xref: /openbmc/qemu/target/arm/ptw.c (revision ecd6f6a8)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "cpu-features.h"
17 #include "idau.h"
18 #ifdef CONFIG_TCG
19 # include "tcg/oversized-guest.h"
20 #endif
21 
22 typedef struct S1Translate {
23     /*
24      * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
25      * Together with in_space, specifies the architectural translation regime.
26      */
27     ARMMMUIdx in_mmu_idx;
28     /*
29      * in_ptw_idx: specifies which mmuidx to use for the actual
30      * page table descriptor load operations. This will be one of the
31      * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
32      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
33      * this field is updated accordingly.
34      */
35     ARMMMUIdx in_ptw_idx;
36     /*
37      * in_space: the security space for this walk. This plus
38      * the in_mmu_idx specify the architectural translation regime.
39      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
40      * this field is updated accordingly.
41      *
42      * Note that the security space for the in_ptw_idx may be different
43      * from that for the in_mmu_idx. We do not need to explicitly track
44      * the in_ptw_idx security space because:
45      *  - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
46      *    itself specifies the security space
47      *  - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
48      *    space used for ptw reads is the same as that of the security
49      *    space of the stage 1 translation for all cases except where
50      *    stage 1 is Secure; in that case the only possibilities for
51      *    the ptw read are Secure and NonSecure, and the in_ptw_idx
52      *    value being Stage2 vs Stage2_S distinguishes those.
53      */
54     ARMSecuritySpace in_space;
55     /*
56      * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
57      * accesses will not update the guest page table access flags
58      * and will not change the state of the softmmu TLBs.
59      */
60     bool in_debug;
61     /*
62      * If this is stage 2 of a stage 1+2 page table walk, then this must
63      * be true if stage 1 is an EL0 access; otherwise this is ignored.
64      * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
65      */
66     bool in_s1_is_el0;
67     bool out_rw;
68     bool out_be;
69     ARMSecuritySpace out_space;
70     hwaddr out_virt;
71     hwaddr out_phys;
72     void *out_host;
73 } S1Translate;
74 
75 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
76                                 target_ulong address,
77                                 MMUAccessType access_type,
78                                 GetPhysAddrResult *result,
79                                 ARMMMUFaultInfo *fi);
80 
81 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
82                               target_ulong address,
83                               MMUAccessType access_type,
84                               GetPhysAddrResult *result,
85                               ARMMMUFaultInfo *fi);
86 
87 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
88 static const uint8_t pamax_map[] = {
89     [0] = 32,
90     [1] = 36,
91     [2] = 40,
92     [3] = 42,
93     [4] = 44,
94     [5] = 48,
95     [6] = 52,
96 };
97 
98 /*
99  * The cpu-specific constant value of PAMax; also used by hw/arm/virt.
100  * Note that machvirt_init calls this on a CPU that is inited but not realized!
101  */
102 unsigned int arm_pamax(ARMCPU *cpu)
103 {
104     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
105         unsigned int parange =
106             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
107 
108         /*
109          * id_aa64mmfr0 is a read-only register so values outside of the
110          * supported mappings can be considered an implementation error.
111          */
112         assert(parange < ARRAY_SIZE(pamax_map));
113         return pamax_map[parange];
114     }
115 
116     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
117         /* v7 or v8 with LPAE */
118         return 40;
119     }
120     /* Anything else */
121     return 32;
122 }
123 
124 /*
125  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
126  */
127 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
128 {
129     switch (mmu_idx) {
130     case ARMMMUIdx_E10_0:
131         return ARMMMUIdx_Stage1_E0;
132     case ARMMMUIdx_E10_1:
133         return ARMMMUIdx_Stage1_E1;
134     case ARMMMUIdx_E10_1_PAN:
135         return ARMMMUIdx_Stage1_E1_PAN;
136     default:
137         return mmu_idx;
138     }
139 }
140 
141 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
142 {
143     return stage_1_mmu_idx(arm_mmu_idx(env));
144 }
145 
146 /*
147  * Return where we should do ptw loads from for a stage 2 walk.
148  * This depends on whether the address we are looking up is a
149  * Secure IPA or a NonSecure IPA, which we know from whether this is
150  * Stage2 or Stage2_S.
151  * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
152  */
153 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
154 {
155     bool s2walk_secure;
156 
157     /*
158      * We're OK to check the current state of the CPU here because
159      * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit
160      * changes.
161      * (2) there's no way to do a lookup that cares about Stage 2 for a
162      * different security state to the current one for AArch64, and AArch32
163      * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
164      * an NS stage 1+2 lookup while the NS bit is 0.)
165      */
166     if (!arm_el_is_aa64(env, 3)) {
167         return ARMMMUIdx_Phys_NS;
168     }
169 
170     switch (arm_security_space_below_el3(env)) {
171     case ARMSS_NonSecure:
172         return ARMMMUIdx_Phys_NS;
173     case ARMSS_Realm:
174         return ARMMMUIdx_Phys_Realm;
175     case ARMSS_Secure:
176         if (stage2idx == ARMMMUIdx_Stage2_S) {
177             s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
178         } else {
179             s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
180         }
181         return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
182     default:
183         g_assert_not_reached();
184     }
185 }
186 
187 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
188 {
189     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
190 }
191 
192 /* Return the TTBR associated with this translation regime */
193 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
194 {
195     if (mmu_idx == ARMMMUIdx_Stage2) {
196         return env->cp15.vttbr_el2;
197     }
198     if (mmu_idx == ARMMMUIdx_Stage2_S) {
199         return env->cp15.vsttbr_el2;
200     }
201     if (ttbrn == 0) {
202         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
203     } else {
204         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
205     }
206 }
207 
208 /* Return true if the specified stage of address translation is disabled */
209 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
210                                         ARMSecuritySpace space)
211 {
212     uint64_t hcr_el2;
213 
214     if (arm_feature(env, ARM_FEATURE_M)) {
215         bool is_secure = arm_space_is_secure(space);
216         switch (env->v7m.mpu_ctrl[is_secure] &
217                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
218         case R_V7M_MPU_CTRL_ENABLE_MASK:
219             /* Enabled, but not for HardFault and NMI */
220             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
221         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
222             /* Enabled for all cases */
223             return false;
224         case 0:
225         default:
226             /*
227              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
228              * we warned about that in armv7m_nvic.c when the guest set it.
229              */
230             return true;
231         }
232     }
233 
234 
235     switch (mmu_idx) {
236     case ARMMMUIdx_Stage2:
237     case ARMMMUIdx_Stage2_S:
238         /* HCR.DC means HCR.VM behaves as 1 */
239         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
240         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
241 
242     case ARMMMUIdx_E10_0:
243     case ARMMMUIdx_E10_1:
244     case ARMMMUIdx_E10_1_PAN:
245         /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
246         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
247         if (hcr_el2 & HCR_TGE) {
248             return true;
249         }
250         break;
251 
252     case ARMMMUIdx_Stage1_E0:
253     case ARMMMUIdx_Stage1_E1:
254     case ARMMMUIdx_Stage1_E1_PAN:
255         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
256         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
257         if (hcr_el2 & HCR_DC) {
258             return true;
259         }
260         break;
261 
262     case ARMMMUIdx_E20_0:
263     case ARMMMUIdx_E20_2:
264     case ARMMMUIdx_E20_2_PAN:
265     case ARMMMUIdx_E2:
266     case ARMMMUIdx_E3:
267         break;
268 
269     case ARMMMUIdx_Phys_S:
270     case ARMMMUIdx_Phys_NS:
271     case ARMMMUIdx_Phys_Root:
272     case ARMMMUIdx_Phys_Realm:
273         /* No translation for physical address spaces. */
274         return true;
275 
276     default:
277         g_assert_not_reached();
278     }
279 
280     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
281 }
282 
283 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
284                                      ARMSecuritySpace pspace,
285                                      ARMMMUFaultInfo *fi)
286 {
287     MemTxAttrs attrs = {
288         .secure = true,
289         .space = ARMSS_Root,
290     };
291     ARMCPU *cpu = env_archcpu(env);
292     uint64_t gpccr = env->cp15.gpccr_el3;
293     unsigned pps, pgs, l0gptsz, level = 0;
294     uint64_t tableaddr, pps_mask, align, entry, index;
295     AddressSpace *as;
296     MemTxResult result;
297     int gpi;
298 
299     if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
300         return true;
301     }
302 
303     /*
304      * GPC Priority 1 (R_GMGRR):
305      * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
306      * the access fails as GPT walk fault at level 0.
307      */
308 
309     /*
310      * Configuration of PPS to a value exceeding the implemented
311      * physical address size is invalid.
312      */
313     pps = FIELD_EX64(gpccr, GPCCR, PPS);
314     if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
315         goto fault_walk;
316     }
317     pps = pamax_map[pps];
318     pps_mask = MAKE_64BIT_MASK(0, pps);
319 
320     switch (FIELD_EX64(gpccr, GPCCR, SH)) {
321     case 0b10: /* outer shareable */
322         break;
323     case 0b00: /* non-shareable */
324     case 0b11: /* inner shareable */
325         /* Inner and Outer non-cacheable requires Outer shareable. */
326         if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
327             FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
328             goto fault_walk;
329         }
330         break;
331     default:   /* reserved */
332         goto fault_walk;
333     }
334 
335     switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
336     case 0b00: /* 4KB */
337         pgs = 12;
338         break;
339     case 0b01: /* 64KB */
340         pgs = 16;
341         break;
342     case 0b10: /* 16KB */
343         pgs = 14;
344         break;
345     default: /* reserved */
346         goto fault_walk;
347     }
348 
349     /* Note this field is read-only and fixed at reset. */
350     l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
351 
352     /*
353      * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
354      * R_CPDSB: A NonSecure physical address input exceeding PPS
355      * does not experience any fault.
356      */
357     if (paddress & ~pps_mask) {
358         if (pspace == ARMSS_NonSecure) {
359             return true;
360         }
361         goto fault_size;
362     }
363 
364     /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
365     tableaddr = env->cp15.gptbr_el3 << 12;
366     if (tableaddr & ~pps_mask) {
367         goto fault_size;
368     }
369 
370     /*
371      * BADDR is aligned per a function of PPS and L0GPTSZ.
372      * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
373      * unlike the RES0 bits of the GPT entries (R_XNKFZ).
374      */
375     align = MAX(pps - l0gptsz + 3, 12);
376     align = MAKE_64BIT_MASK(0, align);
377     tableaddr &= ~align;
378 
379     as = arm_addressspace(env_cpu(env), attrs);
380 
381     /* Level 0 lookup. */
382     index = extract64(paddress, l0gptsz, pps - l0gptsz);
383     tableaddr += index * 8;
384     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
385     if (result != MEMTX_OK) {
386         goto fault_eabt;
387     }
388 
389     switch (extract32(entry, 0, 4)) {
390     case 1: /* block descriptor */
391         if (entry >> 8) {
392             goto fault_walk; /* RES0 bits not 0 */
393         }
394         gpi = extract32(entry, 4, 4);
395         goto found;
396     case 3: /* table descriptor */
397         tableaddr = entry & ~0xf;
398         align = MAX(l0gptsz - pgs - 1, 12);
399         align = MAKE_64BIT_MASK(0, align);
400         if (tableaddr & (~pps_mask | align)) {
401             goto fault_walk; /* RES0 bits not 0 */
402         }
403         break;
404     default: /* invalid */
405         goto fault_walk;
406     }
407 
408     /* Level 1 lookup */
409     level = 1;
410     index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
411     tableaddr += index * 8;
412     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
413     if (result != MEMTX_OK) {
414         goto fault_eabt;
415     }
416 
417     switch (extract32(entry, 0, 4)) {
418     case 1: /* contiguous descriptor */
419         if (entry >> 10) {
420             goto fault_walk; /* RES0 bits not 0 */
421         }
422         /*
423          * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
424          * and because we cannot invalidate by pa, and thus will always
425          * flush entire tlbs, we don't actually care about the range here
426          * and can simply extract the GPI as the result.
427          */
428         if (extract32(entry, 8, 2) == 0) {
429             goto fault_walk; /* reserved contig */
430         }
431         gpi = extract32(entry, 4, 4);
432         break;
433     default:
434         index = extract64(paddress, pgs, 4);
435         gpi = extract64(entry, index * 4, 4);
436         break;
437     }
438 
439  found:
440     switch (gpi) {
441     case 0b0000: /* no access */
442         break;
443     case 0b1111: /* all access */
444         return true;
445     case 0b1000:
446     case 0b1001:
447     case 0b1010:
448     case 0b1011:
449         if (pspace == (gpi & 3)) {
450             return true;
451         }
452         break;
453     default:
454         goto fault_walk; /* reserved */
455     }
456 
457     fi->gpcf = GPCF_Fail;
458     goto fault_common;
459  fault_eabt:
460     fi->gpcf = GPCF_EABT;
461     goto fault_common;
462  fault_size:
463     fi->gpcf = GPCF_AddressSize;
464     goto fault_common;
465  fault_walk:
466     fi->gpcf = GPCF_Walk;
467  fault_common:
468     fi->level = level;
469     fi->paddr = paddress;
470     fi->paddr_space = pspace;
471     return false;
472 }
473 
474 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
475 {
476     /*
477      * For an S1 page table walk, the stage 1 attributes are always
478      * some form of "this is Normal memory". The combined S1+S2
479      * attributes are therefore only Device if stage 2 specifies Device.
480      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
481      * ie when cacheattrs.attrs bits [3:2] are 0b00.
482      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
483      * when cacheattrs.attrs bit [2] is 0.
484      */
485     if (hcr & HCR_FWB) {
486         return (attrs & 0x4) == 0;
487     } else {
488         return (attrs & 0xc) == 0;
489     }
490 }
491 
492 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
493                                           ARMMMUIdx s2_mmu_idx)
494 {
495     /*
496      * Return the security space to use for stage 2 when doing
497      * the S1 page table descriptor load.
498      */
499     if (regime_is_stage2(s2_mmu_idx)) {
500         /*
501          * The security space for ptw reads is almost always the same
502          * as that of the security space of the stage 1 translation.
503          * The only exception is when stage 1 is Secure; in that case
504          * the ptw read might be to the Secure or the NonSecure space
505          * (but never Realm or Root), and the s2_mmu_idx tells us which.
