xref: /openbmc/qemu/target/arm/ptw.c (revision ed3a06b1)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "idau.h"
15 
16 
17 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
18                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
19                                bool s1_is_el0, hwaddr *phys_ptr,
20                                MemTxAttrs *txattrs, int *prot,
21                                target_ulong *page_size_ptr,
22                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
23     __attribute__((nonnull));
24 
25 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
26 static const uint8_t pamax_map[] = {
27     [0] = 32,
28     [1] = 36,
29     [2] = 40,
30     [3] = 42,
31     [4] = 44,
32     [5] = 48,
33     [6] = 52,
34 };
35 
36 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
37 unsigned int arm_pamax(ARMCPU *cpu)
38 {
39     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
40         unsigned int parange =
41             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
42 
43         /*
44          * id_aa64mmfr0 is a read-only register so values outside of the
45          * supported mappings can be considered an implementation error.
46          */
47         assert(parange < ARRAY_SIZE(pamax_map));
48         return pamax_map[parange];
49     }
50 
51     /*
52      * In machvirt_init, we call arm_pamax on a cpu that is not fully
53      * initialized, so we can't rely on the propagation done in realize.
54      */
55     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
56         arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
57         /* v7 with LPAE */
58         return 40;
59     }
60     /* Anything else */
61     return 32;
62 }
63 
64 /*
65  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
66  */
67 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
68 {
69     switch (mmu_idx) {
70     case ARMMMUIdx_SE10_0:
71         return ARMMMUIdx_Stage1_SE0;
72     case ARMMMUIdx_SE10_1:
73         return ARMMMUIdx_Stage1_SE1;
74     case ARMMMUIdx_SE10_1_PAN:
75         return ARMMMUIdx_Stage1_SE1_PAN;
76     case ARMMMUIdx_E10_0:
77         return ARMMMUIdx_Stage1_E0;
78     case ARMMMUIdx_E10_1:
79         return ARMMMUIdx_Stage1_E1;
80     case ARMMMUIdx_E10_1_PAN:
81         return ARMMMUIdx_Stage1_E1_PAN;
82     default:
83         return mmu_idx;
84     }
85 }
86 
87 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
88 {
89     return stage_1_mmu_idx(arm_mmu_idx(env));
90 }
91 
92 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
93 {
94     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
95 }
96 
97 static bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
98 {
99     switch (mmu_idx) {
100     case ARMMMUIdx_SE10_0:
101     case ARMMMUIdx_E20_0:
102     case ARMMMUIdx_SE20_0:
103     case ARMMMUIdx_Stage1_E0:
104     case ARMMMUIdx_Stage1_SE0:
105     case ARMMMUIdx_MUser:
106     case ARMMMUIdx_MSUser:
107     case ARMMMUIdx_MUserNegPri:
108     case ARMMMUIdx_MSUserNegPri:
109         return true;
110     default:
111         return false;
112     case ARMMMUIdx_E10_0:
113     case ARMMMUIdx_E10_1:
114     case ARMMMUIdx_E10_1_PAN:
115         g_assert_not_reached();
116     }
117 }
118 
119 /* Return the TTBR associated with this translation regime */
120 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
121 {
122     if (mmu_idx == ARMMMUIdx_Stage2) {
123         return env->cp15.vttbr_el2;
124     }
125     if (mmu_idx == ARMMMUIdx_Stage2_S) {
126         return env->cp15.vsttbr_el2;
127     }
128     if (ttbrn == 0) {
129         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
130     } else {
131         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
132     }
133 }
134 
135 /* Return true if the specified stage of address translation is disabled */
136 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx)
137 {
138     uint64_t hcr_el2;
139 
140     if (arm_feature(env, ARM_FEATURE_M)) {
141         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
142                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
143         case R_V7M_MPU_CTRL_ENABLE_MASK:
144             /* Enabled, but not for HardFault and NMI */
145             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
146         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
147             /* Enabled for all cases */
148             return false;
149         case 0:
150         default:
151             /*
152              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
153              * we warned about that in armv7m_nvic.c when the guest set it.
154              */
155             return true;
156         }
157     }
158 
159     hcr_el2 = arm_hcr_el2_eff(env);
160 
161     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
162         /* HCR.DC means HCR.VM behaves as 1 */
163         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
164     }
165 
166     if (hcr_el2 & HCR_TGE) {
167         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
168         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
169             return true;
170         }
171     }
172 
173     if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
174         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
175         return true;
176     }
177 
178     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
179 }
180 
181 static bool ptw_attrs_are_device(CPUARMState *env, ARMCacheAttrs cacheattrs)
182 {
183     /*
184      * For an S1 page table walk, the stage 1 attributes are always
185      * some form of "this is Normal memory". The combined S1+S2
186      * attributes are therefore only Device if stage 2 specifies Device.
187      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
188      * ie when cacheattrs.attrs bits [3:2] are 0b00.
189      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
190      * when cacheattrs.attrs bit [2] is 0.
191      */
192     assert(cacheattrs.is_s2_format);
193     if (arm_hcr_el2_eff(env) & HCR_FWB) {
194         return (cacheattrs.attrs & 0x4) == 0;
195     } else {
196         return (cacheattrs.attrs & 0xc) == 0;
197     }
198 }
199 
200 /* Translate a S1 pagetable walk through S2 if needed.  */
201 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
202                                hwaddr addr, bool *is_secure,
203                                ARMMMUFaultInfo *fi)
204 {
205     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
206         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
207         target_ulong s2size;
208         hwaddr s2pa;
209         int s2prot;
210         int ret;
211         ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
212                                           : ARMMMUIdx_Stage2;
213         ARMCacheAttrs cacheattrs = {};
214         MemTxAttrs txattrs = {};
215 
216         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
217                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
218                                  &cacheattrs);
219         if (ret) {
220             assert(fi->type != ARMFault_None);
221             fi->s2addr = addr;
222             fi->stage2 = true;
223             fi->s1ptw = true;
224             fi->s1ns = !*is_secure;
225             return ~0;
226         }
227         if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
228             ptw_attrs_are_device(env, cacheattrs)) {
229             /*
230              * PTW set and S1 walk touched S2 Device memory:
231              * generate Permission fault.
232              */
233             fi->type = ARMFault_Permission;
234             fi->s2addr = addr;
235             fi->stage2 = true;
236             fi->s1ptw = true;
237             fi->s1ns = !*is_secure;
238             return ~0;
239         }
240 
241         if (arm_is_secure_below_el3(env)) {
242             /* Check if page table walk is to secure or non-secure PA space. */
243             if (*is_secure) {
244                 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
245             } else {
246                 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
247             }
248         } else {
249             assert(!*is_secure);
250         }
251 
252         addr = s2pa;
253     }
254     return addr;
255 }
256 
257 /* All loads done in the course of a page table walk go through here. */
258 static uint32_t arm_ldl_ptw(CPUARMState *env, hwaddr addr, bool is_secure,
259                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
260 {
261     CPUState *cs = env_cpu(env);
262     MemTxAttrs attrs = {};
263     MemTxResult result = MEMTX_OK;
264     AddressSpace *as;
265     uint32_t data;
266 
267     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
268     attrs.secure = is_secure;
269     as = arm_addressspace(cs, attrs);
270     if (fi->s1ptw) {
271         return 0;
272     }
273     if (regime_translation_big_endian(env, mmu_idx)) {
274         data = address_space_ldl_be(as, addr, attrs, &result);
275     } else {
276         data = address_space_ldl_le(as, addr, attrs, &result);
277     }
278     if (result == MEMTX_OK) {
279         return data;
280     }
281     fi->type = ARMFault_SyncExternalOnWalk;
282     fi->ea = arm_extabort_type(result);
283     return 0;
284 }
285 
286 static uint64_t arm_ldq_ptw(CPUARMState *env, hwaddr addr, bool is_secure,
287                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
288 {
289     CPUState *cs = env_cpu(env);
290     MemTxAttrs attrs = {};
291     MemTxResult result = MEMTX_OK;
292     AddressSpace *as;
293     uint64_t data;
294 
295     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
296     attrs.secure = is_secure;
297     as = arm_addressspace(cs, attrs);
298     if (fi->s1ptw) {
299         return 0;
300     }
301     if (regime_translation_big_endian(env, mmu_idx)) {
302         data = address_space_ldq_be(as, addr, attrs, &result);
303     } else {
304         data = address_space_ldq_le(as, addr, attrs, &result);
305     }
306     if (result == MEMTX_OK) {
307         return data;
308     }
309     fi->type = ARMFault_SyncExternalOnWalk;
310     fi->ea = arm_extabort_type(result);
311     return 0;
312 }
313 
314 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
315                                      uint32_t *table, uint32_t address)
316 {
317     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
318     TCR *tcr = regime_tcr(env, mmu_idx);
319 
320     if (address & tcr->mask) {
321         if (tcr->raw_tcr & TTBCR_PD1) {
322             /* Translation table walk disabled for TTBR1 */
323             return false;
324         }
325         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
326     } else {
327         if (tcr->raw_tcr & TTBCR_PD0) {
328             /* Translation table walk disabled for TTBR0 */
329             return false;
330         }
331         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
332     }
333     *table |= (address >> 18) & 0x3ffc;
334     return true;
335 }
336 
337 /*
338  * Translate section/page access permissions to page R/W protection flags
339  * @env:         CPUARMState
340  * @mmu_idx:     MMU index indicating required translation regime
341  * @ap:          The 3-bit access permissions (AP[2:0])
342  * @domain_prot: The 2-bit domain access permissions
343  */
344 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
345                          int ap, int domain_prot)
346 {
347     bool is_user = regime_is_user(env, mmu_idx);
348 
349     if (domain_prot == 3) {
350         return PAGE_READ | PAGE_WRITE;
351     }
352 
353     switch (ap) {
354     case 0:
355         if (arm_feature(env, ARM_FEATURE_V7)) {
356             return 0;
357         }
358         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
359         case SCTLR_S:
360             return is_user ? 0 : PAGE_READ;
361         case SCTLR_R:
362             return PAGE_READ;
363         default:
364             return 0;
365         }
366     case 1:
367         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
368     case 2:
369         if (is_user) {
370             return PAGE_READ;
371         } else {
372             return PAGE_READ | PAGE_WRITE;
373         }
374     case 3:
375         return PAGE_READ | PAGE_WRITE;
376     case 4: /* Reserved.  */
377         return 0;
378     case 5:
379         return is_user ? 0 : PAGE_READ;
380     case 6:
381         return PAGE_READ;
382     case 7:
383         if (!arm_feature(env, ARM_FEATURE_V6K)) {
384             return 0;
385         }
386         return PAGE_READ;
387     default:
388         g_assert_not_reached();
389     }
390 }
391 
392 /*
393  * Translate section/page access permissions to page R/W protection flags.
