1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "qemu/main-loop.h" 13 #include "exec/exec-all.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "idau.h" 17 18 19 typedef struct S1Translate { 20 ARMMMUIdx in_mmu_idx; 21 ARMMMUIdx in_ptw_idx; 22 bool in_secure; 23 bool in_debug; 24 bool out_secure; 25 bool out_rw; 26 bool out_be; 27 hwaddr out_virt; 28 hwaddr out_phys; 29 void *out_host; 30 } S1Translate; 31 32 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 33 uint64_t address, 34 MMUAccessType access_type, bool s1_is_el0, 35 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 36 __attribute__((nonnull)); 37 38 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw, 39 target_ulong address, 40 MMUAccessType access_type, 41 GetPhysAddrResult *result, 42 ARMMMUFaultInfo *fi) 43 __attribute__((nonnull)); 44 45 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 46 static const uint8_t pamax_map[] = { 47 [0] = 32, 48 [1] = 36, 49 [2] = 40, 50 [3] = 42, 51 [4] = 44, 52 [5] = 48, 53 [6] = 52, 54 }; 55 56 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 57 unsigned int arm_pamax(ARMCPU *cpu) 58 { 59 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 60 unsigned int parange = 61 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 62 63 /* 64 * id_aa64mmfr0 is a read-only register so values outside of the 65 * supported mappings can be considered an implementation error. 66 */ 67 assert(parange < ARRAY_SIZE(pamax_map)); 68 return pamax_map[parange]; 69 } 70 71 /* 72 * In machvirt_init, we call arm_pamax on a cpu that is not fully 73 * initialized, so we can't rely on the propagation done in realize. 74 */ 75 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) || 76 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) { 77 /* v7 with LPAE */ 78 return 40; 79 } 80 /* Anything else */ 81 return 32; 82 } 83 84 /* 85 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 86 */ 87 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 88 { 89 switch (mmu_idx) { 90 case ARMMMUIdx_E10_0: 91 return ARMMMUIdx_Stage1_E0; 92 case ARMMMUIdx_E10_1: 93 return ARMMMUIdx_Stage1_E1; 94 case ARMMMUIdx_E10_1_PAN: 95 return ARMMMUIdx_Stage1_E1_PAN; 96 default: 97 return mmu_idx; 98 } 99 } 100 101 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 102 { 103 return stage_1_mmu_idx(arm_mmu_idx(env)); 104 } 105 106 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 107 { 108 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 109 } 110 111 /* Return the TTBR associated with this translation regime */ 112 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 113 { 114 if (mmu_idx == ARMMMUIdx_Stage2) { 115 return env->cp15.vttbr_el2; 116 } 117 if (mmu_idx == ARMMMUIdx_Stage2_S) { 118 return env->cp15.vsttbr_el2; 119 } 120 if (ttbrn == 0) { 121 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 122 } else { 123 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 124 } 125 } 126 127 /* Return true if the specified stage of address translation is disabled */ 128 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, 129 bool is_secure) 130 { 131 uint64_t hcr_el2; 132 133 if (arm_feature(env, ARM_FEATURE_M)) { 134 switch (env->v7m.mpu_ctrl[is_secure] & 135 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 136 case R_V7M_MPU_CTRL_ENABLE_MASK: 137 /* Enabled, but not for HardFault and NMI */ 138 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 139 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 140 /* Enabled for all cases */ 141 return false; 142 case 0: 143 default: 144 /* 145 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 146 * we warned about that in armv7m_nvic.c when the guest set it. 147 */ 148 return true; 149 } 150 } 151 152 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure); 153 154 switch (mmu_idx) { 155 case ARMMMUIdx_Stage2: 156 case ARMMMUIdx_Stage2_S: 157 /* HCR.DC means HCR.VM behaves as 1 */ 158 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 159 160 case ARMMMUIdx_E10_0: 161 case ARMMMUIdx_E10_1: 162 case ARMMMUIdx_E10_1_PAN: 163 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ 164 if (hcr_el2 & HCR_TGE) { 165 return true; 166 } 167 break; 168 169 case ARMMMUIdx_Stage1_E0: 170 case ARMMMUIdx_Stage1_E1: 171 case ARMMMUIdx_Stage1_E1_PAN: 172 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 173 if (hcr_el2 & HCR_DC) { 174 return true; 175 } 176 break; 177 178 case ARMMMUIdx_E20_0: 179 case ARMMMUIdx_E20_2: 180 case ARMMMUIdx_E20_2_PAN: 181 case ARMMMUIdx_E2: 182 case ARMMMUIdx_E3: 183 break; 184 185 case ARMMMUIdx_Phys_NS: 186 case ARMMMUIdx_Phys_S: 187 /* No translation for physical address spaces. */ 188 return true; 189 190 default: 191 g_assert_not_reached(); 192 } 193 194 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 195 } 196 197 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) 198 { 199 /* 200 * For an S1 page table walk, the stage 1 attributes are always 201 * some form of "this is Normal memory". The combined S1+S2 202 * attributes are therefore only Device if stage 2 specifies Device. 203 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 204 * ie when cacheattrs.attrs bits [3:2] are 0b00. 205 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 206 * when cacheattrs.attrs bit [2] is 0. 207 */ 208 if (hcr & HCR_FWB) { 209 return (attrs & 0x4) == 0; 210 } else { 211 return (attrs & 0xc) == 0; 212 } 213 } 214 215 /* Translate a S1 pagetable walk through S2 if needed. */ 216 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, 217 hwaddr addr, ARMMMUFaultInfo *fi) 218 { 219 bool is_secure = ptw->in_secure; 220 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 221 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx; 222 uint8_t pte_attrs; 223 bool pte_secure; 224 225 ptw->out_virt = addr; 226 227 if (unlikely(ptw->in_debug)) { 228 /* 229 * From gdbstub, do not use softmmu so that we don't modify the 230 * state of the cpu at all, including softmmu tlb contents. 231 */ 232 if (regime_is_stage2(s2_mmu_idx)) { 233 S1Translate s2ptw = { 234 .in_mmu_idx = s2_mmu_idx, 235 .in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS, 236 .in_secure = is_secure, 237 .in_debug = true, 238 }; 239 GetPhysAddrResult s2 = { }; 240 241 if (get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD, 242 false, &s2, fi)) { 243 goto fail; 244 } 245 ptw->out_phys = s2.f.phys_addr; 246 pte_attrs = s2.cacheattrs.attrs; 247 pte_secure = s2.f.attrs.secure; 248 } else { 249 /* Regime is physical. */ 250 ptw->out_phys = addr; 251 pte_attrs = 0; 252 pte_secure = is_secure; 253 } 254 ptw->out_host = NULL; 255 ptw->out_rw = false; 256 } else { 257 #ifdef CONFIG_TCG 258 CPUTLBEntryFull *full; 259 int flags; 260 261 env->tlb_fi = fi; 262 flags = probe_access_full(env, addr, 0, MMU_DATA_LOAD, 263 arm_to_core_mmu_idx(s2_mmu_idx), 264 true, &ptw->out_host, &full, 0); 265 env->tlb_fi = NULL; 266 267 if (unlikely(flags & TLB_INVALID_MASK)) { 268 goto fail; 269 } 270 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 271 ptw->out_rw = full->prot & PAGE_WRITE; 272 pte_attrs = full->pte_attrs; 273 pte_secure = full->attrs.secure; 274 #else 275 g_assert_not_reached(); 276 #endif 277 } 278 279 if (regime_is_stage2(s2_mmu_idx)) { 280 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure); 281 282 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { 283 /* 284 * PTW set and S1 walk touched S2 Device memory: 285 * generate Permission fault. 286 */ 287 fi->type = ARMFault_Permission; 288 fi->s2addr = addr; 289 fi->stage2 = true; 290 fi->s1ptw = true; 291 fi->s1ns = !is_secure; 292 return false; 293 } 294 } 295 296 /* Check if page table walk is to secure or non-secure PA space. */ 297 ptw->out_secure = (is_secure 298 && !(pte_secure 299 ? env->cp15.vstcr_el2 & VSTCR_SW 300 : env->cp15.vtcr_el2 & VTCR_NSW)); 301 ptw->out_be = regime_translation_big_endian(env, mmu_idx); 302 return true; 303 304 fail: 305 assert(fi->type != ARMFault_None); 306 fi->s2addr = addr; 307 fi->stage2 = true; 308 fi->s1ptw = true; 309 fi->s1ns = !is_secure; 310 return false; 311 } 312 313 /* All loads done in the course of a page table walk go through here. */ 314 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, 315 ARMMMUFaultInfo *fi) 316 { 317 CPUState *cs = env_cpu(env); 318 void *host = ptw->out_host; 319 uint32_t data; 320 321 if (likely(host)) { 322 /* Page tables are in RAM, and we have the host address. */ 323 data = qatomic_read((uint32_t *)host); 324 if (ptw->out_be) { 325 data = be32_to_cpu(data); 326 } else { 327 data = le32_to_cpu(data); 328 } 329 } else { 330 /* Page tables are in MMIO. */ 331 MemTxAttrs attrs = { .secure = ptw->out_secure }; 332 AddressSpace *as = arm_addressspace(cs, attrs); 333 MemTxResult result = MEMTX_OK; 334 335 if (ptw->out_be) { 336 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); 337 } else { 338 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); 339 } 340 if (unlikely(result != MEMTX_OK)) { 341 fi->type = ARMFault_SyncExternalOnWalk; 342 fi->ea = arm_extabort_type(result); 343 return 0; 344 } 345 } 346 return data; 347 } 348 349 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, 350 ARMMMUFaultInfo *fi) 351 { 352 CPUState *cs = env_cpu(env); 353 void *host = ptw->out_host; 354 uint64_t data; 355 356 if (likely(host)) { 357 /* Page tables are in RAM, and we have the host address. */ 358 #ifdef CONFIG_ATOMIC64 359 data = qatomic_read__nocheck((uint64_t *)host); 360 if (ptw->out_be) { 361 data = be64_to_cpu(data); 362 } else { 363 data = le64_to_cpu(data); 364 } 365 #else 366 if (ptw->out_be) { 367 data = ldq_be_p(host); 368 } else { 369 data = ldq_le_p(host); 370 } 371 #endif 372 } else { 373 /* Page tables are in MMIO. */ 374 MemTxAttrs attrs = { .secure = ptw->out_secure }; 375 AddressSpace *as = arm_addressspace(cs, attrs); 376 MemTxResult result = MEMTX_OK; 377 378 if (ptw->out_be) { 379 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 380 } else { 381 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 382 } 383 if (unlikely(result != MEMTX_OK)) { 384 fi->type = ARMFault_SyncExternalOnWalk; 385 fi->ea = arm_extabort_type(result); 386 return 0; 387 } 388 } 389 return data; 390 } 391 392 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val, 393 uint64_t new_val, S1Translate *ptw, 394 ARMMMUFaultInfo *fi) 395 { 396 uint64_t cur_val; 397 void *host = ptw->out_host; 398 399 if (unlikely(!host)) { 400 fi->type = ARMFault_UnsuppAtomicUpdate; 401 fi->s1ptw = true; 402 return 0; 403 } 404 405 /* 406 * Raising a stage2 Protection fault for an atomic update to a read-only 407 * page is delayed until it is certain that there is a change to make. 408 */ 409 if (unlikely(!ptw->out_rw)) { 410 int flags; 411 void *discard; 412 413 env->tlb_fi = fi; 414 flags = probe_access_flags(env, ptw->out_virt, 0, MMU_DATA_STORE, 415 arm_to_core_mmu_idx(ptw->in_ptw_idx), 416 true, &discard, 0); 417 env->tlb_fi = NULL; 418 419 if (unlikely(flags & TLB_INVALID_MASK)) { 420 assert(fi->type != ARMFault_None); 421 fi->s2addr = ptw->out_virt; 422 fi->stage2 = true; 423 fi->s1ptw = true; 424 fi->s1ns = !ptw->in_secure; 425 return 0; 426 } 427 428 /* In case CAS mismatches and we loop, remember writability. */ 429 ptw->out_rw = true; 430 } 