xref: /openbmc/qemu/target/arm/ptw.c (revision e50a24ea)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "exec/page-protection.h"
15 #include "cpu.h"
16 #include "internals.h"
17 #include "cpu-features.h"
18 #include "idau.h"
19 #ifdef CONFIG_TCG
20 # include "tcg/oversized-guest.h"
21 #endif
22 
23 typedef struct S1Translate {
24     /*
25      * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
26      * Together with in_space, specifies the architectural translation regime.
27      */
28     ARMMMUIdx in_mmu_idx;
29     /*
30      * in_ptw_idx: specifies which mmuidx to use for the actual
31      * page table descriptor load operations. This will be one of the
32      * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
33      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
34      * this field is updated accordingly.
35      */
36     ARMMMUIdx in_ptw_idx;
37     /*
38      * in_space: the security space for this walk. This plus
39      * the in_mmu_idx specify the architectural translation regime.
40      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
41      * this field is updated accordingly.
42      *
43      * Note that the security space for the in_ptw_idx may be different
44      * from that for the in_mmu_idx. We do not need to explicitly track
45      * the in_ptw_idx security space because:
46      *  - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
47      *    itself specifies the security space
48      *  - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
49      *    space used for ptw reads is the same as that of the security
50      *    space of the stage 1 translation for all cases except where
51      *    stage 1 is Secure; in that case the only possibilities for
52      *    the ptw read are Secure and NonSecure, and the in_ptw_idx
53      *    value being Stage2 vs Stage2_S distinguishes those.
54      */
55     ARMSecuritySpace in_space;
56     /*
57      * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
58      * accesses will not update the guest page table access flags
59      * and will not change the state of the softmmu TLBs.
60      */
61     bool in_debug;
62     /*
63      * If this is stage 2 of a stage 1+2 page table walk, then this must
64      * be true if stage 1 is an EL0 access; otherwise this is ignored.
65      * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
66      */
67     bool in_s1_is_el0;
68     bool out_rw;
69     bool out_be;
70     ARMSecuritySpace out_space;
71     hwaddr out_virt;
72     hwaddr out_phys;
73     void *out_host;
74 } S1Translate;
75 
76 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
77                                 vaddr address,
78                                 MMUAccessType access_type, MemOp memop,
79                                 GetPhysAddrResult *result,
80                                 ARMMMUFaultInfo *fi);
81 
82 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
83                               vaddr address,
84                               MMUAccessType access_type, MemOp memop,
85                               GetPhysAddrResult *result,
86                               ARMMMUFaultInfo *fi);
87 
88 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
89                       int user_rw, int prot_rw, int xn, int pxn,
90                       ARMSecuritySpace in_pa, ARMSecuritySpace out_pa);
91 
92 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
93 static const uint8_t pamax_map[] = {
94     [0] = 32,
95     [1] = 36,
96     [2] = 40,
97     [3] = 42,
98     [4] = 44,
99     [5] = 48,
100     [6] = 52,
101 };
102 
103 uint8_t round_down_to_parange_index(uint8_t bit_size)
104 {
105     for (int i = ARRAY_SIZE(pamax_map) - 1; i >= 0; i--) {
106         if (pamax_map[i] <= bit_size) {
107             return i;
108         }
109     }
110     g_assert_not_reached();
111 }
112 
113 uint8_t round_down_to_parange_bit_size(uint8_t bit_size)
114 {
115     return pamax_map[round_down_to_parange_index(bit_size)];
116 }
117 
118 /*
119  * The cpu-specific constant value of PAMax; also used by hw/arm/virt.
120  * Note that machvirt_init calls this on a CPU that is inited but not realized!
121  */
122 unsigned int arm_pamax(ARMCPU *cpu)
123 {
124     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
125         unsigned int parange =
126             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
127 
128         /*
129          * id_aa64mmfr0 is a read-only register so values outside of the
130          * supported mappings can be considered an implementation error.
131          */
132         assert(parange < ARRAY_SIZE(pamax_map));
133         return pamax_map[parange];
134     }
135 
136     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
137         /* v7 or v8 with LPAE */
138         return 40;
139     }
140     /* Anything else */
141     return 32;
142 }
143 
144 /*
145  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
146  */
147 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
148 {
149     switch (mmu_idx) {
150     case ARMMMUIdx_E10_0:
151         return ARMMMUIdx_Stage1_E0;
152     case ARMMMUIdx_E10_1:
153         return ARMMMUIdx_Stage1_E1;
154     case ARMMMUIdx_E10_1_PAN:
155         return ARMMMUIdx_Stage1_E1_PAN;
156     default:
157         return mmu_idx;
158     }
159 }
160 
161 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
162 {
163     return stage_1_mmu_idx(arm_mmu_idx(env));
164 }
165 
166 /*
167  * Return where we should do ptw loads from for a stage 2 walk.
168  * This depends on whether the address we are looking up is a
169  * Secure IPA or a NonSecure IPA, which we know from whether this is
170  * Stage2 or Stage2_S.
171  * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
172  */
173 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
174 {
175     bool s2walk_secure;
176 
177     /*
178      * We're OK to check the current state of the CPU here because
179      * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit
180      * changes.
181      * (2) there's no way to do a lookup that cares about Stage 2 for a
182      * different security state to the current one for AArch64, and AArch32
183      * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
184      * an NS stage 1+2 lookup while the NS bit is 0.)
185      */
186     if (!arm_el_is_aa64(env, 3)) {
187         return ARMMMUIdx_Phys_NS;
188     }
189 
190     switch (arm_security_space_below_el3(env)) {
191     case ARMSS_NonSecure:
192         return ARMMMUIdx_Phys_NS;
193     case ARMSS_Realm:
194         return ARMMMUIdx_Phys_Realm;
195     case ARMSS_Secure:
196         if (stage2idx == ARMMMUIdx_Stage2_S) {
197             s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
198         } else {
199             s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
200         }
201         return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
202     default:
203         g_assert_not_reached();
204     }
205 }
206 
207 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
208 {
209     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
210 }
211 
212 /* Return the TTBR associated with this translation regime */
213 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
214 {
215     if (mmu_idx == ARMMMUIdx_Stage2) {
216         return env->cp15.vttbr_el2;
217     }
218     if (mmu_idx == ARMMMUIdx_Stage2_S) {
219         return env->cp15.vsttbr_el2;
220     }
221     if (ttbrn == 0) {
222         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
223     } else {
224         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
225     }
226 }
227 
228 /* Return true if the specified stage of address translation is disabled */
229 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
230                                         ARMSecuritySpace space)
231 {
232     uint64_t hcr_el2;
233 
234     if (arm_feature(env, ARM_FEATURE_M)) {
235         bool is_secure = arm_space_is_secure(space);
236         switch (env->v7m.mpu_ctrl[is_secure] &
237                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
238         case R_V7M_MPU_CTRL_ENABLE_MASK:
239             /* Enabled, but not for HardFault and NMI */
240             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
241         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
242             /* Enabled for all cases */
243             return false;
244         case 0:
245         default:
246             /*
247              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
248              * we warned about that in armv7m_nvic.c when the guest set it.
249              */
250             return true;
251         }
252     }
253 
254 
255     switch (mmu_idx) {
256     case ARMMMUIdx_Stage2:
257     case ARMMMUIdx_Stage2_S:
258         /* HCR.DC means HCR.VM behaves as 1 */
259         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
260         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
261 
262     case ARMMMUIdx_E10_0:
263     case ARMMMUIdx_E10_1:
264     case ARMMMUIdx_E10_1_PAN:
265         /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
266         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
267         if (hcr_el2 & HCR_TGE) {
268             return true;
269         }
270         break;
271 
272     case ARMMMUIdx_Stage1_E0:
273     case ARMMMUIdx_Stage1_E1:
274     case ARMMMUIdx_Stage1_E1_PAN:
275         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
276         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
277         if (hcr_el2 & HCR_DC) {
278             return true;
279         }
280         break;
281 
282     case ARMMMUIdx_E20_0:
283     case ARMMMUIdx_E20_2:
284     case ARMMMUIdx_E20_2_PAN:
285     case ARMMMUIdx_E2:
286     case ARMMMUIdx_E3:
287     case ARMMMUIdx_E30_0:
288     case ARMMMUIdx_E30_3_PAN:
289         break;
290 
291     case ARMMMUIdx_Phys_S:
292     case ARMMMUIdx_Phys_NS:
293     case ARMMMUIdx_Phys_Root:
294     case ARMMMUIdx_Phys_Realm:
295         /* No translation for physical address spaces. */
296         return true;
297 
298     default:
299         g_assert_not_reached();
300     }
301 
302     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
303 }
304 
305 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
306                                      ARMSecuritySpace pspace,
307                                      ARMMMUFaultInfo *fi)
308 {
309     MemTxAttrs attrs = {
310         .secure = true,
311         .space = ARMSS_Root,
312     };
313     ARMCPU *cpu = env_archcpu(env);
314     uint64_t gpccr = env->cp15.gpccr_el3;
315     unsigned pps, pgs, l0gptsz, level = 0;
316     uint64_t tableaddr, pps_mask, align, entry, index;
317     AddressSpace *as;
318     MemTxResult result;
319     int gpi;
320 
321     if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
322         return true;
323     }
324 
325     /*
326      * GPC Priority 1 (R_GMGRR):
327      * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
328      * the access fails as GPT walk fault at level 0.
329      */
330 
331     /*
332      * Configuration of PPS to a value exceeding the implemented
333      * physical address size is invalid.
334      */
335     pps = FIELD_EX64(gpccr, GPCCR, PPS);
336     if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
337         goto fault_walk;
338     }
339     pps = pamax_map[pps];
340     pps_mask = MAKE_64BIT_MASK(0, pps);
341 
342     switch (FIELD_EX64(gpccr, GPCCR, SH)) {
343     case 0b10: /* outer shareable */
344         break;
345     case 0b00: /* non-shareable */
346     case 0b11: /* inner shareable */
347         /* Inner and Outer non-cacheable requires Outer shareable. */
348         if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
349             FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
350             goto fault_walk;
351         }
352         break;
353     default:   /* reserved */
354         goto fault_walk;
355     }
356 
357     switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
358     case 0b00: /* 4KB */
359         pgs = 12;
360         break;
361     case 0b01: /* 64KB */
362         pgs = 16;
363         break;
364     case 0b10: /* 16KB */
365         pgs = 14;
366         break;
367     default: /* reserved */
368         goto fault_walk;
369     }
370 
371     /* Note this field is read-only and fixed at reset. */
372     l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
373 
374     /*
375      * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
376      * R_CPDSB: A NonSecure physical address input exceeding PPS
377      * does not experience any fault.
378      */
379     if (paddress & ~pps_mask) {
380         if (pspace == ARMSS_NonSecure) {
381             return true;
382         }
383         goto fault_size;
384     }
385 
386     /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
387     tableaddr = env->cp15.gptbr_el3 << 12;
388     if (tableaddr & ~pps_mask) {
389         goto fault_size;
390     }
391 
392     /*
393      * BADDR is aligned per a function of PPS and L0GPTSZ.
394      * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
395      * unlike the RES0 bits of the GPT entries (R_XNKFZ).
396      */
397     align = MAX(pps - l0gptsz + 3, 12);
398     align = MAKE_64BIT_MASK(0, align);
399     tableaddr &= ~align;
400 
401     as = arm_addressspace(env_cpu(env), attrs);
402 
403     /* Level 0 lookup. */
404     index = extract64(paddress, l0gptsz, pps - l0gptsz);
405     tableaddr += index * 8;
406     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
407     if (result != MEMTX_OK) {
408         goto fault_eabt;
409     }
410 
411     switch (extract32(entry, 0, 4)) {
412     case 1: /* block descriptor */
413         if (entry >> 8) {
414             goto fault_walk; /* RES0 bits not 0 */
415         }
416         gpi = extract32(entry, 4, 4);
417         goto found;
418     case 3: /* table descriptor */
419         tableaddr = entry & ~0xf;
420         align = MAX(l0gptsz - pgs - 1, 12);
421         align = MAKE_64BIT_MASK(0, align);
422         if (tableaddr & (~pps_mask | align)) {
423             goto fault_walk; /* RES0 bits not 0 */
424         }
425         break;
426     default: /* invalid */
427         goto fault_walk;
428     }
429 
430     /* Level 1 lookup */
431     level = 1;
432     index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
433     tableaddr += index * 8;
434     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
435     if (result != MEMTX_OK) {
436         goto fault_eabt;
437     }
438 
439     switch (extract32(entry, 0, 4)) {
440     case 1: /* contiguous descriptor */
441         if (entry >> 10) {
442             goto fault_walk; /* RES0 bits not 0 */
443         }
444         /*
445          * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
446          * and because we cannot invalidate by pa, and thus will always
447          * flush entire tlbs, we don't actually care about the range here
448          * and can simply extract the GPI as the result.
449          */
450         if (extract32(entry, 8, 2) == 0) {
451             goto fault_walk; /* reserved contig */
452         }
453         gpi = extract32(entry, 4, 4);
454         break;
455     default:
456         index = extract64(paddress, pgs, 4);
457         gpi = extract64(entry, index * 4, 4);
458         break;
459     }
460 
461  found:
462     switch (gpi) {
463     case 0b0000: /* no access */
464         break;
465     case 0b1111: /* all access */
466         return true;
467     case 0b1000:
468     case 0b1001:
469     case 0b1010:
470     case 0b1011:
471         if (pspace == (gpi & 3)) {
472             return true;
473         }
474         break;
475     default:
476         goto fault_walk; /* reserved */
477     }
478 
479     fi->gpcf = GPCF_Fail;
480     goto fault_common;
481  fault_eabt:
482     fi->gpcf = GPCF_EABT;
483     goto fault_common;
484  fault_size:
485     fi->gpcf = GPCF_AddressSize;
486     goto fault_common;
487  fault_walk:
488     fi->gpcf = GPCF_Walk;
489  fault_common:
490     fi->level = level;
491     fi->paddr = paddress;
492     fi->paddr_space = pspace;
493     return false;
494 }
495 
496 static bool S1_attrs_are_device(uint8_t attrs)
497 {
498     /*
499      * This slightly under-decodes the MAIR_ELx field:
500      * 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE;
501      * 0b0000dd1x is UNPREDICTABLE.
502      */
503     return (attrs & 0xf0) == 0;
504 }
505 
506 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
507 {
508     /*
509      * For an S1 page table walk, the stage 1 attributes are always
510      * some form of "this is Normal memory". The combined S1+S2
511      * attributes are therefore only Device if stage 2 specifies Device.
512      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
513      * ie when cacheattrs.attrs bits [3:2] are 0b00.
514      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
515      * when cacheattrs.attrs bit [2] is 0.
