1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "qemu/main-loop.h" 13 #include "exec/exec-all.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "cpu-features.h" 17 #include "idau.h" 18 #ifdef CONFIG_TCG 19 # include "tcg/oversized-guest.h" 20 #endif 21 22 typedef struct S1Translate { 23 /* 24 * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk. 25 * Together with in_space, specifies the architectural translation regime. 26 */ 27 ARMMMUIdx in_mmu_idx; 28 /* 29 * in_ptw_idx: specifies which mmuidx to use for the actual 30 * page table descriptor load operations. This will be one of the 31 * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes. 32 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 33 * this field is updated accordingly. 34 */ 35 ARMMMUIdx in_ptw_idx; 36 /* 37 * in_space: the security space for this walk. This plus 38 * the in_mmu_idx specify the architectural translation regime. 39 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 40 * this field is updated accordingly. 41 * 42 * Note that the security space for the in_ptw_idx may be different 43 * from that for the in_mmu_idx. We do not need to explicitly track 44 * the in_ptw_idx security space because: 45 * - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx 46 * itself specifies the security space 47 * - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security 48 * space used for ptw reads is the same as that of the security 49 * space of the stage 1 translation for all cases except where 50 * stage 1 is Secure; in that case the only possibilities for 51 * the ptw read are Secure and NonSecure, and the in_ptw_idx 52 * value being Stage2 vs Stage2_S distinguishes those. 53 */ 54 ARMSecuritySpace in_space; 55 /* 56 * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug 57 * accesses will not update the guest page table access flags 58 * and will not change the state of the softmmu TLBs. 59 */ 60 bool in_debug; 61 /* 62 * If this is stage 2 of a stage 1+2 page table walk, then this must 63 * be true if stage 1 is an EL0 access; otherwise this is ignored. 64 * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}. 65 */ 66 bool in_s1_is_el0; 67 bool out_rw; 68 bool out_be; 69 ARMSecuritySpace out_space; 70 hwaddr out_virt; 71 hwaddr out_phys; 72 void *out_host; 73 } S1Translate; 74 75 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 76 target_ulong address, 77 MMUAccessType access_type, 78 GetPhysAddrResult *result, 79 ARMMMUFaultInfo *fi); 80 81 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 82 target_ulong address, 83 MMUAccessType access_type, 84 GetPhysAddrResult *result, 85 ARMMMUFaultInfo *fi); 86 87 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 88 static const uint8_t pamax_map[] = { 89 [0] = 32, 90 [1] = 36, 91 [2] = 40, 92 [3] = 42, 93 [4] = 44, 94 [5] = 48, 95 [6] = 52, 96 }; 97 98 /* 99 * The cpu-specific constant value of PAMax; also used by hw/arm/virt. 100 * Note that machvirt_init calls this on a CPU that is inited but not realized! 101 */ 102 unsigned int arm_pamax(ARMCPU *cpu) 103 { 104 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 105 unsigned int parange = 106 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 107 108 /* 109 * id_aa64mmfr0 is a read-only register so values outside of the 110 * supported mappings can be considered an implementation error. 111 */ 112 assert(parange < ARRAY_SIZE(pamax_map)); 113 return pamax_map[parange]; 114 } 115 116 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 117 /* v7 or v8 with LPAE */ 118 return 40; 119 } 120 /* Anything else */ 121 return 32; 122 } 123 124 /* 125 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 126 */ 127 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 128 { 129 switch (mmu_idx) { 130 case ARMMMUIdx_E10_0: 131 return ARMMMUIdx_Stage1_E0; 132 case ARMMMUIdx_E10_1: 133 return ARMMMUIdx_Stage1_E1; 134 case ARMMMUIdx_E10_1_PAN: 135 return ARMMMUIdx_Stage1_E1_PAN; 136 default: 137 return mmu_idx; 138 } 139 } 140 141 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 142 { 143 return stage_1_mmu_idx(arm_mmu_idx(env)); 144 } 145 146 /* 147 * Return where we should do ptw loads from for a stage 2 walk. 148 * This depends on whether the address we are looking up is a 149 * Secure IPA or a NonSecure IPA, which we know from whether this is 150 * Stage2 or Stage2_S. 151 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits. 152 */ 153 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx) 154 { 155 bool s2walk_secure; 156 157 /* 158 * We're OK to check the current state of the CPU here because 159 * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit 160 * changes. 161 * (2) there's no way to do a lookup that cares about Stage 2 for a 162 * different security state to the current one for AArch64, and AArch32 163 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do 164 * an NS stage 1+2 lookup while the NS bit is 0.) 165 */ 166 if (!arm_el_is_aa64(env, 3)) { 167 return ARMMMUIdx_Phys_NS; 168 } 169 170 switch (arm_security_space_below_el3(env)) { 171 case ARMSS_NonSecure: 172 return ARMMMUIdx_Phys_NS; 173 case ARMSS_Realm: 174 return ARMMMUIdx_Phys_Realm; 175 case ARMSS_Secure: 176 if (stage2idx == ARMMMUIdx_Stage2_S) { 177 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW); 178 } else { 179 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW); 180 } 181 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 182 default: 183 g_assert_not_reached(); 184 } 185 } 186 187 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 188 { 189 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 190 } 191 192 /* Return the TTBR associated with this translation regime */ 193 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 194 { 195 if (mmu_idx == ARMMMUIdx_Stage2) { 196 return env->cp15.vttbr_el2; 197 } 198 if (mmu_idx == ARMMMUIdx_Stage2_S) { 199 return env->cp15.vsttbr_el2; 200 } 201 if (ttbrn == 0) { 202 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 203 } else { 204 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 205 } 206 } 207 208 /* Return true if the specified stage of address translation is disabled */ 209 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, 210 ARMSecuritySpace space) 211 { 212 uint64_t hcr_el2; 213 214 if (arm_feature(env, ARM_FEATURE_M)) { 215 bool is_secure = arm_space_is_secure(space); 216 switch (env->v7m.mpu_ctrl[is_secure] & 217 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 218 case R_V7M_MPU_CTRL_ENABLE_MASK: 219 /* Enabled, but not for HardFault and NMI */ 220 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 221 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 222 /* Enabled for all cases */ 223 return false; 224 case 0: 225 default: 226 /* 227 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 228 * we warned about that in armv7m_nvic.c when the guest set it. 229 */ 230 return true; 231 } 232 } 233 234 235 switch (mmu_idx) { 236 case ARMMMUIdx_Stage2: 237 case ARMMMUIdx_Stage2_S: 238 /* HCR.DC means HCR.VM behaves as 1 */ 239 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 240 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 241 242 case ARMMMUIdx_E10_0: 243 case ARMMMUIdx_E10_1: 244 case ARMMMUIdx_E10_1_PAN: 245 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ 246 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 247 if (hcr_el2 & HCR_TGE) { 248 return true; 249 } 250 break; 251 252 case ARMMMUIdx_Stage1_E0: 253 case ARMMMUIdx_Stage1_E1: 254 case ARMMMUIdx_Stage1_E1_PAN: 255 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 256 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 257 if (hcr_el2 & HCR_DC) { 258 return true; 259 } 260 break; 261 262 case ARMMMUIdx_E20_0: 263 case ARMMMUIdx_E20_2: 264 case ARMMMUIdx_E20_2_PAN: 265 case ARMMMUIdx_E2: 266 case ARMMMUIdx_E3: 267 break; 268 269 case ARMMMUIdx_Phys_S: 270 case ARMMMUIdx_Phys_NS: 271 case ARMMMUIdx_Phys_Root: 272 case ARMMMUIdx_Phys_Realm: 273 /* No translation for physical address spaces. */ 274 return true; 275 276 default: 277 g_assert_not_reached(); 278 } 279 280 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 281 } 282 283 static bool granule_protection_check(CPUARMState *env, uint64_t paddress, 284 ARMSecuritySpace pspace, 285 ARMMMUFaultInfo *fi) 286 { 287 MemTxAttrs attrs = { 288 .secure = true, 289 .space = ARMSS_Root, 290 }; 291 ARMCPU *cpu = env_archcpu(env); 292 uint64_t gpccr = env->cp15.gpccr_el3; 293 unsigned pps, pgs, l0gptsz, level = 0; 294 uint64_t tableaddr, pps_mask, align, entry, index; 295 AddressSpace *as; 296 MemTxResult result; 297 int gpi; 298 299 if (!FIELD_EX64(gpccr, GPCCR, GPC)) { 300 return true; 301 } 302 303 /* 304 * GPC Priority 1 (R_GMGRR): 305 * R_JWCSM: If the configuration of GPCCR_EL3 is invalid, 306 * the access fails as GPT walk fault at level 0. 307 */ 308 309 /* 310 * Configuration of PPS to a value exceeding the implemented 311 * physical address size is invalid. 312 */ 313 pps = FIELD_EX64(gpccr, GPCCR, PPS); 314 if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) { 315 goto fault_walk; 316 } 317 pps = pamax_map[pps]; 318 pps_mask = MAKE_64BIT_MASK(0, pps); 319 320 switch (FIELD_EX64(gpccr, GPCCR, SH)) { 321 case 0b10: /* outer shareable */ 322 break; 323 case 0b00: /* non-shareable */ 324 case 0b11: /* inner shareable */ 325 /* Inner and Outer non-cacheable requires Outer shareable. */ 326 if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 && 327 FIELD_EX64(gpccr, GPCCR, IRGN) == 0) { 328 goto fault_walk; 329 } 330 break; 331 default: /* reserved */ 332 goto fault_walk; 333 } 334 335 switch (FIELD_EX64(gpccr, GPCCR, PGS)) { 336 case 0b00: /* 4KB */ 337 pgs = 12; 338 break; 339 case 0b01: /* 64KB */ 340 pgs = 16; 341 break; 342 case 0b10: /* 16KB */ 343 pgs = 14; 344 break; 345 default: /* reserved */ 346 goto fault_walk; 347 } 348 349 /* Note this field is read-only and fixed at reset. */ 350 l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ); 351 352 /* 353 * GPC Priority 2: Secure, Realm or Root address exceeds PPS. 354 * R_CPDSB: A NonSecure physical address input exceeding PPS 355 * does not experience any fault. 356 */ 357 if (paddress & ~pps_mask) { 358 if (pspace == ARMSS_NonSecure) { 359 return true; 360 } 361 goto fault_size; 362 } 363 364 /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */ 365 tableaddr = env->cp15.gptbr_el3 << 12; 366 if (tableaddr & ~pps_mask) { 367 goto fault_size; 368 } 369 370 /* 371 * BADDR is aligned per a function of PPS and L0GPTSZ. 372 * These bits of GPTBR_EL3 are RES0, but are not a configuration error, 373 * unlike the RES0 bits of the GPT entries (R_XNKFZ). 374 */ 375 align = MAX(pps - l0gptsz + 3, 12); 376 align = MAKE_64BIT_MASK(0, align); 377 tableaddr &= ~align; 378 379 as = arm_addressspace(env_cpu(env), attrs); 380 381 /* Level 0 lookup. */ 382 index = extract64(paddress, l0gptsz, pps - l0gptsz); 383 tableaddr += index * 8; 384 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 385 if (result != MEMTX_OK) { 386 goto fault_eabt; 387 } 388 389 switch (extract32(entry, 0, 4)) { 390 case 1: /* block descriptor */ 391 if (entry >> 8) { 392 goto fault_walk; /* RES0 bits not 0 */ 393 } 394 gpi = extract32(entry, 4, 4); 395 goto found; 396 case 3: /* table descriptor */ 397 tableaddr = entry & ~0xf; 398 align = MAX(l0gptsz - pgs - 1, 12); 399 align = MAKE_64BIT_MASK(0, align); 400 if (tableaddr & (~pps_mask | align)) { 401 goto fault_walk; /* RES0 bits not 0 */ 402 } 403 break; 404 default: /* invalid */ 405 goto fault_walk; 406 } 407 408 /* Level 1 lookup */ 409 level = 1; 410 index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4); 411 tableaddr += index * 8; 412 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 413 if (result != MEMTX_OK) { 414 goto fault_eabt; 415 } 416 417 switch (extract32(entry, 0, 4)) { 418 case 1: /* contiguous descriptor */ 419 if (entry >> 10) { 420 goto fault_walk; /* RES0 bits not 0 */ 421 } 422 /* 423 * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE, 424 * and because we cannot invalidate by pa, and thus will always 425 * flush entire tlbs, we don't actually care about the range here 426 * and can simply extract the GPI as the result. 427 */ 428 if (extract32(entry, 8, 2) == 0) { 429 goto fault_walk; /* reserved contig */ 430 } 431 gpi = extract32(entry, 4, 4); 432 break; 433 default: 434 index = extract64(paddress, pgs, 4); 435 gpi = extract64(entry, index * 4, 4); 436 break; 437 } 438 439 found: 440 switch (gpi) { 441 case 0b0000: /* no access */ 442 break; 443 case 0b1111: /* all access */ 444 return true; 445 case 0b1000: 446 case 0b1001: 447 case 0b1010: 448 case 0b1011: 449 if (pspace == (gpi & 3)) { 450 return true; 451 } 452 break; 453 default: 454 goto fault_walk; /* reserved */ 455 } 456 457 fi->gpcf = GPCF_Fail; 458 goto fault_common; 459 fault_eabt: 460 fi->gpcf = GPCF_EABT; 461 goto fault_common; 462 fault_size: 463 fi->gpcf = GPCF_AddressSize; 464 goto fault_common; 465 fault_walk: 466 fi->gpcf = GPCF_Walk; 467 fault_common: 468 fi->level = level; 469 fi->paddr = paddress; 470 fi->paddr_space = pspace; 471 return false; 472 } 473 474 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) 475 { 476 /* 477 * For an S1 page table walk, the stage 1 attributes are always 478 * some form of "this is Normal memory". The combined S1+S2 479 * attributes are therefore only Device if stage 2 specifies Device. 