394  * @ap:      The 2-bit simple AP (AP[2:1])
395  * @is_user: TRUE if accessing from PL0
396  */
397 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
398 {
399     switch (ap) {
400     case 0:
401         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
402     case 1:
403         return PAGE_READ | PAGE_WRITE;
404     case 2:
405         return is_user ? 0 : PAGE_READ;
406     case 3:
407         return PAGE_READ;
408     default:
409         g_assert_not_reached();
410     }
411 }
412 
413 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
414 {
415     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
416 }
417 
418 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
419                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
420                              hwaddr *phys_ptr, int *prot,
421                              target_ulong *page_size,
422                              ARMMMUFaultInfo *fi)
423 {
424     int level = 1;
425     uint32_t table;
426     uint32_t desc;
427     int type;
428     int ap;
429     int domain = 0;
430     int domain_prot;
431     hwaddr phys_addr;
432     uint32_t dacr;
433 
434     /* Pagetable walk.  */
435     /* Lookup l1 descriptor.  */
436     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
437         /* Section translation fault if page walk is disabled by PD0 or PD1 */
438         fi->type = ARMFault_Translation;
439         goto do_fault;
440     }
441     desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx),
442                        mmu_idx, fi);
443     if (fi->type != ARMFault_None) {
444         goto do_fault;
445     }
446     type = (desc & 3);
447     domain = (desc >> 5) & 0x0f;
448     if (regime_el(env, mmu_idx) == 1) {
449         dacr = env->cp15.dacr_ns;
450     } else {
451         dacr = env->cp15.dacr_s;
452     }
453     domain_prot = (dacr >> (domain * 2)) & 3;
454     if (type == 0) {
455         /* Section translation fault.  */
456         fi->type = ARMFault_Translation;
457         goto do_fault;
458     }
459     if (type != 2) {
460         level = 2;
461     }
462     if (domain_prot == 0 || domain_prot == 2) {
463         fi->type = ARMFault_Domain;
464         goto do_fault;
465     }
466     if (type == 2) {
467         /* 1Mb section.  */
468         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
469         ap = (desc >> 10) & 3;
470         *page_size = 1024 * 1024;
471     } else {
472         /* Lookup l2 entry.  */
473         if (type == 1) {
474             /* Coarse pagetable.  */
475             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
476         } else {
477             /* Fine pagetable.  */
478             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
479         }
480         desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx),
481                            mmu_idx, fi);
482         if (fi->type != ARMFault_None) {
483             goto do_fault;
484         }
485         switch (desc & 3) {
486         case 0: /* Page translation fault.  */
487             fi->type = ARMFault_Translation;
488             goto do_fault;
489         case 1: /* 64k page.  */
490             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
491             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
492             *page_size = 0x10000;
493             break;
494         case 2: /* 4k page.  */
495             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
496             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
497             *page_size = 0x1000;
498             break;
499         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
500             if (type == 1) {
501                 /* ARMv6/XScale extended small page format */
502                 if (arm_feature(env, ARM_FEATURE_XSCALE)
503                     || arm_feature(env, ARM_FEATURE_V6)) {
504                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
505                     *page_size = 0x1000;
506                 } else {
507                     /*
508                      * UNPREDICTABLE in ARMv5; we choose to take a
509                      * page translation fault.
510                      */
511                     fi->type = ARMFault_Translation;
512                     goto do_fault;
513                 }
514             } else {
515                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
516                 *page_size = 0x400;
517             }
518             ap = (desc >> 4) & 3;
519             break;
520         default:
521             /* Never happens, but compiler isn't smart enough to tell.  */
522             g_assert_not_reached();
523         }
524     }
525     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
526     *prot |= *prot ? PAGE_EXEC : 0;
527     if (!(*prot & (1 << access_type))) {
528         /* Access permission fault.  */
529         fi->type = ARMFault_Permission;
530         goto do_fault;
531     }
532     *phys_ptr = phys_addr;
533     return false;
534 do_fault:
535     fi->domain = domain;
536     fi->level = level;
537     return true;
538 }
539 
540 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
541                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
542                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
543                              target_ulong *page_size, ARMMMUFaultInfo *fi)
544 {
545     ARMCPU *cpu = env_archcpu(env);
546     int level = 1;
547     uint32_t table;
548     uint32_t desc;
549     uint32_t xn;
550     uint32_t pxn = 0;
551     int type;
552     int ap;
553     int domain = 0;
554     int domain_prot;
555     hwaddr phys_addr;
556     uint32_t dacr;
557     bool ns;
558 
559     /* Pagetable walk.  */
560     /* Lookup l1 descriptor.  */
561     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
562         /* Section translation fault if page walk is disabled by PD0 or PD1 */
563         fi->type = ARMFault_Translation;
564         goto do_fault;
565     }
566     desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx),
567                        mmu_idx, fi);
568     if (fi->type != ARMFault_None) {
569         goto do_fault;
570     }
571     type = (desc & 3);
572     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
573         /* Section translation fault, or attempt to use the encoding
574          * which is Reserved on implementations without PXN.
575          */
576         fi->type = ARMFault_Translation;
577         goto do_fault;
578     }
579     if ((type == 1) || !(desc & (1 << 18))) {
580         /* Page or Section.  */
581         domain = (desc >> 5) & 0x0f;
582     }
583     if (regime_el(env, mmu_idx) == 1) {
584         dacr = env->cp15.dacr_ns;
585     } else {
586         dacr = env->cp15.dacr_s;
587     }
588     if (type == 1) {
589         level = 2;
590     }
591     domain_prot = (dacr >> (domain * 2)) & 3;
592     if (domain_prot == 0 || domain_prot == 2) {
593         /* Section or Page domain fault */
594         fi->type = ARMFault_Domain;
595         goto do_fault;
596     }
597     if (type != 1) {
598         if (desc & (1 << 18)) {
599             /* Supersection.  */
600             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
601             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
602             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
603             *page_size = 0x1000000;
604         } else {
605             /* Section.  */
606             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
607             *page_size = 0x100000;
608         }
609         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
610         xn = desc & (1 << 4);
611         pxn = desc & 1;
612         ns = extract32(desc, 19, 1);
613     } else {
614         if (cpu_isar_feature(aa32_pxn, cpu)) {
615             pxn = (desc >> 2) & 1;
616         }
617         ns = extract32(desc, 3, 1);
618         /* Lookup l2 entry.  */
619         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
620         desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx),
621                            mmu_idx, fi);
622         if (fi->type != ARMFault_None) {
623             goto do_fault;
624         }
625         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
626         switch (desc & 3) {
627         case 0: /* Page translation fault.  */
628             fi->type = ARMFault_Translation;
629             goto do_fault;
630         case 1: /* 64k page.  */
631             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
632             xn = desc & (1 << 15);
633             *page_size = 0x10000;
634             break;
635         case 2: case 3: /* 4k page.  */
636             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
637             xn = desc & 1;
638             *page_size = 0x1000;
639             break;
640         default:
641             /* Never happens, but compiler isn't smart enough to tell.  */
642             g_assert_not_reached();
643         }
644     }
645     if (domain_prot == 3) {
646         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
647     } else {
648         if (pxn && !regime_is_user(env, mmu_idx)) {
649             xn = 1;
650         }
651         if (xn && access_type == MMU_INST_FETCH) {
652             fi->type = ARMFault_Permission;
653             goto do_fault;
654         }
655 
656         if (arm_feature(env, ARM_FEATURE_V6K) &&
657                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
658             /* The simplified model uses AP[0] as an access control bit.  */
659             if ((ap & 1) == 0) {
660                 /* Access flag fault.  */
661                 fi->type = ARMFault_AccessFlag;
662                 goto do_fault;
663             }
664             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
665         } else {
666             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
667         }
668         if (*prot && !xn) {
669             *prot |= PAGE_EXEC;
670         }
671         if (!(*prot & (1 << access_type))) {
672             /* Access permission fault.  */
673             fi->type = ARMFault_Permission;
674             goto do_fault;
675         }
676     }
677     if (ns) {
678         /* The NS bit will (as required by the architecture) have no effect if
679          * the CPU doesn't support TZ or this is a non-secure translation
680          * regime, because the attribute will already be non-secure.