516      */
517     if (hcr & HCR_FWB) {
518         return (attrs & 0x4) == 0;
519     } else {
520         return (attrs & 0xc) == 0;
521     }
522 }
523 
524 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
525                                           ARMMMUIdx s2_mmu_idx)
526 {
527     /*
528      * Return the security space to use for stage 2 when doing
529      * the S1 page table descriptor load.
530      */
531     if (regime_is_stage2(s2_mmu_idx)) {
532         /*
533          * The security space for ptw reads is almost always the same
534          * as that of the security space of the stage 1 translation.
535          * The only exception is when stage 1 is Secure; in that case
536          * the ptw read might be to the Secure or the NonSecure space
537          * (but never Realm or Root), and the s2_mmu_idx tells us which.
538          * Root translations are always single-stage.
539          */
540         if (s1_space == ARMSS_Secure) {
541             return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
542         } else {
543             assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
544             assert(s1_space != ARMSS_Root);
545             return s1_space;
546         }
547     } else {
548         /* ptw loads are from phys: the mmu idx itself says which space */
549         return arm_phys_to_space(s2_mmu_idx);
550     }
551 }
552 
553 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx)
554 {
555     /*
556      * For stage 2 faults in Secure EL22, S1NS indicates
557      * whether the faulting IPA is in the Secure or NonSecure
558      * IPA space. For all other kinds of fault, it is false.
559      */
560     return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx)
561         && s2_mmu_idx == ARMMMUIdx_Stage2_S;
562 }
563 
564 /* Translate a S1 pagetable walk through S2 if needed.  */
565 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
566                              hwaddr addr, ARMMMUFaultInfo *fi)
567 {
568     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
569     ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
570     uint8_t pte_attrs;
571 
572     ptw->out_virt = addr;
573 
574     if (unlikely(ptw->in_debug)) {
575         /*
576          * From gdbstub, do not use softmmu so that we don't modify the
577          * state of the cpu at all, including softmmu tlb contents.
578          */
579         ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
580         S1Translate s2ptw = {
581             .in_mmu_idx = s2_mmu_idx,
582             .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
583             .in_space = s2_space,
584             .in_debug = true,
585         };
586         GetPhysAddrResult s2 = { };
587 
588         if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, 0, &s2, fi)) {
589             goto fail;
590         }
591 
592         ptw->out_phys = s2.f.phys_addr;
593         pte_attrs = s2.cacheattrs.attrs;
594         ptw->out_host = NULL;
595         ptw->out_rw = false;
596         ptw->out_space = s2.f.attrs.space;
597     } else {
598 #ifdef CONFIG_TCG
599         CPUTLBEntryFull *full;
600         int flags;
601 
602         env->tlb_fi = fi;
603         flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
604                                       arm_to_core_mmu_idx(s2_mmu_idx),
605                                       &ptw->out_host, &full);
606         env->tlb_fi = NULL;
607 
608         if (unlikely(flags & TLB_INVALID_MASK)) {
609             goto fail;
610         }
611         ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
612         ptw->out_rw = full->prot & PAGE_WRITE;
613         pte_attrs = full->extra.arm.pte_attrs;
614         ptw->out_space = full->attrs.space;
615 #else
616         g_assert_not_reached();
617 #endif
618     }
619 
620     if (regime_is_stage2(s2_mmu_idx)) {
621         uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
622 
623         if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
624             /*
625              * PTW set and S1 walk touched S2 Device memory:
626              * generate Permission fault.
627              */
628             fi->type = ARMFault_Permission;
629             fi->s2addr = addr;
630             fi->stage2 = true;
631             fi->s1ptw = true;
632             fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
633             return false;
634         }
635     }
636 
637     ptw->out_be = regime_translation_big_endian(env, mmu_idx);
638     return true;
639 
640  fail:
641     assert(fi->type != ARMFault_None);
642     if (fi->type == ARMFault_GPCFOnOutput) {
643         fi->type = ARMFault_GPCFOnWalk;
644     }
645     fi->s2addr = addr;
646     fi->stage2 = regime_is_stage2(s2_mmu_idx);
647     fi->s1ptw = fi->stage2;
648     fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
649     return false;
650 }
651 
652 /* All loads done in the course of a page table walk go through here. */
653 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
654                             ARMMMUFaultInfo *fi)
655 {
656     CPUState *cs = env_cpu(env);
657     void *host = ptw->out_host;
658     uint32_t data;
659 
660     if (likely(host)) {
661         /* Page tables are in RAM, and we have the host address. */
662         data = qatomic_read((uint32_t *)host);
663         if (ptw->out_be) {
664             data = be32_to_cpu(data);
665         } else {
666             data = le32_to_cpu(data);
667         }
668     } else {
669         /* Page tables are in MMIO. */
670         MemTxAttrs attrs = {
671             .space = ptw->out_space,
672             .secure = arm_space_is_secure(ptw->out_space),
673         };
674         AddressSpace *as = arm_addressspace(cs, attrs);
675         MemTxResult result = MEMTX_OK;
676 
677         if (ptw->out_be) {
678             data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
679         } else {
680             data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
681         }
682         if (unlikely(result != MEMTX_OK)) {
683             fi->type = ARMFault_SyncExternalOnWalk;
684             fi->ea = arm_extabort_type(result);
685             return 0;
686         }
687     }
688     return data;
689 }
690 
691 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
692                             ARMMMUFaultInfo *fi)
693 {
694     CPUState *cs = env_cpu(env);
695     void *host = ptw->out_host;
696     uint64_t data;
697 
698     if (likely(host)) {
699         /* Page tables are in RAM, and we have the host address. */
700 #ifdef CONFIG_ATOMIC64
701         data = qatomic_read__nocheck((uint64_t *)host);
702         if (ptw->out_be) {
703             data = be64_to_cpu(data);
704         } else {
705             data = le64_to_cpu(data);
706         }
707 #else
708         if (ptw->out_be) {
709             data = ldq_be_p(host);
710         } else {
711             data = ldq_le_p(host);
712         }
713 #endif
714     } else {
715         /* Page tables are in MMIO. */
716         MemTxAttrs attrs = {
717             .space = ptw->out_space,
718             .secure = arm_space_is_secure(ptw->out_space),
719         };
720         AddressSpace *as = arm_addressspace(cs, attrs);
721         MemTxResult result = MEMTX_OK;
722 
723         if (ptw->out_be) {
724             data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
725         } else {
726             data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
727         }
728         if (unlikely(result != MEMTX_OK)) {
729             fi->type = ARMFault_SyncExternalOnWalk;
730             fi->ea = arm_extabort_type(result);
731             return 0;
732         }
733     }
734     return data;
735 }
736 
737 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
738                              uint64_t new_val, S1Translate *ptw,
739                              ARMMMUFaultInfo *fi)
740 {
741 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
742     uint64_t cur_val;
743     void *host = ptw->out_host;
744 
745     if (unlikely(!host)) {
746         /* Page table in MMIO Memory Region */
747         CPUState *cs = env_cpu(env);
748         MemTxAttrs attrs = {
749             .space = ptw->out_space,
750             .secure = arm_space_is_secure(ptw->out_space),
751         };
752         AddressSpace *as = arm_addressspace(cs, attrs);
753         MemTxResult result = MEMTX_OK;
754         bool need_lock = !bql_locked();
755 
756         if (need_lock) {
757             bql_lock();
758         }
759         if (ptw->out_be) {
760             cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
761             if (unlikely(result != MEMTX_OK)) {
762                 fi->type = ARMFault_SyncExternalOnWalk;
763                 fi->ea = arm_extabort_type(result);
764                 if (need_lock) {
765                     bql_unlock();
766                 }
767                 return old_val;
768             }
769             if (cur_val == old_val) {
770                 address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result);
771                 if (unlikely(result != MEMTX_OK)) {
772                     fi->type = ARMFault_SyncExternalOnWalk;
773                     fi->ea = arm_extabort_type(result);
774                     if (need_lock) {
775                         bql_unlock();
776                     }
777                     return old_val;
778                 }
779                 cur_val = new_val;
780             }
781         } else {
782             cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
783             if (unlikely(result != MEMTX_OK)) {
784                 fi->type = ARMFault_SyncExternalOnWalk;
785                 fi->ea = arm_extabort_type(result);
786                 if (need_lock) {
787                     bql_unlock();
788                 }
789                 return old_val;
790             }
791             if (cur_val == old_val) {
792                 address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result);
793                 if (unlikely(result != MEMTX_OK)) {
794                     fi->type = ARMFault_SyncExternalOnWalk;
795                     fi->ea = arm_extabort_type(result);
796                     if (need_lock) {
797                         bql_unlock();
798                     }
799                     return old_val;
800                 }
801                 cur_val = new_val;
802             }
803         }
804         if (need_lock) {
805             bql_unlock();
806         }
807         return cur_val;
808     }
809 
810     /*
811      * Raising a stage2 Protection fault for an atomic update to a read-only
812      * page is delayed until it is certain that there is a change to make.
813      */
814     if (unlikely(!ptw->out_rw)) {
815         int flags;
816 
817         env->tlb_fi = fi;
818         flags = probe_access_full_mmu(env, ptw->out_virt, 0,
819                                       MMU_DATA_STORE,
820                                       arm_to_core_mmu_idx(ptw->in_ptw_idx),
821                                       NULL, NULL);
822         env->tlb_fi = NULL;
823 
824         if (unlikely(flags & TLB_INVALID_MASK)) {
825             /*
826              * We know this must be a stage 2 fault because the granule
827              * protection table does not separately track read and write
828              * permission, so all GPC faults are caught in S1_ptw_translate():
829              * we only get here for "readable but not writeable".
830              */
831             assert(fi->type != ARMFault_None);
832             fi->s2addr = ptw->out_virt;
833             fi->stage2 = true;
834             fi->s1ptw = true;
835             fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx);
836             return 0;
837         }
838 
839         /* In case CAS mismatches and we loop, remember writability. */
840         ptw->out_rw = true;
841     }
842 
843 #ifdef CONFIG_ATOMIC64
844     if (ptw->out_be) {
845         old_val = cpu_to_be64(old_val);
846         new_val = cpu_to_be64(new_val);
847         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
848         cur_val = be64_to_cpu(cur_val);
849     } else {
850         old_val = cpu_to_le64(old_val);
851         new_val = cpu_to_le64(new_val);
852         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
853         cur_val = le64_to_cpu(cur_val);
854     }
855 #else
856     /*
857      * We can't support the full 64-bit atomic cmpxchg on the host.
858      * Because this is only used for FEAT_HAFDBS, which is only for AA64,
859      * we know that TCG_OVERSIZED_GUEST is set, which means that we are
860      * running in round-robin mode and could only race with dma i/o.
861      */
862 #if !TCG_OVERSIZED_GUEST
863 # error "Unexpected configuration"
864 #endif
865     bool locked = bql_locked();
866     if (!locked) {
867         bql_lock();
868     }
869     if (ptw->out_be) {
870         cur_val = ldq_be_p(host);
871         if (cur_val == old_val) {
872             stq_be_p(host, new_val);
873         }
874     } else {
875         cur_val = ldq_le_p(host);
876         if (cur_val == old_val) {
877             stq_le_p(host, new_val);
878         }
879     }
880     if (!locked) {
881         bql_unlock();
882     }
883 #endif
884 
885     return cur_val;
886 #else
887     /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
888     g_assert_not_reached();
889 #endif
890 }
891 
892 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
893                                      uint32_t *table, uint32_t address)
894 {
895     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
896     uint64_t tcr = regime_tcr(env, mmu_idx);
897     int maskshift = extract32(tcr, 0, 3);
898     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
899     uint32_t base_mask;
900 
901     if (address & mask) {
902         if (tcr & TTBCR_PD1) {
903             /* Translation table walk disabled for TTBR1 */
904             return false;
905         }
906         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
907     } else {
908         if (tcr & TTBCR_PD0) {
909             /* Translation table walk disabled for TTBR0 */
910             return false;
911         }
912         base_mask = ~((uint32_t)0x3fffu >> maskshift);
913         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
914     }
915     *table |= (address >> 18) & 0x3ffc;
916     return true;
917 }
918 
919 /*
920  * Translate section/page access permissions to page R/W protection flags
921  * @env:         CPUARMState
922  * @mmu_idx:     MMU index indicating required translation regime
923  * @ap:          The 3-bit access permissions (AP[2:0])
924  * @domain_prot: The 2-bit domain access permissions
925  * @is_user: TRUE if accessing from PL0
926  */
927 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
928                          int ap, int domain_prot, bool is_user)
929 {
930     if (domain_prot == 3) {
931         return PAGE_READ | PAGE_WRITE;
932     }
933 
934     switch (ap) {
935     case 0:
936         if (arm_feature(env, ARM_FEATURE_V7)) {
937             return 0;
938         }
939         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
940         case SCTLR_S:
941             return is_user ? 0 : PAGE_READ;
942         case SCTLR_R:
943             return PAGE_READ;
944         default:
945             return 0;
946         }
947     case 1:
948         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
949     case 2:
950         if (is_user) {
951             return PAGE_READ;
952         } else {
953             return PAGE_READ | PAGE_WRITE;
954         }
955     case 3:
956         return PAGE_READ | PAGE_WRITE;
957     case 4: /* Reserved.  */
958         return 0;
959     case 5:
960         return is_user ? 0 : PAGE_READ;
961     case 6:
962         return PAGE_READ;
963     case 7:
964         if (!arm_feature(env, ARM_FEATURE_V6K)) {
965             return 0;
966         }
967         return PAGE_READ;
968     default:
969         g_assert_not_reached();
970     }
971 }
972 
973 /*
974  * Translate section/page access permissions to page R/W protection flags
975  * @env:         CPUARMState
976  * @mmu_idx:     MMU index indicating required translation regime
977  * @ap:          The 3-bit access permissions (AP[2:0])
978  * @domain_prot: The 2-bit domain access permissions
979  */
980 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
981                          int ap, int domain_prot)
982 {
983    return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
984                                 regime_is_user(env, mmu_idx));
985 }
986 
987 /*
988  * Translate section/page access permissions to page R/W protection flags.
