1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "idau.h" 15 16 17 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 18 MMUAccessType access_type, ARMMMUIdx mmu_idx, 19 bool s1_is_el0, hwaddr *phys_ptr, 20 MemTxAttrs *txattrs, int *prot, 21 target_ulong *page_size_ptr, 22 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 23 __attribute__((nonnull)); 24 25 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 26 static const uint8_t pamax_map[] = { 27 [0] = 32, 28 [1] = 36, 29 [2] = 40, 30 [3] = 42, 31 [4] = 44, 32 [5] = 48, 33 [6] = 52, 34 }; 35 36 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 37 unsigned int arm_pamax(ARMCPU *cpu) 38 { 39 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 40 unsigned int parange = 41 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 42 43 /* 44 * id_aa64mmfr0 is a read-only register so values outside of the 45 * supported mappings can be considered an implementation error. 46 */ 47 assert(parange < ARRAY_SIZE(pamax_map)); 48 return pamax_map[parange]; 49 } 50 51 /* 52 * In machvirt_init, we call arm_pamax on a cpu that is not fully 53 * initialized, so we can't rely on the propagation done in realize. 54 */ 55 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) || 56 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) { 57 /* v7 with LPAE */ 58 return 40; 59 } 60 /* Anything else */ 61 return 32; 62 } 63 64 /* 65 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 66 */ 67 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 68 { 69 switch (mmu_idx) { 70 case ARMMMUIdx_SE10_0: 71 return ARMMMUIdx_Stage1_SE0; 72 case ARMMMUIdx_SE10_1: 73 return ARMMMUIdx_Stage1_SE1; 74 case ARMMMUIdx_SE10_1_PAN: 75 return ARMMMUIdx_Stage1_SE1_PAN; 76 case ARMMMUIdx_E10_0: 77 return ARMMMUIdx_Stage1_E0; 78 case ARMMMUIdx_E10_1: 79 return ARMMMUIdx_Stage1_E1; 80 case ARMMMUIdx_E10_1_PAN: 81 return ARMMMUIdx_Stage1_E1_PAN; 82 default: 83 return mmu_idx; 84 } 85 } 86 87 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 88 { 89 return stage_1_mmu_idx(arm_mmu_idx(env)); 90 } 91 92 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 93 { 94 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 95 } 96 97 static bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 98 { 99 switch (mmu_idx) { 100 case ARMMMUIdx_SE10_0: 101 case ARMMMUIdx_E20_0: 102 case ARMMMUIdx_SE20_0: 103 case ARMMMUIdx_Stage1_E0: 104 case ARMMMUIdx_Stage1_SE0: 105 case ARMMMUIdx_MUser: 106 case ARMMMUIdx_MSUser: 107 case ARMMMUIdx_MUserNegPri: 108 case ARMMMUIdx_MSUserNegPri: 109 return true; 110 default: 111 return false; 112 case ARMMMUIdx_E10_0: 113 case ARMMMUIdx_E10_1: 114 case ARMMMUIdx_E10_1_PAN: 115 g_assert_not_reached(); 116 } 117 } 118 119 /* Return the TTBR associated with this translation regime */ 120 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 121 { 122 if (mmu_idx == ARMMMUIdx_Stage2) { 123 return env->cp15.vttbr_el2; 124 } 125 if (mmu_idx == ARMMMUIdx_Stage2_S) { 126 return env->cp15.vsttbr_el2; 127 } 128 if (ttbrn == 0) { 129 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 130 } else { 131 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 132 } 133 } 134 135 /* Return true if the specified stage of address translation is disabled */ 136 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx) 137 { 138 uint64_t hcr_el2; 139 140 if (arm_feature(env, ARM_FEATURE_M)) { 141 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 142 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 143 case R_V7M_MPU_CTRL_ENABLE_MASK: 144 /* Enabled, but not for HardFault and NMI */ 145 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 146 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 147 /* Enabled for all cases */ 148 return false; 149 case 0: 150 default: 151 /* 152 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 153 * we warned about that in armv7m_nvic.c when the guest set it. 154 */ 155 return true; 156 } 157 } 158 159 hcr_el2 = arm_hcr_el2_eff(env); 160 161 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 162 /* HCR.DC means HCR.VM behaves as 1 */ 163 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 164 } 165 166 if (hcr_el2 & HCR_TGE) { 167 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 168 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 169 return true; 170 } 171 } 172 173 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 174 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 175 return true; 176 } 177 178 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 179 } 180 181 static bool ptw_attrs_are_device(CPUARMState *env, ARMCacheAttrs cacheattrs) 182 { 183 /* 184 * For an S1 page table walk, the stage 1 attributes are always 185 * some form of "this is Normal memory". The combined S1+S2 186 * attributes are therefore only Device if stage 2 specifies Device. 187 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 188 * ie when cacheattrs.attrs bits [3:2] are 0b00. 189 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 190 * when cacheattrs.attrs bit [2] is 0. 191 */ 192 assert(cacheattrs.is_s2_format); 193 if (arm_hcr_el2_eff(env) & HCR_FWB) { 194 return (cacheattrs.attrs & 0x4) == 0; 195 } else { 196 return (cacheattrs.attrs & 0xc) == 0; 197 } 198 } 199 200 /* Translate a S1 pagetable walk through S2 if needed. */ 201 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 202 hwaddr addr, bool *is_secure, 203 ARMMMUFaultInfo *fi) 204 { 205 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 206 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 207 target_ulong s2size; 208 hwaddr s2pa; 209 int s2prot; 210 int ret; 211 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 212 : ARMMMUIdx_Stage2; 213 ARMCacheAttrs cacheattrs = {}; 214 MemTxAttrs txattrs = {}; 215 216 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 217 &s2pa, &txattrs, &s2prot, &s2size, fi, 218 &cacheattrs); 219 if (ret) { 220 assert(fi->type != ARMFault_None); 221 fi->s2addr = addr; 222 fi->stage2 = true; 223 fi->s1ptw = true; 224 fi->s1ns = !*is_secure; 225 return ~0; 226 } 227 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 228 ptw_attrs_are_device(env, cacheattrs)) { 229 /* 230 * PTW set and S1 walk touched S2 Device memory: 231 * generate Permission fault. 232 */ 233 fi->type = ARMFault_Permission; 234 fi->s2addr = addr; 235 fi->stage2 = true; 236 fi->s1ptw = true; 237 fi->s1ns = !*is_secure; 238 return ~0; 239 } 240 241 if (arm_is_secure_below_el3(env)) { 242 /* Check if page table walk is to secure or non-secure PA space. */ 243 if (*is_secure) { 244 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 245 } else { 246 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 247 } 248 } else { 249 assert(!*is_secure); 250 } 251 252 addr = s2pa; 253 } 254 return addr; 255 } 256 257 /* All loads done in the course of a page table walk go through here. */ 258 static uint32_t arm_ldl_ptw(CPUARMState *env, hwaddr addr, bool is_secure, 259 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 260 { 261 CPUState *cs = env_cpu(env); 262 MemTxAttrs attrs = {}; 263 MemTxResult result = MEMTX_OK; 264 AddressSpace *as; 265 uint32_t data; 266 267 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 268 attrs.secure = is_secure; 269 as = arm_addressspace(cs, attrs); 270 if (fi->s1ptw) { 271 return 0; 272 } 273 if (regime_translation_big_endian(env, mmu_idx)) { 274 data = address_space_ldl_be(as, addr, attrs, &result); 275 } else { 276 data = address_space_ldl_le(as, addr, attrs, &result); 277 } 278 if (result == MEMTX_OK) { 279 return data; 280 } 281 fi->type = ARMFault_SyncExternalOnWalk; 282 fi->ea = arm_extabort_type(result); 283 return 0; 284 } 285 286 static uint64_t arm_ldq_ptw(CPUARMState *env, hwaddr addr, bool is_secure, 287 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 288 { 289 CPUState *cs = env_cpu(env); 290 MemTxAttrs attrs = {}; 291 MemTxResult result = MEMTX_OK; 292 AddressSpace *as; 293 uint64_t data; 294 295 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 296 attrs.secure = is_secure; 297 as = arm_addressspace(cs, attrs); 298 if (fi->s1ptw) { 299 return 0; 300 } 301 if (regime_translation_big_endian(env, mmu_idx)) { 302 data = address_space_ldq_be(as, addr, attrs, &result); 303 } else { 304 data = address_space_ldq_le(as, addr, attrs, &result); 305 } 306 if (result == MEMTX_OK) { 307 return data; 308 } 309 fi->type = ARMFault_SyncExternalOnWalk; 310 fi->ea = arm_extabort_type(result); 311 return 0; 312 } 313 314 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 315 uint32_t *table, uint32_t address) 316 { 317 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 318 TCR *tcr = regime_tcr(env, mmu_idx); 319 320 if (address & tcr->mask) { 321 if (tcr->raw_tcr & TTBCR_PD1) { 322 /* Translation table walk disabled for TTBR1 */ 323 return false; 324 } 325 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 326 } else { 327 if (tcr->raw_tcr & TTBCR_PD0) { 328 /* Translation table walk disabled for TTBR0 */ 329 return false; 330 } 331 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 332 } 333 *table |= (address >> 18) & 0x3ffc; 334 return true; 335 } 336 337 /* 338 * Translate section/page access permissions to page R/W protection flags 339 * @env: CPUARMState 340 * @mmu_idx: MMU index indicating required translation regime 341 * @ap: The 3-bit access permissions (AP[2:0]) 342 * @domain_prot: The 2-bit domain access permissions 343 */ 344 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 345 int ap, int domain_prot) 346 { 347 bool is_user = regime_is_user(env, mmu_idx); 348 349 if (domain_prot == 3) { 350 return PAGE_READ | PAGE_WRITE; 351 } 352 353 switch (ap) { 354 case 0: 355 if (arm_feature(env, ARM_FEATURE_V7)) { 356 return 0; 357 } 358 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 359 case SCTLR_S: 360 return is_user ? 