 816 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 817 } else { 818 if (tcr & TTBCR_PD0) { 819 /* Translation table walk disabled for TTBR0 */ 820 return false; 821 } 822 base_mask = ~((uint32_t)0x3fffu >> maskshift); 823 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 824 } 825 *table |= (address >> 18) & 0x3ffc; 826 return true; 827 } 828 829 /* 830 * Translate section/page access permissions to page R/W protection flags 831 * @env: CPUARMState 832 * @mmu_idx: MMU index indicating required translation regime 833 * @ap: The 3-bit access permissions (AP[2:0]) 834 * @domain_prot: The 2-bit domain access permissions 835 * @is_user: TRUE if accessing from PL0 836 */ 837 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx, 838 int ap, int domain_prot, bool is_user) 839 { 840 if (domain_prot == 3) { 841 return PAGE_READ | PAGE_WRITE; 842 } 843 844 switch (ap) { 845 case 0: 846 if (arm_feature(env, ARM_FEATURE_V7)) { 847 return 0; 848 } 849 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 850 case SCTLR_S: 851 return is_user ? 0 : PAGE_READ; 852 case SCTLR_R: 853 return PAGE_READ; 854 default: 855 return 0; 856 } 857 case 1: 858 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 859 case 2: 860 if (is_user) { 861 return PAGE_READ; 862 } else { 863 return PAGE_READ | PAGE_WRITE; 864 } 865 case 3: 866 return PAGE_READ | PAGE_WRITE; 867 case 4: /* Reserved. */ 868 return 0; 869 case 5: 870 return is_user ? 0 : PAGE_READ; 871 case 6: 872 return PAGE_READ; 873 case 7: 874 if (!arm_feature(env, ARM_FEATURE_V6K)) { 875 return 0; 876 } 877 return PAGE_READ; 878 default: 879 g_assert_not_reached(); 880 } 881 } 882 883 /* 884 * Translate section/page access permissions to page R/W protection flags 885 * @env: CPUARMState 886 * @mmu_idx: MMU index indicating required translation regime 887 * @ap: The 3-bit access permissions (AP[2:0]) 888 * @domain_prot: The 2-bit domain access permissions 889 */ 890 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 891 int ap, int domain_prot) 892 { 893 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 894 regime_is_user(env, mmu_idx)); 895 } 896 897 /* 898 * Translate section/page access permissions to page R/W protection flags. 899 * @ap: The 2-bit simple AP (AP[2:1]) 900 * @is_user: TRUE if accessing from PL0 901 */ 902 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 903 { 904 switch (ap) { 905 case 0: 906 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 907 case 1: 908 return PAGE_READ | PAGE_WRITE; 909 case 2: 910 return is_user ? 0 : PAGE_READ; 911 case 3: 912 return PAGE_READ; 913 default: 914 g_assert_not_reached(); 915 } 916 } 917 918 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 919 { 920 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 921 } 922 923 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, 924 uint32_t address, MMUAccessType access_type, 925 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 926 { 927 int level = 1; 928 uint32_t table; 929 uint32_t desc; 930 int type; 931 int ap; 932 int domain = 0; 933 int domain_prot; 934 hwaddr phys_addr; 935 uint32_t dacr; 936 937 /* Pagetable walk. */ 938 /* Lookup l1 descriptor. */ 939 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { 940 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 941 fi->type = ARMFault_Translation; 942 goto do_fault; 943 } 944 if (!S1_ptw_translate(env, ptw, table, fi)) { 945 goto do_fault; 946 } 947 desc = arm_ldl_ptw(env, ptw, fi); 948 if (fi->type != ARMFault_None) { 949 goto do_fault; 950 } 951 type = (desc & 3); 952 domain = (desc >> 5) & 0x0f; 953 if (regime_el(env, ptw->in_mmu_idx) == 1) { 954 dacr = env->cp15.dacr_ns; 955 } else { 956 dacr = env->cp15.dacr_s; 957 } 958 domain_prot = (dacr >> (domain * 2)) & 3; 959 if (type == 0) { 960 /* Section translation fault. */ 961 fi->type = ARMFault_Translation; 962 goto do_fault; 963 } 964 if (type != 2) { 965 level = 2; 966 } 967 if (domain_prot == 0 || domain_prot == 2) { 968 fi->type = ARMFault_Domain; 969 goto do_fault; 970 } 971 if (type == 2) { 972 /* 1Mb section. */ 973 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 974 ap = (desc >> 10) & 3; 975 result->f.lg_page_size = 20; /* 1MB */ 976 } else { 977 /* Lookup l2 entry. */ 978 if (type == 1) { 979 /* Coarse pagetable. */ 980 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 981 } else { 982 /* Fine pagetable. */ 983 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 984 } 985 if (!S1_ptw_translate(env, ptw, table, fi)) { 986 goto do_fault; 987 } 988 desc = arm_ldl_ptw(env, ptw, fi); 989 if (fi->type != ARMFault_None) { 990 goto do_fault; 991 } 992 switch (desc & 3) { 993 case 0: /* Page translation fault. */ 994 fi->type = ARMFault_Translation; 995 goto do_fault; 996 case 1: /* 64k page. */ 997 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 998 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 999 result->f.lg_page_size = 16; 1000 break; 1001 case 2: /* 4k page. */ 1002 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1003 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 1004 result->f.lg_page_size = 12; 1005 break; 1006 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 1007 if (type == 1) { 1008 /* ARMv6/XScale extended small page format */ 1009 if (arm_feature(env, ARM_FEATURE_XSCALE) 1010 || arm_feature(env, ARM_FEATURE_V6)) { 1011 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1012 result->f.lg_page_size = 12; 1013 } else { 1014 /* 1015 * UNPREDICTABLE in ARMv5; we choose to take a 1016 * page translation fault. 1017 */ 1018 fi->type = ARMFault_Translation; 1019 goto do_fault; 1020 } 1021 } else { 1022 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 1023 result->f.lg_page_size = 10; 1024 } 1025 ap = (desc >> 4) & 3; 1026 break; 1027 default: 1028 /* Never happens, but compiler isn't smart enough to tell. */ 1029 g_assert_not_reached(); 1030 } 1031 } 1032 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); 1033 result->f.prot |= result->f.prot ? PAGE_EXEC : 0; 1034 if (!(result->f.prot & (1 << access_type))) { 1035 /* Access permission fault. */ 1036 fi->type = ARMFault_Permission; 1037 goto do_fault; 1038 } 1039 result->f.phys_addr = phys_addr; 1040 return false; 1041 do_fault: 1042 fi->domain = domain; 1043 fi->level = level; 1044 return true; 1045 } 1046 1047 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, 1048 uint32_t address, MMUAccessType access_type, 1049 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1050 { 1051 ARMCPU *cpu = env_archcpu(env); 1052 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1053 int level = 1; 1054 uint32_t table; 1055 uint32_t desc; 1056 uint32_t xn; 1057 uint32_t pxn = 0; 1058 int type; 1059 int ap; 1060 int domain = 0; 1061 int domain_prot; 1062 hwaddr phys_addr; 1063 uint32_t dacr; 1064 bool ns; 1065 int user_prot; 1066 1067 /* Pagetable walk. */ 1068 /* Lookup l1 descriptor. */ 1069 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 1070 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 1071 fi->type = ARMFault_Translation; 1072 goto do_fault; 1073 } 1074 if (!S1_ptw_translate(env, ptw, table, fi)) { 1075 goto do_fault; 1076 } 1077 desc = arm_ldl_ptw(env, ptw, fi); 1078 if (fi->type != ARMFault_None) { 1079 goto do_fault; 1080 } 1081 type = (desc & 3); 1082 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 1083 /* Section translation fault, or attempt to use the encoding 1084 * which is Reserved on implementations without PXN. 1085 */ 1086 fi->type = ARMFault_Translation; 1087 goto do_fault; 1088 } 1089 if ((type == 1) || !(desc & (1 << 18))) { 1090 /* Page or Section. */ 1091 domain = (desc >> 5) & 0x0f; 1092 } 1093 if (regime_el(env, mmu_idx) == 1) { 1094 dacr = env->cp15.dacr_ns; 1095 } else { 1096 dacr = env->cp15.dacr_s; 1097 } 1098 if (type == 1) { 1099 level = 2; 1100 } 1101 domain_prot = (dacr >> (domain * 2)) & 3; 1102 if (domain_prot == 0 || domain_prot == 2) { 1103 /* Section or Page domain fault */ 1104 fi->type = ARMFault_Domain; 1105 goto do_fault; 1106 } 1107 if (type != 1) { 1108 if (desc & (1 << 18)) { 1109 /* Supersection. */ 1110 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 1111 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 1112 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 1113 result->f.lg_page_size = 24; /* 16MB */ 1114 } else { 1115 /* Section. */ 1116 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 1117 result->f.lg_page_size = 20; /* 1MB */ 1118 } 1119 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 1120 xn = desc & (1 << 4); 1121 pxn = desc & 1; 1122 ns = extract32(desc, 19, 1); 1123 } else { 1124 if (cpu_isar_feature(aa32_pxn, cpu)) { 1125 pxn = (desc >> 2) & 1; 1126 } 1127 ns = extract32(desc, 3, 1); 1128 /* Lookup l2 entry. */ 1129 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 1130 if (!S1_ptw_translate(env, ptw, table, fi)) { 1131 goto do_fault; 1132 } 1133 desc = arm_ldl_ptw(env, ptw, fi); 1134 if (fi->type != ARMFault_None) { 1135 goto do_fault; 1136 } 1137 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 1138 switch (desc & 3) { 1139 case 0: /* Page translation fault. */ 1140 fi->type = ARMFault_Translation; 1141 goto do_fault; 1142 case 1: /* 64k page. */ 1143 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 1144 xn = desc & (1 << 15); 1145 result->f.lg_page_size = 16; 1146 break; 1147 case 2: case 3: /* 4k page. */ 1148 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1149 xn = desc & 1; 1150 result->f.lg_page_size = 12; 1151 break; 1152 default: 1153 /* Never happens, but compiler isn't smart enough to tell. */ 1154 g_assert_not_reached(); 1155 } 1156 } 1157 if (domain_prot == 3) { 1158 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1159 } else { 1160 if (pxn && !regime_is_user(env, mmu_idx)) { 1161 xn = 1; 1162 } 1163 if (xn && access_type == MMU_INST_FETCH) { 1164 fi->type = ARMFault_Permission; 1165 goto do_fault; 1166 } 1167 1168 if (arm_feature(env, ARM_FEATURE_V6K) && 1169 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 1170 /* The simplified model uses AP[0] as an access control bit. */ 1171 if ((ap & 1) == 0) { 1172 /* Access flag fault. */ 1173 fi->type = ARMFault_AccessFlag; 1174 goto do_fault; 1175 } 1176 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 1177 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1); 1178 } else { 1179 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 1180 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1); 1181 } 1182 if (result->f.prot && !xn) { 1183 result->f.prot |= PAGE_EXEC; 1184 } 1185 if (!