989  * @ap:      The 2-bit simple AP (AP[2:1])
990  * @is_user: TRUE if accessing from PL0
991  */
992 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
993 {
994     switch (ap) {
995     case 0:
996         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
997     case 1:
998         return PAGE_READ | PAGE_WRITE;
999     case 2:
1000         return is_user ? 0 : PAGE_READ;
1001     case 3:
1002         return PAGE_READ;
1003     default:
1004         g_assert_not_reached();
1005     }
1006 }
1007 
1008 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
1009 {
1010     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
1011 }
1012 
1013 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
1014                              uint32_t address, MMUAccessType access_type,
1015                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1016 {
1017     int level = 1;
1018     uint32_t table;
1019     uint32_t desc;
1020     int type;
1021     int ap;
1022     int domain = 0;
1023     int domain_prot;
1024     hwaddr phys_addr;
1025     uint32_t dacr;
1026 
1027     /* Pagetable walk.  */
1028     /* Lookup l1 descriptor.  */
1029     if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
1030         /* Section translation fault if page walk is disabled by PD0 or PD1 */
1031         fi->type = ARMFault_Translation;
1032         goto do_fault;
1033     }
1034     if (!S1_ptw_translate(env, ptw, table, fi)) {
1035         goto do_fault;
1036     }
1037     desc = arm_ldl_ptw(env, ptw, fi);
1038     if (fi->type != ARMFault_None) {
1039         goto do_fault;
1040     }
1041     type = (desc & 3);
1042     domain = (desc >> 5) & 0x0f;
1043     if (regime_el(env, ptw->in_mmu_idx) == 1) {
1044         dacr = env->cp15.dacr_ns;
1045     } else {
1046         dacr = env->cp15.dacr_s;
1047     }
1048     domain_prot = (dacr >> (domain * 2)) & 3;
1049     if (type == 0) {
1050         /* Section translation fault.  */
1051         fi->type = ARMFault_Translation;
1052         goto do_fault;
1053     }
1054     if (type != 2) {
1055         level = 2;
1056     }
1057     if (domain_prot == 0 || domain_prot == 2) {
1058         fi->type = ARMFault_Domain;
1059         goto do_fault;
1060     }
1061     if (type == 2) {
1062         /* 1Mb section.  */
1063         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1064         ap = (desc >> 10) & 3;
1065         result->f.lg_page_size = 20; /* 1MB */
1066     } else {
1067         /* Lookup l2 entry.  */
1068         if (type == 1) {
1069             /* Coarse pagetable.  */
1070             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1071         } else {
1072             /* Fine pagetable.  */
1073             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1074         }
1075         if (!S1_ptw_translate(env, ptw, table, fi)) {
1076             goto do_fault;
1077         }
1078         desc = arm_ldl_ptw(env, ptw, fi);
1079         if (fi->type != ARMFault_None) {
1080             goto do_fault;
1081         }
1082         switch (desc & 3) {
1083         case 0: /* Page translation fault.  */
1084             fi->type = ARMFault_Translation;
1085             goto do_fault;
1086         case 1: /* 64k page.  */
1087             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1088             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1089             result->f.lg_page_size = 16;
1090             break;
1091         case 2: /* 4k page.  */
1092             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1093             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
1094             result->f.lg_page_size = 12;
1095             break;
1096         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
1097             if (type == 1) {
1098                 /* ARMv6/XScale extended small page format */
1099                 if (arm_feature(env, ARM_FEATURE_XSCALE)
1100                     || arm_feature(env, ARM_FEATURE_V6)) {
1101                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1102                     result->f.lg_page_size = 12;
1103                 } else {
1104                     /*
1105                      * UNPREDICTABLE in ARMv5; we choose to take a
1106                      * page translation fault.
1107                      */
1108                     fi->type = ARMFault_Translation;
1109                     goto do_fault;
1110                 }
1111             } else {
1112                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1113                 result->f.lg_page_size = 10;
1114             }
1115             ap = (desc >> 4) & 3;
1116             break;
1117         default:
1118             /* Never happens, but compiler isn't smart enough to tell.  */
1119             g_assert_not_reached();
1120         }
1121     }
1122     result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
1123     result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
1124     if (!(result->f.prot & (1 << access_type))) {
1125         /* Access permission fault.  */
1126         fi->type = ARMFault_Permission;
1127         goto do_fault;
1128     }
1129     result->f.phys_addr = phys_addr;
1130     return false;
1131 do_fault:
1132     fi->domain = domain;
1133     fi->level = level;
1134     return true;
1135 }
1136 
1137 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
1138                              uint32_t address, MMUAccessType access_type,
1139                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1140 {
1141     ARMCPU *cpu = env_archcpu(env);
1142     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1143     int level = 1;
1144     uint32_t table;
1145     uint32_t desc;
1146     uint32_t xn;
1147     uint32_t pxn = 0;
1148     int type;
1149     int ap;
1150     int domain = 0;
1151     int domain_prot;
1152     hwaddr phys_addr;
1153     uint32_t dacr;
1154     bool ns;
1155     ARMSecuritySpace out_space;
1156 
1157     /* Pagetable walk.  */
1158     /* Lookup l1 descriptor.  */
1159     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
1160         /* Section translation fault if page walk is disabled by PD0 or PD1 */
1161         fi->type = ARMFault_Translation;
1162         goto do_fault;
1163     }
1164     if (!S1_ptw_translate(env, ptw, table, fi)) {
1165         goto do_fault;
1166     }
1167     desc = arm_ldl_ptw(env, ptw, fi);
1168     if (fi->type != ARMFault_None) {
1169         goto do_fault;
1170     }
1171     type = (desc & 3);
1172     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
1173         /* Section translation fault, or attempt to use the encoding
1174          * which is Reserved on implementations without PXN.
1175          */
1176         fi->type = ARMFault_Translation;
1177         goto do_fault;
1178     }
1179     if ((type == 1) || !(desc & (1 << 18))) {
1180         /* Page or Section.  */
1181         domain = (desc >> 5) & 0x0f;
1182     }
1183     if (regime_el(env, mmu_idx) == 1) {
1184         dacr = env->cp15.dacr_ns;
1185     } else {
1186         dacr = env->cp15.dacr_s;
1187     }
1188     if (type == 1) {
1189         level = 2;
1190     }
1191     domain_prot = (dacr >> (domain * 2)) & 3;
1192     if (domain_prot == 0 || domain_prot == 2) {
1193         /* Section or Page domain fault */
1194         fi->type = ARMFault_Domain;
1195         goto do_fault;
1196     }
1197     if (type != 1) {
1198         if (desc & (1 << 18)) {
1199             /* Supersection.  */
1200             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1201             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1202             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1203             result->f.lg_page_size = 24;  /* 16MB */
1204         } else {
1205             /* Section.  */
1206             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1207             result->f.lg_page_size = 20;  /* 1MB */
1208         }
1209         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1210         xn = desc & (1 << 4);
1211         pxn = desc & 1;
1212         ns = extract32(desc, 19, 1);
1213     } else {
1214         if (cpu_isar_feature(aa32_pxn, cpu)) {
1215             pxn = (desc >> 2) & 1;
1216         }
1217         ns = extract32(desc, 3, 1);
1218         /* Lookup l2 entry.  */
1219         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1220         if (!S1_ptw_translate(env, ptw, table, fi)) {
1221             goto do_fault;
1222         }
1223         desc = arm_ldl_ptw(env, ptw, fi);
1224         if (fi->type != ARMFault_None) {
1225             goto do_fault;
1226         }
1227         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1228         switch (desc & 3) {
1229         case 0: /* Page translation fault.  */
1230             fi->type = ARMFault_Translation;
1231             goto do_fault;
1232         case 1: /* 64k page.  */
1233             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1234             xn = desc & (1 << 15);
1235             result->f.lg_page_size = 16;
1236             break;
1237         case 2: case 3: /* 4k page.  */
1238             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1239             xn = desc & 1;
1240             result->f.lg_page_size = 12;
1241             break;
1242         default:
1243             /* Never happens, but compiler isn't smart enough to tell.  */
1244             g_assert_not_reached();
1245         }
1246     }
1247     out_space = ptw->in_space;
1248     if (ns) {
1249         /*
1250          * The NS bit will (as required by the architecture) have no effect if
1251          * the CPU doesn't support TZ or this is a non-secure translation
1252          * regime, because the output space will already be non-secure.
1253          */
1254         out_space = ARMSS_NonSecure;
1255     }
1256     if (domain_prot == 3) {
1257         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1258     } else {
1259         int user_rw, prot_rw;
1260 
1261         if (arm_feature(env, ARM_FEATURE_V6K) &&
1262                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1263             /* The simplified model uses AP[0] as an access control bit.  */
1264             if ((ap & 1) == 0) {
1265                 /* Access flag fault.  */
1266                 fi->type = ARMFault_AccessFlag;
1267                 goto do_fault;
1268             }
1269             prot_rw = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1270             user_rw = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1271         } else {
1272             prot_rw = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1273             user_rw = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1274         }
1275 
1276         result->f.prot = get_S1prot(env, mmu_idx, false, user_rw, prot_rw,
1277                                     xn, pxn, result->f.attrs.space, out_space);
1278         if (!(result->f.prot & (1 << access_type))) {
1279             /* Access permission fault.  */
1280             fi->type = ARMFault_Permission;
1281             goto do_fault;
1282         }
1283     }
1284     result->f.attrs.space = out_space;
1285     result->f.attrs.secure = arm_space_is_secure(out_space);
1286     result->f.phys_addr = phys_addr;
1287     return false;
1288 do_fault:
1289     fi->domain = domain;
1290     fi->level = level;
1291     return true;
1292 }
1293 
1294 /*
1295  * Translate S2 section/page access permissions to protection flags
1296  * @env:     CPUARMState
1297  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
1298  * @xn:      XN (execute-never) bits
1299  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1300  */
1301 static int get_S2prot_noexecute(int s2ap)
1302 {
1303     int prot = 0;
1304 
1305     if (s2ap & 1) {
1306         prot |= PAGE_READ;
1307     }
1308     if (s2ap & 2) {
1309         prot |= PAGE_WRITE;
1310     }
1311     return prot;
1312 }
1313 
1314 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1315 {
1316     int prot = get_S2prot_noexecute(s2ap);
1317 
1318     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1319         switch (xn) {
1320         case 0:
1321             prot |= PAGE_EXEC;
1322             break;
1323         case 1:
1324             if (s1_is_el0) {
1325                 prot |= PAGE_EXEC;
1326             }
1327             break;
1328         case 2:
1329             break;
1330         case 3:
1331             if (!s1_is_el0) {
1332                 prot |= PAGE_EXEC;
1333             }
1334             break;
1335         default:
1336             g_assert_not_reached();
1337         }
1338     } else {
1339         if (!extract32(xn, 1, 1)) {
1340             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1341                 prot |= PAGE_EXEC;
1342             }
1343         }
1344     }
1345     return prot;
1346 }
1347 
1348 /*
1349  * Translate section/page access permissions to protection flags
1350  * @env:     CPUARMState
1351  * @mmu_idx: MMU index indicating required translation regime
1352  * @is_aa64: TRUE if AArch64
1353  * @user_rw: Translated AP for user access
1354  * @prot_rw: Translated AP for privileged access
1355  * @xn:      XN (execute-never) bit
1356  * @pxn:     PXN (privileged execute-never) bit
1357  * @in_pa:   The original input pa space
1358  * @out_pa:  The output pa space, modified by NSTable, NS, and NSE
1359  */
1360 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1361                       int user_rw, int prot_rw, int xn, int pxn,
1362                       ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1363 {
1364     ARMCPU *cpu = env_archcpu(env);
1365     bool is_user = regime_is_user(env, mmu_idx);
1366     bool have_wxn;
1367     int wxn = 0;
1368 
1369     assert(!regime_is_stage2(mmu_idx));
1370 
1371     if (is_user) {
1372         prot_rw = user_rw;
1373     } else {
1374         /*
1375          * PAN controls can forbid data accesses but don't affect insn fetch.
1376          * Plain PAN forbids data accesses if EL0 has data permissions;
1377          * PAN3 forbids data accesses if EL0 has either data or exec perms.
1378          * Note that for AArch64 the 'user can exec' case is exactly !xn.
1379          * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1380          * do not affect EPAN.
1381          */
1382         if (user_rw && regime_is_pan(env, mmu_idx)) {
1383             prot_rw = 0;
1384         } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1385                    regime_is_pan(env, mmu_idx) &&
1386                    (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1387             prot_rw = 0;
1388         }
1389     }
1390 
1391     if (in_pa != out_pa) {
1392         switch (in_pa) {
1393         case ARMSS_Root:
1394             /*
1395              * R_ZWRVD: permission fault for insn fetched from non-Root,
1396              * I_WWBFB: SIF has no effect in EL3.
1397              */
1398             return prot_rw;
1399         case ARMSS_Realm:
1400             /*
1401              * R_PKTDS: permission fault for insn fetched from non-Realm,
1402              * for Realm EL2 or EL2&0.  The corresponding fault for EL1&0
1403              * happens during any stage2 translation.
1404              */
1405             switch (mmu_idx) {
1406             case ARMMMUIdx_E2:
1407             case ARMMMUIdx_E20_0:
1408             case ARMMMUIdx_E20_2:
1409             case ARMMMUIdx_E20_2_PAN:
1410                 return prot_rw;
1411             default:
1412                 break;
1413             }
1414             break;
1415         case ARMSS_Secure:
1416             if (env->cp15.scr_el3 & SCR_SIF) {
1417                 return prot_rw;
1418             }
1419             break;
1420         default:
1421             /* Input NonSecure must have output NonSecure. */
1422             g_assert_not_reached();
1423         }
1424     }
1425 
1426     /* TODO have_wxn should be replaced with
1427      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1428      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1429      * compatible processors have EL2, which is required for [U]WXN.
1430      */
1431     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1432 
1433     if (have_wxn) {
1434         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1435     }
1436 
1437     if (is_aa64) {
1438         if (regime_has_2_ranges(mmu_idx) && !is_user) {
1439             xn = pxn || (user_rw & PAGE_WRITE);
1440         }
1441     } else if (arm_feature(env, ARM_FEATURE_V7)) {
1442         switch (regime_el(env, mmu_idx)) {
1443         case 1:
1444         case 3:
1445             if (is_user) {
1446                 xn = xn || !(user_rw & PAGE_READ);
1447             } else {
1448                 int uwxn = 0;
1449                 if (have_wxn) {
1450                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1451                 }
1452                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1453                      (uwxn && (user_rw & PAGE_WRITE));
1454             }
1455             break;
1456         case 2:
1457             break;
1458         }
1459     } else {
1460         xn = wxn = 0;
1461     }
1462 
1463     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1464         return prot_rw;
1465     }
1466     return prot_rw | PAGE_EXEC;
1467 }
1468 
1469 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1470                                           ARMMMUIdx mmu_idx)
1471 {
1472     uint64_t tcr = regime_tcr(env, mmu_idx);
1473     uint32_t el = regime_el(env, mmu_idx);
1474     int select, tsz;
1475     bool epd, hpd;
1476 
1477     assert(mmu_idx != ARMMMUIdx_Stage2_S);
1478 
1479     if (mmu_idx == ARMMMUIdx_Stage2) {
1480         /* VTCR */
1481         bool sext = extract32(tcr, 4, 1);
1482         bool sign = extract32(tcr, 3, 1);
1483 
1484         /*
1485          * If the sign-extend bit is not the same as t0sz[3], the result
1486          * is unpredictable. Flag this as a guest error.