506          * Root translations are always single-stage.
507          */
508         if (s1_space == ARMSS_Secure) {
509             return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
510         } else {
511             assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
512             assert(s1_space != ARMSS_Root);
513             return s1_space;
514         }
515     } else {
516         /* ptw loads are from phys: the mmu idx itself says which space */
517         return arm_phys_to_space(s2_mmu_idx);
518     }
519 }
520 
521 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx)
522 {
523     /*
524      * For stage 2 faults in Secure EL22, S1NS indicates
525      * whether the faulting IPA is in the Secure or NonSecure
526      * IPA space. For all other kinds of fault, it is false.
527      */
528     return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx)
529         && s2_mmu_idx == ARMMMUIdx_Stage2_S;
530 }
531 
532 /* Translate a S1 pagetable walk through S2 if needed.  */
533 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
534                              hwaddr addr, ARMMMUFaultInfo *fi)
535 {
536     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
537     ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
538     uint8_t pte_attrs;
539 
540     ptw->out_virt = addr;
541 
542     if (unlikely(ptw->in_debug)) {
543         /*
544          * From gdbstub, do not use softmmu so that we don't modify the
545          * state of the cpu at all, including softmmu tlb contents.
546          */
547         ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
548         S1Translate s2ptw = {
549             .in_mmu_idx = s2_mmu_idx,
550             .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
551             .in_space = s2_space,
552             .in_debug = true,
553         };
554         GetPhysAddrResult s2 = { };
555 
556         if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) {
557             goto fail;
558         }
559 
560         ptw->out_phys = s2.f.phys_addr;
561         pte_attrs = s2.cacheattrs.attrs;
562         ptw->out_host = NULL;
563         ptw->out_rw = false;
564         ptw->out_space = s2.f.attrs.space;
565     } else {
566 #ifdef CONFIG_TCG
567         CPUTLBEntryFull *full;
568         int flags;
569 
570         env->tlb_fi = fi;
571         flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
572                                       arm_to_core_mmu_idx(s2_mmu_idx),
573                                       &ptw->out_host, &full);
574         env->tlb_fi = NULL;
575 
576         if (unlikely(flags & TLB_INVALID_MASK)) {
577             goto fail;
578         }
579         ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
580         ptw->out_rw = full->prot & PAGE_WRITE;
581         pte_attrs = full->extra.arm.pte_attrs;
582         ptw->out_space = full->attrs.space;
583 #else
584         g_assert_not_reached();
585 #endif
586     }
587 
588     if (regime_is_stage2(s2_mmu_idx)) {
589         uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
590 
591         if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
592             /*
593              * PTW set and S1 walk touched S2 Device memory:
594              * generate Permission fault.
595              */
596             fi->type = ARMFault_Permission;
597             fi->s2addr = addr;
598             fi->stage2 = true;
599             fi->s1ptw = true;
600             fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
601             return false;
602         }
603     }
604 
605     ptw->out_be = regime_translation_big_endian(env, mmu_idx);
606     return true;
607 
608  fail:
609     assert(fi->type != ARMFault_None);
610     if (fi->type == ARMFault_GPCFOnOutput) {
611         fi->type = ARMFault_GPCFOnWalk;
612     }
613     fi->s2addr = addr;
614     fi->stage2 = regime_is_stage2(s2_mmu_idx);
615     fi->s1ptw = fi->stage2;
616     fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
617     return false;
618 }
619 
620 /* All loads done in the course of a page table walk go through here. */
621 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
622                             ARMMMUFaultInfo *fi)
623 {
624     CPUState *cs = env_cpu(env);
625     void *host = ptw->out_host;
626     uint32_t data;
627 
628     if (likely(host)) {
629         /* Page tables are in RAM, and we have the host address. */
630         data = qatomic_read((uint32_t *)host);
631         if (ptw->out_be) {
632             data = be32_to_cpu(data);
633         } else {
634             data = le32_to_cpu(data);
635         }
636     } else {
637         /* Page tables are in MMIO. */
638         MemTxAttrs attrs = {
639             .space = ptw->out_space,
640             .secure = arm_space_is_secure(ptw->out_space),
641         };
642         AddressSpace *as = arm_addressspace(cs, attrs);
643         MemTxResult result = MEMTX_OK;
644 
645         if (ptw->out_be) {
646             data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
647         } else {
648             data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
649         }
650         if (unlikely(result != MEMTX_OK)) {
651             fi->type = ARMFault_SyncExternalOnWalk;
652             fi->ea = arm_extabort_type(result);
653             return 0;
654         }
655     }
656     return data;
657 }
658 
659 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
660                             ARMMMUFaultInfo *fi)
661 {
662     CPUState *cs = env_cpu(env);
663     void *host = ptw->out_host;
664     uint64_t data;
665 
666     if (likely(host)) {
667         /* Page tables are in RAM, and we have the host address. */
668 #ifdef CONFIG_ATOMIC64
669         data = qatomic_read__nocheck((uint64_t *)host);
670         if (ptw->out_be) {
671             data = be64_to_cpu(data);
672         } else {
673             data = le64_to_cpu(data);
674         }
675 #else
676         if (ptw->out_be) {
677             data = ldq_be_p(host);
678         } else {
679             data = ldq_le_p(host);
680         }
681 #endif
682     } else {
683         /* Page tables are in MMIO. */
684         MemTxAttrs attrs = {
685             .space = ptw->out_space,
686             .secure = arm_space_is_secure(ptw->out_space),
687         };
688         AddressSpace *as = arm_addressspace(cs, attrs);
689         MemTxResult result = MEMTX_OK;
690 
691         if (ptw->out_be) {
692             data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
693         } else {
694             data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
695         }
696         if (unlikely(result != MEMTX_OK)) {
697             fi->type = ARMFault_SyncExternalOnWalk;
698             fi->ea = arm_extabort_type(result);
699             return 0;
700         }
701     }
702     return data;
703 }
704 
705 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
706                              uint64_t new_val, S1Translate *ptw,
707                              ARMMMUFaultInfo *fi)
708 {
709 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
710     uint64_t cur_val;
711     void *host = ptw->out_host;
712 
713     if (unlikely(!host)) {
714         /* Page table in MMIO Memory Region */
715         CPUState *cs = env_cpu(env);
716         MemTxAttrs attrs = {
717             .space = ptw->out_space,
718             .secure = arm_space_is_secure(ptw->out_space),
719         };
720         AddressSpace *as = arm_addressspace(cs, attrs);
721         MemTxResult result = MEMTX_OK;
722         bool need_lock = !bql_locked();
723 
724         if (need_lock) {
725             bql_lock();
726         }
727         if (ptw->out_be) {
728             cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
729             if (unlikely(result != MEMTX_OK)) {
730                 fi->type = ARMFault_SyncExternalOnWalk;
731                 fi->ea = arm_extabort_type(result);
732                 if (need_lock) {
733                     bql_unlock();
734                 }
735                 return old_val;
736             }
737             if (cur_val == old_val) {
738                 address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result);
739                 if (unlikely(result != MEMTX_OK)) {
740                     fi->type = ARMFault_SyncExternalOnWalk;
741                     fi->ea = arm_extabort_type(result);
742                     if (need_lock) {
743                         bql_unlock();
744                     }
745                     return old_val;
746                 }
747                 cur_val = new_val;
748             }
749         } else {
750             cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
751             if (unlikely(result != MEMTX_OK)) {
752                 fi->type = ARMFault_SyncExternalOnWalk;
753                 fi->ea = arm_extabort_type(result);
754                 if (need_lock) {
755                     bql_unlock();
756                 }
757                 return old_val;
758             }
759             if (cur_val == old_val) {
760                 address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result);
761                 if (unlikely(result != MEMTX_OK)) {
762                     fi->type = ARMFault_SyncExternalOnWalk;
763                     fi->ea = arm_extabort_type(result);
764                     if (need_lock) {
765                         bql_unlock();
766                     }
767                     return old_val;
768                 }
769                 cur_val = new_val;
770             }
771         }
772         if (need_lock) {
773             bql_unlock();
774         }
775         return cur_val;
776     }
777 
778     /*
779      * Raising a stage2 Protection fault for an atomic update to a read-only
780      * page is delayed until it is certain that there is a change to make.
781      */
782     if (unlikely(!ptw->out_rw)) {
783         int flags;
784 
785         env->tlb_fi = fi;
786         flags = probe_access_full_mmu(env, ptw->out_virt, 0,
787                                       MMU_DATA_STORE,
788                                       arm_to_core_mmu_idx(ptw->in_ptw_idx),
789                                       NULL, NULL);
790         env->tlb_fi = NULL;
791 
792         if (unlikely(flags & TLB_INVALID_MASK)) {
793             /*
794              * We know this must be a stage 2 fault because the granule
795              * protection table does not separately track read and write
796              * permission, so all GPC faults are caught in S1_ptw_translate():
797              * we only get here for "readable but not writeable".
798              */
799             assert(fi->type != ARMFault_None);
800             fi->s2addr = ptw->out_virt;
801             fi->stage2 = true;
802             fi->s1ptw = true;
803             fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx);
804             return 0;
805         }
806 
807         /* In case CAS mismatches and we loop, remember writability. */
808         ptw->out_rw = true;
809     }
810 
811 #ifdef CONFIG_ATOMIC64
812     if (ptw->out_be) {
813         old_val = cpu_to_be64(old_val);
814         new_val = cpu_to_be64(new_val);
815         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
816         cur_val = be64_to_cpu(cur_val);
817     } else {
818         old_val = cpu_to_le64(old_val);
819         new_val = cpu_to_le64(new_val);
820         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
821         cur_val = le64_to_cpu(cur_val);
822     }
823 #else
824     /*
825      * We can't support the full 64-bit atomic cmpxchg on the host.
826      * Because this is only used for FEAT_HAFDBS, which is only for AA64,
827      * we know that TCG_OVERSIZED_GUEST is set, which means that we are
828      * running in round-robin mode and could only race with dma i/o.
829      */
830 #if !TCG_OVERSIZED_GUEST
831 # error "Unexpected configuration"
832 #endif
833     bool locked = bql_locked();
834     if (!locked) {
835         bql_lock();
836     }
837     if (ptw->out_be) {
838         cur_val = ldq_be_p(host);
839         if (cur_val == old_val) {
840             stq_be_p(host, new_val);
841         }
842     } else {
843         cur_val = ldq_le_p(host);
844         if (cur_val == old_val) {
845             stq_le_p(host, new_val);
846         }
847     }
848     if (!locked) {
849         bql_unlock();
850     }
851 #endif
852 
853     return cur_val;
854 #else
855     /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
856     g_assert_not_reached();
857 #endif
858 }
859 
860 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
861                                      uint32_t *table, uint32_t address)
862 {
863     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
864     uint64_t tcr = regime_tcr(env, mmu_idx);
865     int maskshift = extract32(tcr, 0, 3);
866     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
867     uint32_t base_mask;
868 
869     if (address & mask) {
870         if (tcr & TTBCR_PD1) {
871             /* Translation table walk disabled for TTBR1 */
872             return false;
873         }
874         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
875     } else {
876         if (tcr & TTBCR_PD0) {
877             /* Translation table walk disabled for TTBR0 */
878             return false;
879         }
880         base_mask = ~((uint32_t)0x3fffu >> maskshift);
881         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
882     }
883     *table |= (address >> 18) & 0x3ffc;
884     return true;
885 }
886 
887 /*
888  * Translate section/page access permissions to page R/W protection flags
889  * @env:         CPUARMState
890  * @mmu_idx:     MMU index indicating required translation regime
891  * @ap:          The 3-bit access permissions (AP[2:0])
892  * @domain_prot: The 2-bit domain access permissions
893  * @is_user: TRUE if accessing from PL0
894  */
895 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
896                          int ap, int domain_prot, bool is_user)
897 {
898     if (domain_prot == 3) {
899         return PAGE_READ | PAGE_WRITE;
900     }
901 
902     switch (ap) {
903     case 0:
904         if (arm_feature(env, ARM_FEATURE_V7)) {
905             return 0;
906         }
907         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
908         case SCTLR_S:
909             return is_user ? 0 : PAGE_READ;
910         case SCTLR_R:
911             return PAGE_READ;
912         default:
913             return 0;
914         }
915     case 1:
916         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
917     case 2:
918         if (is_user) {
919             return PAGE_READ;
920         } else {
921             return PAGE_READ | PAGE_WRITE;
922         }
923     case 3:
924         return PAGE_READ | PAGE_WRITE;
925     case 4: /* Reserved.  */
926         return 0;
927     case 5:
928         return is_user ? 0 : PAGE_READ;
929     case 6:
930         return PAGE_READ;
931     case 7:
932         if (!arm_feature(env, ARM_FEATURE_V6K)) {
933             return 0;
934         }
935         return PAGE_READ;
936     default:
937         g_assert_not_reached();
938     }
939 }
940 
941 /*
942  * Translate section/page access permissions to page R/W protection flags
943  * @env:         CPUARMState
944  * @mmu_idx:     MMU index indicating required translation regime
945  * @ap:          The 3-bit access permissions (AP[2:0])
946  * @domain_prot: The 2-bit domain access permissions
947  */
948 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
949                          int ap, int domain_prot)
950 {
951    return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
952                                 regime_is_user(env, mmu_idx));
953 }
954 
955 /*
956  * Translate section/page access permissions to page R/W protection flags.