431 432 #ifdef CONFIG_ATOMIC64 433 if (ptw->out_be) { 434 old_val = cpu_to_be64(old_val); 435 new_val = cpu_to_be64(new_val); 436 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 437 cur_val = be64_to_cpu(cur_val); 438 } else { 439 old_val = cpu_to_le64(old_val); 440 new_val = cpu_to_le64(new_val); 441 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 442 cur_val = le64_to_cpu(cur_val); 443 } 444 #else 445 /* 446 * We can't support the full 64-bit atomic cmpxchg on the host. 447 * Because this is only used for FEAT_HAFDBS, which is only for AA64, 448 * we know that TCG_OVERSIZED_GUEST is set, which means that we are 449 * running in round-robin mode and could only race with dma i/o. 450 */ 451 #ifndef TCG_OVERSIZED_GUEST 452 # error "Unexpected configuration" 453 #endif 454 bool locked = qemu_mutex_iothread_locked(); 455 if (!locked) { 456 qemu_mutex_lock_iothread(); 457 } 458 if (ptw->out_be) { 459 cur_val = ldq_be_p(host); 460 if (cur_val == old_val) { 461 stq_be_p(host, new_val); 462 } 463 } else { 464 cur_val = ldq_le_p(host); 465 if (cur_val == old_val) { 466 stq_le_p(host, new_val); 467 } 468 } 469 if (!locked) { 470 qemu_mutex_unlock_iothread(); 471 } 472 #endif 473 474 return cur_val; 475 } 476 477 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 478 uint32_t *table, uint32_t address) 479 { 480 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 481 uint64_t tcr = regime_tcr(env, mmu_idx); 482 int maskshift = extract32(tcr, 0, 3); 483 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 484 uint32_t base_mask; 485 486 if (address & mask) { 487 if (tcr & TTBCR_PD1) { 488 /* Translation table walk disabled for TTBR1 */ 489 return false; 490 } 491 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 492 } else { 493 if (tcr & TTBCR_PD0) { 494 /* Translation table walk disabled for TTBR0 */ 495 return false; 496 } 497 base_mask = ~((uint32_t)0x3fffu >> maskshift); 498 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 499 } 500 *table |= (address >> 18) & 0x3ffc; 501 return true; 502 } 503 504 /* 505 * Translate section/page access permissions to page R/W protection flags 506 * @env: CPUARMState 507 * @mmu_idx: MMU index indicating required translation regime 508 * @ap: The 3-bit access permissions (AP[2:0]) 509 * @domain_prot: The 2-bit domain access permissions 510 * @is_user: TRUE if accessing from PL0 511 */ 512 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx, 513 int ap, int domain_prot, bool is_user) 514 { 515 if (domain_prot == 3) { 516 return PAGE_READ | PAGE_WRITE; 517 } 518 519 switch (ap) { 520 case 0: 521 if (arm_feature(env, ARM_FEATURE_V7)) { 522 return 0; 523 } 524 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 525 case SCTLR_S: 526 return is_user ? 0 : PAGE_READ; 527 case SCTLR_R: 528 return PAGE_READ; 529 default: 530 return 0; 531 } 532 case 1: 533 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 534 case 2: 535 if (is_user) { 536 return PAGE_READ; 537 } else { 538 return PAGE_READ | PAGE_WRITE; 539 } 540 case 3: 541 return PAGE_READ | PAGE_WRITE; 542 case 4: /* Reserved. */ 543 return 0; 544 case 5: 545 return is_user ? 0 : PAGE_READ; 546 case 6: 547 return PAGE_READ; 548 case 7: 549 if (!arm_feature(env, ARM_FEATURE_V6K)) { 550 return 0; 551 } 552 return PAGE_READ; 553 default: 554 g_assert_not_reached(); 555 } 556 } 557 558 /* 559 * Translate section/page access permissions to page R/W protection flags 560 * @env: CPUARMState 561 * @mmu_idx: MMU index indicating required translation regime 562 * @ap: The 3-bit access permissions (AP[2:0]) 563 * @domain_prot: The 2-bit domain access permissions 564 */ 565 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 566 int ap, int domain_prot) 567 { 568 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 569 regime_is_user(env, mmu_idx)); 570 } 571 572 /* 573 * Translate section/page access permissions to page R/W protection flags. 574 * @ap: The 2-bit simple AP (AP[2:1]) 575 * @is_user: TRUE if accessing from PL0 576 */ 577 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 578 { 579 switch (ap) { 580 case 0: 581 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 582 case 1: 583 return PAGE_READ | PAGE_WRITE; 584 case 2: 585 return is_user ? 0 : PAGE_READ; 586 case 3: 587 return PAGE_READ; 588 default: 589 g_assert_not_reached(); 590 } 591 } 592 593 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 594 { 595 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 596 } 597 598 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, 599 uint32_t address, MMUAccessType access_type, 600 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 601 { 602 int level = 1; 603 uint32_t table; 604 uint32_t desc; 605 int type; 606 int ap; 607 int domain = 0; 608 int domain_prot; 609 hwaddr phys_addr; 610 uint32_t dacr; 611 612 /* Pagetable walk. */ 613 /* Lookup l1 descriptor. */ 614 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { 615 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 616 fi->type = ARMFault_Translation; 617 goto do_fault; 618 } 619 if (!S1_ptw_translate(env, ptw, table, fi)) { 620 goto do_fault; 621 } 622 desc = arm_ldl_ptw(env, ptw, fi); 623 if (fi->type != ARMFault_None) { 624 goto do_fault; 625 } 626 type = (desc & 3); 627 domain = (desc >> 5) & 0x0f; 628 if (regime_el(env, ptw->in_mmu_idx) == 1) { 629 dacr = env->cp15.dacr_ns; 630 } else { 631 dacr = env->cp15.dacr_s; 632 } 633 domain_prot = (dacr >> (domain * 2)) & 3; 634 if (type == 0) { 635 /* Section translation fault. */ 636 fi->type = ARMFault_Translation; 637 goto do_fault; 638 } 639 if (type != 2) { 640 level = 2; 641 } 642 if (domain_prot == 0 || domain_prot == 2) { 643 fi->type = ARMFault_Domain; 644 goto do_fault; 645 } 646 if (type == 2) { 647 /* 1Mb section. */ 648 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 649 ap = (desc >> 10) & 3; 650 result->f.lg_page_size = 20; /* 1MB */ 651 } else { 652 /* Lookup l2 entry. */ 653 if (type == 1) { 654 /* Coarse pagetable. */ 655 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 656 } else { 657 /* Fine pagetable. */ 658 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 659 } 660 if (!S1_ptw_translate(env, ptw, table, fi)) { 661 goto do_fault; 662 } 663 desc = arm_ldl_ptw(env, ptw, fi); 664 if (fi->type != ARMFault_None) { 665 goto do_fault; 666 } 667 switch (desc & 3) { 668 case 0: /* Page translation fault. */ 669 fi->type = ARMFault_Translation; 670 goto do_fault; 671 case 1: /* 64k page. */ 672 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 673 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 674 result->f.lg_page_size = 16; 675 break; 676 case 2: /* 4k page. */ 677 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 678 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 679 result->f.lg_page_size = 12; 680 break; 681 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 682 if (type == 1) { 683 /* ARMv6/XScale extended small page format */ 684 if (arm_feature(env, ARM_FEATURE_XSCALE) 685 || arm_feature(env, ARM_FEATURE_V6)) { 686 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 687 result->f.lg_page_size = 12; 688 } else { 689 /* 690 * UNPREDICTABLE in ARMv5; we choose to take a 691 * page translation fault. 692 */ 693 fi->type = ARMFault_Translation; 694 goto do_fault; 695 } 696 } else { 697 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 698 result->f.lg_page_size = 10; 699 } 700 ap = (desc >> 4) & 3; 701 break; 702 default: 703 /* Never happens, but compiler isn't smart enough to tell. */ 704 g_assert_not_reached(); 705 } 706 } 707 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); 708 result->f.prot |= result->f.prot ? PAGE_EXEC : 0; 709 if (!(result->f.prot & (1 << access_type))) { 710 /* Access permission fault. */ 711 fi->type = ARMFault_Permission; 712 goto do_fault; 713 } 714 result->f.phys_addr = phys_addr; 715 return false; 716 do_fault: 717 fi->domain = domain; 718 fi->level = level; 719 return true; 720 } 721 722 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, 723 uint32_t address, MMUAccessType access_type, 724 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 725 { 726 ARMCPU *cpu = env_archcpu(env); 727 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 728 int level = 1; 729 uint32_t table; 730 uint32_t desc; 731 uint32_t xn; 732 uint32_t pxn = 0; 733 int type; 734 int ap; 735 int domain = 0; 736 int domain_prot; 737 hwaddr phys_addr; 738 uint32_t dacr; 739 bool ns; 740 int user_prot; 741 742 /* Pagetable walk. */ 743 /* Lookup l1 descriptor. */ 744 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 745 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 746 fi->type = ARMFault_Translation; 747 goto do_fault; 748 } 749 if (!S1_ptw_translate(env, ptw, table, fi)) { 750 goto do_fault; 751 } 752 desc = arm_ldl_ptw(env, ptw, fi); 753 if (fi->type != ARMFault_None) { 754 goto do_fault; 755 } 756 type = (desc & 3); 757 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 758 /* Section translation fault, or attempt to use the encoding 759 * which is Reserved on implementations without PXN. 760 */ 761 fi->type = ARMFault_Translation; 762 goto do_fault; 763 } 764 if ((type == 1) || !(desc & (1 << 18))) { 765 /* Page or Section. */ 766 domain = (desc >> 5) & 0x0f; 767 } 768 if (regime_el(env, mmu_idx) == 1) { 769 dacr = env->cp15.dacr_ns; 770 } else { 771 dacr = env->cp15.dacr_s; 772 } 773 if (type == 1) { 774 level = 2; 775 } 776 domain_prot = (dacr >> (domain * 2)) & 3; 777 if (domain_prot == 0 || domain_prot == 2) { 778 /* Section or Page domain fault */ 779 fi->type = ARMFault_Domain; 780 goto do_fault; 781 } 782 if (type != 1) { 783 if (desc & (1 << 18)) { 784 /* Supersection. */ 785 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 786 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 787 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 788 result->f.lg_page_size = 24; /* 16MB */ 789 } else { 790 /* Section. */ 791 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 792 result->f.lg_page_size = 20; /* 1MB */ 793 } 794 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 795 xn = desc & (1 << 4); 796 pxn = desc & 1; 797 ns = extract32(desc, 19, 1); 798 } else { 799 if (cpu_isar_feature(aa32_pxn, cpu)) { 800 pxn = (desc >> 2) & 1; 801 } 802 ns = extract32(desc, 3, 1); 803 /* Lookup l2 entry. */ 804 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 805 if (!S1_ptw_translate(env, ptw, table, fi)) { 806 goto do_fault; 807 } 808 desc = arm_ldl_ptw(env, ptw, fi); 809 if (fi->type != ARMFault_None) { 810 goto do_fault; 811 } 812 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 813 switch (desc & 3) { 814 case 0: /* Page translation fault. */ 815 fi->type = ARMFault_Translation; 816 goto do_fault; 817 case 1: /* 64k page. */ 818 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 819 xn = desc & (1 << 15); 820 result->f.lg_page_size = 16; 821 break; 822 case 2: case 3: /* 4k page. */ 823 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 824 xn = desc & 1; 825 result->f.lg_page_size = 12; 826 break; 827 default: 828 /* Never happens, but compiler isn't smart enough to tell. */ 829 g_assert_not_reached(); 830 } 831 } 832 if (domain_prot == 3) { 833 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 834 } else { 835 if (pxn && !regime_is_user(env, mmu_idx)) { 836 xn = 1; 837 } 838 if (xn && access_type == MMU_INST_FETCH) { 839 fi->type = ARMFault_Permission; 840 goto do_fault; 841 } 842 843 if (arm_feature(env, ARM_FEATURE_V6K) && 844 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 845 /* The simplified model uses AP[0] as an access control bit. */ 846 if ((ap & 1) == 0) { 847 /* Access flag fault. */ 848 fi->type = ARMFault_AccessFlag; 849 goto do_fault; 850 } 851 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 852 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1); 853 } else { 854 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 855 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1); 856 } 857 if (result->f.prot && !xn) { 858 result->f.prot |= PAGE_EXEC; 859 } 860 if (!