1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "qemu/main-loop.h" 13 #include "exec/exec-all.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "idau.h" 17 #ifdef CONFIG_TCG 18 # include "tcg/oversized-guest.h" 19 #endif 20 21 typedef struct S1Translate { 22 ARMMMUIdx in_mmu_idx; 23 ARMMMUIdx in_ptw_idx; 24 ARMSecuritySpace in_space; 25 bool in_secure; 26 bool in_debug; 27 /* 28 * If this is stage 2 of a stage 1+2 page table walk, then this must 29 * be true if stage 1 is an EL0 access; otherwise this is ignored. 30 * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}. 31 */ 32 bool in_s1_is_el0; 33 bool out_secure; 34 bool out_rw; 35 bool out_be; 36 ARMSecuritySpace out_space; 37 hwaddr out_virt; 38 hwaddr out_phys; 39 void *out_host; 40 } S1Translate; 41 42 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 43 target_ulong address, 44 MMUAccessType access_type, 45 GetPhysAddrResult *result, 46 ARMMMUFaultInfo *fi); 47 48 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 49 target_ulong address, 50 MMUAccessType access_type, 51 GetPhysAddrResult *result, 52 ARMMMUFaultInfo *fi); 53 54 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 55 static const uint8_t pamax_map[] = { 56 [0] = 32, 57 [1] = 36, 58 [2] = 40, 59 [3] = 42, 60 [4] = 44, 61 [5] = 48, 62 [6] = 52, 63 }; 64 65 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 66 unsigned int arm_pamax(ARMCPU *cpu) 67 { 68 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 69 unsigned int parange = 70 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 71 72 /* 73 * id_aa64mmfr0 is a read-only register so values outside of the 74 * supported mappings can be considered an implementation error. 75 */ 76 assert(parange < ARRAY_SIZE(pamax_map)); 77 return pamax_map[parange]; 78 } 79 80 /* 81 * In machvirt_init, we call arm_pamax on a cpu that is not fully 82 * initialized, so we can't rely on the propagation done in realize. 83 */ 84 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) || 85 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) { 86 /* v7 with LPAE */ 87 return 40; 88 } 89 /* Anything else */ 90 return 32; 91 } 92 93 /* 94 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 95 */ 96 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 97 { 98 switch (mmu_idx) { 99 case ARMMMUIdx_E10_0: 100 return ARMMMUIdx_Stage1_E0; 101 case ARMMMUIdx_E10_1: 102 return ARMMMUIdx_Stage1_E1; 103 case ARMMMUIdx_E10_1_PAN: 104 return ARMMMUIdx_Stage1_E1_PAN; 105 default: 106 return mmu_idx; 107 } 108 } 109 110 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 111 { 112 return stage_1_mmu_idx(arm_mmu_idx(env)); 113 } 114 115 /* 116 * Return where we should do ptw loads from for a stage 2 walk. 117 * This depends on whether the address we are looking up is a 118 * Secure IPA or a NonSecure IPA, which we know from whether this is 119 * Stage2 or Stage2_S. 120 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits. 121 */ 122 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx) 123 { 124 bool s2walk_secure; 125 126 /* 127 * We're OK to check the current state of the CPU here because 128 * (1) we always invalidate all TLBs when the SCR_EL3.NS bit changes 129 * (2) there's no way to do a lookup that cares about Stage 2 for a 130 * different security state to the current one for AArch64, and AArch32 131 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do 132 * an NS stage 1+2 lookup while the NS bit is 0.) 133 */ 134 if (!arm_is_secure_below_el3(env) || !arm_el_is_aa64(env, 3)) { 135 return ARMMMUIdx_Phys_NS; 136 } 137 if (stage2idx == ARMMMUIdx_Stage2_S) { 138 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW); 139 } else { 140 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW); 141 } 142 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 143 144 } 145 146 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 147 { 148 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 149 } 150 151 /* Return the TTBR associated with this translation regime */ 152 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 153 { 154 if (mmu_idx == ARMMMUIdx_Stage2) { 155 return env->cp15.vttbr_el2; 156 } 157 if (mmu_idx == ARMMMUIdx_Stage2_S) { 158 return env->cp15.vsttbr_el2; 159 } 160 if (ttbrn == 0) { 161 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 162 } else { 163 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 164 } 165 } 166 167 /* Return true if the specified stage of address translation is disabled */ 168 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, 169 bool is_secure) 170 { 171 uint64_t hcr_el2; 172 173 if (arm_feature(env, ARM_FEATURE_M)) { 174 switch (env->v7m.mpu_ctrl[is_secure] & 175 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 176 case R_V7M_MPU_CTRL_ENABLE_MASK: 177 /* Enabled, but not for HardFault and NMI */ 178 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 179 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 180 /* Enabled for all cases */ 181 return false; 182 case 0: 183 default: 184 /* 185 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 186 * we warned about that in armv7m_nvic.c when the guest set it. 187 */ 188 return true; 189 } 190 } 191 192 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure); 193 194 switch (mmu_idx) { 195 case ARMMMUIdx_Stage2: 196 case ARMMMUIdx_Stage2_S: 197 /* HCR.DC means HCR.VM behaves as 1 */ 198 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 199 200 case ARMMMUIdx_E10_0: 201 case ARMMMUIdx_E10_1: 202 case ARMMMUIdx_E10_1_PAN: 203 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ 204 if (hcr_el2 & HCR_TGE) { 205 return true; 206 } 207 break; 208 209 case ARMMMUIdx_Stage1_E0: 210 case ARMMMUIdx_Stage1_E1: 211 case ARMMMUIdx_Stage1_E1_PAN: 212 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 213 if (hcr_el2 & HCR_DC) { 214 return true; 215 } 216 break; 217 218 case ARMMMUIdx_E20_0: 219 case ARMMMUIdx_E20_2: 220 case ARMMMUIdx_E20_2_PAN: 221 case ARMMMUIdx_E2: 222 case ARMMMUIdx_E3: 223 break; 224 225 case ARMMMUIdx_Phys_S: 226 case ARMMMUIdx_Phys_NS: 227 case ARMMMUIdx_Phys_Root: 228 case ARMMMUIdx_Phys_Realm: 229 /* No translation for physical address spaces. */ 230 return true; 231 232 default: 233 g_assert_not_reached(); 234 } 235 236 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 237 } 238 239 static bool granule_protection_check(CPUARMState *env, uint64_t paddress, 240 ARMSecuritySpace pspace, 241 ARMMMUFaultInfo *fi) 242 { 243 MemTxAttrs attrs = { 244 .secure = true, 245 .space = ARMSS_Root, 246 }; 247 ARMCPU *cpu = env_archcpu(env); 248 uint64_t gpccr = env->cp15.gpccr_el3; 249 unsigned pps, pgs, l0gptsz, level = 0; 250 uint64_t tableaddr, pps_mask, align, entry, index; 251 AddressSpace *as; 252 MemTxResult result; 253 int gpi; 254 255 if (!FIELD_EX64(gpccr, GPCCR, GPC)) { 256 return true; 257 } 258 259 /* 260 * GPC Priority 1 (R_GMGRR): 261 * R_JWCSM: If the configuration of GPCCR_EL3 is invalid, 262 * the access fails as GPT walk fault at level 0. 263 */ 264 265 /* 266 * Configuration of PPS to a value exceeding the implemented 267 * physical address size is invalid. 268 */ 269 pps = FIELD_EX64(gpccr, GPCCR, PPS); 270 if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) { 271 goto fault_walk; 272 } 273 pps = pamax_map[pps]; 274 pps_mask = MAKE_64BIT_MASK(0, pps); 275 276 switch (FIELD_EX64(gpccr, GPCCR, SH)) { 277 case 0b10: /* outer shareable */ 278 break; 279 case 0b00: /* non-shareable */ 280 case 0b11: /* inner shareable */ 281 /* Inner and Outer non-cacheable requires Outer shareable. */ 282 if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 && 283 FIELD_EX64(gpccr, GPCCR, IRGN) == 0) { 284 goto fault_walk; 285 } 286 break; 287 default: /* reserved */ 288 goto fault_walk; 289 } 290 291 switch (FIELD_EX64(gpccr, GPCCR, PGS)) { 292 case 0b00: /* 4KB */ 293 pgs = 12; 294 break; 295 case 0b01: /* 64KB */ 296 pgs = 16; 297 break; 298 case 0b10: /* 16KB */ 299 pgs = 14; 300 break; 301 default: /* reserved */ 302 goto fault_walk; 303 } 304 305 /* Note this field is read-only and fixed at reset. */ 306 l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ); 307 308 /* 309 * GPC Priority 2: Secure, Realm or Root address exceeds PPS. 310 * R_CPDSB: A NonSecure physical address input exceeding PPS 311 * does not experience any fault. 312 */ 313 if (paddress & ~pps_mask) { 314 if (pspace == ARMSS_NonSecure) { 315 return true; 316 } 317 goto fault_size; 318 } 319 320 /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */ 321 tableaddr = env->cp15.gptbr_el3 << 12; 322 if (tableaddr & ~pps_mask) { 323 goto fault_size; 324 } 325 326 /* 327 * BADDR is aligned per a function of PPS and L0GPTSZ. 328 * These bits of GPTBR_EL3 are RES0, but are not a configuration error, 329 * unlike the RES0 bits of the GPT entries (R_XNKFZ). 330 */ 331 align = MAX(pps - l0gptsz + 3, 12); 332 align = MAKE_64BIT_MASK(0, align); 333 tableaddr &= ~align; 334 335 as = arm_addressspace(env_cpu(env), attrs); 336 337 /* Level 0 lookup. */ 338 index = extract64(paddress, l0gptsz, pps - l0gptsz); 339 tableaddr += index * 8; 340 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 341 if (result != MEMTX_OK) { 342 goto fault_eabt; 343 } 344 345 switch (extract32(entry, 0, 4)) { 346 case 1: /* block descriptor */ 347 if (entry >> 8) { 348 goto fault_walk; /* RES0 bits not 0 */ 349 } 350 gpi = extract32(entry, 4, 4); 351 goto found; 352 case 3: /* table descriptor */ 353 tableaddr = entry & ~0xf; 354 align = MAX(l0gptsz - pgs - 1, 12); 355 align = MAKE_64BIT_MASK(0, align); 356 if (tableaddr & (~pps_mask | align)) { 357 goto fault_walk; /* RES0 bits not 0 */ 358 } 359 break; 360 default: /* invalid */ 361 goto fault_walk; 362 } 363 364 /* Level 1 lookup */ 365 level = 1; 366 index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4); 367 tableaddr += index * 8; 368 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 369 if (result != MEMTX_OK) { 370 goto fault_eabt; 371 } 372 373 switch (extract32(entry, 0, 4)) { 374 case 1: /* contiguous descriptor */ 375 if (entry >> 10) { 376 goto fault_walk; /* RES0 bits not 0 */ 377 } 378 /* 379 * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE, 380 * and because we cannot invalidate by pa, and thus will always 381 * flush entire tlbs, we don't actually care about the range here 382 * and can simply extract the GPI as the result. 383 */ 384 if (extract32(entry, 8, 2) == 0) { 385 goto fault_walk; /* reserved contig */ 386 } 387 gpi = extract32(entry, 4, 4); 388 break; 389 default: 390 index = extract64(paddress, pgs, 4); 391 gpi = extract64(entry, index * 4, 4); 392 break; 393 } 394 395 found: 396 switch (gpi) { 397 case 0b0000: /* no access */ 398 break; 399 case 0b1111: /* all access */ 400 return true; 401 case 0b1000: 402 case 0b1001: 403 case 0b1010: 404 case 0b1011: 405 if (pspace == (gpi & 3)) { 406 return true; 407 } 408 break; 409 default: 410 goto fault_walk; /* reserved */ 411 } 412 413 fi->gpcf = GPCF_Fail; 414 goto fault_common; 415 fault_eabt: 416 fi->gpcf = GPCF_EABT; 417 goto fault_common; 418 fault_size: 419 fi->gpcf = GPCF_AddressSize; 420 goto fault_common; 421 fault_walk: 422 fi->gpcf = GPCF_Walk; 423 fault_common: 424 fi->level = level; 425 fi->paddr = paddress; 426 fi->paddr_space = pspace; 427 return false; 428 } 429 430 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) 431 { 432 /* 433 * For an S1 page table walk, the stage 1 attributes are always 434 * some form of "this is Normal memory". The combined S1+S2 435 * attributes are therefore only Device if stage 2 specifies Device. 436 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 437 * ie when cacheattrs.attrs bits [3:2] are 0b00. 438 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 439 * when cacheattrs.attrs bit [2] is 0. 440 */ 441 if (hcr & HCR_FWB) { 442 return (attrs & 0x4) == 0; 443 } else { 444 return (attrs & 0xc) == 0; 445 } 446 } 447 448 /* Translate a S1 pagetable walk through S2 if needed. */ 449 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, 450 hwaddr addr, ARMMMUFaultInfo *fi) 451 { 452 ARMSecuritySpace space = ptw->in_space; 453 bool is_secure = ptw->in_secure; 454 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 455 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx; 456 uint8_t pte_attrs; 457 458 ptw->out_virt = addr; 459 460 if (unlikely(ptw->in_debug)) { 461 /* 462 * From gdbstub, do not use softmmu so that we don't modify the 463 * state of the cpu at all, including softmmu tlb contents. 