(result->f.prot & (1 << access_type))) { 1186 /* Access permission fault. */ 1187 fi->type = ARMFault_Permission; 1188 goto do_fault; 1189 } 1190 if (regime_is_pan(env, mmu_idx) && 1191 !regime_is_user(env, mmu_idx) && 1192 user_prot && 1193 access_type != MMU_INST_FETCH) { 1194 /* Privileged Access Never fault */ 1195 fi->type = ARMFault_Permission; 1196 goto do_fault; 1197 } 1198 } 1199 if (ns) { 1200 /* The NS bit will (as required by the architecture) have no effect if 1201 * the CPU doesn't support TZ or this is a non-secure translation 1202 * regime, because the attribute will already be non-secure. 1203 */ 1204 result->f.attrs.secure = false; 1205 result->f.attrs.space = ARMSS_NonSecure; 1206 } 1207 result->f.phys_addr = phys_addr; 1208 return false; 1209 do_fault: 1210 fi->domain = domain; 1211 fi->level = level; 1212 return true; 1213 } 1214 1215 /* 1216 * Translate S2 section/page access permissions to protection flags 1217 * @env: CPUARMState 1218 * @s2ap: The 2-bit stage2 access permissions (S2AP) 1219 * @xn: XN (execute-never) bits 1220 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 1221 */ 1222 static int get_S2prot_noexecute(int s2ap) 1223 { 1224 int prot = 0; 1225 1226 if (s2ap & 1) { 1227 prot |= PAGE_READ; 1228 } 1229 if (s2ap & 2) { 1230 prot |= PAGE_WRITE; 1231 } 1232 return prot; 1233 } 1234 1235 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 1236 { 1237 int prot = get_S2prot_noexecute(s2ap); 1238 1239 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 1240 switch (xn) { 1241 case 0: 1242 prot |= PAGE_EXEC; 1243 break; 1244 case 1: 1245 if (s1_is_el0) { 1246 prot |= PAGE_EXEC; 1247 } 1248 break; 1249 case 2: 1250 break; 1251 case 3: 1252 if (!s1_is_el0) { 1253 prot |= PAGE_EXEC; 1254 } 1255 break; 1256 default: 1257 g_assert_not_reached(); 1258 } 1259 } else { 1260 if (!extract32(xn, 1, 1)) { 1261 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 1262 prot |= PAGE_EXEC; 1263 } 1264 } 1265 } 1266 return prot; 1267 } 1268 1269 /* 1270 * Translate section/page access permissions to protection flags 1271 * @env: CPUARMState 1272 * @mmu_idx: MMU index indicating required translation regime 1273 * @is_aa64: TRUE if AArch64 1274 * @ap: The 2-bit simple AP (AP[2:1]) 1275 * @xn: XN (execute-never) bit 1276 * @pxn: PXN (privileged execute-never) bit 1277 * @in_pa: The original input pa space 1278 * @out_pa: The output pa space, modified by NSTable, NS, and NSE 1279 */ 1280 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 1281 int ap, int xn, int pxn, 1282 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa) 1283 { 1284 ARMCPU *cpu = env_archcpu(env); 1285 bool is_user = regime_is_user(env, mmu_idx); 1286 int prot_rw, user_rw; 1287 bool have_wxn; 1288 int wxn = 0; 1289 1290 assert(!regime_is_stage2(mmu_idx)); 1291 1292 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 1293 if (is_user) { 1294 prot_rw = user_rw; 1295 } else { 1296 /* 1297 * PAN controls can forbid data accesses but don't affect insn fetch. 1298 * Plain PAN forbids data accesses if EL0 has data permissions; 1299 * PAN3 forbids data accesses if EL0 has either data or exec perms. 1300 * Note that for AArch64 the 'user can exec' case is exactly !xn. 1301 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0 1302 * do not affect EPAN. 1303 */ 1304 if (user_rw && regime_is_pan(env, mmu_idx)) { 1305 prot_rw = 0; 1306 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 && 1307 regime_is_pan(env, mmu_idx) && 1308 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) { 1309 prot_rw = 0; 1310 } else { 1311 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 1312 } 1313 } 1314 1315 if (in_pa != out_pa) { 1316 switch (in_pa) { 1317 case ARMSS_Root: 1318 /* 1319 * R_ZWRVD: permission fault for insn fetched from non-Root, 1320 * I_WWBFB: SIF has no effect in EL3. 1321 */ 1322 return prot_rw; 1323 case ARMSS_Realm: 1324 /* 1325 * R_PKTDS: permission fault for insn fetched from non-Realm, 1326 * for Realm EL2 or EL2&0. The corresponding fault for EL1&0 1327 * happens during any stage2 translation. 1328 */ 1329 switch (mmu_idx) { 1330 case ARMMMUIdx_E2: 1331 case ARMMMUIdx_E20_0: 1332 case ARMMMUIdx_E20_2: 1333 case ARMMMUIdx_E20_2_PAN: 1334 return prot_rw; 1335 default: 1336 break; 1337 } 1338 break; 1339 case ARMSS_Secure: 1340 if (env->cp15.scr_el3 & SCR_SIF) { 1341 return prot_rw; 1342 } 1343 break; 1344 default: 1345 /* Input NonSecure must have output NonSecure. */ 1346 g_assert_not_reached(); 1347 } 1348 } 1349 1350 /* TODO have_wxn should be replaced with 1351 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 1352 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 1353 * compatible processors have EL2, which is required for [U]WXN. 1354 */ 1355 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 1356 1357 if (have_wxn) { 1358 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 1359 } 1360 1361 if (is_aa64) { 1362 if (regime_has_2_ranges(mmu_idx) && !is_user) { 1363 xn = pxn || (user_rw & PAGE_WRITE); 1364 } 1365 } else if (arm_feature(env, ARM_FEATURE_V7)) { 1366 switch (regime_el(env, mmu_idx)) { 1367 case 1: 1368 case 3: 1369 if (is_user) { 1370 xn = xn || !(user_rw & PAGE_READ); 1371 } else { 1372 int uwxn = 0; 1373 if (have_wxn) { 1374 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 1375 } 1376 xn = xn || !(prot_rw & PAGE_READ) || pxn || 1377 (uwxn && (user_rw & PAGE_WRITE)); 1378 } 1379 break; 1380 case 2: 1381 break; 1382 } 1383 } else { 1384 xn = wxn = 0; 1385 } 1386 1387 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 1388 return prot_rw; 1389 } 1390 return prot_rw | PAGE_EXEC; 1391 } 1392 1393 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 1394 ARMMMUIdx mmu_idx) 1395 { 1396 uint64_t tcr = regime_tcr(env, mmu_idx); 1397 uint32_t el = regime_el(env, mmu_idx); 1398 int select, tsz; 1399 bool epd, hpd; 1400 1401 assert(mmu_idx != ARMMMUIdx_Stage2_S); 1402 1403 if (mmu_idx == ARMMMUIdx_Stage2) { 1404 /* VTCR */ 1405 bool sext = extract32(tcr, 4, 1); 1406 bool sign = extract32(tcr, 3, 1); 1407 1408 /* 1409 * If the sign-extend bit is not the same as t0sz[3], the result 1410 * is unpredictable. Flag this as a guest error. 1411 */ 1412 if (sign != sext) { 1413 qemu_log_mask(LOG_GUEST_ERROR, 1414 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 1415 } 1416 tsz = sextract32(tcr, 0, 4) + 8; 1417 select = 0; 1418 hpd = false; 1419 epd = false; 1420 } else if (el == 2) { 1421 /* HTCR */ 1422 tsz = extract32(tcr, 0, 3); 1423 select = 0; 1424 hpd = extract64(tcr, 24, 1); 1425 epd = false; 1426 } else { 1427 int t0sz = extract32(tcr, 0, 3); 1428 int t1sz = extract32(tcr, 16, 3); 1429 1430 if (t1sz == 0) { 1431 select = va > (0xffffffffu >> t0sz); 1432 } else { 1433 /* Note that we will detect errors later. */ 1434 select = va >= ~(0xffffffffu >> t1sz); 1435 } 1436 if (!select) { 1437 tsz = t0sz; 1438 epd = extract32(tcr, 7, 1); 1439 hpd = extract64(tcr, 41, 1); 1440 } else { 1441 tsz = t1sz; 1442 epd = extract32(tcr, 23, 1); 1443 hpd = extract64(tcr, 42, 1); 1444 } 1445 /* For aarch32, hpd0 is not enabled without t2e as well. */ 1446 hpd &= extract32(tcr, 6, 1); 1447 } 1448 1449 return (ARMVAParameters) { 1450 .tsz = tsz, 1451 .select = select, 1452 .epd = epd, 1453 .hpd = hpd, 1454 }; 1455 } 1456 1457 /* 1458 * check_s2_mmu_setup 1459 * @cpu: ARMCPU 1460 * @is_aa64: True if the translation regime is in AArch64 state 1461 * @tcr: VTCR_EL2 or VSTCR_EL2 1462 * @ds: Effective value of TCR.DS. 1463 * @iasize: Bitsize of IPAs 1464 * @stride: Page-table stride (See the ARM ARM) 1465 * 1466 * Decode the starting level of the S2 lookup, returning INT_MIN if 1467 * the configuration is invalid. 1468 */ 1469 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr, 1470 bool ds, int iasize, int stride) 1471 { 1472 int sl0, sl2, startlevel, granulebits, levels; 1473 int s1_min_iasize, s1_max_iasize; 1474 1475 sl0 = extract32(tcr, 6, 2); 1476 if (is_aa64) { 1477 /* 1478 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size, 1479 * so interleave AArch64.S2StartLevel. 1480 */ 1481 switch (stride) { 1482 case 9: /* 4KB */ 1483 /* SL2 is RES0 unless DS=1 & 4KB granule. */ 1484 sl2 = extract64(tcr, 33, 1); 1485 if (ds && sl2) { 1486 if (sl0 != 0) { 1487 goto fail; 1488 } 1489 startlevel = -1; 1490 } else { 1491 startlevel = 2 - sl0; 1492 switch (sl0) { 1493 case 2: 1494 if (arm_pamax(cpu) < 44) { 1495 goto fail; 1496 } 1497 break; 1498 case 3: 1499 if (!cpu_isar_feature(aa64_st, cpu)) { 1500 goto fail; 1501 } 1502 startlevel = 3; 1503 break; 1504 } 1505 } 1506 break; 1507 case 11: /* 16KB */ 1508 switch (sl0) { 1509 case 2: 1510 if (arm_pamax(cpu) < 42) { 1511 goto fail; 1512 } 1513 break; 1514 case 3: 1515 if (!ds) { 1516 goto fail; 1517 } 1518 break; 1519 } 1520 startlevel = 3 - sl0; 1521 break; 1522 case 13: /* 64KB */ 1523 switch (sl0) { 1524 case 2: 1525 if (arm_pamax(cpu) < 44) { 1526 goto fail; 1527 } 1528 break; 1529 case 3: 1530 goto fail; 1531 } 1532 startlevel = 3 - sl0; 1533 break; 1534 default: 1535 g_assert_not_reached(); 1536 } 1537 } else { 1538 /* 1539 * Things are simpler for AArch32 EL2, with only 4k pages. 1540 * There is no separate S2InvalidSL function, but AArch32.S2Walk 1541 * begins with walkparms.sl0 in {'1x'}. 