681          */
682         attrs->secure = false;
683     }
684     *phys_ptr = phys_addr;
685     return false;
686 do_fault:
687     fi->domain = domain;
688     fi->level = level;
689     return true;
690 }
691 
692 /*
693  * Translate S2 section/page access permissions to protection flags
694  * @env:     CPUARMState
695  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
696  * @xn:      XN (execute-never) bits
697  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
698  */
699 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
700 {
701     int prot = 0;
702 
703     if (s2ap & 1) {
704         prot |= PAGE_READ;
705     }
706     if (s2ap & 2) {
707         prot |= PAGE_WRITE;
708     }
709 
710     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
711         switch (xn) {
712         case 0:
713             prot |= PAGE_EXEC;
714             break;
715         case 1:
716             if (s1_is_el0) {
717                 prot |= PAGE_EXEC;
718             }
719             break;
720         case 2:
721             break;
722         case 3:
723             if (!s1_is_el0) {
724                 prot |= PAGE_EXEC;
725             }
726             break;
727         default:
728             g_assert_not_reached();
729         }
730     } else {
731         if (!extract32(xn, 1, 1)) {
732             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
733                 prot |= PAGE_EXEC;
734             }
735         }
736     }
737     return prot;
738 }
739 
740 /*
741  * Translate section/page access permissions to protection flags
742  * @env:     CPUARMState
743  * @mmu_idx: MMU index indicating required translation regime
744  * @is_aa64: TRUE if AArch64
745  * @ap:      The 2-bit simple AP (AP[2:1])
746  * @ns:      NS (non-secure) bit
747  * @xn:      XN (execute-never) bit
748  * @pxn:     PXN (privileged execute-never) bit
749  */
750 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
751                       int ap, int ns, int xn, int pxn)
752 {
753     bool is_user = regime_is_user(env, mmu_idx);
754     int prot_rw, user_rw;
755     bool have_wxn;
756     int wxn = 0;
757 
758     assert(mmu_idx != ARMMMUIdx_Stage2);
759     assert(mmu_idx != ARMMMUIdx_Stage2_S);
760 
761     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
762     if (is_user) {
763         prot_rw = user_rw;
764     } else {
765         if (user_rw && regime_is_pan(env, mmu_idx)) {
766             /* PAN forbids data accesses but doesn't affect insn fetch */
767             prot_rw = 0;
768         } else {
769             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
770         }
771     }
772 
773     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
774         return prot_rw;
775     }
776 
777     /* TODO have_wxn should be replaced with
778      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
779      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
780      * compatible processors have EL2, which is required for [U]WXN.
781      */
782     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
783 
784     if (have_wxn) {
785         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
786     }
787 
788     if (is_aa64) {
789         if (regime_has_2_ranges(mmu_idx) && !is_user) {
790             xn = pxn || (user_rw & PAGE_WRITE);
791         }
792     } else if (arm_feature(env, ARM_FEATURE_V7)) {
793         switch (regime_el(env, mmu_idx)) {
794         case 1:
795         case 3:
796             if (is_user) {
797                 xn = xn || !(user_rw & PAGE_READ);
798             } else {
799                 int uwxn = 0;
800                 if (have_wxn) {
801                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
802                 }
803                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
804                      (uwxn && (user_rw & PAGE_WRITE));
805             }
806             break;
807         case 2:
808             break;
809         }
810     } else {
811         xn = wxn = 0;
812     }
813 
814     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
815         return prot_rw;
816     }
817     return prot_rw | PAGE_EXEC;
818 }
819 
820 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
821                                           ARMMMUIdx mmu_idx)
822 {
823     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
824     uint32_t el = regime_el(env, mmu_idx);
825     int select, tsz;
826     bool epd, hpd;
827 
828     assert(mmu_idx != ARMMMUIdx_Stage2_S);
829 
830     if (mmu_idx == ARMMMUIdx_Stage2) {
831         /* VTCR */
832         bool sext = extract32(tcr, 4, 1);
833         bool sign = extract32(tcr, 3, 1);
834 
835         /*
836          * If the sign-extend bit is not the same as t0sz[3], the result
837          * is unpredictable. Flag this as a guest error.
838          */
839         if (sign != sext) {
840             qemu_log_mask(LOG_GUEST_ERROR,
841                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
842         }
843         tsz = sextract32(tcr, 0, 4) + 8;
844         select = 0;
845         hpd = false;
846         epd = false;
847     } else if (el == 2) {
848         /* HTCR */
849         tsz = extract32(tcr, 0, 3);
850         select = 0;
851         hpd = extract64(tcr, 24, 1);
852         epd = false;
853     } else {
854         int t0sz = extract32(tcr, 0, 3);
855         int t1sz = extract32(tcr, 16, 3);
856 
857         if (t1sz == 0) {
858             select = va > (0xffffffffu >> t0sz);
859         } else {
860             /* Note that we will detect errors later.  */
861             select = va >= ~(0xffffffffu >> t1sz);
862         }
863         if (!select) {
864             tsz = t0sz;
865             epd = extract32(tcr, 7, 1);
866             hpd = extract64(tcr, 41, 1);
867         } else {
868             tsz = t1sz;
869             epd = extract32(tcr, 23, 1);
870             hpd = extract64(tcr, 42, 1);
871         }
872         /* For aarch32, hpd0 is not enabled without t2e as well.  */
873         hpd &= extract32(tcr, 6, 1);
874     }
875 
876     return (ARMVAParameters) {
877         .tsz = tsz,
878         .select = select,
879         .epd = epd,
880         .hpd = hpd,
881     };
882 }
883 
884 /*
885  * check_s2_mmu_setup
886  * @cpu:        ARMCPU
887  * @is_aa64:    True if the translation regime is in AArch64 state
888  * @startlevel: Suggested starting level
889  * @inputsize:  Bitsize of IPAs
890  * @stride:     Page-table stride (See the ARM ARM)
891  *
892  * Returns true if the suggested S2 translation parameters are OK and
893  * false otherwise.
894  */
895 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
896                                int inputsize, int stride, int outputsize)
897 {
898     const int grainsize = stride + 3;
899     int startsizecheck;
900 
901     /*
902      * Negative levels are usually not allowed...
903      * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
904      * begins with level -1.  Note that previous feature tests will have
905      * eliminated this combination if it is not enabled.
906      */
907     if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
908         return false;
909     }
910 
911     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
912     if (startsizecheck < 1 || startsizecheck > stride + 4) {
913         return false;
914     }
915 
916     if (is_aa64) {
917         switch (stride) {
918         case 13: /* 64KB Pages.  */
919             if (level == 0 || (level == 1 && outputsize <= 42)) {
920                 return false;
921             }
922             break;
923         case 11: /* 16KB Pages.  */
924             if (level == 0 || (level == 1 && outputsize <= 40)) {
925                 return false;
926             }
927             break;
928         case 9: /* 4KB Pages.  */
929             if (level == 0 && outputsize <= 42) {
930                 return false;
931             }
932             break;
933         default:
934             g_assert_not_reached();
935         }
936 
937         /* Inputsize checks.  */
938         if (inputsize > outputsize &&
939             (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
940             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
941             return false;
942         }
943     } else {
944         /* AArch32 only supports 4KB pages. Assert on that.  */
945         assert(stride == 9);
946 
947         if (level == 0) {
948             return false;
949         }
950     }
951     return true;
952 }
953 
954 /**
955  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
956  *
957  * Returns false if the translation was successful. Otherwise, phys_ptr,
958  * attrs, prot and page_size may not be filled in, and the populated fsr
959  * value provides information on why the translation aborted, in the format
960  * of a long-format DFSR/IFSR fault register, with the following caveat:
961  * the WnR bit is never set (the caller must do this).
962  *
963  * @env: CPUARMState
964  * @address: virtual address to get physical address for
965  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
966  * @mmu_idx: MMU index indicating required translation regime
967  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page
968  *             table walk), must be true if this is stage 2 of a stage 1+2
969  *             walk for an EL0 access. If @mmu_idx is anything else,
970  *             @s1_is_el0 is ignored.
971  * @phys_ptr: set to the physical address corresponding to the virtual address
972  * @attrs: set to the memory transaction attributes to use
973  * @prot: set to the permissions for the page containing phys_ptr
974  * @page_size_ptr: set to the size of the page containing phys_ptr
975  * @fi: set to fault info if the translation fails
976  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
977  */
978 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
979                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
980                                bool s1_is_el0, hwaddr *phys_ptr,
981                                MemTxAttrs *txattrs, int *prot,
982                                target_ulong *page_size_ptr,
983                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
984 {
985     ARMCPU *cpu = env_archcpu(env);
986     /* Read an LPAE long-descriptor translation table. */
987     ARMFaultType fault_type = ARMFault_Translation;
988     uint32_t level;
989     ARMVAParameters param;
990     uint64_t ttbr;
991     hwaddr descaddr, indexmask, indexmask_grainsize;
992     uint32_t tableattrs;
993     target_ulong page_size;
994     uint32_t attrs;
995     int32_t stride;
996     int addrsize, inputsize, outputsize;
997     TCR *tcr = regime_tcr(env, mmu_idx);
998     int ap, ns, xn, pxn;
999     uint32_t el = regime_el(env, mmu_idx);
1000     uint64_t descaddrmask;
1001     bool aarch64 = arm_el_is_aa64(env, el);
1002     bool guarded = false;
1003 
1004     /* TODO: This code does not support shareability levels. */
1005     if (aarch64) {
1006         int ps;
1007 
1008         param = aa64_va_parameters(env, address, mmu_idx,
1009                                    access_type != MMU_INST_FETCH);
1010         level = 0;
1011 
1012         /*
1013          * If TxSZ is programmed to a value larger than the maximum,
1014          * or smaller than the effective minimum, it is IMPLEMENTATION
1015          * DEFINED whether we behave as if the field were programmed
1016          * within bounds, or if a level 0 Translation fault is generated.
1017          *
1018          * With FEAT_LVA, fault on less than minimum becomes required,
1019          * so our choice is to always raise the fault.
1020          */
1021         if (param.tsz_oob) {
1022             fault_type = ARMFault_Translation;
1023             goto do_fault;
1024         }
1025 
1026         addrsize = 64 - 8 * param.tbi;
1027         inputsize = 64 - param.tsz;
1028 
1029         /*
1030          * Bound PS by PARANGE to find the effective output address size.
1031          * ID_AA64MMFR0 is a read-only register so values outside of the
1032          * supported mappings can be considered an implementation error.
1033          */
1034         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1035         ps = MIN(ps, param.ps);
1036         assert(ps < ARRAY_SIZE(pamax_map));
1037         outputsize = pamax_map[ps];
1038     } else {
1039         param = aa32_va_parameters(env, address, mmu_idx);
1040         level = 1;
1041         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1042         inputsize = addrsize - param.tsz;
1043         outputsize = 40;
1044     }
1045 
1046     /*
1047      * We determined the region when collecting the parameters, but we
1048      * have not yet validated that the address is valid for the region.