464 */ 465 S1Translate s2ptw = { 466 .in_mmu_idx = s2_mmu_idx, 467 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx), 468 .in_secure = s2_mmu_idx == ARMMMUIdx_Stage2_S, 469 .in_space = (s2_mmu_idx == ARMMMUIdx_Stage2_S ? ARMSS_Secure 470 : space == ARMSS_Realm ? ARMSS_Realm 471 : ARMSS_NonSecure), 472 .in_debug = true, 473 }; 474 GetPhysAddrResult s2 = { }; 475 476 if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) { 477 goto fail; 478 } 479 480 ptw->out_phys = s2.f.phys_addr; 481 pte_attrs = s2.cacheattrs.attrs; 482 ptw->out_host = NULL; 483 ptw->out_rw = false; 484 ptw->out_secure = s2.f.attrs.secure; 485 ptw->out_space = s2.f.attrs.space; 486 } else { 487 #ifdef CONFIG_TCG 488 CPUTLBEntryFull *full; 489 int flags; 490 491 env->tlb_fi = fi; 492 flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD, 493 arm_to_core_mmu_idx(s2_mmu_idx), 494 &ptw->out_host, &full); 495 env->tlb_fi = NULL; 496 497 if (unlikely(flags & TLB_INVALID_MASK)) { 498 goto fail; 499 } 500 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 501 ptw->out_rw = full->prot & PAGE_WRITE; 502 pte_attrs = full->pte_attrs; 503 ptw->out_secure = full->attrs.secure; 504 ptw->out_space = full->attrs.space; 505 #else 506 g_assert_not_reached(); 507 #endif 508 } 509 510 if (regime_is_stage2(s2_mmu_idx)) { 511 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure); 512 513 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { 514 /* 515 * PTW set and S1 walk touched S2 Device memory: 516 * generate Permission fault. 517 */ 518 fi->type = ARMFault_Permission; 519 fi->s2addr = addr; 520 fi->stage2 = true; 521 fi->s1ptw = true; 522 fi->s1ns = !is_secure; 523 return false; 524 } 525 } 526 527 ptw->out_be = regime_translation_big_endian(env, mmu_idx); 528 return true; 529 530 fail: 531 assert(fi->type != ARMFault_None); 532 if (fi->type == ARMFault_GPCFOnOutput) { 533 fi->type = ARMFault_GPCFOnWalk; 534 } 535 fi->s2addr = addr; 536 fi->stage2 = true; 537 fi->s1ptw = true; 538 fi->s1ns = !is_secure; 539 return false; 540 } 541 542 /* All loads done in the course of a page table walk go through here. */ 543 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, 544 ARMMMUFaultInfo *fi) 545 { 546 CPUState *cs = env_cpu(env); 547 void *host = ptw->out_host; 548 uint32_t data; 549 550 if (likely(host)) { 551 /* Page tables are in RAM, and we have the host address. */ 552 data = qatomic_read((uint32_t *)host); 553 if (ptw->out_be) { 554 data = be32_to_cpu(data); 555 } else { 556 data = le32_to_cpu(data); 557 } 558 } else { 559 /* Page tables are in MMIO. */ 560 MemTxAttrs attrs = { 561 .secure = ptw->out_secure, 562 .space = ptw->out_space, 563 }; 564 AddressSpace *as = arm_addressspace(cs, attrs); 565 MemTxResult result = MEMTX_OK; 566 567 if (ptw->out_be) { 568 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); 569 } else { 570 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); 571 } 572 if (unlikely(result != MEMTX_OK)) { 573 fi->type = ARMFault_SyncExternalOnWalk; 574 fi->ea = arm_extabort_type(result); 575 return 0; 576 } 577 } 578 return data; 579 } 580 581 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, 582 ARMMMUFaultInfo *fi) 583 { 584 CPUState *cs = env_cpu(env); 585 void *host = ptw->out_host; 586 uint64_t data; 587 588 if (likely(host)) { 589 /* Page tables are in RAM, and we have the host address. */ 590 #ifdef CONFIG_ATOMIC64 591 data = qatomic_read__nocheck((uint64_t *)host); 592 if (ptw->out_be) { 593 data = be64_to_cpu(data); 594 } else { 595 data = le64_to_cpu(data); 596 } 597 #else 598 if (ptw->out_be) { 599 data = ldq_be_p(host); 600 } else { 601 data = ldq_le_p(host); 602 } 603 #endif 604 } else { 605 /* Page tables are in MMIO. */ 606 MemTxAttrs attrs = { 607 .secure = ptw->out_secure, 608 .space = ptw->out_space, 609 }; 610 AddressSpace *as = arm_addressspace(cs, attrs); 611 MemTxResult result = MEMTX_OK; 612 613 if (ptw->out_be) { 614 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 615 } else { 616 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 617 } 618 if (unlikely(result != MEMTX_OK)) { 619 fi->type = ARMFault_SyncExternalOnWalk; 620 fi->ea = arm_extabort_type(result); 621 return 0; 622 } 623 } 624 return data; 625 } 626 627 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val, 628 uint64_t new_val, S1Translate *ptw, 629 ARMMMUFaultInfo *fi) 630 { 631 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG) 632 uint64_t cur_val; 633 void *host = ptw->out_host; 634 635 if (unlikely(!host)) { 636 fi->type = ARMFault_UnsuppAtomicUpdate; 637 fi->s1ptw = true; 638 return 0; 639 } 640 641 /* 642 * Raising a stage2 Protection fault for an atomic update to a read-only 643 * page is delayed until it is certain that there is a change to make. 644 */ 645 if (unlikely(!ptw->out_rw)) { 646 int flags; 647 648 env->tlb_fi = fi; 649 flags = probe_access_full_mmu(env, ptw->out_virt, 0, 650 MMU_DATA_STORE, 651 arm_to_core_mmu_idx(ptw->in_ptw_idx), 652 NULL, NULL); 653 env->tlb_fi = NULL; 654 655 if (unlikely(flags & TLB_INVALID_MASK)) { 656 assert(fi->type != ARMFault_None); 657 fi->s2addr = ptw->out_virt; 658 fi->stage2 = true; 659 fi->s1ptw = true; 660 fi->s1ns = !ptw->in_secure; 661 return 0; 662 } 663 664 /* In case CAS mismatches and we loop, remember writability. */ 665 ptw->out_rw = true; 666 } 667 668 #ifdef CONFIG_ATOMIC64 669 if (ptw->out_be) { 670 old_val = cpu_to_be64(old_val); 671 new_val = cpu_to_be64(new_val); 672 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 673 cur_val = be64_to_cpu(cur_val); 674 } else { 675 old_val = cpu_to_le64(old_val); 676 new_val = cpu_to_le64(new_val); 677 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 678 cur_val = le64_to_cpu(cur_val); 679 } 680 #else 681 /* 682 * We can't support the full 64-bit atomic cmpxchg on the host. 683 * Because this is only used for FEAT_HAFDBS, which is only for AA64, 684 * we know that TCG_OVERSIZED_GUEST is set, which means that we are 685 * running in round-robin mode and could only race with dma i/o. 686 */ 687 #if !TCG_OVERSIZED_GUEST 688 # error "Unexpected configuration" 689 #endif 690 bool locked = qemu_mutex_iothread_locked(); 691 if (!locked) { 692 qemu_mutex_lock_iothread(); 693 } 694 if (ptw->out_be) { 695 cur_val = ldq_be_p(host); 696 if (cur_val == old_val) { 697 stq_be_p(host, new_val); 698 } 699 } else { 700 cur_val = ldq_le_p(host); 701 if (cur_val == old_val) { 702 stq_le_p(host, new_val); 703 } 704 } 705 if (!locked) { 706 qemu_mutex_unlock_iothread(); 707 } 708 #endif 709 710 return cur_val; 711 #else 712 /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */ 713 g_assert_not_reached(); 714 #endif 715 } 716 717 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 718 uint32_t *table, uint32_t address) 719 { 720 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 721 uint64_t tcr = regime_tcr(env, mmu_idx); 722 int maskshift = extract32(tcr, 0, 3); 723 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 724 uint32_t base_mask; 725 726 if (address & mask) { 727 if (tcr & TTBCR_PD1) { 728 /* Translation table walk disabled for TTBR1 */ 729 return false; 730 } 731 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 732 } else { 733 if (tcr & TTBCR_PD0) { 734 /* Translation table walk disabled for TTBR0 */ 735 return false; 736 } 737 base_mask = ~((uint32_t)0x3fffu >> maskshift); 738 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 739 } 740 *table |= (address >> 18) & 0x3ffc; 741 return true; 742 } 743 744 /* 745 * Translate section/page access permissions to page R/W protection flags 746 * @env: CPUARMState 747 * @mmu_idx: MMU index indicating required translation regime 748 * @ap: The 3-bit access permissions (AP[2:0]) 749 * @domain_prot: The 2-bit domain access permissions 750 * @is_user: TRUE if accessing from PL0 751 */ 752 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx, 753 int ap, int domain_prot, bool is_user) 754 { 755 if (domain_prot == 3) { 756 return PAGE_READ | PAGE_WRITE; 757 } 758 759 switch (ap) { 760 case 0: 761 if (arm_feature(env, ARM_FEATURE_V7)) { 762 return 0; 763 } 764 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 765 case SCTLR_S: 766 return is_user ? 0 : PAGE_READ; 767 case SCTLR_R: 768 return PAGE_READ; 769 default: 770 return 0; 771 } 772 case 1: 773 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 774 case 2: 775 if (is_user) { 776 return PAGE_READ; 777 } else { 778 return PAGE_READ | PAGE_WRITE; 779 } 780 case 3: 781 return PAGE_READ | PAGE_WRITE; 782 case 4: /* Reserved. */ 783 return 0; 784 case 5: 785 return is_user ? 0 : PAGE_READ; 786 case 6: 787 return PAGE_READ; 788 case 7: 789 if (!arm_feature(env, ARM_FEATURE_V6K)) { 790 return 0; 791 } 792 return PAGE_READ; 793 default: 794 g_assert_not_reached(); 795 } 796 } 797 798 /* 799 * Translate section/page access permissions to page R/W protection flags 800 * @env: CPUARMState 801 * @mmu_idx: MMU index indicating required translation regime 802 * @ap: The 3-bit access permissions (AP[2:0]) 803 * @domain_prot: The 2-bit domain access permissions 804 */ 805 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 806 int ap, int domain_prot) 807 { 808 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 809 regime_is_user(env, mmu_idx)); 810 } 811 812 /* 813 * Translate section/page access permissions to page R/W protection flags. 814 * @ap: The 2-bit simple AP (AP[2:1]) 815 * @is_user: TRUE if accessing from PL0 816 */ 817 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 818 { 819 switch (ap) { 820 case 0: 821 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 822 case 1: 823 return PAGE_READ | PAGE_WRITE; 824 case 2: 825 return is_user ? 0 : PAGE_READ; 826 case 3: 827 return PAGE_READ; 828 default: 829 g_assert_not_reached(); 830 } 831 } 832 833 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 834 { 835 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 836 } 837 838 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, 839 uint32_t address, MMUAccessType access_type, 840 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 841 { 842 int level = 1; 843 uint32_t table; 844 uint32_t desc; 845 int type; 846 int ap; 847 int domain = 0; 848 int domain_prot; 849 hwaddr phys_addr; 850 uint32_t dacr; 851 852 /* Pagetable walk. */ 853 /* Lookup l1 descriptor. */ 854 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { 855 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 856 fi->type = ARMFault_Translation; 857 goto do_fault; 858 } 859 if (!S1_ptw_translate(env, ptw, table, fi)) { 860 goto do_fault; 861 } 862 desc = arm_ldl_ptw(env, ptw, fi); 863 if (fi->type != ARMFault_None) { 864 goto do_fault; 865 } 866 type = (desc & 3); 867 domain = (desc >> 5) & 0x0f; 868 if (regime_el(env, ptw->in_mmu_idx) == 1) { 869 dacr = env->cp15.dacr_ns; 870 } else { 871 dacr = env->cp15.dacr_s; 872 } 873 domain_prot = (dacr >> (domain * 2)) & 3; 874 if (type == 0) { 875 /* Section translation fault. */ 876 fi->type = ARMFault_Translation; 877 goto do_fault; 878 } 879 if (type != 2) { 880 level = 2; 881 } 882 if (domain_prot == 0 || domain_prot == 2) { 883 fi->type = ARMFault_Domain; 884 goto do_fault; 885 } 886 if (type == 2) { 887 /* 1Mb section. */ 888 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 889 ap = (desc >> 10) & 3; 890 result->f.lg_page_size = 20; /* 1MB */ 891 } else { 892 /* Lookup l2 entry. */ 893 if (type == 1) { 894 /* Coarse pagetable. */ 895 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 896 } else { 897 /* Fine pagetable. */ 898 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 899 } 900 if (!S1_ptw_translate(env, ptw, table, fi)) { 901 goto do_fault; 902 } 903 desc = arm_ldl_ptw(env, ptw, fi); 904 if (fi->type != ARMFault_None) { 905 goto do_fault; 906 } 907 switch (desc & 3) { 908 case 0: /* Page translation fault. */ 909 fi->type = ARMFault_Translation; 910 goto do_fault; 911 case 1: /* 64k page. */ 912 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 913 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 914 result->f.lg_page_size = 16; 915 break; 916 case 2: /* 4k page. */ 917 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 918 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 919 result->f.lg_page_size = 12; 920 break; 921 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 922 if (type == 1) { 923 /* ARMv6/XScale extended small page format */ 924 if (arm_feature(env, ARM_FEATURE_XSCALE) 925 || arm_feature(env, ARM_FEATURE_V6)) { 926 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 927 result->f.lg_page_size = 12; 928 } else { 929 /* 930 * UNPREDICTABLE in ARMv5; we choose to take a 931 * page translation fault. 