1542 */ 1543 assert(stride == 9); 1544 if (sl0 >= 2) { 1545 goto fail; 1546 } 1547 startlevel = 2 - sl0; 1548 } 1549 1550 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */ 1551 levels = 3 - startlevel; 1552 granulebits = stride + 3; 1553 1554 s1_min_iasize = levels * stride + granulebits + 1; 1555 s1_max_iasize = s1_min_iasize + (stride - 1) + 4; 1556 1557 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) { 1558 return startlevel; 1559 } 1560 1561 fail: 1562 return INT_MIN; 1563 } 1564 1565 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds, 1566 ARMGranuleSize gran, int level) 1567 { 1568 /* 1569 * See pseudocode AArch46.BlockDescSupported(): block descriptors 1570 * are not valid at all levels, depending on the page size. 1571 */ 1572 switch (gran) { 1573 case Gran4K: 1574 return (level == 0 && ds) || level == 1 || level == 2; 1575 case Gran16K: 1576 return (level == 1 && ds) || level == 2; 1577 case Gran64K: 1578 return (level == 1 && arm_pamax(cpu) == 52) || level == 2; 1579 default: 1580 g_assert_not_reached(); 1581 } 1582 } 1583 1584 /** 1585 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 1586 * 1587 * Returns false if the translation was successful. Otherwise, phys_ptr, 1588 * attrs, prot and page_size may not be filled in, and the populated fsr 1589 * value provides information on why the translation aborted, in the format 1590 * of a long-format DFSR/IFSR fault register, with the following caveat: 1591 * the WnR bit is never set (the caller must do this). 1592 * 1593 * @env: CPUARMState 1594 * @ptw: Current and next stage parameters for the walk. 1595 * @address: virtual address to get physical address for 1596 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 1597 * @result: set on translation success, 1598 * @fi: set to fault info if the translation fails 1599 */ 1600 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 1601 uint64_t address, 1602 MMUAccessType access_type, 1603 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1604 { 1605 ARMCPU *cpu = env_archcpu(env); 1606 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1607 int32_t level; 1608 ARMVAParameters param; 1609 uint64_t ttbr; 1610 hwaddr descaddr, indexmask, indexmask_grainsize; 1611 uint32_t tableattrs; 1612 target_ulong page_size; 1613 uint64_t attrs; 1614 int32_t stride; 1615 int addrsize, inputsize, outputsize; 1616 uint64_t tcr = regime_tcr(env, mmu_idx); 1617 int ap, xn, pxn; 1618 uint32_t el = regime_el(env, mmu_idx); 1619 uint64_t descaddrmask; 1620 bool aarch64 = arm_el_is_aa64(env, el); 1621 uint64_t descriptor, new_descriptor; 1622 ARMSecuritySpace out_space; 1623 1624 /* TODO: This code does not support shareability levels. */ 1625 if (aarch64) { 1626 int ps; 1627 1628 param = aa64_va_parameters(env, address, mmu_idx, 1629 access_type != MMU_INST_FETCH, 1630 !arm_el_is_aa64(env, 1)); 1631 level = 0; 1632 1633 /* 1634 * If TxSZ is programmed to a value larger than the maximum, 1635 * or smaller than the effective minimum, it is IMPLEMENTATION 1636 * DEFINED whether we behave as if the field were programmed 1637 * within bounds, or if a level 0 Translation fault is generated. 1638 * 1639 * With FEAT_LVA, fault on less than minimum becomes required, 1640 * so our choice is to always raise the fault. 1641 */ 1642 if (param.tsz_oob) { 1643 goto do_translation_fault; 1644 } 1645 1646 addrsize = 64 - 8 * param.tbi; 1647 inputsize = 64 - param.tsz; 1648 1649 /* 1650 * Bound PS by PARANGE to find the effective output address size. 1651 * ID_AA64MMFR0 is a read-only register so values outside of the 1652 * supported mappings can be considered an implementation error. 1653 */ 1654 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1655 ps = MIN(ps, param.ps); 1656 assert(ps < ARRAY_SIZE(pamax_map)); 1657 outputsize = pamax_map[ps]; 1658 1659 /* 1660 * With LPA2, the effective output address (OA) size is at most 48 bits 1661 * unless TCR.DS == 1 1662 */ 1663 if (!param.ds && param.gran != Gran64K) { 1664 outputsize = MIN(outputsize, 48); 1665 } 1666 } else { 1667 param = aa32_va_parameters(env, address, mmu_idx); 1668 level = 1; 1669 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1670 inputsize = addrsize - param.tsz; 1671 outputsize = 40; 1672 } 1673 1674 /* 1675 * We determined the region when collecting the parameters, but we 1676 * have not yet validated that the address is valid for the region. 1677 * Extract the top bits and verify that they all match select. 1678 * 1679 * For aa32, if inputsize == addrsize, then we have selected the 1680 * region by exclusion in aa32_va_parameters and there is no more 1681 * validation to do here. 1682 */ 1683 if (inputsize < addrsize) { 1684 target_ulong top_bits = sextract64(address, inputsize, 1685 addrsize - inputsize); 1686 if (-top_bits != param.select) { 1687 /* The gap between the two regions is a Translation fault */ 1688 goto do_translation_fault; 1689 } 1690 } 1691 1692 stride = arm_granule_bits(param.gran) - 3; 1693 1694 /* 1695 * Note that QEMU ignores shareability and cacheability attributes, 1696 * so we don't need to do anything with the SH, ORGN, IRGN fields 1697 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1698 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1699 * implement any ASID-like capability so we can ignore it (instead 1700 * we will always flush the TLB any time the ASID is changed). 1701 */ 1702 ttbr = regime_ttbr(env, mmu_idx, param.select); 1703 1704 /* 1705 * Here we should have set up all the parameters for the translation: 1706 * inputsize, ttbr, epd, stride, tbi 1707 */ 1708 1709 if (param.epd) { 1710 /* 1711 * Translation table walk disabled => Translation fault on TLB miss 1712 * Note: This is always 0 on 64-bit EL2 and EL3. 1713 */ 1714 goto do_translation_fault; 1715 } 1716 1717 if (!regime_is_stage2(mmu_idx)) { 1718 /* 1719 * The starting level depends on the virtual address size (which can 1720 * be up to 48 bits) and the translation granule size. It indicates 1721 * the number of strides (stride bits at a time) needed to 1722 * consume the bits of the input address. In the pseudocode this is: 1723 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1724 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1725 * our 'stride + 3' and 'stride' is our 'stride'. 1726 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1727 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1728 * = 4 - (inputsize - 4) / stride; 1729 */ 1730 level = 4 - (inputsize - 4) / stride; 1731 } else { 1732 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds, 1733 inputsize, stride); 1734 if (startlevel == INT_MIN) { 1735 level = 0; 1736 goto do_translation_fault; 1737 } 1738 level = startlevel; 1739 } 1740 1741 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1742 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1743 1744 /* Now we can extract the actual base address from the TTBR */ 1745 descaddr = extract64(ttbr, 0, 48); 1746 1747 /* 1748 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1749 * 1750 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1751 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1752 * but we've just cleared the bits above 47, so simplify the test. 1753 */ 1754 if (outputsize > 48) { 1755 descaddr |= extract64(ttbr, 2, 4) << 48; 1756 } else if (descaddr >> outputsize) { 1757 level = 0; 1758 fi->type = ARMFault_AddressSize; 1759 goto do_fault; 1760 } 1761 1762 /* 1763 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1764 * and also to mask out CnP (bit 0) which could validly be non-zero. 1765 */ 1766 descaddr &= ~indexmask; 1767 1768 /* 1769 * For AArch32, the address field in the descriptor goes up to bit 39 1770 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1771 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1772 * bits as part of the address, which will be checked via outputsize. 1773 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1774 * the highest bits of a 52-bit output are placed elsewhere. 1775 */ 1776 if (param.ds) { 1777 descaddrmask = MAKE_64BIT_MASK(0, 50); 1778 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1779 descaddrmask = MAKE_64BIT_MASK(0, 48); 1780 } else { 1781 descaddrmask = MAKE_64BIT_MASK(0, 40); 1782 } 1783 descaddrmask &= ~indexmask_grainsize; 1784 tableattrs = 0; 1785 1786 next_level: 1787 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1788 descaddr &= ~7ULL; 1789 1790 /* 1791 * Process the NSTable bit from the previous level. This changes 1792 * the table address space and the output space from Secure to 1793 * NonSecure. With RME, the EL3 translation regime does not change 1794 * from Root to NonSecure. 1795 */ 1796 if (ptw->in_space == ARMSS_Secure 1797 && !regime_is_stage2(mmu_idx) 1798 && extract32(tableattrs, 4, 1)) { 1799 /* 1800 * Stage2_S -> Stage2 or Phys_S -> Phys_NS 1801 * Assert the relative order of the secure/non-secure indexes. 1802 */ 1803 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS); 1804 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2); 1805 ptw->in_ptw_idx += 1; 1806 ptw->in_space = ARMSS_NonSecure; 1807 } 1808 1809 if (!S1_ptw_translate(env, ptw, descaddr, fi)) { 1810 goto do_fault; 1811 } 1812 descriptor = arm_ldq_ptw(env, ptw, fi); 1813 if (fi->type != ARMFault_None) { 1814 goto do_fault; 1815 } 1816 new_descriptor = descriptor; 1817 1818 restart_atomic_update: 1819 if (!(descriptor & 1) || 1820 (!(descriptor & 2) && 1821 !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) { 1822 /* Invalid, or a block descriptor at an invalid level */ 1823 goto do_translation_fault; 1824 } 1825 1826 descaddr = descriptor & descaddrmask; 1827 1828 /* 1829 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1830 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1831 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1832 * raise AddressSizeFault. 1833 */ 1834 if (outputsize > 48) { 1835 if (param.ds) { 1836 descaddr |= extract64(descriptor, 8, 2) << 50; 1837 } else { 1838 descaddr |= extract64(descriptor, 12, 4) << 48; 1839 } 1840 } else if (descaddr >> outputsize) { 1841 fi->type = ARMFault_AddressSize; 1842 goto do_fault; 1843 } 1844 1845 if ((descriptor & 2) && (level < 3)) { 1846 /* 1847 * Table entry. The top five bits are attributes which may 1848 * propagate down through lower levels of the table (and 1849 * which are all arranged so that 0 means "no effect", so 1850 * we can gather them up by ORing in the bits at each level). 1851 */ 1852 tableattrs |= extract64(descriptor, 59, 5); 1853 level++; 1854 indexmask = indexmask_grainsize; 1855 goto next_level; 1856 } 1857 1858 /* 1859 * Block entry at level 1 or 2, or page entry at level 3. 