1049      * Extract the top bits and verify that they all match select.
1050      *
1051      * For aa32, if inputsize == addrsize, then we have selected the
1052      * region by exclusion in aa32_va_parameters and there is no more
1053      * validation to do here.
1054      */
1055     if (inputsize < addrsize) {
1056         target_ulong top_bits = sextract64(address, inputsize,
1057                                            addrsize - inputsize);
1058         if (-top_bits != param.select) {
1059             /* The gap between the two regions is a Translation fault */
1060             fault_type = ARMFault_Translation;
1061             goto do_fault;
1062         }
1063     }
1064 
1065     if (param.using64k) {
1066         stride = 13;
1067     } else if (param.using16k) {
1068         stride = 11;
1069     } else {
1070         stride = 9;
1071     }
1072 
1073     /*
1074      * Note that QEMU ignores shareability and cacheability attributes,
1075      * so we don't need to do anything with the SH, ORGN, IRGN fields
1076      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1077      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1078      * implement any ASID-like capability so we can ignore it (instead
1079      * we will always flush the TLB any time the ASID is changed).
1080      */
1081     ttbr = regime_ttbr(env, mmu_idx, param.select);
1082 
1083     /*
1084      * Here we should have set up all the parameters for the translation:
1085      * inputsize, ttbr, epd, stride, tbi
1086      */
1087 
1088     if (param.epd) {
1089         /*
1090          * Translation table walk disabled => Translation fault on TLB miss
1091          * Note: This is always 0 on 64-bit EL2 and EL3.
1092          */
1093         goto do_fault;
1094     }
1095 
1096     if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
1097         /*
1098          * The starting level depends on the virtual address size (which can
1099          * be up to 48 bits) and the translation granule size. It indicates
1100          * the number of strides (stride bits at a time) needed to
1101          * consume the bits of the input address. In the pseudocode this is:
1102          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1103          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1104          * our 'stride + 3' and 'stride' is our 'stride'.
1105          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1106          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1107          * = 4 - (inputsize - 4) / stride;
1108          */
1109         level = 4 - (inputsize - 4) / stride;
1110     } else {
1111         /*
1112          * For stage 2 translations the starting level is specified by the
1113          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
1114          */
1115         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
1116         uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1);
1117         uint32_t startlevel;
1118         bool ok;
1119 
1120         /* SL2 is RES0 unless DS=1 & 4kb granule. */
1121         if (param.ds && stride == 9 && sl2) {
1122             if (sl0 != 0) {
1123                 level = 0;
1124                 fault_type = ARMFault_Translation;
1125                 goto do_fault;
1126             }
1127             startlevel = -1;
1128         } else if (!aarch64 || stride == 9) {
1129             /* AArch32 or 4KB pages */
1130             startlevel = 2 - sl0;
1131 
1132             if (cpu_isar_feature(aa64_st, cpu)) {
1133                 startlevel &= 3;
1134             }
1135         } else {
1136             /* 16KB or 64KB pages */
1137             startlevel = 3 - sl0;
1138         }
1139 
1140         /* Check that the starting level is valid. */
1141         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1142                                 inputsize, stride, outputsize);
1143         if (!ok) {
1144             fault_type = ARMFault_Translation;
1145             goto do_fault;
1146         }
1147         level = startlevel;
1148     }
1149 
1150     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1151     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1152 
1153     /* Now we can extract the actual base address from the TTBR */
1154     descaddr = extract64(ttbr, 0, 48);
1155 
1156     /*
1157      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1158      *
1159      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1160      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1161      * but we've just cleared the bits above 47, so simplify the test.
1162      */
1163     if (outputsize > 48) {
1164         descaddr |= extract64(ttbr, 2, 4) << 48;
1165     } else if (descaddr >> outputsize) {
1166         level = 0;
1167         fault_type = ARMFault_AddressSize;
1168         goto do_fault;
1169     }
1170 
1171     /*
1172      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1173      * and also to mask out CnP (bit 0) which could validly be non-zero.
1174      */
1175     descaddr &= ~indexmask;
1176 
1177     /*
1178      * For AArch32, the address field in the descriptor goes up to bit 39
1179      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1180      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1181      * bits as part of the address, which will be checked via outputsize.
1182      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1183      * the highest bits of a 52-bit output are placed elsewhere.
1184      */
1185     if (param.ds) {
1186         descaddrmask = MAKE_64BIT_MASK(0, 50);
1187     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1188         descaddrmask = MAKE_64BIT_MASK(0, 48);
1189     } else {
1190         descaddrmask = MAKE_64BIT_MASK(0, 40);
1191     }
1192     descaddrmask &= ~indexmask_grainsize;
1193 
1194     /*
1195      * Secure accesses start with the page table in secure memory and
1196      * can be downgraded to non-secure at any step. Non-secure accesses
1197      * remain non-secure. We implement this by just ORing in the NSTable/NS
1198      * bits at each step.
1199      */
1200     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
1201     for (;;) {
1202         uint64_t descriptor;
1203         bool nstable;
1204 
1205         descaddr |= (address >> (stride * (4 - level))) & indexmask;
1206         descaddr &= ~7ULL;
1207         nstable = extract32(tableattrs, 4, 1);
1208         descriptor = arm_ldq_ptw(env, descaddr, !nstable, mmu_idx, fi);
1209         if (fi->type != ARMFault_None) {
1210             goto do_fault;
1211         }
1212 
1213         if (!(descriptor & 1) ||
1214             (!(descriptor & 2) && (level == 3))) {
1215             /* Invalid, or the Reserved level 3 encoding */
1216             goto do_fault;
1217         }
1218 
1219         descaddr = descriptor & descaddrmask;
1220 
1221         /*
1222          * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1223          * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1224          * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1225          * raise AddressSizeFault.
1226          */
1227         if (outputsize > 48) {
1228             if (param.ds) {
1229                 descaddr |= extract64(descriptor, 8, 2) << 50;
1230             } else {
1231                 descaddr |= extract64(descriptor, 12, 4) << 48;
1232             }
1233         } else if (descaddr >> outputsize) {
1234             fault_type = ARMFault_AddressSize;
1235             goto do_fault;
1236         }
1237 
1238         if ((descriptor & 2) && (level < 3)) {
1239             /*
1240              * Table entry. The top five bits are attributes which may
1241              * propagate down through lower levels of the table (and
1242              * which are all arranged so that 0 means "no effect", so
1243              * we can gather them up by ORing in the bits at each level).
1244              */
1245             tableattrs |= extract64(descriptor, 59, 5);
1246             level++;
1247             indexmask = indexmask_grainsize;
1248             continue;
1249         }
1250         /*
1251          * Block entry at level 1 or 2, or page entry at level 3.
1252          * These are basically the same thing, although the number
1253          * of bits we pull in from the vaddr varies. Note that although
1254          * descaddrmask masks enough of the low bits of the descriptor
1255          * to give a correct page or table address, the address field
1256          * in a block descriptor is smaller; so we need to explicitly
1257          * clear the lower bits here before ORing in the low vaddr bits.
1258          */
1259         page_size = (1ULL << ((stride * (4 - level)) + 3));
1260         descaddr &= ~(page_size - 1);
1261         descaddr |= (address & (page_size - 1));
1262         /* Extract attributes from the descriptor */
1263         attrs = extract64(descriptor, 2, 10)
1264             | (extract64(descriptor, 52, 12) << 10);
1265 
1266         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1267             /* Stage 2 table descriptors do not include any attribute fields */
1268             break;
1269         }
1270         /* Merge in attributes from table descriptors */
1271         attrs |= nstable << 3; /* NS */
1272         guarded = extract64(descriptor, 50, 1);  /* GP */
1273         if (param.hpd) {
1274             /* HPD disables all the table attributes except NSTable.  */
1275             break;
1276         }
1277         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
1278         /*
1279          * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1280          * means "force PL1 access only", which means forcing AP[1] to 0.
1281          */
1282         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
1283         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
1284         break;
1285     }
1286     /*
1287      * Here descaddr is the final physical address, and attributes
1288      * are all in attrs.
1289      */
1290     fault_type = ARMFault_AccessFlag;
1291     if ((attrs & (1 << 8)) == 0) {
1292         /* Access flag */
1293         goto do_fault;
1294     }
1295 
1296     ap = extract32(attrs, 4, 2);
1297 
1298     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1299         ns = mmu_idx == ARMMMUIdx_Stage2;
1300         xn = extract32(attrs, 11, 2);
1301         *prot = get_S2prot(env, ap, xn, s1_is_el0);
1302     } else {
1303         ns = extract32(attrs, 3, 1);
1304         xn = extract32(attrs, 12, 1);
1305         pxn = extract32(attrs, 11, 1);
1306         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1307     }
1308 
1309     fault_type = ARMFault_Permission;
1310     if (!(*prot & (1 << access_type))) {
1311         goto do_fault;
1312     }
1313 
1314     if (ns) {
1315         /*
1316          * The NS bit will (as required by the architecture) have no effect if
1317          * the CPU doesn't support TZ or this is a non-secure translation
1318          * regime, because the attribute will already be non-secure.
1319          */
1320         txattrs->secure = false;
1321     }
1322     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
1323     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
1324         arm_tlb_bti_gp(txattrs) = true;
1325     }
1326 
1327     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1328         cacheattrs->is_s2_format = true;
1329         cacheattrs->attrs = extract32(attrs, 0, 4);
1330     } else {
1331         /* Index into MAIR registers for cache attributes */
1332         uint8_t attrindx = extract32(attrs, 0, 3);
1333         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1334         assert(attrindx <= 7);
1335         cacheattrs->is_s2_format = false;
1336         cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
1337     }
1338 
1339     /*
1340      * For FEAT_LPA2 and effective DS, the SH field in the attributes
1341      * was re-purposed for output address bits.  The SH attribute in
1342      * that case comes from TCR_ELx, which we extracted earlier.