932 */ 933 fi->type = ARMFault_Translation; 934 goto do_fault; 935 } 936 } else { 937 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 938 result->f.lg_page_size = 10; 939 } 940 ap = (desc >> 4) & 3; 941 break; 942 default: 943 /* Never happens, but compiler isn't smart enough to tell. */ 944 g_assert_not_reached(); 945 } 946 } 947 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); 948 result->f.prot |= result->f.prot ? PAGE_EXEC : 0; 949 if (!(result->f.prot & (1 << access_type))) { 950 /* Access permission fault. */ 951 fi->type = ARMFault_Permission; 952 goto do_fault; 953 } 954 result->f.phys_addr = phys_addr; 955 return false; 956 do_fault: 957 fi->domain = domain; 958 fi->level = level; 959 return true; 960 } 961 962 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, 963 uint32_t address, MMUAccessType access_type, 964 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 965 { 966 ARMCPU *cpu = env_archcpu(env); 967 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 968 int level = 1; 969 uint32_t table; 970 uint32_t desc; 971 uint32_t xn; 972 uint32_t pxn = 0; 973 int type; 974 int ap; 975 int domain = 0; 976 int domain_prot; 977 hwaddr phys_addr; 978 uint32_t dacr; 979 bool ns; 980 int user_prot; 981 982 /* Pagetable walk. */ 983 /* Lookup l1 descriptor. */ 984 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 985 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 986 fi->type = ARMFault_Translation; 987 goto do_fault; 988 } 989 if (!S1_ptw_translate(env, ptw, table, fi)) { 990 goto do_fault; 991 } 992 desc = arm_ldl_ptw(env, ptw, fi); 993 if (fi->type != ARMFault_None) { 994 goto do_fault; 995 } 996 type = (desc & 3); 997 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 998 /* Section translation fault, or attempt to use the encoding 999 * which is Reserved on implementations without PXN. 1000 */ 1001 fi->type = ARMFault_Translation; 1002 goto do_fault; 1003 } 1004 if ((type == 1) || !(desc & (1 << 18))) { 1005 /* Page or Section. */ 1006 domain = (desc >> 5) & 0x0f; 1007 } 1008 if (regime_el(env, mmu_idx) == 1) { 1009 dacr = env->cp15.dacr_ns; 1010 } else { 1011 dacr = env->cp15.dacr_s; 1012 } 1013 if (type == 1) { 1014 level = 2; 1015 } 1016 domain_prot = (dacr >> (domain * 2)) & 3; 1017 if (domain_prot == 0 || domain_prot == 2) { 1018 /* Section or Page domain fault */ 1019 fi->type = ARMFault_Domain; 1020 goto do_fault; 1021 } 1022 if (type != 1) { 1023 if (desc & (1 << 18)) { 1024 /* Supersection. */ 1025 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 1026 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 1027 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 1028 result->f.lg_page_size = 24; /* 16MB */ 1029 } else { 1030 /* Section. */ 1031 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 1032 result->f.lg_page_size = 20; /* 1MB */ 1033 } 1034 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 1035 xn = desc & (1 << 4); 1036 pxn = desc & 1; 1037 ns = extract32(desc, 19, 1); 1038 } else { 1039 if (cpu_isar_feature(aa32_pxn, cpu)) { 1040 pxn = (desc >> 2) & 1; 1041 } 1042 ns = extract32(desc, 3, 1); 1043 /* Lookup l2 entry. */ 1044 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 1045 if (!S1_ptw_translate(env, ptw, table, fi)) { 1046 goto do_fault; 1047 } 1048 desc = arm_ldl_ptw(env, ptw, fi); 1049 if (fi->type != ARMFault_None) { 1050 goto do_fault; 1051 } 1052 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 1053 switch (desc & 3) { 1054 case 0: /* Page translation fault. */ 1055 fi->type = ARMFault_Translation; 1056 goto do_fault; 1057 case 1: /* 64k page. */ 1058 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 1059 xn = desc & (1 << 15); 1060 result->f.lg_page_size = 16; 1061 break; 1062 case 2: case 3: /* 4k page. */ 1063 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1064 xn = desc & 1; 1065 result->f.lg_page_size = 12; 1066 break; 1067 default: 1068 /* Never happens, but compiler isn't smart enough to tell. */ 1069 g_assert_not_reached(); 1070 } 1071 } 1072 if (domain_prot == 3) { 1073 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1074 } else { 1075 if (pxn && !regime_is_user(env, mmu_idx)) { 1076 xn = 1; 1077 } 1078 if (xn && access_type == MMU_INST_FETCH) { 1079 fi->type = ARMFault_Permission; 1080 goto do_fault; 1081 } 1082 1083 if (arm_feature(env, ARM_FEATURE_V6K) && 1084 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 1085 /* The simplified model uses AP[0] as an access control bit. */ 1086 if ((ap & 1) == 0) { 1087 /* Access flag fault. */ 1088 fi->type = ARMFault_AccessFlag; 1089 goto do_fault; 1090 } 1091 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 1092 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1); 1093 } else { 1094 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 1095 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1); 1096 } 1097 if (result->f.prot && !xn) { 1098 result->f.prot |= PAGE_EXEC; 1099 } 1100 if (!(result->f.prot & (1 << access_type))) { 1101 /* Access permission fault. */ 1102 fi->type = ARMFault_Permission; 1103 goto do_fault; 1104 } 1105 if (regime_is_pan(env, mmu_idx) && 1106 !regime_is_user(env, mmu_idx) && 1107 user_prot && 1108 access_type != MMU_INST_FETCH) { 1109 /* Privileged Access Never fault */ 1110 fi->type = ARMFault_Permission; 1111 goto do_fault; 1112 } 1113 } 1114 if (ns) { 1115 /* The NS bit will (as required by the architecture) have no effect if 1116 * the CPU doesn't support TZ or this is a non-secure translation 1117 * regime, because the attribute will already be non-secure. 1118 */ 1119 result->f.attrs.secure = false; 1120 result->f.attrs.space = ARMSS_NonSecure; 1121 } 1122 result->f.phys_addr = phys_addr; 1123 return false; 1124 do_fault: 1125 fi->domain = domain; 1126 fi->level = level; 1127 return true; 1128 } 1129 1130 /* 1131 * Translate S2 section/page access permissions to protection flags 1132 * @env: CPUARMState 1133 * @s2ap: The 2-bit stage2 access permissions (S2AP) 1134 * @xn: XN (execute-never) bits 1135 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 1136 */ 1137 static int get_S2prot_noexecute(int s2ap) 1138 { 1139 int prot = 0; 1140 1141 if (s2ap & 1) { 1142 prot |= PAGE_READ; 1143 } 1144 if (s2ap & 2) { 1145 prot |= PAGE_WRITE; 1146 } 1147 return prot; 1148 } 1149 1150 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 1151 { 1152 int prot = get_S2prot_noexecute(s2ap); 1153 1154 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 1155 switch (xn) { 1156 case 0: 1157 prot |= PAGE_EXEC; 1158 break; 1159 case 1: 1160 if (s1_is_el0) { 1161 prot |= PAGE_EXEC; 1162 } 1163 break; 1164 case 2: 1165 break; 1166 case 3: 1167 if (!s1_is_el0) { 1168 prot |= PAGE_EXEC; 1169 } 1170 break; 1171 default: 1172 g_assert_not_reached(); 1173 } 1174 } else { 1175 if (!extract32(xn, 1, 1)) { 1176 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 1177 prot |= PAGE_EXEC; 1178 } 1179 } 1180 } 1181 return prot; 1182 } 1183 1184 /* 1185 * Translate section/page access permissions to protection flags 1186 * @env: CPUARMState 1187 * @mmu_idx: MMU index indicating required translation regime 1188 * @is_aa64: TRUE if AArch64 1189 * @ap: The 2-bit simple AP (AP[2:1]) 1190 * @xn: XN (execute-never) bit 1191 * @pxn: PXN (privileged execute-never) bit 1192 * @in_pa: The original input pa space 1193 * @out_pa: The output pa space, modified by NSTable, NS, and NSE 1194 */ 1195 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 1196 int ap, int xn, int pxn, 1197 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa) 1198 { 1199 ARMCPU *cpu = env_archcpu(env); 1200 bool is_user = regime_is_user(env, mmu_idx); 1201 int prot_rw, user_rw; 1202 bool have_wxn; 1203 int wxn = 0; 1204 1205 assert(!regime_is_stage2(mmu_idx)); 1206 1207 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 1208 if (is_user) { 1209 prot_rw = user_rw; 1210 } else { 1211 /* 1212 * PAN controls can forbid data accesses but don't affect insn fetch. 1213 * Plain PAN forbids data accesses if EL0 has data permissions; 1214 * PAN3 forbids data accesses if EL0 has either data or exec perms. 1215 * Note that for AArch64 the 'user can exec' case is exactly !xn. 1216 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0 1217 * do not affect EPAN. 1218 */ 1219 if (user_rw && regime_is_pan(env, mmu_idx)) { 1220 prot_rw = 0; 1221 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 && 1222 regime_is_pan(env, mmu_idx) && 1223 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) { 1224 prot_rw = 0; 1225 } else { 1226 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 1227 } 1228 } 1229 1230 if (in_pa != out_pa) { 1231 switch (in_pa) { 1232 case ARMSS_Root: 1233 /* 1234 * R_ZWRVD: permission fault for insn fetched from non-Root, 1235 * I_WWBFB: SIF has no effect in EL3. 1236 */ 1237 return prot_rw; 1238 case ARMSS_Realm: 1239 /* 1240 * R_PKTDS: permission fault for insn fetched from non-Realm, 1241 * for Realm EL2 or EL2&0. The corresponding fault for EL1&0 1242 * happens during any stage2 translation. 1243 */ 1244 switch (mmu_idx) { 1245 case ARMMMUIdx_E2: 1246 case ARMMMUIdx_E20_0: 1247 case ARMMMUIdx_E20_2: 1248 case ARMMMUIdx_E20_2_PAN: 1249 return prot_rw; 1250 default: 1251 break; 1252 } 1253 break; 1254 case ARMSS_Secure: 1255 if (env->cp15.scr_el3 & SCR_SIF) { 1256 return prot_rw; 1257 } 1258 break; 1259 default: 1260 /* Input NonSecure must have output NonSecure. */ 1261 g_assert_not_reached(); 1262 } 1263 } 1264 1265 /* TODO have_wxn should be replaced with 1266 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 1267 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 1268 * compatible processors have EL2, which is required for [U]WXN. 1269 */ 1270 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 1271 1272 if (have_wxn) { 1273 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 1274 } 1275 1276 if (is_aa64) { 1277 if (regime_has_2_ranges(mmu_idx) && !is_user) { 1278 xn = pxn || (user_rw & PAGE_WRITE); 1279 } 1280 } else if (arm_feature(env, ARM_FEATURE_V7)) { 1281 switch (regime_el(env, mmu_idx)) { 1282 case 1: 1283 case 3: 1284 if (is_user) { 1285 xn = xn || !(user_rw & PAGE_READ); 1286 } else { 1287 int uwxn = 0; 1288 if (have_wxn) { 1289 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 1290 } 1291 xn = xn || !(prot_rw & PAGE_READ) || pxn || 1292 (uwxn && (user_rw & PAGE_WRITE)); 1293 } 1294 break; 1295 case 2: 1296 break; 1297 } 1298 } else { 1299 xn = wxn = 0; 1300 } 1301 1302 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 1303 return prot_rw; 1304 } 1305 return prot_rw | PAGE_EXEC; 1306 } 1307 1308 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 1309 ARMMMUIdx mmu_idx) 1310 { 1311 uint64_t tcr = regime_tcr(env, mmu_idx); 1312 uint32_t el = regime_el(env, mmu_idx); 1313 int select, tsz; 1314 bool epd, hpd; 1315 1316 assert(mmu_idx != ARMMMUIdx_Stage2_S); 1317 1318 if (mmu_idx == ARMMMUIdx_Stage2) { 1319 /* VTCR */ 1320 bool sext = extract32(tcr, 4, 1); 1321 bool sign = extract32(tcr, 3, 1); 1322 1323 /* 1324 * If the sign-extend bit is not the same as t0sz[3], the result 1325 * is unpredictable. Flag this as a guest error. 1326 */ 1327 if (sign != sext) { 1328 qemu_log_mask(LOG_GUEST_ERROR, 1329 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 1330 } 1331 tsz = sextract32(tcr, 0, 4) + 8; 1332 select = 0; 1333 hpd = false; 1334 epd = false; 1335 } else if (el == 2) { 1336 /* HTCR */ 1337 tsz = extract32(tcr, 0, 3); 1338 select = 0; 1339 hpd = extract64(tcr, 24, 1); 1340 epd = false; 1341 } else { 1342 int t0sz = extract32(tcr, 0, 3); 1343 int t1sz = extract32(tcr, 16, 3); 1344 1345 if (t1sz == 0) { 1346 select = va > (0xffffffffu >> t0sz); 1347 } else { 1348 /* Note that we will detect errors later. */ 1349 select = va >= ~(0xffffffffu >> t1sz); 1350 } 1351 if (!select) { 1352 tsz = t0sz; 1353 epd = extract32(tcr, 7, 1); 1354 hpd = extract64(tcr, 41, 1); 1355 } else { 1356 tsz = t1sz; 1357 epd = extract32(tcr, 23, 1); 1358 hpd = extract64(tcr, 42, 1); 1359 } 1360 /* For aarch32, hpd0 is not enabled without t2e as well. */ 1361 hpd &= extract32(tcr, 6, 1); 1362 } 1363 1364 return (ARMVAParameters) { 1365 .tsz = tsz, 1366 .select = select, 1367 .epd = epd, 1368 .hpd = hpd, 1369 }; 1370 } 1371 1372 /* 1373 * check_s2_mmu_setup 1374 * @cpu: ARMCPU 1375 * @is_aa64: True if the translation regime is in AArch64 state 1376 * @tcr: VTCR_EL2 or VSTCR_EL2 1377 * @ds: Effective value of TCR.DS. 1378 * @iasize: Bitsize of IPAs 1379 * @stride: Page-table stride (See the ARM ARM) 1380 * 1381 * Decode the starting level of the S2 lookup, returning INT_MIN if 1382 * the configuration is invalid. 