957  * @ap:      The 2-bit simple AP (AP[2:1])
958  * @is_user: TRUE if accessing from PL0
959  */
960 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
961 {
962     switch (ap) {
963     case 0:
964         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
965     case 1:
966         return PAGE_READ | PAGE_WRITE;
967     case 2:
968         return is_user ? 0 : PAGE_READ;
969     case 3:
970         return PAGE_READ;
971     default:
972         g_assert_not_reached();
973     }
974 }
975 
976 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
977 {
978     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
979 }
980 
981 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
982                              uint32_t address, MMUAccessType access_type,
983                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
984 {
985     int level = 1;
986     uint32_t table;
987     uint32_t desc;
988     int type;
989     int ap;
990     int domain = 0;
991     int domain_prot;
992     hwaddr phys_addr;
993     uint32_t dacr;
994 
995     /* Pagetable walk.  */
996     /* Lookup l1 descriptor.  */
997     if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
998         /* Section translation fault if page walk is disabled by PD0 or PD1 */
999         fi->type = ARMFault_Translation;
1000         goto do_fault;
1001     }
1002     if (!S1_ptw_translate(env, ptw, table, fi)) {
1003         goto do_fault;
1004     }
1005     desc = arm_ldl_ptw(env, ptw, fi);
1006     if (fi->type != ARMFault_None) {
1007         goto do_fault;
1008     }
1009     type = (desc & 3);
1010     domain = (desc >> 5) & 0x0f;
1011     if (regime_el(env, ptw->in_mmu_idx) == 1) {
1012         dacr = env->cp15.dacr_ns;
1013     } else {
1014         dacr = env->cp15.dacr_s;
1015     }
1016     domain_prot = (dacr >> (domain * 2)) & 3;
1017     if (type == 0) {
1018         /* Section translation fault.  */
1019         fi->type = ARMFault_Translation;
1020         goto do_fault;
1021     }
1022     if (type != 2) {
1023         level = 2;
1024     }
1025     if (domain_prot == 0 || domain_prot == 2) {
1026         fi->type = ARMFault_Domain;
1027         goto do_fault;
1028     }
1029     if (type == 2) {
1030         /* 1Mb section.  */
1031         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1032         ap = (desc >> 10) & 3;
1033         result->f.lg_page_size = 20; /* 1MB */
1034     } else {
1035         /* Lookup l2 entry.  */
1036         if (type == 1) {
1037             /* Coarse pagetable.  */
1038             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1039         } else {
1040             /* Fine pagetable.  */
1041             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1042         }
1043         if (!S1_ptw_translate(env, ptw, table, fi)) {
1044             goto do_fault;
1045         }
1046         desc = arm_ldl_ptw(env, ptw, fi);
1047         if (fi->type != ARMFault_None) {
1048             goto do_fault;
1049         }
1050         switch (desc & 3) {
1051         case 0: /* Page translation fault.  */
1052             fi->type = ARMFault_Translation;
1053             goto do_fault;
1054         case 1: /* 64k page.  */
1055             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1056             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1057             result->f.lg_page_size = 16;
1058             break;
1059         case 2: /* 4k page.  */
1060             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1061             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
1062             result->f.lg_page_size = 12;
1063             break;
1064         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
1065             if (type == 1) {
1066                 /* ARMv6/XScale extended small page format */
1067                 if (arm_feature(env, ARM_FEATURE_XSCALE)
1068                     || arm_feature(env, ARM_FEATURE_V6)) {
1069                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1070                     result->f.lg_page_size = 12;
1071                 } else {
1072                     /*
1073                      * UNPREDICTABLE in ARMv5; we choose to take a
1074                      * page translation fault.
1075                      */
1076                     fi->type = ARMFault_Translation;
1077                     goto do_fault;
1078                 }
1079             } else {
1080                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1081                 result->f.lg_page_size = 10;
1082             }
1083             ap = (desc >> 4) & 3;
1084             break;
1085         default:
1086             /* Never happens, but compiler isn't smart enough to tell.  */
1087             g_assert_not_reached();
1088         }
1089     }
1090     result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
1091     result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
1092     if (!(result->f.prot & (1 << access_type))) {
1093         /* Access permission fault.  */
1094         fi->type = ARMFault_Permission;
1095         goto do_fault;
1096     }
1097     result->f.phys_addr = phys_addr;
1098     return false;
1099 do_fault:
1100     fi->domain = domain;
1101     fi->level = level;
1102     return true;
1103 }
1104 
1105 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
1106                              uint32_t address, MMUAccessType access_type,
1107                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1108 {
1109     ARMCPU *cpu = env_archcpu(env);
1110     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1111     int level = 1;
1112     uint32_t table;
1113     uint32_t desc;
1114     uint32_t xn;
1115     uint32_t pxn = 0;
1116     int type;
1117     int ap;
1118     int domain = 0;
1119     int domain_prot;
1120     hwaddr phys_addr;
1121     uint32_t dacr;
1122     bool ns;
1123     int user_prot;
1124 
1125     /* Pagetable walk.  */
1126     /* Lookup l1 descriptor.  */
1127     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
1128         /* Section translation fault if page walk is disabled by PD0 or PD1 */
1129         fi->type = ARMFault_Translation;
1130         goto do_fault;
1131     }
1132     if (!S1_ptw_translate(env, ptw, table, fi)) {
1133         goto do_fault;
1134     }
1135     desc = arm_ldl_ptw(env, ptw, fi);
1136     if (fi->type != ARMFault_None) {
1137         goto do_fault;
1138     }
1139     type = (desc & 3);
1140     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
1141         /* Section translation fault, or attempt to use the encoding
1142          * which is Reserved on implementations without PXN.
1143          */
1144         fi->type = ARMFault_Translation;
1145         goto do_fault;
1146     }
1147     if ((type == 1) || !(desc & (1 << 18))) {
1148         /* Page or Section.  */
1149         domain = (desc >> 5) & 0x0f;
1150     }
1151     if (regime_el(env, mmu_idx) == 1) {
1152         dacr = env->cp15.dacr_ns;
1153     } else {
1154         dacr = env->cp15.dacr_s;
1155     }
1156     if (type == 1) {
1157         level = 2;
1158     }
1159     domain_prot = (dacr >> (domain * 2)) & 3;
1160     if (domain_prot == 0 || domain_prot == 2) {
1161         /* Section or Page domain fault */
1162         fi->type = ARMFault_Domain;
1163         goto do_fault;
1164     }
1165     if (type != 1) {
1166         if (desc & (1 << 18)) {
1167             /* Supersection.  */
1168             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1169             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1170             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1171             result->f.lg_page_size = 24;  /* 16MB */
1172         } else {
1173             /* Section.  */
1174             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1175             result->f.lg_page_size = 20;  /* 1MB */
1176         }
1177         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1178         xn = desc & (1 << 4);
1179         pxn = desc & 1;
1180         ns = extract32(desc, 19, 1);
1181     } else {
1182         if (cpu_isar_feature(aa32_pxn, cpu)) {
1183             pxn = (desc >> 2) & 1;
1184         }
1185         ns = extract32(desc, 3, 1);
1186         /* Lookup l2 entry.  */
1187         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1188         if (!S1_ptw_translate(env, ptw, table, fi)) {
1189             goto do_fault;
1190         }
1191         desc = arm_ldl_ptw(env, ptw, fi);
1192         if (fi->type != ARMFault_None) {
1193             goto do_fault;
1194         }
1195         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1196         switch (desc & 3) {
1197         case 0: /* Page translation fault.  */
1198             fi->type = ARMFault_Translation;
1199             goto do_fault;
1200         case 1: /* 64k page.  */
1201             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1202             xn = desc & (1 << 15);
1203             result->f.lg_page_size = 16;
1204             break;
1205         case 2: case 3: /* 4k page.  */
1206             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1207             xn = desc & 1;
1208             result->f.lg_page_size = 12;
1209             break;
1210         default:
1211             /* Never happens, but compiler isn't smart enough to tell.  */
1212             g_assert_not_reached();
1213         }
1214     }
1215     if (domain_prot == 3) {
1216         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1217     } else {
1218         if (pxn && !regime_is_user(env, mmu_idx)) {
1219             xn = 1;
1220         }
1221         if (xn && access_type == MMU_INST_FETCH) {
1222             fi->type = ARMFault_Permission;
1223             goto do_fault;
1224         }
1225 
1226         if (arm_feature(env, ARM_FEATURE_V6K) &&
1227                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1228             /* The simplified model uses AP[0] as an access control bit.  */
1229             if ((ap & 1) == 0) {
1230                 /* Access flag fault.  */
1231                 fi->type = ARMFault_AccessFlag;
1232                 goto do_fault;
1233             }
1234             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1235             user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1236         } else {
1237             result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1238             user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1239         }
1240         if (result->f.prot && !xn) {
1241             result->f.prot |= PAGE_EXEC;
1242         }
1243         if (!(result->f.prot & (1 << access_type))) {
1244             /* Access permission fault.  */
1245             fi->type = ARMFault_Permission;
1246             goto do_fault;
1247         }
1248         if (regime_is_pan(env, mmu_idx) &&
1249             !regime_is_user(env, mmu_idx) &&
1250             user_prot &&
1251             access_type != MMU_INST_FETCH) {
1252             /* Privileged Access Never fault */
1253             fi->type = ARMFault_Permission;
1254             goto do_fault;
1255         }
1256     }
1257     if (ns) {
1258         /* The NS bit will (as required by the architecture) have no effect if
1259          * the CPU doesn't support TZ or this is a non-secure translation
1260          * regime, because the attribute will already be non-secure.
1261          */
1262         result->f.attrs.secure = false;
1263         result->f.attrs.space = ARMSS_NonSecure;
1264     }
1265     result->f.phys_addr = phys_addr;
1266     return false;
1267 do_fault:
1268     fi->domain = domain;
1269     fi->level = level;
1270     return true;
1271 }
1272 
1273 /*
1274  * Translate S2 section/page access permissions to protection flags
1275  * @env:     CPUARMState
1276  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
1277  * @xn:      XN (execute-never) bits
1278  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1279  */
1280 static int get_S2prot_noexecute(int s2ap)
1281 {
1282     int prot = 0;
1283 
1284     if (s2ap & 1) {
1285         prot |= PAGE_READ;
1286     }
1287     if (s2ap & 2) {
1288         prot |= PAGE_WRITE;
1289     }
1290     return prot;
1291 }
1292 
1293 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1294 {
1295     int prot = get_S2prot_noexecute(s2ap);
1296 
1297     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1298         switch (xn) {
1299         case 0:
1300             prot |= PAGE_EXEC;
1301             break;
1302         case 1:
1303             if (s1_is_el0) {
1304                 prot |= PAGE_EXEC;
1305             }
1306             break;
1307         case 2:
1308             break;
1309         case 3:
1310             if (!s1_is_el0) {
1311                 prot |= PAGE_EXEC;
1312             }
1313             break;
1314         default:
1315             g_assert_not_reached();
1316         }
1317     } else {
1318         if (!extract32(xn, 1, 1)) {
1319             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1320                 prot |= PAGE_EXEC;
1321             }
1322         }
1323     }
1324     return prot;
1325 }
1326 
1327 /*
1328  * Translate section/page access permissions to protection flags
1329  * @env:     CPUARMState
1330  * @mmu_idx: MMU index indicating required translation regime
1331  * @is_aa64: TRUE if AArch64
1332  * @ap:      The 2-bit simple AP (AP[2:1])
1333  * @xn:      XN (execute-never) bit
1334  * @pxn:     PXN (privileged execute-never) bit
1335  * @in_pa:   The original input pa space
1336  * @out_pa:  The output pa space, modified by NSTable, NS, and NSE
1337  */
1338 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1339                       int ap, int xn, int pxn,
1340                       ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1341 {
1342     ARMCPU *cpu = env_archcpu(env);
1343     bool is_user = regime_is_user(env, mmu_idx);
1344     int prot_rw, user_rw;
1345     bool have_wxn;
1346     int wxn = 0;
1347 
1348     assert(!regime_is_stage2(mmu_idx));
1349 
1350     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
1351     if (is_user) {
1352         prot_rw = user_rw;
1353     } else {
1354         /*
1355          * PAN controls can forbid data accesses but don't affect insn fetch.
1356          * Plain PAN forbids data accesses if EL0 has data permissions;
1357          * PAN3 forbids data accesses if EL0 has either data or exec perms.
1358          * Note that for AArch64 the 'user can exec' case is exactly !xn.
1359          * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1360          * do not affect EPAN.
1361          */
1362         if (user_rw && regime_is_pan(env, mmu_idx)) {
1363             prot_rw = 0;
1364         } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1365                    regime_is_pan(env, mmu_idx) &&
1366                    (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1367             prot_rw = 0;
1368         } else {
1369             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
1370         }
1371     }
1372 
1373     if (in_pa != out_pa) {
1374         switch (in_pa) {
1375         case ARMSS_Root:
1376             /*
1377              * R_ZWRVD: permission fault for insn fetched from non-Root,
1378              * I_WWBFB: SIF has no effect in EL3.
1379              */
1380             return prot_rw;
1381         case ARMSS_Realm:
1382             /*
1383              * R_PKTDS: permission fault for insn fetched from non-Realm,
1384              * for Realm EL2 or EL2&0.  The corresponding fault for EL1&0
1385              * happens during any stage2 translation.
1386              */
1387             switch (mmu_idx) {
1388             case ARMMMUIdx_E2:
1389             case ARMMMUIdx_E20_0:
1390             case ARMMMUIdx_E20_2:
1391             case ARMMMUIdx_E20_2_PAN:
1392                 return prot_rw;
1393             default:
1394                 break;
1395             }
1396             break;
1397         case ARMSS_Secure:
1398             if (env->cp15.scr_el3 & SCR_SIF) {
1399                 return prot_rw;
1400             }
1401             break;
1402         default:
1403             /* Input NonSecure must have output NonSecure. */
1404             g_assert_not_reached();
1405         }
1406     }
1407 
1408     /* TODO have_wxn should be replaced with
1409      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1410      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1411      * compatible processors have EL2, which is required for [U]WXN.
1412      */
1413     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1414 
1415     if (have_wxn) {
1416         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1417     }
1418 
1419     if (is_aa64) {
1420         if (regime_has_2_ranges(mmu_idx) && !is_user) {
1421             xn = pxn || (user_rw & PAGE_WRITE);
1422         }
1423     } else if (arm_feature(env, ARM_FEATURE_V7)) {
1424         switch (regime_el(env, mmu_idx)) {
1425         case 1:
1426         case 3:
1427             if (is_user) {
1428                 xn = xn || !(user_rw & PAGE_READ);
1429             } else {
1430                 int uwxn = 0;
1431                 if (have_wxn) {
1432                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1433                 }
1434                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1435                      (uwxn && (user_rw & PAGE_WRITE));
1436             }
1437             break;
1438         case 2:
1439             break;
1440         }
1441     } else {
1442         xn = wxn = 0;
1443     }
1444 
1445     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1446         return prot_rw;
1447     }
1448     return prot_rw | PAGE_EXEC;
1449 }
1450 
1451 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1452                                           ARMMMUIdx mmu_idx)
1453 {
1454     uint64_t tcr = regime_tcr(env, mmu_idx);
1455     uint32_t el = regime_el(env, mmu_idx);
1456     int select, tsz;
1457     bool epd, hpd;
1458 
1459     assert(mmu_idx != ARMMMUIdx_Stage2_S);
1460 
1461     if (mmu_idx == ARMMMUIdx_Stage2) {
1462         /* VTCR */
1463         bool sext = extract32(tcr, 4, 1);
1464         bool sign = extract32(tcr, 3, 1);
1465 
1466         /*
1467          * If the sign-extend bit is not the same as t0sz[3], the result
1468          * is unpredictable. Flag this as a guest error.