1343      */
1344     if (param.ds) {
1345         cacheattrs->shareability = param.sh;
1346     } else {
1347         cacheattrs->shareability = extract32(attrs, 6, 2);
1348     }
1349 
1350     *phys_ptr = descaddr;
1351     *page_size_ptr = page_size;
1352     return false;
1353 
1354 do_fault:
1355     fi->type = fault_type;
1356     fi->level = level;
1357     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
1358     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
1359                                mmu_idx == ARMMMUIdx_Stage2_S);
1360     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1361     return true;
1362 }
1363 
1364 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1365                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
1366                                  hwaddr *phys_ptr, int *prot,
1367                                  ARMMMUFaultInfo *fi)
1368 {
1369     int n;
1370     uint32_t mask;
1371     uint32_t base;
1372     bool is_user = regime_is_user(env, mmu_idx);
1373 
1374     if (regime_translation_disabled(env, mmu_idx)) {
1375         /* MPU disabled.  */
1376         *phys_ptr = address;
1377         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1378         return false;
1379     }
1380 
1381     *phys_ptr = address;
1382     for (n = 7; n >= 0; n--) {
1383         base = env->cp15.c6_region[n];
1384         if ((base & 1) == 0) {
1385             continue;
1386         }
1387         mask = 1 << ((base >> 1) & 0x1f);
1388         /* Keep this shift separate from the above to avoid an
1389            (undefined) << 32.  */
1390         mask = (mask << 1) - 1;
1391         if (((base ^ address) & ~mask) == 0) {
1392             break;
1393         }
1394     }
1395     if (n < 0) {
1396         fi->type = ARMFault_Background;
1397         return true;
1398     }
1399 
1400     if (access_type == MMU_INST_FETCH) {
1401         mask = env->cp15.pmsav5_insn_ap;
1402     } else {
1403         mask = env->cp15.pmsav5_data_ap;
1404     }
1405     mask = (mask >> (n * 4)) & 0xf;
1406     switch (mask) {
1407     case 0:
1408         fi->type = ARMFault_Permission;
1409         fi->level = 1;
1410         return true;
1411     case 1:
1412         if (is_user) {
1413             fi->type = ARMFault_Permission;
1414             fi->level = 1;
1415             return true;
1416         }
1417         *prot = PAGE_READ | PAGE_WRITE;
1418         break;
1419     case 2:
1420         *prot = PAGE_READ;
1421         if (!is_user) {
1422             *prot |= PAGE_WRITE;
1423         }
1424         break;
1425     case 3:
1426         *prot = PAGE_READ | PAGE_WRITE;
1427         break;
1428     case 5:
1429         if (is_user) {
1430             fi->type = ARMFault_Permission;
1431             fi->level = 1;
1432             return true;
1433         }
1434         *prot = PAGE_READ;
1435         break;
1436     case 6:
1437         *prot = PAGE_READ;
1438         break;
1439     default:
1440         /* Bad permission.  */
1441         fi->type = ARMFault_Permission;
1442         fi->level = 1;
1443         return true;
1444     }
1445     *prot |= PAGE_EXEC;
1446     return false;
1447 }
1448 
1449 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1450                                          int32_t address, int *prot)
1451 {
1452     if (!arm_feature(env, ARM_FEATURE_M)) {
1453         *prot = PAGE_READ | PAGE_WRITE;
1454         switch (address) {
1455         case 0xF0000000 ... 0xFFFFFFFF:
1456             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1457                 /* hivecs execing is ok */
1458                 *prot |= PAGE_EXEC;
1459             }
1460             break;
1461         case 0x00000000 ... 0x7FFFFFFF:
1462             *prot |= PAGE_EXEC;
1463             break;
1464         }
1465     } else {
1466         /* Default system address map for M profile cores.
1467          * The architecture specifies which regions are execute-never;
1468          * at the MPU level no other checks are defined.
1469          */
1470         switch (address) {
1471         case 0x00000000 ... 0x1fffffff: /* ROM */
1472         case 0x20000000 ... 0x3fffffff: /* SRAM */
1473         case 0x60000000 ... 0x7fffffff: /* RAM */
1474         case 0x80000000 ... 0x9fffffff: /* RAM */
1475             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1476             break;
1477         case 0x40000000 ... 0x5fffffff: /* Peripheral */
1478         case 0xa0000000 ... 0xbfffffff: /* Device */
1479         case 0xc0000000 ... 0xdfffffff: /* Device */
1480         case 0xe0000000 ... 0xffffffff: /* System */
1481             *prot = PAGE_READ | PAGE_WRITE;
1482             break;
1483         default:
1484             g_assert_not_reached();
1485         }
1486     }
1487 }
1488 
1489 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1490 {
1491     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1492     return arm_feature(env, ARM_FEATURE_M) &&
1493         extract32(address, 20, 12) == 0xe00;
1494 }
1495 
1496 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1497 {
1498     /*
1499      * True if address is in the M profile system region
1500      * 0xe0000000 - 0xffffffff
1501      */
1502     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1503 }
1504 
1505 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1506                                          bool is_user)
1507 {
1508     /*
1509      * Return true if we should use the default memory map as a
1510      * "background" region if there are no hits against any MPU regions.
1511      */
1512     CPUARMState *env = &cpu->env;
1513 
1514     if (is_user) {
1515         return false;
1516     }
1517 
1518     if (arm_feature(env, ARM_FEATURE_M)) {
1519         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
1520             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1521     } else {
1522         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1523     }
1524 }
1525 
1526 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1527                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
1528                                  hwaddr *phys_ptr, int *prot,
1529                                  target_ulong *page_size,
1530                                  ARMMMUFaultInfo *fi)
1531 {
1532     ARMCPU *cpu = env_archcpu(env);
1533     int n;
1534     bool is_user = regime_is_user(env, mmu_idx);
1535 
1536     *phys_ptr = address;
1537     *page_size = TARGET_PAGE_SIZE;
1538     *prot = 0;
1539 
1540     if (regime_translation_disabled(env, mmu_idx) ||
1541         m_is_ppb_region(env, address)) {
1542         /*
1543          * MPU disabled or M profile PPB access: use default memory map.
1544          * The other case which uses the default memory map in the
1545          * v7M ARM ARM pseudocode is exception vector reads from the vector
1546          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1547          * which always does a direct read using address_space_ldl(), rather
1548          * than going via this function, so we don't need to check that here.
1549          */
1550         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
1551     } else { /* MPU enabled */
1552         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1553             /* region search */
1554             uint32_t base = env->pmsav7.drbar[n];
1555             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1556             uint32_t rmask;
1557             bool srdis = false;
1558 
1559             if (!(env->pmsav7.drsr[n] & 0x1)) {
1560                 continue;
1561             }
1562 
1563             if (!rsize) {
1564                 qemu_log_mask(LOG_GUEST_ERROR,
1565                               "DRSR[%d]: Rsize field cannot be 0\n", n);
1566                 continue;
1567             }
1568             rsize++;
1569             rmask = (1ull << rsize) - 1;
1570 
1571             if (base & rmask) {
1572                 qemu_log_mask(LOG_GUEST_ERROR,
1573                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1574                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
1575                               n, base, rmask);
1576                 continue;
1577             }
1578 
1579             if (address < base || address > base + rmask) {
1580                 /*
1581                  * Address not in this region. We must check whether the
1582                  * region covers addresses in the same page as our address.
1583                  * In that case we must not report a size that covers the
1584                  * whole page for a subsequent hit against a different MPU
1585                  * region or the background region, because it would result in
1586                  * incorrect TLB hits for subsequent accesses to addresses that
1587                  * are in this MPU region.
1588                  */
1589                 if (ranges_overlap(base, rmask,
1590                                    address & TARGET_PAGE_MASK,
1591                                    TARGET_PAGE_SIZE)) {
1592                     *page_size = 1;
1593                 }
1594                 continue;
1595             }
1596 
1597             /* Region matched */
1598 
1599             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1600                 int i, snd;
1601                 uint32_t srdis_mask;
1602 
1603                 rsize -= 3; /* sub region size (power of 2) */
1604                 snd = ((address - base) >> rsize) & 0x7;
1605                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1606 
1607                 srdis_mask = srdis ? 0x3 : 0x0;
1608                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1609                     /*
1610                      * This will check in groups of 2, 4 and then 8, whether
1611                      * the subregion bits are consistent. rsize is incremented
1612                      * back up to give the region size, considering consistent
1613                      * adjacent subregions as one region. Stop testing if rsize
1614                      * is already big enough for an entire QEMU page.