(result->f.prot & (1 << access_type))) { 861 /* Access permission fault. */ 862 fi->type = ARMFault_Permission; 863 goto do_fault; 864 } 865 if (regime_is_pan(env, mmu_idx) && 866 !regime_is_user(env, mmu_idx) && 867 user_prot && 868 access_type != MMU_INST_FETCH) { 869 /* Privileged Access Never fault */ 870 fi->type = ARMFault_Permission; 871 goto do_fault; 872 } 873 } 874 if (ns) { 875 /* The NS bit will (as required by the architecture) have no effect if 876 * the CPU doesn't support TZ or this is a non-secure translation 877 * regime, because the attribute will already be non-secure. 878 */ 879 result->f.attrs.secure = false; 880 } 881 result->f.phys_addr = phys_addr; 882 return false; 883 do_fault: 884 fi->domain = domain; 885 fi->level = level; 886 return true; 887 } 888 889 /* 890 * Translate S2 section/page access permissions to protection flags 891 * @env: CPUARMState 892 * @s2ap: The 2-bit stage2 access permissions (S2AP) 893 * @xn: XN (execute-never) bits 894 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 895 */ 896 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 897 { 898 int prot = 0; 899 900 if (s2ap & 1) { 901 prot |= PAGE_READ; 902 } 903 if (s2ap & 2) { 904 prot |= PAGE_WRITE; 905 } 906 907 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 908 switch (xn) { 909 case 0: 910 prot |= PAGE_EXEC; 911 break; 912 case 1: 913 if (s1_is_el0) { 914 prot |= PAGE_EXEC; 915 } 916 break; 917 case 2: 918 break; 919 case 3: 920 if (!s1_is_el0) { 921 prot |= PAGE_EXEC; 922 } 923 break; 924 default: 925 g_assert_not_reached(); 926 } 927 } else { 928 if (!extract32(xn, 1, 1)) { 929 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 930 prot |= PAGE_EXEC; 931 } 932 } 933 } 934 return prot; 935 } 936 937 /* 938 * Translate section/page access permissions to protection flags 939 * @env: CPUARMState 940 * @mmu_idx: MMU index indicating required translation regime 941 * @is_aa64: TRUE if AArch64 942 * @ap: The 2-bit simple AP (AP[2:1]) 943 * @ns: NS (non-secure) bit 944 * @xn: XN (execute-never) bit 945 * @pxn: PXN (privileged execute-never) bit 946 */ 947 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 948 int ap, int ns, int xn, int pxn) 949 { 950 ARMCPU *cpu = env_archcpu(env); 951 bool is_user = regime_is_user(env, mmu_idx); 952 int prot_rw, user_rw; 953 bool have_wxn; 954 int wxn = 0; 955 956 assert(!regime_is_stage2(mmu_idx)); 957 958 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 959 if (is_user) { 960 prot_rw = user_rw; 961 } else { 962 /* 963 * PAN controls can forbid data accesses but don't affect insn fetch. 964 * Plain PAN forbids data accesses if EL0 has data permissions; 965 * PAN3 forbids data accesses if EL0 has either data or exec perms. 966 * Note that for AArch64 the 'user can exec' case is exactly !xn. 967 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0 968 * do not affect EPAN. 969 */ 970 if (user_rw && regime_is_pan(env, mmu_idx)) { 971 prot_rw = 0; 972 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 && 973 regime_is_pan(env, mmu_idx) && 974 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) { 975 prot_rw = 0; 976 } else { 977 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 978 } 979 } 980 981 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 982 return prot_rw; 983 } 984 985 /* TODO have_wxn should be replaced with 986 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 987 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 988 * compatible processors have EL2, which is required for [U]WXN. 989 */ 990 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 991 992 if (have_wxn) { 993 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 994 } 995 996 if (is_aa64) { 997 if (regime_has_2_ranges(mmu_idx) && !is_user) { 998 xn = pxn || (user_rw & PAGE_WRITE); 999 } 1000 } else if (arm_feature(env, ARM_FEATURE_V7)) { 1001 switch (regime_el(env, mmu_idx)) { 1002 case 1: 1003 case 3: 1004 if (is_user) { 1005 xn = xn || !(user_rw & PAGE_READ); 1006 } else { 1007 int uwxn = 0; 1008 if (have_wxn) { 1009 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 1010 } 1011 xn = xn || !(prot_rw & PAGE_READ) || pxn || 1012 (uwxn && (user_rw & PAGE_WRITE)); 1013 } 1014 break; 1015 case 2: 1016 break; 1017 } 1018 } else { 1019 xn = wxn = 0; 1020 } 1021 1022 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 1023 return prot_rw; 1024 } 1025 return prot_rw | PAGE_EXEC; 1026 } 1027 1028 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 1029 ARMMMUIdx mmu_idx) 1030 { 1031 uint64_t tcr = regime_tcr(env, mmu_idx); 1032 uint32_t el = regime_el(env, mmu_idx); 1033 int select, tsz; 1034 bool epd, hpd; 1035 1036 assert(mmu_idx != ARMMMUIdx_Stage2_S); 1037 1038 if (mmu_idx == ARMMMUIdx_Stage2) { 1039 /* VTCR */ 1040 bool sext = extract32(tcr, 4, 1); 1041 bool sign = extract32(tcr, 3, 1); 1042 1043 /* 1044 * If the sign-extend bit is not the same as t0sz[3], the result 1045 * is unpredictable. Flag this as a guest error. 1046 */ 1047 if (sign != sext) { 1048 qemu_log_mask(LOG_GUEST_ERROR, 1049 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 1050 } 1051 tsz = sextract32(tcr, 0, 4) + 8; 1052 select = 0; 1053 hpd = false; 1054 epd = false; 1055 } else if (el == 2) { 1056 /* HTCR */ 1057 tsz = extract32(tcr, 0, 3); 1058 select = 0; 1059 hpd = extract64(tcr, 24, 1); 1060 epd = false; 1061 } else { 1062 int t0sz = extract32(tcr, 0, 3); 1063 int t1sz = extract32(tcr, 16, 3); 1064 1065 if (t1sz == 0) { 1066 select = va > (0xffffffffu >> t0sz); 1067 } else { 1068 /* Note that we will detect errors later. */ 1069 select = va >= ~(0xffffffffu >> t1sz); 1070 } 1071 if (!select) { 1072 tsz = t0sz; 1073 epd = extract32(tcr, 7, 1); 1074 hpd = extract64(tcr, 41, 1); 1075 } else { 1076 tsz = t1sz; 1077 epd = extract32(tcr, 23, 1); 1078 hpd = extract64(tcr, 42, 1); 1079 } 1080 /* For aarch32, hpd0 is not enabled without t2e as well. */ 1081 hpd &= extract32(tcr, 6, 1); 1082 } 1083 1084 return (ARMVAParameters) { 1085 .tsz = tsz, 1086 .select = select, 1087 .epd = epd, 1088 .hpd = hpd, 1089 }; 1090 } 1091 1092 /* 1093 * check_s2_mmu_setup 1094 * @cpu: ARMCPU 1095 * @is_aa64: True if the translation regime is in AArch64 state 1096 * @tcr: VTCR_EL2 or VSTCR_EL2 1097 * @ds: Effective value of TCR.DS. 1098 * @iasize: Bitsize of IPAs 1099 * @stride: Page-table stride (See the ARM ARM) 1100 * 1101 * Decode the starting level of the S2 lookup, returning INT_MIN if 1102 * the configuration is invalid. 1103 */ 1104 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr, 1105 bool ds, int iasize, int stride) 1106 { 1107 int sl0, sl2, startlevel, granulebits, levels; 1108 int s1_min_iasize, s1_max_iasize; 1109 1110 sl0 = extract32(tcr, 6, 2); 1111 if (is_aa64) { 1112 /* 1113 * AArch64.S2InvalidTxSZ: While we checked tsz_oob near the top of 1114 * get_phys_addr_lpae, that used aa64_va_parameters which apply 1115 * to aarch64. If Stage1 is aarch32, the min_txsz is larger. 1116 * See AArch64.S2MinTxSZ, where min_tsz is 24, translated to 1117 * inputsize is 64 - 24 = 40. 1118 */ 1119 if (iasize < 40 && !arm_el_is_aa64(&cpu->env, 1)) { 1120 goto fail; 1121 } 1122 1123 /* 1124 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size, 1125 * so interleave AArch64.S2StartLevel. 1126 */ 1127 switch (stride) { 1128 case 9: /* 4KB */ 1129 /* SL2 is RES0 unless DS=1 & 4KB granule. */ 1130 sl2 = extract64(tcr, 33, 1); 1131 if (ds && sl2) { 1132 if (sl0 != 0) { 1133 goto fail; 1134 } 1135 startlevel = -1; 1136 } else { 1137 startlevel = 2 - sl0; 1138 switch (sl0) { 1139 case 2: 1140 if (arm_pamax(cpu) < 44) { 1141 goto fail; 1142 } 1143 break; 1144 case 3: 1145 if (!cpu_isar_feature(aa64_st, cpu)) { 1146 goto fail; 1147 } 1148 startlevel = 3; 1149 break; 1150 } 1151 } 1152 break; 1153 case 11: /* 16KB */ 1154 switch (sl0) { 1155 case 2: 1156 if (arm_pamax(cpu) < 42) { 1157 goto fail; 1158 } 1159 break; 1160 case 3: 1161 if (!ds) { 1162 goto fail; 1163 } 1164 break; 1165 } 1166 startlevel = 3 - sl0; 1167 break; 1168 case 13: /* 64KB */ 1169 switch (sl0) { 1170 case 2: 1171 if (arm_pamax(cpu) < 44) { 1172 goto fail; 1173 } 1174 break; 1175 case 3: 1176 goto fail; 1177 } 1178 startlevel = 3 - sl0; 1179 break; 1180 default: 1181 g_assert_not_reached(); 1182 } 1183 } else { 1184 /* 1185 * Things are simpler for AArch32 EL2, with only 4k pages. 1186 * There is no separate S2InvalidSL function, but AArch32.S2Walk 1187 * begins with walkparms.sl0 in {'1x'}. 1188 */ 1189 assert(stride == 9); 1190 if (sl0 >= 2) { 1191 goto fail; 1192 } 1193 startlevel = 2 - sl0; 1194 } 1195 1196 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */ 1197 levels = 3 - startlevel; 1198 granulebits = stride + 3; 1199 1200 s1_min_iasize = levels * stride + granulebits + 1; 1201 s1_max_iasize = s1_min_iasize + (stride - 1) + 4; 1202 1203 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) { 1204 return startlevel; 1205 } 1206 1207 fail: 1208 return INT_MIN; 1209 } 1210 1211 /** 1212 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 1213 * 1214 * Returns false if the translation was successful. Otherwise, phys_ptr, 1215 * attrs, prot and page_size may not be filled in, and the populated fsr 1216 * value provides information on why the translation aborted, in the format 1217 * of a long-format DFSR/IFSR fault register, with the following caveat: 1218 * the WnR bit is never set (the caller must do this). 1219 * 1220 * @env: CPUARMState 1221 * @ptw: Current and next stage parameters for the walk. 1222 * @address: virtual address to get physical address for 1223 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 1224 * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2 1225 * (so this is a stage 2 page table walk), 1226 * must be true if this is stage 2 of a stage 1+2 1227 * walk for an EL0 access. If @mmu_idx is anything else, 1228 * @s1_is_el0 is ignored. 