1469          */
1470         if (sign != sext) {
1471             qemu_log_mask(LOG_GUEST_ERROR,
1472                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1473         }
1474         tsz = sextract32(tcr, 0, 4) + 8;
1475         select = 0;
1476         hpd = false;
1477         epd = false;
1478     } else if (el == 2) {
1479         /* HTCR */
1480         tsz = extract32(tcr, 0, 3);
1481         select = 0;
1482         hpd = extract64(tcr, 24, 1);
1483         epd = false;
1484     } else {
1485         int t0sz = extract32(tcr, 0, 3);
1486         int t1sz = extract32(tcr, 16, 3);
1487 
1488         if (t1sz == 0) {
1489             select = va > (0xffffffffu >> t0sz);
1490         } else {
1491             /* Note that we will detect errors later.  */
1492             select = va >= ~(0xffffffffu >> t1sz);
1493         }
1494         if (!select) {
1495             tsz = t0sz;
1496             epd = extract32(tcr, 7, 1);
1497             hpd = extract64(tcr, 41, 1);
1498         } else {
1499             tsz = t1sz;
1500             epd = extract32(tcr, 23, 1);
1501             hpd = extract64(tcr, 42, 1);
1502         }
1503         /* For aarch32, hpd0 is not enabled without t2e as well.  */
1504         hpd &= extract32(tcr, 6, 1);
1505     }
1506 
1507     return (ARMVAParameters) {
1508         .tsz = tsz,
1509         .select = select,
1510         .epd = epd,
1511         .hpd = hpd,
1512     };
1513 }
1514 
1515 /*
1516  * check_s2_mmu_setup
1517  * @cpu:        ARMCPU
1518  * @is_aa64:    True if the translation regime is in AArch64 state
1519  * @tcr:        VTCR_EL2 or VSTCR_EL2
1520  * @ds:         Effective value of TCR.DS.
1521  * @iasize:     Bitsize of IPAs
1522  * @stride:     Page-table stride (See the ARM ARM)
1523  *
1524  * Decode the starting level of the S2 lookup, returning INT_MIN if
1525  * the configuration is invalid.
1526  */
1527 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1528                               bool ds, int iasize, int stride)
1529 {
1530     int sl0, sl2, startlevel, granulebits, levels;
1531     int s1_min_iasize, s1_max_iasize;
1532 
1533     sl0 = extract32(tcr, 6, 2);
1534     if (is_aa64) {
1535         /*
1536          * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1537          * so interleave AArch64.S2StartLevel.
1538          */
1539         switch (stride) {
1540         case 9: /* 4KB */
1541             /* SL2 is RES0 unless DS=1 & 4KB granule. */
1542             sl2 = extract64(tcr, 33, 1);
1543             if (ds && sl2) {
1544                 if (sl0 != 0) {
1545                     goto fail;
1546                 }
1547                 startlevel = -1;
1548             } else {
1549                 startlevel = 2 - sl0;
1550                 switch (sl0) {
1551                 case 2:
1552                     if (arm_pamax(cpu) < 44) {
1553                         goto fail;
1554                     }
1555                     break;
1556                 case 3:
1557                     if (!cpu_isar_feature(aa64_st, cpu)) {
1558                         goto fail;
1559                     }
1560                     startlevel = 3;
1561                     break;
1562                 }
1563             }
1564             break;
1565         case 11: /* 16KB */
1566             switch (sl0) {
1567             case 2:
1568                 if (arm_pamax(cpu) < 42) {
1569                     goto fail;
1570                 }
1571                 break;
1572             case 3:
1573                 if (!ds) {
1574                     goto fail;
1575                 }
1576                 break;
1577             }
1578             startlevel = 3 - sl0;
1579             break;
1580         case 13: /* 64KB */
1581             switch (sl0) {
1582             case 2:
1583                 if (arm_pamax(cpu) < 44) {
1584                     goto fail;
1585                 }
1586                 break;
1587             case 3:
1588                 goto fail;
1589             }
1590             startlevel = 3 - sl0;
1591             break;
1592         default:
1593             g_assert_not_reached();
1594         }
1595     } else {
1596         /*
1597          * Things are simpler for AArch32 EL2, with only 4k pages.
1598          * There is no separate S2InvalidSL function, but AArch32.S2Walk
1599          * begins with walkparms.sl0 in {'1x'}.
1600          */
1601         assert(stride == 9);
1602         if (sl0 >= 2) {
1603             goto fail;
1604         }
1605         startlevel = 2 - sl0;
1606     }
1607 
1608     /* AArch{64,32}.S2InconsistentSL are functionally equivalent.  */
1609     levels = 3 - startlevel;
1610     granulebits = stride + 3;
1611 
1612     s1_min_iasize = levels * stride + granulebits + 1;
1613     s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1614 
1615     if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1616         return startlevel;
1617     }
1618 
1619  fail:
1620     return INT_MIN;
1621 }
1622 
1623 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
1624                                   ARMGranuleSize gran, int level)
1625 {
1626     /*
1627      * See pseudocode AArch46.BlockDescSupported(): block descriptors
1628      * are not valid at all levels, depending on the page size.
1629      */
1630     switch (gran) {
1631     case Gran4K:
1632         return (level == 0 && ds) || level == 1 || level == 2;
1633     case Gran16K:
1634         return (level == 1 && ds) || level == 2;
1635     case Gran64K:
1636         return (level == 1 && arm_pamax(cpu) == 52) || level == 2;
1637     default:
1638         g_assert_not_reached();
1639     }
1640 }
1641 
1642 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw)
1643 {
1644     uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
1645     return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1);
1646 }
1647 
1648 /**
1649  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1650  *
1651  * Returns false if the translation was successful. Otherwise, phys_ptr,
1652  * attrs, prot and page_size may not be filled in, and the populated fsr
1653  * value provides information on why the translation aborted, in the format
1654  * of a long-format DFSR/IFSR fault register, with the following caveat:
1655  * the WnR bit is never set (the caller must do this).
1656  *
1657  * @env: CPUARMState
1658  * @ptw: Current and next stage parameters for the walk.
1659  * @address: virtual address to get physical address for
1660  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1661  * @result: set on translation success,
1662  * @fi: set to fault info if the translation fails
1663  */
1664 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1665                                uint64_t address,
1666                                MMUAccessType access_type,
1667                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1668 {
1669     ARMCPU *cpu = env_archcpu(env);
1670     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1671     int32_t level;
1672     ARMVAParameters param;
1673     uint64_t ttbr;
1674     hwaddr descaddr, indexmask, indexmask_grainsize;
1675     uint32_t tableattrs;
1676     target_ulong page_size;
1677     uint64_t attrs;
1678     int32_t stride;
1679     int addrsize, inputsize, outputsize;
1680     uint64_t tcr = regime_tcr(env, mmu_idx);
1681     int ap, xn, pxn;
1682     uint32_t el = regime_el(env, mmu_idx);
1683     uint64_t descaddrmask;
1684     bool aarch64 = arm_el_is_aa64(env, el);
1685     uint64_t descriptor, new_descriptor;
1686     ARMSecuritySpace out_space;
1687 
1688     /* TODO: This code does not support shareability levels. */
1689     if (aarch64) {
1690         int ps;
1691 
1692         param = aa64_va_parameters(env, address, mmu_idx,
1693                                    access_type != MMU_INST_FETCH,
1694                                    !arm_el_is_aa64(env, 1));
1695         level = 0;
1696 
1697         /*
1698          * If TxSZ is programmed to a value larger than the maximum,
1699          * or smaller than the effective minimum, it is IMPLEMENTATION
1700          * DEFINED whether we behave as if the field were programmed
1701          * within bounds, or if a level 0 Translation fault is generated.
1702          *
1703          * With FEAT_LVA, fault on less than minimum becomes required,
1704          * so our choice is to always raise the fault.
1705          */
1706         if (param.tsz_oob) {
1707             goto do_translation_fault;
1708         }
1709 
1710         addrsize = 64 - 8 * param.tbi;
1711         inputsize = 64 - param.tsz;
1712 
1713         /*
1714          * Bound PS by PARANGE to find the effective output address size.
1715          * ID_AA64MMFR0 is a read-only register so values outside of the
1716          * supported mappings can be considered an implementation error.
1717          */
1718         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1719         ps = MIN(ps, param.ps);
1720         assert(ps < ARRAY_SIZE(pamax_map));
1721         outputsize = pamax_map[ps];
1722 
1723         /*
1724          * With LPA2, the effective output address (OA) size is at most 48 bits
1725          * unless TCR.DS == 1
1726          */
1727         if (!param.ds && param.gran != Gran64K) {
1728             outputsize = MIN(outputsize, 48);
1729         }
1730     } else {
1731         param = aa32_va_parameters(env, address, mmu_idx);
1732         level = 1;
1733         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1734         inputsize = addrsize - param.tsz;
1735         outputsize = 40;
1736     }
1737 
1738     /*
1739      * We determined the region when collecting the parameters, but we
1740      * have not yet validated that the address is valid for the region.
1741      * Extract the top bits and verify that they all match select.
1742      *
1743      * For aa32, if inputsize == addrsize, then we have selected the
1744      * region by exclusion in aa32_va_parameters and there is no more
1745      * validation to do here.
1746      */
1747     if (inputsize < addrsize) {
1748         target_ulong top_bits = sextract64(address, inputsize,
1749                                            addrsize - inputsize);
1750         if (-top_bits != param.select) {
1751             /* The gap between the two regions is a Translation fault */
1752             goto do_translation_fault;
1753         }
1754     }
1755 
1756     stride = arm_granule_bits(param.gran) - 3;
1757 
1758     /*
1759      * Note that QEMU ignores shareability and cacheability attributes,
1760      * so we don't need to do anything with the SH, ORGN, IRGN fields
1761      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1762      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1763      * implement any ASID-like capability so we can ignore it (instead
1764      * we will always flush the TLB any time the ASID is changed).
1765      */
1766     ttbr = regime_ttbr(env, mmu_idx, param.select);
1767 
1768     /*
1769      * Here we should have set up all the parameters for the translation:
1770      * inputsize, ttbr, epd, stride, tbi
1771      */
1772 
1773     if (param.epd) {
1774         /*
1775          * Translation table walk disabled => Translation fault on TLB miss
1776          * Note: This is always 0 on 64-bit EL2 and EL3.
1777          */
1778         goto do_translation_fault;
1779     }
1780 
1781     if (!regime_is_stage2(mmu_idx)) {
1782         /*
1783          * The starting level depends on the virtual address size (which can
1784          * be up to 48 bits) and the translation granule size. It indicates
1785          * the number of strides (stride bits at a time) needed to
1786          * consume the bits of the input address. In the pseudocode this is:
1787          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1788          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1789          * our 'stride + 3' and 'stride' is our 'stride'.
1790          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1791          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1792          * = 4 - (inputsize - 4) / stride;
1793          */
1794         level = 4 - (inputsize - 4) / stride;
1795     } else {
1796         int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1797                                             inputsize, stride);
1798         if (startlevel == INT_MIN) {
1799             level = 0;
1800             goto do_translation_fault;
1801         }
1802         level = startlevel;
1803     }
1804 
1805     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1806     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1807 
1808     /* Now we can extract the actual base address from the TTBR */
1809     descaddr = extract64(ttbr, 0, 48);
1810 
1811     /*
1812      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1813      *
1814      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1815      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1816      * but we've just cleared the bits above 47, so simplify the test.
1817      */
1818     if (outputsize > 48) {
1819         descaddr |= extract64(ttbr, 2, 4) << 48;
1820     } else if (descaddr >> outputsize) {
1821         level = 0;
1822         fi->type = ARMFault_AddressSize;
1823         goto do_fault;
1824     }
1825 
1826     /*
1827      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1828      * and also to mask out CnP (bit 0) which could validly be non-zero.
1829      */
1830     descaddr &= ~indexmask;
1831 
1832     /*
1833      * For AArch32, the address field in the descriptor goes up to bit 39
1834      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1835      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1836      * bits as part of the address, which will be checked via outputsize.
1837      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1838      * the highest bits of a 52-bit output are placed elsewhere.
1839      */
1840     if (param.ds) {
1841         descaddrmask = MAKE_64BIT_MASK(0, 50);
1842     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1843         descaddrmask = MAKE_64BIT_MASK(0, 48);
1844     } else {
1845         descaddrmask = MAKE_64BIT_MASK(0, 40);
1846     }
1847     descaddrmask &= ~indexmask_grainsize;
1848     tableattrs = 0;
1849 
1850  next_level:
1851     descaddr |= (address >> (stride * (4 - level))) & indexmask;
1852     descaddr &= ~7ULL;
1853 
1854     /*
1855      * Process the NSTable bit from the previous level.  This changes
1856      * the table address space and the output space from Secure to
1857      * NonSecure.  With RME, the EL3 translation regime does not change
1858      * from Root to NonSecure.
1859      */
1860     if (ptw->in_space == ARMSS_Secure
1861         && !regime_is_stage2(mmu_idx)
1862         && extract32(tableattrs, 4, 1)) {
1863         /*
1864          * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1865          * Assert the relative order of the secure/non-secure indexes.
1866          */
1867         QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1868         QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1869         ptw->in_ptw_idx += 1;
1870         ptw->in_space = ARMSS_NonSecure;
1871     }
1872 
1873     if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1874         goto do_fault;
1875     }
1876     descriptor = arm_ldq_ptw(env, ptw, fi);
1877     if (fi->type != ARMFault_None) {
1878         goto do_fault;
1879     }
1880     new_descriptor = descriptor;
1881 
1882  restart_atomic_update:
1883     if (!(descriptor & 1) ||
1884         (!(descriptor & 2) &&
1885          !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) {
1886         /* Invalid, or a block descriptor at an invalid level */
1887         goto do_translation_fault;
1888     }
1889 
1890     descaddr = descriptor & descaddrmask;
1891 
1892     /*
1893      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1894      * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1895      * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1896      * raise AddressSizeFault.