480 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 481 * ie when cacheattrs.attrs bits [3:2] are 0b00. 482 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 483 * when cacheattrs.attrs bit [2] is 0. 484 */ 485 if (hcr & HCR_FWB) { 486 return (attrs & 0x4) == 0; 487 } else { 488 return (attrs & 0xc) == 0; 489 } 490 } 491 492 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space, 493 ARMMMUIdx s2_mmu_idx) 494 { 495 /* 496 * Return the security space to use for stage 2 when doing 497 * the S1 page table descriptor load. 498 */ 499 if (regime_is_stage2(s2_mmu_idx)) { 500 /* 501 * The security space for ptw reads is almost always the same 502 * as that of the security space of the stage 1 translation. 503 * The only exception is when stage 1 is Secure; in that case 504 * the ptw read might be to the Secure or the NonSecure space 505 * (but never Realm or Root), and the s2_mmu_idx tells us which. 506 * Root translations are always single-stage. 507 */ 508 if (s1_space == ARMSS_Secure) { 509 return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S); 510 } else { 511 assert(s2_mmu_idx != ARMMMUIdx_Stage2_S); 512 assert(s1_space != ARMSS_Root); 513 return s1_space; 514 } 515 } else { 516 /* ptw loads are from phys: the mmu idx itself says which space */ 517 return arm_phys_to_space(s2_mmu_idx); 518 } 519 } 520 521 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx) 522 { 523 /* 524 * For stage 2 faults in Secure EL22, S1NS indicates 525 * whether the faulting IPA is in the Secure or NonSecure 526 * IPA space. For all other kinds of fault, it is false. 527 */ 528 return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx) 529 && s2_mmu_idx == ARMMMUIdx_Stage2_S; 530 } 531 532 /* Translate a S1 pagetable walk through S2 if needed. */ 533 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, 534 hwaddr addr, ARMMMUFaultInfo *fi) 535 { 536 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 537 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx; 538 uint8_t pte_attrs; 539 540 ptw->out_virt = addr; 541 542 if (unlikely(ptw->in_debug)) { 543 /* 544 * From gdbstub, do not use softmmu so that we don't modify the 545 * state of the cpu at all, including softmmu tlb contents. 546 */ 547 ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx); 548 S1Translate s2ptw = { 549 .in_mmu_idx = s2_mmu_idx, 550 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx), 551 .in_space = s2_space, 552 .in_debug = true, 553 }; 554 GetPhysAddrResult s2 = { }; 555 556 if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) { 557 goto fail; 558 } 559 560 ptw->out_phys = s2.f.phys_addr; 561 pte_attrs = s2.cacheattrs.attrs; 562 ptw->out_host = NULL; 563 ptw->out_rw = false; 564 ptw->out_space = s2.f.attrs.space; 565 } else { 566 #ifdef CONFIG_TCG 567 CPUTLBEntryFull *full; 568 int flags; 569 570 env->tlb_fi = fi; 571 flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD, 572 arm_to_core_mmu_idx(s2_mmu_idx), 573 &ptw->out_host, &full); 574 env->tlb_fi = NULL; 575 576 if (unlikely(flags & TLB_INVALID_MASK)) { 577 goto fail; 578 } 579 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 580 ptw->out_rw = full->prot & PAGE_WRITE; 581 pte_attrs = full->extra.arm.pte_attrs; 582 ptw->out_space = full->attrs.space; 583 #else 584 g_assert_not_reached(); 585 #endif 586 } 587 588 if (regime_is_stage2(s2_mmu_idx)) { 589 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 590 591 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { 592 /* 593 * PTW set and S1 walk touched S2 Device memory: 594 * generate Permission fault. 595 */ 596 fi->type = ARMFault_Permission; 597 fi->s2addr = addr; 598 fi->stage2 = true; 599 fi->s1ptw = true; 600 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 601 return false; 602 } 603 } 604 605 ptw->out_be = regime_translation_big_endian(env, mmu_idx); 606 return true; 607 608 fail: 609 assert(fi->type != ARMFault_None); 610 if (fi->type == ARMFault_GPCFOnOutput) { 611 fi->type = ARMFault_GPCFOnWalk; 612 } 613 fi->s2addr = addr; 614 fi->stage2 = regime_is_stage2(s2_mmu_idx); 615 fi->s1ptw = fi->stage2; 616 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 617 return false; 618 } 619 620 /* All loads done in the course of a page table walk go through here. */ 621 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, 622 ARMMMUFaultInfo *fi) 623 { 624 CPUState *cs = env_cpu(env); 625 void *host = ptw->out_host; 626 uint32_t data; 627 628 if (likely(host)) { 629 /* Page tables are in RAM, and we have the host address. */ 630 data = qatomic_read((uint32_t *)host); 631 if (ptw->out_be) { 632 data = be32_to_cpu(data); 633 } else { 634 data = le32_to_cpu(data); 635 } 636 } else { 637 /* Page tables are in MMIO. */ 638 MemTxAttrs attrs = { 639 .space = ptw->out_space, 640 .secure = arm_space_is_secure(ptw->out_space), 641 }; 642 AddressSpace *as = arm_addressspace(cs, attrs); 643 MemTxResult result = MEMTX_OK; 644 645 if (ptw->out_be) { 646 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); 647 } else { 648 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); 649 } 650 if (unlikely(result != MEMTX_OK)) { 651 fi->type = ARMFault_SyncExternalOnWalk; 652 fi->ea = arm_extabort_type(result); 653 return 0; 654 } 655 } 656 return data; 657 } 658 659 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, 660 ARMMMUFaultInfo *fi) 661 { 662 CPUState *cs = env_cpu(env); 663 void *host = ptw->out_host; 664 uint64_t data; 665 666 if (likely(host)) { 667 /* Page tables are in RAM, and we have the host address. */ 668 #ifdef CONFIG_ATOMIC64 669 data = qatomic_read__nocheck((uint64_t *)host); 670 if (ptw->out_be) { 671 data = be64_to_cpu(data); 672 } else { 673 data = le64_to_cpu(data); 674 } 675 #else 676 if (ptw->out_be) { 677 data = ldq_be_p(host); 678 } else { 679 data = ldq_le_p(host); 680 } 681 #endif 682 } else { 683 /* Page tables are in MMIO. */ 684 MemTxAttrs attrs = { 685 .space = ptw->out_space, 686 .secure = arm_space_is_secure(ptw->out_space), 687 }; 688 AddressSpace *as = arm_addressspace(cs, attrs); 689 MemTxResult result = MEMTX_OK; 690 691 if (ptw->out_be) { 692 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 693 } else { 694 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 695 } 696 if (unlikely(result != MEMTX_OK)) { 697 fi->type = ARMFault_SyncExternalOnWalk; 698 fi->ea = arm_extabort_type(result); 699 return 0; 700 } 701 } 702 return data; 703 } 704 705 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val, 706 uint64_t new_val, S1Translate *ptw, 707 ARMMMUFaultInfo *fi) 708 { 709 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG) 710 uint64_t cur_val; 711 void *host = ptw->out_host; 712 713 if (unlikely(!host)) { 714 fi->type = ARMFault_UnsuppAtomicUpdate; 715 return 0; 716 } 717 718 /* 719 * Raising a stage2 Protection fault for an atomic update to a read-only 720 * page is delayed until it is certain that there is a change to make. 721 */ 722 if (unlikely(!ptw->out_rw)) { 723 int flags; 724 725 env->tlb_fi = fi; 726 flags = probe_access_full_mmu(env, ptw->out_virt, 0, 727 MMU_DATA_STORE, 728 arm_to_core_mmu_idx(ptw->in_ptw_idx), 729 NULL, NULL); 730 env->tlb_fi = NULL; 731 732 if (unlikely(flags & TLB_INVALID_MASK)) { 733 /* 734 * We know this must be a stage 2 fault because the granule 735 * protection table does not separately track read and write 736 * permission, so all GPC faults are caught in S1_ptw_translate(): 737 * we only get here for "readable but not writeable". 738 */ 739 assert(fi->type != ARMFault_None); 740 fi->s2addr = ptw->out_virt; 741 fi->stage2 = true; 742 fi->s1ptw = true; 743 fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx); 744 return 0; 745 } 746 747 /* In case CAS mismatches and we loop, remember writability. */ 748 ptw->out_rw = true; 749 } 750 751 #ifdef CONFIG_ATOMIC64 752 if (ptw->out_be) { 753 old_val = cpu_to_be64(old_val); 754 new_val = cpu_to_be64(new_val); 755 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 756 cur_val = be64_to_cpu(cur_val); 757 } else { 758 old_val = cpu_to_le64(old_val); 759 new_val = cpu_to_le64(new_val); 760 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 761 cur_val = le64_to_cpu(cur_val); 762 } 763 #else 764 /* 765 * We can't support the full 64-bit atomic cmpxchg on the host. 766 * Because this is only used for FEAT_HAFDBS, which is only for AA64, 767 * we know that TCG_OVERSIZED_GUEST is set, which means that we are 768 * running in round-robin mode and could only race with dma i/o. 769 */ 770 #if !TCG_OVERSIZED_GUEST 771 # error "Unexpected configuration" 772 #endif 773 bool locked = bql_locked(); 774 if (!locked) { 775 bql_lock(); 776 } 777 if (ptw->out_be) { 778 cur_val = ldq_be_p(host); 779 if (cur_val == old_val) { 780 stq_be_p(host, new_val); 781 } 782 } else { 783 cur_val = ldq_le_p(host); 784 if (cur_val == old_val) { 785 stq_le_p(host, new_val); 786 } 787 } 788 if (!locked) { 789 bql_unlock(); 790 } 791 #endif 792 793 return cur_val; 794 #else 795 /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */ 796 g_assert_not_reached(); 797 #endif 798 } 799 800 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 801 uint32_t *table, uint32_t address) 802 { 803 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 804 uint64_t tcr = regime_tcr(env, mmu_idx); 805 int maskshift = extract32(tcr, 0, 3); 806 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 807 uint32_t base_mask; 808 809 if (address & mask) { 810 if (tcr & TTBCR_PD1) { 811 /* Translation table walk disabled for TTBR1 */ 812 return false; 813 } 814 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 815 } else { 816 if (tcr & TTBCR_PD0) { 817 /* Translation table walk disabled for TTBR0 */ 818 return false; 819 } 820 base_mask = ~((uint32_t)0x3fffu >> maskshift); 821 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 822 } 823 *table |= (address >> 18) & 0x3ffc; 824 return true; 825 } 826 827 /* 828 * Translate section/page access permissions to page R/W protection flags 829 * @env: CPUARMState 830 * @mmu_idx: MMU index indicating required translation regime 831 * @ap: The 3-bit access permissions (AP[2:0]) 832 * @domain_prot: The 2-bit domain access permissions 833 * @is_user: TRUE if accessing from PL0 834 */ 835 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx, 836 int ap, int domain_prot, bool is_user) 837 { 838 if (domain_prot == 3) { 839 return PAGE_READ | PAGE_WRITE; 840 } 841 842 switch (ap) { 843 case 0: 844 if (arm_feature(env, ARM_FEATURE_V7)) { 845 return 0; 846 } 847 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 848 case SCTLR_S: 849 return is_user ? 0 : PAGE_READ; 850 case SCTLR_R: 851 return PAGE_READ; 852 default: 853 return 0; 854 } 855 case 1: 856 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 857 case 2: 858 if (is_user) { 859 return PAGE_READ; 860 } else { 861 return PAGE_READ | PAGE_WRITE; 862 } 863 case 3: 864 return PAGE_READ | PAGE_WRITE; 865 case 4: /* Reserved. */ 866 return 0; 867 case 5: 868 return is_user ? 0 : PAGE_READ; 869 case 6: 870 return PAGE_READ; 871 case 7: 872 if (!arm_feature(env, ARM_FEATURE_V6K)) { 873 return 0; 874 } 875 return PAGE_READ; 876 default: 877 g_assert_not_reached(); 878 } 879 } 880 881 /* 882 * Translate section/page access permissions to page R/W protection flags 883 * @env: CPUARMState 884 * @mmu_idx: MMU index indicating required translation regime 885 * @ap: The 3-bit access permissions (AP[2:0]) 886 * @domain_prot: The 2-bit domain access permissions 887 */ 888 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 889 int ap, int domain_prot) 890 { 891 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 892 regime_is_user(env, mmu_idx)); 893 } 894 895 /* 896 * Translate section/page access permissions to page R/W protection flags. 897 * @ap: The 2-bit simple AP (AP[2:1]) 898 * @is_user: TRUE if accessing from PL0 899 */ 900 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 901 { 902 switch (ap) { 903 case 0: 904 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 905 case 1: 906 return PAGE_READ | PAGE_WRITE; 907 case 2: 908 return is_user ? 