1487          */
1488         if (sign != sext) {
1489             qemu_log_mask(LOG_GUEST_ERROR,
1490                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1491         }
1492         tsz = sextract32(tcr, 0, 4) + 8;
1493         select = 0;
1494         hpd = false;
1495         epd = false;
1496     } else if (el == 2) {
1497         /* HTCR */
1498         tsz = extract32(tcr, 0, 3);
1499         select = 0;
1500         hpd = extract64(tcr, 24, 1);
1501         epd = false;
1502     } else {
1503         int t0sz = extract32(tcr, 0, 3);
1504         int t1sz = extract32(tcr, 16, 3);
1505 
1506         if (t1sz == 0) {
1507             select = va > (0xffffffffu >> t0sz);
1508         } else {
1509             /* Note that we will detect errors later.  */
1510             select = va >= ~(0xffffffffu >> t1sz);
1511         }
1512         if (!select) {
1513             tsz = t0sz;
1514             epd = extract32(tcr, 7, 1);
1515             hpd = extract64(tcr, 41, 1);
1516         } else {
1517             tsz = t1sz;
1518             epd = extract32(tcr, 23, 1);
1519             hpd = extract64(tcr, 42, 1);
1520         }
1521         /* For aarch32, hpd0 is not enabled without t2e as well.  */
1522         hpd &= extract32(tcr, 6, 1);
1523     }
1524 
1525     return (ARMVAParameters) {
1526         .tsz = tsz,
1527         .select = select,
1528         .epd = epd,
1529         .hpd = hpd,
1530     };
1531 }
1532 
1533 /*
1534  * check_s2_mmu_setup
1535  * @cpu:        ARMCPU
1536  * @is_aa64:    True if the translation regime is in AArch64 state
1537  * @tcr:        VTCR_EL2 or VSTCR_EL2
1538  * @ds:         Effective value of TCR.DS.
1539  * @iasize:     Bitsize of IPAs
1540  * @stride:     Page-table stride (See the ARM ARM)
1541  *
1542  * Decode the starting level of the S2 lookup, returning INT_MIN if
1543  * the configuration is invalid.
1544  */
1545 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1546                               bool ds, int iasize, int stride)
1547 {
1548     int sl0, sl2, startlevel, granulebits, levels;
1549     int s1_min_iasize, s1_max_iasize;
1550 
1551     sl0 = extract32(tcr, 6, 2);
1552     if (is_aa64) {
1553         /*
1554          * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1555          * so interleave AArch64.S2StartLevel.
1556          */
1557         switch (stride) {
1558         case 9: /* 4KB */
1559             /* SL2 is RES0 unless DS=1 & 4KB granule. */
1560             sl2 = extract64(tcr, 33, 1);
1561             if (ds && sl2) {
1562                 if (sl0 != 0) {
1563                     goto fail;
1564                 }
1565                 startlevel = -1;
1566             } else {
1567                 startlevel = 2 - sl0;
1568                 switch (sl0) {
1569                 case 2:
1570                     if (arm_pamax(cpu) < 44) {
1571                         goto fail;
1572                     }
1573                     break;
1574                 case 3:
1575                     if (!cpu_isar_feature(aa64_st, cpu)) {
1576                         goto fail;
1577                     }
1578                     startlevel = 3;
1579                     break;
1580                 }
1581             }
1582             break;
1583         case 11: /* 16KB */
1584             switch (sl0) {
1585             case 2:
1586                 if (arm_pamax(cpu) < 42) {
1587                     goto fail;
1588                 }
1589                 break;
1590             case 3:
1591                 if (!ds) {
1592                     goto fail;
1593                 }
1594                 break;
1595             }
1596             startlevel = 3 - sl0;
1597             break;
1598         case 13: /* 64KB */
1599             switch (sl0) {
1600             case 2:
1601                 if (arm_pamax(cpu) < 44) {
1602                     goto fail;
1603                 }
1604                 break;
1605             case 3:
1606                 goto fail;
1607             }
1608             startlevel = 3 - sl0;
1609             break;
1610         default:
1611             g_assert_not_reached();
1612         }
1613     } else {
1614         /*
1615          * Things are simpler for AArch32 EL2, with only 4k pages.
1616          * There is no separate S2InvalidSL function, but AArch32.S2Walk
1617          * begins with walkparms.sl0 in {'1x'}.
1618          */
1619         assert(stride == 9);
1620         if (sl0 >= 2) {
1621             goto fail;
1622         }
1623         startlevel = 2 - sl0;
1624     }
1625 
1626     /* AArch{64,32}.S2InconsistentSL are functionally equivalent.  */
1627     levels = 3 - startlevel;
1628     granulebits = stride + 3;
1629 
1630     s1_min_iasize = levels * stride + granulebits + 1;
1631     s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1632 
1633     if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1634         return startlevel;
1635     }
1636 
1637  fail:
1638     return INT_MIN;
1639 }
1640 
1641 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
1642                                   ARMGranuleSize gran, int level)
1643 {
1644     /*
1645      * See pseudocode AArch46.BlockDescSupported(): block descriptors
1646      * are not valid at all levels, depending on the page size.
1647      */
1648     switch (gran) {
1649     case Gran4K:
1650         return (level == 0 && ds) || level == 1 || level == 2;
1651     case Gran16K:
1652         return (level == 1 && ds) || level == 2;
1653     case Gran64K:
1654         return (level == 1 && arm_pamax(cpu) == 52) || level == 2;
1655     default:
1656         g_assert_not_reached();
1657     }
1658 }
1659 
1660 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw)
1661 {
1662     uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
1663     return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1);
1664 }
1665 
1666 /**
1667  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1668  *
1669  * Returns false if the translation was successful. Otherwise, phys_ptr,
1670  * attrs, prot and page_size may not be filled in, and the populated fsr
1671  * value provides information on why the translation aborted, in the format
1672  * of a long-format DFSR/IFSR fault register, with the following caveat:
1673  * the WnR bit is never set (the caller must do this).
1674  *
1675  * @env: CPUARMState
1676  * @ptw: Current and next stage parameters for the walk.
1677  * @address: virtual address to get physical address for
1678  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1679  * @memop: memory operation feeding this access, or 0 for none
1680  * @result: set on translation success,
1681  * @fi: set to fault info if the translation fails
1682  */
1683 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1684                                uint64_t address,
1685                                MMUAccessType access_type, MemOp memop,
1686                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1687 {
1688     ARMCPU *cpu = env_archcpu(env);
1689     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1690     int32_t level;
1691     ARMVAParameters param;
1692     uint64_t ttbr;
1693     hwaddr descaddr, indexmask, indexmask_grainsize;
1694     uint32_t tableattrs;
1695     target_ulong page_size;
1696     uint64_t attrs;
1697     int32_t stride;
1698     int addrsize, inputsize, outputsize;
1699     uint64_t tcr = regime_tcr(env, mmu_idx);
1700     int ap, xn, pxn;
1701     uint32_t el = regime_el(env, mmu_idx);
1702     uint64_t descaddrmask;
1703     bool aarch64 = arm_el_is_aa64(env, el);
1704     uint64_t descriptor, new_descriptor;
1705     ARMSecuritySpace out_space;
1706     bool device;
1707 
1708     /* TODO: This code does not support shareability levels. */
1709     if (aarch64) {
1710         int ps;
1711 
1712         param = aa64_va_parameters(env, address, mmu_idx,
1713                                    access_type != MMU_INST_FETCH,
1714                                    !arm_el_is_aa64(env, 1));
1715         level = 0;
1716 
1717         /*
1718          * If TxSZ is programmed to a value larger than the maximum,
1719          * or smaller than the effective minimum, it is IMPLEMENTATION
1720          * DEFINED whether we behave as if the field were programmed
1721          * within bounds, or if a level 0 Translation fault is generated.
1722          *
1723          * With FEAT_LVA, fault on less than minimum becomes required,
1724          * so our choice is to always raise the fault.
1725          */
1726         if (param.tsz_oob) {
1727             goto do_translation_fault;
1728         }
1729 
1730         addrsize = 64 - 8 * param.tbi;
1731         inputsize = 64 - param.tsz;
1732 
1733         /*
1734          * Bound PS by PARANGE to find the effective output address size.
1735          * ID_AA64MMFR0 is a read-only register so values outside of the
1736          * supported mappings can be considered an implementation error.
1737          */
1738         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1739         ps = MIN(ps, param.ps);
1740         assert(ps < ARRAY_SIZE(pamax_map));
1741         outputsize = pamax_map[ps];
1742 
1743         /*
1744          * With LPA2, the effective output address (OA) size is at most 48 bits
1745          * unless TCR.DS == 1
1746          */
1747         if (!param.ds && param.gran != Gran64K) {
1748             outputsize = MIN(outputsize, 48);
1749         }
1750     } else {
1751         param = aa32_va_parameters(env, address, mmu_idx);
1752         level = 1;
1753         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1754         inputsize = addrsize - param.tsz;
1755         outputsize = 40;
1756     }
1757 
1758     /*
1759      * We determined the region when collecting the parameters, but we
1760      * have not yet validated that the address is valid for the region.
1761      * Extract the top bits and verify that they all match select.
1762      *
1763      * For aa32, if inputsize == addrsize, then we have selected the
1764      * region by exclusion in aa32_va_parameters and there is no more
1765      * validation to do here.
1766      */
1767     if (inputsize < addrsize) {
1768         target_ulong top_bits = sextract64(address, inputsize,
1769                                            addrsize - inputsize);
1770         if (-top_bits != param.select) {
1771             /* The gap between the two regions is a Translation fault */
1772             goto do_translation_fault;
1773         }
1774     }
1775 
1776     stride = arm_granule_bits(param.gran) - 3;
1777 
1778     /*
1779      * Note that QEMU ignores shareability and cacheability attributes,
1780      * so we don't need to do anything with the SH, ORGN, IRGN fields
1781      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1782      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1783      * implement any ASID-like capability so we can ignore it (instead
1784      * we will always flush the TLB any time the ASID is changed).
1785      */
1786     ttbr = regime_ttbr(env, mmu_idx, param.select);
1787 
1788     /*
1789      * Here we should have set up all the parameters for the translation:
1790      * inputsize, ttbr, epd, stride, tbi
1791      */
1792 
1793     if (param.epd) {
1794         /*
1795          * Translation table walk disabled => Translation fault on TLB miss
1796          * Note: This is always 0 on 64-bit EL2 and EL3.
1797          */
1798         goto do_translation_fault;
1799     }
1800 
1801     if (!regime_is_stage2(mmu_idx)) {
1802         /*
1803          * The starting level depends on the virtual address size (which can
1804          * be up to 48 bits) and the translation granule size. It indicates
1805          * the number of strides (stride bits at a time) needed to
1806          * consume the bits of the input address. In the pseudocode this is:
1807          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1808          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1809          * our 'stride + 3' and 'stride' is our 'stride'.
1810          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1811          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1812          * = 4 - (inputsize - 4) / stride;
1813          */
1814         level = 4 - (inputsize - 4) / stride;
1815     } else {
1816         int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1817                                             inputsize, stride);
1818         if (startlevel == INT_MIN) {
1819             level = 0;
1820             goto do_translation_fault;
1821         }
1822         level = startlevel;
1823     }
1824 
1825     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1826     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1827 
1828     /* Now we can extract the actual base address from the TTBR */
1829     descaddr = extract64(ttbr, 0, 48);
1830 
1831     /*
1832      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1833      *
1834      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1835      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1836      * but we've just cleared the bits above 47, so simplify the test.
1837      */
1838     if (outputsize > 48) {
1839         descaddr |= extract64(ttbr, 2, 4) << 48;
1840     } else if (descaddr >> outputsize) {
1841         level = 0;
1842         fi->type = ARMFault_AddressSize;
1843         goto do_fault;
1844     }
1845 
1846     /*
1847      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1848      * and also to mask out CnP (bit 0) which could validly be non-zero.
1849      */
1850     descaddr &= ~indexmask;
1851 
1852     /*
1853      * For AArch32, the address field in the descriptor goes up to bit 39
1854      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1855      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1856      * bits as part of the address, which will be checked via outputsize.
1857      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1858      * the highest bits of a 52-bit output are placed elsewhere.
1859      */
1860     if (param.ds) {
1861         descaddrmask = MAKE_64BIT_MASK(0, 50);
1862     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1863         descaddrmask = MAKE_64BIT_MASK(0, 48);
1864     } else {
1865         descaddrmask = MAKE_64BIT_MASK(0, 40);
1866     }
1867     descaddrmask &= ~indexmask_grainsize;
1868     tableattrs = 0;
1869 
1870  next_level:
1871     descaddr |= (address >> (stride * (4 - level))) & indexmask;
1872     descaddr &= ~7ULL;
1873 
1874     /*
1875      * Process the NSTable bit from the previous level.  This changes
1876      * the table address space and the output space from Secure to
1877      * NonSecure.  With RME, the EL3 translation regime does not change
1878      * from Root to NonSecure.
1879      */
1880     if (ptw->in_space == ARMSS_Secure
1881         && !regime_is_stage2(mmu_idx)
1882         && extract32(tableattrs, 4, 1)) {
1883         /*
1884          * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1885          * Assert the relative order of the secure/non-secure indexes.
1886          */
1887         QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1888         QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1889         ptw->in_ptw_idx += 1;
1890         ptw->in_space = ARMSS_NonSecure;
1891     }
1892 
1893     if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1894         goto do_fault;
1895     }
1896     descriptor = arm_ldq_ptw(env, ptw, fi);
1897     if (fi->type != ARMFault_None) {
1898         goto do_fault;
1899     }
1900     new_descriptor = descriptor;
1901 
1902  restart_atomic_update:
1903     if (!(descriptor & 1) ||
1904         (!(descriptor & 2) &&
1905          !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) {
1906         /* Invalid, or a block descriptor at an invalid level */
1907         goto do_translation_fault;
1908     }
1909 
1910     descaddr = descriptor & descaddrmask;
1911 
1912     /*
1913      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1914      * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1915      * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1916      * raise AddressSizeFault.
1917      */
1918     if (outputsize > 48) {
1919         if (param.ds) {
1920             descaddr |= extract64(descriptor, 8, 2) << 50;
1921         } else {
1922             descaddr |= extract64(descriptor, 12, 4) << 48;
1923         }
1924     } else if (descaddr >> outputsize) {
1925         fi->type = ARMFault_AddressSize;
1926         goto do_fault;
1927     }
1928 
1929     if ((descriptor & 2) && (level < 3)) {
1930         /*
1931          * Table entry. The top five bits are attributes which may
1932          * propagate down through lower levels of the table (and
1933          * which are all arranged so that 0 means "no effect", so
1934          * we can gather them up by ORing in the bits at each level).