1860 * These are basically the same thing, although the number 1861 * of bits we pull in from the vaddr varies. Note that although 1862 * descaddrmask masks enough of the low bits of the descriptor 1863 * to give a correct page or table address, the address field 1864 * in a block descriptor is smaller; so we need to explicitly 1865 * clear the lower bits here before ORing in the low vaddr bits. 1866 * 1867 * Afterward, descaddr is the final physical address. 1868 */ 1869 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1870 descaddr &= ~(hwaddr)(page_size - 1); 1871 descaddr |= (address & (page_size - 1)); 1872 1873 if (likely(!ptw->in_debug)) { 1874 /* 1875 * Access flag. 1876 * If HA is enabled, prepare to update the descriptor below. 1877 * Otherwise, pass the access fault on to software. 1878 */ 1879 if (!(descriptor & (1 << 10))) { 1880 if (param.ha) { 1881 new_descriptor |= 1 << 10; /* AF */ 1882 } else { 1883 fi->type = ARMFault_AccessFlag; 1884 goto do_fault; 1885 } 1886 } 1887 1888 /* 1889 * Dirty Bit. 1890 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP 1891 * bit for writeback. The actual write protection test may still be 1892 * overridden by tableattrs, to be merged below. 1893 */ 1894 if (param.hd 1895 && extract64(descriptor, 51, 1) /* DBM */ 1896 && access_type == MMU_DATA_STORE) { 1897 if (regime_is_stage2(mmu_idx)) { 1898 new_descriptor |= 1ull << 7; /* set S2AP[1] */ 1899 } else { 1900 new_descriptor &= ~(1ull << 7); /* clear AP[2] */ 1901 } 1902 } 1903 } 1904 1905 /* 1906 * Extract attributes from the (modified) descriptor, and apply 1907 * table descriptors. Stage 2 table descriptors do not include 1908 * any attribute fields. HPD disables all the table attributes 1909 * except NSTable (which we have already handled). 1910 */ 1911 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14)); 1912 if (!regime_is_stage2(mmu_idx)) { 1913 if (!param.hpd) { 1914 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */ 1915 /* 1916 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 1917 * means "force PL1 access only", which means forcing AP[1] to 0. 1918 */ 1919 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */ 1920 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */ 1921 } 1922 } 1923 1924 ap = extract32(attrs, 6, 2); 1925 out_space = ptw->in_space; 1926 if (regime_is_stage2(mmu_idx)) { 1927 /* 1928 * R_GYNXY: For stage2 in Realm security state, bit 55 is NS. 1929 * The bit remains ignored for other security states. 1930 * R_YMCSL: Executing an insn fetched from non-Realm causes 1931 * a stage2 permission fault. 1932 */ 1933 if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) { 1934 out_space = ARMSS_NonSecure; 1935 result->f.prot = get_S2prot_noexecute(ap); 1936 } else { 1937 xn = extract64(attrs, 53, 2); 1938 result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0); 1939 } 1940 } else { 1941 int nse, ns = extract32(attrs, 5, 1); 1942 switch (out_space) { 1943 case ARMSS_Root: 1944 /* 1945 * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime. 1946 * R_XTYPW: NSE and NS together select the output pa space. 1947 */ 1948 nse = extract32(attrs, 11, 1); 1949 out_space = (nse << 1) | ns; 1950 if (out_space == ARMSS_Secure && 1951 !cpu_isar_feature(aa64_sel2, cpu)) { 1952 out_space = ARMSS_NonSecure; 1953 } 1954 break; 1955 case ARMSS_Secure: 1956 if (ns) { 1957 out_space = ARMSS_NonSecure; 1958 } 1959 break; 1960 case ARMSS_Realm: 1961 switch (mmu_idx) { 1962 case ARMMMUIdx_Stage1_E0: 1963 case ARMMMUIdx_Stage1_E1: 1964 case ARMMMUIdx_Stage1_E1_PAN: 1965 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */ 1966 break; 1967 case ARMMMUIdx_E2: 1968 case ARMMMUIdx_E20_0: 1969 case ARMMMUIdx_E20_2: 1970 case ARMMMUIdx_E20_2_PAN: 1971 /* 1972 * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1, 1973 * NS changes the output to non-secure space. 1974 */ 1975 if (ns) { 1976 out_space = ARMSS_NonSecure; 1977 } 1978 break; 1979 default: 1980 g_assert_not_reached(); 1981 } 1982 break; 1983 case ARMSS_NonSecure: 1984 /* R_QRMFF: For NonSecure state, the NS bit is RES0. */ 1985 break; 1986 default: 1987 g_assert_not_reached(); 1988 } 1989 xn = extract64(attrs, 54, 1); 1990 pxn = extract64(attrs, 53, 1); 1991 1992 /* 1993 * Note that we modified ptw->in_space earlier for NSTable, but 1994 * result->f.attrs retains a copy of the original security space. 1995 */ 1996 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn, 1997 result->f.attrs.space, out_space); 1998 } 1999 2000 if (!(result->f.prot & (1 << access_type))) { 2001 fi->type = ARMFault_Permission; 2002 goto do_fault; 2003 } 2004 2005 /* If FEAT_HAFDBS has made changes, update the PTE. */ 2006 if (new_descriptor != descriptor) { 2007 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi); 2008 if (fi->type != ARMFault_None) { 2009 goto do_fault; 2010 } 2011 /* 2012 * I_YZSVV says that if the in-memory descriptor has changed, 2013 * then we must use the information in that new value 2014 * (which might include a different output address, different 2015 * attributes, or generate a fault). 2016 * Restart the handling of the descriptor value from scratch. 2017 */ 2018 if (new_descriptor != descriptor) { 2019 descriptor = new_descriptor; 2020 goto restart_atomic_update; 2021 } 2022 } 2023 2024 result->f.attrs.space = out_space; 2025 result->f.attrs.secure = arm_space_is_secure(out_space); 2026 2027 if (regime_is_stage2(mmu_idx)) { 2028 result->cacheattrs.is_s2_format = true; 2029 result->cacheattrs.attrs = extract32(attrs, 2, 4); 2030 } else { 2031 /* Index into MAIR registers for cache attributes */ 2032 uint8_t attrindx = extract32(attrs, 2, 3); 2033 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2034 assert(attrindx <= 7); 2035 result->cacheattrs.is_s2_format = false; 2036 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2037 2038 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ 2039 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { 2040 result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */ 2041 } 2042 } 2043 2044 /* 2045 * For FEAT_LPA2 and effective DS, the SH field in the attributes 2046 * was re-purposed for output address bits. The SH attribute in 2047 * that case comes from TCR_ELx, which we extracted earlier. 2048 */ 2049 if (param.ds) { 2050 result->cacheattrs.shareability = param.sh; 2051 } else { 2052 result->cacheattrs.shareability = extract32(attrs, 8, 2); 2053 } 2054 2055 result->f.phys_addr = descaddr; 2056 result->f.lg_page_size = ctz64(page_size); 2057 return false; 2058 2059 do_translation_fault: 2060 fi->type = ARMFault_Translation; 2061 do_fault: 2062 if (fi->s1ptw) { 2063 /* Retain the existing stage 2 fi->level */ 2064 assert(fi->stage2); 2065 } else { 2066 fi->level = level; 2067 fi->stage2 = regime_is_stage2(mmu_idx); 2068 } 2069 fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx); 2070 return true; 2071 } 2072 2073 static bool get_phys_addr_pmsav5(CPUARMState *env, 2074 S1Translate *ptw, 2075 uint32_t address, 2076 MMUAccessType access_type, 2077 GetPhysAddrResult *result, 2078 ARMMMUFaultInfo *fi) 2079 { 2080 int n; 2081 uint32_t mask; 2082 uint32_t base; 2083 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2084 bool is_user = regime_is_user(env, mmu_idx); 2085 2086 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 2087 /* MPU disabled. */ 2088 result->f.phys_addr = address; 2089 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2090 return false; 2091 } 2092 2093 result->f.phys_addr = address; 2094 for (n = 7; n >= 0; n--) { 2095 base = env->cp15.c6_region[n]; 2096 if ((base & 1) == 0) { 2097 continue; 2098 } 2099 mask = 1 << ((base >> 1) & 0x1f); 2100 /* Keep this shift separate from the above to avoid an 2101 (undefined) << 32. */ 2102 mask = (mask << 1) - 1; 2103 if (((base ^ address) & ~mask) == 0) { 2104 break; 2105 } 2106 } 2107 if (n < 0) { 2108 fi->type = ARMFault_Background; 2109 return true; 2110 } 2111 2112 if (access_type == MMU_INST_FETCH) { 2113 mask = env->cp15.pmsav5_insn_ap; 2114 } else { 2115 mask = env->cp15.pmsav5_data_ap; 2116 } 2117 mask = (mask >> (n * 4)) & 0xf; 2118 switch (mask) { 2119 case 0: 2120 fi->type = ARMFault_Permission; 2121 fi->level = 1; 2122 return true; 2123 case 1: 2124 if (is_user) { 2125 fi->type = ARMFault_Permission; 2126 fi->level = 1; 2127 return true; 2128 } 2129 result->f.prot = PAGE_READ | PAGE_WRITE; 2130 break; 2131 case 2: 2132 result->f.prot = PAGE_READ; 2133 if (!is_user) { 2134 result->f.prot |= PAGE_WRITE; 2135 } 2136 break; 2137 case 3: 2138 result->f.prot = PAGE_READ | PAGE_WRITE; 2139 break; 2140 case 5: 2141 if (is_user) { 2142 fi->type = ARMFault_Permission; 2143 fi->level = 1; 2144 return true; 2145 } 2146 result->f.prot = PAGE_READ; 2147 break; 2148 case 6: 2149 result->f.prot = PAGE_READ; 2150 break; 2151 default: 2152 /* Bad permission. */ 2153 fi->type = ARMFault_Permission; 2154 fi->level = 1; 2155 return true; 2156 } 2157 result->f.prot |= PAGE_EXEC; 2158 return false; 2159 } 2160 2161 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 2162 int32_t address, uint8_t *prot) 2163 { 2164 if (!arm_feature(env, ARM_FEATURE_M)) { 2165 *prot = PAGE_READ | PAGE_WRITE; 2166 switch (address) { 2167 case 0xF0000000 ... 0xFFFFFFFF: 2168 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 2169 /* hivecs execing is ok */ 2170 *prot |= PAGE_EXEC; 2171 } 2172 break; 2173 case 0x00000000 ... 0x7FFFFFFF: 2174 *prot |= PAGE_EXEC; 2175 break; 2176 } 2177 } else { 2178 /* Default system address map for M profile cores. 2179 * The architecture specifies which regions are execute-never; 2180 * at the MPU level no other checks are defined. 2181 */ 2182 switch (address) { 2183 case 0x00000000 ... 0x1fffffff: /* ROM */ 2184 case 0x20000000 ... 0x3fffffff: /* SRAM */ 2185 case 0x60000000 ... 0x7fffffff: /* RAM */ 2186 case 0x80000000 ... 0x9fffffff: /* RAM */ 2187 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2188 break; 2189 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 2190 case 0xa0000000 ... 0xbfffffff: /* Device */ 2191 case 0xc0000000 ... 0xdfffffff: /* Device */ 2192 case 0xe0000000 ... 