0 : PAGE_READ; 361 case SCTLR_R: 362 return PAGE_READ; 363 default: 364 return 0; 365 } 366 case 1: 367 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 368 case 2: 369 if (is_user) { 370 return PAGE_READ; 371 } else { 372 return PAGE_READ | PAGE_WRITE; 373 } 374 case 3: 375 return PAGE_READ | PAGE_WRITE; 376 case 4: /* Reserved. */ 377 return 0; 378 case 5: 379 return is_user ? 0 : PAGE_READ; 380 case 6: 381 return PAGE_READ; 382 case 7: 383 if (!arm_feature(env, ARM_FEATURE_V6K)) { 384 return 0; 385 } 386 return PAGE_READ; 387 default: 388 g_assert_not_reached(); 389 } 390 } 391 392 /* 393 * Translate section/page access permissions to page R/W protection flags. 394 * @ap: The 2-bit simple AP (AP[2:1]) 395 * @is_user: TRUE if accessing from PL0 396 */ 397 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 398 { 399 switch (ap) { 400 case 0: 401 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 402 case 1: 403 return PAGE_READ | PAGE_WRITE; 404 case 2: 405 return is_user ? 0 : PAGE_READ; 406 case 3: 407 return PAGE_READ; 408 default: 409 g_assert_not_reached(); 410 } 411 } 412 413 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 414 { 415 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 416 } 417 418 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 419 MMUAccessType access_type, ARMMMUIdx mmu_idx, 420 hwaddr *phys_ptr, int *prot, 421 target_ulong *page_size, 422 ARMMMUFaultInfo *fi) 423 { 424 int level = 1; 425 uint32_t table; 426 uint32_t desc; 427 int type; 428 int ap; 429 int domain = 0; 430 int domain_prot; 431 hwaddr phys_addr; 432 uint32_t dacr; 433 434 /* Pagetable walk. */ 435 /* Lookup l1 descriptor. */ 436 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 437 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 438 fi->type = ARMFault_Translation; 439 goto do_fault; 440 } 441 desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx), 442 mmu_idx, fi); 443 if (fi->type != ARMFault_None) { 444 goto do_fault; 445 } 446 type = (desc & 3); 447 domain = (desc >> 5) & 0x0f; 448 if (regime_el(env, mmu_idx) == 1) { 449 dacr = env->cp15.dacr_ns; 450 } else { 451 dacr = env->cp15.dacr_s; 452 } 453 domain_prot = (dacr >> (domain * 2)) & 3; 454 if (type == 0) { 455 /* Section translation fault. */ 456 fi->type = ARMFault_Translation; 457 goto do_fault; 458 } 459 if (type != 2) { 460 level = 2; 461 } 462 if (domain_prot == 0 || domain_prot == 2) { 463 fi->type = ARMFault_Domain; 464 goto do_fault; 465 } 466 if (type == 2) { 467 /* 1Mb section. */ 468 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 469 ap = (desc >> 10) & 3; 470 *page_size = 1024 * 1024; 471 } else { 472 /* Lookup l2 entry. */ 473 if (type == 1) { 474 /* Coarse pagetable. */ 475 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 476 } else { 477 /* Fine pagetable. */ 478 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 479 } 480 desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx), 481 mmu_idx, fi); 482 if (fi->type != ARMFault_None) { 483 goto do_fault; 484 } 485 switch (desc & 3) { 486 case 0: /* Page translation fault. */ 487 fi->type = ARMFault_Translation; 488 goto do_fault; 489 case 1: /* 64k page. */ 490 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 491 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 492 *page_size = 0x10000; 493 break; 494 case 2: /* 4k page. */ 495 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 496 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 497 *page_size = 0x1000; 498 break; 499 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 500 if (type == 1) { 501 /* ARMv6/XScale extended small page format */ 502 if (arm_feature(env, ARM_FEATURE_XSCALE) 503 || arm_feature(env, ARM_FEATURE_V6)) { 504 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 505 *page_size = 0x1000; 506 } else { 507 /* 508 * UNPREDICTABLE in ARMv5; we choose to take a 509 * page translation fault. 510 */ 511 fi->type = ARMFault_Translation; 512 goto do_fault; 513 } 514 } else { 515 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 516 *page_size = 0x400; 517 } 518 ap = (desc >> 4) & 3; 519 break; 520 default: 521 /* Never happens, but compiler isn't smart enough to tell. */ 522 g_assert_not_reached(); 523 } 524 } 525 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 526 *prot |= *prot ? PAGE_EXEC : 0; 527 if (!(*prot & (1 << access_type))) { 528 /* Access permission fault. */ 529 fi->type = ARMFault_Permission; 530 goto do_fault; 531 } 532 *phys_ptr = phys_addr; 533 return false; 534 do_fault: 535 fi->domain = domain; 536 fi->level = level; 537 return true; 538 } 539 540 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 541 MMUAccessType access_type, ARMMMUIdx mmu_idx, 542 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 543 target_ulong *page_size, ARMMMUFaultInfo *fi) 544 { 545 ARMCPU *cpu = env_archcpu(env); 546 int level = 1; 547 uint32_t table; 548 uint32_t desc; 549 uint32_t xn; 550 uint32_t pxn = 0; 551 int type; 552 int ap; 553 int domain = 0; 554 int domain_prot; 555 hwaddr phys_addr; 556 uint32_t dacr; 557 bool ns; 558 559 /* Pagetable walk. */ 560 /* Lookup l1 descriptor. */ 561 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 562 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 563 fi->type = ARMFault_Translation; 564 goto do_fault; 565 } 566 desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx), 567 mmu_idx, fi); 568 if (fi->type != ARMFault_None) { 569 goto do_fault; 570 } 571 type = (desc & 3); 572 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 573 /* Section translation fault, or attempt to use the encoding 574 * which is Reserved on implementations without PXN. 575 */ 576 fi->type = ARMFault_Translation; 577 goto do_fault; 578 } 579 if ((type == 1) || !(desc & (1 << 18))) { 580 /* Page or Section. */ 581 domain = (desc >> 5) & 0x0f; 582 } 583 if (regime_el(env, mmu_idx) == 1) { 584 dacr = env->cp15.dacr_ns; 585 } else { 586 dacr = env->cp15.dacr_s; 587 } 588 if (type == 1) { 589 level = 2; 590 } 591 domain_prot = (dacr >> (domain * 2)) & 3; 592 if (domain_prot == 0 || domain_prot == 2) { 593 /* Section or Page domain fault */ 594 fi->type = ARMFault_Domain; 595 goto do_fault; 596 } 597 if (type != 1) { 598 if (desc & (1 << 18)) { 599 /* Supersection. */ 600 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 601 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 602 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 603 *page_size = 0x1000000; 604 } else { 605 /* Section. */ 606 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 607 *page_size = 0x100000; 608 } 609 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 610 xn = desc & (1 << 4); 611 pxn = desc & 1; 612 ns = extract32(desc, 19, 1); 613 } else { 614 if (cpu_isar_feature(aa32_pxn, cpu)) { 615 pxn = (desc >> 2) & 1; 616 } 617 ns = extract32(desc, 3, 1); 618 /* Lookup l2 entry. */ 619 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 620 desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx), 621 mmu_idx, fi); 622 if (fi->type != ARMFault_None) { 623 goto do_fault; 624 } 625 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 626 switch (desc & 3) { 627 case 0: /* Page translation fault. */ 628 fi->type = ARMFault_Translation; 629 goto do_fault; 630 case 1: /* 64k page. */ 631 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 632 xn = desc & (1 << 15); 633 *page_size = 0x10000; 634 break; 635 case 2: case 3: /* 4k page. */ 636 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 637 xn = desc & 1; 638 *page_size = 0x1000; 639 break; 640 default: 641 /* Never happens, but compiler isn't smart enough to tell. */ 642 g_assert_not_reached(); 643 } 644 } 645 if (domain_prot == 3) { 646 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 647 } else { 648 if (pxn && !regime_is_user(env, mmu_idx)) { 649 xn = 1; 650 } 651 if (xn && access_type == MMU_INST_FETCH) { 652 fi->type = ARMFault_Permission; 653 goto do_fault; 654 } 655 656 if (arm_feature(env, ARM_FEATURE_V6K) && 657 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 658 /* The simplified model uses AP[0] as an access control bit. */ 659 if ((ap & 1) == 0) { 660 /* Access flag fault. */ 661 fi->type = ARMFault_AccessFlag; 662 goto do_fault; 663 } 664 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 665 } else { 666 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 667 } 668 if (*prot && !xn) { 669 *prot |= PAGE_EXEC; 670 } 671 if (!(*prot & (1 << access_type))) { 672 /* Access permission fault. */ 673 fi->type = ARMFault_Permission; 674 goto do_fault; 675 } 676 } 677 if (ns) { 678 /* The NS bit will (as required by the architecture) have no effect if 679 * the CPU doesn't support TZ or this is a non-secure translation 680 * regime, because the attribute will already be non-secure. 