1935          */
1936         tableattrs |= extract64(descriptor, 59, 5);
1937         level++;
1938         indexmask = indexmask_grainsize;
1939         goto next_level;
1940     }
1941 
1942     /*
1943      * Block entry at level 1 or 2, or page entry at level 3.
1944      * These are basically the same thing, although the number
1945      * of bits we pull in from the vaddr varies. Note that although
1946      * descaddrmask masks enough of the low bits of the descriptor
1947      * to give a correct page or table address, the address field
1948      * in a block descriptor is smaller; so we need to explicitly
1949      * clear the lower bits here before ORing in the low vaddr bits.
1950      *
1951      * Afterward, descaddr is the final physical address.
1952      */
1953     page_size = (1ULL << ((stride * (4 - level)) + 3));
1954     descaddr &= ~(hwaddr)(page_size - 1);
1955     descaddr |= (address & (page_size - 1));
1956 
1957     if (likely(!ptw->in_debug)) {
1958         /*
1959          * Access flag.
1960          * If HA is enabled, prepare to update the descriptor below.
1961          * Otherwise, pass the access fault on to software.
1962          */
1963         if (!(descriptor & (1 << 10))) {
1964             if (param.ha) {
1965                 new_descriptor |= 1 << 10; /* AF */
1966             } else {
1967                 fi->type = ARMFault_AccessFlag;
1968                 goto do_fault;
1969             }
1970         }
1971 
1972         /*
1973          * Dirty Bit.
1974          * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1975          * bit for writeback. The actual write protection test may still be
1976          * overridden by tableattrs, to be merged below.
1977          */
1978         if (param.hd
1979             && extract64(descriptor, 51, 1)  /* DBM */
1980             && access_type == MMU_DATA_STORE) {
1981             if (regime_is_stage2(mmu_idx)) {
1982                 new_descriptor |= 1ull << 7;    /* set S2AP[1] */
1983             } else {
1984                 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1985             }
1986         }
1987     }
1988 
1989     /*
1990      * Extract attributes from the (modified) descriptor, and apply
1991      * table descriptors. Stage 2 table descriptors do not include
1992      * any attribute fields. HPD disables all the table attributes
1993      * except NSTable (which we have already handled).
1994      */
1995     attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1996     if (!regime_is_stage2(mmu_idx)) {
1997         if (!param.hpd) {
1998             attrs |= extract64(tableattrs, 0, 2) << 53;     /* XN, PXN */
1999             /*
2000              * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2001              * means "force PL1 access only", which means forcing AP[1] to 0.
2002              */
2003             attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
2004             attrs |= extract32(tableattrs, 3, 1) << 7;    /* APT[1] => AP[2] */
2005         }
2006     }
2007 
2008     ap = extract32(attrs, 6, 2);
2009     out_space = ptw->in_space;
2010     if (regime_is_stage2(mmu_idx)) {
2011         /*
2012          * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
2013          * The bit remains ignored for other security states.
2014          * R_YMCSL: Executing an insn fetched from non-Realm causes
2015          * a stage2 permission fault.
2016          */
2017         if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
2018             out_space = ARMSS_NonSecure;
2019             result->f.prot = get_S2prot_noexecute(ap);
2020         } else {
2021             xn = extract64(attrs, 53, 2);
2022             result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
2023         }
2024 
2025         result->cacheattrs.is_s2_format = true;
2026         result->cacheattrs.attrs = extract32(attrs, 2, 4);
2027         /*
2028          * Security state does not really affect HCR_EL2.FWB;
2029          * we only need to filter FWB for aa32 or other FEAT.
2030          */
2031         device = S2_attrs_are_device(arm_hcr_el2_eff(env),
2032                                      result->cacheattrs.attrs);
2033     } else {
2034         int nse, ns = extract32(attrs, 5, 1);
2035         uint8_t attrindx;
2036         uint64_t mair;
2037         int user_rw, prot_rw;
2038 
2039         switch (out_space) {
2040         case ARMSS_Root:
2041             /*
2042              * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
2043              * R_XTYPW: NSE and NS together select the output pa space.
2044              */
2045             nse = extract32(attrs, 11, 1);
2046             out_space = (nse << 1) | ns;
2047             if (out_space == ARMSS_Secure &&
2048                 !cpu_isar_feature(aa64_sel2, cpu)) {
2049                 out_space = ARMSS_NonSecure;
2050             }
2051             break;
2052         case ARMSS_Secure:
2053             if (ns) {
2054                 out_space = ARMSS_NonSecure;
2055             }
2056             break;
2057         case ARMSS_Realm:
2058             switch (mmu_idx) {
2059             case ARMMMUIdx_Stage1_E0:
2060             case ARMMMUIdx_Stage1_E1:
2061             case ARMMMUIdx_Stage1_E1_PAN:
2062                 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
2063                 break;
2064             case ARMMMUIdx_E2:
2065             case ARMMMUIdx_E20_0:
2066             case ARMMMUIdx_E20_2:
2067             case ARMMMUIdx_E20_2_PAN:
2068                 /*
2069                  * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
2070                  * NS changes the output to non-secure space.
2071                  */
2072                 if (ns) {
2073                     out_space = ARMSS_NonSecure;
2074                 }
2075                 break;
2076             default:
2077                 g_assert_not_reached();
2078             }
2079             break;
2080         case ARMSS_NonSecure:
2081             /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
2082             break;
2083         default:
2084             g_assert_not_reached();
2085         }
2086         xn = extract64(attrs, 54, 1);
2087         pxn = extract64(attrs, 53, 1);
2088 
2089         if (el == 1 && nv_nv1_enabled(env, ptw)) {
2090             /*
2091              * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page
2092              * descriptor bit 54 holds PXN, 53 is RES0, and the effective value
2093              * of UXN is 0. Similarly for bits 59 and 60 in table descriptors
2094              * (which we have already folded into bits 53 and 54 of attrs).
2095              * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0.
2096              * Similarly, APTable[0] from the table descriptor is treated as 0;
2097              * we already folded this into AP[1] and squashing that to 0 does
2098              * the right thing.
2099              */
2100             pxn = xn;
2101             xn = 0;
2102             ap &= ~1;
2103         }
2104 
2105         user_rw = simple_ap_to_rw_prot_is_user(ap, true);
2106         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
2107         /*
2108          * Note that we modified ptw->in_space earlier for NSTable, but
2109          * result->f.attrs retains a copy of the original security space.
2110          */
2111         result->f.prot = get_S1prot(env, mmu_idx, aarch64, user_rw, prot_rw,
2112                                     xn, pxn, result->f.attrs.space, out_space);
2113 
2114         /* Index into MAIR registers for cache attributes */
2115         attrindx = extract32(attrs, 2, 3);
2116         mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2117         assert(attrindx <= 7);
2118         result->cacheattrs.is_s2_format = false;
2119         result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2120 
2121         /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
2122         if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
2123             result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */
2124         }
2125         device = S1_attrs_are_device(result->cacheattrs.attrs);
2126     }
2127 
2128     /*
2129      * Enable alignment checks on Device memory.
2130      *
2131      * Per R_XCHFJ, the correct ordering for alignment, permission,
2132      * and stage 2 faults is:
2133      *    - Alignment fault caused by the memory type
2134      *    - Permission fault
2135      *    - A stage 2 fault on the memory access
2136      * Perform the alignment check now, so that we recognize it in
2137      * the correct order.  Set TLB_CHECK_ALIGNED so that any subsequent
2138      * softmmu tlb hit will also check the alignment; clear along the
2139      * non-device path so that tlb_fill_flags is consistent in the
2140      * event of restart_atomic_update.
2141      *
2142      * In v7, for a CPU without the Virtualization Extensions this
2143      * access is UNPREDICTABLE; we choose to make it take the alignment
2144      * fault as is required for a v7VE CPU. (QEMU doesn't emulate any
2145      * CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.)
2146      */
2147     if (device) {
2148         unsigned a_bits = memop_atomicity_bits(memop);
2149         if (address & ((1 << a_bits) - 1)) {
2150             fi->type = ARMFault_Alignment;
2151             goto do_fault;
2152         }
2153         result->f.tlb_fill_flags = TLB_CHECK_ALIGNED;
2154     } else {
2155         result->f.tlb_fill_flags = 0;
2156     }
2157 
2158     if (!(result->f.prot & (1 << access_type))) {
2159         fi->type = ARMFault_Permission;
2160         goto do_fault;
2161     }
2162 
2163     /* If FEAT_HAFDBS has made changes, update the PTE. */
2164     if (new_descriptor != descriptor) {
2165         new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
2166         if (fi->type != ARMFault_None) {
2167             goto do_fault;
2168         }
2169         /*
2170          * I_YZSVV says that if the in-memory descriptor has changed,
2171          * then we must use the information in that new value
2172          * (which might include a different output address, different
2173          * attributes, or generate a fault).
2174          * Restart the handling of the descriptor value from scratch.
2175          */
2176         if (new_descriptor != descriptor) {
2177             descriptor = new_descriptor;
2178             goto restart_atomic_update;
2179         }
2180     }
2181 
2182     result->f.attrs.space = out_space;
2183     result->f.attrs.secure = arm_space_is_secure(out_space);
2184 
2185     /*
2186      * For FEAT_LPA2 and effective DS, the SH field in the attributes
2187      * was re-purposed for output address bits.  The SH attribute in
2188      * that case comes from TCR_ELx, which we extracted earlier.
2189      */
2190     if (param.ds) {
2191         result->cacheattrs.shareability = param.sh;
2192     } else {
2193         result->cacheattrs.shareability = extract32(attrs, 8, 2);
2194     }
2195 
2196     result->f.phys_addr = descaddr;
2197     result->f.lg_page_size = ctz64(page_size);
2198     return false;
2199 
2200  do_translation_fault:
2201     fi->type = ARMFault_Translation;
2202  do_fault:
2203     if (fi->s1ptw) {
2204         /* Retain the existing stage 2 fi->level */
2205         assert(fi->stage2);
2206     } else {
2207         fi->level = level;
2208         fi->stage2 = regime_is_stage2(mmu_idx);
2209     }
2210     fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx);
2211     return true;
2212 }
2213 
2214 static bool get_phys_addr_pmsav5(CPUARMState *env,
2215                                  S1Translate *ptw,
2216                                  uint32_t address,
2217                                  MMUAccessType access_type,
2218                                  GetPhysAddrResult *result,
2219                                  ARMMMUFaultInfo *fi)
2220 {
2221     int n;
2222     uint32_t mask;
2223     uint32_t base;
2224     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2225     bool is_user = regime_is_user(env, mmu_idx);
2226 
2227     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
2228         /* MPU disabled.  */
2229         result->f.phys_addr = address;
2230         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2231         return false;
2232     }
2233 
2234     result->f.phys_addr = address;
2235     for (n = 7; n >= 0; n--) {
2236         base = env->cp15.c6_region[n];
2237         if ((base & 1) == 0) {
2238             continue;
2239         }
2240         mask = 1 << ((base >> 1) & 0x1f);
2241         /* Keep this shift separate from the above to avoid an
2242            (undefined) << 32.  */
2243         mask = (mask << 1) - 1;
2244         if (((base ^ address) & ~mask) == 0) {
2245             break;
2246         }
2247     }
2248     if (n < 0) {
2249         fi->type = ARMFault_Background;
2250         return true;
2251     }
2252 
2253     if (access_type == MMU_INST_FETCH) {
2254         mask = env->cp15.pmsav5_insn_ap;
2255     } else {
2256         mask = env->cp15.pmsav5_data_ap;
2257     }
2258     mask = (mask >> (n * 4)) & 0xf;
2259     switch (mask) {
2260     case 0:
2261         fi->type = ARMFault_Permission;
2262         fi->level = 1;
2263         return true;
2264     case 1:
2265         if (is_user) {
2266             fi->type = ARMFault_Permission;
2267             fi->level = 1;
2268             return true;
2269         }
2270         result->f.prot = PAGE_READ | PAGE_WRITE;
2271         break;
2272     case 2:
2273         result->f.prot = PAGE_READ;
2274         if (!is_user) {
2275             result->f.prot |= PAGE_WRITE;
2276         }
2277         break;
2278     case 3:
2279         result->f.prot = PAGE_READ | PAGE_WRITE;
2280         break;
2281     case 5:
2282         if (is_user) {
2283             fi->type = ARMFault_Permission;
2284             fi->level = 1;
2285             return true;
2286         }
2287         result->f.prot = PAGE_READ;
2288         break;
2289     case 6:
2290         result->f.prot = PAGE_READ;
2291         break;
2292     default:
2293         /* Bad permission.  */
2294         fi->type = ARMFault_Permission;
2295         fi->level = 1;
2296         return true;
2297     }
2298     result->f.prot |= PAGE_EXEC;
2299     return false;
2300 }
2301 
2302 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2303                                          int32_t address, uint8_t *prot)
2304 {
2305     if (!arm_feature(env, ARM_FEATURE_M)) {
2306         *prot = PAGE_READ | PAGE_WRITE;
2307         switch (address) {
2308         case 0xF0000000 ... 0xFFFFFFFF:
2309             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2310                 /* hivecs execing is ok */
2311                 *prot |= PAGE_EXEC;
2312             }
2313             break;
2314         case 0x00000000 ... 0x7FFFFFFF:
2315             *prot |= PAGE_EXEC;
2316             break;
2317         }
2318     } else {
2319         /* Default system address map for M profile cores.
2320          * The architecture specifies which regions are execute-never;
2321          * at the MPU level no other checks are defined.
2322          */
2323         switch (address) {
2324         case 0x00000000 ... 0x1fffffff: /* ROM */
2325         case 0x20000000 ... 0x3fffffff: /* SRAM */
2326         case 0x60000000 ... 0x7fffffff: /* RAM */
2327         case 0x80000000 ... 0x9fffffff: /* RAM */
2328             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2329             break;
2330         case 0x40000000 ... 0x5fffffff: /* Peripheral */
2331         case 0xa0000000 ... 0xbfffffff: /* Device */
2332         case 0xc0000000 ... 0xdfffffff: /* Device */
2333         case 0xe0000000 ... 0xffffffff: /* System */
2334             *prot = PAGE_READ | PAGE_WRITE;
2335             break;
2336         default:
2337             g_assert_not_reached();
2338         }
2339     }
2340 }
2341 
2342 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2343 {
2344     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2345     return arm_feature(env, ARM_FEATURE_M) &&
2346         extract32(address, 20, 12) == 0xe00;
2347 }
2348 
2349 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2350 {
2351     /*
2352      * True if address is in the M profile system region
2353      * 0xe0000000 - 0xffffffff
2354      */
2355     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2356 }
2357 
2358 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2359                                          bool is_secure, bool is_user)
2360 {
2361     /*
2362      * Return true if we should use the default memory map as a
2363      * "background" region if there are no hits against any MPU regions.