0 : PAGE_READ; 909 case 3: 910 return PAGE_READ; 911 default: 912 g_assert_not_reached(); 913 } 914 } 915 916 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 917 { 918 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 919 } 920 921 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, 922 uint32_t address, MMUAccessType access_type, 923 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 924 { 925 int level = 1; 926 uint32_t table; 927 uint32_t desc; 928 int type; 929 int ap; 930 int domain = 0; 931 int domain_prot; 932 hwaddr phys_addr; 933 uint32_t dacr; 934 935 /* Pagetable walk. */ 936 /* Lookup l1 descriptor. */ 937 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { 938 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 939 fi->type = ARMFault_Translation; 940 goto do_fault; 941 } 942 if (!S1_ptw_translate(env, ptw, table, fi)) { 943 goto do_fault; 944 } 945 desc = arm_ldl_ptw(env, ptw, fi); 946 if (fi->type != ARMFault_None) { 947 goto do_fault; 948 } 949 type = (desc & 3); 950 domain = (desc >> 5) & 0x0f; 951 if (regime_el(env, ptw->in_mmu_idx) == 1) { 952 dacr = env->cp15.dacr_ns; 953 } else { 954 dacr = env->cp15.dacr_s; 955 } 956 domain_prot = (dacr >> (domain * 2)) & 3; 957 if (type == 0) { 958 /* Section translation fault. */ 959 fi->type = ARMFault_Translation; 960 goto do_fault; 961 } 962 if (type != 2) { 963 level = 2; 964 } 965 if (domain_prot == 0 || domain_prot == 2) { 966 fi->type = ARMFault_Domain; 967 goto do_fault; 968 } 969 if (type == 2) { 970 /* 1Mb section. */ 971 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 972 ap = (desc >> 10) & 3; 973 result->f.lg_page_size = 20; /* 1MB */ 974 } else { 975 /* Lookup l2 entry. */ 976 if (type == 1) { 977 /* Coarse pagetable. */ 978 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 979 } else { 980 /* Fine pagetable. */ 981 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 982 } 983 if (!S1_ptw_translate(env, ptw, table, fi)) { 984 goto do_fault; 985 } 986 desc = arm_ldl_ptw(env, ptw, fi); 987 if (fi->type != ARMFault_None) { 988 goto do_fault; 989 } 990 switch (desc & 3) { 991 case 0: /* Page translation fault. */ 992 fi->type = ARMFault_Translation; 993 goto do_fault; 994 case 1: /* 64k page. */ 995 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 996 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 997 result->f.lg_page_size = 16; 998 break; 999 case 2: /* 4k page. */ 1000 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1001 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 1002 result->f.lg_page_size = 12; 1003 break; 1004 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 1005 if (type == 1) { 1006 /* ARMv6/XScale extended small page format */ 1007 if (arm_feature(env, ARM_FEATURE_XSCALE) 1008 || arm_feature(env, ARM_FEATURE_V6)) { 1009 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1010 result->f.lg_page_size = 12; 1011 } else { 1012 /* 1013 * UNPREDICTABLE in ARMv5; we choose to take a 1014 * page translation fault. 1015 */ 1016 fi->type = ARMFault_Translation; 1017 goto do_fault; 1018 } 1019 } else { 1020 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 1021 result->f.lg_page_size = 10; 1022 } 1023 ap = (desc >> 4) & 3; 1024 break; 1025 default: 1026 /* Never happens, but compiler isn't smart enough to tell. */ 1027 g_assert_not_reached(); 1028 } 1029 } 1030 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); 1031 result->f.prot |= result->f.prot ? PAGE_EXEC : 0; 1032 if (!(result->f.prot & (1 << access_type))) { 1033 /* Access permission fault. */ 1034 fi->type = ARMFault_Permission; 1035 goto do_fault; 1036 } 1037 result->f.phys_addr = phys_addr; 1038 return false; 1039 do_fault: 1040 fi->domain = domain; 1041 fi->level = level; 1042 return true; 1043 } 1044 1045 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, 1046 uint32_t address, MMUAccessType access_type, 1047 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1048 { 1049 ARMCPU *cpu = env_archcpu(env); 1050 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1051 int level = 1; 1052 uint32_t table; 1053 uint32_t desc; 1054 uint32_t xn; 1055 uint32_t pxn = 0; 1056 int type; 1057 int ap; 1058 int domain = 0; 1059 int domain_prot; 1060 hwaddr phys_addr; 1061 uint32_t dacr; 1062 bool ns; 1063 int user_prot; 1064 1065 /* Pagetable walk. */ 1066 /* Lookup l1 descriptor. */ 1067 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 1068 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 1069 fi->type = ARMFault_Translation; 1070 goto do_fault; 1071 } 1072 if (!S1_ptw_translate(env, ptw, table, fi)) { 1073 goto do_fault; 1074 } 1075 desc = arm_ldl_ptw(env, ptw, fi); 1076 if (fi->type != ARMFault_None) { 1077 goto do_fault; 1078 } 1079 type = (desc & 3); 1080 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 1081 /* Section translation fault, or attempt to use the encoding 1082 * which is Reserved on implementations without PXN. 1083 */ 1084 fi->type = ARMFault_Translation; 1085 goto do_fault; 1086 } 1087 if ((type == 1) || !(desc & (1 << 18))) { 1088 /* Page or Section. */ 1089 domain = (desc >> 5) & 0x0f; 1090 } 1091 if (regime_el(env, mmu_idx) == 1) { 1092 dacr = env->cp15.dacr_ns; 1093 } else { 1094 dacr = env->cp15.dacr_s; 1095 } 1096 if (type == 1) { 1097 level = 2; 1098 } 1099 domain_prot = (dacr >> (domain * 2)) & 3; 1100 if (domain_prot == 0 || domain_prot == 2) { 1101 /* Section or Page domain fault */ 1102 fi->type = ARMFault_Domain; 1103 goto do_fault; 1104 } 1105 if (type != 1) { 1106 if (desc & (1 << 18)) { 1107 /* Supersection. */ 1108 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 1109 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 1110 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 1111 result->f.lg_page_size = 24; /* 16MB */ 1112 } else { 1113 /* Section. */ 1114 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 1115 result->f.lg_page_size = 20; /* 1MB */ 1116 } 1117 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 1118 xn = desc & (1 << 4); 1119 pxn = desc & 1; 1120 ns = extract32(desc, 19, 1); 1121 } else { 1122 if (cpu_isar_feature(aa32_pxn, cpu)) { 1123 pxn = (desc >> 2) & 1; 1124 } 1125 ns = extract32(desc, 3, 1); 1126 /* Lookup l2 entry. */ 1127 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 1128 if (!S1_ptw_translate(env, ptw, table, fi)) { 1129 goto do_fault; 1130 } 1131 desc = arm_ldl_ptw(env, ptw, fi); 1132 if (fi->type != ARMFault_None) { 1133 goto do_fault; 1134 } 1135 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 1136 switch (desc & 3) { 1137 case 0: /* Page translation fault. */ 1138 fi->type = ARMFault_Translation; 1139 goto do_fault; 1140 case 1: /* 64k page. */ 1141 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 1142 xn = desc & (1 << 15); 1143 result->f.lg_page_size = 16; 1144 break; 1145 case 2: case 3: /* 4k page. */ 1146 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1147 xn = desc & 1; 1148 result->f.lg_page_size = 12; 1149 break; 1150 default: 1151 /* Never happens, but compiler isn't smart enough to tell. */ 1152 g_assert_not_reached(); 1153 } 1154 } 1155 if (domain_prot == 3) { 1156 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1157 } else { 1158 if (pxn && !regime_is_user(env, mmu_idx)) { 1159 xn = 1; 1160 } 1161 if (xn && access_type == MMU_INST_FETCH) { 1162 fi->type = ARMFault_Permission; 1163 goto do_fault; 1164 } 1165 1166 if (arm_feature(env, ARM_FEATURE_V6K) && 1167 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 1168 /* The simplified model uses AP[0] as an access control bit. */ 1169 if ((ap & 1) == 0) { 1170 /* Access flag fault. */ 1171 fi->type = ARMFault_AccessFlag; 1172 goto do_fault; 1173 } 1174 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 1175 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1); 1176 } else { 1177 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 1178 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1); 1179 } 1180 if (result->f.prot && !xn) { 1181 result->f.prot |= PAGE_EXEC; 1182 } 1183 if (!(result->f.prot & (1 << access_type))) { 1184 /* Access permission fault. */ 1185 fi->type = ARMFault_Permission; 1186 goto do_fault; 1187 } 1188 if (regime_is_pan(env, mmu_idx) && 1189 !regime_is_user(env, mmu_idx) && 1190 user_prot && 1191 access_type != MMU_INST_FETCH) { 1192 /* Privileged Access Never fault */ 1193 fi->type = ARMFault_Permission; 1194 goto do_fault; 1195 } 1196 } 1197 if (ns) { 1198 /* The NS bit will (as required by the architecture) have no effect if 1199 * the CPU doesn't support TZ or this is a non-secure translation 1200 * regime, because the attribute will already be non-secure. 1201 */ 1202 result->f.attrs.secure = false; 1203 result->f.attrs.space = ARMSS_NonSecure; 1204 } 1205 result->f.phys_addr = phys_addr; 1206 return false; 1207 do_fault: 1208 fi->domain = domain; 1209 fi->level = level; 1210 return true; 1211 } 1212 1213 /* 1214 * Translate S2 section/page access permissions to protection flags 1215 * @env: CPUARMState 1216 * @s2ap: The 2-bit stage2 access permissions (S2AP) 1217 * @xn: XN (execute-never) bits 1218 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 1219 */ 1220 static int get_S2prot_noexecute(int s2ap) 1221 { 1222 int prot = 0; 1223 1224 if (s2ap & 1) { 1225 prot |= PAGE_READ; 1226 } 1227 if (s2ap & 2) { 1228 prot |= PAGE_WRITE; 1229 } 1230 return prot; 1231 } 1232 1233 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 1234 { 1235 int prot = get_S2prot_noexecute(s2ap); 1236 1237 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 1238 switch (xn) { 1239 case 0: 1240 prot |= PAGE_EXEC; 1241 break; 1242 case 1: 1243 if (s1_is_el0) { 1244 prot |= PAGE_EXEC; 1245 } 1246 break; 1247 case 2: 1248 break; 1249 case 3: 1250 if (!s1_is_el0) { 1251 prot |= PAGE_EXEC; 1252 } 1253 break; 1254 default: 1255 g_assert_not_reached(); 1256 } 1257 } else { 1258 if (!extract32(xn, 1, 1)) { 1259 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 1260 prot |= PAGE_EXEC; 1261 } 1262 } 1263 } 1264 return prot; 1265 } 1266 1267 /* 1268 * Translate section/page access permissions to protection flags 1269 * @env: CPUARMState 1270 * @mmu_idx: MMU index indicating required translation regime 1271 * @is_aa64: TRUE if AArch64 1272 * @ap: The 2-bit simple AP (AP[2:1]) 1273 * @xn: XN (execute-never) bit 1274 * @pxn: PXN (privileged execute-never) bit 1275 * @in_pa: The original input pa space 1276 * @out_pa: The output pa space, modified by NSTable, NS, and NSE 1277 */ 1278 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 1279 int ap, int xn, int pxn, 1280 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa) 1281 { 1282 ARMCPU *cpu = env_archcpu(env); 1283 bool is_user = regime_is_user(env, mmu_idx); 1284 int prot_rw, user_rw; 1285 bool have_wxn; 1286 int wxn = 0; 1287 1288 assert(!regime_is_stage2(mmu_idx)); 1289 1290 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 1291 if (is_user) { 1292 prot_rw = user_rw; 1293 } else { 1294 /* 1295 * PAN controls can forbid data accesses but don't affect insn fetch. 1296 * Plain PAN forbids data accesses if EL0 has data permissions; 1297 * PAN3 forbids data accesses if EL0 has either data or exec perms. 1298 * Note that for AArch64 the 'user can exec' case is exactly !xn. 1299 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0 1300 * do not affect EPAN. 1301 */ 1302 if (user_rw && regime_is_pan(env, mmu_idx)) { 1303 prot_rw = 0; 1304 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 && 1305 regime_is_pan(env, mmu_idx) && 1306 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) { 1307 prot_rw = 0; 1308 } else { 1309 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 1310 } 1311 } 1312 1313 if (in_pa != out_pa) { 1314 switch (in_pa) { 1315 case ARMSS_Root: 1316 /* 1317 * R_ZWRVD: permission fault for insn fetched from non-Root, 1318 * I_WWBFB: SIF has no effect in EL3. 1319 */ 1320 return prot_rw; 1321 case ARMSS_Realm: 1322 /* 1323 * R_PKTDS: permission fault for insn fetched from non-Realm, 1324 * for Realm EL2 or EL2&0. The corresponding fault for EL1&0 1325 * happens during any stage2 translation. 1326 */ 1327 switch (mmu_idx) { 1328 case ARMMMUIdx_E2: 1329 case ARMMMUIdx_E20_0: 1330 case ARMMMUIdx_E20_2: 1331 case ARMMMUIdx_E20_2_PAN: 1332 return prot_rw; 1333 default: 1334 break; 1335 } 1336 break; 1337 case ARMSS_Secure: 1338 if (env->cp15.scr_el3 & SCR_SIF) { 1339 return prot_rw; 1340 } 1341 break; 1342 default: 1343 /* Input NonSecure must have output NonSecure. */ 1344 g_assert_not_reached(); 1345 } 1346 } 1347 1348 /* TODO have_wxn should be replaced with 1349 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 1350 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 1351 * compatible processors have EL2, which is required for [U]WXN. 1352 */ 1353 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 1354 1355 if (have_wxn) { 1356 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 1357 } 1358 1359 if (is_aa64) { 1360 if (regime_has_2_ranges(mmu_idx) && !is_user) { 1361 xn = pxn || (user_rw & PAGE_WRITE); 1362 } 1363 } else if (arm_feature(env, ARM_FEATURE_V7)) { 1364 switch (regime_el(env, mmu_idx)) { 1365 case 1: 1366 case 3: 1367 if (is_user) { 1368 xn = xn || !(user_rw & PAGE_READ); 1369 } else { 1370 int uwxn = 0; 1371 if (have_wxn) { 1372 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 1373 } 1374 xn = xn || !(prot_rw & PAGE_READ) || pxn || 1375 (uwxn && (user_rw & PAGE_WRITE)); 1376 } 1377 break; 1378 case 2: 1379 break; 1380 } 1381 } else { 1382 xn = wxn = 0; 1383 } 1384 1385 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 1386 return prot_rw; 1387 } 1388 return prot_rw | PAGE_EXEC; 1389 } 1390 1391 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 1392 ARMMMUIdx mmu_idx) 1393 { 1394 uint64_t tcr = regime_tcr(env, mmu_idx); 1395 uint32_t el = regime_el(env, mmu_idx); 1396 int select, tsz; 1397 bool epd, hpd; 1398 1399 assert(mmu_idx != ARMMMUIdx_Stage2_S); 1400 1401 if (mmu_idx == ARMMMUIdx_Stage2) { 1402 /* VTCR */ 1403 bool sext = extract32(tcr, 4, 1); 1404 bool sign = extract32(tcr, 3, 1); 1405 1406 /* 1407 * If the sign-extend bit is not the same as t0sz[3], the result 1408 * is unpredictable. Flag this as a guest error. 