1897      */
1898     if (outputsize > 48) {
1899         if (param.ds) {
1900             descaddr |= extract64(descriptor, 8, 2) << 50;
1901         } else {
1902             descaddr |= extract64(descriptor, 12, 4) << 48;
1903         }
1904     } else if (descaddr >> outputsize) {
1905         fi->type = ARMFault_AddressSize;
1906         goto do_fault;
1907     }
1908 
1909     if ((descriptor & 2) && (level < 3)) {
1910         /*
1911          * Table entry. The top five bits are attributes which may
1912          * propagate down through lower levels of the table (and
1913          * which are all arranged so that 0 means "no effect", so
1914          * we can gather them up by ORing in the bits at each level).
1915          */
1916         tableattrs |= extract64(descriptor, 59, 5);
1917         level++;
1918         indexmask = indexmask_grainsize;
1919         goto next_level;
1920     }
1921 
1922     /*
1923      * Block entry at level 1 or 2, or page entry at level 3.
1924      * These are basically the same thing, although the number
1925      * of bits we pull in from the vaddr varies. Note that although
1926      * descaddrmask masks enough of the low bits of the descriptor
1927      * to give a correct page or table address, the address field
1928      * in a block descriptor is smaller; so we need to explicitly
1929      * clear the lower bits here before ORing in the low vaddr bits.
1930      *
1931      * Afterward, descaddr is the final physical address.
1932      */
1933     page_size = (1ULL << ((stride * (4 - level)) + 3));
1934     descaddr &= ~(hwaddr)(page_size - 1);
1935     descaddr |= (address & (page_size - 1));
1936 
1937     if (likely(!ptw->in_debug)) {
1938         /*
1939          * Access flag.
1940          * If HA is enabled, prepare to update the descriptor below.
1941          * Otherwise, pass the access fault on to software.
1942          */
1943         if (!(descriptor & (1 << 10))) {
1944             if (param.ha) {
1945                 new_descriptor |= 1 << 10; /* AF */
1946             } else {
1947                 fi->type = ARMFault_AccessFlag;
1948                 goto do_fault;
1949             }
1950         }
1951 
1952         /*
1953          * Dirty Bit.
1954          * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1955          * bit for writeback. The actual write protection test may still be
1956          * overridden by tableattrs, to be merged below.
1957          */
1958         if (param.hd
1959             && extract64(descriptor, 51, 1)  /* DBM */
1960             && access_type == MMU_DATA_STORE) {
1961             if (regime_is_stage2(mmu_idx)) {
1962                 new_descriptor |= 1ull << 7;    /* set S2AP[1] */
1963             } else {
1964                 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1965             }
1966         }
1967     }
1968 
1969     /*
1970      * Extract attributes from the (modified) descriptor, and apply
1971      * table descriptors. Stage 2 table descriptors do not include
1972      * any attribute fields. HPD disables all the table attributes
1973      * except NSTable (which we have already handled).
1974      */
1975     attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1976     if (!regime_is_stage2(mmu_idx)) {
1977         if (!param.hpd) {
1978             attrs |= extract64(tableattrs, 0, 2) << 53;     /* XN, PXN */
1979             /*
1980              * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1981              * means "force PL1 access only", which means forcing AP[1] to 0.
1982              */
1983             attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1984             attrs |= extract32(tableattrs, 3, 1) << 7;    /* APT[1] => AP[2] */
1985         }
1986     }
1987 
1988     ap = extract32(attrs, 6, 2);
1989     out_space = ptw->in_space;
1990     if (regime_is_stage2(mmu_idx)) {
1991         /*
1992          * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
1993          * The bit remains ignored for other security states.
1994          * R_YMCSL: Executing an insn fetched from non-Realm causes
1995          * a stage2 permission fault.
1996          */
1997         if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
1998             out_space = ARMSS_NonSecure;
1999             result->f.prot = get_S2prot_noexecute(ap);
2000         } else {
2001             xn = extract64(attrs, 53, 2);
2002             result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
2003         }
2004     } else {
2005         int nse, ns = extract32(attrs, 5, 1);
2006         switch (out_space) {
2007         case ARMSS_Root:
2008             /*
2009              * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
2010              * R_XTYPW: NSE and NS together select the output pa space.
2011              */
2012             nse = extract32(attrs, 11, 1);
2013             out_space = (nse << 1) | ns;
2014             if (out_space == ARMSS_Secure &&
2015                 !cpu_isar_feature(aa64_sel2, cpu)) {
2016                 out_space = ARMSS_NonSecure;
2017             }
2018             break;
2019         case ARMSS_Secure:
2020             if (ns) {
2021                 out_space = ARMSS_NonSecure;
2022             }
2023             break;
2024         case ARMSS_Realm:
2025             switch (mmu_idx) {
2026             case ARMMMUIdx_Stage1_E0:
2027             case ARMMMUIdx_Stage1_E1:
2028             case ARMMMUIdx_Stage1_E1_PAN:
2029                 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
2030                 break;
2031             case ARMMMUIdx_E2:
2032             case ARMMMUIdx_E20_0:
2033             case ARMMMUIdx_E20_2:
2034             case ARMMMUIdx_E20_2_PAN:
2035                 /*
2036                  * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
2037                  * NS changes the output to non-secure space.
2038                  */
2039                 if (ns) {
2040                     out_space = ARMSS_NonSecure;
2041                 }
2042                 break;
2043             default:
2044                 g_assert_not_reached();
2045             }
2046             break;
2047         case ARMSS_NonSecure:
2048             /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
2049             break;
2050         default:
2051             g_assert_not_reached();
2052         }
2053         xn = extract64(attrs, 54, 1);
2054         pxn = extract64(attrs, 53, 1);
2055 
2056         if (el == 1 && nv_nv1_enabled(env, ptw)) {
2057             /*
2058              * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page
2059              * descriptor bit 54 holds PXN, 53 is RES0, and the effective value
2060              * of UXN is 0. Similarly for bits 59 and 60 in table descriptors
2061              * (which we have already folded into bits 53 and 54 of attrs).
2062              * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0.
2063              * Similarly, APTable[0] from the table descriptor is treated as 0;
2064              * we already folded this into AP[1] and squashing that to 0 does
2065              * the right thing.
2066              */
2067             pxn = xn;
2068             xn = 0;
2069             ap &= ~1;
2070         }
2071         /*
2072          * Note that we modified ptw->in_space earlier for NSTable, but
2073          * result->f.attrs retains a copy of the original security space.
2074          */
2075         result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn,
2076                                     result->f.attrs.space, out_space);
2077     }
2078 
2079     if (!(result->f.prot & (1 << access_type))) {
2080         fi->type = ARMFault_Permission;
2081         goto do_fault;
2082     }
2083 
2084     /* If FEAT_HAFDBS has made changes, update the PTE. */
2085     if (new_descriptor != descriptor) {
2086         new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
2087         if (fi->type != ARMFault_None) {
2088             goto do_fault;
2089         }
2090         /*
2091          * I_YZSVV says that if the in-memory descriptor has changed,
2092          * then we must use the information in that new value
2093          * (which might include a different output address, different
2094          * attributes, or generate a fault).
2095          * Restart the handling of the descriptor value from scratch.
2096          */
2097         if (new_descriptor != descriptor) {
2098             descriptor = new_descriptor;
2099             goto restart_atomic_update;
2100         }
2101     }
2102 
2103     result->f.attrs.space = out_space;
2104     result->f.attrs.secure = arm_space_is_secure(out_space);
2105 
2106     if (regime_is_stage2(mmu_idx)) {
2107         result->cacheattrs.is_s2_format = true;
2108         result->cacheattrs.attrs = extract32(attrs, 2, 4);
2109     } else {
2110         /* Index into MAIR registers for cache attributes */
2111         uint8_t attrindx = extract32(attrs, 2, 3);
2112         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2113         assert(attrindx <= 7);
2114         result->cacheattrs.is_s2_format = false;
2115         result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2116 
2117         /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
2118         if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
2119             result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */
2120         }
2121     }
2122 
2123     /*
2124      * For FEAT_LPA2 and effective DS, the SH field in the attributes
2125      * was re-purposed for output address bits.  The SH attribute in
2126      * that case comes from TCR_ELx, which we extracted earlier.
2127      */
2128     if (param.ds) {
2129         result->cacheattrs.shareability = param.sh;
2130     } else {
2131         result->cacheattrs.shareability = extract32(attrs, 8, 2);
2132     }
2133 
2134     result->f.phys_addr = descaddr;
2135     result->f.lg_page_size = ctz64(page_size);
2136     return false;
2137 
2138  do_translation_fault:
2139     fi->type = ARMFault_Translation;
2140  do_fault:
2141     if (fi->s1ptw) {
2142         /* Retain the existing stage 2 fi->level */
2143         assert(fi->stage2);
2144     } else {
2145         fi->level = level;
2146         fi->stage2 = regime_is_stage2(mmu_idx);
2147     }
2148     fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx);
2149     return true;
2150 }
2151 
2152 static bool get_phys_addr_pmsav5(CPUARMState *env,
2153                                  S1Translate *ptw,
2154                                  uint32_t address,
2155                                  MMUAccessType access_type,
2156                                  GetPhysAddrResult *result,
2157                                  ARMMMUFaultInfo *fi)
2158 {
2159     int n;
2160     uint32_t mask;
2161     uint32_t base;
2162     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2163     bool is_user = regime_is_user(env, mmu_idx);
2164 
2165     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
2166         /* MPU disabled.  */
2167         result->f.phys_addr = address;
2168         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2169         return false;
2170     }
2171 
2172     result->f.phys_addr = address;
2173     for (n = 7; n >= 0; n--) {
2174         base = env->cp15.c6_region[n];
2175         if ((base & 1) == 0) {
2176             continue;
2177         }
2178         mask = 1 << ((base >> 1) & 0x1f);
2179         /* Keep this shift separate from the above to avoid an
2180            (undefined) << 32.  */
2181         mask = (mask << 1) - 1;
2182         if (((base ^ address) & ~mask) == 0) {
2183             break;
2184         }
2185     }
2186     if (n < 0) {
2187         fi->type = ARMFault_Background;
2188         return true;
2189     }
2190 
2191     if (access_type == MMU_INST_FETCH) {
2192         mask = env->cp15.pmsav5_insn_ap;
2193     } else {
2194         mask = env->cp15.pmsav5_data_ap;
2195     }
2196     mask = (mask >> (n * 4)) & 0xf;
2197     switch (mask) {
2198     case 0:
2199         fi->type = ARMFault_Permission;
2200         fi->level = 1;
2201         return true;
2202     case 1:
2203         if (is_user) {
2204             fi->type = ARMFault_Permission;
2205             fi->level = 1;
2206             return true;
2207         }
2208         result->f.prot = PAGE_READ | PAGE_WRITE;
2209         break;
2210     case 2:
2211         result->f.prot = PAGE_READ;
2212         if (!is_user) {
2213             result->f.prot |= PAGE_WRITE;
2214         }
2215         break;
2216     case 3:
2217         result->f.prot = PAGE_READ | PAGE_WRITE;
2218         break;
2219     case 5:
2220         if (is_user) {
2221             fi->type = ARMFault_Permission;
2222             fi->level = 1;
2223             return true;
2224         }
2225         result->f.prot = PAGE_READ;
2226         break;
2227     case 6:
2228         result->f.prot = PAGE_READ;
2229         break;
2230     default:
2231         /* Bad permission.  */
2232         fi->type = ARMFault_Permission;
2233         fi->level = 1;
2234         return true;
2235     }
2236     result->f.prot |= PAGE_EXEC;
2237     return false;
2238 }
2239 
2240 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2241                                          int32_t address, uint8_t *prot)
2242 {
2243     if (!arm_feature(env, ARM_FEATURE_M)) {
2244         *prot = PAGE_READ | PAGE_WRITE;
2245         switch (address) {
2246         case 0xF0000000 ... 0xFFFFFFFF:
2247             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2248                 /* hivecs execing is ok */
2249                 *prot |= PAGE_EXEC;
2250             }
2251             break;
2252         case 0x00000000 ... 0x7FFFFFFF:
2253             *prot |= PAGE_EXEC;
2254             break;
2255         }
2256     } else {
2257         /* Default system address map for M profile cores.
2258          * The architecture specifies which regions are execute-never;
2259          * at the MPU level no other checks are defined.
2260          */
2261         switch (address) {
2262         case 0x00000000 ... 0x1fffffff: /* ROM */
2263         case 0x20000000 ... 0x3fffffff: /* SRAM */
2264         case 0x60000000 ... 0x7fffffff: /* RAM */
2265         case 0x80000000 ... 0x9fffffff: /* RAM */
2266             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2267             break;
2268         case 0x40000000 ... 0x5fffffff: /* Peripheral */
2269         case 0xa0000000 ... 0xbfffffff: /* Device */
2270         case 0xc0000000 ... 0xdfffffff: /* Device */
2271         case 0xe0000000 ... 0xffffffff: /* System */
2272             *prot = PAGE_READ | PAGE_WRITE;
2273             break;
2274         default:
2275             g_assert_not_reached();
2276         }
2277     }
2278 }
2279 
2280 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2281 {
2282     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2283     return arm_feature(env, ARM_FEATURE_M) &&
2284         extract32(address, 20, 12) == 0xe00;
2285 }
2286 
2287 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2288 {
2289     /*
2290      * True if address is in the M profile system region
2291      * 0xe0000000 - 0xffffffff
2292      */
2293     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2294 }
2295 
2296 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2297                                          bool is_secure, bool is_user)
2298 {
2299     /*
2300      * Return true if we should use the default memory map as a
2301      * "background" region if there are no hits against any MPU regions.