681 */ 682 attrs->secure = false; 683 } 684 *phys_ptr = phys_addr; 685 return false; 686 do_fault: 687 fi->domain = domain; 688 fi->level = level; 689 return true; 690 } 691 692 /* 693 * Translate S2 section/page access permissions to protection flags 694 * @env: CPUARMState 695 * @s2ap: The 2-bit stage2 access permissions (S2AP) 696 * @xn: XN (execute-never) bits 697 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 698 */ 699 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 700 { 701 int prot = 0; 702 703 if (s2ap & 1) { 704 prot |= PAGE_READ; 705 } 706 if (s2ap & 2) { 707 prot |= PAGE_WRITE; 708 } 709 710 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 711 switch (xn) { 712 case 0: 713 prot |= PAGE_EXEC; 714 break; 715 case 1: 716 if (s1_is_el0) { 717 prot |= PAGE_EXEC; 718 } 719 break; 720 case 2: 721 break; 722 case 3: 723 if (!s1_is_el0) { 724 prot |= PAGE_EXEC; 725 } 726 break; 727 default: 728 g_assert_not_reached(); 729 } 730 } else { 731 if (!extract32(xn, 1, 1)) { 732 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 733 prot |= PAGE_EXEC; 734 } 735 } 736 } 737 return prot; 738 } 739 740 /* 741 * Translate section/page access permissions to protection flags 742 * @env: CPUARMState 743 * @mmu_idx: MMU index indicating required translation regime 744 * @is_aa64: TRUE if AArch64 745 * @ap: The 2-bit simple AP (AP[2:1]) 746 * @ns: NS (non-secure) bit 747 * @xn: XN (execute-never) bit 748 * @pxn: PXN (privileged execute-never) bit 749 */ 750 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 751 int ap, int ns, int xn, int pxn) 752 { 753 bool is_user = regime_is_user(env, mmu_idx); 754 int prot_rw, user_rw; 755 bool have_wxn; 756 int wxn = 0; 757 758 assert(mmu_idx != ARMMMUIdx_Stage2); 759 assert(mmu_idx != ARMMMUIdx_Stage2_S); 760 761 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 762 if (is_user) { 763 prot_rw = user_rw; 764 } else { 765 if (user_rw && regime_is_pan(env, mmu_idx)) { 766 /* PAN forbids data accesses but doesn't affect insn fetch */ 767 prot_rw = 0; 768 } else { 769 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 770 } 771 } 772 773 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 774 return prot_rw; 775 } 776 777 /* TODO have_wxn should be replaced with 778 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 779 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 780 * compatible processors have EL2, which is required for [U]WXN. 781 */ 782 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 783 784 if (have_wxn) { 785 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 786 } 787 788 if (is_aa64) { 789 if (regime_has_2_ranges(mmu_idx) && !is_user) { 790 xn = pxn || (user_rw & PAGE_WRITE); 791 } 792 } else if (arm_feature(env, ARM_FEATURE_V7)) { 793 switch (regime_el(env, mmu_idx)) { 794 case 1: 795 case 3: 796 if (is_user) { 797 xn = xn || !(user_rw & PAGE_READ); 798 } else { 799 int uwxn = 0; 800 if (have_wxn) { 801 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 802 } 803 xn = xn || !(prot_rw & PAGE_READ) || pxn || 804 (uwxn && (user_rw & PAGE_WRITE)); 805 } 806 break; 807 case 2: 808 break; 809 } 810 } else { 811 xn = wxn = 0; 812 } 813 814 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 815 return prot_rw; 816 } 817 return prot_rw | PAGE_EXEC; 818 } 819 820 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 821 ARMMMUIdx mmu_idx) 822 { 823 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 824 uint32_t el = regime_el(env, mmu_idx); 825 int select, tsz; 826 bool epd, hpd; 827 828 assert(mmu_idx != ARMMMUIdx_Stage2_S); 829 830 if (mmu_idx == ARMMMUIdx_Stage2) { 831 /* VTCR */ 832 bool sext = extract32(tcr, 4, 1); 833 bool sign = extract32(tcr, 3, 1); 834 835 /* 836 * If the sign-extend bit is not the same as t0sz[3], the result 837 * is unpredictable. Flag this as a guest error. 838 */ 839 if (sign != sext) { 840 qemu_log_mask(LOG_GUEST_ERROR, 841 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 842 } 843 tsz = sextract32(tcr, 0, 4) + 8; 844 select = 0; 845 hpd = false; 846 epd = false; 847 } else if (el == 2) { 848 /* HTCR */ 849 tsz = extract32(tcr, 0, 3); 850 select = 0; 851 hpd = extract64(tcr, 24, 1); 852 epd = false; 853 } else { 854 int t0sz = extract32(tcr, 0, 3); 855 int t1sz = extract32(tcr, 16, 3); 856 857 if (t1sz == 0) { 858 select = va > (0xffffffffu >> t0sz); 859 } else { 860 /* Note that we will detect errors later. */ 861 select = va >= ~(0xffffffffu >> t1sz); 862 } 863 if (!select) { 864 tsz = t0sz; 865 epd = extract32(tcr, 7, 1); 866 hpd = extract64(tcr, 41, 1); 867 } else { 868 tsz = t1sz; 869 epd = extract32(tcr, 23, 1); 870 hpd = extract64(tcr, 42, 1); 871 } 872 /* For aarch32, hpd0 is not enabled without t2e as well. */ 873 hpd &= extract32(tcr, 6, 1); 874 } 875 876 return (ARMVAParameters) { 877 .tsz = tsz, 878 .select = select, 879 .epd = epd, 880 .hpd = hpd, 881 }; 882 } 883 884 /* 885 * check_s2_mmu_setup 886 * @cpu: ARMCPU 887 * @is_aa64: True if the translation regime is in AArch64 state 888 * @startlevel: Suggested starting level 889 * @inputsize: Bitsize of IPAs 890 * @stride: Page-table stride (See the ARM ARM) 891 * 892 * Returns true if the suggested S2 translation parameters are OK and 893 * false otherwise. 894 */ 895 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 896 int inputsize, int stride, int outputsize) 897 { 898 const int grainsize = stride + 3; 899 int startsizecheck; 900 901 /* 902 * Negative levels are usually not allowed... 903 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which 904 * begins with level -1. Note that previous feature tests will have 905 * eliminated this combination if it is not enabled. 906 */ 907 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { 908 return false; 909 } 910 911 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 912 if (startsizecheck < 1 || startsizecheck > stride + 4) { 913 return false; 914 } 915 916 if (is_aa64) { 917 switch (stride) { 918 case 13: /* 64KB Pages. */ 919 if (level == 0 || (level == 1 && outputsize <= 42)) { 920 return false; 921 } 922 break; 923 case 11: /* 16KB Pages. */ 924 if (level == 0 || (level == 1 && outputsize <= 40)) { 925 return false; 926 } 927 break; 928 case 9: /* 4KB Pages. */ 929 if (level == 0 && outputsize <= 42) { 930 return false; 931 } 932 break; 933 default: 934 g_assert_not_reached(); 935 } 936 937 /* Inputsize checks. */ 938 if (inputsize > outputsize && 939 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 940 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 941 return false; 942 } 943 } else { 944 /* AArch32 only supports 4KB pages. Assert on that. */ 945 assert(stride == 9); 946 947 if (level == 0) { 948 return false; 949 } 950 } 951 return true; 952 } 953 954 /** 955 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 956 * 957 * Returns false if the translation was successful. Otherwise, phys_ptr, 958 * attrs, prot and page_size may not be filled in, and the populated fsr 959 * value provides information on why the translation aborted, in the format 960 * of a long-format DFSR/IFSR fault register, with the following caveat: 961 * the WnR bit is never set (the caller must do this). 962 * 963 * @env: CPUARMState 964 * @address: virtual address to get physical address for 965 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 966 * @mmu_idx: MMU index indicating required translation regime 967 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page 968 * table walk), must be true if this is stage 2 of a stage 1+2 969 * walk for an EL0 access. If @mmu_idx is anything else, 970 * @s1_is_el0 is ignored. 971 * @phys_ptr: set to the physical address corresponding to the virtual address 972 * @attrs: set to the memory transaction attributes to use 973 * @prot: set to the permissions for the page containing phys_ptr 974 * @page_size_ptr: set to the size of the page containing phys_ptr 975 * @fi: set to fault info if the translation fails 976 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 977 */ 978 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 979 MMUAccessType access_type, ARMMMUIdx mmu_idx, 980 bool s1_is_el0, hwaddr *phys_ptr, 981 MemTxAttrs *txattrs, int *prot, 982 target_ulong *page_size_ptr, 983 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 984 { 985 ARMCPU *cpu = env_archcpu(env); 986 /* Read an LPAE long-descriptor translation table. */ 987 ARMFaultType fault_type = ARMFault_Translation; 988 uint32_t level; 989 ARMVAParameters param; 990 uint64_t ttbr; 991 hwaddr descaddr, indexmask, indexmask_grainsize; 992 uint32_t tableattrs; 993 target_ulong page_size; 994 uint32_t attrs; 995 int32_t stride; 996 int addrsize, inputsize, outputsize; 997 TCR *tcr = regime_tcr(env, mmu_idx); 998 int ap, ns, xn, pxn; 999 uint32_t el = regime_el(env, mmu_idx); 1000 uint64_t descaddrmask; 1001 bool aarch64 = arm_el_is_aa64(env, el); 1002 bool guarded = false; 1003 1004 /* TODO: This code does not support shareability levels. */ 1005 if (aarch64) { 1006 int ps; 1007 1008 param = aa64_va_parameters(env, address, mmu_idx, 1009 access_type != MMU_INST_FETCH); 1010 level = 0; 1011 1012 /* 1013 * If TxSZ is programmed to a value larger than the maximum, 1014 * or smaller than the effective minimum, it is IMPLEMENTATION 1015 * DEFINED whether we behave as if the field were programmed 1016 * within bounds, or if a level 0 Translation fault is generated. 1017 * 1018 * With FEAT_LVA, fault on less than minimum becomes required, 1019 * so our choice is to always raise the fault. 1020 */ 1021 if (param.tsz_oob) { 1022 fault_type = ARMFault_Translation; 1023 goto do_fault; 1024 } 1025 1026 addrsize = 64 - 8 * param.tbi; 1027 inputsize = 64 - param.tsz; 1028 1029 /* 1030 * Bound PS by PARANGE to find the effective output address size. 1031 * ID_AA64MMFR0 is a read-only register so values outside of the 1032 * supported mappings can be considered an implementation error. 