1229 * @result: set on translation success, 1230 * @fi: set to fault info if the translation fails 1231 */ 1232 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 1233 uint64_t address, 1234 MMUAccessType access_type, bool s1_is_el0, 1235 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1236 { 1237 ARMCPU *cpu = env_archcpu(env); 1238 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1239 bool is_secure = ptw->in_secure; 1240 int32_t level; 1241 ARMVAParameters param; 1242 uint64_t ttbr; 1243 hwaddr descaddr, indexmask, indexmask_grainsize; 1244 uint32_t tableattrs; 1245 target_ulong page_size; 1246 uint64_t attrs; 1247 int32_t stride; 1248 int addrsize, inputsize, outputsize; 1249 uint64_t tcr = regime_tcr(env, mmu_idx); 1250 int ap, ns, xn, pxn; 1251 uint32_t el = regime_el(env, mmu_idx); 1252 uint64_t descaddrmask; 1253 bool aarch64 = arm_el_is_aa64(env, el); 1254 uint64_t descriptor, new_descriptor; 1255 bool nstable; 1256 1257 /* TODO: This code does not support shareability levels. */ 1258 if (aarch64) { 1259 int ps; 1260 1261 param = aa64_va_parameters(env, address, mmu_idx, 1262 access_type != MMU_INST_FETCH); 1263 level = 0; 1264 1265 /* 1266 * If TxSZ is programmed to a value larger than the maximum, 1267 * or smaller than the effective minimum, it is IMPLEMENTATION 1268 * DEFINED whether we behave as if the field were programmed 1269 * within bounds, or if a level 0 Translation fault is generated. 1270 * 1271 * With FEAT_LVA, fault on less than minimum becomes required, 1272 * so our choice is to always raise the fault. 1273 */ 1274 if (param.tsz_oob) { 1275 goto do_translation_fault; 1276 } 1277 1278 addrsize = 64 - 8 * param.tbi; 1279 inputsize = 64 - param.tsz; 1280 1281 /* 1282 * Bound PS by PARANGE to find the effective output address size. 1283 * ID_AA64MMFR0 is a read-only register so values outside of the 1284 * supported mappings can be considered an implementation error. 1285 */ 1286 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1287 ps = MIN(ps, param.ps); 1288 assert(ps < ARRAY_SIZE(pamax_map)); 1289 outputsize = pamax_map[ps]; 1290 1291 /* 1292 * With LPA2, the effective output address (OA) size is at most 48 bits 1293 * unless TCR.DS == 1 1294 */ 1295 if (!param.ds && param.gran != Gran64K) { 1296 outputsize = MIN(outputsize, 48); 1297 } 1298 } else { 1299 param = aa32_va_parameters(env, address, mmu_idx); 1300 level = 1; 1301 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1302 inputsize = addrsize - param.tsz; 1303 outputsize = 40; 1304 } 1305 1306 /* 1307 * We determined the region when collecting the parameters, but we 1308 * have not yet validated that the address is valid for the region. 1309 * Extract the top bits and verify that they all match select. 1310 * 1311 * For aa32, if inputsize == addrsize, then we have selected the 1312 * region by exclusion in aa32_va_parameters and there is no more 1313 * validation to do here. 1314 */ 1315 if (inputsize < addrsize) { 1316 target_ulong top_bits = sextract64(address, inputsize, 1317 addrsize - inputsize); 1318 if (-top_bits != param.select) { 1319 /* The gap between the two regions is a Translation fault */ 1320 goto do_translation_fault; 1321 } 1322 } 1323 1324 stride = arm_granule_bits(param.gran) - 3; 1325 1326 /* 1327 * Note that QEMU ignores shareability and cacheability attributes, 1328 * so we don't need to do anything with the SH, ORGN, IRGN fields 1329 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1330 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1331 * implement any ASID-like capability so we can ignore it (instead 1332 * we will always flush the TLB any time the ASID is changed). 1333 */ 1334 ttbr = regime_ttbr(env, mmu_idx, param.select); 1335 1336 /* 1337 * Here we should have set up all the parameters for the translation: 1338 * inputsize, ttbr, epd, stride, tbi 1339 */ 1340 1341 if (param.epd) { 1342 /* 1343 * Translation table walk disabled => Translation fault on TLB miss 1344 * Note: This is always 0 on 64-bit EL2 and EL3. 1345 */ 1346 goto do_translation_fault; 1347 } 1348 1349 if (!regime_is_stage2(mmu_idx)) { 1350 /* 1351 * The starting level depends on the virtual address size (which can 1352 * be up to 48 bits) and the translation granule size. It indicates 1353 * the number of strides (stride bits at a time) needed to 1354 * consume the bits of the input address. In the pseudocode this is: 1355 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1356 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1357 * our 'stride + 3' and 'stride' is our 'stride'. 1358 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1359 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1360 * = 4 - (inputsize - 4) / stride; 1361 */ 1362 level = 4 - (inputsize - 4) / stride; 1363 } else { 1364 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds, 1365 inputsize, stride); 1366 if (startlevel == INT_MIN) { 1367 level = 0; 1368 goto do_translation_fault; 1369 } 1370 level = startlevel; 1371 } 1372 1373 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1374 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1375 1376 /* Now we can extract the actual base address from the TTBR */ 1377 descaddr = extract64(ttbr, 0, 48); 1378 1379 /* 1380 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1381 * 1382 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1383 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1384 * but we've just cleared the bits above 47, so simplify the test. 1385 */ 1386 if (outputsize > 48) { 1387 descaddr |= extract64(ttbr, 2, 4) << 48; 1388 } else if (descaddr >> outputsize) { 1389 level = 0; 1390 fi->type = ARMFault_AddressSize; 1391 goto do_fault; 1392 } 1393 1394 /* 1395 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1396 * and also to mask out CnP (bit 0) which could validly be non-zero. 1397 */ 1398 descaddr &= ~indexmask; 1399 1400 /* 1401 * For AArch32, the address field in the descriptor goes up to bit 39 1402 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1403 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1404 * bits as part of the address, which will be checked via outputsize. 1405 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1406 * the highest bits of a 52-bit output are placed elsewhere. 1407 */ 1408 if (param.ds) { 1409 descaddrmask = MAKE_64BIT_MASK(0, 50); 1410 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1411 descaddrmask = MAKE_64BIT_MASK(0, 48); 1412 } else { 1413 descaddrmask = MAKE_64BIT_MASK(0, 40); 1414 } 1415 descaddrmask &= ~indexmask_grainsize; 1416 1417 /* 1418 * Secure accesses start with the page table in secure memory and 1419 * can be downgraded to non-secure at any step. Non-secure accesses 1420 * remain non-secure. We implement this by just ORing in the NSTable/NS 1421 * bits at each step. 1422 */ 1423 tableattrs = is_secure ? 0 : (1 << 4); 1424 1425 next_level: 1426 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1427 descaddr &= ~7ULL; 1428 nstable = extract32(tableattrs, 4, 1); 1429 if (nstable) { 1430 /* 1431 * Stage2_S -> Stage2 or Phys_S -> Phys_NS 1432 * Assert that the non-secure idx are even, and relative order. 1433 */ 1434 QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0); 1435 QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0); 1436 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S); 1437 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S); 1438 ptw->in_ptw_idx &= ~1; 1439 ptw->in_secure = false; 1440 } 1441 if (!S1_ptw_translate(env, ptw, descaddr, fi)) { 1442 goto do_fault; 1443 } 1444 descriptor = arm_ldq_ptw(env, ptw, fi); 1445 if (fi->type != ARMFault_None) { 1446 goto do_fault; 1447 } 1448 new_descriptor = descriptor; 1449 1450 restart_atomic_update: 1451 if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) { 1452 /* Invalid, or the Reserved level 3 encoding */ 1453 goto do_translation_fault; 1454 } 1455 1456 descaddr = descriptor & descaddrmask; 1457 1458 /* 1459 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1460 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1461 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1462 * raise AddressSizeFault. 1463 */ 1464 if (outputsize > 48) { 1465 if (param.ds) { 1466 descaddr |= extract64(descriptor, 8, 2) << 50; 1467 } else { 1468 descaddr |= extract64(descriptor, 12, 4) << 48; 1469 } 1470 } else if (descaddr >> outputsize) { 1471 fi->type = ARMFault_AddressSize; 1472 goto do_fault; 1473 } 1474 1475 if ((descriptor & 2) && (level < 3)) { 1476 /* 1477 * Table entry. The top five bits are attributes which may 1478 * propagate down through lower levels of the table (and 1479 * which are all arranged so that 0 means "no effect", so 1480 * we can gather them up by ORing in the bits at each level). 1481 */ 1482 tableattrs |= extract64(descriptor, 59, 5); 1483 level++; 1484 indexmask = indexmask_grainsize; 1485 goto next_level; 1486 } 1487 1488 /* 1489 * Block entry at level 1 or 2, or page entry at level 3. 1490 * These are basically the same thing, although the number 1491 * of bits we pull in from the vaddr varies. Note that although 1492 * descaddrmask masks enough of the low bits of the descriptor 1493 * to give a correct page or table address, the address field 1494 * in a block descriptor is smaller; so we need to explicitly 1495 * clear the lower bits here before ORing in the low vaddr bits. 1496 * 1497 * Afterward, descaddr is the final physical address. 1498 */ 1499 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1500 descaddr &= ~(hwaddr)(page_size - 1); 1501 descaddr |= (address & (page_size - 1)); 1502 1503 if (likely(!ptw->in_debug)) { 1504 /* 1505 * Access flag. 1506 * If HA is enabled, prepare to update the descriptor below. 1507 * Otherwise, pass the access fault on to software. 1508 */ 1509 if (!(descriptor & (1 << 10))) { 1510 if (param.ha) { 1511 new_descriptor |= 1 << 10; /* AF */ 1512 } else { 1513 fi->type = ARMFault_AccessFlag; 1514 goto do_fault; 1515 } 1516 } 1517 1518 /* 1519 * Dirty Bit. 1520 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP 1521 * bit for writeback. The actual write protection test may still be 1522 * overridden by tableattrs, to be merged below. 1523 */ 1524 if (param.hd 1525 && extract64(descriptor, 51, 1) /* DBM */ 1526 && access_type == MMU_DATA_STORE) { 1527 if (regime_is_stage2(mmu_idx)) { 1528 new_descriptor |= 1ull << 7; /* set S2AP[1] */ 1529 } else { 1530 new_descriptor &= ~(1ull << 7); /* clear AP[2] */ 1531 } 1532 } 1533 } 1534 1535 /* 1536 * Extract attributes from the (modified) descriptor, and apply 1537 * table descriptors. Stage 2 table descriptors do not include 1538 * any attribute fields. HPD disables all the table attributes 1539 * except NSTable. 1540 */ 1541 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14)); 1542 if (!regime_is_stage2(mmu_idx)) { 1543 attrs |= nstable << 5; /* NS */ 1544 if (!param.hpd) { 1545 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */ 1546 /* 1547 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 1548 * means "force PL1 access only", which means forcing AP[1] to 0. 1549 */ 1550 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */ 1551 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */ 1552 } 1553 } 1554 1555 ap = extract32(attrs, 6, 2); 1556 if (regime_is_stage2(mmu_idx)) { 1557 ns = mmu_idx == ARMMMUIdx_Stage2; 1558 xn = extract64(attrs, 53, 2); 1559 result->f.prot = get_S2prot(env, ap, xn, s1_is_el0); 1560 } else { 1561 ns = extract32(attrs, 5, 1); 1562 xn = extract64(attrs, 54, 1); 1563 pxn = extract64(attrs, 53, 1); 1564 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 1565 } 1566 1567 if (!