2302      */
2303     CPUARMState *env = &cpu->env;
2304 
2305     if (is_user) {
2306         return false;
2307     }
2308 
2309     if (arm_feature(env, ARM_FEATURE_M)) {
2310         return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2311     }
2312 
2313     if (mmu_idx == ARMMMUIdx_Stage2) {
2314         return false;
2315     }
2316 
2317     return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2318 }
2319 
2320 static bool get_phys_addr_pmsav7(CPUARMState *env,
2321                                  S1Translate *ptw,
2322                                  uint32_t address,
2323                                  MMUAccessType access_type,
2324                                  GetPhysAddrResult *result,
2325                                  ARMMMUFaultInfo *fi)
2326 {
2327     ARMCPU *cpu = env_archcpu(env);
2328     int n;
2329     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2330     bool is_user = regime_is_user(env, mmu_idx);
2331     bool secure = arm_space_is_secure(ptw->in_space);
2332 
2333     result->f.phys_addr = address;
2334     result->f.lg_page_size = TARGET_PAGE_BITS;
2335     result->f.prot = 0;
2336 
2337     if (regime_translation_disabled(env, mmu_idx, ptw->in_space) ||
2338         m_is_ppb_region(env, address)) {
2339         /*
2340          * MPU disabled or M profile PPB access: use default memory map.
2341          * The other case which uses the default memory map in the
2342          * v7M ARM ARM pseudocode is exception vector reads from the vector
2343          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2344          * which always does a direct read using address_space_ldl(), rather
2345          * than going via this function, so we don't need to check that here.
2346          */
2347         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2348     } else { /* MPU enabled */
2349         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2350             /* region search */
2351             uint32_t base = env->pmsav7.drbar[n];
2352             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2353             uint32_t rmask;
2354             bool srdis = false;
2355 
2356             if (!(env->pmsav7.drsr[n] & 0x1)) {
2357                 continue;
2358             }
2359 
2360             if (!rsize) {
2361                 qemu_log_mask(LOG_GUEST_ERROR,
2362                               "DRSR[%d]: Rsize field cannot be 0\n", n);
2363                 continue;
2364             }
2365             rsize++;
2366             rmask = (1ull << rsize) - 1;
2367 
2368             if (base & rmask) {
2369                 qemu_log_mask(LOG_GUEST_ERROR,
2370                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2371                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
2372                               n, base, rmask);
2373                 continue;
2374             }
2375 
2376             if (address < base || address > base + rmask) {
2377                 /*
2378                  * Address not in this region. We must check whether the
2379                  * region covers addresses in the same page as our address.
2380                  * In that case we must not report a size that covers the
2381                  * whole page for a subsequent hit against a different MPU
2382                  * region or the background region, because it would result in
2383                  * incorrect TLB hits for subsequent accesses to addresses that
2384                  * are in this MPU region.
2385                  */
2386                 if (ranges_overlap(base, rmask,
2387                                    address & TARGET_PAGE_MASK,
2388                                    TARGET_PAGE_SIZE)) {
2389                     result->f.lg_page_size = 0;
2390                 }
2391                 continue;
2392             }
2393 
2394             /* Region matched */
2395 
2396             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2397                 int i, snd;
2398                 uint32_t srdis_mask;
2399 
2400                 rsize -= 3; /* sub region size (power of 2) */
2401                 snd = ((address - base) >> rsize) & 0x7;
2402                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2403 
2404                 srdis_mask = srdis ? 0x3 : 0x0;
2405                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2406                     /*
2407                      * This will check in groups of 2, 4 and then 8, whether
2408                      * the subregion bits are consistent. rsize is incremented
2409                      * back up to give the region size, considering consistent
2410                      * adjacent subregions as one region. Stop testing if rsize
2411                      * is already big enough for an entire QEMU page.
2412                      */
2413                     int snd_rounded = snd & ~(i - 1);
2414                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2415                                                      snd_rounded + 8, i);
2416                     if (srdis_mask ^ srdis_multi) {
2417                         break;
2418                     }
2419                     srdis_mask = (srdis_mask << i) | srdis_mask;
2420                     rsize++;
2421                 }
2422             }
2423             if (srdis) {
2424                 continue;
2425             }
2426             if (rsize < TARGET_PAGE_BITS) {
2427                 result->f.lg_page_size = rsize;
2428             }
2429             break;
2430         }
2431 
2432         if (n == -1) { /* no hits */
2433             if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2434                 /* background fault */
2435                 fi->type = ARMFault_Background;
2436                 return true;
2437             }
2438             get_phys_addr_pmsav7_default(env, mmu_idx, address,
2439                                          &result->f.prot);
2440         } else { /* a MPU hit! */
2441             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2442             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2443 
2444             if (m_is_system_region(env, address)) {
2445                 /* System space is always execute never */
2446                 xn = 1;
2447             }
2448 
2449             if (is_user) { /* User mode AP bit decoding */
2450                 switch (ap) {
2451                 case 0:
2452                 case 1:
2453                 case 5:
2454                     break; /* no access */
2455                 case 3:
2456                     result->f.prot |= PAGE_WRITE;
2457                     /* fall through */
2458                 case 2:
2459                 case 6:
2460                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2461                     break;
2462                 case 7:
2463                     /* for v7M, same as 6; for R profile a reserved value */
2464                     if (arm_feature(env, ARM_FEATURE_M)) {
2465                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2466                         break;
2467                     }
2468                     /* fall through */
2469                 default:
2470                     qemu_log_mask(LOG_GUEST_ERROR,
2471                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2472                                   PRIx32 "\n", n, ap);
2473                 }
2474             } else { /* Priv. mode AP bits decoding */
2475                 switch (ap) {
2476                 case 0:
2477                     break; /* no access */
2478                 case 1:
2479                 case 2:
2480                 case 3:
2481                     result->f.prot |= PAGE_WRITE;
2482                     /* fall through */
2483                 case 5:
2484                 case 6:
2485                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2486                     break;
2487                 case 7:
2488                     /* for v7M, same as 6; for R profile a reserved value */
2489                     if (arm_feature(env, ARM_FEATURE_M)) {
2490                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2491                         break;
2492                     }
2493                     /* fall through */
2494                 default:
2495                     qemu_log_mask(LOG_GUEST_ERROR,
2496                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2497                                   PRIx32 "\n", n, ap);
2498                 }
2499             }
2500 
2501             /* execute never */
2502             if (xn) {
2503                 result->f.prot &= ~PAGE_EXEC;
2504             }
2505         }
2506     }
2507 
2508     fi->type = ARMFault_Permission;
2509     fi->level = 1;
2510     return !(result->f.prot & (1 << access_type));
2511 }
2512 
2513 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2514                              uint32_t secure)
2515 {
2516     if (regime_el(env, mmu_idx) == 2) {
2517         return env->pmsav8.hprbar;
2518     } else {
2519         return env->pmsav8.rbar[secure];
2520     }
2521 }
2522 
2523 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2524                              uint32_t secure)
2525 {
2526     if (regime_el(env, mmu_idx) == 2) {
2527         return env->pmsav8.hprlar;
2528     } else {
2529         return env->pmsav8.rlar[secure];
2530     }
2531 }
2532 
2533 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2534                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
2535                        bool secure, GetPhysAddrResult *result,
2536                        ARMMMUFaultInfo *fi, uint32_t *mregion)
2537 {
2538     /*
2539      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2540      * that a full phys-to-virt translation does).
2541      * mregion is (if not NULL) set to the region number which matched,
2542      * or -1 if no region number is returned (MPU off, address did not
2543      * hit a region, address hit in multiple regions).
2544      * If the region hit doesn't cover the entire TARGET_PAGE the address
2545      * is within, then we set the result page_size to 1 to force the
2546      * memory system to use a subpage.
2547      */
2548     ARMCPU *cpu = env_archcpu(env);
2549     bool is_user = regime_is_user(env, mmu_idx);
2550     int n;
2551     int matchregion = -1;
2552     bool hit = false;
2553     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2554     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2555     int region_counter;
2556 
2557     if (regime_el(env, mmu_idx) == 2) {
2558         region_counter = cpu->pmsav8r_hdregion;
2559     } else {
2560         region_counter = cpu->pmsav7_dregion;
2561     }
2562 
2563     result->f.lg_page_size = TARGET_PAGE_BITS;
2564     result->f.phys_addr = address;
2565     result->f.prot = 0;
2566     if (mregion) {
2567         *mregion = -1;
2568     }
2569 
2570     if (mmu_idx == ARMMMUIdx_Stage2) {
2571         fi->stage2 = true;
2572     }
2573 
2574     /*
2575      * Unlike the ARM ARM pseudocode, we don't need to check whether this
2576      * was an exception vector read from the vector table (which is always
2577      * done using the default system address map), because those accesses
2578      * are done in arm_v7m_load_vector(), which always does a direct
2579      * read using address_space_ldl(), rather than going via this function.
2580      */
2581     if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) {
2582         /* MPU disabled */
2583         hit = true;
2584     } else if (m_is_ppb_region(env, address)) {
2585         hit = true;
2586     } else {
2587         if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2588             hit = true;
2589         }
2590 
2591         uint32_t bitmask;
2592         if (arm_feature(env, ARM_FEATURE_M)) {
2593             bitmask = 0x1f;
2594         } else {
2595             bitmask = 0x3f;
2596             fi->level = 0;
2597         }
2598 
2599         for (n = region_counter - 1; n >= 0; n--) {
2600             /* region search */
2601             /*
2602              * Note that the base address is bits [31:x] from the register
2603              * with bits [x-1:0] all zeroes, but the limit address is bits
2604              * [31:x] from the register with bits [x:0] all ones. Where x is
2605              * 5 for Cortex-M and 6 for Cortex-R
2606              */
2607             uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2608             uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2609 
2610             if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2611                 /* Region disabled */
2612                 continue;
2613             }
2614 
2615             if (address < base || address > limit) {
2616                 /*
2617                  * Address not in this region. We must check whether the
2618                  * region covers addresses in the same page as our address.
2619                  * In that case we must not report a size that covers the
2620                  * whole page for a subsequent hit against a different MPU
2621                  * region or the background region, because it would result in
2622                  * incorrect TLB hits for subsequent accesses to addresses that
2623                  * are in this MPU region.
2624                  */
2625                 if (limit >= base &&
2626                     ranges_overlap(base, limit - base + 1,
2627                                    addr_page_base,
2628                                    TARGET_PAGE_SIZE)) {
2629                     result->f.lg_page_size = 0;
2630                 }
2631                 continue;
2632             }
2633 
2634             if (base > addr_page_base || limit < addr_page_limit) {
2635                 result->f.lg_page_size = 0;
2636             }
2637 
2638             if (matchregion != -1) {
2639                 /*
2640                  * Multiple regions match -- always a failure (unlike
2641                  * PMSAv7 where highest-numbered-region wins)
2642                  */
2643                 fi->type = ARMFault_Permission;
2644                 if (arm_feature(env, ARM_FEATURE_M)) {
2645                     fi->level = 1;
2646                 }
2647                 return true;
2648             }
2649 
2650             matchregion = n;
2651             hit = true;
2652         }
2653     }
2654 
2655     if (!hit) {
2656         if (arm_feature(env, ARM_FEATURE_M)) {
2657             fi->type = ARMFault_Background;
2658         } else {
2659             fi->type = ARMFault_Permission;
2660         }
2661         return true;
2662     }
2663 
2664     if (matchregion == -1) {
2665         /* hit using the background region */
2666         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2667     } else {
2668         uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2669         uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2670         uint32_t ap = extract32(matched_rbar, 1, 2);
2671         uint32_t xn = extract32(matched_rbar, 0, 1);
2672         bool pxn = false;
2673 
2674         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2675             pxn = extract32(matched_rlar, 4, 1);
2676         }
2677 
2678         if (m_is_system_region(env, address)) {
2679             /* System space is always execute never */
2680             xn = 1;
2681         }
2682 
2683         if (regime_el(env, mmu_idx) == 2) {
2684             result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2685                                             mmu_idx != ARMMMUIdx_E2);
2686         } else {
2687             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2688         }
2689 
2690         if (!arm_feature(env, ARM_FEATURE_M)) {
2691             uint8_t attrindx = extract32(matched_rlar, 1, 3);
2692             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2693             uint8_t sh = extract32(matched_rlar, 3, 2);
2694 
2695             if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2696                 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2697                 xn = 0x1;
2698             }
2699 
2700             if ((regime_el(env, mmu_idx) == 1) &&
2701                 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2702                 pxn = 0x1;
2703             }
2704 
2705             result->cacheattrs.is_s2_format = false;
2706             result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2707             result->cacheattrs.shareability = sh;
2708         }
2709 
2710         if (result->f.prot && !xn && !(pxn && !is_user)) {
2711             result->f.prot |= PAGE_EXEC;
2712         }
2713 
2714         if (mregion) {
2715             *mregion = matchregion;
2716         }
2717     }
2718 
2719     fi->type = ARMFault_Permission;
2720     if (arm_feature(env, ARM_FEATURE_M)) {
2721         fi->level = 1;
2722     }
2723     return !(result->f.prot & (1 << access_type));
2724 }
2725 
2726 static bool v8m_is_sau_exempt(CPUARMState *env,
2727                               uint32_t address, MMUAccessType access_type)
2728 {
2729     /*
2730      * The architecture specifies that certain address ranges are
2731      * exempt from v8M SAU/IDAU checks.
2732      */
2733     return
2734         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2735         (address >= 0xe0000000 && address <= 0xe0002fff) ||
2736         (address >= 0xe000e000 && address <= 0xe000efff) ||
2737         (address >= 0xe002e000 && address <= 0xe002efff) ||
2738         (address >= 0xe0040000 && address <= 0xe0041fff) ||
2739         (address >= 0xe00ff000 && address <= 0xe00fffff);
2740 }
2741 
2742 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2743                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
2744                          bool is_secure, V8M_SAttributes *sattrs)
2745 {
2746     /*
2747      * Look up the security attributes for this address. Compare the
2748      * pseudocode SecurityCheck() function.
2749      * We assume the caller has zero-initialized *sattrs.