1033 */ 1034 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1035 ps = MIN(ps, param.ps); 1036 assert(ps < ARRAY_SIZE(pamax_map)); 1037 outputsize = pamax_map[ps]; 1038 } else { 1039 param = aa32_va_parameters(env, address, mmu_idx); 1040 level = 1; 1041 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1042 inputsize = addrsize - param.tsz; 1043 outputsize = 40; 1044 } 1045 1046 /* 1047 * We determined the region when collecting the parameters, but we 1048 * have not yet validated that the address is valid for the region. 1049 * Extract the top bits and verify that they all match select. 1050 * 1051 * For aa32, if inputsize == addrsize, then we have selected the 1052 * region by exclusion in aa32_va_parameters and there is no more 1053 * validation to do here. 1054 */ 1055 if (inputsize < addrsize) { 1056 target_ulong top_bits = sextract64(address, inputsize, 1057 addrsize - inputsize); 1058 if (-top_bits != param.select) { 1059 /* The gap between the two regions is a Translation fault */ 1060 fault_type = ARMFault_Translation; 1061 goto do_fault; 1062 } 1063 } 1064 1065 if (param.using64k) { 1066 stride = 13; 1067 } else if (param.using16k) { 1068 stride = 11; 1069 } else { 1070 stride = 9; 1071 } 1072 1073 /* 1074 * Note that QEMU ignores shareability and cacheability attributes, 1075 * so we don't need to do anything with the SH, ORGN, IRGN fields 1076 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1077 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1078 * implement any ASID-like capability so we can ignore it (instead 1079 * we will always flush the TLB any time the ASID is changed). 1080 */ 1081 ttbr = regime_ttbr(env, mmu_idx, param.select); 1082 1083 /* 1084 * Here we should have set up all the parameters for the translation: 1085 * inputsize, ttbr, epd, stride, tbi 1086 */ 1087 1088 if (param.epd) { 1089 /* 1090 * Translation table walk disabled => Translation fault on TLB miss 1091 * Note: This is always 0 on 64-bit EL2 and EL3. 1092 */ 1093 goto do_fault; 1094 } 1095 1096 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 1097 /* 1098 * The starting level depends on the virtual address size (which can 1099 * be up to 48 bits) and the translation granule size. It indicates 1100 * the number of strides (stride bits at a time) needed to 1101 * consume the bits of the input address. In the pseudocode this is: 1102 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1103 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1104 * our 'stride + 3' and 'stride' is our 'stride'. 1105 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1106 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1107 * = 4 - (inputsize - 4) / stride; 1108 */ 1109 level = 4 - (inputsize - 4) / stride; 1110 } else { 1111 /* 1112 * For stage 2 translations the starting level is specified by the 1113 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 1114 */ 1115 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 1116 uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1); 1117 uint32_t startlevel; 1118 bool ok; 1119 1120 /* SL2 is RES0 unless DS=1 & 4kb granule. */ 1121 if (param.ds && stride == 9 && sl2) { 1122 if (sl0 != 0) { 1123 level = 0; 1124 fault_type = ARMFault_Translation; 1125 goto do_fault; 1126 } 1127 startlevel = -1; 1128 } else if (!aarch64 || stride == 9) { 1129 /* AArch32 or 4KB pages */ 1130 startlevel = 2 - sl0; 1131 1132 if (cpu_isar_feature(aa64_st, cpu)) { 1133 startlevel &= 3; 1134 } 1135 } else { 1136 /* 16KB or 64KB pages */ 1137 startlevel = 3 - sl0; 1138 } 1139 1140 /* Check that the starting level is valid. */ 1141 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 1142 inputsize, stride, outputsize); 1143 if (!ok) { 1144 fault_type = ARMFault_Translation; 1145 goto do_fault; 1146 } 1147 level = startlevel; 1148 } 1149 1150 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1151 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1152 1153 /* Now we can extract the actual base address from the TTBR */ 1154 descaddr = extract64(ttbr, 0, 48); 1155 1156 /* 1157 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1158 * 1159 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1160 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1161 * but we've just cleared the bits above 47, so simplify the test. 1162 */ 1163 if (outputsize > 48) { 1164 descaddr |= extract64(ttbr, 2, 4) << 48; 1165 } else if (descaddr >> outputsize) { 1166 level = 0; 1167 fault_type = ARMFault_AddressSize; 1168 goto do_fault; 1169 } 1170 1171 /* 1172 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1173 * and also to mask out CnP (bit 0) which could validly be non-zero. 1174 */ 1175 descaddr &= ~indexmask; 1176 1177 /* 1178 * For AArch32, the address field in the descriptor goes up to bit 39 1179 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1180 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1181 * bits as part of the address, which will be checked via outputsize. 1182 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1183 * the highest bits of a 52-bit output are placed elsewhere. 1184 */ 1185 if (param.ds) { 1186 descaddrmask = MAKE_64BIT_MASK(0, 50); 1187 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1188 descaddrmask = MAKE_64BIT_MASK(0, 48); 1189 } else { 1190 descaddrmask = MAKE_64BIT_MASK(0, 40); 1191 } 1192 descaddrmask &= ~indexmask_grainsize; 1193 1194 /* 1195 * Secure accesses start with the page table in secure memory and 1196 * can be downgraded to non-secure at any step. Non-secure accesses 1197 * remain non-secure. We implement this by just ORing in the NSTable/NS 1198 * bits at each step. 1199 */ 1200 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 1201 for (;;) { 1202 uint64_t descriptor; 1203 bool nstable; 1204 1205 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1206 descaddr &= ~7ULL; 1207 nstable = extract32(tableattrs, 4, 1); 1208 descriptor = arm_ldq_ptw(env, descaddr, !nstable, mmu_idx, fi); 1209 if (fi->type != ARMFault_None) { 1210 goto do_fault; 1211 } 1212 1213 if (!(descriptor & 1) || 1214 (!(descriptor & 2) && (level == 3))) { 1215 /* Invalid, or the Reserved level 3 encoding */ 1216 goto do_fault; 1217 } 1218 1219 descaddr = descriptor & descaddrmask; 1220 1221 /* 1222 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1223 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1224 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1225 * raise AddressSizeFault. 1226 */ 1227 if (outputsize > 48) { 1228 if (param.ds) { 1229 descaddr |= extract64(descriptor, 8, 2) << 50; 1230 } else { 1231 descaddr |= extract64(descriptor, 12, 4) << 48; 1232 } 1233 } else if (descaddr >> outputsize) { 1234 fault_type = ARMFault_AddressSize; 1235 goto do_fault; 1236 } 1237 1238 if ((descriptor & 2) && (level < 3)) { 1239 /* 1240 * Table entry. The top five bits are attributes which may 1241 * propagate down through lower levels of the table (and 1242 * which are all arranged so that 0 means "no effect", so 1243 * we can gather them up by ORing in the bits at each level). 1244 */ 1245 tableattrs |= extract64(descriptor, 59, 5); 1246 level++; 1247 indexmask = indexmask_grainsize; 1248 continue; 1249 } 1250 /* 1251 * Block entry at level 1 or 2, or page entry at level 3. 1252 * These are basically the same thing, although the number 1253 * of bits we pull in from the vaddr varies. Note that although 1254 * descaddrmask masks enough of the low bits of the descriptor 1255 * to give a correct page or table address, the address field 1256 * in a block descriptor is smaller; so we need to explicitly 1257 * clear the lower bits here before ORing in the low vaddr bits. 1258 */ 1259 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1260 descaddr &= ~(page_size - 1); 1261 descaddr |= (address & (page_size - 1)); 1262 /* Extract attributes from the descriptor */ 1263 attrs = extract64(descriptor, 2, 10) 1264 | (extract64(descriptor, 52, 12) << 10); 1265 1266 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 1267 /* Stage 2 table descriptors do not include any attribute fields */ 1268 break; 1269 } 1270 /* Merge in attributes from table descriptors */ 1271 attrs |= nstable << 3; /* NS */ 1272 guarded = extract64(descriptor, 50, 1); /* GP */ 1273 if (param.hpd) { 1274 /* HPD disables all the table attributes except NSTable. */ 1275 break; 1276 } 1277 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 1278 /* 1279 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 1280 * means "force PL1 access only", which means forcing AP[1] to 0. 1281 */ 1282 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 1283 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 1284 break; 1285 } 1286 /* 1287 * Here descaddr is the final physical address, and attributes 1288 * are all in attrs. 1289 */ 1290 fault_type = ARMFault_AccessFlag; 1291 if ((attrs & (1 << 8)) == 0) { 1292 /* Access flag */ 1293 goto do_fault; 1294 } 1295 1296 ap = extract32(attrs, 4, 2); 1297 1298 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 1299 ns = mmu_idx == ARMMMUIdx_Stage2; 1300 xn = extract32(attrs, 11, 2); 1301 *prot = get_S2prot(env, ap, xn, s1_is_el0); 1302 } else { 1303 ns = extract32(attrs, 3, 1); 1304 xn = extract32(attrs, 12, 1); 1305 pxn = extract32(attrs, 11, 1); 1306 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 1307 } 1308 1309 fault_type = ARMFault_Permission; 1310 if (!(*prot & (1 << access_type))) { 1311 goto do_fault; 1312 } 1313 1314 if (ns) { 1315 /* 1316 * The NS bit will (as required by the architecture) have no effect if 1317 * the CPU doesn't support TZ or this is a non-secure translation 1318 * regime, because the attribute will already be non-secure. 