2364      */
2365     CPUARMState *env = &cpu->env;
2366 
2367     if (is_user) {
2368         return false;
2369     }
2370 
2371     if (arm_feature(env, ARM_FEATURE_M)) {
2372         return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2373     }
2374 
2375     if (mmu_idx == ARMMMUIdx_Stage2) {
2376         return false;
2377     }
2378 
2379     return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2380 }
2381 
2382 static bool get_phys_addr_pmsav7(CPUARMState *env,
2383                                  S1Translate *ptw,
2384                                  uint32_t address,
2385                                  MMUAccessType access_type,
2386                                  GetPhysAddrResult *result,
2387                                  ARMMMUFaultInfo *fi)
2388 {
2389     ARMCPU *cpu = env_archcpu(env);
2390     int n;
2391     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2392     bool is_user = regime_is_user(env, mmu_idx);
2393     bool secure = arm_space_is_secure(ptw->in_space);
2394 
2395     result->f.phys_addr = address;
2396     result->f.lg_page_size = TARGET_PAGE_BITS;
2397     result->f.prot = 0;
2398 
2399     if (regime_translation_disabled(env, mmu_idx, ptw->in_space) ||
2400         m_is_ppb_region(env, address)) {
2401         /*
2402          * MPU disabled or M profile PPB access: use default memory map.
2403          * The other case which uses the default memory map in the
2404          * v7M ARM ARM pseudocode is exception vector reads from the vector
2405          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2406          * which always does a direct read using address_space_ldl(), rather
2407          * than going via this function, so we don't need to check that here.
2408          */
2409         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2410     } else { /* MPU enabled */
2411         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2412             /* region search */
2413             uint32_t base = env->pmsav7.drbar[n];
2414             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2415             uint32_t rmask;
2416             bool srdis = false;
2417 
2418             if (!(env->pmsav7.drsr[n] & 0x1)) {
2419                 continue;
2420             }
2421 
2422             if (!rsize) {
2423                 qemu_log_mask(LOG_GUEST_ERROR,
2424                               "DRSR[%d]: Rsize field cannot be 0\n", n);
2425                 continue;
2426             }
2427             rsize++;
2428             rmask = (1ull << rsize) - 1;
2429 
2430             if (base & rmask) {
2431                 qemu_log_mask(LOG_GUEST_ERROR,
2432                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2433                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
2434                               n, base, rmask);
2435                 continue;
2436             }
2437 
2438             if (address < base || address > base + rmask) {
2439                 /*
2440                  * Address not in this region. We must check whether the
2441                  * region covers addresses in the same page as our address.
2442                  * In that case we must not report a size that covers the
2443                  * whole page for a subsequent hit against a different MPU
2444                  * region or the background region, because it would result in
2445                  * incorrect TLB hits for subsequent accesses to addresses that
2446                  * are in this MPU region.
2447                  */
2448                 if (ranges_overlap(base, rmask,
2449                                    address & TARGET_PAGE_MASK,
2450                                    TARGET_PAGE_SIZE)) {
2451                     result->f.lg_page_size = 0;
2452                 }
2453                 continue;
2454             }
2455 
2456             /* Region matched */
2457 
2458             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2459                 int i, snd;
2460                 uint32_t srdis_mask;
2461 
2462                 rsize -= 3; /* sub region size (power of 2) */
2463                 snd = ((address - base) >> rsize) & 0x7;
2464                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2465 
2466                 srdis_mask = srdis ? 0x3 : 0x0;
2467                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2468                     /*
2469                      * This will check in groups of 2, 4 and then 8, whether
2470                      * the subregion bits are consistent. rsize is incremented
2471                      * back up to give the region size, considering consistent
2472                      * adjacent subregions as one region. Stop testing if rsize
2473                      * is already big enough for an entire QEMU page.
2474                      */
2475                     int snd_rounded = snd & ~(i - 1);
2476                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2477                                                      snd_rounded + 8, i);
2478                     if (srdis_mask ^ srdis_multi) {
2479                         break;
2480                     }
2481                     srdis_mask = (srdis_mask << i) | srdis_mask;
2482                     rsize++;
2483                 }
2484             }
2485             if (srdis) {
2486                 continue;
2487             }
2488             if (rsize < TARGET_PAGE_BITS) {
2489                 result->f.lg_page_size = rsize;
2490             }
2491             break;
2492         }
2493 
2494         if (n == -1) { /* no hits */
2495             if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2496                 /* background fault */
2497                 fi->type = ARMFault_Background;
2498                 return true;
2499             }
2500             get_phys_addr_pmsav7_default(env, mmu_idx, address,
2501                                          &result->f.prot);
2502         } else { /* a MPU hit! */
2503             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2504             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2505 
2506             if (m_is_system_region(env, address)) {
2507                 /* System space is always execute never */
2508                 xn = 1;
2509             }
2510 
2511             if (is_user) { /* User mode AP bit decoding */
2512                 switch (ap) {
2513                 case 0:
2514                 case 1:
2515                 case 5:
2516                     break; /* no access */
2517                 case 3:
2518                     result->f.prot |= PAGE_WRITE;
2519                     /* fall through */
2520                 case 2:
2521                 case 6:
2522                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2523                     break;
2524                 case 7:
2525                     /* for v7M, same as 6; for R profile a reserved value */
2526                     if (arm_feature(env, ARM_FEATURE_M)) {
2527                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2528                         break;
2529                     }
2530                     /* fall through */
2531                 default:
2532                     qemu_log_mask(LOG_GUEST_ERROR,
2533                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2534                                   PRIx32 "\n", n, ap);
2535                 }
2536             } else { /* Priv. mode AP bits decoding */
2537                 switch (ap) {
2538                 case 0:
2539                     break; /* no access */
2540                 case 1:
2541                 case 2:
2542                 case 3:
2543                     result->f.prot |= PAGE_WRITE;
2544                     /* fall through */
2545                 case 5:
2546                 case 6:
2547                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2548                     break;
2549                 case 7:
2550                     /* for v7M, same as 6; for R profile a reserved value */
2551                     if (arm_feature(env, ARM_FEATURE_M)) {
2552                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2553                         break;
2554                     }
2555                     /* fall through */
2556                 default:
2557                     qemu_log_mask(LOG_GUEST_ERROR,
2558                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2559                                   PRIx32 "\n", n, ap);
2560                 }
2561             }
2562 
2563             /* execute never */
2564             if (xn) {
2565                 result->f.prot &= ~PAGE_EXEC;
2566             }
2567         }
2568     }
2569 
2570     fi->type = ARMFault_Permission;
2571     fi->level = 1;
2572     return !(result->f.prot & (1 << access_type));
2573 }
2574 
2575 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2576                              uint32_t secure)
2577 {
2578     if (regime_el(env, mmu_idx) == 2) {
2579         return env->pmsav8.hprbar;
2580     } else {
2581         return env->pmsav8.rbar[secure];
2582     }
2583 }
2584 
2585 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2586                              uint32_t secure)
2587 {
2588     if (regime_el(env, mmu_idx) == 2) {
2589         return env->pmsav8.hprlar;
2590     } else {
2591         return env->pmsav8.rlar[secure];
2592     }
2593 }
2594 
2595 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2596                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
2597                        bool secure, GetPhysAddrResult *result,
2598                        ARMMMUFaultInfo *fi, uint32_t *mregion)
2599 {
2600     /*
2601      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2602      * that a full phys-to-virt translation does).
2603      * mregion is (if not NULL) set to the region number which matched,
2604      * or -1 if no region number is returned (MPU off, address did not
2605      * hit a region, address hit in multiple regions).
2606      * If the region hit doesn't cover the entire TARGET_PAGE the address
2607      * is within, then we set the result page_size to 1 to force the
2608      * memory system to use a subpage.
2609      */
2610     ARMCPU *cpu = env_archcpu(env);
2611     bool is_user = regime_is_user(env, mmu_idx);
2612     int n;
2613     int matchregion = -1;
2614     bool hit = false;
2615     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2616     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2617     int region_counter;
2618 
2619     if (regime_el(env, mmu_idx) == 2) {
2620         region_counter = cpu->pmsav8r_hdregion;
2621     } else {
2622         region_counter = cpu->pmsav7_dregion;
2623     }
2624 
2625     result->f.lg_page_size = TARGET_PAGE_BITS;
2626     result->f.phys_addr = address;
2627     result->f.prot = 0;
2628     if (mregion) {
2629         *mregion = -1;
2630     }
2631 
2632     if (mmu_idx == ARMMMUIdx_Stage2) {
2633         fi->stage2 = true;
2634     }
2635 
2636     /*
2637      * Unlike the ARM ARM pseudocode, we don't need to check whether this
2638      * was an exception vector read from the vector table (which is always
2639      * done using the default system address map), because those accesses
2640      * are done in arm_v7m_load_vector(), which always does a direct
2641      * read using address_space_ldl(), rather than going via this function.
2642      */
2643     if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) {
2644         /* MPU disabled */
2645         hit = true;
2646     } else if (m_is_ppb_region(env, address)) {
2647         hit = true;
2648     } else {
2649         if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2650             hit = true;
2651         }
2652 
2653         uint32_t bitmask;
2654         if (arm_feature(env, ARM_FEATURE_M)) {
2655             bitmask = 0x1f;
2656         } else {
2657             bitmask = 0x3f;
2658             fi->level = 0;
2659         }
2660 
2661         for (n = region_counter - 1; n >= 0; n--) {
2662             /* region search */
2663             /*
2664              * Note that the base address is bits [31:x] from the register
2665              * with bits [x-1:0] all zeroes, but the limit address is bits
2666              * [31:x] from the register with bits [x:0] all ones. Where x is
2667              * 5 for Cortex-M and 6 for Cortex-R
2668              */
2669             uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2670             uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2671 
2672             if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2673                 /* Region disabled */
2674                 continue;
2675             }
2676 
2677             if (address < base || address > limit) {
2678                 /*
2679                  * Address not in this region. We must check whether the
2680                  * region covers addresses in the same page as our address.
2681                  * In that case we must not report a size that covers the
2682                  * whole page for a subsequent hit against a different MPU
2683                  * region or the background region, because it would result in
2684                  * incorrect TLB hits for subsequent accesses to addresses that
2685                  * are in this MPU region.
2686                  */
2687                 if (limit >= base &&
2688                     ranges_overlap(base, limit - base + 1,
2689                                    addr_page_base,
2690                                    TARGET_PAGE_SIZE)) {
2691                     result->f.lg_page_size = 0;
2692                 }
2693                 continue;
2694             }
2695 
2696             if (base > addr_page_base || limit < addr_page_limit) {
2697                 result->f.lg_page_size = 0;
2698             }
2699 
2700             if (matchregion != -1) {
2701                 /*
2702                  * Multiple regions match -- always a failure (unlike
2703                  * PMSAv7 where highest-numbered-region wins)
2704                  */
2705                 fi->type = ARMFault_Permission;
2706                 if (arm_feature(env, ARM_FEATURE_M)) {
2707                     fi->level = 1;
2708                 }
2709                 return true;
2710             }
2711 
2712             matchregion = n;
2713             hit = true;
2714         }
2715     }
2716 
2717     if (!hit) {
2718         if (arm_feature(env, ARM_FEATURE_M)) {
2719             fi->type = ARMFault_Background;
2720         } else {
2721             fi->type = ARMFault_Permission;
2722         }
2723         return true;
2724     }
2725 
2726     if (matchregion == -1) {
2727         /* hit using the background region */
2728         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2729     } else {
2730         uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2731         uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2732         uint32_t ap = extract32(matched_rbar, 1, 2);
2733         uint32_t xn = extract32(matched_rbar, 0, 1);
2734         bool pxn = false;
2735 
2736         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2737             pxn = extract32(matched_rlar, 4, 1);
2738         }
2739 
2740         if (m_is_system_region(env, address)) {
2741             /* System space is always execute never */
2742             xn = 1;
2743         }
2744 
2745         if (regime_el(env, mmu_idx) == 2) {
2746             result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2747                                             mmu_idx != ARMMMUIdx_E2);
2748         } else {
2749             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2750         }
2751 
2752         if (!arm_feature(env, ARM_FEATURE_M)) {
2753             uint8_t attrindx = extract32(matched_rlar, 1, 3);
2754             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2755             uint8_t sh = extract32(matched_rlar, 3, 2);
2756 
2757             if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2758                 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2759                 xn = 0x1;
2760             }
2761 
2762             if ((regime_el(env, mmu_idx) == 1) &&
2763                 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2764                 pxn = 0x1;
2765             }
2766 
2767             result->cacheattrs.is_s2_format = false;
2768             result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2769             result->cacheattrs.shareability = sh;
2770         }
2771 
2772         if (result->f.prot && !xn && !(pxn && !is_user)) {
2773             result->f.prot |= PAGE_EXEC;
2774         }
2775 
2776         if (mregion) {
2777             *mregion = matchregion;
2778         }
2779     }
2780 
2781     fi->type = ARMFault_Permission;
2782     if (arm_feature(env, ARM_FEATURE_M)) {
2783         fi->level = 1;
2784     }
2785     return !(result->f.prot & (1 << access_type));
2786 }
2787 
2788 static bool v8m_is_sau_exempt(CPUARMState *env,
2789                               uint32_t address, MMUAccessType access_type)
2790 {
2791     /*
2792      * The architecture specifies that certain address ranges are
2793      * exempt from v8M SAU/IDAU checks.
2794      */
2795     return
2796         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2797         (address >= 0xe0000000 && address <= 0xe0002fff) ||
2798         (address >= 0xe000e000 && address <= 0xe000efff) ||
2799         (address >= 0xe002e000 && address <= 0xe002efff) ||
2800         (address >= 0xe0040000 && address <= 0xe0041fff) ||
2801         (address >= 0xe00ff000 && address <= 0xe00fffff);
2802 }
2803 
2804 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2805                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
2806                          bool is_secure, V8M_SAttributes *sattrs)
2807 {
2808     /*
2809      * Look up the security attributes for this address. Compare the
2810      * pseudocode SecurityCheck() function.
2811      * We assume the caller has zero-initialized *sattrs.