(result->f.prot & (1 << access_type))) { 1568 fi->type = ARMFault_Permission; 1569 goto do_fault; 1570 } 1571 1572 /* If FEAT_HAFDBS has made changes, update the PTE. */ 1573 if (new_descriptor != descriptor) { 1574 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi); 1575 if (fi->type != ARMFault_None) { 1576 goto do_fault; 1577 } 1578 /* 1579 * I_YZSVV says that if the in-memory descriptor has changed, 1580 * then we must use the information in that new value 1581 * (which might include a different output address, different 1582 * attributes, or generate a fault). 1583 * Restart the handling of the descriptor value from scratch. 1584 */ 1585 if (new_descriptor != descriptor) { 1586 descriptor = new_descriptor; 1587 goto restart_atomic_update; 1588 } 1589 } 1590 1591 if (ns) { 1592 /* 1593 * The NS bit will (as required by the architecture) have no effect if 1594 * the CPU doesn't support TZ or this is a non-secure translation 1595 * regime, because the attribute will already be non-secure. 1596 */ 1597 result->f.attrs.secure = false; 1598 } 1599 1600 if (regime_is_stage2(mmu_idx)) { 1601 result->cacheattrs.is_s2_format = true; 1602 result->cacheattrs.attrs = extract32(attrs, 2, 4); 1603 } else { 1604 /* Index into MAIR registers for cache attributes */ 1605 uint8_t attrindx = extract32(attrs, 2, 3); 1606 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 1607 assert(attrindx <= 7); 1608 result->cacheattrs.is_s2_format = false; 1609 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 1610 1611 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ 1612 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { 1613 result->f.guarded = extract64(attrs, 50, 1); /* GP */ 1614 } 1615 } 1616 1617 /* 1618 * For FEAT_LPA2 and effective DS, the SH field in the attributes 1619 * was re-purposed for output address bits. The SH attribute in 1620 * that case comes from TCR_ELx, which we extracted earlier. 1621 */ 1622 if (param.ds) { 1623 result->cacheattrs.shareability = param.sh; 1624 } else { 1625 result->cacheattrs.shareability = extract32(attrs, 8, 2); 1626 } 1627 1628 result->f.phys_addr = descaddr; 1629 result->f.lg_page_size = ctz64(page_size); 1630 return false; 1631 1632 do_translation_fault: 1633 fi->type = ARMFault_Translation; 1634 do_fault: 1635 fi->level = level; 1636 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 1637 fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx); 1638 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 1639 return true; 1640 } 1641 1642 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 1643 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1644 bool is_secure, GetPhysAddrResult *result, 1645 ARMMMUFaultInfo *fi) 1646 { 1647 int n; 1648 uint32_t mask; 1649 uint32_t base; 1650 bool is_user = regime_is_user(env, mmu_idx); 1651 1652 if (regime_translation_disabled(env, mmu_idx, is_secure)) { 1653 /* MPU disabled. */ 1654 result->f.phys_addr = address; 1655 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1656 return false; 1657 } 1658 1659 result->f.phys_addr = address; 1660 for (n = 7; n >= 0; n--) { 1661 base = env->cp15.c6_region[n]; 1662 if ((base & 1) == 0) { 1663 continue; 1664 } 1665 mask = 1 << ((base >> 1) & 0x1f); 1666 /* Keep this shift separate from the above to avoid an 1667 (undefined) << 32. */ 1668 mask = (mask << 1) - 1; 1669 if (((base ^ address) & ~mask) == 0) { 1670 break; 1671 } 1672 } 1673 if (n < 0) { 1674 fi->type = ARMFault_Background; 1675 return true; 1676 } 1677 1678 if (access_type == MMU_INST_FETCH) { 1679 mask = env->cp15.pmsav5_insn_ap; 1680 } else { 1681 mask = env->cp15.pmsav5_data_ap; 1682 } 1683 mask = (mask >> (n * 4)) & 0xf; 1684 switch (mask) { 1685 case 0: 1686 fi->type = ARMFault_Permission; 1687 fi->level = 1; 1688 return true; 1689 case 1: 1690 if (is_user) { 1691 fi->type = ARMFault_Permission; 1692 fi->level = 1; 1693 return true; 1694 } 1695 result->f.prot = PAGE_READ | PAGE_WRITE; 1696 break; 1697 case 2: 1698 result->f.prot = PAGE_READ; 1699 if (!is_user) { 1700 result->f.prot |= PAGE_WRITE; 1701 } 1702 break; 1703 case 3: 1704 result->f.prot = PAGE_READ | PAGE_WRITE; 1705 break; 1706 case 5: 1707 if (is_user) { 1708 fi->type = ARMFault_Permission; 1709 fi->level = 1; 1710 return true; 1711 } 1712 result->f.prot = PAGE_READ; 1713 break; 1714 case 6: 1715 result->f.prot = PAGE_READ; 1716 break; 1717 default: 1718 /* Bad permission. */ 1719 fi->type = ARMFault_Permission; 1720 fi->level = 1; 1721 return true; 1722 } 1723 result->f.prot |= PAGE_EXEC; 1724 return false; 1725 } 1726 1727 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 1728 int32_t address, uint8_t *prot) 1729 { 1730 if (!arm_feature(env, ARM_FEATURE_M)) { 1731 *prot = PAGE_READ | PAGE_WRITE; 1732 switch (address) { 1733 case 0xF0000000 ... 0xFFFFFFFF: 1734 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 1735 /* hivecs execing is ok */ 1736 *prot |= PAGE_EXEC; 1737 } 1738 break; 1739 case 0x00000000 ... 0x7FFFFFFF: 1740 *prot |= PAGE_EXEC; 1741 break; 1742 } 1743 } else { 1744 /* Default system address map for M profile cores. 1745 * The architecture specifies which regions are execute-never; 1746 * at the MPU level no other checks are defined. 1747 */ 1748 switch (address) { 1749 case 0x00000000 ... 0x1fffffff: /* ROM */ 1750 case 0x20000000 ... 0x3fffffff: /* SRAM */ 1751 case 0x60000000 ... 0x7fffffff: /* RAM */ 1752 case 0x80000000 ... 0x9fffffff: /* RAM */ 1753 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1754 break; 1755 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 1756 case 0xa0000000 ... 0xbfffffff: /* Device */ 1757 case 0xc0000000 ... 0xdfffffff: /* Device */ 1758 case 0xe0000000 ... 0xffffffff: /* System */ 1759 *prot = PAGE_READ | PAGE_WRITE; 1760 break; 1761 default: 1762 g_assert_not_reached(); 1763 } 1764 } 1765 } 1766 1767 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 1768 { 1769 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 1770 return arm_feature(env, ARM_FEATURE_M) && 1771 extract32(address, 20, 12) == 0xe00; 1772 } 1773 1774 static bool m_is_system_region(CPUARMState *env, uint32_t address) 1775 { 1776 /* 1777 * True if address is in the M profile system region 1778 * 0xe0000000 - 0xffffffff 1779 */ 1780 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 1781 } 1782 1783 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 1784 bool is_secure, bool is_user) 1785 { 1786 /* 1787 * Return true if we should use the default memory map as a 1788 * "background" region if there are no hits against any MPU regions. 1789 */ 1790 CPUARMState *env = &cpu->env; 1791 1792 if (is_user) { 1793 return false; 1794 } 1795 1796 if (arm_feature(env, ARM_FEATURE_M)) { 1797 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 1798 } 1799 1800 if (mmu_idx == ARMMMUIdx_Stage2) { 1801 return false; 1802 } 1803 1804 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 1805 } 1806 1807 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 1808 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1809 bool secure, GetPhysAddrResult *result, 1810 ARMMMUFaultInfo *fi) 1811 { 1812 ARMCPU *cpu = env_archcpu(env); 1813 int n; 1814 bool is_user = regime_is_user(env, mmu_idx); 1815 1816 result->f.phys_addr = address; 1817 result->f.lg_page_size = TARGET_PAGE_BITS; 1818 result->f.prot = 0; 1819 1820 if (regime_translation_disabled(env, mmu_idx, secure) || 1821 m_is_ppb_region(env, address)) { 1822 /* 1823 * MPU disabled or M profile PPB access: use default memory map. 1824 * The other case which uses the default memory map in the 1825 * v7M ARM ARM pseudocode is exception vector reads from the vector 1826 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 1827 * which always does a direct read using address_space_ldl(), rather 1828 * than going via this function, so we don't need to check that here. 1829 */ 1830 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 1831 } else { /* MPU enabled */ 1832 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 1833 /* region search */ 1834 uint32_t base = env->pmsav7.drbar[n]; 1835 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 1836 uint32_t rmask; 1837 bool srdis = false; 1838 1839 if (!(env->pmsav7.drsr[n] & 0x1)) { 1840 continue; 1841 } 1842 1843 if (!rsize) { 1844 qemu_log_mask(LOG_GUEST_ERROR, 1845 "DRSR[%d]: Rsize field cannot be 0\n", n); 1846 continue; 1847 } 1848 rsize++; 1849 rmask = (1ull << rsize) - 1; 1850 1851 if (base & rmask) { 1852 qemu_log_mask(LOG_GUEST_ERROR, 1853 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 1854 "to DRSR region size, mask = 0x%" PRIx32 "\n", 1855 n, base, rmask); 1856 continue; 1857 } 1858 1859 if (address < base || address > base + rmask) { 1860 /* 1861 * Address not in this region. We must check whether the 1862 * region covers addresses in the same page as our address. 1863 * In that case we must not report a size that covers the 1864 * whole page for a subsequent hit against a different MPU 1865 * region or the background region, because it would result in 1866 * incorrect TLB hits for subsequent accesses to addresses that 1867 * are in this MPU region. 1868 */ 1869 if (ranges_overlap(base, rmask, 1870 address & TARGET_PAGE_MASK, 1871 TARGET_PAGE_SIZE)) { 1872 result->f.lg_page_size = 0; 1873 } 1874 continue; 1875 } 1876 1877 /* Region matched */ 1878 1879 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 1880 int i, snd; 1881 uint32_t srdis_mask; 1882 1883 rsize -= 3; /* sub region size (power of 2) */ 1884 snd = ((address - base) >> rsize) & 0x7; 1885 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 1886 1887 srdis_mask = srdis ? 0x3 : 0x0; 1888 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 1889 /* 1890 * This will check in groups of 2, 4 and then 8, whether 1891 * the subregion bits are consistent. rsize is incremented 1892 * back up to give the region size, considering consistent 1893 * adjacent subregions as one region. Stop testing if rsize 1894 * is already big enough for an entire QEMU page. 1895 */ 1896 int snd_rounded = snd & ~(i - 1); 1897 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 1898 snd_rounded + 8, i); 1899 if (srdis_mask ^ srdis_multi) { 1900 break; 1901 } 1902 srdis_mask = (srdis_mask << i) | srdis_mask; 1903 rsize++; 1904 } 1905 } 1906 if (srdis) { 1907 continue; 1908 } 1909 if (rsize < TARGET_PAGE_BITS) { 1910 result->f.lg_page_size = rsize; 1911 } 1912 break; 1913 } 1914 1915 if (n == -1) { /* no hits */ 1916 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 1917 /* background fault */ 1918 fi->type = ARMFault_Background; 1919 return true; 1920 } 1921 get_phys_addr_pmsav7_default(env, mmu_idx, address, 1922 &result->f.prot); 1923 } else { /* a MPU hit! */ 1924 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 1925 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 1926 1927 if (m_is_system_region(env, address)) { 1928 /* System space is always execute never */ 1929 xn = 1; 1930 } 1931 1932 if (is_user) { /* User mode AP bit decoding */ 1933 switch (ap) { 1934 case 0: 1935 case 1: 1936 case 5: 1937 break; /* no access */ 1938 case 3: 1939 result->f.prot |= PAGE_WRITE; 1940 /* fall through */ 1941 case 2: 1942 case 6: 1943 result->f.prot |= PAGE_READ | PAGE_EXEC; 1944 break; 1945 case 7: 1946 /* for v7M, same as 6; for R profile a reserved value */ 1947 if (arm_feature(env, ARM_FEATURE_M)) { 1948 result->f.prot |= PAGE_READ | PAGE_EXEC; 1949 break; 1950 } 1951 /* fall through */ 1952 default: 1953 qemu_log_mask(LOG_GUEST_ERROR, 1954 "DRACR[%d]: Bad value for AP bits: 0x%" 1955 PRIx32 "\n", n, ap); 1956 } 1957 } else { /* Priv. mode AP bits decoding */ 1958 switch (ap) { 1959 case 0: 1960 break; /* no access */ 1961 case 1: 1962 case 2: 1963 case 3: 1964 result->f.prot |= PAGE_WRITE; 1965 /* fall through */ 1966 case 5: 1967 case 6: 1968 result->f.prot |= PAGE_READ | PAGE_EXEC; 1969 break; 1970 case 7: 1971 /* for v7M, same as 6; for R profile a reserved value */ 1972 if (arm_feature(env, ARM_FEATURE_M)) { 1973 result->f.prot |= PAGE_READ | PAGE_EXEC; 1974 break; 1975 } 1976 /* fall through */ 1977 default: 1978 qemu_log_mask(LOG_GUEST_ERROR, 1979 "DRACR[%d]: Bad value for AP bits: 0x%" 1980 PRIx32 "\n", n, ap); 1981 } 1982 } 1983 1984 /* execute never */ 1985 if (xn) { 1986 result->f.prot &= ~PAGE_EXEC; 1987 } 1988 } 1989 } 1990 1991 fi->type = ARMFault_Permission; 1992 fi->level = 1; 1993 return !