1319 */ 1320 txattrs->secure = false; 1321 } 1322 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 1323 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 1324 arm_tlb_bti_gp(txattrs) = true; 1325 } 1326 1327 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 1328 cacheattrs->is_s2_format = true; 1329 cacheattrs->attrs = extract32(attrs, 0, 4); 1330 } else { 1331 /* Index into MAIR registers for cache attributes */ 1332 uint8_t attrindx = extract32(attrs, 0, 3); 1333 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 1334 assert(attrindx <= 7); 1335 cacheattrs->is_s2_format = false; 1336 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 1337 } 1338 1339 /* 1340 * For FEAT_LPA2 and effective DS, the SH field in the attributes 1341 * was re-purposed for output address bits. The SH attribute in 1342 * that case comes from TCR_ELx, which we extracted earlier. 1343 */ 1344 if (param.ds) { 1345 cacheattrs->shareability = param.sh; 1346 } else { 1347 cacheattrs->shareability = extract32(attrs, 6, 2); 1348 } 1349 1350 *phys_ptr = descaddr; 1351 *page_size_ptr = page_size; 1352 return false; 1353 1354 do_fault: 1355 fi->type = fault_type; 1356 fi->level = level; 1357 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 1358 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 1359 mmu_idx == ARMMMUIdx_Stage2_S); 1360 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 1361 return true; 1362 } 1363 1364 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 1365 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1366 hwaddr *phys_ptr, int *prot, 1367 ARMMMUFaultInfo *fi) 1368 { 1369 int n; 1370 uint32_t mask; 1371 uint32_t base; 1372 bool is_user = regime_is_user(env, mmu_idx); 1373 1374 if (regime_translation_disabled(env, mmu_idx)) { 1375 /* MPU disabled. */ 1376 *phys_ptr = address; 1377 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1378 return false; 1379 } 1380 1381 *phys_ptr = address; 1382 for (n = 7; n >= 0; n--) { 1383 base = env->cp15.c6_region[n]; 1384 if ((base & 1) == 0) { 1385 continue; 1386 } 1387 mask = 1 << ((base >> 1) & 0x1f); 1388 /* Keep this shift separate from the above to avoid an 1389 (undefined) << 32. */ 1390 mask = (mask << 1) - 1; 1391 if (((base ^ address) & ~mask) == 0) { 1392 break; 1393 } 1394 } 1395 if (n < 0) { 1396 fi->type = ARMFault_Background; 1397 return true; 1398 } 1399 1400 if (access_type == MMU_INST_FETCH) { 1401 mask = env->cp15.pmsav5_insn_ap; 1402 } else { 1403 mask = env->cp15.pmsav5_data_ap; 1404 } 1405 mask = (mask >> (n * 4)) & 0xf; 1406 switch (mask) { 1407 case 0: 1408 fi->type = ARMFault_Permission; 1409 fi->level = 1; 1410 return true; 1411 case 1: 1412 if (is_user) { 1413 fi->type = ARMFault_Permission; 1414 fi->level = 1; 1415 return true; 1416 } 1417 *prot = PAGE_READ | PAGE_WRITE; 1418 break; 1419 case 2: 1420 *prot = PAGE_READ; 1421 if (!is_user) { 1422 *prot |= PAGE_WRITE; 1423 } 1424 break; 1425 case 3: 1426 *prot = PAGE_READ | PAGE_WRITE; 1427 break; 1428 case 5: 1429 if (is_user) { 1430 fi->type = ARMFault_Permission; 1431 fi->level = 1; 1432 return true; 1433 } 1434 *prot = PAGE_READ; 1435 break; 1436 case 6: 1437 *prot = PAGE_READ; 1438 break; 1439 default: 1440 /* Bad permission. */ 1441 fi->type = ARMFault_Permission; 1442 fi->level = 1; 1443 return true; 1444 } 1445 *prot |= PAGE_EXEC; 1446 return false; 1447 } 1448 1449 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 1450 int32_t address, int *prot) 1451 { 1452 if (!arm_feature(env, ARM_FEATURE_M)) { 1453 *prot = PAGE_READ | PAGE_WRITE; 1454 switch (address) { 1455 case 0xF0000000 ... 0xFFFFFFFF: 1456 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 1457 /* hivecs execing is ok */ 1458 *prot |= PAGE_EXEC; 1459 } 1460 break; 1461 case 0x00000000 ... 0x7FFFFFFF: 1462 *prot |= PAGE_EXEC; 1463 break; 1464 } 1465 } else { 1466 /* Default system address map for M profile cores. 1467 * The architecture specifies which regions are execute-never; 1468 * at the MPU level no other checks are defined. 1469 */ 1470 switch (address) { 1471 case 0x00000000 ... 0x1fffffff: /* ROM */ 1472 case 0x20000000 ... 0x3fffffff: /* SRAM */ 1473 case 0x60000000 ... 0x7fffffff: /* RAM */ 1474 case 0x80000000 ... 0x9fffffff: /* RAM */ 1475 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1476 break; 1477 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 1478 case 0xa0000000 ... 0xbfffffff: /* Device */ 1479 case 0xc0000000 ... 0xdfffffff: /* Device */ 1480 case 0xe0000000 ... 0xffffffff: /* System */ 1481 *prot = PAGE_READ | PAGE_WRITE; 1482 break; 1483 default: 1484 g_assert_not_reached(); 1485 } 1486 } 1487 } 1488 1489 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 1490 { 1491 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 1492 return arm_feature(env, ARM_FEATURE_M) && 1493 extract32(address, 20, 12) == 0xe00; 1494 } 1495 1496 static bool m_is_system_region(CPUARMState *env, uint32_t address) 1497 { 1498 /* 1499 * True if address is in the M profile system region 1500 * 0xe0000000 - 0xffffffff 1501 */ 1502 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 1503 } 1504 1505 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 1506 bool is_user) 1507 { 1508 /* 1509 * Return true if we should use the default memory map as a 1510 * "background" region if there are no hits against any MPU regions. 1511 */ 1512 CPUARMState *env = &cpu->env; 1513 1514 if (is_user) { 1515 return false; 1516 } 1517 1518 if (arm_feature(env, ARM_FEATURE_M)) { 1519 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 1520 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 1521 } else { 1522 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 1523 } 1524 } 1525 1526 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 1527 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1528 hwaddr *phys_ptr, int *prot, 1529 target_ulong *page_size, 1530 ARMMMUFaultInfo *fi) 1531 { 1532 ARMCPU *cpu = env_archcpu(env); 1533 int n; 1534 bool is_user = regime_is_user(env, mmu_idx); 1535 1536 *phys_ptr = address; 1537 *page_size = TARGET_PAGE_SIZE; 1538 *prot = 0; 1539 1540 if (regime_translation_disabled(env, mmu_idx) || 1541 m_is_ppb_region(env, address)) { 1542 /* 1543 * MPU disabled or M profile PPB access: use default memory map. 1544 * The other case which uses the default memory map in the 1545 * v7M ARM ARM pseudocode is exception vector reads from the vector 1546 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 1547 * which always does a direct read using address_space_ldl(), rather 1548 * than going via this function, so we don't need to check that here. 1549 */ 1550 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 1551 } else { /* MPU enabled */ 1552 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 1553 /* region search */ 1554 uint32_t base = env->pmsav7.drbar[n]; 1555 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 1556 uint32_t rmask; 1557 bool srdis = false; 1558 1559 if (!(env->pmsav7.drsr[n] & 0x1)) { 1560 continue; 1561 } 1562 1563 if (!rsize) { 1564 qemu_log_mask(LOG_GUEST_ERROR, 1565 "DRSR[%d]: Rsize field cannot be 0\n", n); 1566 continue; 1567 } 1568 rsize++; 1569 rmask = (1ull << rsize) - 1; 1570 1571 if (base & rmask) { 1572 qemu_log_mask(LOG_GUEST_ERROR, 1573 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 1574 "to DRSR region size, mask = 0x%" PRIx32 "\n", 1575 n, base, rmask); 1576 continue; 1577 } 1578 1579 if (address < base || address > base + rmask) { 1580 /* 1581 * Address not in this region. We must check whether the 1582 * region covers addresses in the same page as our address. 1583 * In that case we must not report a size that covers the 1584 * whole page for a subsequent hit against a different MPU 1585 * region or the background region, because it would result in 1586 * incorrect TLB hits for subsequent accesses to addresses that 1587 * are in this MPU region. 1588 */ 1589 if (ranges_overlap(base, rmask, 1590 address & TARGET_PAGE_MASK, 1591 TARGET_PAGE_SIZE)) { 1592 *page_size = 1; 1593 } 1594 continue; 1595 } 1596 1597 /* Region matched */ 1598 1599 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 1600 int i, snd; 1601 uint32_t srdis_mask; 1602 1603 rsize -= 3; /* sub region size (power of 2) */ 1604 snd = ((address - base) >> rsize) & 0x7; 1605 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 1606 1607 srdis_mask = srdis ? 