1383 */ 1384 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr, 1385 bool ds, int iasize, int stride) 1386 { 1387 int sl0, sl2, startlevel, granulebits, levels; 1388 int s1_min_iasize, s1_max_iasize; 1389 1390 sl0 = extract32(tcr, 6, 2); 1391 if (is_aa64) { 1392 /* 1393 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size, 1394 * so interleave AArch64.S2StartLevel. 1395 */ 1396 switch (stride) { 1397 case 9: /* 4KB */ 1398 /* SL2 is RES0 unless DS=1 & 4KB granule. */ 1399 sl2 = extract64(tcr, 33, 1); 1400 if (ds && sl2) { 1401 if (sl0 != 0) { 1402 goto fail; 1403 } 1404 startlevel = -1; 1405 } else { 1406 startlevel = 2 - sl0; 1407 switch (sl0) { 1408 case 2: 1409 if (arm_pamax(cpu) < 44) { 1410 goto fail; 1411 } 1412 break; 1413 case 3: 1414 if (!cpu_isar_feature(aa64_st, cpu)) { 1415 goto fail; 1416 } 1417 startlevel = 3; 1418 break; 1419 } 1420 } 1421 break; 1422 case 11: /* 16KB */ 1423 switch (sl0) { 1424 case 2: 1425 if (arm_pamax(cpu) < 42) { 1426 goto fail; 1427 } 1428 break; 1429 case 3: 1430 if (!ds) { 1431 goto fail; 1432 } 1433 break; 1434 } 1435 startlevel = 3 - sl0; 1436 break; 1437 case 13: /* 64KB */ 1438 switch (sl0) { 1439 case 2: 1440 if (arm_pamax(cpu) < 44) { 1441 goto fail; 1442 } 1443 break; 1444 case 3: 1445 goto fail; 1446 } 1447 startlevel = 3 - sl0; 1448 break; 1449 default: 1450 g_assert_not_reached(); 1451 } 1452 } else { 1453 /* 1454 * Things are simpler for AArch32 EL2, with only 4k pages. 1455 * There is no separate S2InvalidSL function, but AArch32.S2Walk 1456 * begins with walkparms.sl0 in {'1x'}. 1457 */ 1458 assert(stride == 9); 1459 if (sl0 >= 2) { 1460 goto fail; 1461 } 1462 startlevel = 2 - sl0; 1463 } 1464 1465 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */ 1466 levels = 3 - startlevel; 1467 granulebits = stride + 3; 1468 1469 s1_min_iasize = levels * stride + granulebits + 1; 1470 s1_max_iasize = s1_min_iasize + (stride - 1) + 4; 1471 1472 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) { 1473 return startlevel; 1474 } 1475 1476 fail: 1477 return INT_MIN; 1478 } 1479 1480 /** 1481 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 1482 * 1483 * Returns false if the translation was successful. Otherwise, phys_ptr, 1484 * attrs, prot and page_size may not be filled in, and the populated fsr 1485 * value provides information on why the translation aborted, in the format 1486 * of a long-format DFSR/IFSR fault register, with the following caveat: 1487 * the WnR bit is never set (the caller must do this). 1488 * 1489 * @env: CPUARMState 1490 * @ptw: Current and next stage parameters for the walk. 1491 * @address: virtual address to get physical address for 1492 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 1493 * @result: set on translation success, 1494 * @fi: set to fault info if the translation fails 1495 */ 1496 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 1497 uint64_t address, 1498 MMUAccessType access_type, 1499 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1500 { 1501 ARMCPU *cpu = env_archcpu(env); 1502 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1503 int32_t level; 1504 ARMVAParameters param; 1505 uint64_t ttbr; 1506 hwaddr descaddr, indexmask, indexmask_grainsize; 1507 uint32_t tableattrs; 1508 target_ulong page_size; 1509 uint64_t attrs; 1510 int32_t stride; 1511 int addrsize, inputsize, outputsize; 1512 uint64_t tcr = regime_tcr(env, mmu_idx); 1513 int ap, xn, pxn; 1514 uint32_t el = regime_el(env, mmu_idx); 1515 uint64_t descaddrmask; 1516 bool aarch64 = arm_el_is_aa64(env, el); 1517 uint64_t descriptor, new_descriptor; 1518 ARMSecuritySpace out_space; 1519 1520 /* TODO: This code does not support shareability levels. */ 1521 if (aarch64) { 1522 int ps; 1523 1524 param = aa64_va_parameters(env, address, mmu_idx, 1525 access_type != MMU_INST_FETCH, 1526 !arm_el_is_aa64(env, 1)); 1527 level = 0; 1528 1529 /* 1530 * If TxSZ is programmed to a value larger than the maximum, 1531 * or smaller than the effective minimum, it is IMPLEMENTATION 1532 * DEFINED whether we behave as if the field were programmed 1533 * within bounds, or if a level 0 Translation fault is generated. 1534 * 1535 * With FEAT_LVA, fault on less than minimum becomes required, 1536 * so our choice is to always raise the fault. 1537 */ 1538 if (param.tsz_oob) { 1539 goto do_translation_fault; 1540 } 1541 1542 addrsize = 64 - 8 * param.tbi; 1543 inputsize = 64 - param.tsz; 1544 1545 /* 1546 * Bound PS by PARANGE to find the effective output address size. 1547 * ID_AA64MMFR0 is a read-only register so values outside of the 1548 * supported mappings can be considered an implementation error. 1549 */ 1550 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1551 ps = MIN(ps, param.ps); 1552 assert(ps < ARRAY_SIZE(pamax_map)); 1553 outputsize = pamax_map[ps]; 1554 1555 /* 1556 * With LPA2, the effective output address (OA) size is at most 48 bits 1557 * unless TCR.DS == 1 1558 */ 1559 if (!param.ds && param.gran != Gran64K) { 1560 outputsize = MIN(outputsize, 48); 1561 } 1562 } else { 1563 param = aa32_va_parameters(env, address, mmu_idx); 1564 level = 1; 1565 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1566 inputsize = addrsize - param.tsz; 1567 outputsize = 40; 1568 } 1569 1570 /* 1571 * We determined the region when collecting the parameters, but we 1572 * have not yet validated that the address is valid for the region. 1573 * Extract the top bits and verify that they all match select. 1574 * 1575 * For aa32, if inputsize == addrsize, then we have selected the 1576 * region by exclusion in aa32_va_parameters and there is no more 1577 * validation to do here. 1578 */ 1579 if (inputsize < addrsize) { 1580 target_ulong top_bits = sextract64(address, inputsize, 1581 addrsize - inputsize); 1582 if (-top_bits != param.select) { 1583 /* The gap between the two regions is a Translation fault */ 1584 goto do_translation_fault; 1585 } 1586 } 1587 1588 stride = arm_granule_bits(param.gran) - 3; 1589 1590 /* 1591 * Note that QEMU ignores shareability and cacheability attributes, 1592 * so we don't need to do anything with the SH, ORGN, IRGN fields 1593 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1594 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1595 * implement any ASID-like capability so we can ignore it (instead 1596 * we will always flush the TLB any time the ASID is changed). 1597 */ 1598 ttbr = regime_ttbr(env, mmu_idx, param.select); 1599 1600 /* 1601 * Here we should have set up all the parameters for the translation: 1602 * inputsize, ttbr, epd, stride, tbi 1603 */ 1604 1605 if (param.epd) { 1606 /* 1607 * Translation table walk disabled => Translation fault on TLB miss 1608 * Note: This is always 0 on 64-bit EL2 and EL3. 1609 */ 1610 goto do_translation_fault; 1611 } 1612 1613 if (!regime_is_stage2(mmu_idx)) { 1614 /* 1615 * The starting level depends on the virtual address size (which can 1616 * be up to 48 bits) and the translation granule size. It indicates 1617 * the number of strides (stride bits at a time) needed to 1618 * consume the bits of the input address. In the pseudocode this is: 1619 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1620 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1621 * our 'stride + 3' and 'stride' is our 'stride'. 1622 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1623 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1624 * = 4 - (inputsize - 4) / stride; 1625 */ 1626 level = 4 - (inputsize - 4) / stride; 1627 } else { 1628 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds, 1629 inputsize, stride); 1630 if (startlevel == INT_MIN) { 1631 level = 0; 1632 goto do_translation_fault; 1633 } 1634 level = startlevel; 1635 } 1636 1637 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1638 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1639 1640 /* Now we can extract the actual base address from the TTBR */ 1641 descaddr = extract64(ttbr, 0, 48); 1642 1643 /* 1644 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1645 * 1646 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1647 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1648 * but we've just cleared the bits above 47, so simplify the test. 1649 */ 1650 if (outputsize > 48) { 1651 descaddr |= extract64(ttbr, 2, 4) << 48; 1652 } else if (descaddr >> outputsize) { 1653 level = 0; 1654 fi->type = ARMFault_AddressSize; 1655 goto do_fault; 1656 } 1657 1658 /* 1659 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1660 * and also to mask out CnP (bit 0) which could validly be non-zero. 1661 */ 1662 descaddr &= ~indexmask; 1663 1664 /* 1665 * For AArch32, the address field in the descriptor goes up to bit 39 1666 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1667 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1668 * bits as part of the address, which will be checked via outputsize. 1669 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1670 * the highest bits of a 52-bit output are placed elsewhere. 1671 */ 1672 if (param.ds) { 1673 descaddrmask = MAKE_64BIT_MASK(0, 50); 1674 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1675 descaddrmask = MAKE_64BIT_MASK(0, 48); 1676 } else { 1677 descaddrmask = MAKE_64BIT_MASK(0, 40); 1678 } 1679 descaddrmask &= ~indexmask_grainsize; 1680 tableattrs = 0; 1681 1682 next_level: 1683 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1684 descaddr &= ~7ULL; 1685 1686 /* 1687 * Process the NSTable bit from the previous level. This changes 1688 * the table address space and the output space from Secure to 1689 * NonSecure. With RME, the EL3 translation regime does not change 1690 * from Root to NonSecure. 1691 */ 1692 if (ptw->in_space == ARMSS_Secure 1693 && !regime_is_stage2(mmu_idx) 1694 && extract32(tableattrs, 4, 1)) { 1695 /* 1696 * Stage2_S -> Stage2 or Phys_S -> Phys_NS 1697 * Assert the relative order of the secure/non-secure indexes. 1698 */ 1699 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS); 1700 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2); 1701 ptw->in_ptw_idx += 1; 1702 ptw->in_secure = false; 1703 ptw->in_space = ARMSS_NonSecure; 1704 } 1705 1706 if (!S1_ptw_translate(env, ptw, descaddr, fi)) { 1707 goto do_fault; 1708 } 1709 descriptor = arm_ldq_ptw(env, ptw, fi); 1710 if (fi->type != ARMFault_None) { 1711 goto do_fault; 1712 } 1713 new_descriptor = descriptor; 1714 1715 restart_atomic_update: 1716 if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) { 1717 /* Invalid, or the Reserved level 3 encoding */ 1718 goto do_translation_fault; 1719 } 1720 1721 descaddr = descriptor & descaddrmask; 1722 1723 /* 1724 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1725 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1726 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1727 * raise AddressSizeFault. 1728 */ 1729 if (outputsize > 48) { 1730 if (param.ds) { 1731 descaddr |= extract64(descriptor, 8, 2) << 50; 1732 } else { 1733 descaddr |= extract64(descriptor, 12, 4) << 48; 1734 } 1735 } else if (descaddr >> outputsize) { 1736 fi->type = ARMFault_AddressSize; 1737 goto do_fault; 1738 } 1739 1740 if ((descriptor & 2) && (level < 3)) { 1741 /* 1742 * Table entry. The top five bits are attributes which may 1743 * propagate down through lower levels of the table (and 1744 * which are all arranged so that 0 means "no effect", so 1745 * we can gather them up by ORing in the bits at each level). 1746 */ 1747 tableattrs |= extract64(descriptor, 59, 5); 1748 level++; 1749 indexmask = indexmask_grainsize; 1750 goto next_level; 1751 } 1752 1753 /* 1754 * Block entry at level 1 or 2, or page entry at level 3. 1755 * These are basically the same thing, although the number 1756 * of bits we pull in from the vaddr varies. Note that although 1757 * descaddrmask masks enough of the low bits of the descriptor 1758 * to give a correct page or table address, the address field 1759 * in a block descriptor is smaller; so we need to explicitly 1760 * clear the lower bits here before ORing in the low vaddr bits. 1761 * 1762 * Afterward, descaddr is the final physical address. 1763 */ 1764 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1765 descaddr &= ~(hwaddr)(page_size - 1); 1766 descaddr |= (address & (page_size - 1)); 1767 1768 if (likely(!ptw->in_debug)) { 1769 /* 1770 * Access flag. 1771 * If HA is enabled, prepare to update the descriptor below. 