2812      */
2813     ARMCPU *cpu = env_archcpu(env);
2814     int r;
2815     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2816     int idau_region = IREGION_NOTVALID;
2817     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2818     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2819 
2820     if (cpu->idau) {
2821         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2822         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2823 
2824         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2825                    &idau_nsc);
2826     }
2827 
2828     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2829         /* 0xf0000000..0xffffffff is always S for insn fetches */
2830         return;
2831     }
2832 
2833     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2834         sattrs->ns = !is_secure;
2835         return;
2836     }
2837 
2838     if (idau_region != IREGION_NOTVALID) {
2839         sattrs->irvalid = true;
2840         sattrs->iregion = idau_region;
2841     }
2842 
2843     switch (env->sau.ctrl & 3) {
2844     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2845         break;
2846     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2847         sattrs->ns = true;
2848         break;
2849     default: /* SAU.ENABLE == 1 */
2850         for (r = 0; r < cpu->sau_sregion; r++) {
2851             if (env->sau.rlar[r] & 1) {
2852                 uint32_t base = env->sau.rbar[r] & ~0x1f;
2853                 uint32_t limit = env->sau.rlar[r] | 0x1f;
2854 
2855                 if (base <= address && limit >= address) {
2856                     if (base > addr_page_base || limit < addr_page_limit) {
2857                         sattrs->subpage = true;
2858                     }
2859                     if (sattrs->srvalid) {
2860                         /*
2861                          * If we hit in more than one region then we must report
2862                          * as Secure, not NS-Callable, with no valid region
2863                          * number info.
2864                          */
2865                         sattrs->ns = false;
2866                         sattrs->nsc = false;
2867                         sattrs->sregion = 0;
2868                         sattrs->srvalid = false;
2869                         break;
2870                     } else {
2871                         if (env->sau.rlar[r] & 2) {
2872                             sattrs->nsc = true;
2873                         } else {
2874                             sattrs->ns = true;
2875                         }
2876                         sattrs->srvalid = true;
2877                         sattrs->sregion = r;
2878                     }
2879                 } else {
2880                     /*
2881                      * Address not in this region. We must check whether the
2882                      * region covers addresses in the same page as our address.
2883                      * In that case we must not report a size that covers the
2884                      * whole page for a subsequent hit against a different MPU
2885                      * region or the background region, because it would result
2886                      * in incorrect TLB hits for subsequent accesses to
2887                      * addresses that are in this MPU region.
2888                      */
2889                     if (limit >= base &&
2890                         ranges_overlap(base, limit - base + 1,
2891                                        addr_page_base,
2892                                        TARGET_PAGE_SIZE)) {
2893                         sattrs->subpage = true;
2894                     }
2895                 }
2896             }
2897         }
2898         break;
2899     }
2900 
2901     /*
2902      * The IDAU will override the SAU lookup results if it specifies
2903      * higher security than the SAU does.
2904      */
2905     if (!idau_ns) {
2906         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2907             sattrs->ns = false;
2908             sattrs->nsc = idau_nsc;
2909         }
2910     }
2911 }
2912 
2913 static bool get_phys_addr_pmsav8(CPUARMState *env,
2914                                  S1Translate *ptw,
2915                                  uint32_t address,
2916                                  MMUAccessType access_type,
2917                                  GetPhysAddrResult *result,
2918                                  ARMMMUFaultInfo *fi)
2919 {
2920     V8M_SAttributes sattrs = {};
2921     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2922     bool secure = arm_space_is_secure(ptw->in_space);
2923     bool ret;
2924 
2925     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2926         v8m_security_lookup(env, address, access_type, mmu_idx,
2927                             secure, &sattrs);
2928         if (access_type == MMU_INST_FETCH) {
2929             /*
2930              * Instruction fetches always use the MMU bank and the
2931              * transaction attribute determined by the fetch address,
2932              * regardless of CPU state. This is painful for QEMU
2933              * to handle, because it would mean we need to encode
2934              * into the mmu_idx not just the (user, negpri) information
2935              * for the current security state but also that for the
2936              * other security state, which would balloon the number
2937              * of mmu_idx values needed alarmingly.
2938              * Fortunately we can avoid this because it's not actually
2939              * possible to arbitrarily execute code from memory with
2940              * the wrong security attribute: it will always generate
2941              * an exception of some kind or another, apart from the
2942              * special case of an NS CPU executing an SG instruction
2943              * in S&NSC memory. So we always just fail the translation
2944              * here and sort things out in the exception handler
2945              * (including possibly emulating an SG instruction).
2946              */
2947             if (sattrs.ns != !secure) {
2948                 if (sattrs.nsc) {
2949                     fi->type = ARMFault_QEMU_NSCExec;
2950                 } else {
2951                     fi->type = ARMFault_QEMU_SFault;
2952                 }
2953                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2954                 result->f.phys_addr = address;
2955                 result->f.prot = 0;
2956                 return true;
2957             }
2958         } else {
2959             /*
2960              * For data accesses we always use the MMU bank indicated
2961              * by the current CPU state, but the security attributes
2962              * might downgrade a secure access to nonsecure.
2963              */
2964             if (sattrs.ns) {
2965                 result->f.attrs.secure = false;
2966                 result->f.attrs.space = ARMSS_NonSecure;
2967             } else if (!secure) {
2968                 /*
2969                  * NS access to S memory must fault.
2970                  * Architecturally we should first check whether the
2971                  * MPU information for this address indicates that we
2972                  * are doing an unaligned access to Device memory, which
2973                  * should generate a UsageFault instead. QEMU does not
2974                  * currently check for that kind of unaligned access though.
2975                  * If we added it we would need to do so as a special case
2976                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2977                  */
2978                 fi->type = ARMFault_QEMU_SFault;
2979                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2980                 result->f.phys_addr = address;
2981                 result->f.prot = 0;
2982                 return true;
2983             }
2984         }
2985     }
2986 
2987     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2988                             result, fi, NULL);
2989     if (sattrs.subpage) {
2990         result->f.lg_page_size = 0;
2991     }
2992     return ret;
2993 }
2994 
2995 /*
2996  * Translate from the 4-bit stage 2 representation of
2997  * memory attributes (without cache-allocation hints) to
2998  * the 8-bit representation of the stage 1 MAIR registers
2999  * (which includes allocation hints).
3000  *
3001  * ref: shared/translation/attrs/S2AttrDecode()
3002  *      .../S2ConvertAttrsHints()
3003  */
3004 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
3005 {
3006     uint8_t hiattr = extract32(s2attrs, 2, 2);
3007     uint8_t loattr = extract32(s2attrs, 0, 2);
3008     uint8_t hihint = 0, lohint = 0;
3009 
3010     if (hiattr != 0) { /* normal memory */
3011         if (hcr & HCR_CD) { /* cache disabled */
3012             hiattr = loattr = 1; /* non-cacheable */
3013         } else {
3014             if (hiattr != 1) { /* Write-through or write-back */
3015                 hihint = 3; /* RW allocate */
3016             }
3017             if (loattr != 1) { /* Write-through or write-back */
3018                 lohint = 3; /* RW allocate */
3019             }
3020         }
3021     }
3022 
3023     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
3024 }
3025 
3026 /*
3027  * Combine either inner or outer cacheability attributes for normal
3028  * memory, according to table D4-42 and pseudocode procedure
3029  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
3030  *
3031  * NB: only stage 1 includes allocation hints (RW bits), leading to
3032  * some asymmetry.
3033  */
3034 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
3035 {
3036     if (s1 == 4 || s2 == 4) {
3037         /* non-cacheable has precedence */
3038         return 4;
3039     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
3040         /* stage 1 write-through takes precedence */
3041         return s1;
3042     } else if (extract32(s2, 2, 2) == 2) {
3043         /* stage 2 write-through takes precedence, but the allocation hint
3044          * is still taken from stage 1
3045          */
3046         return (2 << 2) | extract32(s1, 0, 2);
3047     } else { /* write-back */
3048         return s1;
3049     }
3050 }
3051 
3052 /*
3053  * Combine the memory type and cacheability attributes of
3054  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
3055  * combined attributes in MAIR_EL1 format.
3056  */
3057 static uint8_t combined_attrs_nofwb(uint64_t hcr,
3058                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
3059 {
3060     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
3061 
3062     if (s2.is_s2_format) {
3063         s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
3064     } else {
3065         s2_mair_attrs = s2.attrs;
3066     }
3067 
3068     s1lo = extract32(s1.attrs, 0, 4);
3069     s2lo = extract32(s2_mair_attrs, 0, 4);
3070     s1hi = extract32(s1.attrs, 4, 4);
3071     s2hi = extract32(s2_mair_attrs, 4, 4);
3072 
3073     /* Combine memory type and cacheability attributes */
3074     if (s1hi == 0 || s2hi == 0) {
3075         /* Device has precedence over normal */
3076         if (s1lo == 0 || s2lo == 0) {
3077             /* nGnRnE has precedence over anything */
3078             ret_attrs = 0;
3079         } else if (s1lo == 4 || s2lo == 4) {
3080             /* non-Reordering has precedence over Reordering */
3081             ret_attrs = 4;  /* nGnRE */
3082         } else if (s1lo == 8 || s2lo == 8) {
3083             /* non-Gathering has precedence over Gathering */
3084             ret_attrs = 8;  /* nGRE */
3085         } else {
3086             ret_attrs = 0xc; /* GRE */
3087         }
3088     } else { /* Normal memory */
3089         /* Outer/inner cacheability combine independently */
3090         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
3091                   | combine_cacheattr_nibble(s1lo, s2lo);
3092     }
3093     return ret_attrs;
3094 }
3095 
3096 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
3097 {
3098     /*
3099      * Given the 4 bits specifying the outer or inner cacheability
3100      * in MAIR format, return a value specifying Normal Write-Back,
3101      * with the allocation and transient hints taken from the input
3102      * if the input specified some kind of cacheable attribute.
3103      */
3104     if (attr == 0 || attr == 4) {
3105         /*
3106          * 0 == an UNPREDICTABLE encoding
3107          * 4 == Non-cacheable
3108          * Either way, force Write-Back RW allocate non-transient
3109          */
3110         return 0xf;
3111     }
3112     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
3113     return attr | 4;
3114 }
3115 
3116 /*
3117  * Combine the memory type and cacheability attributes of
3118  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
3119  * combined attributes in MAIR_EL1 format.
3120  */
3121 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
3122 {
3123     assert(s2.is_s2_format && !s1.is_s2_format);
3124 
3125     switch (s2.attrs) {
3126     case 7:
3127         /* Use stage 1 attributes */
3128         return s1.attrs;
3129     case 6:
3130         /*
3131          * Force Normal Write-Back. Note that if S1 is Normal cacheable
3132          * then we take the allocation hints from it; otherwise it is
3133          * RW allocate, non-transient.
3134          */
3135         if ((s1.attrs & 0xf0) == 0) {
3136             /* S1 is Device */
3137             return 0xff;
3138         }
3139         /* Need to check the Inner and Outer nibbles separately */
3140         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
3141             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
3142     case 5:
3143         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
3144         if ((s1.attrs & 0xf0) == 0) {
3145             return s1.attrs;
3146         }
3147         return 0x44;
3148     case 0 ... 3:
3149         /* Force Device, of subtype specified by S2 */
3150         return s2.attrs << 2;
3151     default:
3152         /*
3153          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
3154          * arbitrarily force Device.
3155          */
3156         return 0;
3157     }
3158 }
3159 
3160 /*
3161  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
3162  * and CombineS1S2Desc()
3163  *
3164  * @env:     CPUARMState
3165  * @s1:      Attributes from stage 1 walk
3166  * @s2:      Attributes from stage 2 walk
3167  */
3168 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
3169                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
3170 {
3171     ARMCacheAttrs ret;
3172     bool tagged = false;
3173 
3174     assert(!s1.is_s2_format);
3175     ret.is_s2_format = false;
3176 
3177     if (s1.attrs == 0xf0) {
3178         tagged = true;
3179         s1.attrs = 0xff;
3180     }
3181 
3182     /* Combine shareability attributes (table D4-43) */
3183     if (s1.shareability == 2 || s2.shareability == 2) {
3184         /* if either are outer-shareable, the result is outer-shareable */
3185         ret.shareability = 2;
3186     } else if (s1.shareability == 3 || s2.shareability == 3) {
3187         /* if either are inner-shareable, the result is inner-shareable */
3188         ret.shareability = 3;
3189     } else {
3190         /* both non-shareable */
3191         ret.shareability = 0;
3192     }
3193 
3194     /* Combine memory type and cacheability attributes */
3195     if (hcr & HCR_FWB) {
3196         ret.attrs = combined_attrs_fwb(s1, s2);
3197     } else {
3198         ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
3199     }
3200 
3201     /*
3202      * Any location for which the resultant memory type is any
3203      * type of Device memory is always treated as Outer Shareable.
3204      * Any location for which the resultant memory type is Normal
3205      * Inner Non-cacheable, Outer Non-cacheable is always treated
3206      * as Outer Shareable.
3207      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
3208      */
3209     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
3210         ret.shareability = 2;
3211     }
3212 
3213     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
3214     if (tagged && ret.attrs == 0xff) {
3215         ret.attrs = 0xf0;
3216     }
3217 
3218     return ret;
3219 }
3220 
3221 /*
3222  * MMU disabled.  S1 addresses within aa64 translation regimes are
3223  * still checked for bounds -- see AArch64.S1DisabledOutput().
3224  */
3225 static bool get_phys_addr_disabled(CPUARMState *env,
3226                                    S1Translate *ptw,
3227                                    vaddr address,
3228                                    MMUAccessType access_type,
3229                                    GetPhysAddrResult *result,
3230                                    ARMMMUFaultInfo *fi)
3231 {
3232     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3233     uint8_t memattr = 0x00;    /* Device nGnRnE */
3234     uint8_t shareability = 0;  /* non-shareable */
3235     int r_el;
3236 
3237     switch (mmu_idx) {
3238     case ARMMMUIdx_Stage2:
3239     case ARMMMUIdx_Stage2_S:
3240     case ARMMMUIdx_Phys_S:
3241     case ARMMMUIdx_Phys_NS:
3242     case ARMMMUIdx_Phys_Root:
3243     case ARMMMUIdx_Phys_Realm:
3244         break;
3245 
3246     default:
3247         r_el = regime_el(env, mmu_idx);
3248         if (arm_el_is_aa64(env, r_el)) {
3249             int pamax = arm_pamax(env_archcpu(env));
3250             uint64_t tcr = env->cp15.tcr_el[r_el];
3251             int addrtop, tbi;
3252 
3253             tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
3254             if (access_type == MMU_INST_FETCH) {
3255                 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
3256             }
3257             tbi = (tbi >> extract64(address, 55, 1)) & 1;
3258             addrtop = (tbi ? 55 : 63);
3259 
3260             if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
3261                 fi->type = ARMFault_AddressSize;
3262                 fi->level = 0;
3263                 fi->stage2 = false;
3264                 return 1;
3265             }
3266 
3267             /*
3268              * When TBI is disabled, we've just validated that all of the
3269              * bits above PAMax are zero, so logically we only need to
3270              * clear the top byte for TBI.  But it's clearer to follow
3271              * the pseudocode set of addrdesc.paddress.