0x3 : 0x0; 1608 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 1609 /* 1610 * This will check in groups of 2, 4 and then 8, whether 1611 * the subregion bits are consistent. rsize is incremented 1612 * back up to give the region size, considering consistent 1613 * adjacent subregions as one region. Stop testing if rsize 1614 * is already big enough for an entire QEMU page. 1615 */ 1616 int snd_rounded = snd & ~(i - 1); 1617 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 1618 snd_rounded + 8, i); 1619 if (srdis_mask ^ srdis_multi) { 1620 break; 1621 } 1622 srdis_mask = (srdis_mask << i) | srdis_mask; 1623 rsize++; 1624 } 1625 } 1626 if (srdis) { 1627 continue; 1628 } 1629 if (rsize < TARGET_PAGE_BITS) { 1630 *page_size = 1 << rsize; 1631 } 1632 break; 1633 } 1634 1635 if (n == -1) { /* no hits */ 1636 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 1637 /* background fault */ 1638 fi->type = ARMFault_Background; 1639 return true; 1640 } 1641 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 1642 } else { /* a MPU hit! */ 1643 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 1644 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 1645 1646 if (m_is_system_region(env, address)) { 1647 /* System space is always execute never */ 1648 xn = 1; 1649 } 1650 1651 if (is_user) { /* User mode AP bit decoding */ 1652 switch (ap) { 1653 case 0: 1654 case 1: 1655 case 5: 1656 break; /* no access */ 1657 case 3: 1658 *prot |= PAGE_WRITE; 1659 /* fall through */ 1660 case 2: 1661 case 6: 1662 *prot |= PAGE_READ | PAGE_EXEC; 1663 break; 1664 case 7: 1665 /* for v7M, same as 6; for R profile a reserved value */ 1666 if (arm_feature(env, ARM_FEATURE_M)) { 1667 *prot |= PAGE_READ | PAGE_EXEC; 1668 break; 1669 } 1670 /* fall through */ 1671 default: 1672 qemu_log_mask(LOG_GUEST_ERROR, 1673 "DRACR[%d]: Bad value for AP bits: 0x%" 1674 PRIx32 "\n", n, ap); 1675 } 1676 } else { /* Priv. mode AP bits decoding */ 1677 switch (ap) { 1678 case 0: 1679 break; /* no access */ 1680 case 1: 1681 case 2: 1682 case 3: 1683 *prot |= PAGE_WRITE; 1684 /* fall through */ 1685 case 5: 1686 case 6: 1687 *prot |= PAGE_READ | PAGE_EXEC; 1688 break; 1689 case 7: 1690 /* for v7M, same as 6; for R profile a reserved value */ 1691 if (arm_feature(env, ARM_FEATURE_M)) { 1692 *prot |= PAGE_READ | PAGE_EXEC; 1693 break; 1694 } 1695 /* fall through */ 1696 default: 1697 qemu_log_mask(LOG_GUEST_ERROR, 1698 "DRACR[%d]: Bad value for AP bits: 0x%" 1699 PRIx32 "\n", n, ap); 1700 } 1701 } 1702 1703 /* execute never */ 1704 if (xn) { 1705 *prot &= ~PAGE_EXEC; 1706 } 1707 } 1708 } 1709 1710 fi->type = ARMFault_Permission; 1711 fi->level = 1; 1712 return !(*prot & (1 << access_type)); 1713 } 1714 1715 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 1716 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1717 hwaddr *phys_ptr, MemTxAttrs *txattrs, 1718 int *prot, bool *is_subpage, 1719 ARMMMUFaultInfo *fi, uint32_t *mregion) 1720 { 1721 /* 1722 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 1723 * that a full phys-to-virt translation does). 1724 * mregion is (if not NULL) set to the region number which matched, 1725 * or -1 if no region number is returned (MPU off, address did not 1726 * hit a region, address hit in multiple regions). 1727 * We set is_subpage to true if the region hit doesn't cover the 1728 * entire TARGET_PAGE the address is within. 1729 */ 1730 ARMCPU *cpu = env_archcpu(env); 1731 bool is_user = regime_is_user(env, mmu_idx); 1732 uint32_t secure = regime_is_secure(env, mmu_idx); 1733 int n; 1734 int matchregion = -1; 1735 bool hit = false; 1736 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 1737 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 1738 1739 *is_subpage = false; 1740 *phys_ptr = address; 1741 *prot = 0; 1742 if (mregion) { 1743 *mregion = -1; 1744 } 1745 1746 /* 1747 * Unlike the ARM ARM pseudocode, we don't need to check whether this 1748 * was an exception vector read from the vector table (which is always 1749 * done using the default system address map), because those accesses 1750 * are done in arm_v7m_load_vector(), which always does a direct 1751 * read using address_space_ldl(), rather than going via this function. 1752 */ 1753 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 1754 hit = true; 1755 } else if (m_is_ppb_region(env, address)) { 1756 hit = true; 1757 } else { 1758 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 1759 hit = true; 1760 } 1761 1762 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 1763 /* region search */ 1764 /* 1765 * Note that the base address is bits [31:5] from the register 1766 * with bits [4:0] all zeroes, but the limit address is bits 1767 * [31:5] from the register with bits [4:0] all ones. 1768 */ 1769 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 1770 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 1771 1772 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 1773 /* Region disabled */ 1774 continue; 1775 } 1776 1777 if (address < base || address > limit) { 1778 /* 1779 * Address not in this region. We must check whether the 1780 * region covers addresses in the same page as our address. 1781 * In that case we must not report a size that covers the 1782 * whole page for a subsequent hit against a different MPU 1783 * region or the background region, because it would result in 1784 * incorrect TLB hits for subsequent accesses to addresses that 1785 * are in this MPU region. 1786 */ 1787 if (limit >= base && 1788 ranges_overlap(base, limit - base + 1, 1789 addr_page_base, 1790 TARGET_PAGE_SIZE)) { 1791 *is_subpage = true; 1792 } 1793 continue; 1794 } 1795 1796 if (base > addr_page_base || limit < addr_page_limit) { 1797 *is_subpage = true; 1798 } 1799 1800 if (matchregion != -1) { 1801 /* 1802 * Multiple regions match -- always a failure (unlike 1803 * PMSAv7 where highest-numbered-region wins) 1804 */ 1805 fi->type = ARMFault_Permission; 1806 fi->level = 1; 1807 return true; 1808 } 1809 1810 matchregion = n; 1811 hit = true; 1812 } 1813 } 1814 1815 if (!hit) { 1816 /* background fault */ 1817 fi->type = ARMFault_Background; 1818 return true; 1819 } 1820 1821 if (matchregion == -1) { 1822 /* hit using the background region */ 1823 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 1824 } else { 1825 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 1826 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 1827 bool pxn = false; 1828 1829 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 1830 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 1831 } 1832 1833 if (m_is_system_region(env, address)) { 1834 /* System space is always execute never */ 1835 xn = 1; 1836 } 1837 1838 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 1839 if (*prot && !xn && !(pxn && !is_user)) { 1840 *prot |= PAGE_EXEC; 1841 } 1842 /* 1843 * We don't need to look the attribute up in the MAIR0/MAIR1 1844 * registers because that only tells us about cacheability. 1845 */ 1846 if (mregion) { 1847 *mregion = matchregion; 1848 } 1849 } 1850 1851 fi->type = ARMFault_Permission; 1852 fi->level = 1; 1853 return !(*prot & (1 << access_type)); 1854 } 1855 1856 static bool v8m_is_sau_exempt(CPUARMState *env, 1857 uint32_t address, MMUAccessType access_type) 1858 { 1859 /* 1860 * The architecture specifies that certain address ranges are 1861 * exempt from v8M SAU/IDAU checks. 1862 */ 1863 return 1864 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 1865 (address >= 0xe0000000 && address <= 0xe0002fff) || 1866 (address >= 0xe000e000 && address <= 0xe000efff) || 1867 (address >= 0xe002e000 && address <= 0xe002efff) || 1868 (address >= 0xe0040000 && address <= 0xe0041fff) || 1869 (address >= 0xe00ff000 && address <= 0xe00fffff); 1870 } 1871 1872 void v8m_security_lookup(CPUARMState *env, uint32_t address, 1873 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1874 V8M_SAttributes *sattrs) 1875 { 1876 /* 1877 * Look up the security attributes for this address. Compare the 1878 * pseudocode SecurityCheck() function. 1879 * We assume the caller has zero-initialized *sattrs. 1880 */ 1881 ARMCPU *cpu = env_archcpu(env); 1882 int r; 1883 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 1884 int idau_region = IREGION_NOTVALID; 1885 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 1886 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 1887 1888 if (cpu->idau) { 1889 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 1890 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 1891 1892 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 1893 &idau_nsc); 1894 } 1895 1896 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 1897 /* 0xf0000000..0xffffffff is always S for insn fetches */ 1898 return; 1899 } 1900 1901 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 1902 sattrs->ns = !regime_is_secure(env, mmu_idx); 1903 return; 1904 } 1905 1906 if (idau_region != IREGION_NOTVALID) { 1907 sattrs->irvalid = true; 1908 sattrs->iregion = idau_region; 1909 } 1910 1911 switch (env->sau.ctrl & 3) { 1912 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 1913 break; 1914 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 1915 sattrs->ns = true; 1916 break; 1917 default: /* SAU.ENABLE == 1 */ 1918 for (r = 0; r < cpu->sau_sregion; r++) { 1919 if (env->sau.rlar[r] & 1) { 1920 uint32_t base = env->sau.rbar[r] & ~0x1f; 1921 uint32_t limit = env->sau.rlar[r] | 0x1f; 1922 1923 if (base <= address && limit >= address) { 1924 if (base > addr_page_base || limit < addr_page_limit) { 1925 sattrs->subpage = true; 1926 } 1927 if (sattrs->srvalid) { 1928 /* 1929 * If we hit in more than one region then we must report 1930 * as Secure, not NS-Callable, with no valid region 1931 * number info. 1932 */ 1933 sattrs->ns = false; 1934 sattrs->nsc = false; 1935 sattrs->sregion = 0; 1936 sattrs->srvalid = false; 1937 break; 1938 } else { 1939 if (env->sau.rlar[r] & 2) { 1940 sattrs->nsc = true; 1941 } else { 1942 sattrs->ns = true; 1943 } 1944 sattrs->srvalid = true; 1945 sattrs->sregion = r; 1946 } 1947 } else { 1948 /* 1949 * Address not in this region. We must check whether the 1950 * region covers addresses in the same page as our address. 1951 * In that case we must not report a size that covers the 1952 * whole page for a subsequent hit against a different MPU 1953 * region or the background region, because it would result 1954 * in incorrect TLB hits for subsequent accesses to 1955 * addresses that are in this MPU region. 