1772 * Otherwise, pass the access fault on to software. 1773 */ 1774 if (!(descriptor & (1 << 10))) { 1775 if (param.ha) { 1776 new_descriptor |= 1 << 10; /* AF */ 1777 } else { 1778 fi->type = ARMFault_AccessFlag; 1779 goto do_fault; 1780 } 1781 } 1782 1783 /* 1784 * Dirty Bit. 1785 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP 1786 * bit for writeback. The actual write protection test may still be 1787 * overridden by tableattrs, to be merged below. 1788 */ 1789 if (param.hd 1790 && extract64(descriptor, 51, 1) /* DBM */ 1791 && access_type == MMU_DATA_STORE) { 1792 if (regime_is_stage2(mmu_idx)) { 1793 new_descriptor |= 1ull << 7; /* set S2AP[1] */ 1794 } else { 1795 new_descriptor &= ~(1ull << 7); /* clear AP[2] */ 1796 } 1797 } 1798 } 1799 1800 /* 1801 * Extract attributes from the (modified) descriptor, and apply 1802 * table descriptors. Stage 2 table descriptors do not include 1803 * any attribute fields. HPD disables all the table attributes 1804 * except NSTable. 1805 */ 1806 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14)); 1807 if (!regime_is_stage2(mmu_idx)) { 1808 attrs |= !ptw->in_secure << 5; /* NS */ 1809 if (!param.hpd) { 1810 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */ 1811 /* 1812 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 1813 * means "force PL1 access only", which means forcing AP[1] to 0. 1814 */ 1815 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */ 1816 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */ 1817 } 1818 } 1819 1820 ap = extract32(attrs, 6, 2); 1821 out_space = ptw->in_space; 1822 if (regime_is_stage2(mmu_idx)) { 1823 /* 1824 * R_GYNXY: For stage2 in Realm security state, bit 55 is NS. 1825 * The bit remains ignored for other security states. 1826 * R_YMCSL: Executing an insn fetched from non-Realm causes 1827 * a stage2 permission fault. 1828 */ 1829 if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) { 1830 out_space = ARMSS_NonSecure; 1831 result->f.prot = get_S2prot_noexecute(ap); 1832 } else { 1833 xn = extract64(attrs, 53, 2); 1834 result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0); 1835 } 1836 } else { 1837 int nse, ns = extract32(attrs, 5, 1); 1838 switch (out_space) { 1839 case ARMSS_Root: 1840 /* 1841 * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime. 1842 * R_XTYPW: NSE and NS together select the output pa space. 1843 */ 1844 nse = extract32(attrs, 11, 1); 1845 out_space = (nse << 1) | ns; 1846 if (out_space == ARMSS_Secure && 1847 !cpu_isar_feature(aa64_sel2, cpu)) { 1848 out_space = ARMSS_NonSecure; 1849 } 1850 break; 1851 case ARMSS_Secure: 1852 if (ns) { 1853 out_space = ARMSS_NonSecure; 1854 } 1855 break; 1856 case ARMSS_Realm: 1857 switch (mmu_idx) { 1858 case ARMMMUIdx_Stage1_E0: 1859 case ARMMMUIdx_Stage1_E1: 1860 case ARMMMUIdx_Stage1_E1_PAN: 1861 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */ 1862 break; 1863 case ARMMMUIdx_E2: 1864 case ARMMMUIdx_E20_0: 1865 case ARMMMUIdx_E20_2: 1866 case ARMMMUIdx_E20_2_PAN: 1867 /* 1868 * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1, 1869 * NS changes the output to non-secure space. 1870 */ 1871 if (ns) { 1872 out_space = ARMSS_NonSecure; 1873 } 1874 break; 1875 default: 1876 g_assert_not_reached(); 1877 } 1878 break; 1879 case ARMSS_NonSecure: 1880 /* R_QRMFF: For NonSecure state, the NS bit is RES0. */ 1881 break; 1882 default: 1883 g_assert_not_reached(); 1884 } 1885 xn = extract64(attrs, 54, 1); 1886 pxn = extract64(attrs, 53, 1); 1887 1888 /* 1889 * Note that we modified ptw->in_space earlier for NSTable, but 1890 * result->f.attrs retains a copy of the original security space. 1891 */ 1892 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn, 1893 result->f.attrs.space, out_space); 1894 } 1895 1896 if (!(result->f.prot & (1 << access_type))) { 1897 fi->type = ARMFault_Permission; 1898 goto do_fault; 1899 } 1900 1901 /* If FEAT_HAFDBS has made changes, update the PTE. */ 1902 if (new_descriptor != descriptor) { 1903 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi); 1904 if (fi->type != ARMFault_None) { 1905 goto do_fault; 1906 } 1907 /* 1908 * I_YZSVV says that if the in-memory descriptor has changed, 1909 * then we must use the information in that new value 1910 * (which might include a different output address, different 1911 * attributes, or generate a fault). 1912 * Restart the handling of the descriptor value from scratch. 1913 */ 1914 if (new_descriptor != descriptor) { 1915 descriptor = new_descriptor; 1916 goto restart_atomic_update; 1917 } 1918 } 1919 1920 result->f.attrs.space = out_space; 1921 result->f.attrs.secure = arm_space_is_secure(out_space); 1922 1923 if (regime_is_stage2(mmu_idx)) { 1924 result->cacheattrs.is_s2_format = true; 1925 result->cacheattrs.attrs = extract32(attrs, 2, 4); 1926 } else { 1927 /* Index into MAIR registers for cache attributes */ 1928 uint8_t attrindx = extract32(attrs, 2, 3); 1929 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 1930 assert(attrindx <= 7); 1931 result->cacheattrs.is_s2_format = false; 1932 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 1933 1934 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ 1935 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { 1936 result->f.guarded = extract64(attrs, 50, 1); /* GP */ 1937 } 1938 } 1939 1940 /* 1941 * For FEAT_LPA2 and effective DS, the SH field in the attributes 1942 * was re-purposed for output address bits. The SH attribute in 1943 * that case comes from TCR_ELx, which we extracted earlier. 1944 */ 1945 if (param.ds) { 1946 result->cacheattrs.shareability = param.sh; 1947 } else { 1948 result->cacheattrs.shareability = extract32(attrs, 8, 2); 1949 } 1950 1951 result->f.phys_addr = descaddr; 1952 result->f.lg_page_size = ctz64(page_size); 1953 return false; 1954 1955 do_translation_fault: 1956 fi->type = ARMFault_Translation; 1957 do_fault: 1958 fi->level = level; 1959 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 1960 fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx); 1961 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 1962 return true; 1963 } 1964 1965 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 1966 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1967 bool is_secure, GetPhysAddrResult *result, 1968 ARMMMUFaultInfo *fi) 1969 { 1970 int n; 1971 uint32_t mask; 1972 uint32_t base; 1973 bool is_user = regime_is_user(env, mmu_idx); 1974 1975 if (regime_translation_disabled(env, mmu_idx, is_secure)) { 1976 /* MPU disabled. */ 1977 result->f.phys_addr = address; 1978 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1979 return false; 1980 } 1981 1982 result->f.phys_addr = address; 1983 for (n = 7; n >= 0; n--) { 1984 base = env->cp15.c6_region[n]; 1985 if ((base & 1) == 0) { 1986 continue; 1987 } 1988 mask = 1 << ((base >> 1) & 0x1f); 1989 /* Keep this shift separate from the above to avoid an 1990 (undefined) << 32. */ 1991 mask = (mask << 1) - 1; 1992 if (((base ^ address) & ~mask) == 0) { 1993 break; 1994 } 1995 } 1996 if (n < 0) { 1997 fi->type = ARMFault_Background; 1998 return true; 1999 } 2000 2001 if (access_type == MMU_INST_FETCH) { 2002 mask = env->cp15.pmsav5_insn_ap; 2003 } else { 2004 mask = env->cp15.pmsav5_data_ap; 2005 } 2006 mask = (mask >> (n * 4)) & 0xf; 2007 switch (mask) { 2008 case 0: 2009 fi->type = ARMFault_Permission; 2010 fi->level = 1; 2011 return true; 2012 case 1: 2013 if (is_user) { 2014 fi->type = ARMFault_Permission; 2015 fi->level = 1; 2016 return true; 2017 } 2018 result->f.prot = PAGE_READ | PAGE_WRITE; 2019 break; 2020 case 2: 2021 result->f.prot = PAGE_READ; 2022 if (!is_user) { 2023 result->f.prot |= PAGE_WRITE; 2024 } 2025 break; 2026 case 3: 2027 result->f.prot = PAGE_READ | PAGE_WRITE; 2028 break; 2029 case 5: 2030 if (is_user) { 2031 fi->type = ARMFault_Permission; 2032 fi->level = 1; 2033 return true; 2034 } 2035 result->f.prot = PAGE_READ; 2036 break; 2037 case 6: 2038 result->f.prot = PAGE_READ; 2039 break; 2040 default: 2041 /* Bad permission. */ 2042 fi->type = ARMFault_Permission; 2043 fi->level = 1; 2044 return true; 2045 } 2046 result->f.prot |= PAGE_EXEC; 2047 return false; 2048 } 2049 2050 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 2051 int32_t address, uint8_t *prot) 2052 { 2053 if (!arm_feature(env, ARM_FEATURE_M)) { 2054 *prot = PAGE_READ | PAGE_WRITE; 2055 switch (address) { 2056 case 0xF0000000 ... 0xFFFFFFFF: 2057 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 2058 /* hivecs execing is ok */ 2059 *prot |= PAGE_EXEC; 2060 } 2061 break; 2062 case 0x00000000 ... 0x7FFFFFFF: 2063 *prot |= PAGE_EXEC; 2064 break; 2065 } 2066 } else { 2067 /* Default system address map for M profile cores. 2068 * The architecture specifies which regions are execute-never; 2069 * at the MPU level no other checks are defined. 2070 */ 2071 switch (address) { 2072 case 0x00000000 ... 0x1fffffff: /* ROM */ 2073 case 0x20000000 ... 0x3fffffff: /* SRAM */ 2074 case 0x60000000 ... 0x7fffffff: /* RAM */ 2075 case 0x80000000 ... 0x9fffffff: /* RAM */ 2076 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2077 break; 2078 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 2079 case 0xa0000000 ... 0xbfffffff: /* Device */ 2080 case 0xc0000000 ... 0xdfffffff: /* Device */ 2081 case 0xe0000000 ... 0xffffffff: /* System */ 2082 *prot = PAGE_READ | PAGE_WRITE; 2083 break; 2084 default: 2085 g_assert_not_reached(); 2086 } 2087 } 2088 } 2089 2090 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 2091 { 2092 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 2093 return arm_feature(env, ARM_FEATURE_M) && 2094 extract32(address, 20, 12) == 0xe00; 2095 } 2096 2097 static bool m_is_system_region(CPUARMState *env, uint32_t address) 2098 { 2099 /* 2100 * True if address is in the M profile system region 2101 * 0xe0000000 - 0xffffffff 2102 */ 2103 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 2104 } 2105 2106 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 2107 bool is_secure, bool is_user) 2108 { 2109 /* 2110 * Return true if we should use the default memory map as a 2111 * "background" region if there are no hits against any MPU regions. 2112 */ 2113 CPUARMState *env = &cpu->env; 2114 2115 if (is_user) { 2116 return false; 2117 } 2118 2119 if (arm_feature(env, ARM_FEATURE_M)) { 2120 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 2121 } 2122 2123 if (mmu_idx == ARMMMUIdx_Stage2) { 2124 return false; 2125 } 2126 2127 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 2128 } 2129 2130 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 2131 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2132 bool secure, GetPhysAddrResult *result, 2133 ARMMMUFaultInfo *fi) 2134 { 2135 ARMCPU *cpu = env_archcpu(env); 2136 int n; 2137 bool is_user = regime_is_user(env, mmu_idx); 2138 2139 result->f.phys_addr = address; 2140 result->f.lg_page_size = TARGET_PAGE_BITS; 2141 result->f.prot = 0; 2142 2143 if (regime_translation_disabled(env, mmu_idx, secure) || 2144 m_is_ppb_region(env, address)) { 2145 /* 2146 * MPU disabled or M profile PPB access: use default memory map. 2147 * The other case which uses the default memory map in the 2148 * v7M ARM ARM pseudocode is exception vector reads from the vector 2149 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 2150 * which always does a direct read using address_space_ldl(), rather 2151 * than going via this function, so we don't need to check that here. 2152 */ 2153 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2154 } else { /* MPU enabled */ 2155 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 2156 /* region search */ 2157 uint32_t base = env->pmsav7.drbar[n]; 2158 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 2159 uint32_t rmask; 2160 bool srdis = false; 2161 2162 if (!(env->pmsav7.drsr[n] & 0x1)) { 2163 continue; 2164 } 2165 2166 if (!rsize) { 2167 qemu_log_mask(LOG_GUEST_ERROR, 2168 "DRSR[%d]: Rsize field cannot be 0\n", n); 2169 continue; 2170 } 2171 rsize++; 2172 rmask = (1ull << rsize) - 1; 2173 2174 if (base & rmask) { 2175 qemu_log_mask(LOG_GUEST_ERROR, 2176 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 2177 "to DRSR region size, mask = 0x%" PRIx32 "\n", 2178 n, base, rmask); 2179 continue; 2180 } 2181 2182 if (address < base || address > base + rmask) { 2183 /* 2184 * Address not in this region. We must check whether the 2185 * region covers addresses in the same page as our address. 