1615                      */
1616                     int snd_rounded = snd & ~(i - 1);
1617                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1618                                                      snd_rounded + 8, i);
1619                     if (srdis_mask ^ srdis_multi) {
1620                         break;
1621                     }
1622                     srdis_mask = (srdis_mask << i) | srdis_mask;
1623                     rsize++;
1624                 }
1625             }
1626             if (srdis) {
1627                 continue;
1628             }
1629             if (rsize < TARGET_PAGE_BITS) {
1630                 *page_size = 1 << rsize;
1631             }
1632             break;
1633         }
1634 
1635         if (n == -1) { /* no hits */
1636             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
1637                 /* background fault */
1638                 fi->type = ARMFault_Background;
1639                 return true;
1640             }
1641             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
1642         } else { /* a MPU hit! */
1643             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1644             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1645 
1646             if (m_is_system_region(env, address)) {
1647                 /* System space is always execute never */
1648                 xn = 1;
1649             }
1650 
1651             if (is_user) { /* User mode AP bit decoding */
1652                 switch (ap) {
1653                 case 0:
1654                 case 1:
1655                 case 5:
1656                     break; /* no access */
1657                 case 3:
1658                     *prot |= PAGE_WRITE;
1659                     /* fall through */
1660                 case 2:
1661                 case 6:
1662                     *prot |= PAGE_READ | PAGE_EXEC;
1663                     break;
1664                 case 7:
1665                     /* for v7M, same as 6; for R profile a reserved value */
1666                     if (arm_feature(env, ARM_FEATURE_M)) {
1667                         *prot |= PAGE_READ | PAGE_EXEC;
1668                         break;
1669                     }
1670                     /* fall through */
1671                 default:
1672                     qemu_log_mask(LOG_GUEST_ERROR,
1673                                   "DRACR[%d]: Bad value for AP bits: 0x%"
1674                                   PRIx32 "\n", n, ap);
1675                 }
1676             } else { /* Priv. mode AP bits decoding */
1677                 switch (ap) {
1678                 case 0:
1679                     break; /* no access */
1680                 case 1:
1681                 case 2:
1682                 case 3:
1683                     *prot |= PAGE_WRITE;
1684                     /* fall through */
1685                 case 5:
1686                 case 6:
1687                     *prot |= PAGE_READ | PAGE_EXEC;
1688                     break;
1689                 case 7:
1690                     /* for v7M, same as 6; for R profile a reserved value */
1691                     if (arm_feature(env, ARM_FEATURE_M)) {
1692                         *prot |= PAGE_READ | PAGE_EXEC;
1693                         break;
1694                     }
1695                     /* fall through */
1696                 default:
1697                     qemu_log_mask(LOG_GUEST_ERROR,
1698                                   "DRACR[%d]: Bad value for AP bits: 0x%"
1699                                   PRIx32 "\n", n, ap);
1700                 }
1701             }
1702 
1703             /* execute never */
1704             if (xn) {
1705                 *prot &= ~PAGE_EXEC;
1706             }
1707         }
1708     }
1709 
1710     fi->type = ARMFault_Permission;
1711     fi->level = 1;
1712     return !(*prot & (1 << access_type));
1713 }
1714 
1715 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1716                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1717                        hwaddr *phys_ptr, MemTxAttrs *txattrs,
1718                        int *prot, bool *is_subpage,
1719                        ARMMMUFaultInfo *fi, uint32_t *mregion)
1720 {
1721     /*
1722      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
1723      * that a full phys-to-virt translation does).
1724      * mregion is (if not NULL) set to the region number which matched,
1725      * or -1 if no region number is returned (MPU off, address did not
1726      * hit a region, address hit in multiple regions).
1727      * We set is_subpage to true if the region hit doesn't cover the
1728      * entire TARGET_PAGE the address is within.
1729      */
1730     ARMCPU *cpu = env_archcpu(env);
1731     bool is_user = regime_is_user(env, mmu_idx);
1732     uint32_t secure = regime_is_secure(env, mmu_idx);
1733     int n;
1734     int matchregion = -1;
1735     bool hit = false;
1736     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
1737     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
1738 
1739     *is_subpage = false;
1740     *phys_ptr = address;
1741     *prot = 0;
1742     if (mregion) {
1743         *mregion = -1;
1744     }
1745 
1746     /*
1747      * Unlike the ARM ARM pseudocode, we don't need to check whether this
1748      * was an exception vector read from the vector table (which is always
1749      * done using the default system address map), because those accesses
1750      * are done in arm_v7m_load_vector(), which always does a direct
1751      * read using address_space_ldl(), rather than going via this function.
1752      */
1753     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
1754         hit = true;
1755     } else if (m_is_ppb_region(env, address)) {
1756         hit = true;
1757     } else {
1758         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
1759             hit = true;
1760         }
1761 
1762         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1763             /* region search */
1764             /*
1765              * Note that the base address is bits [31:5] from the register
1766              * with bits [4:0] all zeroes, but the limit address is bits
1767              * [31:5] from the register with bits [4:0] all ones.
1768              */
1769             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
1770             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
1771 
1772             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
1773                 /* Region disabled */
1774                 continue;
1775             }
1776 
1777             if (address < base || address > limit) {
1778                 /*
1779                  * Address not in this region. We must check whether the
1780                  * region covers addresses in the same page as our address.
1781                  * In that case we must not report a size that covers the
1782                  * whole page for a subsequent hit against a different MPU
1783                  * region or the background region, because it would result in
1784                  * incorrect TLB hits for subsequent accesses to addresses that
1785                  * are in this MPU region.
1786                  */
1787                 if (limit >= base &&
1788                     ranges_overlap(base, limit - base + 1,
1789                                    addr_page_base,
1790                                    TARGET_PAGE_SIZE)) {
1791                     *is_subpage = true;
1792                 }
1793                 continue;
1794             }
1795 
1796             if (base > addr_page_base || limit < addr_page_limit) {
1797                 *is_subpage = true;
1798             }
1799 
1800             if (matchregion != -1) {
1801                 /*
1802                  * Multiple regions match -- always a failure (unlike
1803                  * PMSAv7 where highest-numbered-region wins)
1804                  */
1805                 fi->type = ARMFault_Permission;
1806                 fi->level = 1;
1807                 return true;
1808             }
1809 
1810             matchregion = n;
1811             hit = true;
1812         }
1813     }
1814 
1815     if (!hit) {
1816         /* background fault */
1817         fi->type = ARMFault_Background;
1818         return true;
1819     }
1820 
1821     if (matchregion == -1) {
1822         /* hit using the background region */
1823         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
1824     } else {
1825         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
1826         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
1827         bool pxn = false;
1828 
1829         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
1830             pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
1831         }
1832 
1833         if (m_is_system_region(env, address)) {
1834             /* System space is always execute never */
1835             xn = 1;
1836         }
1837 
1838         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
1839         if (*prot && !xn && !(pxn && !is_user)) {
1840             *prot |= PAGE_EXEC;
1841         }
1842         /*
1843          * We don't need to look the attribute up in the MAIR0/MAIR1
1844          * registers because that only tells us about cacheability.
1845          */
1846         if (mregion) {
1847             *mregion = matchregion;
1848         }
1849     }
1850 
1851     fi->type = ARMFault_Permission;
1852     fi->level = 1;
1853     return !(*prot & (1 << access_type));
1854 }
1855 
1856 static bool v8m_is_sau_exempt(CPUARMState *env,
1857                               uint32_t address, MMUAccessType access_type)
1858 {
1859     /*
1860      * The architecture specifies that certain address ranges are
1861      * exempt from v8M SAU/IDAU checks.
1862      */
1863     return
1864         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
1865         (address >= 0xe0000000 && address <= 0xe0002fff) ||
1866         (address >= 0xe000e000 && address <= 0xe000efff) ||
1867         (address >= 0xe002e000 && address <= 0xe002efff) ||
1868         (address >= 0xe0040000 && address <= 0xe0041fff) ||
1869         (address >= 0xe00ff000 && address <= 0xe00fffff);
1870 }
1871 
1872 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1873                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1874                                 V8M_SAttributes *sattrs)
1875 {
1876     /*
1877      * Look up the security attributes for this address. Compare the
1878      * pseudocode SecurityCheck() function.
1879      * We assume the caller has zero-initialized *sattrs.
1880      */
1881     ARMCPU *cpu = env_archcpu(env);
1882     int r;
1883     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
1884     int idau_region = IREGION_NOTVALID;
1885     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
1886     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
1887 
1888     if (cpu->idau) {
1889         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
1890         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
1891 
1892         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
1893                    &idau_nsc);
1894     }
1895 
1896     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
1897         /* 0xf0000000..0xffffffff is always S for insn fetches */
1898         return;
1899     }
1900 
1901     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
1902         sattrs->ns = !regime_is_secure(env, mmu_idx);
1903         return;
1904     }
1905 
1906     if (idau_region != IREGION_NOTVALID) {
1907         sattrs->irvalid = true;
1908         sattrs->iregion = idau_region;
1909     }
1910 
1911     switch (env->sau.ctrl & 3) {
1912     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
1913         break;
1914     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
1915         sattrs->ns = true;
1916         break;
1917     default: /* SAU.ENABLE == 1 */
1918         for (r = 0; r < cpu->sau_sregion; r++) {
1919             if (env->sau.rlar[r] & 1) {
1920                 uint32_t base = env->sau.rbar[r] & ~0x1f;
1921                 uint32_t limit = env->sau.rlar[r] | 0x1f;
1922 
1923                 if (base <= address && limit >= address) {
1924                     if (base > addr_page_base || limit < addr_page_limit) {
1925                         sattrs->subpage = true;
1926                     }
1927                     if (sattrs->srvalid) {
1928                         /*
1929                          * If we hit in more than one region then we must report
1930                          * as Secure, not NS-Callable, with no valid region
1931                          * number info.
1932                          */
1933                         sattrs->ns = false;
1934                         sattrs->nsc = false;
1935                         sattrs->sregion = 0;
1936                         sattrs->srvalid = false;
1937                         break;
1938                     } else {
1939                         if (env->sau.rlar[r] & 2) {
1940                             sattrs->nsc = true;
1941                         } else {
1942                             sattrs->ns = true;
1943                         }
1944                         sattrs->srvalid = true;
1945                         sattrs->sregion = r;
1946                     }
1947                 } else {
1948                     /*
1949                      * Address not in this region. We must check whether the
1950                      * region covers addresses in the same page as our address.
1951                      * In that case we must not report a size that covers the
1952                      * whole page for a subsequent hit against a different MPU
1953                      * region or the background region, because it would result
1954                      * in incorrect TLB hits for subsequent accesses to
1955                      * addresses that are in this MPU region.
1956                      */
1957                     if (limit >= base &&
1958                         ranges_overlap(base, limit - base + 1,
1959                                        addr_page_base,
1960                                        TARGET_PAGE_SIZE)) {
1961                         sattrs->subpage = true;
1962                     }
1963                 }
1964             }
1965         }
1966         break;
1967     }
1968 
1969     /*
1970      * The IDAU will override the SAU lookup results if it specifies
1971      * higher security than the SAU does.