(result->f.prot & (1 << access_type)); 1994 } 1995 1996 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx, 1997 uint32_t secure) 1998 { 1999 if (regime_el(env, mmu_idx) == 2) { 2000 return env->pmsav8.hprbar; 2001 } else { 2002 return env->pmsav8.rbar[secure]; 2003 } 2004 } 2005 2006 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx, 2007 uint32_t secure) 2008 { 2009 if (regime_el(env, mmu_idx) == 2) { 2010 return env->pmsav8.hprlar; 2011 } else { 2012 return env->pmsav8.rlar[secure]; 2013 } 2014 } 2015 2016 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 2017 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2018 bool secure, GetPhysAddrResult *result, 2019 ARMMMUFaultInfo *fi, uint32_t *mregion) 2020 { 2021 /* 2022 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 2023 * that a full phys-to-virt translation does). 2024 * mregion is (if not NULL) set to the region number which matched, 2025 * or -1 if no region number is returned (MPU off, address did not 2026 * hit a region, address hit in multiple regions). 2027 * If the region hit doesn't cover the entire TARGET_PAGE the address 2028 * is within, then we set the result page_size to 1 to force the 2029 * memory system to use a subpage. 2030 */ 2031 ARMCPU *cpu = env_archcpu(env); 2032 bool is_user = regime_is_user(env, mmu_idx); 2033 int n; 2034 int matchregion = -1; 2035 bool hit = false; 2036 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2037 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2038 int region_counter; 2039 2040 if (regime_el(env, mmu_idx) == 2) { 2041 region_counter = cpu->pmsav8r_hdregion; 2042 } else { 2043 region_counter = cpu->pmsav7_dregion; 2044 } 2045 2046 result->f.lg_page_size = TARGET_PAGE_BITS; 2047 result->f.phys_addr = address; 2048 result->f.prot = 0; 2049 if (mregion) { 2050 *mregion = -1; 2051 } 2052 2053 if (mmu_idx == ARMMMUIdx_Stage2) { 2054 fi->stage2 = true; 2055 } 2056 2057 /* 2058 * Unlike the ARM ARM pseudocode, we don't need to check whether this 2059 * was an exception vector read from the vector table (which is always 2060 * done using the default system address map), because those accesses 2061 * are done in arm_v7m_load_vector(), which always does a direct 2062 * read using address_space_ldl(), rather than going via this function. 2063 */ 2064 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */ 2065 hit = true; 2066 } else if (m_is_ppb_region(env, address)) { 2067 hit = true; 2068 } else { 2069 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2070 hit = true; 2071 } 2072 2073 uint32_t bitmask; 2074 if (arm_feature(env, ARM_FEATURE_M)) { 2075 bitmask = 0x1f; 2076 } else { 2077 bitmask = 0x3f; 2078 fi->level = 0; 2079 } 2080 2081 for (n = region_counter - 1; n >= 0; n--) { 2082 /* region search */ 2083 /* 2084 * Note that the base address is bits [31:x] from the register 2085 * with bits [x-1:0] all zeroes, but the limit address is bits 2086 * [31:x] from the register with bits [x:0] all ones. Where x is 2087 * 5 for Cortex-M and 6 for Cortex-R 2088 */ 2089 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask; 2090 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask; 2091 2092 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) { 2093 /* Region disabled */ 2094 continue; 2095 } 2096 2097 if (address < base || address > limit) { 2098 /* 2099 * Address not in this region. We must check whether the 2100 * region covers addresses in the same page as our address. 2101 * In that case we must not report a size that covers the 2102 * whole page for a subsequent hit against a different MPU 2103 * region or the background region, because it would result in 2104 * incorrect TLB hits for subsequent accesses to addresses that 2105 * are in this MPU region. 2106 */ 2107 if (limit >= base && 2108 ranges_overlap(base, limit - base + 1, 2109 addr_page_base, 2110 TARGET_PAGE_SIZE)) { 2111 result->f.lg_page_size = 0; 2112 } 2113 continue; 2114 } 2115 2116 if (base > addr_page_base || limit < addr_page_limit) { 2117 result->f.lg_page_size = 0; 2118 } 2119 2120 if (matchregion != -1) { 2121 /* 2122 * Multiple regions match -- always a failure (unlike 2123 * PMSAv7 where highest-numbered-region wins) 2124 */ 2125 fi->type = ARMFault_Permission; 2126 if (arm_feature(env, ARM_FEATURE_M)) { 2127 fi->level = 1; 2128 } 2129 return true; 2130 } 2131 2132 matchregion = n; 2133 hit = true; 2134 } 2135 } 2136 2137 if (!hit) { 2138 if (arm_feature(env, ARM_FEATURE_M)) { 2139 fi->type = ARMFault_Background; 2140 } else { 2141 fi->type = ARMFault_Permission; 2142 } 2143 return true; 2144 } 2145 2146 if (matchregion == -1) { 2147 /* hit using the background region */ 2148 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2149 } else { 2150 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion]; 2151 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion]; 2152 uint32_t ap = extract32(matched_rbar, 1, 2); 2153 uint32_t xn = extract32(matched_rbar, 0, 1); 2154 bool pxn = false; 2155 2156 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 2157 pxn = extract32(matched_rlar, 4, 1); 2158 } 2159 2160 if (m_is_system_region(env, address)) { 2161 /* System space is always execute never */ 2162 xn = 1; 2163 } 2164 2165 if (regime_el(env, mmu_idx) == 2) { 2166 result->f.prot = simple_ap_to_rw_prot_is_user(ap, 2167 mmu_idx != ARMMMUIdx_E2); 2168 } else { 2169 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 2170 } 2171 2172 if (!arm_feature(env, ARM_FEATURE_M)) { 2173 uint8_t attrindx = extract32(matched_rlar, 1, 3); 2174 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2175 uint8_t sh = extract32(matched_rlar, 3, 2); 2176 2177 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN && 2178 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) { 2179 xn = 0x1; 2180 } 2181 2182 if ((regime_el(env, mmu_idx) == 1) && 2183 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) { 2184 pxn = 0x1; 2185 } 2186 2187 result->cacheattrs.is_s2_format = false; 2188 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2189 result->cacheattrs.shareability = sh; 2190 } 2191 2192 if (result->f.prot && !xn && !(pxn && !is_user)) { 2193 result->f.prot |= PAGE_EXEC; 2194 } 2195 2196 if (mregion) { 2197 *mregion = matchregion; 2198 } 2199 } 2200 2201 fi->type = ARMFault_Permission; 2202 if (arm_feature(env, ARM_FEATURE_M)) { 2203 fi->level = 1; 2204 } 2205 return !(result->f.prot & (1 << access_type)); 2206 } 2207 2208 static bool v8m_is_sau_exempt(CPUARMState *env, 2209 uint32_t address, MMUAccessType access_type) 2210 { 2211 /* 2212 * The architecture specifies that certain address ranges are 2213 * exempt from v8M SAU/IDAU checks. 2214 */ 2215 return 2216 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 2217 (address >= 0xe0000000 && address <= 0xe0002fff) || 2218 (address >= 0xe000e000 && address <= 0xe000efff) || 2219 (address >= 0xe002e000 && address <= 0xe002efff) || 2220 (address >= 0xe0040000 && address <= 0xe0041fff) || 2221 (address >= 0xe00ff000 && address <= 0xe00fffff); 2222 } 2223 2224 void v8m_security_lookup(CPUARMState *env, uint32_t address, 2225 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2226 bool is_secure, V8M_SAttributes *sattrs) 2227 { 2228 /* 2229 * Look up the security attributes for this address. Compare the 2230 * pseudocode SecurityCheck() function. 2231 * We assume the caller has zero-initialized *sattrs. 2232 */ 2233 ARMCPU *cpu = env_archcpu(env); 2234 int r; 2235 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 2236 int idau_region = IREGION_NOTVALID; 2237 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2238 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2239 2240 if (cpu->idau) { 2241 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 2242 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 2243 2244 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 2245 &idau_nsc); 2246 } 2247 2248 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 2249 /* 0xf0000000..0xffffffff is always S for insn fetches */ 2250 return; 2251 } 2252 2253 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 2254 sattrs->ns = !is_secure; 2255 return; 2256 } 2257 2258 if (idau_region != IREGION_NOTVALID) { 2259 sattrs->irvalid = true; 2260 sattrs->iregion = idau_region; 2261 } 2262 2263 switch (env->sau.ctrl & 3) { 2264 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 2265 break; 2266 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 2267 sattrs->ns = true; 2268 break; 2269 default: /* SAU.ENABLE == 1 */ 2270 for (r = 0; r < cpu->sau_sregion; r++) { 2271 if (env->sau.rlar[r] & 1) { 2272 uint32_t base = env->sau.rbar[r] & ~0x1f; 2273 uint32_t limit = env->sau.rlar[r] | 0x1f; 2274 2275 if (base <= address && limit >= address) { 2276 if (base > addr_page_base || limit < addr_page_limit) { 2277 sattrs->subpage = true; 2278 } 2279 if (sattrs->srvalid) { 2280 /* 2281 * If we hit in more than one region then we must report 2282 * as Secure, not NS-Callable, with no valid region 2283 * number info. 2284 */ 2285 sattrs->ns = false; 2286 sattrs->nsc = false; 2287 sattrs->sregion = 0; 2288 sattrs->srvalid = false; 2289 break; 2290 } else { 2291 if (env->sau.rlar[r] & 2) { 2292 sattrs->nsc = true; 2293 } else { 2294 sattrs->ns = true; 2295 } 2296 sattrs->srvalid = true; 2297 sattrs->sregion = r; 2298 } 2299 } else { 2300 /* 2301 * Address not in this region. We must check whether the 2302 * region covers addresses in the same page as our address. 2303 * In that case we must not report a size that covers the 2304 * whole page for a subsequent hit against a different MPU 2305 * region or the background region, because it would result 2306 * in incorrect TLB hits for subsequent accesses to 2307 * addresses that are in this MPU region. 