2186 * In that case we must not report a size that covers the 2187 * whole page for a subsequent hit against a different MPU 2188 * region or the background region, because it would result in 2189 * incorrect TLB hits for subsequent accesses to addresses that 2190 * are in this MPU region. 2191 */ 2192 if (ranges_overlap(base, rmask, 2193 address & TARGET_PAGE_MASK, 2194 TARGET_PAGE_SIZE)) { 2195 result->f.lg_page_size = 0; 2196 } 2197 continue; 2198 } 2199 2200 /* Region matched */ 2201 2202 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 2203 int i, snd; 2204 uint32_t srdis_mask; 2205 2206 rsize -= 3; /* sub region size (power of 2) */ 2207 snd = ((address - base) >> rsize) & 0x7; 2208 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 2209 2210 srdis_mask = srdis ? 0x3 : 0x0; 2211 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 2212 /* 2213 * This will check in groups of 2, 4 and then 8, whether 2214 * the subregion bits are consistent. rsize is incremented 2215 * back up to give the region size, considering consistent 2216 * adjacent subregions as one region. Stop testing if rsize 2217 * is already big enough for an entire QEMU page. 2218 */ 2219 int snd_rounded = snd & ~(i - 1); 2220 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 2221 snd_rounded + 8, i); 2222 if (srdis_mask ^ srdis_multi) { 2223 break; 2224 } 2225 srdis_mask = (srdis_mask << i) | srdis_mask; 2226 rsize++; 2227 } 2228 } 2229 if (srdis) { 2230 continue; 2231 } 2232 if (rsize < TARGET_PAGE_BITS) { 2233 result->f.lg_page_size = rsize; 2234 } 2235 break; 2236 } 2237 2238 if (n == -1) { /* no hits */ 2239 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2240 /* background fault */ 2241 fi->type = ARMFault_Background; 2242 return true; 2243 } 2244 get_phys_addr_pmsav7_default(env, mmu_idx, address, 2245 &result->f.prot); 2246 } else { /* a MPU hit! */ 2247 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 2248 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 2249 2250 if (m_is_system_region(env, address)) { 2251 /* System space is always execute never */ 2252 xn = 1; 2253 } 2254 2255 if (is_user) { /* User mode AP bit decoding */ 2256 switch (ap) { 2257 case 0: 2258 case 1: 2259 case 5: 2260 break; /* no access */ 2261 case 3: 2262 result->f.prot |= PAGE_WRITE; 2263 /* fall through */ 2264 case 2: 2265 case 6: 2266 result->f.prot |= PAGE_READ | PAGE_EXEC; 2267 break; 2268 case 7: 2269 /* for v7M, same as 6; for R profile a reserved value */ 2270 if (arm_feature(env, ARM_FEATURE_M)) { 2271 result->f.prot |= PAGE_READ | PAGE_EXEC; 2272 break; 2273 } 2274 /* fall through */ 2275 default: 2276 qemu_log_mask(LOG_GUEST_ERROR, 2277 "DRACR[%d]: Bad value for AP bits: 0x%" 2278 PRIx32 "\n", n, ap); 2279 } 2280 } else { /* Priv. mode AP bits decoding */ 2281 switch (ap) { 2282 case 0: 2283 break; /* no access */ 2284 case 1: 2285 case 2: 2286 case 3: 2287 result->f.prot |= PAGE_WRITE; 2288 /* fall through */ 2289 case 5: 2290 case 6: 2291 result->f.prot |= PAGE_READ | PAGE_EXEC; 2292 break; 2293 case 7: 2294 /* for v7M, same as 6; for R profile a reserved value */ 2295 if (arm_feature(env, ARM_FEATURE_M)) { 2296 result->f.prot |= PAGE_READ | PAGE_EXEC; 2297 break; 2298 } 2299 /* fall through */ 2300 default: 2301 qemu_log_mask(LOG_GUEST_ERROR, 2302 "DRACR[%d]: Bad value for AP bits: 0x%" 2303 PRIx32 "\n", n, ap); 2304 } 2305 } 2306 2307 /* execute never */ 2308 if (xn) { 2309 result->f.prot &= ~PAGE_EXEC; 2310 } 2311 } 2312 } 2313 2314 fi->type = ARMFault_Permission; 2315 fi->level = 1; 2316 return !(result->f.prot & (1 << access_type)); 2317 } 2318 2319 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx, 2320 uint32_t secure) 2321 { 2322 if (regime_el(env, mmu_idx) == 2) { 2323 return env->pmsav8.hprbar; 2324 } else { 2325 return env->pmsav8.rbar[secure]; 2326 } 2327 } 2328 2329 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx, 2330 uint32_t secure) 2331 { 2332 if (regime_el(env, mmu_idx) == 2) { 2333 return env->pmsav8.hprlar; 2334 } else { 2335 return env->pmsav8.rlar[secure]; 2336 } 2337 } 2338 2339 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 2340 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2341 bool secure, GetPhysAddrResult *result, 2342 ARMMMUFaultInfo *fi, uint32_t *mregion) 2343 { 2344 /* 2345 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 2346 * that a full phys-to-virt translation does). 2347 * mregion is (if not NULL) set to the region number which matched, 2348 * or -1 if no region number is returned (MPU off, address did not 2349 * hit a region, address hit in multiple regions). 2350 * If the region hit doesn't cover the entire TARGET_PAGE the address 2351 * is within, then we set the result page_size to 1 to force the 2352 * memory system to use a subpage. 2353 */ 2354 ARMCPU *cpu = env_archcpu(env); 2355 bool is_user = regime_is_user(env, mmu_idx); 2356 int n; 2357 int matchregion = -1; 2358 bool hit = false; 2359 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2360 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2361 int region_counter; 2362 2363 if (regime_el(env, mmu_idx) == 2) { 2364 region_counter = cpu->pmsav8r_hdregion; 2365 } else { 2366 region_counter = cpu->pmsav7_dregion; 2367 } 2368 2369 result->f.lg_page_size = TARGET_PAGE_BITS; 2370 result->f.phys_addr = address; 2371 result->f.prot = 0; 2372 if (mregion) { 2373 *mregion = -1; 2374 } 2375 2376 if (mmu_idx == ARMMMUIdx_Stage2) { 2377 fi->stage2 = true; 2378 } 2379 2380 /* 2381 * Unlike the ARM ARM pseudocode, we don't need to check whether this 2382 * was an exception vector read from the vector table (which is always 2383 * done using the default system address map), because those accesses 2384 * are done in arm_v7m_load_vector(), which always does a direct 2385 * read using address_space_ldl(), rather than going via this function. 2386 */ 2387 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */ 2388 hit = true; 2389 } else if (m_is_ppb_region(env, address)) { 2390 hit = true; 2391 } else { 2392 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2393 hit = true; 2394 } 2395 2396 uint32_t bitmask; 2397 if (arm_feature(env, ARM_FEATURE_M)) { 2398 bitmask = 0x1f; 2399 } else { 2400 bitmask = 0x3f; 2401 fi->level = 0; 2402 } 2403 2404 for (n = region_counter - 1; n >= 0; n--) { 2405 /* region search */ 2406 /* 2407 * Note that the base address is bits [31:x] from the register 2408 * with bits [x-1:0] all zeroes, but the limit address is bits 2409 * [31:x] from the register with bits [x:0] all ones. Where x is 2410 * 5 for Cortex-M and 6 for Cortex-R 2411 */ 2412 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask; 2413 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask; 2414 2415 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) { 2416 /* Region disabled */ 2417 continue; 2418 } 2419 2420 if (address < base || address > limit) { 2421 /* 2422 * Address not in this region. We must check whether the 2423 * region covers addresses in the same page as our address. 2424 * In that case we must not report a size that covers the 2425 * whole page for a subsequent hit against a different MPU 2426 * region or the background region, because it would result in 2427 * incorrect TLB hits for subsequent accesses to addresses that 2428 * are in this MPU region. 2429 */ 2430 if (limit >= base && 2431 ranges_overlap(base, limit - base + 1, 2432 addr_page_base, 2433 TARGET_PAGE_SIZE)) { 2434 result->f.lg_page_size = 0; 2435 } 2436 continue; 2437 } 2438 2439 if (base > addr_page_base || limit < addr_page_limit) { 2440 result->f.lg_page_size = 0; 2441 } 2442 2443 if (matchregion != -1) { 2444 /* 2445 * Multiple regions match -- always a failure (unlike 2446 * PMSAv7 where highest-numbered-region wins) 2447 */ 2448 fi->type = ARMFault_Permission; 2449 if (arm_feature(env, ARM_FEATURE_M)) { 2450 fi->level = 1; 2451 } 2452 return true; 2453 } 2454 2455 matchregion = n; 2456 hit = true; 2457 } 2458 } 2459 2460 if (!hit) { 2461 if (arm_feature(env, ARM_FEATURE_M)) { 2462 fi->type = ARMFault_Background; 2463 } else { 2464 fi->type = ARMFault_Permission; 2465 } 2466 return true; 2467 } 2468 2469 if (matchregion == -1) { 2470 /* hit using the background region */ 2471 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2472 } else { 2473 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion]; 2474 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion]; 2475 uint32_t ap = extract32(matched_rbar, 1, 2); 2476 uint32_t xn = extract32(matched_rbar, 0, 1); 2477 bool pxn = false; 2478 2479 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 2480 pxn = extract32(matched_rlar, 4, 1); 2481 } 2482 2483 if (m_is_system_region(env, address)) { 2484 /* System space is always execute never */ 2485 xn = 1; 2486 } 2487 2488 if (regime_el(env, mmu_idx) == 2) { 2489 result->f.prot = simple_ap_to_rw_prot_is_user(ap, 2490 mmu_idx != ARMMMUIdx_E2); 2491 } else { 2492 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 2493 } 2494 2495 if (!arm_feature(env, ARM_FEATURE_M)) { 2496 uint8_t attrindx = extract32(matched_rlar, 1, 3); 2497 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2498 uint8_t sh = extract32(matched_rlar, 3, 2); 2499 2500 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN && 2501 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) { 2502 xn = 0x1; 2503 } 2504 2505 if ((regime_el(env, mmu_idx) == 1) && 2506 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) { 2507 pxn = 0x1; 2508 } 2509 2510 result->cacheattrs.is_s2_format = false; 2511 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2512 result->cacheattrs.shareability = sh; 2513 } 2514 2515 if (result->f.prot && !xn && !(pxn && !is_user)) { 2516 result->f.prot |= PAGE_EXEC; 2517 } 2518 2519 if (mregion) { 2520 *mregion = matchregion; 2521 } 2522 } 2523 2524 fi->type = ARMFault_Permission; 2525 if (arm_feature(env, ARM_FEATURE_M)) { 2526 fi->level = 1; 2527 } 2528 return !(result->f.prot & (1 << access_type)); 2529 } 2530 2531 static bool v8m_is_sau_exempt(CPUARMState *env, 2532 uint32_t address, MMUAccessType access_type) 2533 { 2534 /* 2535 * The architecture specifies that certain address ranges are 2536 * exempt from v8M SAU/IDAU checks. 2537 */ 2538 return 2539 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 2540 (address >= 0xe0000000 && address <= 0xe0002fff) || 2541 (address >= 0xe000e000 && address <= 0xe000efff) || 2542 (address >= 0xe002e000 && address <= 0xe002efff) || 2543 (address >= 0xe0040000 && address <= 0xe0041fff) || 2544 (address >= 0xe00ff000 && address <= 0xe00fffff); 2545 } 2546 2547 void v8m_security_lookup(CPUARMState *env, uint32_t address, 2548 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2549 bool is_secure, V8M_SAttributes *sattrs) 2550 { 2551 /* 2552 * Look up the security attributes for this address. Compare the 2553 * pseudocode SecurityCheck() function. 2554 * We assume the caller has zero-initialized *sattrs. 2555 */ 2556 ARMCPU *cpu = env_archcpu(env); 2557 int r; 2558 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 2559 int idau_region = IREGION_NOTVALID; 2560 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2561 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2562 2563 if (cpu->idau) { 2564 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 2565 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 2566 2567 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 2568 &idau_nsc); 2569 } 2570 2571 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 2572 /* 0xf0000000..0xffffffff is always S for insn fetches */ 2573 return; 2574 } 2575 2576 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 2577 sattrs->ns = !is_secure; 2578 return; 2579 } 2580 2581 if (idau_region != IREGION_NOTVALID) { 2582 sattrs->irvalid = true; 2583 sattrs->iregion = idau_region; 2584 } 2585 2586 switch (env->sau.ctrl & 3) { 2587 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 2588 break; 2589 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 2590 sattrs->ns = true; 2591 break; 2592 default: /* SAU.ENABLE == 1 */ 2593 for (r = 0; r < cpu->sau_sregion; r++) { 2594 if (env->sau.rlar[r] & 1) { 2595 uint32_t base = env->sau.rbar[r] & ~0x1f; 2596 uint32_t limit = env->sau.rlar[r] | 0x1f; 2597 2598 if (base <= address && limit >= address) { 2599 if (base > addr_page_base || limit < addr_page_limit) { 2600 sattrs->subpage = true; 2601 } 2602 if (sattrs->srvalid) { 2603 /* 2604 * If we hit in more than one region then we must report 2605 * as Secure, not NS-Callable, with no valid region 2606 * number info. 2607 */ 2608 sattrs->ns = false; 2609 sattrs->nsc = false; 2610 sattrs->sregion = 0; 2611 sattrs->srvalid = false; 2612 break; 2613 } else { 2614 if (env->sau.rlar[r] & 2) { 2615 sattrs->nsc = true; 2616 } else { 2617 sattrs->ns = true; 2618 } 2619 sattrs->srvalid = true; 2620 sattrs->sregion = r; 2621 } 2622 } else { 2623 /* 2624 * Address not in this region. We must check whether the 2625 * region covers addresses in the same page as our address. 