1956 */ 1957 if (limit >= base && 1958 ranges_overlap(base, limit - base + 1, 1959 addr_page_base, 1960 TARGET_PAGE_SIZE)) { 1961 sattrs->subpage = true; 1962 } 1963 } 1964 } 1965 } 1966 break; 1967 } 1968 1969 /* 1970 * The IDAU will override the SAU lookup results if it specifies 1971 * higher security than the SAU does. 1972 */ 1973 if (!idau_ns) { 1974 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 1975 sattrs->ns = false; 1976 sattrs->nsc = idau_nsc; 1977 } 1978 } 1979 } 1980 1981 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 1982 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1983 hwaddr *phys_ptr, MemTxAttrs *txattrs, 1984 int *prot, target_ulong *page_size, 1985 ARMMMUFaultInfo *fi) 1986 { 1987 uint32_t secure = regime_is_secure(env, mmu_idx); 1988 V8M_SAttributes sattrs = {}; 1989 bool ret; 1990 bool mpu_is_subpage; 1991 1992 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1993 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 1994 if (access_type == MMU_INST_FETCH) { 1995 /* 1996 * Instruction fetches always use the MMU bank and the 1997 * transaction attribute determined by the fetch address, 1998 * regardless of CPU state. This is painful for QEMU 1999 * to handle, because it would mean we need to encode 2000 * into the mmu_idx not just the (user, negpri) information 2001 * for the current security state but also that for the 2002 * other security state, which would balloon the number 2003 * of mmu_idx values needed alarmingly. 2004 * Fortunately we can avoid this because it's not actually 2005 * possible to arbitrarily execute code from memory with 2006 * the wrong security attribute: it will always generate 2007 * an exception of some kind or another, apart from the 2008 * special case of an NS CPU executing an SG instruction 2009 * in S&NSC memory. So we always just fail the translation 2010 * here and sort things out in the exception handler 2011 * (including possibly emulating an SG instruction). 2012 */ 2013 if (sattrs.ns != !secure) { 2014 if (sattrs.nsc) { 2015 fi->type = ARMFault_QEMU_NSCExec; 2016 } else { 2017 fi->type = ARMFault_QEMU_SFault; 2018 } 2019 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 2020 *phys_ptr = address; 2021 *prot = 0; 2022 return true; 2023 } 2024 } else { 2025 /* 2026 * For data accesses we always use the MMU bank indicated 2027 * by the current CPU state, but the security attributes 2028 * might downgrade a secure access to nonsecure. 2029 */ 2030 if (sattrs.ns) { 2031 txattrs->secure = false; 2032 } else if (!secure) { 2033 /* 2034 * NS access to S memory must fault. 2035 * Architecturally we should first check whether the 2036 * MPU information for this address indicates that we 2037 * are doing an unaligned access to Device memory, which 2038 * should generate a UsageFault instead. QEMU does not 2039 * currently check for that kind of unaligned access though. 2040 * If we added it we would need to do so as a special case 2041 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2042 */ 2043 fi->type = ARMFault_QEMU_SFault; 2044 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 2045 *phys_ptr = address; 2046 *prot = 0; 2047 return true; 2048 } 2049 } 2050 } 2051 2052 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 2053 txattrs, prot, &mpu_is_subpage, fi, NULL); 2054 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 2055 return ret; 2056 } 2057 2058 /* 2059 * Translate from the 4-bit stage 2 representation of 2060 * memory attributes (without cache-allocation hints) to 2061 * the 8-bit representation of the stage 1 MAIR registers 2062 * (which includes allocation hints). 2063 * 2064 * ref: shared/translation/attrs/S2AttrDecode() 2065 * .../S2ConvertAttrsHints() 2066 */ 2067 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 2068 { 2069 uint8_t hiattr = extract32(s2attrs, 2, 2); 2070 uint8_t loattr = extract32(s2attrs, 0, 2); 2071 uint8_t hihint = 0, lohint = 0; 2072 2073 if (hiattr != 0) { /* normal memory */ 2074 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 2075 hiattr = loattr = 1; /* non-cacheable */ 2076 } else { 2077 if (hiattr != 1) { /* Write-through or write-back */ 2078 hihint = 3; /* RW allocate */ 2079 } 2080 if (loattr != 1) { /* Write-through or write-back */ 2081 lohint = 3; /* RW allocate */ 2082 } 2083 } 2084 } 2085 2086 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 2087 } 2088 2089 /* 2090 * Combine either inner or outer cacheability attributes for normal 2091 * memory, according to table D4-42 and pseudocode procedure 2092 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 2093 * 2094 * NB: only stage 1 includes allocation hints (RW bits), leading to 2095 * some asymmetry. 2096 */ 2097 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 2098 { 2099 if (s1 == 4 || s2 == 4) { 2100 /* non-cacheable has precedence */ 2101 return 4; 2102 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 2103 /* stage 1 write-through takes precedence */ 2104 return s1; 2105 } else if (extract32(s2, 2, 2) == 2) { 2106 /* stage 2 write-through takes precedence, but the allocation hint 2107 * is still taken from stage 1 2108 */ 2109 return (2 << 2) | extract32(s1, 0, 2); 2110 } else { /* write-back */ 2111 return s1; 2112 } 2113 } 2114 2115 /* 2116 * Combine the memory type and cacheability attributes of 2117 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 2118 * combined attributes in MAIR_EL1 format. 2119 */ 2120 static uint8_t combined_attrs_nofwb(CPUARMState *env, 2121 ARMCacheAttrs s1, ARMCacheAttrs s2) 2122 { 2123 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 2124 2125 s2_mair_attrs = convert_stage2_attrs(env, s2.attrs); 2126 2127 s1lo = extract32(s1.attrs, 0, 4); 2128 s2lo = extract32(s2_mair_attrs, 0, 4); 2129 s1hi = extract32(s1.attrs, 4, 4); 2130 s2hi = extract32(s2_mair_attrs, 4, 4); 2131 2132 /* Combine memory type and cacheability attributes */ 2133 if (s1hi == 0 || s2hi == 0) { 2134 /* Device has precedence over normal */ 2135 if (s1lo == 0 || s2lo == 0) { 2136 /* nGnRnE has precedence over anything */ 2137 ret_attrs = 0; 2138 } else if (s1lo == 4 || s2lo == 4) { 2139 /* non-Reordering has precedence over Reordering */ 2140 ret_attrs = 4; /* nGnRE */ 2141 } else if (s1lo == 8 || s2lo == 8) { 2142 /* non-Gathering has precedence over Gathering */ 2143 ret_attrs = 8; /* nGRE */ 2144 } else { 2145 ret_attrs = 0xc; /* GRE */ 2146 } 2147 } else { /* Normal memory */ 2148 /* Outer/inner cacheability combine independently */ 2149 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 2150 | combine_cacheattr_nibble(s1lo, s2lo); 2151 } 2152 return ret_attrs; 2153 } 2154 2155 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 2156 { 2157 /* 2158 * Given the 4 bits specifying the outer or inner cacheability 2159 * in MAIR format, return a value specifying Normal Write-Back, 2160 * with the allocation and transient hints taken from the input 2161 * if the input specified some kind of cacheable attribute. 2162 */ 2163 if (attr == 0 || attr == 4) { 2164 /* 2165 * 0 == an UNPREDICTABLE encoding 2166 * 4 == Non-cacheable 2167 * Either way, force Write-Back RW allocate non-transient 2168 */ 2169 return 0xf; 2170 } 2171 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 2172 return attr | 4; 2173 } 2174 2175 /* 2176 * Combine the memory type and cacheability attributes of 2177 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 2178 * combined attributes in MAIR_EL1 format. 2179 */ 2180 static uint8_t combined_attrs_fwb(CPUARMState *env, 2181 ARMCacheAttrs s1, ARMCacheAttrs s2) 2182 { 2183 switch (s2.attrs) { 2184 case 7: 2185 /* Use stage 1 attributes */ 2186 return s1.attrs; 2187 case 6: 2188 /* 2189 * Force Normal Write-Back. Note that if S1 is Normal cacheable 2190 * then we take the allocation hints from it; otherwise it is 2191 * RW allocate, non-transient. 2192 */ 2193 if ((s1.attrs & 0xf0) == 0) { 2194 /* S1 is Device */ 2195 return 0xff; 2196 } 2197 /* Need to check the Inner and Outer nibbles separately */ 2198 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 2199 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 2200 case 5: 2201 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 2202 if ((s1.attrs & 0xf0) == 0) { 2203 return s1.attrs; 2204 } 2205 return 0x44; 2206 case 0 ... 3: 2207 /* Force Device, of subtype specified by S2 */ 2208 return s2.attrs << 2; 2209 default: 2210 /* 2211 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 2212 * arbitrarily force Device. 2213 */ 2214 return 0; 2215 } 2216 } 2217 2218 /* 2219 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 2220 * and CombineS1S2Desc() 2221 * 2222 * @env: CPUARMState 2223 * @s1: Attributes from stage 1 walk 2224 * @s2: Attributes from stage 2 walk 2225 */ 2226 static ARMCacheAttrs combine_cacheattrs(CPUARMState *env, 2227 ARMCacheAttrs s1, ARMCacheAttrs s2) 2228 { 2229 ARMCacheAttrs ret; 2230 bool tagged = false; 2231 2232 assert(s2.is_s2_format && !s1.is_s2_format); 2233 ret.is_s2_format = false; 2234 2235 if (s1.attrs == 0xf0) { 2236 tagged = true; 2237 s1.attrs = 0xff; 2238 } 2239 2240 /* Combine shareability attributes (table D4-43) */ 2241 if (s1.shareability == 2 || s2.shareability == 2) { 2242 /* if either are outer-shareable, the result is outer-shareable */ 2243 ret.shareability = 2; 2244 } else if (s1.shareability == 3 || s2.shareability == 3) { 2245 /* if either are inner-shareable, the result is inner-shareable */ 2246 ret.shareability = 3; 2247 } else { 2248 /* both non-shareable */ 2249 ret.shareability = 0; 2250 } 2251 2252 /* Combine memory type and cacheability attributes */ 2253 if (arm_hcr_el2_eff(env) & HCR_FWB) { 2254 ret.attrs = combined_attrs_fwb(env, s1, s2); 2255 } else { 2256 ret.attrs = combined_attrs_nofwb(env, s1, s2); 2257 } 2258 2259 /* 2260 * Any location for which the resultant memory type is any 2261 * type of Device memory is always treated as Outer Shareable. 