1409 */ 1410 if (sign != sext) { 1411 qemu_log_mask(LOG_GUEST_ERROR, 1412 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 1413 } 1414 tsz = sextract32(tcr, 0, 4) + 8; 1415 select = 0; 1416 hpd = false; 1417 epd = false; 1418 } else if (el == 2) { 1419 /* HTCR */ 1420 tsz = extract32(tcr, 0, 3); 1421 select = 0; 1422 hpd = extract64(tcr, 24, 1); 1423 epd = false; 1424 } else { 1425 int t0sz = extract32(tcr, 0, 3); 1426 int t1sz = extract32(tcr, 16, 3); 1427 1428 if (t1sz == 0) { 1429 select = va > (0xffffffffu >> t0sz); 1430 } else { 1431 /* Note that we will detect errors later. */ 1432 select = va >= ~(0xffffffffu >> t1sz); 1433 } 1434 if (!select) { 1435 tsz = t0sz; 1436 epd = extract32(tcr, 7, 1); 1437 hpd = extract64(tcr, 41, 1); 1438 } else { 1439 tsz = t1sz; 1440 epd = extract32(tcr, 23, 1); 1441 hpd = extract64(tcr, 42, 1); 1442 } 1443 /* For aarch32, hpd0 is not enabled without t2e as well. */ 1444 hpd &= extract32(tcr, 6, 1); 1445 } 1446 1447 return (ARMVAParameters) { 1448 .tsz = tsz, 1449 .select = select, 1450 .epd = epd, 1451 .hpd = hpd, 1452 }; 1453 } 1454 1455 /* 1456 * check_s2_mmu_setup 1457 * @cpu: ARMCPU 1458 * @is_aa64: True if the translation regime is in AArch64 state 1459 * @tcr: VTCR_EL2 or VSTCR_EL2 1460 * @ds: Effective value of TCR.DS. 1461 * @iasize: Bitsize of IPAs 1462 * @stride: Page-table stride (See the ARM ARM) 1463 * 1464 * Decode the starting level of the S2 lookup, returning INT_MIN if 1465 * the configuration is invalid. 1466 */ 1467 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr, 1468 bool ds, int iasize, int stride) 1469 { 1470 int sl0, sl2, startlevel, granulebits, levels; 1471 int s1_min_iasize, s1_max_iasize; 1472 1473 sl0 = extract32(tcr, 6, 2); 1474 if (is_aa64) { 1475 /* 1476 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size, 1477 * so interleave AArch64.S2StartLevel. 1478 */ 1479 switch (stride) { 1480 case 9: /* 4KB */ 1481 /* SL2 is RES0 unless DS=1 & 4KB granule. */ 1482 sl2 = extract64(tcr, 33, 1); 1483 if (ds && sl2) { 1484 if (sl0 != 0) { 1485 goto fail; 1486 } 1487 startlevel = -1; 1488 } else { 1489 startlevel = 2 - sl0; 1490 switch (sl0) { 1491 case 2: 1492 if (arm_pamax(cpu) < 44) { 1493 goto fail; 1494 } 1495 break; 1496 case 3: 1497 if (!cpu_isar_feature(aa64_st, cpu)) { 1498 goto fail; 1499 } 1500 startlevel = 3; 1501 break; 1502 } 1503 } 1504 break; 1505 case 11: /* 16KB */ 1506 switch (sl0) { 1507 case 2: 1508 if (arm_pamax(cpu) < 42) { 1509 goto fail; 1510 } 1511 break; 1512 case 3: 1513 if (!ds) { 1514 goto fail; 1515 } 1516 break; 1517 } 1518 startlevel = 3 - sl0; 1519 break; 1520 case 13: /* 64KB */ 1521 switch (sl0) { 1522 case 2: 1523 if (arm_pamax(cpu) < 44) { 1524 goto fail; 1525 } 1526 break; 1527 case 3: 1528 goto fail; 1529 } 1530 startlevel = 3 - sl0; 1531 break; 1532 default: 1533 g_assert_not_reached(); 1534 } 1535 } else { 1536 /* 1537 * Things are simpler for AArch32 EL2, with only 4k pages. 1538 * There is no separate S2InvalidSL function, but AArch32.S2Walk 1539 * begins with walkparms.sl0 in {'1x'}. 1540 */ 1541 assert(stride == 9); 1542 if (sl0 >= 2) { 1543 goto fail; 1544 } 1545 startlevel = 2 - sl0; 1546 } 1547 1548 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */ 1549 levels = 3 - startlevel; 1550 granulebits = stride + 3; 1551 1552 s1_min_iasize = levels * stride + granulebits + 1; 1553 s1_max_iasize = s1_min_iasize + (stride - 1) + 4; 1554 1555 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) { 1556 return startlevel; 1557 } 1558 1559 fail: 1560 return INT_MIN; 1561 } 1562 1563 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds, 1564 ARMGranuleSize gran, int level) 1565 { 1566 /* 1567 * See pseudocode AArch46.BlockDescSupported(): block descriptors 1568 * are not valid at all levels, depending on the page size. 1569 */ 1570 switch (gran) { 1571 case Gran4K: 1572 return (level == 0 && ds) || level == 1 || level == 2; 1573 case Gran16K: 1574 return (level == 1 && ds) || level == 2; 1575 case Gran64K: 1576 return (level == 1 && arm_pamax(cpu) == 52) || level == 2; 1577 default: 1578 g_assert_not_reached(); 1579 } 1580 } 1581 1582 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw) 1583 { 1584 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 1585 return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1); 1586 } 1587 1588 /** 1589 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 1590 * 1591 * Returns false if the translation was successful. Otherwise, phys_ptr, 1592 * attrs, prot and page_size may not be filled in, and the populated fsr 1593 * value provides information on why the translation aborted, in the format 1594 * of a long-format DFSR/IFSR fault register, with the following caveat: 1595 * the WnR bit is never set (the caller must do this). 1596 * 1597 * @env: CPUARMState 1598 * @ptw: Current and next stage parameters for the walk. 1599 * @address: virtual address to get physical address for 1600 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 1601 * @result: set on translation success, 1602 * @fi: set to fault info if the translation fails 1603 */ 1604 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 1605 uint64_t address, 1606 MMUAccessType access_type, 1607 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1608 { 1609 ARMCPU *cpu = env_archcpu(env); 1610 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1611 int32_t level; 1612 ARMVAParameters param; 1613 uint64_t ttbr; 1614 hwaddr descaddr, indexmask, indexmask_grainsize; 1615 uint32_t tableattrs; 1616 target_ulong page_size; 1617 uint64_t attrs; 1618 int32_t stride; 1619 int addrsize, inputsize, outputsize; 1620 uint64_t tcr = regime_tcr(env, mmu_idx); 1621 int ap, xn, pxn; 1622 uint32_t el = regime_el(env, mmu_idx); 1623 uint64_t descaddrmask; 1624 bool aarch64 = arm_el_is_aa64(env, el); 1625 uint64_t descriptor, new_descriptor; 1626 ARMSecuritySpace out_space; 1627 1628 /* TODO: This code does not support shareability levels. */ 1629 if (aarch64) { 1630 int ps; 1631 1632 param = aa64_va_parameters(env, address, mmu_idx, 1633 access_type != MMU_INST_FETCH, 1634 !arm_el_is_aa64(env, 1)); 1635 level = 0; 1636 1637 /* 1638 * If TxSZ is programmed to a value larger than the maximum, 1639 * or smaller than the effective minimum, it is IMPLEMENTATION 1640 * DEFINED whether we behave as if the field were programmed 1641 * within bounds, or if a level 0 Translation fault is generated. 1642 * 1643 * With FEAT_LVA, fault on less than minimum becomes required, 1644 * so our choice is to always raise the fault. 1645 */ 1646 if (param.tsz_oob) { 1647 goto do_translation_fault; 1648 } 1649 1650 addrsize = 64 - 8 * param.tbi; 1651 inputsize = 64 - param.tsz; 1652 1653 /* 1654 * Bound PS by PARANGE to find the effective output address size. 1655 * ID_AA64MMFR0 is a read-only register so values outside of the 1656 * supported mappings can be considered an implementation error. 1657 */ 1658 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1659 ps = MIN(ps, param.ps); 1660 assert(ps < ARRAY_SIZE(pamax_map)); 1661 outputsize = pamax_map[ps]; 1662 1663 /* 1664 * With LPA2, the effective output address (OA) size is at most 48 bits 1665 * unless TCR.DS == 1 1666 */ 1667 if (!param.ds && param.gran != Gran64K) { 1668 outputsize = MIN(outputsize, 48); 1669 } 1670 } else { 1671 param = aa32_va_parameters(env, address, mmu_idx); 1672 level = 1; 1673 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1674 inputsize = addrsize - param.tsz; 1675 outputsize = 40; 1676 } 1677 1678 /* 1679 * We determined the region when collecting the parameters, but we 1680 * have not yet validated that the address is valid for the region. 1681 * Extract the top bits and verify that they all match select. 1682 * 1683 * For aa32, if inputsize == addrsize, then we have selected the 1684 * region by exclusion in aa32_va_parameters and there is no more 1685 * validation to do here. 1686 */ 1687 if (inputsize < addrsize) { 1688 target_ulong top_bits = sextract64(address, inputsize, 1689 addrsize - inputsize); 1690 if (-top_bits != param.select) { 1691 /* The gap between the two regions is a Translation fault */ 1692 goto do_translation_fault; 1693 } 1694 } 1695 1696 stride = arm_granule_bits(param.gran) - 3; 1697 1698 /* 1699 * Note that QEMU ignores shareability and cacheability attributes, 1700 * so we don't need to do anything with the SH, ORGN, IRGN fields 1701 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1702 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1703 * implement any ASID-like capability so we can ignore it (instead 1704 * we will always flush the TLB any time the ASID is changed). 1705 */ 1706 ttbr = regime_ttbr(env, mmu_idx, param.select); 1707 1708 /* 1709 * Here we should have set up all the parameters for the translation: 1710 * inputsize, ttbr, epd, stride, tbi 1711 */ 1712 1713 if (param.epd) { 1714 /* 1715 * Translation table walk disabled => Translation fault on TLB miss 1716 * Note: This is always 0 on 64-bit EL2 and EL3. 1717 */ 1718 goto do_translation_fault; 1719 } 1720 1721 if (!regime_is_stage2(mmu_idx)) { 1722 /* 1723 * The starting level depends on the virtual address size (which can 1724 * be up to 48 bits) and the translation granule size. It indicates 1725 * the number of strides (stride bits at a time) needed to 1726 * consume the bits of the input address. In the pseudocode this is: 1727 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1728 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1729 * our 'stride + 3' and 'stride' is our 'stride'. 1730 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1731 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1732 * = 4 - (inputsize - 4) / stride; 1733 */ 1734 level = 4 - (inputsize - 4) / stride; 1735 } else { 1736 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds, 1737 inputsize, stride); 1738 if (startlevel == INT_MIN) { 1739 level = 0; 1740 goto do_translation_fault; 1741 } 1742 level = startlevel; 1743 } 1744 1745 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1746 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1747 1748 /* Now we can extract the actual base address from the TTBR */ 1749 descaddr = extract64(ttbr, 0, 48); 1750 1751 /* 1752 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1753 * 1754 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1755 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1756 * but we've just cleared the bits above 47, so simplify the test. 1757 */ 1758 if (outputsize > 48) { 1759 descaddr |= extract64(ttbr, 2, 4) << 48; 1760 } else if (descaddr >> outputsize) { 1761 level = 0; 1762 fi->type = ARMFault_AddressSize; 1763 goto do_fault; 1764 } 1765 1766 /* 1767 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1768 * and also to mask out CnP (bit 0) which could validly be non-zero. 1769 */ 1770 descaddr &= ~indexmask; 1771 1772 /* 1773 * For AArch32, the address field in the descriptor goes up to bit 39 1774 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1775 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1776 * bits as part of the address, which will be checked via outputsize. 1777 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1778 * the highest bits of a 52-bit output are placed elsewhere. 1779 */ 1780 if (param.ds) { 1781 descaddrmask = MAKE_64BIT_MASK(0, 50); 1782 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1783 descaddrmask = MAKE_64BIT_MASK(0, 48); 1784 } else { 1785 descaddrmask = MAKE_64BIT_MASK(0, 40); 1786 } 1787 descaddrmask &= ~indexmask_grainsize; 1788 tableattrs = 0; 1789 1790 next_level: 1791 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1792 descaddr &= ~7ULL; 1793 1794 /* 1795 * Process the NSTable bit from the previous level. This changes 1796 * the table address space and the output space from Secure to 1797 * NonSecure. With RME, the EL3 translation regime does not change 1798 * from Root to NonSecure. 1799 */ 1800 if (ptw->in_space == ARMSS_Secure 1801 && !regime_is_stage2(mmu_idx) 1802 && extract32(tableattrs, 4, 1)) { 1803 /* 1804 * Stage2_S -> Stage2 or Phys_S -> Phys_NS 1805 * Assert the relative order of the secure/non-secure indexes. 1806 */ 1807 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS); 1808 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2); 1809 ptw->in_ptw_idx += 1; 1810 ptw->in_space = ARMSS_NonSecure; 1811 } 1812 1813 if (!S1_ptw_translate(env, ptw, descaddr, fi)) { 1814 goto do_fault; 1815 } 1816 descriptor = arm_ldq_ptw(env, ptw, fi); 1817 if (fi->type != ARMFault_None) { 1818 goto do_fault; 1819 } 1820 new_descriptor = descriptor; 1821 1822 restart_atomic_update: 1823 if (!(descriptor & 1) || 1824 (!(descriptor & 2) && 1825 !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) { 1826 /* Invalid, or a block descriptor at an invalid level */ 1827 goto do_translation_fault; 1828 } 1829 1830 descaddr = descriptor & descaddrmask; 1831 1832 /* 1833 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1834 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1835 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1836 * raise AddressSizeFault. 