3272              */
3273             address = extract64(address, 0, 52);
3274         }
3275 
3276         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3277         if (r_el == 1) {
3278             uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
3279             if (hcr & HCR_DC) {
3280                 if (hcr & HCR_DCT) {
3281                     memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
3282                 } else {
3283                     memattr = 0xff;  /* Normal, WB, RWA */
3284                 }
3285             }
3286         }
3287         if (memattr == 0) {
3288             if (access_type == MMU_INST_FETCH) {
3289                 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3290                     memattr = 0xee;  /* Normal, WT, RA, NT */
3291                 } else {
3292                     memattr = 0x44;  /* Normal, NC, No */
3293                 }
3294             }
3295             shareability = 2; /* outer shareable */
3296         }
3297         result->cacheattrs.is_s2_format = false;
3298         break;
3299     }
3300 
3301     result->f.phys_addr = address;
3302     result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3303     result->f.lg_page_size = TARGET_PAGE_BITS;
3304     result->cacheattrs.shareability = shareability;
3305     result->cacheattrs.attrs = memattr;
3306     return false;
3307 }
3308 
3309 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3310                                    vaddr address,
3311                                    MMUAccessType access_type, MemOp memop,
3312                                    GetPhysAddrResult *result,
3313                                    ARMMMUFaultInfo *fi)
3314 {
3315     hwaddr ipa;
3316     int s1_prot, s1_lgpgsz;
3317     ARMSecuritySpace in_space = ptw->in_space;
3318     bool ret, ipa_secure, s1_guarded;
3319     ARMCacheAttrs cacheattrs1;
3320     ARMSecuritySpace ipa_space;
3321     uint64_t hcr;
3322 
3323     ret = get_phys_addr_nogpc(env, ptw, address, access_type,
3324                               memop, result, fi);
3325 
3326     /* If S1 fails, return early.  */
3327     if (ret) {
3328         return ret;
3329     }
3330 
3331     ipa = result->f.phys_addr;
3332     ipa_secure = result->f.attrs.secure;
3333     ipa_space = result->f.attrs.space;
3334 
3335     ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3336     ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3337     ptw->in_space = ipa_space;
3338     ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3339 
3340     /*
3341      * S1 is done, now do S2 translation.
3342      * Save the stage1 results so that we may merge prot and cacheattrs later.
3343      */
3344     s1_prot = result->f.prot;
3345     s1_lgpgsz = result->f.lg_page_size;
3346     s1_guarded = result->f.extra.arm.guarded;
3347     cacheattrs1 = result->cacheattrs;
3348     memset(result, 0, sizeof(*result));
3349 
3350     ret = get_phys_addr_nogpc(env, ptw, ipa, access_type,
3351                               memop, result, fi);
3352     fi->s2addr = ipa;
3353 
3354     /* Combine the S1 and S2 perms.  */
3355     result->f.prot &= s1_prot;
3356 
3357     /* If S2 fails, return early.  */
3358     if (ret) {
3359         return ret;
3360     }
3361 
3362     /*
3363      * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3364      * this means "don't put this in the TLB"; in this case, return a
3365      * result with lg_page_size == 0 to achieve that. Otherwise,
3366      * use the maximum of the S1 & S2 page size, so that invalidation
3367      * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3368      * we know the combined result permissions etc only cover the minimum
3369      * of the S1 and S2 page size, because we know that the common TLB code
3370      * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3371      * and passing a larger page size value only affects invalidations.)
3372      */
3373     if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3374         s1_lgpgsz < TARGET_PAGE_BITS) {
3375         result->f.lg_page_size = 0;
3376     } else if (result->f.lg_page_size < s1_lgpgsz) {
3377         result->f.lg_page_size = s1_lgpgsz;
3378     }
3379 
3380     /* Combine the S1 and S2 cache attributes. */
3381     hcr = arm_hcr_el2_eff_secstate(env, in_space);
3382     if (hcr & HCR_DC) {
3383         /*
3384          * HCR.DC forces the first stage attributes to
3385          *  Normal Non-Shareable,
3386          *  Inner Write-Back Read-Allocate Write-Allocate,
3387          *  Outer Write-Back Read-Allocate Write-Allocate.
3388          * Do not overwrite Tagged within attrs.
3389          */
3390         if (cacheattrs1.attrs != 0xf0) {
3391             cacheattrs1.attrs = 0xff;
3392         }
3393         cacheattrs1.shareability = 0;
3394     }
3395     result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3396                                             result->cacheattrs);
3397 
3398     /* No BTI GP information in stage 2, we just use the S1 value */
3399     result->f.extra.arm.guarded = s1_guarded;
3400 
3401     /*
3402      * Check if IPA translates to secure or non-secure PA space.
3403      * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3404      */
3405     if (in_space == ARMSS_Secure) {
3406         result->f.attrs.secure =
3407             !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3408             && (ipa_secure
3409                 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
3410         result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
3411     }
3412 
3413     return false;
3414 }
3415 
3416 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3417                                       vaddr address,
3418                                       MMUAccessType access_type, MemOp memop,
3419                                       GetPhysAddrResult *result,
3420                                       ARMMMUFaultInfo *fi)
3421 {
3422     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3423     ARMMMUIdx s1_mmu_idx;
3424 
3425     /*
3426      * The page table entries may downgrade Secure to NonSecure, but
3427      * cannot upgrade a NonSecure translation regime's attributes
3428      * to Secure or Realm.
3429      */
3430     result->f.attrs.space = ptw->in_space;
3431     result->f.attrs.secure = arm_space_is_secure(ptw->in_space);
3432 
3433     switch (mmu_idx) {
3434     case ARMMMUIdx_Phys_S:
3435     case ARMMMUIdx_Phys_NS:
3436     case ARMMMUIdx_Phys_Root:
3437     case ARMMMUIdx_Phys_Realm:
3438         /* Checking Phys early avoids special casing later vs regime_el. */
3439         return get_phys_addr_disabled(env, ptw, address, access_type,
3440                                       result, fi);
3441 
3442     case ARMMMUIdx_Stage1_E0:
3443     case ARMMMUIdx_Stage1_E1:
3444     case ARMMMUIdx_Stage1_E1_PAN:
3445         /*
3446          * First stage lookup uses second stage for ptw; only
3447          * Secure has both S and NS IPA and starts with Stage2_S.
3448          */
3449         ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ?
3450             ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3451         break;
3452 
3453     case ARMMMUIdx_Stage2:
3454     case ARMMMUIdx_Stage2_S:
3455         /*
3456          * Second stage lookup uses physical for ptw; whether this is S or
3457          * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3458          * the Secure EL2&0 regime.
3459          */
3460         ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3461         break;
3462 
3463     case ARMMMUIdx_E10_0:
3464         s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3465         goto do_twostage;
3466     case ARMMMUIdx_E10_1:
3467         s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3468         goto do_twostage;
3469     case ARMMMUIdx_E10_1_PAN:
3470         s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3471     do_twostage:
3472         /*
3473          * Call ourselves recursively to do the stage 1 and then stage 2
3474          * translations if mmu_idx is a two-stage regime, and EL2 present.
3475          * Otherwise, a stage1+stage2 translation is just stage 1.
3476          */
3477         ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3478         if (arm_feature(env, ARM_FEATURE_EL2) &&
3479             !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) {
3480             return get_phys_addr_twostage(env, ptw, address, access_type,
3481                                           memop, result, fi);
3482         }
3483         /* fall through */
3484 
3485     default:
3486         /* Single stage uses physical for ptw. */
3487         ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3488         break;
3489     }
3490 
3491     result->f.attrs.user = regime_is_user(env, mmu_idx);
3492 
3493     /*
3494      * Fast Context Switch Extension. This doesn't exist at all in v8.
3495      * In v7 and earlier it affects all stage 1 translations.
3496      */
3497     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3498         && !arm_feature(env, ARM_FEATURE_V8)) {
3499         if (regime_el(env, mmu_idx) == 3) {
3500             address += env->cp15.fcseidr_s;
3501         } else {
3502             address += env->cp15.fcseidr_ns;
3503         }
3504     }
3505 
3506     if (arm_feature(env, ARM_FEATURE_PMSA)) {
3507         bool ret;
3508         result->f.lg_page_size = TARGET_PAGE_BITS;
3509 
3510         if (arm_feature(env, ARM_FEATURE_V8)) {
3511             /* PMSAv8 */
3512             ret = get_phys_addr_pmsav8(env, ptw, address, access_type,
3513                                        result, fi);
3514         } else if (arm_feature(env, ARM_FEATURE_V7)) {
3515             /* PMSAv7 */
3516             ret = get_phys_addr_pmsav7(env, ptw, address, access_type,
3517                                        result, fi);
3518         } else {
3519             /* Pre-v7 MPU */
3520             ret = get_phys_addr_pmsav5(env, ptw, address, access_type,
3521                                        result, fi);
3522         }
3523         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3524                       " mmu_idx %u -> %s (prot %c%c%c)\n",
3525                       access_type == MMU_DATA_LOAD ? "reading" :
3526                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3527                       (uint32_t)address, mmu_idx,
3528                       ret ? "Miss" : "Hit",
3529                       result->f.prot & PAGE_READ ? 'r' : '-',
3530                       result->f.prot & PAGE_WRITE ? 'w' : '-',
3531                       result->f.prot & PAGE_EXEC ? 'x' : '-');
3532 
3533         return ret;
3534     }
3535 
3536     /* Definitely a real MMU, not an MPU */
3537 
3538     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
3539         return get_phys_addr_disabled(env, ptw, address, access_type,
3540                                       result, fi);
3541     }
3542 
3543     if (regime_using_lpae_format(env, mmu_idx)) {
3544         return get_phys_addr_lpae(env, ptw, address, access_type,
3545                                   memop, result, fi);
3546     } else if (arm_feature(env, ARM_FEATURE_V7) ||
3547                regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3548         return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3549     } else {
3550         return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3551     }
3552 }
3553 
3554 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3555                               vaddr address,
3556                               MMUAccessType access_type, MemOp memop,
3557                               GetPhysAddrResult *result,
3558                               ARMMMUFaultInfo *fi)
3559 {
3560     if (get_phys_addr_nogpc(env, ptw, address, access_type,
3561                             memop, result, fi)) {
3562         return true;
3563     }
3564     if (!granule_protection_check(env, result->f.phys_addr,
3565                                   result->f.attrs.space, fi)) {
3566         fi->type = ARMFault_GPCFOnOutput;
3567         return true;
3568     }
3569     return false;
3570 }
3571 
3572 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address,
3573                                     MMUAccessType access_type, MemOp memop,
3574                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
3575                                     GetPhysAddrResult *result,
3576                                     ARMMMUFaultInfo *fi)
3577 {
3578     S1Translate ptw = {
3579         .in_mmu_idx = mmu_idx,
3580         .in_space = space,
3581     };
3582     return get_phys_addr_nogpc(env, &ptw, address, access_type,
3583                                memop, result, fi);
3584 }
3585 
3586 bool get_phys_addr(CPUARMState *env, vaddr address,
3587                    MMUAccessType access_type, MemOp memop, ARMMMUIdx mmu_idx,
3588                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3589 {
3590     S1Translate ptw = {
3591         .in_mmu_idx = mmu_idx,
3592     };
3593     ARMSecuritySpace ss;
3594 
3595     switch (mmu_idx) {
3596     case ARMMMUIdx_E10_0:
3597     case ARMMMUIdx_E10_1:
3598     case ARMMMUIdx_E10_1_PAN:
3599     case ARMMMUIdx_E20_0:
3600     case ARMMMUIdx_E20_2:
3601     case ARMMMUIdx_E20_2_PAN:
3602     case ARMMMUIdx_Stage1_E0:
3603     case ARMMMUIdx_Stage1_E1:
3604     case ARMMMUIdx_Stage1_E1_PAN:
3605     case ARMMMUIdx_E2:
3606         ss = arm_security_space_below_el3(env);
3607         break;
3608     case ARMMMUIdx_Stage2:
3609         /*
3610          * For Secure EL2, we need this index to be NonSecure;
3611          * otherwise this will already be NonSecure or Realm.
3612          */
3613         ss = arm_security_space_below_el3(env);
3614         if (ss == ARMSS_Secure) {
3615             ss = ARMSS_NonSecure;
3616         }
3617         break;
3618     case ARMMMUIdx_Phys_NS:
3619     case ARMMMUIdx_MPrivNegPri:
3620     case ARMMMUIdx_MUserNegPri:
3621     case ARMMMUIdx_MPriv:
3622     case ARMMMUIdx_MUser:
3623         ss = ARMSS_NonSecure;
3624         break;
3625     case ARMMMUIdx_Stage2_S:
3626     case ARMMMUIdx_Phys_S:
3627     case ARMMMUIdx_MSPrivNegPri:
3628     case ARMMMUIdx_MSUserNegPri:
3629     case ARMMMUIdx_MSPriv:
3630     case ARMMMUIdx_MSUser:
3631         ss = ARMSS_Secure;
3632         break;
3633     case ARMMMUIdx_E3:
3634     case ARMMMUIdx_E30_0:
3635     case ARMMMUIdx_E30_3_PAN:
3636         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3637             cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3638             ss = ARMSS_Root;
3639         } else {
3640             ss = ARMSS_Secure;
3641         }
3642         break;
3643     case ARMMMUIdx_Phys_Root:
3644         ss = ARMSS_Root;
3645         break;
3646     case ARMMMUIdx_Phys_Realm:
3647         ss = ARMSS_Realm;
3648         break;
3649     default:
3650         g_assert_not_reached();
3651     }
3652 
3653     ptw.in_space = ss;
3654     return get_phys_addr_gpc(env, &ptw, address, access_type,
3655                              memop, result, fi);
3656 }
3657 
3658 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3659                                          MemTxAttrs *attrs)
3660 {
3661     ARMCPU *cpu = ARM_CPU(cs);
3662     CPUARMState *env = &cpu->env;
3663     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3664     ARMSecuritySpace ss = arm_security_space(env);
3665     S1Translate ptw = {
3666         .in_mmu_idx = mmu_idx,
3667         .in_space = ss,
3668         .in_debug = true,
3669     };
3670     GetPhysAddrResult res = {};
3671     ARMMMUFaultInfo fi = {};
3672     bool ret;
3673 
3674     ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, 0, &res, &fi);
3675     *attrs = res.f.attrs;
3676 
3677     if (ret) {
3678         return -1;
3679     }
3680     return res.f.phys_addr;
3681 }
3682