0xffffffff: /* System */ 2193 *prot = PAGE_READ | PAGE_WRITE; 2194 break; 2195 default: 2196 g_assert_not_reached(); 2197 } 2198 } 2199 } 2200 2201 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 2202 { 2203 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 2204 return arm_feature(env, ARM_FEATURE_M) && 2205 extract32(address, 20, 12) == 0xe00; 2206 } 2207 2208 static bool m_is_system_region(CPUARMState *env, uint32_t address) 2209 { 2210 /* 2211 * True if address is in the M profile system region 2212 * 0xe0000000 - 0xffffffff 2213 */ 2214 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 2215 } 2216 2217 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 2218 bool is_secure, bool is_user) 2219 { 2220 /* 2221 * Return true if we should use the default memory map as a 2222 * "background" region if there are no hits against any MPU regions. 2223 */ 2224 CPUARMState *env = &cpu->env; 2225 2226 if (is_user) { 2227 return false; 2228 } 2229 2230 if (arm_feature(env, ARM_FEATURE_M)) { 2231 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 2232 } 2233 2234 if (mmu_idx == ARMMMUIdx_Stage2) { 2235 return false; 2236 } 2237 2238 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 2239 } 2240 2241 static bool get_phys_addr_pmsav7(CPUARMState *env, 2242 S1Translate *ptw, 2243 uint32_t address, 2244 MMUAccessType access_type, 2245 GetPhysAddrResult *result, 2246 ARMMMUFaultInfo *fi) 2247 { 2248 ARMCPU *cpu = env_archcpu(env); 2249 int n; 2250 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2251 bool is_user = regime_is_user(env, mmu_idx); 2252 bool secure = arm_space_is_secure(ptw->in_space); 2253 2254 result->f.phys_addr = address; 2255 result->f.lg_page_size = TARGET_PAGE_BITS; 2256 result->f.prot = 0; 2257 2258 if (regime_translation_disabled(env, mmu_idx, ptw->in_space) || 2259 m_is_ppb_region(env, address)) { 2260 /* 2261 * MPU disabled or M profile PPB access: use default memory map. 2262 * The other case which uses the default memory map in the 2263 * v7M ARM ARM pseudocode is exception vector reads from the vector 2264 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 2265 * which always does a direct read using address_space_ldl(), rather 2266 * than going via this function, so we don't need to check that here. 2267 */ 2268 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2269 } else { /* MPU enabled */ 2270 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 2271 /* region search */ 2272 uint32_t base = env->pmsav7.drbar[n]; 2273 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 2274 uint32_t rmask; 2275 bool srdis = false; 2276 2277 if (!(env->pmsav7.drsr[n] & 0x1)) { 2278 continue; 2279 } 2280 2281 if (!rsize) { 2282 qemu_log_mask(LOG_GUEST_ERROR, 2283 "DRSR[%d]: Rsize field cannot be 0\n", n); 2284 continue; 2285 } 2286 rsize++; 2287 rmask = (1ull << rsize) - 1; 2288 2289 if (base & rmask) { 2290 qemu_log_mask(LOG_GUEST_ERROR, 2291 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 2292 "to DRSR region size, mask = 0x%" PRIx32 "\n", 2293 n, base, rmask); 2294 continue; 2295 } 2296 2297 if (address < base || address > base + rmask) { 2298 /* 2299 * Address not in this region. We must check whether the 2300 * region covers addresses in the same page as our address. 2301 * In that case we must not report a size that covers the 2302 * whole page for a subsequent hit against a different MPU 2303 * region or the background region, because it would result in 2304 * incorrect TLB hits for subsequent accesses to addresses that 2305 * are in this MPU region. 2306 */ 2307 if (ranges_overlap(base, rmask, 2308 address & TARGET_PAGE_MASK, 2309 TARGET_PAGE_SIZE)) { 2310 result->f.lg_page_size = 0; 2311 } 2312 continue; 2313 } 2314 2315 /* Region matched */ 2316 2317 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 2318 int i, snd; 2319 uint32_t srdis_mask; 2320 2321 rsize -= 3; /* sub region size (power of 2) */ 2322 snd = ((address - base) >> rsize) & 0x7; 2323 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 2324 2325 srdis_mask = srdis ? 0x3 : 0x0; 2326 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 2327 /* 2328 * This will check in groups of 2, 4 and then 8, whether 2329 * the subregion bits are consistent. rsize is incremented 2330 * back up to give the region size, considering consistent 2331 * adjacent subregions as one region. Stop testing if rsize 2332 * is already big enough for an entire QEMU page. 2333 */ 2334 int snd_rounded = snd & ~(i - 1); 2335 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 2336 snd_rounded + 8, i); 2337 if (srdis_mask ^ srdis_multi) { 2338 break; 2339 } 2340 srdis_mask = (srdis_mask << i) | srdis_mask; 2341 rsize++; 2342 } 2343 } 2344 if (srdis) { 2345 continue; 2346 } 2347 if (rsize < TARGET_PAGE_BITS) { 2348 result->f.lg_page_size = rsize; 2349 } 2350 break; 2351 } 2352 2353 if (n == -1) { /* no hits */ 2354 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2355 /* background fault */ 2356 fi->type = ARMFault_Background; 2357 return true; 2358 } 2359 get_phys_addr_pmsav7_default(env, mmu_idx, address, 2360 &result->f.prot); 2361 } else { /* a MPU hit! */ 2362 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 2363 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 2364 2365 if (m_is_system_region(env, address)) { 2366 /* System space is always execute never */ 2367 xn = 1; 2368 } 2369 2370 if (is_user) { /* User mode AP bit decoding */ 2371 switch (ap) { 2372 case 0: 2373 case 1: 2374 case 5: 2375 break; /* no access */ 2376 case 3: 2377 result->f.prot |= PAGE_WRITE; 2378 /* fall through */ 2379 case 2: 2380 case 6: 2381 result->f.prot |= PAGE_READ | PAGE_EXEC; 2382 break; 2383 case 7: 2384 /* for v7M, same as 6; for R profile a reserved value */ 2385 if (arm_feature(env, ARM_FEATURE_M)) { 2386 result->f.prot |= PAGE_READ | PAGE_EXEC; 2387 break; 2388 } 2389 /* fall through */ 2390 default: 2391 qemu_log_mask(LOG_GUEST_ERROR, 2392 "DRACR[%d]: Bad value for AP bits: 0x%" 2393 PRIx32 "\n", n, ap); 2394 } 2395 } else { /* Priv. mode AP bits decoding */ 2396 switch (ap) { 2397 case 0: 2398 break; /* no access */ 2399 case 1: 2400 case 2: 2401 case 3: 2402 result->f.prot |= PAGE_WRITE; 2403 /* fall through */ 2404 case 5: 2405 case 6: 2406 result->f.prot |= PAGE_READ | PAGE_EXEC; 2407 break; 2408 case 7: 2409 /* for v7M, same as 6; for R profile a reserved value */ 2410 if (arm_feature(env, ARM_FEATURE_M)) { 2411 result->f.prot |= PAGE_READ | PAGE_EXEC; 2412 break; 2413 } 2414 /* fall through */ 2415 default: 2416 qemu_log_mask(LOG_GUEST_ERROR, 2417 "DRACR[%d]: Bad value for AP bits: 0x%" 2418 PRIx32 "\n", n, ap); 2419 } 2420 } 2421 2422 /* execute never */ 2423 if (xn) { 2424 result->f.prot &= ~PAGE_EXEC; 2425 } 2426 } 2427 } 2428 2429 fi->type = ARMFault_Permission; 2430 fi->level = 1; 2431 return !(result->f.prot & (1 << access_type)); 2432 } 2433 2434 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx, 2435 uint32_t secure) 2436 { 2437 if (regime_el(env, mmu_idx) == 2) { 2438 return env->pmsav8.hprbar; 2439 } else { 2440 return env->pmsav8.rbar[secure]; 2441 } 2442 } 2443 2444 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx, 2445 uint32_t secure) 2446 { 2447 if (regime_el(env, mmu_idx) == 2) { 2448 return env->pmsav8.hprlar; 2449 } else { 2450 return env->pmsav8.rlar[secure]; 2451 } 2452 } 2453 2454 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 2455 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2456 bool secure, GetPhysAddrResult *result, 2457 ARMMMUFaultInfo *fi, uint32_t *mregion) 2458 { 2459 /* 2460 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 2461 * that a full phys-to-virt translation does). 2462 * mregion is (if not NULL) set to the region number which matched, 2463 * or -1 if no region number is returned (MPU off, address did not 2464 * hit a region, address hit in multiple regions). 2465 * If the region hit doesn't cover the entire TARGET_PAGE the address 2466 * is within, then we set the result page_size to 1 to force the 2467 * memory system to use a subpage. 2468 */ 2469 ARMCPU *cpu = env_archcpu(env); 2470 bool is_user = regime_is_user(env, mmu_idx); 2471 int n; 2472 int matchregion = -1; 2473 bool hit = false; 2474 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2475 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2476 int region_counter; 2477 2478 if (regime_el(env, mmu_idx) == 2) { 2479 region_counter = cpu->pmsav8r_hdregion; 2480 } else { 2481 region_counter = cpu->pmsav7_dregion; 2482 } 2483 2484 result->f.lg_page_size = TARGET_PAGE_BITS; 2485 result->f.phys_addr = address; 2486 result->f.prot = 0; 2487 if (mregion) { 2488 *mregion = -1; 2489 } 2490 2491 if (mmu_idx == ARMMMUIdx_Stage2) { 2492 fi->stage2 = true; 2493 } 2494 2495 /* 2496 * Unlike the ARM ARM pseudocode, we don't need to check whether this 2497 * was an exception vector read from the vector table (which is always 2498 * done using the default system address map), because those accesses 2499 * are done in arm_v7m_load_vector(), which always does a direct 2500 * read using address_space_ldl(), rather than going via this function. 2501 */ 2502 if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) { 2503 /* MPU disabled */ 2504 hit = true; 2505 } else if (m_is_ppb_region(env, address)) { 2506 hit = true; 2507 } else { 2508 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2509 hit = true; 2510 } 2511 2512 uint32_t bitmask; 2513 if (arm_feature(env, ARM_FEATURE_M)) { 2514 bitmask = 0x1f; 2515 } else { 2516 bitmask = 0x3f; 2517 fi->level = 0; 2518 } 2519 2520 for (n = region_counter - 1; n >= 0; n--) { 2521 /* region search */ 2522 /* 2523 * Note that the base address is bits [31:x] from the register 2524 * with bits [x-1:0] all zeroes, but the limit address is bits 2525 * [31:x] from the register with bits [x:0] all ones. Where x is 2526 * 5 for Cortex-M and 6 for Cortex-R 2527 */ 2528 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask; 2529 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask; 2530 2531 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) { 2532 /* Region disabled */ 2533 continue; 2534 } 2535 2536 if (address < base || address > limit) { 2537 /* 2538 * Address not in this region. We must check whether the 2539 * region covers addresses in the same page as our address. 