2308 */ 2309 if (limit >= base && 2310 ranges_overlap(base, limit - base + 1, 2311 addr_page_base, 2312 TARGET_PAGE_SIZE)) { 2313 sattrs->subpage = true; 2314 } 2315 } 2316 } 2317 } 2318 break; 2319 } 2320 2321 /* 2322 * The IDAU will override the SAU lookup results if it specifies 2323 * higher security than the SAU does. 2324 */ 2325 if (!idau_ns) { 2326 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 2327 sattrs->ns = false; 2328 sattrs->nsc = idau_nsc; 2329 } 2330 } 2331 } 2332 2333 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 2334 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2335 bool secure, GetPhysAddrResult *result, 2336 ARMMMUFaultInfo *fi) 2337 { 2338 V8M_SAttributes sattrs = {}; 2339 bool ret; 2340 2341 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2342 v8m_security_lookup(env, address, access_type, mmu_idx, 2343 secure, &sattrs); 2344 if (access_type == MMU_INST_FETCH) { 2345 /* 2346 * Instruction fetches always use the MMU bank and the 2347 * transaction attribute determined by the fetch address, 2348 * regardless of CPU state. This is painful for QEMU 2349 * to handle, because it would mean we need to encode 2350 * into the mmu_idx not just the (user, negpri) information 2351 * for the current security state but also that for the 2352 * other security state, which would balloon the number 2353 * of mmu_idx values needed alarmingly. 2354 * Fortunately we can avoid this because it's not actually 2355 * possible to arbitrarily execute code from memory with 2356 * the wrong security attribute: it will always generate 2357 * an exception of some kind or another, apart from the 2358 * special case of an NS CPU executing an SG instruction 2359 * in S&NSC memory. So we always just fail the translation 2360 * here and sort things out in the exception handler 2361 * (including possibly emulating an SG instruction). 2362 */ 2363 if (sattrs.ns != !secure) { 2364 if (sattrs.nsc) { 2365 fi->type = ARMFault_QEMU_NSCExec; 2366 } else { 2367 fi->type = ARMFault_QEMU_SFault; 2368 } 2369 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2370 result->f.phys_addr = address; 2371 result->f.prot = 0; 2372 return true; 2373 } 2374 } else { 2375 /* 2376 * For data accesses we always use the MMU bank indicated 2377 * by the current CPU state, but the security attributes 2378 * might downgrade a secure access to nonsecure. 2379 */ 2380 if (sattrs.ns) { 2381 result->f.attrs.secure = false; 2382 } else if (!secure) { 2383 /* 2384 * NS access to S memory must fault. 2385 * Architecturally we should first check whether the 2386 * MPU information for this address indicates that we 2387 * are doing an unaligned access to Device memory, which 2388 * should generate a UsageFault instead. QEMU does not 2389 * currently check for that kind of unaligned access though. 2390 * If we added it we would need to do so as a special case 2391 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2392 */ 2393 fi->type = ARMFault_QEMU_SFault; 2394 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2395 result->f.phys_addr = address; 2396 result->f.prot = 0; 2397 return true; 2398 } 2399 } 2400 } 2401 2402 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, 2403 result, fi, NULL); 2404 if (sattrs.subpage) { 2405 result->f.lg_page_size = 0; 2406 } 2407 return ret; 2408 } 2409 2410 /* 2411 * Translate from the 4-bit stage 2 representation of 2412 * memory attributes (without cache-allocation hints) to 2413 * the 8-bit representation of the stage 1 MAIR registers 2414 * (which includes allocation hints). 2415 * 2416 * ref: shared/translation/attrs/S2AttrDecode() 2417 * .../S2ConvertAttrsHints() 2418 */ 2419 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) 2420 { 2421 uint8_t hiattr = extract32(s2attrs, 2, 2); 2422 uint8_t loattr = extract32(s2attrs, 0, 2); 2423 uint8_t hihint = 0, lohint = 0; 2424 2425 if (hiattr != 0) { /* normal memory */ 2426 if (hcr & HCR_CD) { /* cache disabled */ 2427 hiattr = loattr = 1; /* non-cacheable */ 2428 } else { 2429 if (hiattr != 1) { /* Write-through or write-back */ 2430 hihint = 3; /* RW allocate */ 2431 } 2432 if (loattr != 1) { /* Write-through or write-back */ 2433 lohint = 3; /* RW allocate */ 2434 } 2435 } 2436 } 2437 2438 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 2439 } 2440 2441 /* 2442 * Combine either inner or outer cacheability attributes for normal 2443 * memory, according to table D4-42 and pseudocode procedure 2444 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 2445 * 2446 * NB: only stage 1 includes allocation hints (RW bits), leading to 2447 * some asymmetry. 2448 */ 2449 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 2450 { 2451 if (s1 == 4 || s2 == 4) { 2452 /* non-cacheable has precedence */ 2453 return 4; 2454 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 2455 /* stage 1 write-through takes precedence */ 2456 return s1; 2457 } else if (extract32(s2, 2, 2) == 2) { 2458 /* stage 2 write-through takes precedence, but the allocation hint 2459 * is still taken from stage 1 2460 */ 2461 return (2 << 2) | extract32(s1, 0, 2); 2462 } else { /* write-back */ 2463 return s1; 2464 } 2465 } 2466 2467 /* 2468 * Combine the memory type and cacheability attributes of 2469 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 2470 * combined attributes in MAIR_EL1 format. 2471 */ 2472 static uint8_t combined_attrs_nofwb(uint64_t hcr, 2473 ARMCacheAttrs s1, ARMCacheAttrs s2) 2474 { 2475 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 2476 2477 if (s2.is_s2_format) { 2478 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); 2479 } else { 2480 s2_mair_attrs = s2.attrs; 2481 } 2482 2483 s1lo = extract32(s1.attrs, 0, 4); 2484 s2lo = extract32(s2_mair_attrs, 0, 4); 2485 s1hi = extract32(s1.attrs, 4, 4); 2486 s2hi = extract32(s2_mair_attrs, 4, 4); 2487 2488 /* Combine memory type and cacheability attributes */ 2489 if (s1hi == 0 || s2hi == 0) { 2490 /* Device has precedence over normal */ 2491 if (s1lo == 0 || s2lo == 0) { 2492 /* nGnRnE has precedence over anything */ 2493 ret_attrs = 0; 2494 } else if (s1lo == 4 || s2lo == 4) { 2495 /* non-Reordering has precedence over Reordering */ 2496 ret_attrs = 4; /* nGnRE */ 2497 } else if (s1lo == 8 || s2lo == 8) { 2498 /* non-Gathering has precedence over Gathering */ 2499 ret_attrs = 8; /* nGRE */ 2500 } else { 2501 ret_attrs = 0xc; /* GRE */ 2502 } 2503 } else { /* Normal memory */ 2504 /* Outer/inner cacheability combine independently */ 2505 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 2506 | combine_cacheattr_nibble(s1lo, s2lo); 2507 } 2508 return ret_attrs; 2509 } 2510 2511 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 2512 { 2513 /* 2514 * Given the 4 bits specifying the outer or inner cacheability 2515 * in MAIR format, return a value specifying Normal Write-Back, 2516 * with the allocation and transient hints taken from the input 2517 * if the input specified some kind of cacheable attribute. 2518 */ 2519 if (attr == 0 || attr == 4) { 2520 /* 2521 * 0 == an UNPREDICTABLE encoding 2522 * 4 == Non-cacheable 2523 * Either way, force Write-Back RW allocate non-transient 2524 */ 2525 return 0xf; 2526 } 2527 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 2528 return attr | 4; 2529 } 2530 2531 /* 2532 * Combine the memory type and cacheability attributes of 2533 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 2534 * combined attributes in MAIR_EL1 format. 2535 */ 2536 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) 2537 { 2538 assert(s2.is_s2_format && !s1.is_s2_format); 2539 2540 switch (s2.attrs) { 2541 case 7: 2542 /* Use stage 1 attributes */ 2543 return s1.attrs; 2544 case 6: 2545 /* 2546 * Force Normal Write-Back. Note that if S1 is Normal cacheable 2547 * then we take the allocation hints from it; otherwise it is 2548 * RW allocate, non-transient. 2549 */ 2550 if ((s1.attrs & 0xf0) == 0) { 2551 /* S1 is Device */ 2552 return 0xff; 2553 } 2554 /* Need to check the Inner and Outer nibbles separately */ 2555 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 2556 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 2557 case 5: 2558 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 2559 if ((s1.attrs & 0xf0) == 0) { 2560 return s1.attrs; 2561 } 2562 return 0x44; 2563 case 0 ... 3: 2564 /* Force Device, of subtype specified by S2 */ 2565 return s2.attrs << 2; 2566 default: 2567 /* 2568 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 2569 * arbitrarily force Device. 2570 */ 2571 return 0; 2572 } 2573 } 2574 2575 /* 2576 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 2577 * and CombineS1S2Desc() 2578 * 2579 * @env: CPUARMState 2580 * @s1: Attributes from stage 1 walk 2581 * @s2: Attributes from stage 2 walk 2582 */ 2583 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, 2584 ARMCacheAttrs s1, ARMCacheAttrs s2) 2585 { 2586 ARMCacheAttrs ret; 2587 bool tagged = false; 2588 2589 assert(!s1.is_s2_format); 2590 ret.is_s2_format = false; 2591 ret.guarded = s1.guarded; 2592 2593 if (s1.attrs == 0xf0) { 2594 tagged = true; 2595 s1.attrs = 0xff; 2596 } 2597 2598 /* Combine shareability attributes (table D4-43) */ 2599 if (s1.shareability == 2 || s2.shareability == 2) { 2600 /* if either are outer-shareable, the result is outer-shareable */ 2601 ret.shareability = 2; 2602 } else if (s1.shareability == 3 || s2.shareability == 3) { 2603 /* if either are inner-shareable, the result is inner-shareable */ 2604 ret.shareability = 3; 2605 } else { 2606 /* both non-shareable */ 2607 ret.shareability = 0; 2608 } 2609 2610 /* Combine memory type and cacheability attributes */ 2611 if (hcr & HCR_FWB) { 2612 ret.attrs = combined_attrs_fwb(s1, s2); 2613 } else { 2614 ret.attrs = combined_attrs_nofwb(hcr, s1, s2); 2615 } 2616 2617 /* 2618 * Any location for which the resultant memory type is any 2619 * type of Device memory is always treated as Outer Shareable. 2620 * Any location for which the resultant memory type is Normal 2621 * Inner Non-cacheable, Outer Non-cacheable is always treated 2622 * as Outer Shareable. 2623 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 2624 */ 2625 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 2626 ret.shareability = 2; 2627 } 2628 2629 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 2630 if (tagged && ret.attrs == 0xff) { 2631 ret.attrs = 0xf0; 2632 } 2633 2634 return ret; 2635 } 2636 2637 /* 2638 * MMU disabled. S1 addresses within aa64 translation regimes are 2639 * still checked for bounds -- see AArch64.S1DisabledOutput(). 2640 */ 2641 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address, 2642 MMUAccessType access_type, 2643 ARMMMUIdx mmu_idx, bool is_secure, 2644 GetPhysAddrResult *result, 2645 ARMMMUFaultInfo *fi) 2646 { 2647 uint8_t memattr = 0x00; /* Device nGnRnE */ 2648 uint8_t shareability = 0; /* non-sharable */ 2649 int r_el; 2650 2651 switch (mmu_idx) { 2652 case ARMMMUIdx_Stage2: 2653 case ARMMMUIdx_Stage2_S: 2654 case ARMMMUIdx_Phys_NS: 2655 case ARMMMUIdx_Phys_S: 2656 break; 2657 2658 default: 2659 r_el = regime_el(env, mmu_idx); 2660 if (arm_el_is_aa64(env, r_el)) { 2661 int pamax = arm_pamax(env_archcpu(env)); 2662 uint64_t tcr = env->cp15.tcr_el[r_el]; 2663 int addrtop, tbi; 2664 2665 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 2666 if (access_type == MMU_INST_FETCH) { 2667 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 2668 } 2669 tbi = (tbi >> extract64(address, 55, 1)) & 1; 2670 addrtop = (tbi ? 