2262 * Any location for which the resultant memory type is Normal 2263 * Inner Non-cacheable, Outer Non-cacheable is always treated 2264 * as Outer Shareable. 2265 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 2266 */ 2267 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 2268 ret.shareability = 2; 2269 } 2270 2271 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 2272 if (tagged && ret.attrs == 0xff) { 2273 ret.attrs = 0xf0; 2274 } 2275 2276 return ret; 2277 } 2278 2279 /** 2280 * get_phys_addr - get the physical address for this virtual address 2281 * 2282 * Find the physical address corresponding to the given virtual address, 2283 * by doing a translation table walk on MMU based systems or using the 2284 * MPU state on MPU based systems. 2285 * 2286 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 2287 * prot and page_size may not be filled in, and the populated fsr value provides 2288 * information on why the translation aborted, in the format of a 2289 * DFSR/IFSR fault register, with the following caveats: 2290 * * we honour the short vs long DFSR format differences. 2291 * * the WnR bit is never set (the caller must do this). 2292 * * for PSMAv5 based systems we don't bother to return a full FSR format 2293 * value. 2294 * 2295 * @env: CPUARMState 2296 * @address: virtual address to get physical address for 2297 * @access_type: 0 for read, 1 for write, 2 for execute 2298 * @mmu_idx: MMU index indicating required translation regime 2299 * @phys_ptr: set to the physical address corresponding to the virtual address 2300 * @attrs: set to the memory transaction attributes to use 2301 * @prot: set to the permissions for the page containing phys_ptr 2302 * @page_size: set to the size of the page containing phys_ptr 2303 * @fi: set to fault info if the translation fails 2304 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 2305 */ 2306 bool get_phys_addr(CPUARMState *env, target_ulong address, 2307 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2308 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 2309 target_ulong *page_size, 2310 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 2311 { 2312 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 2313 2314 if (mmu_idx != s1_mmu_idx) { 2315 /* 2316 * Call ourselves recursively to do the stage 1 and then stage 2 2317 * translations if mmu_idx is a two-stage regime. 2318 */ 2319 if (arm_feature(env, ARM_FEATURE_EL2)) { 2320 hwaddr ipa; 2321 int s2_prot; 2322 int ret; 2323 bool ipa_secure; 2324 ARMCacheAttrs cacheattrs2 = {}; 2325 ARMMMUIdx s2_mmu_idx; 2326 bool is_el0; 2327 2328 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 2329 attrs, prot, page_size, fi, cacheattrs); 2330 2331 /* If S1 fails or S2 is disabled, return early. */ 2332 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 2333 *phys_ptr = ipa; 2334 return ret; 2335 } 2336 2337 ipa_secure = attrs->secure; 2338 if (arm_is_secure_below_el3(env)) { 2339 if (ipa_secure) { 2340 attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 2341 } else { 2342 attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 2343 } 2344 } else { 2345 assert(!ipa_secure); 2346 } 2347 2348 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 2349 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 2350 2351 /* S1 is done. Now do S2 translation. */ 2352 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 2353 phys_ptr, attrs, &s2_prot, 2354 page_size, fi, &cacheattrs2); 2355 fi->s2addr = ipa; 2356 /* Combine the S1 and S2 perms. */ 2357 *prot &= s2_prot; 2358 2359 /* If S2 fails, return early. */ 2360 if (ret) { 2361 return ret; 2362 } 2363 2364 /* Combine the S1 and S2 cache attributes. */ 2365 if (arm_hcr_el2_eff(env) & HCR_DC) { 2366 /* 2367 * HCR.DC forces the first stage attributes to 2368 * Normal Non-Shareable, 2369 * Inner Write-Back Read-Allocate Write-Allocate, 2370 * Outer Write-Back Read-Allocate Write-Allocate. 2371 * Do not overwrite Tagged within attrs. 2372 */ 2373 if (cacheattrs->attrs != 0xf0) { 2374 cacheattrs->attrs = 0xff; 2375 } 2376 cacheattrs->shareability = 0; 2377 } 2378 *cacheattrs = combine_cacheattrs(env, *cacheattrs, cacheattrs2); 2379 2380 /* Check if IPA translates to secure or non-secure PA space. */ 2381 if (arm_is_secure_below_el3(env)) { 2382 if (ipa_secure) { 2383 attrs->secure = 2384 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 2385 } else { 2386 attrs->secure = 2387 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 2388 || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW))); 2389 } 2390 } 2391 return 0; 2392 } else { 2393 /* 2394 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 2395 */ 2396 mmu_idx = stage_1_mmu_idx(mmu_idx); 2397 } 2398 } 2399 2400 /* 2401 * The page table entries may downgrade secure to non-secure, but 2402 * cannot upgrade an non-secure translation regime's attributes 2403 * to secure. 2404 */ 2405 attrs->secure = regime_is_secure(env, mmu_idx); 2406 attrs->user = regime_is_user(env, mmu_idx); 2407 2408 /* 2409 * Fast Context Switch Extension. This doesn't exist at all in v8. 2410 * In v7 and earlier it affects all stage 1 translations. 2411 */ 2412 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 2413 && !arm_feature(env, ARM_FEATURE_V8)) { 2414 if (regime_el(env, mmu_idx) == 3) { 2415 address += env->cp15.fcseidr_s; 2416 } else { 2417 address += env->cp15.fcseidr_ns; 2418 } 2419 } 2420 2421 if (arm_feature(env, ARM_FEATURE_PMSA)) { 2422 bool ret; 2423 *page_size = TARGET_PAGE_SIZE; 2424 2425 if (arm_feature(env, ARM_FEATURE_V8)) { 2426 /* PMSAv8 */ 2427 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 2428 phys_ptr, attrs, prot, page_size, fi); 2429 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2430 /* PMSAv7 */ 2431 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 2432 phys_ptr, prot, page_size, fi); 2433 } else { 2434 /* Pre-v7 MPU */ 2435 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 2436 phys_ptr, prot, fi); 2437 } 2438 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 2439 " mmu_idx %u -> %s (prot %c%c%c)\n", 2440 access_type == MMU_DATA_LOAD ? "reading" : 2441 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 2442 (uint32_t)address, mmu_idx, 2443 ret ? "Miss" : "Hit", 2444 *prot & PAGE_READ ? 'r' : '-', 2445 *prot & PAGE_WRITE ? 'w' : '-', 2446 *prot & PAGE_EXEC ? 'x' : '-'); 2447 2448 return ret; 2449 } 2450 2451 /* Definitely a real MMU, not an MPU */ 2452 2453 if (regime_translation_disabled(env, mmu_idx)) { 2454 uint64_t hcr; 2455 uint8_t memattr; 2456 2457 /* 2458 * MMU disabled. S1 addresses within aa64 translation regimes are 2459 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 2460 */ 2461 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 2462 int r_el = regime_el(env, mmu_idx); 2463 if (arm_el_is_aa64(env, r_el)) { 2464 int pamax = arm_pamax(env_archcpu(env)); 2465 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 2466 int addrtop, tbi; 2467 2468 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 2469 if (access_type == MMU_INST_FETCH) { 2470 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 2471 } 2472 tbi = (tbi >> extract64(address, 55, 1)) & 1; 2473 addrtop = (tbi ? 55 : 63); 2474 2475 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 2476 fi->type = ARMFault_AddressSize; 2477 fi->level = 0; 2478 fi->stage2 = false; 2479 return 1; 2480 } 2481 2482 /* 2483 * When TBI is disabled, we've just validated that all of the 2484 * bits above PAMax are zero, so logically we only need to 2485 * clear the top byte for TBI. But it's clearer to follow 2486 * the pseudocode set of addrdesc.paddress. 2487 */ 2488 address = extract64(address, 0, 52); 2489 } 2490 } 2491 *phys_ptr = address; 2492 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2493 *page_size = TARGET_PAGE_SIZE; 2494 2495 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 2496 hcr = arm_hcr_el2_eff(env); 2497 cacheattrs->shareability = 0; 2498 cacheattrs->is_s2_format = false; 2499 if (hcr & HCR_DC) { 2500 if (hcr & HCR_DCT) { 2501 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 2502 } else { 2503 memattr = 0xff; /* Normal, WB, RWA */ 2504 } 2505 } else if (access_type == MMU_INST_FETCH) { 2506 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 2507 memattr = 0xee; /* Normal, WT, RA, NT */ 2508 } else { 2509 memattr = 0x44; /* Normal, NC, No */ 2510 } 2511 cacheattrs->shareability = 2; /* outer sharable */ 2512 } else { 2513 memattr = 0x00; /* Device, nGnRnE */ 2514 } 2515 cacheattrs->attrs = memattr; 2516 return 0; 2517 } 2518 2519 if (regime_using_lpae_format(env, mmu_idx)) { 2520 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 2521 phys_ptr, attrs, prot, page_size, 2522 fi, cacheattrs); 2523 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 2524 return get_phys_addr_v6(env, address, access_type, mmu_idx, 2525 phys_ptr, attrs, prot, page_size, fi); 2526 } else { 2527 return get_phys_addr_v5(env, address, access_type, mmu_idx, 2528 phys_ptr, prot, page_size, fi); 2529 } 2530 } 2531 2532 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 2533 MemTxAttrs *attrs) 2534 { 2535 ARMCPU *cpu = ARM_CPU(cs); 2536 CPUARMState *env = &cpu->env; 2537 hwaddr phys_addr; 2538 target_ulong page_size; 2539 int prot; 2540 bool ret; 2541 ARMMMUFaultInfo fi = {}; 2542 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 2543 ARMCacheAttrs cacheattrs = {}; 2544 2545 *attrs = (MemTxAttrs) {}; 2546 2547 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 2548 attrs, &prot, &page_size, &fi, &cacheattrs); 2549 2550 if (ret) { 2551 return -1; 2552 } 2553 return phys_addr; 2554 } 2555