2540 * In that case we must not report a size that covers the 2541 * whole page for a subsequent hit against a different MPU 2542 * region or the background region, because it would result in 2543 * incorrect TLB hits for subsequent accesses to addresses that 2544 * are in this MPU region. 2545 */ 2546 if (limit >= base && 2547 ranges_overlap(base, limit - base + 1, 2548 addr_page_base, 2549 TARGET_PAGE_SIZE)) { 2550 result->f.lg_page_size = 0; 2551 } 2552 continue; 2553 } 2554 2555 if (base > addr_page_base || limit < addr_page_limit) { 2556 result->f.lg_page_size = 0; 2557 } 2558 2559 if (matchregion != -1) { 2560 /* 2561 * Multiple regions match -- always a failure (unlike 2562 * PMSAv7 where highest-numbered-region wins) 2563 */ 2564 fi->type = ARMFault_Permission; 2565 if (arm_feature(env, ARM_FEATURE_M)) { 2566 fi->level = 1; 2567 } 2568 return true; 2569 } 2570 2571 matchregion = n; 2572 hit = true; 2573 } 2574 } 2575 2576 if (!hit) { 2577 if (arm_feature(env, ARM_FEATURE_M)) { 2578 fi->type = ARMFault_Background; 2579 } else { 2580 fi->type = ARMFault_Permission; 2581 } 2582 return true; 2583 } 2584 2585 if (matchregion == -1) { 2586 /* hit using the background region */ 2587 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2588 } else { 2589 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion]; 2590 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion]; 2591 uint32_t ap = extract32(matched_rbar, 1, 2); 2592 uint32_t xn = extract32(matched_rbar, 0, 1); 2593 bool pxn = false; 2594 2595 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 2596 pxn = extract32(matched_rlar, 4, 1); 2597 } 2598 2599 if (m_is_system_region(env, address)) { 2600 /* System space is always execute never */ 2601 xn = 1; 2602 } 2603 2604 if (regime_el(env, mmu_idx) == 2) { 2605 result->f.prot = simple_ap_to_rw_prot_is_user(ap, 2606 mmu_idx != ARMMMUIdx_E2); 2607 } else { 2608 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 2609 } 2610 2611 if (!arm_feature(env, ARM_FEATURE_M)) { 2612 uint8_t attrindx = extract32(matched_rlar, 1, 3); 2613 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2614 uint8_t sh = extract32(matched_rlar, 3, 2); 2615 2616 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN && 2617 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) { 2618 xn = 0x1; 2619 } 2620 2621 if ((regime_el(env, mmu_idx) == 1) && 2622 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) { 2623 pxn = 0x1; 2624 } 2625 2626 result->cacheattrs.is_s2_format = false; 2627 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2628 result->cacheattrs.shareability = sh; 2629 } 2630 2631 if (result->f.prot && !xn && !(pxn && !is_user)) { 2632 result->f.prot |= PAGE_EXEC; 2633 } 2634 2635 if (mregion) { 2636 *mregion = matchregion; 2637 } 2638 } 2639 2640 fi->type = ARMFault_Permission; 2641 if (arm_feature(env, ARM_FEATURE_M)) { 2642 fi->level = 1; 2643 } 2644 return !(result->f.prot & (1 << access_type)); 2645 } 2646 2647 static bool v8m_is_sau_exempt(CPUARMState *env, 2648 uint32_t address, MMUAccessType access_type) 2649 { 2650 /* 2651 * The architecture specifies that certain address ranges are 2652 * exempt from v8M SAU/IDAU checks. 2653 */ 2654 return 2655 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 2656 (address >= 0xe0000000 && address <= 0xe0002fff) || 2657 (address >= 0xe000e000 && address <= 0xe000efff) || 2658 (address >= 0xe002e000 && address <= 0xe002efff) || 2659 (address >= 0xe0040000 && address <= 0xe0041fff) || 2660 (address >= 0xe00ff000 && address <= 0xe00fffff); 2661 } 2662 2663 void v8m_security_lookup(CPUARMState *env, uint32_t address, 2664 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2665 bool is_secure, V8M_SAttributes *sattrs) 2666 { 2667 /* 2668 * Look up the security attributes for this address. Compare the 2669 * pseudocode SecurityCheck() function. 2670 * We assume the caller has zero-initialized *sattrs. 2671 */ 2672 ARMCPU *cpu = env_archcpu(env); 2673 int r; 2674 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 2675 int idau_region = IREGION_NOTVALID; 2676 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2677 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2678 2679 if (cpu->idau) { 2680 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 2681 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 2682 2683 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 2684 &idau_nsc); 2685 } 2686 2687 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 2688 /* 0xf0000000..0xffffffff is always S for insn fetches */ 2689 return; 2690 } 2691 2692 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 2693 sattrs->ns = !is_secure; 2694 return; 2695 } 2696 2697 if (idau_region != IREGION_NOTVALID) { 2698 sattrs->irvalid = true; 2699 sattrs->iregion = idau_region; 2700 } 2701 2702 switch (env->sau.ctrl & 3) { 2703 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 2704 break; 2705 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 2706 sattrs->ns = true; 2707 break; 2708 default: /* SAU.ENABLE == 1 */ 2709 for (r = 0; r < cpu->sau_sregion; r++) { 2710 if (env->sau.rlar[r] & 1) { 2711 uint32_t base = env->sau.rbar[r] & ~0x1f; 2712 uint32_t limit = env->sau.rlar[r] | 0x1f; 2713 2714 if (base <= address && limit >= address) { 2715 if (base > addr_page_base || limit < addr_page_limit) { 2716 sattrs->subpage = true; 2717 } 2718 if (sattrs->srvalid) { 2719 /* 2720 * If we hit in more than one region then we must report 2721 * as Secure, not NS-Callable, with no valid region 2722 * number info. 2723 */ 2724 sattrs->ns = false; 2725 sattrs->nsc = false; 2726 sattrs->sregion = 0; 2727 sattrs->srvalid = false; 2728 break; 2729 } else { 2730 if (env->sau.rlar[r] & 2) { 2731 sattrs->nsc = true; 2732 } else { 2733 sattrs->ns = true; 2734 } 2735 sattrs->srvalid = true; 2736 sattrs->sregion = r; 2737 } 2738 } else { 2739 /* 2740 * Address not in this region. We must check whether the 2741 * region covers addresses in the same page as our address. 2742 * In that case we must not report a size that covers the 2743 * whole page for a subsequent hit against a different MPU 2744 * region or the background region, because it would result 2745 * in incorrect TLB hits for subsequent accesses to 2746 * addresses that are in this MPU region. 2747 */ 2748 if (limit >= base && 2749 ranges_overlap(base, limit - base + 1, 2750 addr_page_base, 2751 TARGET_PAGE_SIZE)) { 2752 sattrs->subpage = true; 2753 } 2754 } 2755 } 2756 } 2757 break; 2758 } 2759 2760 /* 2761 * The IDAU will override the SAU lookup results if it specifies 2762 * higher security than the SAU does. 2763 */ 2764 if (!idau_ns) { 2765 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 2766 sattrs->ns = false; 2767 sattrs->nsc = idau_nsc; 2768 } 2769 } 2770 } 2771 2772 static bool get_phys_addr_pmsav8(CPUARMState *env, 2773 S1Translate *ptw, 2774 uint32_t address, 2775 MMUAccessType access_type, 2776 GetPhysAddrResult *result, 2777 ARMMMUFaultInfo *fi) 2778 { 2779 V8M_SAttributes sattrs = {}; 2780 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2781 bool secure = arm_space_is_secure(ptw->in_space); 2782 bool ret; 2783 2784 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2785 v8m_security_lookup(env, address, access_type, mmu_idx, 2786 secure, &sattrs); 2787 if (access_type == MMU_INST_FETCH) { 2788 /* 2789 * Instruction fetches always use the MMU bank and the 2790 * transaction attribute determined by the fetch address, 2791 * regardless of CPU state. This is painful for QEMU 2792 * to handle, because it would mean we need to encode 2793 * into the mmu_idx not just the (user, negpri) information 2794 * for the current security state but also that for the 2795 * other security state, which would balloon the number 2796 * of mmu_idx values needed alarmingly. 2797 * Fortunately we can avoid this because it's not actually 2798 * possible to arbitrarily execute code from memory with 2799 * the wrong security attribute: it will always generate 2800 * an exception of some kind or another, apart from the 2801 * special case of an NS CPU executing an SG instruction 2802 * in S&NSC memory. So we always just fail the translation 2803 * here and sort things out in the exception handler 2804 * (including possibly emulating an SG instruction). 2805 */ 2806 if (sattrs.ns != !secure) { 2807 if (sattrs.nsc) { 2808 fi->type = ARMFault_QEMU_NSCExec; 2809 } else { 2810 fi->type = ARMFault_QEMU_SFault; 2811 } 2812 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2813 result->f.phys_addr = address; 2814 result->f.prot = 0; 2815 return true; 2816 } 2817 } else { 2818 /* 2819 * For data accesses we always use the MMU bank indicated 2820 * by the current CPU state, but the security attributes 2821 * might downgrade a secure access to nonsecure. 2822 */ 2823 if (sattrs.ns) { 2824 result->f.attrs.secure = false; 2825 result->f.attrs.space = ARMSS_NonSecure; 2826 } else if (!secure) { 2827 /* 2828 * NS access to S memory must fault. 2829 * Architecturally we should first check whether the 2830 * MPU information for this address indicates that we 2831 * are doing an unaligned access to Device memory, which 2832 * should generate a UsageFault instead. QEMU does not 2833 * currently check for that kind of unaligned access though. 2834 * If we added it we would need to do so as a special case 2835 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2836 */ 2837 fi->type = ARMFault_QEMU_SFault; 2838 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2839 result->f.phys_addr = address; 2840 result->f.prot = 0; 2841 return true; 2842 } 2843 } 2844 } 2845 2846 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, 2847 result, fi, NULL); 2848 if (sattrs.subpage) { 2849 result->f.lg_page_size = 0; 2850 } 2851 return ret; 2852 } 2853 2854 /* 2855 * Translate from the 4-bit stage 2 representation of 2856 * memory attributes (without cache-allocation hints) to 2857 * the 8-bit representation of the stage 1 MAIR registers 2858 * (which includes allocation hints). 