1837 */ 1838 if (outputsize > 48) { 1839 if (param.ds) { 1840 descaddr |= extract64(descriptor, 8, 2) << 50; 1841 } else { 1842 descaddr |= extract64(descriptor, 12, 4) << 48; 1843 } 1844 } else if (descaddr >> outputsize) { 1845 fi->type = ARMFault_AddressSize; 1846 goto do_fault; 1847 } 1848 1849 if ((descriptor & 2) && (level < 3)) { 1850 /* 1851 * Table entry. The top five bits are attributes which may 1852 * propagate down through lower levels of the table (and 1853 * which are all arranged so that 0 means "no effect", so 1854 * we can gather them up by ORing in the bits at each level). 1855 */ 1856 tableattrs |= extract64(descriptor, 59, 5); 1857 level++; 1858 indexmask = indexmask_grainsize; 1859 goto next_level; 1860 } 1861 1862 /* 1863 * Block entry at level 1 or 2, or page entry at level 3. 1864 * These are basically the same thing, although the number 1865 * of bits we pull in from the vaddr varies. Note that although 1866 * descaddrmask masks enough of the low bits of the descriptor 1867 * to give a correct page or table address, the address field 1868 * in a block descriptor is smaller; so we need to explicitly 1869 * clear the lower bits here before ORing in the low vaddr bits. 1870 * 1871 * Afterward, descaddr is the final physical address. 1872 */ 1873 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1874 descaddr &= ~(hwaddr)(page_size - 1); 1875 descaddr |= (address & (page_size - 1)); 1876 1877 if (likely(!ptw->in_debug)) { 1878 /* 1879 * Access flag. 1880 * If HA is enabled, prepare to update the descriptor below. 1881 * Otherwise, pass the access fault on to software. 1882 */ 1883 if (!(descriptor & (1 << 10))) { 1884 if (param.ha) { 1885 new_descriptor |= 1 << 10; /* AF */ 1886 } else { 1887 fi->type = ARMFault_AccessFlag; 1888 goto do_fault; 1889 } 1890 } 1891 1892 /* 1893 * Dirty Bit. 1894 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP 1895 * bit for writeback. The actual write protection test may still be 1896 * overridden by tableattrs, to be merged below. 1897 */ 1898 if (param.hd 1899 && extract64(descriptor, 51, 1) /* DBM */ 1900 && access_type == MMU_DATA_STORE) { 1901 if (regime_is_stage2(mmu_idx)) { 1902 new_descriptor |= 1ull << 7; /* set S2AP[1] */ 1903 } else { 1904 new_descriptor &= ~(1ull << 7); /* clear AP[2] */ 1905 } 1906 } 1907 } 1908 1909 /* 1910 * Extract attributes from the (modified) descriptor, and apply 1911 * table descriptors. Stage 2 table descriptors do not include 1912 * any attribute fields. HPD disables all the table attributes 1913 * except NSTable (which we have already handled). 1914 */ 1915 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14)); 1916 if (!regime_is_stage2(mmu_idx)) { 1917 if (!param.hpd) { 1918 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */ 1919 /* 1920 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 1921 * means "force PL1 access only", which means forcing AP[1] to 0. 1922 */ 1923 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */ 1924 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */ 1925 } 1926 } 1927 1928 ap = extract32(attrs, 6, 2); 1929 out_space = ptw->in_space; 1930 if (regime_is_stage2(mmu_idx)) { 1931 /* 1932 * R_GYNXY: For stage2 in Realm security state, bit 55 is NS. 1933 * The bit remains ignored for other security states. 1934 * R_YMCSL: Executing an insn fetched from non-Realm causes 1935 * a stage2 permission fault. 1936 */ 1937 if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) { 1938 out_space = ARMSS_NonSecure; 1939 result->f.prot = get_S2prot_noexecute(ap); 1940 } else { 1941 xn = extract64(attrs, 53, 2); 1942 result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0); 1943 } 1944 } else { 1945 int nse, ns = extract32(attrs, 5, 1); 1946 switch (out_space) { 1947 case ARMSS_Root: 1948 /* 1949 * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime. 1950 * R_XTYPW: NSE and NS together select the output pa space. 1951 */ 1952 nse = extract32(attrs, 11, 1); 1953 out_space = (nse << 1) | ns; 1954 if (out_space == ARMSS_Secure && 1955 !cpu_isar_feature(aa64_sel2, cpu)) { 1956 out_space = ARMSS_NonSecure; 1957 } 1958 break; 1959 case ARMSS_Secure: 1960 if (ns) { 1961 out_space = ARMSS_NonSecure; 1962 } 1963 break; 1964 case ARMSS_Realm: 1965 switch (mmu_idx) { 1966 case ARMMMUIdx_Stage1_E0: 1967 case ARMMMUIdx_Stage1_E1: 1968 case ARMMMUIdx_Stage1_E1_PAN: 1969 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */ 1970 break; 1971 case ARMMMUIdx_E2: 1972 case ARMMMUIdx_E20_0: 1973 case ARMMMUIdx_E20_2: 1974 case ARMMMUIdx_E20_2_PAN: 1975 /* 1976 * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1, 1977 * NS changes the output to non-secure space. 1978 */ 1979 if (ns) { 1980 out_space = ARMSS_NonSecure; 1981 } 1982 break; 1983 default: 1984 g_assert_not_reached(); 1985 } 1986 break; 1987 case ARMSS_NonSecure: 1988 /* R_QRMFF: For NonSecure state, the NS bit is RES0. */ 1989 break; 1990 default: 1991 g_assert_not_reached(); 1992 } 1993 xn = extract64(attrs, 54, 1); 1994 pxn = extract64(attrs, 53, 1); 1995 1996 if (el == 1 && nv_nv1_enabled(env, ptw)) { 1997 /* 1998 * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page 1999 * descriptor bit 54 holds PXN, 53 is RES0, and the effective value 2000 * of UXN is 0. Similarly for bits 59 and 60 in table descriptors 2001 * (which we have already folded into bits 53 and 54 of attrs). 2002 * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0. 2003 * Similarly, APTable[0] from the table descriptor is treated as 0; 2004 * we already folded this into AP[1] and squashing that to 0 does 2005 * the right thing. 2006 */ 2007 pxn = xn; 2008 xn = 0; 2009 ap &= ~1; 2010 } 2011 /* 2012 * Note that we modified ptw->in_space earlier for NSTable, but 2013 * result->f.attrs retains a copy of the original security space. 2014 */ 2015 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn, 2016 result->f.attrs.space, out_space); 2017 } 2018 2019 if (!(result->f.prot & (1 << access_type))) { 2020 fi->type = ARMFault_Permission; 2021 goto do_fault; 2022 } 2023 2024 /* If FEAT_HAFDBS has made changes, update the PTE. */ 2025 if (new_descriptor != descriptor) { 2026 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi); 2027 if (fi->type != ARMFault_None) { 2028 goto do_fault; 2029 } 2030 /* 2031 * I_YZSVV says that if the in-memory descriptor has changed, 2032 * then we must use the information in that new value 2033 * (which might include a different output address, different 2034 * attributes, or generate a fault). 2035 * Restart the handling of the descriptor value from scratch. 2036 */ 2037 if (new_descriptor != descriptor) { 2038 descriptor = new_descriptor; 2039 goto restart_atomic_update; 2040 } 2041 } 2042 2043 result->f.attrs.space = out_space; 2044 result->f.attrs.secure = arm_space_is_secure(out_space); 2045 2046 if (regime_is_stage2(mmu_idx)) { 2047 result->cacheattrs.is_s2_format = true; 2048 result->cacheattrs.attrs = extract32(attrs, 2, 4); 2049 } else { 2050 /* Index into MAIR registers for cache attributes */ 2051 uint8_t attrindx = extract32(attrs, 2, 3); 2052 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2053 assert(attrindx <= 7); 2054 result->cacheattrs.is_s2_format = false; 2055 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2056 2057 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ 2058 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { 2059 result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */ 2060 } 2061 } 2062 2063 /* 2064 * For FEAT_LPA2 and effective DS, the SH field in the attributes 2065 * was re-purposed for output address bits. The SH attribute in 2066 * that case comes from TCR_ELx, which we extracted earlier. 2067 */ 2068 if (param.ds) { 2069 result->cacheattrs.shareability = param.sh; 2070 } else { 2071 result->cacheattrs.shareability = extract32(attrs, 8, 2); 2072 } 2073 2074 result->f.phys_addr = descaddr; 2075 result->f.lg_page_size = ctz64(page_size); 2076 return false; 2077 2078 do_translation_fault: 2079 fi->type = ARMFault_Translation; 2080 do_fault: 2081 if (fi->s1ptw) { 2082 /* Retain the existing stage 2 fi->level */ 2083 assert(fi->stage2); 2084 } else { 2085 fi->level = level; 2086 fi->stage2 = regime_is_stage2(mmu_idx); 2087 } 2088 fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx); 2089 return true; 2090 } 2091 2092 static bool get_phys_addr_pmsav5(CPUARMState *env, 2093 S1Translate *ptw, 2094 uint32_t address, 2095 MMUAccessType access_type, 2096 GetPhysAddrResult *result, 2097 ARMMMUFaultInfo *fi) 2098 { 2099 int n; 2100 uint32_t mask; 2101 uint32_t base; 2102 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2103 bool is_user = regime_is_user(env, mmu_idx); 2104 2105 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 2106 /* MPU disabled. */ 2107 result->f.phys_addr = address; 2108 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2109 return false; 2110 } 2111 2112 result->f.phys_addr = address; 2113 for (n = 7; n >= 0; n--) { 2114 base = env->cp15.c6_region[n]; 2115 if ((base & 1) == 0) { 2116 continue; 2117 } 2118 mask = 1 << ((base >> 1) & 0x1f); 2119 /* Keep this shift separate from the above to avoid an 2120 (undefined) << 32. */ 2121 mask = (mask << 1) - 1; 2122 if (((base ^ address) & ~mask) == 0) { 2123 break; 2124 } 2125 } 2126 if (n < 0) { 2127 fi->type = ARMFault_Background; 2128 return true; 2129 } 2130 2131 if (access_type == MMU_INST_FETCH) { 2132 mask = env->cp15.pmsav5_insn_ap; 2133 } else { 2134 mask = env->cp15.pmsav5_data_ap; 2135 } 2136 mask = (mask >> (n * 4)) & 0xf; 2137 switch (mask) { 2138 case 0: 2139 fi->type = ARMFault_Permission; 2140 fi->level = 1; 2141 return true; 2142 case 1: 2143 if (is_user) { 2144 fi->type = ARMFault_Permission; 2145 fi->level = 1; 2146 return true; 2147 } 2148 result->f.prot = PAGE_READ | PAGE_WRITE; 2149 break; 2150 case 2: 2151 result->f.prot = PAGE_READ; 2152 if (!is_user) { 2153 result->f.prot |= PAGE_WRITE; 2154 } 2155 break; 2156 case 3: 2157 result->f.prot = PAGE_READ | PAGE_WRITE; 2158 break; 2159 case 5: 2160 if (is_user) { 2161 fi->type = ARMFault_Permission; 2162 fi->level = 1; 2163 return true; 2164 } 2165 result->f.prot = PAGE_READ; 2166 break; 2167 case 6: 2168 result->f.prot = PAGE_READ; 2169 break; 2170 default: 2171 /* Bad permission. */ 2172 fi->type = ARMFault_Permission; 2173 fi->level = 1; 2174 return true; 2175 } 2176 result->f.prot |= PAGE_EXEC; 2177 return false; 2178 } 2179 2180 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 2181 int32_t address, uint8_t *prot) 2182 { 2183 if (!arm_feature(env, ARM_FEATURE_M)) { 2184 *prot = PAGE_READ | PAGE_WRITE; 2185 switch (address) { 2186 case 0xF0000000 ... 0xFFFFFFFF: 2187 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 2188 /* hivecs execing is ok */ 2189 *prot |= PAGE_EXEC; 2190 } 2191 break; 2192 case 0x00000000 ... 0x7FFFFFFF: 2193 *prot |= PAGE_EXEC; 2194 break; 2195 } 2196 } else { 2197 /* Default system address map for M profile cores. 2198 * The architecture specifies which regions are execute-never; 2199 * at the MPU level no other checks are defined. 2200 */ 2201 switch (address) { 2202 case 0x00000000 ... 0x1fffffff: /* ROM */ 2203 case 0x20000000 ... 0x3fffffff: /* SRAM */ 2204 case 0x60000000 ... 0x7fffffff: /* RAM */ 2205 case 0x80000000 ... 0x9fffffff: /* RAM */ 2206 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2207 break; 2208 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 2209 case 0xa0000000 ... 0xbfffffff: /* Device */ 2210 case 0xc0000000 ... 0xdfffffff: /* Device */ 2211 case 0xe0000000 ... 0xffffffff: /* System */ 2212 *prot = PAGE_READ | PAGE_WRITE; 2213 break; 2214 default: 2215 g_assert_not_reached(); 2216 } 2217 } 2218 } 2219 2220 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 2221 { 2222 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 2223 return arm_feature(env, ARM_FEATURE_M) && 2224 extract32(address, 20, 12) == 0xe00; 2225 } 2226 2227 static bool m_is_system_region(CPUARMState *env, uint32_t address) 2228 { 2229 /* 2230 * True if address is in the M profile system region 2231 * 0xe0000000 - 0xffffffff 2232 */ 2233 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 2234 } 2235 2236 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 2237 bool is_secure, bool is_user) 2238 { 2239 /* 2240 * Return true if we should use the default memory map as a 2241 * "background" region if there are no hits against any MPU regions. 