2626 * In that case we must not report a size that covers the 2627 * whole page for a subsequent hit against a different MPU 2628 * region or the background region, because it would result 2629 * in incorrect TLB hits for subsequent accesses to 2630 * addresses that are in this MPU region. 2631 */ 2632 if (limit >= base && 2633 ranges_overlap(base, limit - base + 1, 2634 addr_page_base, 2635 TARGET_PAGE_SIZE)) { 2636 sattrs->subpage = true; 2637 } 2638 } 2639 } 2640 } 2641 break; 2642 } 2643 2644 /* 2645 * The IDAU will override the SAU lookup results if it specifies 2646 * higher security than the SAU does. 2647 */ 2648 if (!idau_ns) { 2649 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 2650 sattrs->ns = false; 2651 sattrs->nsc = idau_nsc; 2652 } 2653 } 2654 } 2655 2656 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 2657 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2658 bool secure, GetPhysAddrResult *result, 2659 ARMMMUFaultInfo *fi) 2660 { 2661 V8M_SAttributes sattrs = {}; 2662 bool ret; 2663 2664 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2665 v8m_security_lookup(env, address, access_type, mmu_idx, 2666 secure, &sattrs); 2667 if (access_type == MMU_INST_FETCH) { 2668 /* 2669 * Instruction fetches always use the MMU bank and the 2670 * transaction attribute determined by the fetch address, 2671 * regardless of CPU state. This is painful for QEMU 2672 * to handle, because it would mean we need to encode 2673 * into the mmu_idx not just the (user, negpri) information 2674 * for the current security state but also that for the 2675 * other security state, which would balloon the number 2676 * of mmu_idx values needed alarmingly. 2677 * Fortunately we can avoid this because it's not actually 2678 * possible to arbitrarily execute code from memory with 2679 * the wrong security attribute: it will always generate 2680 * an exception of some kind or another, apart from the 2681 * special case of an NS CPU executing an SG instruction 2682 * in S&NSC memory. So we always just fail the translation 2683 * here and sort things out in the exception handler 2684 * (including possibly emulating an SG instruction). 2685 */ 2686 if (sattrs.ns != !secure) { 2687 if (sattrs.nsc) { 2688 fi->type = ARMFault_QEMU_NSCExec; 2689 } else { 2690 fi->type = ARMFault_QEMU_SFault; 2691 } 2692 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2693 result->f.phys_addr = address; 2694 result->f.prot = 0; 2695 return true; 2696 } 2697 } else { 2698 /* 2699 * For data accesses we always use the MMU bank indicated 2700 * by the current CPU state, but the security attributes 2701 * might downgrade a secure access to nonsecure. 2702 */ 2703 if (sattrs.ns) { 2704 result->f.attrs.secure = false; 2705 result->f.attrs.space = ARMSS_NonSecure; 2706 } else if (!secure) { 2707 /* 2708 * NS access to S memory must fault. 2709 * Architecturally we should first check whether the 2710 * MPU information for this address indicates that we 2711 * are doing an unaligned access to Device memory, which 2712 * should generate a UsageFault instead. QEMU does not 2713 * currently check for that kind of unaligned access though. 2714 * If we added it we would need to do so as a special case 2715 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2716 */ 2717 fi->type = ARMFault_QEMU_SFault; 2718 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2719 result->f.phys_addr = address; 2720 result->f.prot = 0; 2721 return true; 2722 } 2723 } 2724 } 2725 2726 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, 2727 result, fi, NULL); 2728 if (sattrs.subpage) { 2729 result->f.lg_page_size = 0; 2730 } 2731 return ret; 2732 } 2733 2734 /* 2735 * Translate from the 4-bit stage 2 representation of 2736 * memory attributes (without cache-allocation hints) to 2737 * the 8-bit representation of the stage 1 MAIR registers 2738 * (which includes allocation hints). 2739 * 2740 * ref: shared/translation/attrs/S2AttrDecode() 2741 * .../S2ConvertAttrsHints() 2742 */ 2743 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) 2744 { 2745 uint8_t hiattr = extract32(s2attrs, 2, 2); 2746 uint8_t loattr = extract32(s2attrs, 0, 2); 2747 uint8_t hihint = 0, lohint = 0; 2748 2749 if (hiattr != 0) { /* normal memory */ 2750 if (hcr & HCR_CD) { /* cache disabled */ 2751 hiattr = loattr = 1; /* non-cacheable */ 2752 } else { 2753 if (hiattr != 1) { /* Write-through or write-back */ 2754 hihint = 3; /* RW allocate */ 2755 } 2756 if (loattr != 1) { /* Write-through or write-back */ 2757 lohint = 3; /* RW allocate */ 2758 } 2759 } 2760 } 2761 2762 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 2763 } 2764 2765 /* 2766 * Combine either inner or outer cacheability attributes for normal 2767 * memory, according to table D4-42 and pseudocode procedure 2768 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 2769 * 2770 * NB: only stage 1 includes allocation hints (RW bits), leading to 2771 * some asymmetry. 2772 */ 2773 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 2774 { 2775 if (s1 == 4 || s2 == 4) { 2776 /* non-cacheable has precedence */ 2777 return 4; 2778 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 2779 /* stage 1 write-through takes precedence */ 2780 return s1; 2781 } else if (extract32(s2, 2, 2) == 2) { 2782 /* stage 2 write-through takes precedence, but the allocation hint 2783 * is still taken from stage 1 2784 */ 2785 return (2 << 2) | extract32(s1, 0, 2); 2786 } else { /* write-back */ 2787 return s1; 2788 } 2789 } 2790 2791 /* 2792 * Combine the memory type and cacheability attributes of 2793 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 2794 * combined attributes in MAIR_EL1 format. 2795 */ 2796 static uint8_t combined_attrs_nofwb(uint64_t hcr, 2797 ARMCacheAttrs s1, ARMCacheAttrs s2) 2798 { 2799 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 2800 2801 if (s2.is_s2_format) { 2802 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); 2803 } else { 2804 s2_mair_attrs = s2.attrs; 2805 } 2806 2807 s1lo = extract32(s1.attrs, 0, 4); 2808 s2lo = extract32(s2_mair_attrs, 0, 4); 2809 s1hi = extract32(s1.attrs, 4, 4); 2810 s2hi = extract32(s2_mair_attrs, 4, 4); 2811 2812 /* Combine memory type and cacheability attributes */ 2813 if (s1hi == 0 || s2hi == 0) { 2814 /* Device has precedence over normal */ 2815 if (s1lo == 0 || s2lo == 0) { 2816 /* nGnRnE has precedence over anything */ 2817 ret_attrs = 0; 2818 } else if (s1lo == 4 || s2lo == 4) { 2819 /* non-Reordering has precedence over Reordering */ 2820 ret_attrs = 4; /* nGnRE */ 2821 } else if (s1lo == 8 || s2lo == 8) { 2822 /* non-Gathering has precedence over Gathering */ 2823 ret_attrs = 8; /* nGRE */ 2824 } else { 2825 ret_attrs = 0xc; /* GRE */ 2826 } 2827 } else { /* Normal memory */ 2828 /* Outer/inner cacheability combine independently */ 2829 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 2830 | combine_cacheattr_nibble(s1lo, s2lo); 2831 } 2832 return ret_attrs; 2833 } 2834 2835 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 2836 { 2837 /* 2838 * Given the 4 bits specifying the outer or inner cacheability 2839 * in MAIR format, return a value specifying Normal Write-Back, 2840 * with the allocation and transient hints taken from the input 2841 * if the input specified some kind of cacheable attribute. 2842 */ 2843 if (attr == 0 || attr == 4) { 2844 /* 2845 * 0 == an UNPREDICTABLE encoding 2846 * 4 == Non-cacheable 2847 * Either way, force Write-Back RW allocate non-transient 2848 */ 2849 return 0xf; 2850 } 2851 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 2852 return attr | 4; 2853 } 2854 2855 /* 2856 * Combine the memory type and cacheability attributes of 2857 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 2858 * combined attributes in MAIR_EL1 format. 2859 */ 2860 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) 2861 { 2862 assert(s2.is_s2_format && !s1.is_s2_format); 2863 2864 switch (s2.attrs) { 2865 case 7: 2866 /* Use stage 1 attributes */ 2867 return s1.attrs; 2868 case 6: 2869 /* 2870 * Force Normal Write-Back. Note that if S1 is Normal cacheable 2871 * then we take the allocation hints from it; otherwise it is 2872 * RW allocate, non-transient. 2873 */ 2874 if ((s1.attrs & 0xf0) == 0) { 2875 /* S1 is Device */ 2876 return 0xff; 2877 } 2878 /* Need to check the Inner and Outer nibbles separately */ 2879 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 2880 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 2881 case 5: 2882 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 2883 if ((s1.attrs & 0xf0) == 0) { 2884 return s1.attrs; 2885 } 2886 return 0x44; 2887 case 0 ... 3: 2888 /* Force Device, of subtype specified by S2 */ 2889 return s2.attrs << 2; 2890 default: 2891 /* 2892 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 2893 * arbitrarily force Device. 2894 */ 2895 return 0; 2896 } 2897 } 2898 2899 /* 2900 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 2901 * and CombineS1S2Desc() 2902 * 2903 * @env: CPUARMState 2904 * @s1: Attributes from stage 1 walk 2905 * @s2: Attributes from stage 2 walk 2906 */ 2907 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, 2908 ARMCacheAttrs s1, ARMCacheAttrs s2) 2909 { 2910 ARMCacheAttrs ret; 2911 bool tagged = false; 2912 2913 assert(!s1.is_s2_format); 2914 ret.is_s2_format = false; 2915 ret.guarded = s1.guarded; 2916 2917 if (s1.attrs == 0xf0) { 2918 tagged = true; 2919 s1.attrs = 0xff; 2920 } 2921 2922 /* Combine shareability attributes (table D4-43) */ 2923 if (s1.shareability == 2 || s2.shareability == 2) { 2924 /* if either are outer-shareable, the result is outer-shareable */ 2925 ret.shareability = 2; 2926 } else if (s1.shareability == 3 || s2.shareability == 3) { 2927 /* if either are inner-shareable, the result is inner-shareable */ 2928 ret.shareability = 3; 2929 } else { 2930 /* both non-shareable */ 2931 ret.shareability = 0; 2932 } 2933 2934 /* Combine memory type and cacheability attributes */ 2935 if (hcr & HCR_FWB) { 2936 ret.attrs = combined_attrs_fwb(s1, s2); 2937 } else { 2938 ret.attrs = combined_attrs_nofwb(hcr, s1, s2); 2939 } 2940 2941 /* 2942 * Any location for which the resultant memory type is any 2943 * type of Device memory is always treated as Outer Shareable. 2944 * Any location for which the resultant memory type is Normal 2945 * Inner Non-cacheable, Outer Non-cacheable is always treated 2946 * as Outer Shareable. 2947 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 2948 */ 2949 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 2950 ret.shareability = 2; 2951 } 2952 2953 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 2954 if (tagged && ret.attrs == 0xff) { 2955 ret.attrs = 0xf0; 2956 } 2957 2958 return ret; 2959 } 2960 2961 /* 2962 * MMU disabled. S1 addresses within aa64 translation regimes are 2963 * still checked for bounds -- see AArch64.S1DisabledOutput(). 2964 */ 2965 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address, 2966 MMUAccessType access_type, 2967 ARMMMUIdx mmu_idx, bool is_secure, 2968 GetPhysAddrResult *result, 2969 ARMMMUFaultInfo *fi) 2970 { 2971 uint8_t memattr = 0x00; /* Device nGnRnE */ 2972 uint8_t shareability = 0; /* non-shareable */ 2973 int r_el; 2974 2975 switch (mmu_idx) { 2976 case ARMMMUIdx_Stage2: 2977 case ARMMMUIdx_Stage2_S: 2978 case ARMMMUIdx_Phys_S: 2979 case ARMMMUIdx_Phys_NS: 2980 case ARMMMUIdx_Phys_Root: 2981 case ARMMMUIdx_Phys_Realm: 2982 break; 2983 2984 default: 2985 r_el = regime_el(env, mmu_idx); 2986 if (arm_el_is_aa64(env, r_el)) { 2987 int pamax = arm_pamax(env_archcpu(env)); 2988 uint64_t tcr = env->cp15.tcr_el[r_el]; 2989 int addrtop, tbi; 2990 2991 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 2992 if (access_type == MMU_INST_FETCH) { 2993 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 2994 } 2995 tbi = (tbi >> extract64(address, 55, 1)) & 1; 2996 addrtop = (tbi ? 