2859 * 2860 * ref: shared/translation/attrs/S2AttrDecode() 2861 * .../S2ConvertAttrsHints() 2862 */ 2863 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) 2864 { 2865 uint8_t hiattr = extract32(s2attrs, 2, 2); 2866 uint8_t loattr = extract32(s2attrs, 0, 2); 2867 uint8_t hihint = 0, lohint = 0; 2868 2869 if (hiattr != 0) { /* normal memory */ 2870 if (hcr & HCR_CD) { /* cache disabled */ 2871 hiattr = loattr = 1; /* non-cacheable */ 2872 } else { 2873 if (hiattr != 1) { /* Write-through or write-back */ 2874 hihint = 3; /* RW allocate */ 2875 } 2876 if (loattr != 1) { /* Write-through or write-back */ 2877 lohint = 3; /* RW allocate */ 2878 } 2879 } 2880 } 2881 2882 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 2883 } 2884 2885 /* 2886 * Combine either inner or outer cacheability attributes for normal 2887 * memory, according to table D4-42 and pseudocode procedure 2888 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 2889 * 2890 * NB: only stage 1 includes allocation hints (RW bits), leading to 2891 * some asymmetry. 2892 */ 2893 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 2894 { 2895 if (s1 == 4 || s2 == 4) { 2896 /* non-cacheable has precedence */ 2897 return 4; 2898 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 2899 /* stage 1 write-through takes precedence */ 2900 return s1; 2901 } else if (extract32(s2, 2, 2) == 2) { 2902 /* stage 2 write-through takes precedence, but the allocation hint 2903 * is still taken from stage 1 2904 */ 2905 return (2 << 2) | extract32(s1, 0, 2); 2906 } else { /* write-back */ 2907 return s1; 2908 } 2909 } 2910 2911 /* 2912 * Combine the memory type and cacheability attributes of 2913 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 2914 * combined attributes in MAIR_EL1 format. 2915 */ 2916 static uint8_t combined_attrs_nofwb(uint64_t hcr, 2917 ARMCacheAttrs s1, ARMCacheAttrs s2) 2918 { 2919 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 2920 2921 if (s2.is_s2_format) { 2922 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); 2923 } else { 2924 s2_mair_attrs = s2.attrs; 2925 } 2926 2927 s1lo = extract32(s1.attrs, 0, 4); 2928 s2lo = extract32(s2_mair_attrs, 0, 4); 2929 s1hi = extract32(s1.attrs, 4, 4); 2930 s2hi = extract32(s2_mair_attrs, 4, 4); 2931 2932 /* Combine memory type and cacheability attributes */ 2933 if (s1hi == 0 || s2hi == 0) { 2934 /* Device has precedence over normal */ 2935 if (s1lo == 0 || s2lo == 0) { 2936 /* nGnRnE has precedence over anything */ 2937 ret_attrs = 0; 2938 } else if (s1lo == 4 || s2lo == 4) { 2939 /* non-Reordering has precedence over Reordering */ 2940 ret_attrs = 4; /* nGnRE */ 2941 } else if (s1lo == 8 || s2lo == 8) { 2942 /* non-Gathering has precedence over Gathering */ 2943 ret_attrs = 8; /* nGRE */ 2944 } else { 2945 ret_attrs = 0xc; /* GRE */ 2946 } 2947 } else { /* Normal memory */ 2948 /* Outer/inner cacheability combine independently */ 2949 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 2950 | combine_cacheattr_nibble(s1lo, s2lo); 2951 } 2952 return ret_attrs; 2953 } 2954 2955 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 2956 { 2957 /* 2958 * Given the 4 bits specifying the outer or inner cacheability 2959 * in MAIR format, return a value specifying Normal Write-Back, 2960 * with the allocation and transient hints taken from the input 2961 * if the input specified some kind of cacheable attribute. 2962 */ 2963 if (attr == 0 || attr == 4) { 2964 /* 2965 * 0 == an UNPREDICTABLE encoding 2966 * 4 == Non-cacheable 2967 * Either way, force Write-Back RW allocate non-transient 2968 */ 2969 return 0xf; 2970 } 2971 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 2972 return attr | 4; 2973 } 2974 2975 /* 2976 * Combine the memory type and cacheability attributes of 2977 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 2978 * combined attributes in MAIR_EL1 format. 2979 */ 2980 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) 2981 { 2982 assert(s2.is_s2_format && !s1.is_s2_format); 2983 2984 switch (s2.attrs) { 2985 case 7: 2986 /* Use stage 1 attributes */ 2987 return s1.attrs; 2988 case 6: 2989 /* 2990 * Force Normal Write-Back. Note that if S1 is Normal cacheable 2991 * then we take the allocation hints from it; otherwise it is 2992 * RW allocate, non-transient. 2993 */ 2994 if ((s1.attrs & 0xf0) == 0) { 2995 /* S1 is Device */ 2996 return 0xff; 2997 } 2998 /* Need to check the Inner and Outer nibbles separately */ 2999 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 3000 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 3001 case 5: 3002 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 3003 if ((s1.attrs & 0xf0) == 0) { 3004 return s1.attrs; 3005 } 3006 return 0x44; 3007 case 0 ... 3: 3008 /* Force Device, of subtype specified by S2 */ 3009 return s2.attrs << 2; 3010 default: 3011 /* 3012 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 3013 * arbitrarily force Device. 3014 */ 3015 return 0; 3016 } 3017 } 3018 3019 /* 3020 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 3021 * and CombineS1S2Desc() 3022 * 3023 * @env: CPUARMState 3024 * @s1: Attributes from stage 1 walk 3025 * @s2: Attributes from stage 2 walk 3026 */ 3027 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, 3028 ARMCacheAttrs s1, ARMCacheAttrs s2) 3029 { 3030 ARMCacheAttrs ret; 3031 bool tagged = false; 3032 3033 assert(!s1.is_s2_format); 3034 ret.is_s2_format = false; 3035 ret.guarded = s1.guarded; 3036 3037 if (s1.attrs == 0xf0) { 3038 tagged = true; 3039 s1.attrs = 0xff; 3040 } 3041 3042 /* Combine shareability attributes (table D4-43) */ 3043 if (s1.shareability == 2 || s2.shareability == 2) { 3044 /* if either are outer-shareable, the result is outer-shareable */ 3045 ret.shareability = 2; 3046 } else if (s1.shareability == 3 || s2.shareability == 3) { 3047 /* if either are inner-shareable, the result is inner-shareable */ 3048 ret.shareability = 3; 3049 } else { 3050 /* both non-shareable */ 3051 ret.shareability = 0; 3052 } 3053 3054 /* Combine memory type and cacheability attributes */ 3055 if (hcr & HCR_FWB) { 3056 ret.attrs = combined_attrs_fwb(s1, s2); 3057 } else { 3058 ret.attrs = combined_attrs_nofwb(hcr, s1, s2); 3059 } 3060 3061 /* 3062 * Any location for which the resultant memory type is any 3063 * type of Device memory is always treated as Outer Shareable. 3064 * Any location for which the resultant memory type is Normal 3065 * Inner Non-cacheable, Outer Non-cacheable is always treated 3066 * as Outer Shareable. 3067 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 3068 */ 3069 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 3070 ret.shareability = 2; 3071 } 3072 3073 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 3074 if (tagged && ret.attrs == 0xff) { 3075 ret.attrs = 0xf0; 3076 } 3077 3078 return ret; 3079 } 3080 3081 /* 3082 * MMU disabled. S1 addresses within aa64 translation regimes are 3083 * still checked for bounds -- see AArch64.S1DisabledOutput(). 3084 */ 3085 static bool get_phys_addr_disabled(CPUARMState *env, 3086 S1Translate *ptw, 3087 target_ulong address, 3088 MMUAccessType access_type, 3089 GetPhysAddrResult *result, 3090 ARMMMUFaultInfo *fi) 3091 { 3092 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3093 uint8_t memattr = 0x00; /* Device nGnRnE */ 3094 uint8_t shareability = 0; /* non-shareable */ 3095 int r_el; 3096 3097 switch (mmu_idx) { 3098 case ARMMMUIdx_Stage2: 3099 case ARMMMUIdx_Stage2_S: 3100 case ARMMMUIdx_Phys_S: 3101 case ARMMMUIdx_Phys_NS: 3102 case ARMMMUIdx_Phys_Root: 3103 case ARMMMUIdx_Phys_Realm: 3104 break; 3105 3106 default: 3107 r_el = regime_el(env, mmu_idx); 3108 if (arm_el_is_aa64(env, r_el)) { 3109 int pamax = arm_pamax(env_archcpu(env)); 3110 uint64_t tcr = env->cp15.tcr_el[r_el]; 3111 int addrtop, tbi; 3112 3113 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 3114 if (access_type == MMU_INST_FETCH) { 3115 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 3116 } 3117 tbi = (tbi >> extract64(address, 55, 1)) & 1; 3118 addrtop = (tbi ? 55 : 63); 3119 3120 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 3121 fi->type = ARMFault_AddressSize; 3122 fi->level = 0; 3123 fi->stage2 = false; 3124 return 1; 3125 } 3126 3127 /* 3128 * When TBI is disabled, we've just validated that all of the 3129 * bits above PAMax are zero, so logically we only need to 3130 * clear the top byte for TBI. But it's clearer to follow 3131 * the pseudocode set of addrdesc.paddress. 3132 */ 3133 address = extract64(address, 0, 52); 3134 } 3135 3136 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 3137 if (r_el == 1) { 3138 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 3139 if (hcr & HCR_DC) { 3140 if (hcr & HCR_DCT) { 3141 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 3142 } else { 3143 memattr = 0xff; /* Normal, WB, RWA */ 3144 } 3145 } 3146 } 3147 if (memattr == 0) { 3148 if (access_type == MMU_INST_FETCH) { 3149 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 3150 memattr = 0xee; /* Normal, WT, RA, NT */ 3151 } else { 3152 memattr = 0x44; /* Normal, NC, No */ 3153 } 3154 } 3155 shareability = 2; /* outer shareable */ 3156 } 3157 result->cacheattrs.is_s2_format = false; 3158 break; 3159 } 3160 3161 result->f.phys_addr = address; 3162 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 3163 result->f.lg_page_size = TARGET_PAGE_BITS; 3164 result->cacheattrs.shareability = shareability; 3165 result->cacheattrs.attrs = memattr; 3166 return false; 3167 } 3168 3169 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, 3170 target_ulong address, 3171 MMUAccessType access_type, 3172 GetPhysAddrResult *result, 3173 ARMMMUFaultInfo *fi) 3174 { 3175 hwaddr ipa; 3176 int s1_prot, s1_lgpgsz; 3177 ARMSecuritySpace in_space = ptw->in_space; 3178 bool ret, ipa_secure; 3179 ARMCacheAttrs cacheattrs1; 3180 ARMSecuritySpace ipa_space; 3181 uint64_t hcr; 3182 3183 ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi); 3184 3185 /* If S1 fails, return early. */ 3186 if (ret) { 3187 return ret; 3188 } 3189 3190 ipa = result->f.phys_addr; 3191 ipa_secure = result->f.attrs.secure; 3192 ipa_space = result->f.attrs.space; 3193 3194 ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; 3195 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3196 ptw->in_space = ipa_space; 3197 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx); 3198 3199 /* 3200 * S1 is done, now do S2 translation. 3201 * Save the stage1 results so that we may merge prot and cacheattrs later. 