2242 */ 2243 CPUARMState *env = &cpu->env; 2244 2245 if (is_user) { 2246 return false; 2247 } 2248 2249 if (arm_feature(env, ARM_FEATURE_M)) { 2250 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 2251 } 2252 2253 if (mmu_idx == ARMMMUIdx_Stage2) { 2254 return false; 2255 } 2256 2257 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 2258 } 2259 2260 static bool get_phys_addr_pmsav7(CPUARMState *env, 2261 S1Translate *ptw, 2262 uint32_t address, 2263 MMUAccessType access_type, 2264 GetPhysAddrResult *result, 2265 ARMMMUFaultInfo *fi) 2266 { 2267 ARMCPU *cpu = env_archcpu(env); 2268 int n; 2269 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2270 bool is_user = regime_is_user(env, mmu_idx); 2271 bool secure = arm_space_is_secure(ptw->in_space); 2272 2273 result->f.phys_addr = address; 2274 result->f.lg_page_size = TARGET_PAGE_BITS; 2275 result->f.prot = 0; 2276 2277 if (regime_translation_disabled(env, mmu_idx, ptw->in_space) || 2278 m_is_ppb_region(env, address)) { 2279 /* 2280 * MPU disabled or M profile PPB access: use default memory map. 2281 * The other case which uses the default memory map in the 2282 * v7M ARM ARM pseudocode is exception vector reads from the vector 2283 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 2284 * which always does a direct read using address_space_ldl(), rather 2285 * than going via this function, so we don't need to check that here. 2286 */ 2287 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2288 } else { /* MPU enabled */ 2289 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 2290 /* region search */ 2291 uint32_t base = env->pmsav7.drbar[n]; 2292 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 2293 uint32_t rmask; 2294 bool srdis = false; 2295 2296 if (!(env->pmsav7.drsr[n] & 0x1)) { 2297 continue; 2298 } 2299 2300 if (!rsize) { 2301 qemu_log_mask(LOG_GUEST_ERROR, 2302 "DRSR[%d]: Rsize field cannot be 0\n", n); 2303 continue; 2304 } 2305 rsize++; 2306 rmask = (1ull << rsize) - 1; 2307 2308 if (base & rmask) { 2309 qemu_log_mask(LOG_GUEST_ERROR, 2310 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 2311 "to DRSR region size, mask = 0x%" PRIx32 "\n", 2312 n, base, rmask); 2313 continue; 2314 } 2315 2316 if (address < base || address > base + rmask) { 2317 /* 2318 * Address not in this region. We must check whether the 2319 * region covers addresses in the same page as our address. 2320 * In that case we must not report a size that covers the 2321 * whole page for a subsequent hit against a different MPU 2322 * region or the background region, because it would result in 2323 * incorrect TLB hits for subsequent accesses to addresses that 2324 * are in this MPU region. 2325 */ 2326 if (ranges_overlap(base, rmask, 2327 address & TARGET_PAGE_MASK, 2328 TARGET_PAGE_SIZE)) { 2329 result->f.lg_page_size = 0; 2330 } 2331 continue; 2332 } 2333 2334 /* Region matched */ 2335 2336 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 2337 int i, snd; 2338 uint32_t srdis_mask; 2339 2340 rsize -= 3; /* sub region size (power of 2) */ 2341 snd = ((address - base) >> rsize) & 0x7; 2342 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 2343 2344 srdis_mask = srdis ? 0x3 : 0x0; 2345 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 2346 /* 2347 * This will check in groups of 2, 4 and then 8, whether 2348 * the subregion bits are consistent. rsize is incremented 2349 * back up to give the region size, considering consistent 2350 * adjacent subregions as one region. Stop testing if rsize 2351 * is already big enough for an entire QEMU page. 2352 */ 2353 int snd_rounded = snd & ~(i - 1); 2354 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 2355 snd_rounded + 8, i); 2356 if (srdis_mask ^ srdis_multi) { 2357 break; 2358 } 2359 srdis_mask = (srdis_mask << i) | srdis_mask; 2360 rsize++; 2361 } 2362 } 2363 if (srdis) { 2364 continue; 2365 } 2366 if (rsize < TARGET_PAGE_BITS) { 2367 result->f.lg_page_size = rsize; 2368 } 2369 break; 2370 } 2371 2372 if (n == -1) { /* no hits */ 2373 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2374 /* background fault */ 2375 fi->type = ARMFault_Background; 2376 return true; 2377 } 2378 get_phys_addr_pmsav7_default(env, mmu_idx, address, 2379 &result->f.prot); 2380 } else { /* a MPU hit! */ 2381 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 2382 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 2383 2384 if (m_is_system_region(env, address)) { 2385 /* System space is always execute never */ 2386 xn = 1; 2387 } 2388 2389 if (is_user) { /* User mode AP bit decoding */ 2390 switch (ap) { 2391 case 0: 2392 case 1: 2393 case 5: 2394 break; /* no access */ 2395 case 3: 2396 result->f.prot |= PAGE_WRITE; 2397 /* fall through */ 2398 case 2: 2399 case 6: 2400 result->f.prot |= PAGE_READ | PAGE_EXEC; 2401 break; 2402 case 7: 2403 /* for v7M, same as 6; for R profile a reserved value */ 2404 if (arm_feature(env, ARM_FEATURE_M)) { 2405 result->f.prot |= PAGE_READ | PAGE_EXEC; 2406 break; 2407 } 2408 /* fall through */ 2409 default: 2410 qemu_log_mask(LOG_GUEST_ERROR, 2411 "DRACR[%d]: Bad value for AP bits: 0x%" 2412 PRIx32 "\n", n, ap); 2413 } 2414 } else { /* Priv. mode AP bits decoding */ 2415 switch (ap) { 2416 case 0: 2417 break; /* no access */ 2418 case 1: 2419 case 2: 2420 case 3: 2421 result->f.prot |= PAGE_WRITE; 2422 /* fall through */ 2423 case 5: 2424 case 6: 2425 result->f.prot |= PAGE_READ | PAGE_EXEC; 2426 break; 2427 case 7: 2428 /* for v7M, same as 6; for R profile a reserved value */ 2429 if (arm_feature(env, ARM_FEATURE_M)) { 2430 result->f.prot |= PAGE_READ | PAGE_EXEC; 2431 break; 2432 } 2433 /* fall through */ 2434 default: 2435 qemu_log_mask(LOG_GUEST_ERROR, 2436 "DRACR[%d]: Bad value for AP bits: 0x%" 2437 PRIx32 "\n", n, ap); 2438 } 2439 } 2440 2441 /* execute never */ 2442 if (xn) { 2443 result->f.prot &= ~PAGE_EXEC; 2444 } 2445 } 2446 } 2447 2448 fi->type = ARMFault_Permission; 2449 fi->level = 1; 2450 return !(result->f.prot & (1 << access_type)); 2451 } 2452 2453 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx, 2454 uint32_t secure) 2455 { 2456 if (regime_el(env, mmu_idx) == 2) { 2457 return env->pmsav8.hprbar; 2458 } else { 2459 return env->pmsav8.rbar[secure]; 2460 } 2461 } 2462 2463 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx, 2464 uint32_t secure) 2465 { 2466 if (regime_el(env, mmu_idx) == 2) { 2467 return env->pmsav8.hprlar; 2468 } else { 2469 return env->pmsav8.rlar[secure]; 2470 } 2471 } 2472 2473 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 2474 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2475 bool secure, GetPhysAddrResult *result, 2476 ARMMMUFaultInfo *fi, uint32_t *mregion) 2477 { 2478 /* 2479 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 2480 * that a full phys-to-virt translation does). 2481 * mregion is (if not NULL) set to the region number which matched, 2482 * or -1 if no region number is returned (MPU off, address did not 2483 * hit a region, address hit in multiple regions). 2484 * If the region hit doesn't cover the entire TARGET_PAGE the address 2485 * is within, then we set the result page_size to 1 to force the 2486 * memory system to use a subpage. 2487 */ 2488 ARMCPU *cpu = env_archcpu(env); 2489 bool is_user = regime_is_user(env, mmu_idx); 2490 int n; 2491 int matchregion = -1; 2492 bool hit = false; 2493 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2494 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2495 int region_counter; 2496 2497 if (regime_el(env, mmu_idx) == 2) { 2498 region_counter = cpu->pmsav8r_hdregion; 2499 } else { 2500 region_counter = cpu->pmsav7_dregion; 2501 } 2502 2503 result->f.lg_page_size = TARGET_PAGE_BITS; 2504 result->f.phys_addr = address; 2505 result->f.prot = 0; 2506 if (mregion) { 2507 *mregion = -1; 2508 } 2509 2510 if (mmu_idx == ARMMMUIdx_Stage2) { 2511 fi->stage2 = true; 2512 } 2513 2514 /* 2515 * Unlike the ARM ARM pseudocode, we don't need to check whether this 2516 * was an exception vector read from the vector table (which is always 2517 * done using the default system address map), because those accesses 2518 * are done in arm_v7m_load_vector(), which always does a direct 2519 * read using address_space_ldl(), rather than going via this function. 2520 */ 2521 if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) { 2522 /* MPU disabled */ 2523 hit = true; 2524 } else if (m_is_ppb_region(env, address)) { 2525 hit = true; 2526 } else { 2527 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2528 hit = true; 2529 } 2530 2531 uint32_t bitmask; 2532 if (arm_feature(env, ARM_FEATURE_M)) { 2533 bitmask = 0x1f; 2534 } else { 2535 bitmask = 0x3f; 2536 fi->level = 0; 2537 } 2538 2539 for (n = region_counter - 1; n >= 0; n--) { 2540 /* region search */ 2541 /* 2542 * Note that the base address is bits [31:x] from the register 2543 * with bits [x-1:0] all zeroes, but the limit address is bits 2544 * [31:x] from the register with bits [x:0] all ones. Where x is 2545 * 5 for Cortex-M and 6 for Cortex-R 2546 */ 2547 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask; 2548 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask; 2549 2550 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) { 2551 /* Region disabled */ 2552 continue; 2553 } 2554 2555 if (address < base || address > limit) { 2556 /* 2557 * Address not in this region. We must check whether the 2558 * region covers addresses in the same page as our address. 2559 * In that case we must not report a size that covers the 2560 * whole page for a subsequent hit against a different MPU 2561 * region or the background region, because it would result in 2562 * incorrect TLB hits for subsequent accesses to addresses that 2563 * are in this MPU region. 2564 */ 2565 if (limit >= base && 2566 ranges_overlap(base, limit - base + 1, 2567 addr_page_base, 2568 TARGET_PAGE_SIZE)) { 2569 result->f.lg_page_size = 0; 2570 } 2571 continue; 2572 } 2573 2574 if (base > addr_page_base || limit < addr_page_limit) { 2575 result->f.lg_page_size = 0; 2576 } 2577 2578 if (matchregion != -1) { 2579 /* 2580 * Multiple regions match -- always a failure (unlike 2581 * PMSAv7 where highest-numbered-region wins) 2582 */ 2583 fi->type = ARMFault_Permission; 2584 if (arm_feature(env, ARM_FEATURE_M)) { 2585 fi->level = 1; 2586 } 2587 return true; 2588 } 2589 2590 matchregion = n; 2591 hit = true; 2592 } 2593 } 2594 2595 if (!hit) { 2596 if (arm_feature(env, ARM_FEATURE_M)) { 2597 fi->type = ARMFault_Background; 2598 } else { 2599 fi->type = ARMFault_Permission; 2600 } 2601 return true; 2602 } 2603 2604 if (matchregion == -1) { 2605 /* hit using the background region */ 2606 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2607 } else { 2608 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion]; 2609 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion]; 2610 uint32_t ap = extract32(matched_rbar, 1, 2); 2611 uint32_t xn = extract32(matched_rbar, 0, 1); 2612 bool pxn = false; 2613 2614 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 2615 pxn = extract32(matched_rlar, 4, 1); 2616 } 2617 2618 if (m_is_system_region(env, address)) { 2619 /* System space is always execute never */ 2620 xn = 1; 2621 } 2622 2623 if (regime_el(env, mmu_idx) == 2) { 2624 result->f.prot = simple_ap_to_rw_prot_is_user(ap, 2625 mmu_idx != ARMMMUIdx_E2); 2626 } else { 2627 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 2628 } 2629 2630 if (!arm_feature(env, ARM_FEATURE_M)) { 2631 uint8_t attrindx = extract32(matched_rlar, 1, 3); 2632 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2633 uint8_t sh = extract32(matched_rlar, 3, 2); 2634 2635 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN && 2636 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) { 2637 xn = 0x1; 2638 } 2639 2640 if ((regime_el(env, mmu_idx) == 1) && 2641 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) { 2642 pxn = 0x1; 2643 } 2644 2645 result->cacheattrs.is_s2_format = false; 2646 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2647 result->cacheattrs.shareability = sh; 2648 } 2649 2650 if (result->f.prot && !xn && !(pxn && !is_user)) { 2651 result->f.prot |= PAGE_EXEC; 2652 } 2653 2654 if (mregion) { 2655 *mregion = matchregion; 2656 } 2657 } 2658 2659 fi->type = ARMFault_Permission; 2660 if (arm_feature(env, ARM_FEATURE_M)) { 2661 fi->level = 1; 2662 } 2663 return !(result->f.prot & (1 << access_type)); 2664 } 2665 2666 static bool v8m_is_sau_exempt(CPUARMState *env, 2667 uint32_t address, MMUAccessType access_type) 2668 { 2669 /* 2670 * The architecture specifies that certain address ranges are 2671 * exempt from v8M SAU/IDAU checks. 2672 */ 2673 return 2674 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 2675 (address >= 0xe0000000 && address <= 0xe0002fff) || 2676 (address >= 0xe000e000 && address <= 0xe000efff) || 2677 (address >= 0xe002e000 && address <= 0xe002efff) || 2678 (address >= 0xe0040000 && address <= 0xe0041fff) || 2679 (address >= 0xe00ff000 && address <= 0xe00fffff); 2680 } 2681 2682 void v8m_security_lookup(CPUARMState *env, uint32_t address, 2683 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2684 bool is_secure, V8M_SAttributes *sattrs) 2685 { 2686 /* 2687 * Look up the security attributes for this address. Compare the 2688 * pseudocode SecurityCheck() function. 2689 * We assume the caller has zero-initialized *sattrs. 