55 : 63); 2671 2672 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 2673 fi->type = ARMFault_AddressSize; 2674 fi->level = 0; 2675 fi->stage2 = false; 2676 return 1; 2677 } 2678 2679 /* 2680 * When TBI is disabled, we've just validated that all of the 2681 * bits above PAMax are zero, so logically we only need to 2682 * clear the top byte for TBI. But it's clearer to follow 2683 * the pseudocode set of addrdesc.paddress. 2684 */ 2685 address = extract64(address, 0, 52); 2686 } 2687 2688 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 2689 if (r_el == 1) { 2690 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure); 2691 if (hcr & HCR_DC) { 2692 if (hcr & HCR_DCT) { 2693 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 2694 } else { 2695 memattr = 0xff; /* Normal, WB, RWA */ 2696 } 2697 } 2698 } 2699 if (memattr == 0 && access_type == MMU_INST_FETCH) { 2700 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 2701 memattr = 0xee; /* Normal, WT, RA, NT */ 2702 } else { 2703 memattr = 0x44; /* Normal, NC, No */ 2704 } 2705 shareability = 2; /* outer sharable */ 2706 } 2707 result->cacheattrs.is_s2_format = false; 2708 break; 2709 } 2710 2711 result->f.phys_addr = address; 2712 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2713 result->f.lg_page_size = TARGET_PAGE_BITS; 2714 result->cacheattrs.shareability = shareability; 2715 result->cacheattrs.attrs = memattr; 2716 return false; 2717 } 2718 2719 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, 2720 target_ulong address, 2721 MMUAccessType access_type, 2722 GetPhysAddrResult *result, 2723 ARMMMUFaultInfo *fi) 2724 { 2725 hwaddr ipa; 2726 int s1_prot, s1_lgpgsz; 2727 bool is_secure = ptw->in_secure; 2728 bool ret, ipa_secure, s2walk_secure; 2729 ARMCacheAttrs cacheattrs1; 2730 bool is_el0; 2731 uint64_t hcr; 2732 2733 ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi); 2734 2735 /* If S1 fails, return early. */ 2736 if (ret) { 2737 return ret; 2738 } 2739 2740 ipa = result->f.phys_addr; 2741 ipa_secure = result->f.attrs.secure; 2742 if (is_secure) { 2743 /* Select TCR based on the NS bit from the S1 walk. */ 2744 s2walk_secure = !(ipa_secure 2745 ? env->cp15.vstcr_el2 & VSTCR_SW 2746 : env->cp15.vtcr_el2 & VTCR_NSW); 2747 } else { 2748 assert(!ipa_secure); 2749 s2walk_secure = false; 2750 } 2751 2752 is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; 2753 ptw->in_mmu_idx = s2walk_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 2754 ptw->in_ptw_idx = s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 2755 ptw->in_secure = s2walk_secure; 2756 2757 /* 2758 * S1 is done, now do S2 translation. 2759 * Save the stage1 results so that we may merge prot and cacheattrs later. 2760 */ 2761 s1_prot = result->f.prot; 2762 s1_lgpgsz = result->f.lg_page_size; 2763 cacheattrs1 = result->cacheattrs; 2764 memset(result, 0, sizeof(*result)); 2765 2766 if (arm_feature(env, ARM_FEATURE_PMSA)) { 2767 ret = get_phys_addr_pmsav8(env, ipa, access_type, 2768 ptw->in_mmu_idx, is_secure, result, fi); 2769 } else { 2770 ret = get_phys_addr_lpae(env, ptw, ipa, access_type, 2771 is_el0, result, fi); 2772 } 2773 fi->s2addr = ipa; 2774 2775 /* Combine the S1 and S2 perms. */ 2776 result->f.prot &= s1_prot; 2777 2778 /* If S2 fails, return early. */ 2779 if (ret) { 2780 return ret; 2781 } 2782 2783 /* 2784 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE, 2785 * this means "don't put this in the TLB"; in this case, return a 2786 * result with lg_page_size == 0 to achieve that. Otherwise, 2787 * use the maximum of the S1 & S2 page size, so that invalidation 2788 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though 2789 * we know the combined result permissions etc only cover the minimum 2790 * of the S1 and S2 page size, because we know that the common TLB code 2791 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE, 2792 * and passing a larger page size value only affects invalidations.) 2793 */ 2794 if (result->f.lg_page_size < TARGET_PAGE_BITS || 2795 s1_lgpgsz < TARGET_PAGE_BITS) { 2796 result->f.lg_page_size = 0; 2797 } else if (result->f.lg_page_size < s1_lgpgsz) { 2798 result->f.lg_page_size = s1_lgpgsz; 2799 } 2800 2801 /* Combine the S1 and S2 cache attributes. */ 2802 hcr = arm_hcr_el2_eff_secstate(env, is_secure); 2803 if (hcr & HCR_DC) { 2804 /* 2805 * HCR.DC forces the first stage attributes to 2806 * Normal Non-Shareable, 2807 * Inner Write-Back Read-Allocate Write-Allocate, 2808 * Outer Write-Back Read-Allocate Write-Allocate. 2809 * Do not overwrite Tagged within attrs. 2810 */ 2811 if (cacheattrs1.attrs != 0xf0) { 2812 cacheattrs1.attrs = 0xff; 2813 } 2814 cacheattrs1.shareability = 0; 2815 } 2816 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, 2817 result->cacheattrs); 2818 2819 /* 2820 * Check if IPA translates to secure or non-secure PA space. 2821 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. 2822 */ 2823 result->f.attrs.secure = 2824 (is_secure 2825 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) 2826 && (ipa_secure 2827 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)))); 2828 2829 return false; 2830 } 2831 2832 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw, 2833 target_ulong address, 2834 MMUAccessType access_type, 2835 GetPhysAddrResult *result, 2836 ARMMMUFaultInfo *fi) 2837 { 2838 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2839 bool is_secure = ptw->in_secure; 2840 ARMMMUIdx s1_mmu_idx; 2841 2842 /* 2843 * The page table entries may downgrade secure to non-secure, but 2844 * cannot upgrade an non-secure translation regime's attributes 2845 * to secure. 2846 */ 2847 result->f.attrs.secure = is_secure; 2848 2849 switch (mmu_idx) { 2850 case ARMMMUIdx_Phys_S: 2851 case ARMMMUIdx_Phys_NS: 2852 /* Checking Phys early avoids special casing later vs regime_el. */ 2853 return get_phys_addr_disabled(env, address, access_type, mmu_idx, 2854 is_secure, result, fi); 2855 2856 case ARMMMUIdx_Stage1_E0: 2857 case ARMMMUIdx_Stage1_E1: 2858 case ARMMMUIdx_Stage1_E1_PAN: 2859 /* First stage lookup uses second stage for ptw. */ 2860 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 2861 break; 2862 2863 case ARMMMUIdx_E10_0: 2864 s1_mmu_idx = ARMMMUIdx_Stage1_E0; 2865 goto do_twostage; 2866 case ARMMMUIdx_E10_1: 2867 s1_mmu_idx = ARMMMUIdx_Stage1_E1; 2868 goto do_twostage; 2869 case ARMMMUIdx_E10_1_PAN: 2870 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 2871 do_twostage: 2872 /* 2873 * Call ourselves recursively to do the stage 1 and then stage 2 2874 * translations if mmu_idx is a two-stage regime, and EL2 present. 2875 * Otherwise, a stage1+stage2 translation is just stage 1. 2876 */ 2877 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; 2878 if (arm_feature(env, ARM_FEATURE_EL2) && 2879 !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) { 2880 return get_phys_addr_twostage(env, ptw, address, access_type, 2881 result, fi); 2882 } 2883 /* fall through */ 2884 2885 default: 2886 /* Single stage and second stage uses physical for ptw. */ 2887 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 2888 break; 2889 } 2890 2891 result->f.attrs.user = regime_is_user(env, mmu_idx); 2892 2893 /* 2894 * Fast Context Switch Extension. This doesn't exist at all in v8. 2895 * In v7 and earlier it affects all stage 1 translations. 2896 */ 2897 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 2898 && !arm_feature(env, ARM_FEATURE_V8)) { 2899 if (regime_el(env, mmu_idx) == 3) { 2900 address += env->cp15.fcseidr_s; 2901 } else { 2902 address += env->cp15.fcseidr_ns; 2903 } 2904 } 2905 2906 if (arm_feature(env, ARM_FEATURE_PMSA)) { 2907 bool ret; 2908 result->f.lg_page_size = TARGET_PAGE_BITS; 2909 2910 if (arm_feature(env, ARM_FEATURE_V8)) { 2911 /* PMSAv8 */ 2912 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 2913 is_secure, result, fi); 2914 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2915 /* PMSAv7 */ 2916 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 2917 is_secure, result, fi); 2918 } else { 2919 /* Pre-v7 MPU */ 2920 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 2921 is_secure, result, fi); 2922 } 2923 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 2924 " mmu_idx %u -> %s (prot %c%c%c)\n", 2925 access_type == MMU_DATA_LOAD ? "reading" : 2926 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 2927 (uint32_t)address, mmu_idx, 2928 ret ? "Miss" : "Hit", 2929 result->f.prot & PAGE_READ ? 'r' : '-', 2930 result->f.prot & PAGE_WRITE ? 'w' : '-', 2931 result->f.prot & PAGE_EXEC ? 'x' : '-'); 2932 2933 return ret; 2934 } 2935 2936 /* Definitely a real MMU, not an MPU */ 2937 2938 if (regime_translation_disabled(env, mmu_idx, is_secure)) { 2939 return get_phys_addr_disabled(env, address, access_type, mmu_idx, 2940 is_secure, result, fi); 2941 } 2942 2943 if (regime_using_lpae_format(env, mmu_idx)) { 2944 return get_phys_addr_lpae(env, ptw, address, access_type, false, 2945 result, fi); 2946 } else if (arm_feature(env, ARM_FEATURE_V7) || 2947 regime_sctlr(env, mmu_idx) & SCTLR_XP) { 2948 return get_phys_addr_v6(env, ptw, address, access_type, result, fi); 2949 } else { 2950 return get_phys_addr_v5(env, ptw, address, access_type, result, fi); 2951 } 2952 } 2953 2954 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address, 2955 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2956 bool is_secure, GetPhysAddrResult *result, 2957 ARMMMUFaultInfo *fi) 2958 { 2959 S1Translate ptw = { 2960 .in_mmu_idx = mmu_idx, 2961 .in_secure = is_secure, 2962 }; 2963 return get_phys_addr_with_struct(env, &ptw, address, access_type, 2964 result, fi); 2965 } 2966 2967 bool get_phys_addr(CPUARMState *env, target_ulong address, 2968 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2969 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 2970 { 2971 bool is_secure; 2972 2973 switch (mmu_idx) { 2974 case ARMMMUIdx_E10_0: 2975 case ARMMMUIdx_E10_1: 2976 case ARMMMUIdx_E10_1_PAN: 2977 case ARMMMUIdx_E20_0: 2978 case ARMMMUIdx_E20_2: 2979 case ARMMMUIdx_E20_2_PAN: 2980 case ARMMMUIdx_Stage1_E0: 2981 case ARMMMUIdx_Stage1_E1: 2982 case ARMMMUIdx_Stage1_E1_PAN: 2983 case ARMMMUIdx_E2: 2984 is_secure = arm_is_secure_below_el3(env); 2985 break; 2986 case ARMMMUIdx_Stage2: 2987 case ARMMMUIdx_Phys_NS: 2988 case ARMMMUIdx_MPrivNegPri: 2989 case ARMMMUIdx_MUserNegPri: 2990 case ARMMMUIdx_MPriv: 2991 case ARMMMUIdx_MUser: 2992 is_secure = false; 2993 break; 2994 case ARMMMUIdx_E3: 2995 case ARMMMUIdx_Stage2_S: 2996 case ARMMMUIdx_Phys_S: 2997 case ARMMMUIdx_MSPrivNegPri: 2998 case ARMMMUIdx_MSUserNegPri: 2999 case ARMMMUIdx_MSPriv: 3000 case ARMMMUIdx_MSUser: 3001 is_secure = true; 3002 break; 3003 default: 3004 g_assert_not_reached(); 3005 } 3006 return get_phys_addr_with_secure(env, address, access_type, mmu_idx, 3007 is_secure, result, fi); 3008 } 3009 3010 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 3011 MemTxAttrs *attrs) 3012 { 3013 ARMCPU *cpu = ARM_CPU(cs); 3014 CPUARMState *env = &cpu->env; 3015 S1Translate ptw = { 3016 .in_mmu_idx = arm_mmu_idx(env), 3017 .in_secure = arm_is_secure(env), 3018 .in_debug = true, 3019 }; 3020 GetPhysAddrResult res = {}; 3021 ARMMMUFaultInfo fi = {}; 3022 bool ret; 3023 3024 ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi); 3025 *attrs = res.f.attrs; 3026 3027 if (ret) { 3028 return -1; 3029 } 3030 return res.f.phys_addr; 3031 } 3032