55 : 63); 2997 2998 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 2999 fi->type = ARMFault_AddressSize; 3000 fi->level = 0; 3001 fi->stage2 = false; 3002 return 1; 3003 } 3004 3005 /* 3006 * When TBI is disabled, we've just validated that all of the 3007 * bits above PAMax are zero, so logically we only need to 3008 * clear the top byte for TBI. But it's clearer to follow 3009 * the pseudocode set of addrdesc.paddress. 3010 */ 3011 address = extract64(address, 0, 52); 3012 } 3013 3014 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 3015 if (r_el == 1) { 3016 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure); 3017 if (hcr & HCR_DC) { 3018 if (hcr & HCR_DCT) { 3019 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 3020 } else { 3021 memattr = 0xff; /* Normal, WB, RWA */ 3022 } 3023 } 3024 } 3025 if (memattr == 0 && access_type == MMU_INST_FETCH) { 3026 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 3027 memattr = 0xee; /* Normal, WT, RA, NT */ 3028 } else { 3029 memattr = 0x44; /* Normal, NC, No */ 3030 } 3031 shareability = 2; /* outer shareable */ 3032 } 3033 result->cacheattrs.is_s2_format = false; 3034 break; 3035 } 3036 3037 result->f.phys_addr = address; 3038 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 3039 result->f.lg_page_size = TARGET_PAGE_BITS; 3040 result->cacheattrs.shareability = shareability; 3041 result->cacheattrs.attrs = memattr; 3042 return false; 3043 } 3044 3045 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, 3046 target_ulong address, 3047 MMUAccessType access_type, 3048 GetPhysAddrResult *result, 3049 ARMMMUFaultInfo *fi) 3050 { 3051 hwaddr ipa; 3052 int s1_prot, s1_lgpgsz; 3053 bool is_secure = ptw->in_secure; 3054 bool ret, ipa_secure; 3055 ARMCacheAttrs cacheattrs1; 3056 ARMSecuritySpace ipa_space; 3057 uint64_t hcr; 3058 3059 ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi); 3060 3061 /* If S1 fails, return early. */ 3062 if (ret) { 3063 return ret; 3064 } 3065 3066 ipa = result->f.phys_addr; 3067 ipa_secure = result->f.attrs.secure; 3068 ipa_space = result->f.attrs.space; 3069 3070 ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; 3071 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3072 ptw->in_secure = ipa_secure; 3073 ptw->in_space = ipa_space; 3074 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx); 3075 3076 /* 3077 * S1 is done, now do S2 translation. 3078 * Save the stage1 results so that we may merge prot and cacheattrs later. 3079 */ 3080 s1_prot = result->f.prot; 3081 s1_lgpgsz = result->f.lg_page_size; 3082 cacheattrs1 = result->cacheattrs; 3083 memset(result, 0, sizeof(*result)); 3084 3085 ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi); 3086 fi->s2addr = ipa; 3087 3088 /* Combine the S1 and S2 perms. */ 3089 result->f.prot &= s1_prot; 3090 3091 /* If S2 fails, return early. */ 3092 if (ret) { 3093 return ret; 3094 } 3095 3096 /* 3097 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE, 3098 * this means "don't put this in the TLB"; in this case, return a 3099 * result with lg_page_size == 0 to achieve that. Otherwise, 3100 * use the maximum of the S1 & S2 page size, so that invalidation 3101 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though 3102 * we know the combined result permissions etc only cover the minimum 3103 * of the S1 and S2 page size, because we know that the common TLB code 3104 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE, 3105 * and passing a larger page size value only affects invalidations.) 3106 */ 3107 if (result->f.lg_page_size < TARGET_PAGE_BITS || 3108 s1_lgpgsz < TARGET_PAGE_BITS) { 3109 result->f.lg_page_size = 0; 3110 } else if (result->f.lg_page_size < s1_lgpgsz) { 3111 result->f.lg_page_size = s1_lgpgsz; 3112 } 3113 3114 /* Combine the S1 and S2 cache attributes. */ 3115 hcr = arm_hcr_el2_eff_secstate(env, is_secure); 3116 if (hcr & HCR_DC) { 3117 /* 3118 * HCR.DC forces the first stage attributes to 3119 * Normal Non-Shareable, 3120 * Inner Write-Back Read-Allocate Write-Allocate, 3121 * Outer Write-Back Read-Allocate Write-Allocate. 3122 * Do not overwrite Tagged within attrs. 3123 */ 3124 if (cacheattrs1.attrs != 0xf0) { 3125 cacheattrs1.attrs = 0xff; 3126 } 3127 cacheattrs1.shareability = 0; 3128 } 3129 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, 3130 result->cacheattrs); 3131 3132 /* 3133 * Check if IPA translates to secure or non-secure PA space. 3134 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. 3135 */ 3136 result->f.attrs.secure = 3137 (is_secure 3138 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) 3139 && (ipa_secure 3140 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)))); 3141 3142 return false; 3143 } 3144 3145 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 3146 target_ulong address, 3147 MMUAccessType access_type, 3148 GetPhysAddrResult *result, 3149 ARMMMUFaultInfo *fi) 3150 { 3151 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3152 bool is_secure = ptw->in_secure; 3153 ARMMMUIdx s1_mmu_idx; 3154 3155 /* 3156 * The page table entries may downgrade Secure to NonSecure, but 3157 * cannot upgrade a NonSecure translation regime's attributes 3158 * to Secure or Realm. 3159 */ 3160 result->f.attrs.secure = is_secure; 3161 result->f.attrs.space = ptw->in_space; 3162 3163 switch (mmu_idx) { 3164 case ARMMMUIdx_Phys_S: 3165 case ARMMMUIdx_Phys_NS: 3166 case ARMMMUIdx_Phys_Root: 3167 case ARMMMUIdx_Phys_Realm: 3168 /* Checking Phys early avoids special casing later vs regime_el. */ 3169 return get_phys_addr_disabled(env, address, access_type, mmu_idx, 3170 is_secure, result, fi); 3171 3172 case ARMMMUIdx_Stage1_E0: 3173 case ARMMMUIdx_Stage1_E1: 3174 case ARMMMUIdx_Stage1_E1_PAN: 3175 /* First stage lookup uses second stage for ptw. */ 3176 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3177 break; 3178 3179 case ARMMMUIdx_Stage2: 3180 case ARMMMUIdx_Stage2_S: 3181 /* 3182 * Second stage lookup uses physical for ptw; whether this is S or 3183 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for 3184 * the Secure EL2&0 regime. 3185 */ 3186 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx); 3187 break; 3188 3189 case ARMMMUIdx_E10_0: 3190 s1_mmu_idx = ARMMMUIdx_Stage1_E0; 3191 goto do_twostage; 3192 case ARMMMUIdx_E10_1: 3193 s1_mmu_idx = ARMMMUIdx_Stage1_E1; 3194 goto do_twostage; 3195 case ARMMMUIdx_E10_1_PAN: 3196 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3197 do_twostage: 3198 /* 3199 * Call ourselves recursively to do the stage 1 and then stage 2 3200 * translations if mmu_idx is a two-stage regime, and EL2 present. 3201 * Otherwise, a stage1+stage2 translation is just stage 1. 3202 */ 3203 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; 3204 if (arm_feature(env, ARM_FEATURE_EL2) && 3205 !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) { 3206 return get_phys_addr_twostage(env, ptw, address, access_type, 3207 result, fi); 3208 } 3209 /* fall through */ 3210 3211 default: 3212 /* Single stage uses physical for ptw. */ 3213 ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space); 3214 break; 3215 } 3216 3217 result->f.attrs.user = regime_is_user(env, mmu_idx); 3218 3219 /* 3220 * Fast Context Switch Extension. This doesn't exist at all in v8. 3221 * In v7 and earlier it affects all stage 1 translations. 3222 */ 3223 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 3224 && !arm_feature(env, ARM_FEATURE_V8)) { 3225 if (regime_el(env, mmu_idx) == 3) { 3226 address += env->cp15.fcseidr_s; 3227 } else { 3228 address += env->cp15.fcseidr_ns; 3229 } 3230 } 3231 3232 if (arm_feature(env, ARM_FEATURE_PMSA)) { 3233 bool ret; 3234 result->f.lg_page_size = TARGET_PAGE_BITS; 3235 3236 if (arm_feature(env, ARM_FEATURE_V8)) { 3237 /* PMSAv8 */ 3238 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 3239 is_secure, result, fi); 3240 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3241 /* PMSAv7 */ 3242 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 3243 is_secure, result, fi); 3244 } else { 3245 /* Pre-v7 MPU */ 3246 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 3247 is_secure, result, fi); 3248 } 3249 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 3250 " mmu_idx %u -> %s (prot %c%c%c)\n", 3251 access_type == MMU_DATA_LOAD ? "reading" : 3252 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 3253 (uint32_t)address, mmu_idx, 3254 ret ? "Miss" : "Hit", 3255 result->f.prot & PAGE_READ ? 'r' : '-', 3256 result->f.prot & PAGE_WRITE ? 'w' : '-', 3257 result->f.prot & PAGE_EXEC ? 'x' : '-'); 3258 3259 return ret; 3260 } 3261 3262 /* Definitely a real MMU, not an MPU */ 3263 3264 if (regime_translation_disabled(env, mmu_idx, is_secure)) { 3265 return get_phys_addr_disabled(env, address, access_type, mmu_idx, 3266 is_secure, result, fi); 3267 } 3268 3269 if (regime_using_lpae_format(env, mmu_idx)) { 3270 return get_phys_addr_lpae(env, ptw, address, access_type, result, fi); 3271 } else if (arm_feature(env, ARM_FEATURE_V7) || 3272 regime_sctlr(env, mmu_idx) & SCTLR_XP) { 3273 return get_phys_addr_v6(env, ptw, address, access_type, result, fi); 3274 } else { 3275 return get_phys_addr_v5(env, ptw, address, access_type, result, fi); 3276 } 3277 } 3278 3279 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 3280 target_ulong address, 3281 MMUAccessType access_type, 3282 GetPhysAddrResult *result, 3283 ARMMMUFaultInfo *fi) 3284 { 3285 if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) { 3286 return true; 3287 } 3288 if (!granule_protection_check(env, result->f.phys_addr, 3289 result->f.attrs.space, fi)) { 3290 fi->type = ARMFault_GPCFOnOutput; 3291 return true; 3292 } 3293 return false; 3294 } 3295 3296 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address, 3297 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3298 bool is_secure, GetPhysAddrResult *result, 3299 ARMMMUFaultInfo *fi) 3300 { 3301 S1Translate ptw = { 3302 .in_mmu_idx = mmu_idx, 3303 .in_secure = is_secure, 3304 .in_space = arm_secure_to_space(is_secure), 3305 }; 3306 return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi); 3307 } 3308 3309 bool get_phys_addr(CPUARMState *env, target_ulong address, 3310 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3311 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 3312 { 3313 S1Translate ptw = { 3314 .in_mmu_idx = mmu_idx, 3315 }; 3316 ARMSecuritySpace ss; 3317 3318 switch (mmu_idx) { 3319 case ARMMMUIdx_E10_0: 3320 case ARMMMUIdx_E10_1: 3321 case ARMMMUIdx_E10_1_PAN: 3322 case ARMMMUIdx_E20_0: 3323 case ARMMMUIdx_E20_2: 3324 case ARMMMUIdx_E20_2_PAN: 3325 case ARMMMUIdx_Stage1_E0: 3326 case ARMMMUIdx_Stage1_E1: 3327 case ARMMMUIdx_Stage1_E1_PAN: 3328 case ARMMMUIdx_E2: 3329 ss = arm_security_space_below_el3(env); 3330 break; 3331 case ARMMMUIdx_Stage2: 3332 /* 3333 * For Secure EL2, we need this index to be NonSecure; 3334 * otherwise this will already be NonSecure or Realm. 3335 */ 3336 ss = arm_security_space_below_el3(env); 3337 if (ss == ARMSS_Secure) { 3338 ss = ARMSS_NonSecure; 3339 } 3340 break; 3341 case ARMMMUIdx_Phys_NS: 3342 case ARMMMUIdx_MPrivNegPri: 3343 case ARMMMUIdx_MUserNegPri: 3344 case ARMMMUIdx_MPriv: 3345 case ARMMMUIdx_MUser: 3346 ss = ARMSS_NonSecure; 3347 break; 3348 case ARMMMUIdx_Stage2_S: 3349 case ARMMMUIdx_Phys_S: 3350 case ARMMMUIdx_MSPrivNegPri: 3351 case ARMMMUIdx_MSUserNegPri: 3352 case ARMMMUIdx_MSPriv: 3353 case ARMMMUIdx_MSUser: 3354 ss = ARMSS_Secure; 3355 break; 3356 case ARMMMUIdx_E3: 3357 if (arm_feature(env, ARM_FEATURE_AARCH64) && 3358 cpu_isar_feature(aa64_rme, env_archcpu(env))) { 3359 ss = ARMSS_Root; 3360 } else { 3361 ss = ARMSS_Secure; 3362 } 3363 break; 3364 case ARMMMUIdx_Phys_Root: 3365 ss = ARMSS_Root; 3366 break; 3367 case ARMMMUIdx_Phys_Realm: 3368 ss = ARMSS_Realm; 3369 break; 3370 default: 3371 g_assert_not_reached(); 3372 } 3373 3374 ptw.in_space = ss; 3375 ptw.in_secure = arm_space_is_secure(ss); 3376 return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi); 3377 } 3378 3379 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 3380 MemTxAttrs *attrs) 3381 { 3382 ARMCPU *cpu = ARM_CPU(cs); 3383 CPUARMState *env = &cpu->env; 3384 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 3385 ARMSecuritySpace ss = arm_security_space(env); 3386 S1Translate ptw = { 3387 .in_mmu_idx = mmu_idx, 3388 .in_space = ss, 3389 .in_secure = arm_space_is_secure(ss), 3390 .in_debug = true, 3391 }; 3392 GetPhysAddrResult res = {}; 3393 ARMMMUFaultInfo fi = {}; 3394 bool ret; 3395 3396 ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi); 3397 *attrs = res.f.attrs; 3398 3399 if (ret) { 3400 return -1; 3401 } 3402 return res.f.phys_addr; 3403 } 3404