1972      */
1973     if (!idau_ns) {
1974         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
1975             sattrs->ns = false;
1976             sattrs->nsc = idau_nsc;
1977         }
1978     }
1979 }
1980 
1981 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
1982                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
1983                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
1984                                  int *prot, target_ulong *page_size,
1985                                  ARMMMUFaultInfo *fi)
1986 {
1987     uint32_t secure = regime_is_secure(env, mmu_idx);
1988     V8M_SAttributes sattrs = {};
1989     bool ret;
1990     bool mpu_is_subpage;
1991 
1992     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1993         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
1994         if (access_type == MMU_INST_FETCH) {
1995             /*
1996              * Instruction fetches always use the MMU bank and the
1997              * transaction attribute determined by the fetch address,
1998              * regardless of CPU state. This is painful for QEMU
1999              * to handle, because it would mean we need to encode
2000              * into the mmu_idx not just the (user, negpri) information
2001              * for the current security state but also that for the
2002              * other security state, which would balloon the number
2003              * of mmu_idx values needed alarmingly.
2004              * Fortunately we can avoid this because it's not actually
2005              * possible to arbitrarily execute code from memory with
2006              * the wrong security attribute: it will always generate
2007              * an exception of some kind or another, apart from the
2008              * special case of an NS CPU executing an SG instruction
2009              * in S&NSC memory. So we always just fail the translation
2010              * here and sort things out in the exception handler
2011              * (including possibly emulating an SG instruction).
2012              */
2013             if (sattrs.ns != !secure) {
2014                 if (sattrs.nsc) {
2015                     fi->type = ARMFault_QEMU_NSCExec;
2016                 } else {
2017                     fi->type = ARMFault_QEMU_SFault;
2018                 }
2019                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
2020                 *phys_ptr = address;
2021                 *prot = 0;
2022                 return true;
2023             }
2024         } else {
2025             /*
2026              * For data accesses we always use the MMU bank indicated
2027              * by the current CPU state, but the security attributes
2028              * might downgrade a secure access to nonsecure.
2029              */
2030             if (sattrs.ns) {
2031                 txattrs->secure = false;
2032             } else if (!secure) {
2033                 /*
2034                  * NS access to S memory must fault.
2035                  * Architecturally we should first check whether the
2036                  * MPU information for this address indicates that we
2037                  * are doing an unaligned access to Device memory, which
2038                  * should generate a UsageFault instead. QEMU does not
2039                  * currently check for that kind of unaligned access though.
2040                  * If we added it we would need to do so as a special case
2041                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2042                  */
2043                 fi->type = ARMFault_QEMU_SFault;
2044                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
2045                 *phys_ptr = address;
2046                 *prot = 0;
2047                 return true;
2048             }
2049         }
2050     }
2051 
2052     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
2053                             txattrs, prot, &mpu_is_subpage, fi, NULL);
2054     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
2055     return ret;
2056 }
2057 
2058 /*
2059  * Translate from the 4-bit stage 2 representation of
2060  * memory attributes (without cache-allocation hints) to
2061  * the 8-bit representation of the stage 1 MAIR registers
2062  * (which includes allocation hints).
2063  *
2064  * ref: shared/translation/attrs/S2AttrDecode()
2065  *      .../S2ConvertAttrsHints()
2066  */
2067 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
2068 {
2069     uint8_t hiattr = extract32(s2attrs, 2, 2);
2070     uint8_t loattr = extract32(s2attrs, 0, 2);
2071     uint8_t hihint = 0, lohint = 0;
2072 
2073     if (hiattr != 0) { /* normal memory */
2074         if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
2075             hiattr = loattr = 1; /* non-cacheable */
2076         } else {
2077             if (hiattr != 1) { /* Write-through or write-back */
2078                 hihint = 3; /* RW allocate */
2079             }
2080             if (loattr != 1) { /* Write-through or write-back */
2081                 lohint = 3; /* RW allocate */
2082             }
2083         }
2084     }
2085 
2086     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2087 }
2088 
2089 /*
2090  * Combine either inner or outer cacheability attributes for normal
2091  * memory, according to table D4-42 and pseudocode procedure
2092  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2093  *
2094  * NB: only stage 1 includes allocation hints (RW bits), leading to
2095  * some asymmetry.
2096  */
2097 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2098 {
2099     if (s1 == 4 || s2 == 4) {
2100         /* non-cacheable has precedence */
2101         return 4;
2102     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2103         /* stage 1 write-through takes precedence */
2104         return s1;
2105     } else if (extract32(s2, 2, 2) == 2) {
2106         /* stage 2 write-through takes precedence, but the allocation hint
2107          * is still taken from stage 1
2108          */
2109         return (2 << 2) | extract32(s1, 0, 2);
2110     } else { /* write-back */
2111         return s1;
2112     }
2113 }
2114 
2115 /*
2116  * Combine the memory type and cacheability attributes of
2117  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2118  * combined attributes in MAIR_EL1 format.
2119  */
2120 static uint8_t combined_attrs_nofwb(CPUARMState *env,
2121                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
2122 {
2123     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2124 
2125     s2_mair_attrs = convert_stage2_attrs(env, s2.attrs);
2126 
2127     s1lo = extract32(s1.attrs, 0, 4);
2128     s2lo = extract32(s2_mair_attrs, 0, 4);
2129     s1hi = extract32(s1.attrs, 4, 4);
2130     s2hi = extract32(s2_mair_attrs, 4, 4);
2131 
2132     /* Combine memory type and cacheability attributes */
2133     if (s1hi == 0 || s2hi == 0) {
2134         /* Device has precedence over normal */
2135         if (s1lo == 0 || s2lo == 0) {
2136             /* nGnRnE has precedence over anything */
2137             ret_attrs = 0;
2138         } else if (s1lo == 4 || s2lo == 4) {
2139             /* non-Reordering has precedence over Reordering */
2140             ret_attrs = 4;  /* nGnRE */
2141         } else if (s1lo == 8 || s2lo == 8) {
2142             /* non-Gathering has precedence over Gathering */
2143             ret_attrs = 8;  /* nGRE */
2144         } else {
2145             ret_attrs = 0xc; /* GRE */
2146         }
2147     } else { /* Normal memory */
2148         /* Outer/inner cacheability combine independently */
2149         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2150                   | combine_cacheattr_nibble(s1lo, s2lo);
2151     }
2152     return ret_attrs;
2153 }
2154 
2155 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2156 {
2157     /*
2158      * Given the 4 bits specifying the outer or inner cacheability
2159      * in MAIR format, return a value specifying Normal Write-Back,
2160      * with the allocation and transient hints taken from the input
2161      * if the input specified some kind of cacheable attribute.
2162      */
2163     if (attr == 0 || attr == 4) {
2164         /*
2165          * 0 == an UNPREDICTABLE encoding
2166          * 4 == Non-cacheable
2167          * Either way, force Write-Back RW allocate non-transient
2168          */
2169         return 0xf;
2170     }
2171     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2172     return attr | 4;
2173 }
2174 
2175 /*
2176  * Combine the memory type and cacheability attributes of
2177  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2178  * combined attributes in MAIR_EL1 format.
2179  */
2180 static uint8_t combined_attrs_fwb(CPUARMState *env,
2181                                   ARMCacheAttrs s1, ARMCacheAttrs s2)
2182 {
2183     switch (s2.attrs) {
2184     case 7:
2185         /* Use stage 1 attributes */
2186         return s1.attrs;
2187     case 6:
2188         /*
2189          * Force Normal Write-Back. Note that if S1 is Normal cacheable
2190          * then we take the allocation hints from it; otherwise it is
2191          * RW allocate, non-transient.
2192          */
2193         if ((s1.attrs & 0xf0) == 0) {
2194             /* S1 is Device */
2195             return 0xff;
2196         }
2197         /* Need to check the Inner and Outer nibbles separately */
2198         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2199             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2200     case 5:
2201         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2202         if ((s1.attrs & 0xf0) == 0) {
2203             return s1.attrs;
2204         }
2205         return 0x44;
2206     case 0 ... 3:
2207         /* Force Device, of subtype specified by S2 */
2208         return s2.attrs << 2;
2209     default:
2210         /*
2211          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2212          * arbitrarily force Device.
2213          */
2214         return 0;
2215     }
2216 }
2217 
2218 /*
2219  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2220  * and CombineS1S2Desc()
2221  *
2222  * @env:     CPUARMState
2223  * @s1:      Attributes from stage 1 walk
2224  * @s2:      Attributes from stage 2 walk
2225  */
2226 static ARMCacheAttrs combine_cacheattrs(CPUARMState *env,
2227                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
2228 {
2229     ARMCacheAttrs ret;
2230     bool tagged = false;
2231 
2232     assert(s2.is_s2_format && !s1.is_s2_format);
2233     ret.is_s2_format = false;
2234 
2235     if (s1.attrs == 0xf0) {
2236         tagged = true;
2237         s1.attrs = 0xff;
2238     }
2239 
2240     /* Combine shareability attributes (table D4-43) */
2241     if (s1.shareability == 2 || s2.shareability == 2) {
2242         /* if either are outer-shareable, the result is outer-shareable */
2243         ret.shareability = 2;
2244     } else if (s1.shareability == 3 || s2.shareability == 3) {
2245         /* if either are inner-shareable, the result is inner-shareable */
2246         ret.shareability = 3;
2247     } else {
2248         /* both non-shareable */
2249         ret.shareability = 0;
2250     }
2251 
2252     /* Combine memory type and cacheability attributes */
2253     if (arm_hcr_el2_eff(env) & HCR_FWB) {
2254         ret.attrs = combined_attrs_fwb(env, s1, s2);
2255     } else {
2256         ret.attrs = combined_attrs_nofwb(env, s1, s2);
2257     }
2258 
2259     /*
2260      * Any location for which the resultant memory type is any
2261      * type of Device memory is always treated as Outer Shareable.
2262      * Any location for which the resultant memory type is Normal
2263      * Inner Non-cacheable, Outer Non-cacheable is always treated
2264      * as Outer Shareable.