2750      */
2751     ARMCPU *cpu = env_archcpu(env);
2752     int r;
2753     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2754     int idau_region = IREGION_NOTVALID;
2755     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2756     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2757 
2758     if (cpu->idau) {
2759         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2760         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2761 
2762         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2763                    &idau_nsc);
2764     }
2765 
2766     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2767         /* 0xf0000000..0xffffffff is always S for insn fetches */
2768         return;
2769     }
2770 
2771     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2772         sattrs->ns = !is_secure;
2773         return;
2774     }
2775 
2776     if (idau_region != IREGION_NOTVALID) {
2777         sattrs->irvalid = true;
2778         sattrs->iregion = idau_region;
2779     }
2780 
2781     switch (env->sau.ctrl & 3) {
2782     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2783         break;
2784     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2785         sattrs->ns = true;
2786         break;
2787     default: /* SAU.ENABLE == 1 */
2788         for (r = 0; r < cpu->sau_sregion; r++) {
2789             if (env->sau.rlar[r] & 1) {
2790                 uint32_t base = env->sau.rbar[r] & ~0x1f;
2791                 uint32_t limit = env->sau.rlar[r] | 0x1f;
2792 
2793                 if (base <= address && limit >= address) {
2794                     if (base > addr_page_base || limit < addr_page_limit) {
2795                         sattrs->subpage = true;
2796                     }
2797                     if (sattrs->srvalid) {
2798                         /*
2799                          * If we hit in more than one region then we must report
2800                          * as Secure, not NS-Callable, with no valid region
2801                          * number info.
2802                          */
2803                         sattrs->ns = false;
2804                         sattrs->nsc = false;
2805                         sattrs->sregion = 0;
2806                         sattrs->srvalid = false;
2807                         break;
2808                     } else {
2809                         if (env->sau.rlar[r] & 2) {
2810                             sattrs->nsc = true;
2811                         } else {
2812                             sattrs->ns = true;
2813                         }
2814                         sattrs->srvalid = true;
2815                         sattrs->sregion = r;
2816                     }
2817                 } else {
2818                     /*
2819                      * Address not in this region. We must check whether the
2820                      * region covers addresses in the same page as our address.
2821                      * In that case we must not report a size that covers the
2822                      * whole page for a subsequent hit against a different MPU
2823                      * region or the background region, because it would result
2824                      * in incorrect TLB hits for subsequent accesses to
2825                      * addresses that are in this MPU region.
2826                      */
2827                     if (limit >= base &&
2828                         ranges_overlap(base, limit - base + 1,
2829                                        addr_page_base,
2830                                        TARGET_PAGE_SIZE)) {
2831                         sattrs->subpage = true;
2832                     }
2833                 }
2834             }
2835         }
2836         break;
2837     }
2838 
2839     /*
2840      * The IDAU will override the SAU lookup results if it specifies
2841      * higher security than the SAU does.
2842      */
2843     if (!idau_ns) {
2844         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2845             sattrs->ns = false;
2846             sattrs->nsc = idau_nsc;
2847         }
2848     }
2849 }
2850 
2851 static bool get_phys_addr_pmsav8(CPUARMState *env,
2852                                  S1Translate *ptw,
2853                                  uint32_t address,
2854                                  MMUAccessType access_type,
2855                                  GetPhysAddrResult *result,
2856                                  ARMMMUFaultInfo *fi)
2857 {
2858     V8M_SAttributes sattrs = {};
2859     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2860     bool secure = arm_space_is_secure(ptw->in_space);
2861     bool ret;
2862 
2863     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2864         v8m_security_lookup(env, address, access_type, mmu_idx,
2865                             secure, &sattrs);
2866         if (access_type == MMU_INST_FETCH) {
2867             /*
2868              * Instruction fetches always use the MMU bank and the
2869              * transaction attribute determined by the fetch address,
2870              * regardless of CPU state. This is painful for QEMU
2871              * to handle, because it would mean we need to encode
2872              * into the mmu_idx not just the (user, negpri) information
2873              * for the current security state but also that for the
2874              * other security state, which would balloon the number
2875              * of mmu_idx values needed alarmingly.
2876              * Fortunately we can avoid this because it's not actually
2877              * possible to arbitrarily execute code from memory with
2878              * the wrong security attribute: it will always generate
2879              * an exception of some kind or another, apart from the
2880              * special case of an NS CPU executing an SG instruction
2881              * in S&NSC memory. So we always just fail the translation
2882              * here and sort things out in the exception handler
2883              * (including possibly emulating an SG instruction).
2884              */
2885             if (sattrs.ns != !secure) {
2886                 if (sattrs.nsc) {
2887                     fi->type = ARMFault_QEMU_NSCExec;
2888                 } else {
2889                     fi->type = ARMFault_QEMU_SFault;
2890                 }
2891                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2892                 result->f.phys_addr = address;
2893                 result->f.prot = 0;
2894                 return true;
2895             }
2896         } else {
2897             /*
2898              * For data accesses we always use the MMU bank indicated
2899              * by the current CPU state, but the security attributes
2900              * might downgrade a secure access to nonsecure.
2901              */
2902             if (sattrs.ns) {
2903                 result->f.attrs.secure = false;
2904                 result->f.attrs.space = ARMSS_NonSecure;
2905             } else if (!secure) {
2906                 /*
2907                  * NS access to S memory must fault.
2908                  * Architecturally we should first check whether the
2909                  * MPU information for this address indicates that we
2910                  * are doing an unaligned access to Device memory, which
2911                  * should generate a UsageFault instead. QEMU does not
2912                  * currently check for that kind of unaligned access though.
2913                  * If we added it we would need to do so as a special case
2914                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2915                  */
2916                 fi->type = ARMFault_QEMU_SFault;
2917                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2918                 result->f.phys_addr = address;
2919                 result->f.prot = 0;
2920                 return true;
2921             }
2922         }
2923     }
2924 
2925     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2926                             result, fi, NULL);
2927     if (sattrs.subpage) {
2928         result->f.lg_page_size = 0;
2929     }
2930     return ret;
2931 }
2932 
2933 /*
2934  * Translate from the 4-bit stage 2 representation of
2935  * memory attributes (without cache-allocation hints) to
2936  * the 8-bit representation of the stage 1 MAIR registers
2937  * (which includes allocation hints).
2938  *
2939  * ref: shared/translation/attrs/S2AttrDecode()
2940  *      .../S2ConvertAttrsHints()
2941  */
2942 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2943 {
2944     uint8_t hiattr = extract32(s2attrs, 2, 2);
2945     uint8_t loattr = extract32(s2attrs, 0, 2);
2946     uint8_t hihint = 0, lohint = 0;
2947 
2948     if (hiattr != 0) { /* normal memory */
2949         if (hcr & HCR_CD) { /* cache disabled */
2950             hiattr = loattr = 1; /* non-cacheable */
2951         } else {
2952             if (hiattr != 1) { /* Write-through or write-back */
2953                 hihint = 3; /* RW allocate */
2954             }
2955             if (loattr != 1) { /* Write-through or write-back */
2956                 lohint = 3; /* RW allocate */
2957             }
2958         }
2959     }
2960 
2961     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2962 }
2963 
2964 /*
2965  * Combine either inner or outer cacheability attributes for normal
2966  * memory, according to table D4-42 and pseudocode procedure
2967  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2968  *
2969  * NB: only stage 1 includes allocation hints (RW bits), leading to
2970  * some asymmetry.
2971  */
2972 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2973 {
2974     if (s1 == 4 || s2 == 4) {
2975         /* non-cacheable has precedence */
2976         return 4;
2977     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2978         /* stage 1 write-through takes precedence */
2979         return s1;
2980     } else if (extract32(s2, 2, 2) == 2) {
2981         /* stage 2 write-through takes precedence, but the allocation hint
2982          * is still taken from stage 1
2983          */
2984         return (2 << 2) | extract32(s1, 0, 2);
2985     } else { /* write-back */
2986         return s1;
2987     }
2988 }
2989 
2990 /*
2991  * Combine the memory type and cacheability attributes of
2992  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2993  * combined attributes in MAIR_EL1 format.
2994  */
2995 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2996                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
2997 {
2998     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2999 
3000     if (s2.is_s2_format) {
3001         s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
3002     } else {
3003         s2_mair_attrs = s2.attrs;
3004     }
3005 
3006     s1lo = extract32(s1.attrs, 0, 4);
3007     s2lo = extract32(s2_mair_attrs, 0, 4);
3008     s1hi = extract32(s1.attrs, 4, 4);
3009     s2hi = extract32(s2_mair_attrs, 4, 4);
3010 
3011     /* Combine memory type and cacheability attributes */
3012     if (s1hi == 0 || s2hi == 0) {
3013         /* Device has precedence over normal */
3014         if (s1lo == 0 || s2lo == 0) {
3015             /* nGnRnE has precedence over anything */
3016             ret_attrs = 0;
3017         } else if (s1lo == 4 || s2lo == 4) {
3018             /* non-Reordering has precedence over Reordering */
3019             ret_attrs = 4;  /* nGnRE */
3020         } else if (s1lo == 8 || s2lo == 8) {
3021             /* non-Gathering has precedence over Gathering */
3022             ret_attrs = 8;  /* nGRE */
3023         } else {
3024             ret_attrs = 0xc; /* GRE */
3025         }
3026     } else { /* Normal memory */
3027         /* Outer/inner cacheability combine independently */
3028         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
3029                   | combine_cacheattr_nibble(s1lo, s2lo);
3030     }
3031     return ret_attrs;
3032 }
3033 
3034 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
3035 {
3036     /*
3037      * Given the 4 bits specifying the outer or inner cacheability
3038      * in MAIR format, return a value specifying Normal Write-Back,
3039      * with the allocation and transient hints taken from the input
3040      * if the input specified some kind of cacheable attribute.
3041      */
3042     if (attr == 0 || attr == 4) {
3043         /*
3044          * 0 == an UNPREDICTABLE encoding
3045          * 4 == Non-cacheable
3046          * Either way, force Write-Back RW allocate non-transient
3047          */
3048         return 0xf;
3049     }
3050     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
3051     return attr | 4;
3052 }
3053 
3054 /*
3055  * Combine the memory type and cacheability attributes of
3056  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
3057  * combined attributes in MAIR_EL1 format.
3058  */
3059 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
3060 {
3061     assert(s2.is_s2_format && !s1.is_s2_format);
3062 
3063     switch (s2.attrs) {
3064     case 7:
3065         /* Use stage 1 attributes */
3066         return s1.attrs;
3067     case 6:
3068         /*
3069          * Force Normal Write-Back. Note that if S1 is Normal cacheable
3070          * then we take the allocation hints from it; otherwise it is
3071          * RW allocate, non-transient.
3072          */
3073         if ((s1.attrs & 0xf0) == 0) {
3074             /* S1 is Device */
3075             return 0xff;
3076         }
3077         /* Need to check the Inner and Outer nibbles separately */
3078         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
3079             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
3080     case 5:
3081         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
3082         if ((s1.attrs & 0xf0) == 0) {
3083             return s1.attrs;
3084         }
3085         return 0x44;
3086     case 0 ... 3:
3087         /* Force Device, of subtype specified by S2 */
3088         return s2.attrs << 2;
3089     default:
3090         /*
3091          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
3092          * arbitrarily force Device.
3093          */
3094         return 0;
3095     }
3096 }
3097 
3098 /*
3099  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
3100  * and CombineS1S2Desc()
3101  *
3102  * @env:     CPUARMState
3103  * @s1:      Attributes from stage 1 walk
3104  * @s2:      Attributes from stage 2 walk
3105  */
3106 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
3107                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
3108 {
3109     ARMCacheAttrs ret;
3110     bool tagged = false;
3111 
3112     assert(!s1.is_s2_format);
3113     ret.is_s2_format = false;
3114 
3115     if (s1.attrs == 0xf0) {
3116         tagged = true;
3117         s1.attrs = 0xff;
3118     }
3119 
3120     /* Combine shareability attributes (table D4-43) */
3121     if (s1.shareability == 2 || s2.shareability == 2) {
3122         /* if either are outer-shareable, the result is outer-shareable */
3123         ret.shareability = 2;
3124     } else if (s1.shareability == 3 || s2.shareability == 3) {
3125         /* if either are inner-shareable, the result is inner-shareable */
3126         ret.shareability = 3;
3127     } else {
3128         /* both non-shareable */
3129         ret.shareability = 0;
3130     }
3131 
3132     /* Combine memory type and cacheability attributes */
3133     if (hcr & HCR_FWB) {
3134         ret.attrs = combined_attrs_fwb(s1, s2);
3135     } else {
3136         ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
3137     }
3138 
3139     /*
3140      * Any location for which the resultant memory type is any
3141      * type of Device memory is always treated as Outer Shareable.
3142      * Any location for which the resultant memory type is Normal
3143      * Inner Non-cacheable, Outer Non-cacheable is always treated
3144      * as Outer Shareable.
3145      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
3146      */
3147     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
3148         ret.shareability = 2;
3149     }
3150 
3151     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
3152     if (tagged && ret.attrs == 0xff) {
3153         ret.attrs = 0xf0;
3154     }
3155 
3156     return ret;
3157 }
3158 
3159 /*
3160  * MMU disabled.  S1 addresses within aa64 translation regimes are
3161  * still checked for bounds -- see AArch64.S1DisabledOutput().
3162  */
3163 static bool get_phys_addr_disabled(CPUARMState *env,
3164                                    S1Translate *ptw,
3165                                    target_ulong address,
3166                                    MMUAccessType access_type,
3167                                    GetPhysAddrResult *result,
3168                                    ARMMMUFaultInfo *fi)
3169 {
3170     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3171     uint8_t memattr = 0x00;    /* Device nGnRnE */
3172     uint8_t shareability = 0;  /* non-shareable */
3173     int r_el;
3174 
3175     switch (mmu_idx) {
3176     case ARMMMUIdx_Stage2:
3177     case ARMMMUIdx_Stage2_S:
3178     case ARMMMUIdx_Phys_S:
3179     case ARMMMUIdx_Phys_NS:
3180     case ARMMMUIdx_Phys_Root:
3181     case ARMMMUIdx_Phys_Realm:
3182         break;
3183 
3184     default:
3185         r_el = regime_el(env, mmu_idx);
3186         if (arm_el_is_aa64(env, r_el)) {
3187             int pamax = arm_pamax(env_archcpu(env));
3188             uint64_t tcr = env->cp15.tcr_el[r_el];
3189             int addrtop, tbi;
3190 
3191             tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
3192             if (access_type == MMU_INST_FETCH) {
3193                 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
3194             }
3195             tbi = (tbi >> extract64(address, 55, 1)) & 1;
3196             addrtop = (tbi ? 55 : 63);
3197 
3198             if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
3199                 fi->type = ARMFault_AddressSize;
3200                 fi->level = 0;
3201                 fi->stage2 = false;
3202                 return 1;
3203             }
3204 
3205             /*
3206              * When TBI is disabled, we've just validated that all of the
3207              * bits above PAMax are zero, so logically we only need to
3208              * clear the top byte for TBI.  But it's clearer to follow
3209              * the pseudocode set of addrdesc.paddress.