2690 */ 2691 ARMCPU *cpu = env_archcpu(env); 2692 int r; 2693 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 2694 int idau_region = IREGION_NOTVALID; 2695 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2696 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2697 2698 if (cpu->idau) { 2699 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 2700 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 2701 2702 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 2703 &idau_nsc); 2704 } 2705 2706 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 2707 /* 0xf0000000..0xffffffff is always S for insn fetches */ 2708 return; 2709 } 2710 2711 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 2712 sattrs->ns = !is_secure; 2713 return; 2714 } 2715 2716 if (idau_region != IREGION_NOTVALID) { 2717 sattrs->irvalid = true; 2718 sattrs->iregion = idau_region; 2719 } 2720 2721 switch (env->sau.ctrl & 3) { 2722 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 2723 break; 2724 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 2725 sattrs->ns = true; 2726 break; 2727 default: /* SAU.ENABLE == 1 */ 2728 for (r = 0; r < cpu->sau_sregion; r++) { 2729 if (env->sau.rlar[r] & 1) { 2730 uint32_t base = env->sau.rbar[r] & ~0x1f; 2731 uint32_t limit = env->sau.rlar[r] | 0x1f; 2732 2733 if (base <= address && limit >= address) { 2734 if (base > addr_page_base || limit < addr_page_limit) { 2735 sattrs->subpage = true; 2736 } 2737 if (sattrs->srvalid) { 2738 /* 2739 * If we hit in more than one region then we must report 2740 * as Secure, not NS-Callable, with no valid region 2741 * number info. 2742 */ 2743 sattrs->ns = false; 2744 sattrs->nsc = false; 2745 sattrs->sregion = 0; 2746 sattrs->srvalid = false; 2747 break; 2748 } else { 2749 if (env->sau.rlar[r] & 2) { 2750 sattrs->nsc = true; 2751 } else { 2752 sattrs->ns = true; 2753 } 2754 sattrs->srvalid = true; 2755 sattrs->sregion = r; 2756 } 2757 } else { 2758 /* 2759 * Address not in this region. We must check whether the 2760 * region covers addresses in the same page as our address. 2761 * In that case we must not report a size that covers the 2762 * whole page for a subsequent hit against a different MPU 2763 * region or the background region, because it would result 2764 * in incorrect TLB hits for subsequent accesses to 2765 * addresses that are in this MPU region. 2766 */ 2767 if (limit >= base && 2768 ranges_overlap(base, limit - base + 1, 2769 addr_page_base, 2770 TARGET_PAGE_SIZE)) { 2771 sattrs->subpage = true; 2772 } 2773 } 2774 } 2775 } 2776 break; 2777 } 2778 2779 /* 2780 * The IDAU will override the SAU lookup results if it specifies 2781 * higher security than the SAU does. 2782 */ 2783 if (!idau_ns) { 2784 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 2785 sattrs->ns = false; 2786 sattrs->nsc = idau_nsc; 2787 } 2788 } 2789 } 2790 2791 static bool get_phys_addr_pmsav8(CPUARMState *env, 2792 S1Translate *ptw, 2793 uint32_t address, 2794 MMUAccessType access_type, 2795 GetPhysAddrResult *result, 2796 ARMMMUFaultInfo *fi) 2797 { 2798 V8M_SAttributes sattrs = {}; 2799 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2800 bool secure = arm_space_is_secure(ptw->in_space); 2801 bool ret; 2802 2803 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2804 v8m_security_lookup(env, address, access_type, mmu_idx, 2805 secure, &sattrs); 2806 if (access_type == MMU_INST_FETCH) { 2807 /* 2808 * Instruction fetches always use the MMU bank and the 2809 * transaction attribute determined by the fetch address, 2810 * regardless of CPU state. This is painful for QEMU 2811 * to handle, because it would mean we need to encode 2812 * into the mmu_idx not just the (user, negpri) information 2813 * for the current security state but also that for the 2814 * other security state, which would balloon the number 2815 * of mmu_idx values needed alarmingly. 2816 * Fortunately we can avoid this because it's not actually 2817 * possible to arbitrarily execute code from memory with 2818 * the wrong security attribute: it will always generate 2819 * an exception of some kind or another, apart from the 2820 * special case of an NS CPU executing an SG instruction 2821 * in S&NSC memory. So we always just fail the translation 2822 * here and sort things out in the exception handler 2823 * (including possibly emulating an SG instruction). 2824 */ 2825 if (sattrs.ns != !secure) { 2826 if (sattrs.nsc) { 2827 fi->type = ARMFault_QEMU_NSCExec; 2828 } else { 2829 fi->type = ARMFault_QEMU_SFault; 2830 } 2831 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2832 result->f.phys_addr = address; 2833 result->f.prot = 0; 2834 return true; 2835 } 2836 } else { 2837 /* 2838 * For data accesses we always use the MMU bank indicated 2839 * by the current CPU state, but the security attributes 2840 * might downgrade a secure access to nonsecure. 2841 */ 2842 if (sattrs.ns) { 2843 result->f.attrs.secure = false; 2844 result->f.attrs.space = ARMSS_NonSecure; 2845 } else if (!secure) { 2846 /* 2847 * NS access to S memory must fault. 2848 * Architecturally we should first check whether the 2849 * MPU information for this address indicates that we 2850 * are doing an unaligned access to Device memory, which 2851 * should generate a UsageFault instead. QEMU does not 2852 * currently check for that kind of unaligned access though. 2853 * If we added it we would need to do so as a special case 2854 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2855 */ 2856 fi->type = ARMFault_QEMU_SFault; 2857 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2858 result->f.phys_addr = address; 2859 result->f.prot = 0; 2860 return true; 2861 } 2862 } 2863 } 2864 2865 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, 2866 result, fi, NULL); 2867 if (sattrs.subpage) { 2868 result->f.lg_page_size = 0; 2869 } 2870 return ret; 2871 } 2872 2873 /* 2874 * Translate from the 4-bit stage 2 representation of 2875 * memory attributes (without cache-allocation hints) to 2876 * the 8-bit representation of the stage 1 MAIR registers 2877 * (which includes allocation hints). 2878 * 2879 * ref: shared/translation/attrs/S2AttrDecode() 2880 * .../S2ConvertAttrsHints() 2881 */ 2882 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) 2883 { 2884 uint8_t hiattr = extract32(s2attrs, 2, 2); 2885 uint8_t loattr = extract32(s2attrs, 0, 2); 2886 uint8_t hihint = 0, lohint = 0; 2887 2888 if (hiattr != 0) { /* normal memory */ 2889 if (hcr & HCR_CD) { /* cache disabled */ 2890 hiattr = loattr = 1; /* non-cacheable */ 2891 } else { 2892 if (hiattr != 1) { /* Write-through or write-back */ 2893 hihint = 3; /* RW allocate */ 2894 } 2895 if (loattr != 1) { /* Write-through or write-back */ 2896 lohint = 3; /* RW allocate */ 2897 } 2898 } 2899 } 2900 2901 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 2902 } 2903 2904 /* 2905 * Combine either inner or outer cacheability attributes for normal 2906 * memory, according to table D4-42 and pseudocode procedure 2907 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 2908 * 2909 * NB: only stage 1 includes allocation hints (RW bits), leading to 2910 * some asymmetry. 2911 */ 2912 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 2913 { 2914 if (s1 == 4 || s2 == 4) { 2915 /* non-cacheable has precedence */ 2916 return 4; 2917 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 2918 /* stage 1 write-through takes precedence */ 2919 return s1; 2920 } else if (extract32(s2, 2, 2) == 2) { 2921 /* stage 2 write-through takes precedence, but the allocation hint 2922 * is still taken from stage 1 2923 */ 2924 return (2 << 2) | extract32(s1, 0, 2); 2925 } else { /* write-back */ 2926 return s1; 2927 } 2928 } 2929 2930 /* 2931 * Combine the memory type and cacheability attributes of 2932 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 2933 * combined attributes in MAIR_EL1 format. 2934 */ 2935 static uint8_t combined_attrs_nofwb(uint64_t hcr, 2936 ARMCacheAttrs s1, ARMCacheAttrs s2) 2937 { 2938 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 2939 2940 if (s2.is_s2_format) { 2941 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); 2942 } else { 2943 s2_mair_attrs = s2.attrs; 2944 } 2945 2946 s1lo = extract32(s1.attrs, 0, 4); 2947 s2lo = extract32(s2_mair_attrs, 0, 4); 2948 s1hi = extract32(s1.attrs, 4, 4); 2949 s2hi = extract32(s2_mair_attrs, 4, 4); 2950 2951 /* Combine memory type and cacheability attributes */ 2952 if (s1hi == 0 || s2hi == 0) { 2953 /* Device has precedence over normal */ 2954 if (s1lo == 0 || s2lo == 0) { 2955 /* nGnRnE has precedence over anything */ 2956 ret_attrs = 0; 2957 } else if (s1lo == 4 || s2lo == 4) { 2958 /* non-Reordering has precedence over Reordering */ 2959 ret_attrs = 4; /* nGnRE */ 2960 } else if (s1lo == 8 || s2lo == 8) { 2961 /* non-Gathering has precedence over Gathering */ 2962 ret_attrs = 8; /* nGRE */ 2963 } else { 2964 ret_attrs = 0xc; /* GRE */ 2965 } 2966 } else { /* Normal memory */ 2967 /* Outer/inner cacheability combine independently */ 2968 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 2969 | combine_cacheattr_nibble(s1lo, s2lo); 2970 } 2971 return ret_attrs; 2972 } 2973 2974 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 2975 { 2976 /* 2977 * Given the 4 bits specifying the outer or inner cacheability 2978 * in MAIR format, return a value specifying Normal Write-Back, 2979 * with the allocation and transient hints taken from the input 2980 * if the input specified some kind of cacheable attribute. 2981 */ 2982 if (attr == 0 || attr == 4) { 2983 /* 2984 * 0 == an UNPREDICTABLE encoding 2985 * 4 == Non-cacheable 2986 * Either way, force Write-Back RW allocate non-transient 2987 */ 2988 return 0xf; 2989 } 2990 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 2991 return attr | 4; 2992 } 2993 2994 /* 2995 * Combine the memory type and cacheability attributes of 2996 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 2997 * combined attributes in MAIR_EL1 format. 2998 */ 2999 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) 3000 { 3001 assert(s2.is_s2_format && !s1.is_s2_format); 3002 3003 switch (s2.attrs) { 3004 case 7: 3005 /* Use stage 1 attributes */ 3006 return s1.attrs; 3007 case 6: 3008 /* 3009 * Force Normal Write-Back. Note that if S1 is Normal cacheable 3010 * then we take the allocation hints from it; otherwise it is 3011 * RW allocate, non-transient. 3012 */ 3013 if ((s1.attrs & 0xf0) == 0) { 3014 /* S1 is Device */ 3015 return 0xff; 3016 } 3017 /* Need to check the Inner and Outer nibbles separately */ 3018 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 3019 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 3020 case 5: 3021 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 3022 if ((s1.attrs & 0xf0) == 0) { 3023 return s1.attrs; 3024 } 3025 return 0x44; 3026 case 0 ... 3: 3027 /* Force Device, of subtype specified by S2 */ 3028 return s2.attrs << 2; 3029 default: 3030 /* 3031 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 3032 * arbitrarily force Device. 3033 */ 3034 return 0; 3035 } 3036 } 3037 3038 /* 3039 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 3040 * and CombineS1S2Desc() 3041 * 3042 * @env: CPUARMState 3043 * @s1: Attributes from stage 1 walk 3044 * @s2: Attributes from stage 2 walk 3045 */ 3046 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, 3047 ARMCacheAttrs s1, ARMCacheAttrs s2) 3048 { 3049 ARMCacheAttrs ret; 3050 bool tagged = false; 3051 3052 assert(!s1.is_s2_format); 3053 ret.is_s2_format = false; 3054 3055 if (s1.attrs == 0xf0) { 3056 tagged = true; 3057 s1.attrs = 0xff; 3058 } 3059 3060 /* Combine shareability attributes (table D4-43) */ 3061 if (s1.shareability == 2 || s2.shareability == 2) { 3062 /* if either are outer-shareable, the result is outer-shareable */ 3063 ret.shareability = 2; 3064 } else if (s1.shareability == 3 || s2.shareability == 3) { 3065 /* if either are inner-shareable, the result is inner-shareable */ 3066 ret.shareability = 3; 3067 } else { 3068 /* both non-shareable */ 3069 ret.shareability = 0; 3070 } 3071 3072 /* Combine memory type and cacheability attributes */ 3073 if (hcr & HCR_FWB) { 3074 ret.attrs = combined_attrs_fwb(s1, s2); 3075 } else { 3076 ret.attrs = combined_attrs_nofwb(hcr, s1, s2); 3077 } 3078 3079 /* 3080 * Any location for which the resultant memory type is any 3081 * type of Device memory is always treated as Outer Shareable. 3082 * Any location for which the resultant memory type is Normal 3083 * Inner Non-cacheable, Outer Non-cacheable is always treated 3084 * as Outer Shareable. 3085 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 3086 */ 3087 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 3088 ret.shareability = 2; 3089 } 3090 3091 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 3092 if (tagged && ret.attrs == 0xff) { 3093 ret.attrs = 0xf0; 3094 } 3095 3096 return ret; 3097 } 3098 3099 /* 3100 * MMU disabled. S1 addresses within aa64 translation regimes are 3101 * still checked for bounds -- see AArch64.S1DisabledOutput(). 3102 */ 3103 static bool get_phys_addr_disabled(CPUARMState *env, 3104 S1Translate *ptw, 3105 target_ulong address, 3106 MMUAccessType access_type, 3107 GetPhysAddrResult *result, 3108 ARMMMUFaultInfo *fi) 3109 { 3110 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3111 uint8_t memattr = 0x00; /* Device nGnRnE */ 3112 uint8_t shareability = 0; /* non-shareable */ 3113 int r_el; 3114 3115 switch (mmu_idx) { 3116 case ARMMMUIdx_Stage2: 3117 case ARMMMUIdx_Stage2_S: 3118 case ARMMMUIdx_Phys_S: 3119 case ARMMMUIdx_Phys_NS: 3120 case ARMMMUIdx_Phys_Root: 3121 case ARMMMUIdx_Phys_Realm: 3122 break; 3123 3124 default: 3125 r_el = regime_el(env, mmu_idx); 3126 if (arm_el_is_aa64(env, r_el)) { 3127 int pamax = arm_pamax(env_archcpu(env)); 3128 uint64_t tcr = env->cp15.tcr_el[r_el]; 3129 int addrtop, tbi; 3130 3131 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 3132 if (access_type == MMU_INST_FETCH) { 3133 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 3134 } 3135 tbi = (tbi >> extract64(address, 55, 1)) & 1; 3136 addrtop = (tbi ? 