2265      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2266      */
2267     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2268         ret.shareability = 2;
2269     }
2270 
2271     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2272     if (tagged && ret.attrs == 0xff) {
2273         ret.attrs = 0xf0;
2274     }
2275 
2276     return ret;
2277 }
2278 
2279 /**
2280  * get_phys_addr - get the physical address for this virtual address
2281  *
2282  * Find the physical address corresponding to the given virtual address,
2283  * by doing a translation table walk on MMU based systems or using the
2284  * MPU state on MPU based systems.
2285  *
2286  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
2287  * prot and page_size may not be filled in, and the populated fsr value provides
2288  * information on why the translation aborted, in the format of a
2289  * DFSR/IFSR fault register, with the following caveats:
2290  *  * we honour the short vs long DFSR format differences.
2291  *  * the WnR bit is never set (the caller must do this).
2292  *  * for PSMAv5 based systems we don't bother to return a full FSR format
2293  *    value.
2294  *
2295  * @env: CPUARMState
2296  * @address: virtual address to get physical address for
2297  * @access_type: 0 for read, 1 for write, 2 for execute
2298  * @mmu_idx: MMU index indicating required translation regime
2299  * @phys_ptr: set to the physical address corresponding to the virtual address
2300  * @attrs: set to the memory transaction attributes to use
2301  * @prot: set to the permissions for the page containing phys_ptr
2302  * @page_size: set to the size of the page containing phys_ptr
2303  * @fi: set to fault info if the translation fails
2304  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
2305  */
2306 bool get_phys_addr(CPUARMState *env, target_ulong address,
2307                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
2308                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
2309                    target_ulong *page_size,
2310                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
2311 {
2312     ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
2313 
2314     if (mmu_idx != s1_mmu_idx) {
2315         /*
2316          * Call ourselves recursively to do the stage 1 and then stage 2
2317          * translations if mmu_idx is a two-stage regime.
2318          */
2319         if (arm_feature(env, ARM_FEATURE_EL2)) {
2320             hwaddr ipa;
2321             int s2_prot;
2322             int ret;
2323             bool ipa_secure;
2324             ARMCacheAttrs cacheattrs2 = {};
2325             ARMMMUIdx s2_mmu_idx;
2326             bool is_el0;
2327 
2328             ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
2329                                 attrs, prot, page_size, fi, cacheattrs);
2330 
2331             /* If S1 fails or S2 is disabled, return early.  */
2332             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
2333                 *phys_ptr = ipa;
2334                 return ret;
2335             }
2336 
2337             ipa_secure = attrs->secure;
2338             if (arm_is_secure_below_el3(env)) {
2339                 if (ipa_secure) {
2340                     attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
2341                 } else {
2342                     attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
2343                 }
2344             } else {
2345                 assert(!ipa_secure);
2346             }
2347 
2348             s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2349             is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
2350 
2351             /* S1 is done. Now do S2 translation.  */
2352             ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
2353                                      phys_ptr, attrs, &s2_prot,
2354                                      page_size, fi, &cacheattrs2);
2355             fi->s2addr = ipa;
2356             /* Combine the S1 and S2 perms.  */
2357             *prot &= s2_prot;
2358 
2359             /* If S2 fails, return early.  */
2360             if (ret) {
2361                 return ret;
2362             }
2363 
2364             /* Combine the S1 and S2 cache attributes. */
2365             if (arm_hcr_el2_eff(env) & HCR_DC) {
2366                 /*
2367                  * HCR.DC forces the first stage attributes to
2368                  *  Normal Non-Shareable,
2369                  *  Inner Write-Back Read-Allocate Write-Allocate,
2370                  *  Outer Write-Back Read-Allocate Write-Allocate.
2371                  * Do not overwrite Tagged within attrs.
2372                  */
2373                 if (cacheattrs->attrs != 0xf0) {
2374                     cacheattrs->attrs = 0xff;
2375                 }
2376                 cacheattrs->shareability = 0;
2377             }
2378             *cacheattrs = combine_cacheattrs(env, *cacheattrs, cacheattrs2);
2379 
2380             /* Check if IPA translates to secure or non-secure PA space. */
2381             if (arm_is_secure_below_el3(env)) {
2382                 if (ipa_secure) {
2383                     attrs->secure =
2384                         !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
2385                 } else {
2386                     attrs->secure =
2387                         !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
2388                         || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)));
2389                 }
2390             }
2391             return 0;
2392         } else {
2393             /*
2394              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
2395              */
2396             mmu_idx = stage_1_mmu_idx(mmu_idx);
2397         }
2398     }
2399 
2400     /*
2401      * The page table entries may downgrade secure to non-secure, but
2402      * cannot upgrade an non-secure translation regime's attributes
2403      * to secure.
2404      */
2405     attrs->secure = regime_is_secure(env, mmu_idx);
2406     attrs->user = regime_is_user(env, mmu_idx);
2407 
2408     /*
2409      * Fast Context Switch Extension. This doesn't exist at all in v8.
2410      * In v7 and earlier it affects all stage 1 translations.
2411      */
2412     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2413         && !arm_feature(env, ARM_FEATURE_V8)) {
2414         if (regime_el(env, mmu_idx) == 3) {
2415             address += env->cp15.fcseidr_s;
2416         } else {
2417             address += env->cp15.fcseidr_ns;
2418         }
2419     }
2420 
2421     if (arm_feature(env, ARM_FEATURE_PMSA)) {
2422         bool ret;
2423         *page_size = TARGET_PAGE_SIZE;
2424 
2425         if (arm_feature(env, ARM_FEATURE_V8)) {
2426             /* PMSAv8 */
2427             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2428                                        phys_ptr, attrs, prot, page_size, fi);
2429         } else if (arm_feature(env, ARM_FEATURE_V7)) {
2430             /* PMSAv7 */
2431             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2432                                        phys_ptr, prot, page_size, fi);
2433         } else {
2434             /* Pre-v7 MPU */
2435             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2436                                        phys_ptr, prot, fi);
2437         }
2438         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2439                       " mmu_idx %u -> %s (prot %c%c%c)\n",
2440                       access_type == MMU_DATA_LOAD ? "reading" :
2441                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2442                       (uint32_t)address, mmu_idx,
2443                       ret ? "Miss" : "Hit",
2444                       *prot & PAGE_READ ? 'r' : '-',
2445                       *prot & PAGE_WRITE ? 'w' : '-',
2446                       *prot & PAGE_EXEC ? 'x' : '-');
2447 
2448         return ret;
2449     }
2450 
2451     /* Definitely a real MMU, not an MPU */
2452 
2453     if (regime_translation_disabled(env, mmu_idx)) {
2454         uint64_t hcr;
2455         uint8_t memattr;
2456 
2457         /*
2458          * MMU disabled.  S1 addresses within aa64 translation regimes are
2459          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
2460          */
2461         if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
2462             int r_el = regime_el(env, mmu_idx);
2463             if (arm_el_is_aa64(env, r_el)) {
2464                 int pamax = arm_pamax(env_archcpu(env));
2465                 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
2466                 int addrtop, tbi;
2467 
2468                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2469                 if (access_type == MMU_INST_FETCH) {
2470                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2471                 }
2472                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
2473                 addrtop = (tbi ? 55 : 63);
2474 
2475                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2476                     fi->type = ARMFault_AddressSize;
2477                     fi->level = 0;
2478                     fi->stage2 = false;
2479                     return 1;
2480                 }
2481 
2482                 /*
2483                  * When TBI is disabled, we've just validated that all of the
2484                  * bits above PAMax are zero, so logically we only need to
2485                  * clear the top byte for TBI.  But it's clearer to follow
2486                  * the pseudocode set of addrdesc.paddress.
2487                  */
2488                 address = extract64(address, 0, 52);
2489             }
2490         }
2491         *phys_ptr = address;
2492         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2493         *page_size = TARGET_PAGE_SIZE;
2494 
2495         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2496         hcr = arm_hcr_el2_eff(env);
2497         cacheattrs->shareability = 0;
2498         cacheattrs->is_s2_format = false;
2499         if (hcr & HCR_DC) {
2500             if (hcr & HCR_DCT) {
2501                 memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
2502             } else {
2503                 memattr = 0xff;  /* Normal, WB, RWA */
2504             }
2505         } else if (access_type == MMU_INST_FETCH) {
2506             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2507                 memattr = 0xee;  /* Normal, WT, RA, NT */
2508             } else {
2509                 memattr = 0x44;  /* Normal, NC, No */
2510             }
2511             cacheattrs->shareability = 2; /* outer sharable */
2512         } else {
2513             memattr = 0x00;      /* Device, nGnRnE */
2514         }
2515         cacheattrs->attrs = memattr;
2516         return 0;
2517     }
2518 
2519     if (regime_using_lpae_format(env, mmu_idx)) {
2520         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
2521                                   phys_ptr, attrs, prot, page_size,
2522                                   fi, cacheattrs);
2523     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2524         return get_phys_addr_v6(env, address, access_type, mmu_idx,
2525                                 phys_ptr, attrs, prot, page_size, fi);
2526     } else {
2527         return get_phys_addr_v5(env, address, access_type, mmu_idx,
2528                                     phys_ptr, prot, page_size, fi);
2529     }
2530 }
2531 
2532 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
2533                                          MemTxAttrs *attrs)
2534 {
2535     ARMCPU *cpu = ARM_CPU(cs);
2536     CPUARMState *env = &cpu->env;
2537     hwaddr phys_addr;
2538     target_ulong page_size;
2539     int prot;
2540     bool ret;
2541     ARMMMUFaultInfo fi = {};
2542     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
2543     ARMCacheAttrs cacheattrs = {};
2544 
2545     *attrs = (MemTxAttrs) {};
2546 
2547     ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
2548                         attrs, &prot, &page_size, &fi, &cacheattrs);
2549 
2550     if (ret) {
2551         return -1;
2552     }
2553     return phys_addr;
2554 }
2555