3210              */
3211             address = extract64(address, 0, 52);
3212         }
3213 
3214         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3215         if (r_el == 1) {
3216             uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
3217             if (hcr & HCR_DC) {
3218                 if (hcr & HCR_DCT) {
3219                     memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
3220                 } else {
3221                     memattr = 0xff;  /* Normal, WB, RWA */
3222                 }
3223             }
3224         }
3225         if (memattr == 0) {
3226             if (access_type == MMU_INST_FETCH) {
3227                 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3228                     memattr = 0xee;  /* Normal, WT, RA, NT */
3229                 } else {
3230                     memattr = 0x44;  /* Normal, NC, No */
3231                 }
3232             }
3233             shareability = 2; /* outer shareable */
3234         }
3235         result->cacheattrs.is_s2_format = false;
3236         break;
3237     }
3238 
3239     result->f.phys_addr = address;
3240     result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3241     result->f.lg_page_size = TARGET_PAGE_BITS;
3242     result->cacheattrs.shareability = shareability;
3243     result->cacheattrs.attrs = memattr;
3244     return false;
3245 }
3246 
3247 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3248                                    target_ulong address,
3249                                    MMUAccessType access_type,
3250                                    GetPhysAddrResult *result,
3251                                    ARMMMUFaultInfo *fi)
3252 {
3253     hwaddr ipa;
3254     int s1_prot, s1_lgpgsz;
3255     ARMSecuritySpace in_space = ptw->in_space;
3256     bool ret, ipa_secure, s1_guarded;
3257     ARMCacheAttrs cacheattrs1;
3258     ARMSecuritySpace ipa_space;
3259     uint64_t hcr;
3260 
3261     ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi);
3262 
3263     /* If S1 fails, return early.  */
3264     if (ret) {
3265         return ret;
3266     }
3267 
3268     ipa = result->f.phys_addr;
3269     ipa_secure = result->f.attrs.secure;
3270     ipa_space = result->f.attrs.space;
3271 
3272     ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3273     ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3274     ptw->in_space = ipa_space;
3275     ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3276 
3277     /*
3278      * S1 is done, now do S2 translation.
3279      * Save the stage1 results so that we may merge prot and cacheattrs later.
3280      */
3281     s1_prot = result->f.prot;
3282     s1_lgpgsz = result->f.lg_page_size;
3283     s1_guarded = result->f.extra.arm.guarded;
3284     cacheattrs1 = result->cacheattrs;
3285     memset(result, 0, sizeof(*result));
3286 
3287     ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi);
3288     fi->s2addr = ipa;
3289 
3290     /* Combine the S1 and S2 perms.  */
3291     result->f.prot &= s1_prot;
3292 
3293     /* If S2 fails, return early.  */
3294     if (ret) {
3295         return ret;
3296     }
3297 
3298     /*
3299      * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3300      * this means "don't put this in the TLB"; in this case, return a
3301      * result with lg_page_size == 0 to achieve that. Otherwise,
3302      * use the maximum of the S1 & S2 page size, so that invalidation
3303      * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3304      * we know the combined result permissions etc only cover the minimum
3305      * of the S1 and S2 page size, because we know that the common TLB code
3306      * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3307      * and passing a larger page size value only affects invalidations.)
3308      */
3309     if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3310         s1_lgpgsz < TARGET_PAGE_BITS) {
3311         result->f.lg_page_size = 0;
3312     } else if (result->f.lg_page_size < s1_lgpgsz) {
3313         result->f.lg_page_size = s1_lgpgsz;
3314     }
3315 
3316     /* Combine the S1 and S2 cache attributes. */
3317     hcr = arm_hcr_el2_eff_secstate(env, in_space);
3318     if (hcr & HCR_DC) {
3319         /*
3320          * HCR.DC forces the first stage attributes to
3321          *  Normal Non-Shareable,
3322          *  Inner Write-Back Read-Allocate Write-Allocate,
3323          *  Outer Write-Back Read-Allocate Write-Allocate.
3324          * Do not overwrite Tagged within attrs.
3325          */
3326         if (cacheattrs1.attrs != 0xf0) {
3327             cacheattrs1.attrs = 0xff;
3328         }
3329         cacheattrs1.shareability = 0;
3330     }
3331     result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3332                                             result->cacheattrs);
3333 
3334     /* No BTI GP information in stage 2, we just use the S1 value */
3335     result->f.extra.arm.guarded = s1_guarded;
3336 
3337     /*
3338      * Check if IPA translates to secure or non-secure PA space.
3339      * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3340      */
3341     if (in_space == ARMSS_Secure) {
3342         result->f.attrs.secure =
3343             !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3344             && (ipa_secure
3345                 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
3346         result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
3347     }
3348 
3349     return false;
3350 }
3351 
3352 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3353                                       target_ulong address,
3354                                       MMUAccessType access_type,
3355                                       GetPhysAddrResult *result,
3356                                       ARMMMUFaultInfo *fi)
3357 {
3358     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3359     ARMMMUIdx s1_mmu_idx;
3360 
3361     /*
3362      * The page table entries may downgrade Secure to NonSecure, but
3363      * cannot upgrade a NonSecure translation regime's attributes
3364      * to Secure or Realm.
3365      */
3366     result->f.attrs.space = ptw->in_space;
3367     result->f.attrs.secure = arm_space_is_secure(ptw->in_space);
3368 
3369     switch (mmu_idx) {
3370     case ARMMMUIdx_Phys_S:
3371     case ARMMMUIdx_Phys_NS:
3372     case ARMMMUIdx_Phys_Root:
3373     case ARMMMUIdx_Phys_Realm:
3374         /* Checking Phys early avoids special casing later vs regime_el. */
3375         return get_phys_addr_disabled(env, ptw, address, access_type,
3376                                       result, fi);
3377 
3378     case ARMMMUIdx_Stage1_E0:
3379     case ARMMMUIdx_Stage1_E1:
3380     case ARMMMUIdx_Stage1_E1_PAN:
3381         /*
3382          * First stage lookup uses second stage for ptw; only
3383          * Secure has both S and NS IPA and starts with Stage2_S.
3384          */
3385         ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ?
3386             ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3387         break;
3388 
3389     case ARMMMUIdx_Stage2:
3390     case ARMMMUIdx_Stage2_S:
3391         /*
3392          * Second stage lookup uses physical for ptw; whether this is S or
3393          * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3394          * the Secure EL2&0 regime.
3395          */
3396         ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3397         break;
3398 
3399     case ARMMMUIdx_E10_0:
3400         s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3401         goto do_twostage;
3402     case ARMMMUIdx_E10_1:
3403         s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3404         goto do_twostage;
3405     case ARMMMUIdx_E10_1_PAN:
3406         s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3407     do_twostage:
3408         /*
3409          * Call ourselves recursively to do the stage 1 and then stage 2
3410          * translations if mmu_idx is a two-stage regime, and EL2 present.
3411          * Otherwise, a stage1+stage2 translation is just stage 1.
3412          */
3413         ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3414         if (arm_feature(env, ARM_FEATURE_EL2) &&
3415             !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) {
3416             return get_phys_addr_twostage(env, ptw, address, access_type,
3417                                           result, fi);
3418         }
3419         /* fall through */
3420 
3421     default:
3422         /* Single stage uses physical for ptw. */
3423         ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3424         break;
3425     }
3426 
3427     result->f.attrs.user = regime_is_user(env, mmu_idx);
3428 
3429     /*
3430      * Fast Context Switch Extension. This doesn't exist at all in v8.
3431      * In v7 and earlier it affects all stage 1 translations.
3432      */
3433     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3434         && !arm_feature(env, ARM_FEATURE_V8)) {
3435         if (regime_el(env, mmu_idx) == 3) {
3436             address += env->cp15.fcseidr_s;
3437         } else {
3438             address += env->cp15.fcseidr_ns;
3439         }
3440     }
3441 
3442     if (arm_feature(env, ARM_FEATURE_PMSA)) {
3443         bool ret;
3444         result->f.lg_page_size = TARGET_PAGE_BITS;
3445 
3446         if (arm_feature(env, ARM_FEATURE_V8)) {
3447             /* PMSAv8 */
3448             ret = get_phys_addr_pmsav8(env, ptw, address, access_type,
3449                                        result, fi);
3450         } else if (arm_feature(env, ARM_FEATURE_V7)) {
3451             /* PMSAv7 */
3452             ret = get_phys_addr_pmsav7(env, ptw, address, access_type,
3453                                        result, fi);
3454         } else {
3455             /* Pre-v7 MPU */
3456             ret = get_phys_addr_pmsav5(env, ptw, address, access_type,
3457                                        result, fi);
3458         }
3459         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3460                       " mmu_idx %u -> %s (prot %c%c%c)\n",
3461                       access_type == MMU_DATA_LOAD ? "reading" :
3462                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3463                       (uint32_t)address, mmu_idx,
3464                       ret ? "Miss" : "Hit",
3465                       result->f.prot & PAGE_READ ? 'r' : '-',
3466                       result->f.prot & PAGE_WRITE ? 'w' : '-',
3467                       result->f.prot & PAGE_EXEC ? 'x' : '-');
3468 
3469         return ret;
3470     }
3471 
3472     /* Definitely a real MMU, not an MPU */
3473 
3474     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
3475         return get_phys_addr_disabled(env, ptw, address, access_type,
3476                                       result, fi);
3477     }
3478 
3479     if (regime_using_lpae_format(env, mmu_idx)) {
3480         return get_phys_addr_lpae(env, ptw, address, access_type, result, fi);
3481     } else if (arm_feature(env, ARM_FEATURE_V7) ||
3482                regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3483         return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3484     } else {
3485         return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3486     }
3487 }
3488 
3489 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3490                               target_ulong address,
3491                               MMUAccessType access_type,
3492                               GetPhysAddrResult *result,
3493                               ARMMMUFaultInfo *fi)
3494 {
3495     if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) {
3496         return true;
3497     }
3498     if (!granule_protection_check(env, result->f.phys_addr,
3499                                   result->f.attrs.space, fi)) {
3500         fi->type = ARMFault_GPCFOnOutput;
3501         return true;
3502     }
3503     return false;
3504 }
3505 
3506 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
3507                                     MMUAccessType access_type,
3508                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
3509                                     GetPhysAddrResult *result,
3510                                     ARMMMUFaultInfo *fi)
3511 {
3512     S1Translate ptw = {
3513         .in_mmu_idx = mmu_idx,
3514         .in_space = space,
3515     };
3516     return get_phys_addr_nogpc(env, &ptw, address, access_type, result, fi);
3517 }
3518 
3519 bool get_phys_addr(CPUARMState *env, target_ulong address,
3520                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
3521                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3522 {
3523     S1Translate ptw = {
3524         .in_mmu_idx = mmu_idx,
3525     };
3526     ARMSecuritySpace ss;
3527 
3528     switch (mmu_idx) {
3529     case ARMMMUIdx_E10_0:
3530     case ARMMMUIdx_E10_1:
3531     case ARMMMUIdx_E10_1_PAN:
3532     case ARMMMUIdx_E20_0:
3533     case ARMMMUIdx_E20_2:
3534     case ARMMMUIdx_E20_2_PAN:
3535     case ARMMMUIdx_Stage1_E0:
3536     case ARMMMUIdx_Stage1_E1:
3537     case ARMMMUIdx_Stage1_E1_PAN:
3538     case ARMMMUIdx_E2:
3539         ss = arm_security_space_below_el3(env);
3540         break;
3541     case ARMMMUIdx_Stage2:
3542         /*
3543          * For Secure EL2, we need this index to be NonSecure;
3544          * otherwise this will already be NonSecure or Realm.
3545          */
3546         ss = arm_security_space_below_el3(env);
3547         if (ss == ARMSS_Secure) {
3548             ss = ARMSS_NonSecure;
3549         }
3550         break;
3551     case ARMMMUIdx_Phys_NS:
3552     case ARMMMUIdx_MPrivNegPri:
3553     case ARMMMUIdx_MUserNegPri:
3554     case ARMMMUIdx_MPriv:
3555     case ARMMMUIdx_MUser:
3556         ss = ARMSS_NonSecure;
3557         break;
3558     case ARMMMUIdx_Stage2_S:
3559     case ARMMMUIdx_Phys_S:
3560     case ARMMMUIdx_MSPrivNegPri:
3561     case ARMMMUIdx_MSUserNegPri:
3562     case ARMMMUIdx_MSPriv:
3563     case ARMMMUIdx_MSUser:
3564         ss = ARMSS_Secure;
3565         break;
3566     case ARMMMUIdx_E3:
3567         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3568             cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3569             ss = ARMSS_Root;
3570         } else {
3571             ss = ARMSS_Secure;
3572         }
3573         break;
3574     case ARMMMUIdx_Phys_Root:
3575         ss = ARMSS_Root;
3576         break;
3577     case ARMMMUIdx_Phys_Realm:
3578         ss = ARMSS_Realm;
3579         break;
3580     default:
3581         g_assert_not_reached();
3582     }
3583 
3584     ptw.in_space = ss;
3585     return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi);
3586 }
3587 
3588 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3589                                          MemTxAttrs *attrs)
3590 {
3591     ARMCPU *cpu = ARM_CPU(cs);
3592     CPUARMState *env = &cpu->env;
3593     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3594     ARMSecuritySpace ss = arm_security_space(env);
3595     S1Translate ptw = {
3596         .in_mmu_idx = mmu_idx,
3597         .in_space = ss,
3598         .in_debug = true,
3599     };
3600     GetPhysAddrResult res = {};
3601     ARMMMUFaultInfo fi = {};
3602     bool ret;
3603 
3604     ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3605     *attrs = res.f.attrs;
3606 
3607     if (ret) {
3608         return -1;
3609     }
3610     return res.f.phys_addr;
3611 }
3612