3202 */ 3203 s1_prot = result->f.prot; 3204 s1_lgpgsz = result->f.lg_page_size; 3205 cacheattrs1 = result->cacheattrs; 3206 memset(result, 0, sizeof(*result)); 3207 3208 ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi); 3209 fi->s2addr = ipa; 3210 3211 /* Combine the S1 and S2 perms. */ 3212 result->f.prot &= s1_prot; 3213 3214 /* If S2 fails, return early. */ 3215 if (ret) { 3216 return ret; 3217 } 3218 3219 /* 3220 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE, 3221 * this means "don't put this in the TLB"; in this case, return a 3222 * result with lg_page_size == 0 to achieve that. Otherwise, 3223 * use the maximum of the S1 & S2 page size, so that invalidation 3224 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though 3225 * we know the combined result permissions etc only cover the minimum 3226 * of the S1 and S2 page size, because we know that the common TLB code 3227 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE, 3228 * and passing a larger page size value only affects invalidations.) 3229 */ 3230 if (result->f.lg_page_size < TARGET_PAGE_BITS || 3231 s1_lgpgsz < TARGET_PAGE_BITS) { 3232 result->f.lg_page_size = 0; 3233 } else if (result->f.lg_page_size < s1_lgpgsz) { 3234 result->f.lg_page_size = s1_lgpgsz; 3235 } 3236 3237 /* Combine the S1 and S2 cache attributes. */ 3238 hcr = arm_hcr_el2_eff_secstate(env, in_space); 3239 if (hcr & HCR_DC) { 3240 /* 3241 * HCR.DC forces the first stage attributes to 3242 * Normal Non-Shareable, 3243 * Inner Write-Back Read-Allocate Write-Allocate, 3244 * Outer Write-Back Read-Allocate Write-Allocate. 3245 * Do not overwrite Tagged within attrs. 3246 */ 3247 if (cacheattrs1.attrs != 0xf0) { 3248 cacheattrs1.attrs = 0xff; 3249 } 3250 cacheattrs1.shareability = 0; 3251 } 3252 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, 3253 result->cacheattrs); 3254 3255 /* 3256 * Check if IPA translates to secure or non-secure PA space. 3257 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. 3258 */ 3259 if (in_space == ARMSS_Secure) { 3260 result->f.attrs.secure = 3261 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) 3262 && (ipa_secure 3263 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))); 3264 result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure); 3265 } 3266 3267 return false; 3268 } 3269 3270 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 3271 target_ulong address, 3272 MMUAccessType access_type, 3273 GetPhysAddrResult *result, 3274 ARMMMUFaultInfo *fi) 3275 { 3276 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3277 ARMMMUIdx s1_mmu_idx; 3278 3279 /* 3280 * The page table entries may downgrade Secure to NonSecure, but 3281 * cannot upgrade a NonSecure translation regime's attributes 3282 * to Secure or Realm. 3283 */ 3284 result->f.attrs.space = ptw->in_space; 3285 result->f.attrs.secure = arm_space_is_secure(ptw->in_space); 3286 3287 switch (mmu_idx) { 3288 case ARMMMUIdx_Phys_S: 3289 case ARMMMUIdx_Phys_NS: 3290 case ARMMMUIdx_Phys_Root: 3291 case ARMMMUIdx_Phys_Realm: 3292 /* Checking Phys early avoids special casing later vs regime_el. */ 3293 return get_phys_addr_disabled(env, ptw, address, access_type, 3294 result, fi); 3295 3296 case ARMMMUIdx_Stage1_E0: 3297 case ARMMMUIdx_Stage1_E1: 3298 case ARMMMUIdx_Stage1_E1_PAN: 3299 /* 3300 * First stage lookup uses second stage for ptw; only 3301 * Secure has both S and NS IPA and starts with Stage2_S. 3302 */ 3303 ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ? 3304 ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3305 break; 3306 3307 case ARMMMUIdx_Stage2: 3308 case ARMMMUIdx_Stage2_S: 3309 /* 3310 * Second stage lookup uses physical for ptw; whether this is S or 3311 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for 3312 * the Secure EL2&0 regime. 3313 */ 3314 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx); 3315 break; 3316 3317 case ARMMMUIdx_E10_0: 3318 s1_mmu_idx = ARMMMUIdx_Stage1_E0; 3319 goto do_twostage; 3320 case ARMMMUIdx_E10_1: 3321 s1_mmu_idx = ARMMMUIdx_Stage1_E1; 3322 goto do_twostage; 3323 case ARMMMUIdx_E10_1_PAN: 3324 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3325 do_twostage: 3326 /* 3327 * Call ourselves recursively to do the stage 1 and then stage 2 3328 * translations if mmu_idx is a two-stage regime, and EL2 present. 3329 * Otherwise, a stage1+stage2 translation is just stage 1. 3330 */ 3331 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; 3332 if (arm_feature(env, ARM_FEATURE_EL2) && 3333 !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) { 3334 return get_phys_addr_twostage(env, ptw, address, access_type, 3335 result, fi); 3336 } 3337 /* fall through */ 3338 3339 default: 3340 /* Single stage uses physical for ptw. */ 3341 ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space); 3342 break; 3343 } 3344 3345 result->f.attrs.user = regime_is_user(env, mmu_idx); 3346 3347 /* 3348 * Fast Context Switch Extension. This doesn't exist at all in v8. 3349 * In v7 and earlier it affects all stage 1 translations. 3350 */ 3351 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 3352 && !arm_feature(env, ARM_FEATURE_V8)) { 3353 if (regime_el(env, mmu_idx) == 3) { 3354 address += env->cp15.fcseidr_s; 3355 } else { 3356 address += env->cp15.fcseidr_ns; 3357 } 3358 } 3359 3360 if (arm_feature(env, ARM_FEATURE_PMSA)) { 3361 bool ret; 3362 result->f.lg_page_size = TARGET_PAGE_BITS; 3363 3364 if (arm_feature(env, ARM_FEATURE_V8)) { 3365 /* PMSAv8 */ 3366 ret = get_phys_addr_pmsav8(env, ptw, address, access_type, 3367 result, fi); 3368 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3369 /* PMSAv7 */ 3370 ret = get_phys_addr_pmsav7(env, ptw, address, access_type, 3371 result, fi); 3372 } else { 3373 /* Pre-v7 MPU */ 3374 ret = get_phys_addr_pmsav5(env, ptw, address, access_type, 3375 result, fi); 3376 } 3377 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 3378 " mmu_idx %u -> %s (prot %c%c%c)\n", 3379 access_type == MMU_DATA_LOAD ? "reading" : 3380 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 3381 (uint32_t)address, mmu_idx, 3382 ret ? "Miss" : "Hit", 3383 result->f.prot & PAGE_READ ? 'r' : '-', 3384 result->f.prot & PAGE_WRITE ? 'w' : '-', 3385 result->f.prot & PAGE_EXEC ? 'x' : '-'); 3386 3387 return ret; 3388 } 3389 3390 /* Definitely a real MMU, not an MPU */ 3391 3392 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 3393 return get_phys_addr_disabled(env, ptw, address, access_type, 3394 result, fi); 3395 } 3396 3397 if (regime_using_lpae_format(env, mmu_idx)) { 3398 return get_phys_addr_lpae(env, ptw, address, access_type, result, fi); 3399 } else if (arm_feature(env, ARM_FEATURE_V7) || 3400 regime_sctlr(env, mmu_idx) & SCTLR_XP) { 3401 return get_phys_addr_v6(env, ptw, address, access_type, result, fi); 3402 } else { 3403 return get_phys_addr_v5(env, ptw, address, access_type, result, fi); 3404 } 3405 } 3406 3407 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 3408 target_ulong address, 3409 MMUAccessType access_type, 3410 GetPhysAddrResult *result, 3411 ARMMMUFaultInfo *fi) 3412 { 3413 if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) { 3414 return true; 3415 } 3416 if (!granule_protection_check(env, result->f.phys_addr, 3417 result->f.attrs.space, fi)) { 3418 fi->type = ARMFault_GPCFOnOutput; 3419 return true; 3420 } 3421 return false; 3422 } 3423 3424 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address, 3425 MMUAccessType access_type, 3426 ARMMMUIdx mmu_idx, ARMSecuritySpace space, 3427 GetPhysAddrResult *result, 3428 ARMMMUFaultInfo *fi) 3429 { 3430 S1Translate ptw = { 3431 .in_mmu_idx = mmu_idx, 3432 .in_space = space, 3433 }; 3434 return get_phys_addr_nogpc(env, &ptw, address, access_type, result, fi); 3435 } 3436 3437 bool get_phys_addr(CPUARMState *env, target_ulong address, 3438 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3439 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 3440 { 3441 S1Translate ptw = { 3442 .in_mmu_idx = mmu_idx, 3443 }; 3444 ARMSecuritySpace ss; 3445 3446 switch (mmu_idx) { 3447 case ARMMMUIdx_E10_0: 3448 case ARMMMUIdx_E10_1: 3449 case ARMMMUIdx_E10_1_PAN: 3450 case ARMMMUIdx_E20_0: 3451 case ARMMMUIdx_E20_2: 3452 case ARMMMUIdx_E20_2_PAN: 3453 case ARMMMUIdx_Stage1_E0: 3454 case ARMMMUIdx_Stage1_E1: 3455 case ARMMMUIdx_Stage1_E1_PAN: 3456 case ARMMMUIdx_E2: 3457 ss = arm_security_space_below_el3(env); 3458 break; 3459 case ARMMMUIdx_Stage2: 3460 /* 3461 * For Secure EL2, we need this index to be NonSecure; 3462 * otherwise this will already be NonSecure or Realm. 3463 */ 3464 ss = arm_security_space_below_el3(env); 3465 if (ss == ARMSS_Secure) { 3466 ss = ARMSS_NonSecure; 3467 } 3468 break; 3469 case ARMMMUIdx_Phys_NS: 3470 case ARMMMUIdx_MPrivNegPri: 3471 case ARMMMUIdx_MUserNegPri: 3472 case ARMMMUIdx_MPriv: 3473 case ARMMMUIdx_MUser: 3474 ss = ARMSS_NonSecure; 3475 break; 3476 case ARMMMUIdx_Stage2_S: 3477 case ARMMMUIdx_Phys_S: 3478 case ARMMMUIdx_MSPrivNegPri: 3479 case ARMMMUIdx_MSUserNegPri: 3480 case ARMMMUIdx_MSPriv: 3481 case ARMMMUIdx_MSUser: 3482 ss = ARMSS_Secure; 3483 break; 3484 case ARMMMUIdx_E3: 3485 if (arm_feature(env, ARM_FEATURE_AARCH64) && 3486 cpu_isar_feature(aa64_rme, env_archcpu(env))) { 3487 ss = ARMSS_Root; 3488 } else { 3489 ss = ARMSS_Secure; 3490 } 3491 break; 3492 case ARMMMUIdx_Phys_Root: 3493 ss = ARMSS_Root; 3494 break; 3495 case ARMMMUIdx_Phys_Realm: 3496 ss = ARMSS_Realm; 3497 break; 3498 default: 3499 g_assert_not_reached(); 3500 } 3501 3502 ptw.in_space = ss; 3503 return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi); 3504 } 3505 3506 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 3507 MemTxAttrs *attrs) 3508 { 3509 ARMCPU *cpu = ARM_CPU(cs); 3510 CPUARMState *env = &cpu->env; 3511 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 3512 ARMSecuritySpace ss = arm_security_space(env); 3513 S1Translate ptw = { 3514 .in_mmu_idx = mmu_idx, 3515 .in_space = ss, 3516 .in_debug = true, 3517 }; 3518 GetPhysAddrResult res = {}; 3519 ARMMMUFaultInfo fi = {}; 3520 bool ret; 3521 3522 ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi); 3523 *attrs = res.f.attrs; 3524 3525 if (ret) { 3526 return -1; 3527 } 3528 return res.f.phys_addr; 3529 } 3530