55 : 63); 3137 3138 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 3139 fi->type = ARMFault_AddressSize; 3140 fi->level = 0; 3141 fi->stage2 = false; 3142 return 1; 3143 } 3144 3145 /* 3146 * When TBI is disabled, we've just validated that all of the 3147 * bits above PAMax are zero, so logically we only need to 3148 * clear the top byte for TBI. But it's clearer to follow 3149 * the pseudocode set of addrdesc.paddress. 3150 */ 3151 address = extract64(address, 0, 52); 3152 } 3153 3154 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 3155 if (r_el == 1) { 3156 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 3157 if (hcr & HCR_DC) { 3158 if (hcr & HCR_DCT) { 3159 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 3160 } else { 3161 memattr = 0xff; /* Normal, WB, RWA */ 3162 } 3163 } 3164 } 3165 if (memattr == 0) { 3166 if (access_type == MMU_INST_FETCH) { 3167 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 3168 memattr = 0xee; /* Normal, WT, RA, NT */ 3169 } else { 3170 memattr = 0x44; /* Normal, NC, No */ 3171 } 3172 } 3173 shareability = 2; /* outer shareable */ 3174 } 3175 result->cacheattrs.is_s2_format = false; 3176 break; 3177 } 3178 3179 result->f.phys_addr = address; 3180 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 3181 result->f.lg_page_size = TARGET_PAGE_BITS; 3182 result->cacheattrs.shareability = shareability; 3183 result->cacheattrs.attrs = memattr; 3184 return false; 3185 } 3186 3187 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, 3188 target_ulong address, 3189 MMUAccessType access_type, 3190 GetPhysAddrResult *result, 3191 ARMMMUFaultInfo *fi) 3192 { 3193 hwaddr ipa; 3194 int s1_prot, s1_lgpgsz; 3195 ARMSecuritySpace in_space = ptw->in_space; 3196 bool ret, ipa_secure, s1_guarded; 3197 ARMCacheAttrs cacheattrs1; 3198 ARMSecuritySpace ipa_space; 3199 uint64_t hcr; 3200 3201 ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi); 3202 3203 /* If S1 fails, return early. */ 3204 if (ret) { 3205 return ret; 3206 } 3207 3208 ipa = result->f.phys_addr; 3209 ipa_secure = result->f.attrs.secure; 3210 ipa_space = result->f.attrs.space; 3211 3212 ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; 3213 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3214 ptw->in_space = ipa_space; 3215 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx); 3216 3217 /* 3218 * S1 is done, now do S2 translation. 3219 * Save the stage1 results so that we may merge prot and cacheattrs later. 3220 */ 3221 s1_prot = result->f.prot; 3222 s1_lgpgsz = result->f.lg_page_size; 3223 s1_guarded = result->f.extra.arm.guarded; 3224 cacheattrs1 = result->cacheattrs; 3225 memset(result, 0, sizeof(*result)); 3226 3227 ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi); 3228 fi->s2addr = ipa; 3229 3230 /* Combine the S1 and S2 perms. */ 3231 result->f.prot &= s1_prot; 3232 3233 /* If S2 fails, return early. */ 3234 if (ret) { 3235 return ret; 3236 } 3237 3238 /* 3239 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE, 3240 * this means "don't put this in the TLB"; in this case, return a 3241 * result with lg_page_size == 0 to achieve that. Otherwise, 3242 * use the maximum of the S1 & S2 page size, so that invalidation 3243 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though 3244 * we know the combined result permissions etc only cover the minimum 3245 * of the S1 and S2 page size, because we know that the common TLB code 3246 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE, 3247 * and passing a larger page size value only affects invalidations.) 3248 */ 3249 if (result->f.lg_page_size < TARGET_PAGE_BITS || 3250 s1_lgpgsz < TARGET_PAGE_BITS) { 3251 result->f.lg_page_size = 0; 3252 } else if (result->f.lg_page_size < s1_lgpgsz) { 3253 result->f.lg_page_size = s1_lgpgsz; 3254 } 3255 3256 /* Combine the S1 and S2 cache attributes. */ 3257 hcr = arm_hcr_el2_eff_secstate(env, in_space); 3258 if (hcr & HCR_DC) { 3259 /* 3260 * HCR.DC forces the first stage attributes to 3261 * Normal Non-Shareable, 3262 * Inner Write-Back Read-Allocate Write-Allocate, 3263 * Outer Write-Back Read-Allocate Write-Allocate. 3264 * Do not overwrite Tagged within attrs. 3265 */ 3266 if (cacheattrs1.attrs != 0xf0) { 3267 cacheattrs1.attrs = 0xff; 3268 } 3269 cacheattrs1.shareability = 0; 3270 } 3271 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, 3272 result->cacheattrs); 3273 3274 /* No BTI GP information in stage 2, we just use the S1 value */ 3275 result->f.extra.arm.guarded = s1_guarded; 3276 3277 /* 3278 * Check if IPA translates to secure or non-secure PA space. 3279 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. 3280 */ 3281 if (in_space == ARMSS_Secure) { 3282 result->f.attrs.secure = 3283 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) 3284 && (ipa_secure 3285 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))); 3286 result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure); 3287 } 3288 3289 return false; 3290 } 3291 3292 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 3293 target_ulong address, 3294 MMUAccessType access_type, 3295 GetPhysAddrResult *result, 3296 ARMMMUFaultInfo *fi) 3297 { 3298 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3299 ARMMMUIdx s1_mmu_idx; 3300 3301 /* 3302 * The page table entries may downgrade Secure to NonSecure, but 3303 * cannot upgrade a NonSecure translation regime's attributes 3304 * to Secure or Realm. 3305 */ 3306 result->f.attrs.space = ptw->in_space; 3307 result->f.attrs.secure = arm_space_is_secure(ptw->in_space); 3308 3309 switch (mmu_idx) { 3310 case ARMMMUIdx_Phys_S: 3311 case ARMMMUIdx_Phys_NS: 3312 case ARMMMUIdx_Phys_Root: 3313 case ARMMMUIdx_Phys_Realm: 3314 /* Checking Phys early avoids special casing later vs regime_el. */ 3315 return get_phys_addr_disabled(env, ptw, address, access_type, 3316 result, fi); 3317 3318 case ARMMMUIdx_Stage1_E0: 3319 case ARMMMUIdx_Stage1_E1: 3320 case ARMMMUIdx_Stage1_E1_PAN: 3321 /* 3322 * First stage lookup uses second stage for ptw; only 3323 * Secure has both S and NS IPA and starts with Stage2_S. 3324 */ 3325 ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ? 3326 ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3327 break; 3328 3329 case ARMMMUIdx_Stage2: 3330 case ARMMMUIdx_Stage2_S: 3331 /* 3332 * Second stage lookup uses physical for ptw; whether this is S or 3333 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for 3334 * the Secure EL2&0 regime. 3335 */ 3336 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx); 3337 break; 3338 3339 case ARMMMUIdx_E10_0: 3340 s1_mmu_idx = ARMMMUIdx_Stage1_E0; 3341 goto do_twostage; 3342 case ARMMMUIdx_E10_1: 3343 s1_mmu_idx = ARMMMUIdx_Stage1_E1; 3344 goto do_twostage; 3345 case ARMMMUIdx_E10_1_PAN: 3346 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3347 do_twostage: 3348 /* 3349 * Call ourselves recursively to do the stage 1 and then stage 2 3350 * translations if mmu_idx is a two-stage regime, and EL2 present. 3351 * Otherwise, a stage1+stage2 translation is just stage 1. 3352 */ 3353 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; 3354 if (arm_feature(env, ARM_FEATURE_EL2) && 3355 !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) { 3356 return get_phys_addr_twostage(env, ptw, address, access_type, 3357 result, fi); 3358 } 3359 /* fall through */ 3360 3361 default: 3362 /* Single stage uses physical for ptw. */ 3363 ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space); 3364 break; 3365 } 3366 3367 result->f.attrs.user = regime_is_user(env, mmu_idx); 3368 3369 /* 3370 * Fast Context Switch Extension. This doesn't exist at all in v8. 3371 * In v7 and earlier it affects all stage 1 translations. 3372 */ 3373 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 3374 && !arm_feature(env, ARM_FEATURE_V8)) { 3375 if (regime_el(env, mmu_idx) == 3) { 3376 address += env->cp15.fcseidr_s; 3377 } else { 3378 address += env->cp15.fcseidr_ns; 3379 } 3380 } 3381 3382 if (arm_feature(env, ARM_FEATURE_PMSA)) { 3383 bool ret; 3384 result->f.lg_page_size = TARGET_PAGE_BITS; 3385 3386 if (arm_feature(env, ARM_FEATURE_V8)) { 3387 /* PMSAv8 */ 3388 ret = get_phys_addr_pmsav8(env, ptw, address, access_type, 3389 result, fi); 3390 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3391 /* PMSAv7 */ 3392 ret = get_phys_addr_pmsav7(env, ptw, address, access_type, 3393 result, fi); 3394 } else { 3395 /* Pre-v7 MPU */ 3396 ret = get_phys_addr_pmsav5(env, ptw, address, access_type, 3397 result, fi); 3398 } 3399 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 3400 " mmu_idx %u -> %s (prot %c%c%c)\n", 3401 access_type == MMU_DATA_LOAD ? "reading" : 3402 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 3403 (uint32_t)address, mmu_idx, 3404 ret ? "Miss" : "Hit", 3405 result->f.prot & PAGE_READ ? 'r' : '-', 3406 result->f.prot & PAGE_WRITE ? 'w' : '-', 3407 result->f.prot & PAGE_EXEC ? 'x' : '-'); 3408 3409 return ret; 3410 } 3411 3412 /* Definitely a real MMU, not an MPU */ 3413 3414 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 3415 return get_phys_addr_disabled(env, ptw, address, access_type, 3416 result, fi); 3417 } 3418 3419 if (regime_using_lpae_format(env, mmu_idx)) { 3420 return get_phys_addr_lpae(env, ptw, address, access_type, result, fi); 3421 } else if (arm_feature(env, ARM_FEATURE_V7) || 3422 regime_sctlr(env, mmu_idx) & SCTLR_XP) { 3423 return get_phys_addr_v6(env, ptw, address, access_type, result, fi); 3424 } else { 3425 return get_phys_addr_v5(env, ptw, address, access_type, result, fi); 3426 } 3427 } 3428 3429 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 3430 target_ulong address, 3431 MMUAccessType access_type, 3432 GetPhysAddrResult *result, 3433 ARMMMUFaultInfo *fi) 3434 { 3435 if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) { 3436 return true; 3437 } 3438 if (!granule_protection_check(env, result->f.phys_addr, 3439 result->f.attrs.space, fi)) { 3440 fi->type = ARMFault_GPCFOnOutput; 3441 return true; 3442 } 3443 return false; 3444 } 3445 3446 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address, 3447 MMUAccessType access_type, 3448 ARMMMUIdx mmu_idx, ARMSecuritySpace space, 3449 GetPhysAddrResult *result, 3450 ARMMMUFaultInfo *fi) 3451 { 3452 S1Translate ptw = { 3453 .in_mmu_idx = mmu_idx, 3454 .in_space = space, 3455 }; 3456 return get_phys_addr_nogpc(env, &ptw, address, access_type, result, fi); 3457 } 3458 3459 bool get_phys_addr(CPUARMState *env, target_ulong address, 3460 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3461 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 3462 { 3463 S1Translate ptw = { 3464 .in_mmu_idx = mmu_idx, 3465 }; 3466 ARMSecuritySpace ss; 3467 3468 switch (mmu_idx) { 3469 case ARMMMUIdx_E10_0: 3470 case ARMMMUIdx_E10_1: 3471 case ARMMMUIdx_E10_1_PAN: 3472 case ARMMMUIdx_E20_0: 3473 case ARMMMUIdx_E20_2: 3474 case ARMMMUIdx_E20_2_PAN: 3475 case ARMMMUIdx_Stage1_E0: 3476 case ARMMMUIdx_Stage1_E1: 3477 case ARMMMUIdx_Stage1_E1_PAN: 3478 case ARMMMUIdx_E2: 3479 ss = arm_security_space_below_el3(env); 3480 break; 3481 case ARMMMUIdx_Stage2: 3482 /* 3483 * For Secure EL2, we need this index to be NonSecure; 3484 * otherwise this will already be NonSecure or Realm. 3485 */ 3486 ss = arm_security_space_below_el3(env); 3487 if (ss == ARMSS_Secure) { 3488 ss = ARMSS_NonSecure; 3489 } 3490 break; 3491 case ARMMMUIdx_Phys_NS: 3492 case ARMMMUIdx_MPrivNegPri: 3493 case ARMMMUIdx_MUserNegPri: 3494 case ARMMMUIdx_MPriv: 3495 case ARMMMUIdx_MUser: 3496 ss = ARMSS_NonSecure; 3497 break; 3498 case ARMMMUIdx_Stage2_S: 3499 case ARMMMUIdx_Phys_S: 3500 case ARMMMUIdx_MSPrivNegPri: 3501 case ARMMMUIdx_MSUserNegPri: 3502 case ARMMMUIdx_MSPriv: 3503 case ARMMMUIdx_MSUser: 3504 ss = ARMSS_Secure; 3505 break; 3506 case ARMMMUIdx_E3: 3507 if (arm_feature(env, ARM_FEATURE_AARCH64) && 3508 cpu_isar_feature(aa64_rme, env_archcpu(env))) { 3509 ss = ARMSS_Root; 3510 } else { 3511 ss = ARMSS_Secure; 3512 } 3513 break; 3514 case ARMMMUIdx_Phys_Root: 3515 ss = ARMSS_Root; 3516 break; 3517 case ARMMMUIdx_Phys_Realm: 3518 ss = ARMSS_Realm; 3519 break; 3520 default: 3521 g_assert_not_reached(); 3522 } 3523 3524 ptw.in_space = ss; 3525 return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi); 3526 } 3527 3528 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 3529 MemTxAttrs *attrs) 3530 { 3531 ARMCPU *cpu = ARM_CPU(cs); 3532 CPUARMState *env = &cpu->env; 3533 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 3534 ARMSecuritySpace ss = arm_security_space(env); 3535 S1Translate ptw = { 3536 .in_mmu_idx = mmu_idx, 3537 .in_space = ss, 3538 .in_debug = true, 3539 }; 3540 GetPhysAddrResult res = {}; 3541 ARMMMUFaultInfo fi = {}; 3542 bool ret; 3543 3544 ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi); 3545 *attrs = res.f.attrs; 3546 3547 if (ret) { 3548 return -1; 3549 } 3550 return res.f.phys_addr; 3551 } 3552