1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "idau.h" 15 16 17 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 18 MMUAccessType access_type, ARMMMUIdx mmu_idx, 19 bool s1_is_el0, hwaddr *phys_ptr, 20 MemTxAttrs *txattrs, int *prot, 21 target_ulong *page_size_ptr, 22 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 23 __attribute__((nonnull)); 24 25 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 26 static const uint8_t pamax_map[] = { 27 [0] = 32, 28 [1] = 36, 29 [2] = 40, 30 [3] = 42, 31 [4] = 44, 32 [5] = 48, 33 [6] = 52, 34 }; 35 36 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 37 unsigned int arm_pamax(ARMCPU *cpu) 38 { 39 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 40 unsigned int parange = 41 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 42 43 /* 44 * id_aa64mmfr0 is a read-only register so values outside of the 45 * supported mappings can be considered an implementation error. 46 */ 47 assert(parange < ARRAY_SIZE(pamax_map)); 48 return pamax_map[parange]; 49 } 50 51 /* 52 * In machvirt_init, we call arm_pamax on a cpu that is not fully 53 * initialized, so we can't rely on the propagation done in realize. 54 */ 55 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) || 56 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) { 57 /* v7 with LPAE */ 58 return 40; 59 } 60 /* Anything else */ 61 return 32; 62 } 63 64 /* 65 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 66 */ 67 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 68 { 69 switch (mmu_idx) { 70 case ARMMMUIdx_SE10_0: 71 return ARMMMUIdx_Stage1_SE0; 72 case ARMMMUIdx_SE10_1: 73 return ARMMMUIdx_Stage1_SE1; 74 case ARMMMUIdx_SE10_1_PAN: 75 return ARMMMUIdx_Stage1_SE1_PAN; 76 case ARMMMUIdx_E10_0: 77 return ARMMMUIdx_Stage1_E0; 78 case ARMMMUIdx_E10_1: 79 return ARMMMUIdx_Stage1_E1; 80 case ARMMMUIdx_E10_1_PAN: 81 return ARMMMUIdx_Stage1_E1_PAN; 82 default: 83 return mmu_idx; 84 } 85 } 86 87 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 88 { 89 return stage_1_mmu_idx(arm_mmu_idx(env)); 90 } 91 92 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 93 { 94 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 95 } 96 97 static bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 98 { 99 switch (mmu_idx) { 100 case ARMMMUIdx_SE10_0: 101 case ARMMMUIdx_E20_0: 102 case ARMMMUIdx_SE20_0: 103 case ARMMMUIdx_Stage1_E0: 104 case ARMMMUIdx_Stage1_SE0: 105 case ARMMMUIdx_MUser: 106 case ARMMMUIdx_MSUser: 107 case ARMMMUIdx_MUserNegPri: 108 case ARMMMUIdx_MSUserNegPri: 109 return true; 110 default: 111 return false; 112 case ARMMMUIdx_E10_0: 113 case ARMMMUIdx_E10_1: 114 case ARMMMUIdx_E10_1_PAN: 115 g_assert_not_reached(); 116 } 117 } 118 119 /* Return the TTBR associated with this translation regime */ 120 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 121 { 122 if (mmu_idx == ARMMMUIdx_Stage2) { 123 return env->cp15.vttbr_el2; 124 } 125 if (mmu_idx == ARMMMUIdx_Stage2_S) { 126 return env->cp15.vsttbr_el2; 127 } 128 if (ttbrn == 0) { 129 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 130 } else { 131 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 132 } 133 } 134 135 /* Return true if the specified stage of address translation is disabled */ 136 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx) 137 { 138 uint64_t hcr_el2; 139 140 if (arm_feature(env, ARM_FEATURE_M)) { 141 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 142 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 143 case R_V7M_MPU_CTRL_ENABLE_MASK: 144 /* Enabled, but not for HardFault and NMI */ 145 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 146 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 147 /* Enabled for all cases */ 148 return false; 149 case 0: 150 default: 151 /* 152 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 153 * we warned about that in armv7m_nvic.c when the guest set it. 154 */ 155 return true; 156 } 157 } 158 159 hcr_el2 = arm_hcr_el2_eff(env); 160 161 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 162 /* HCR.DC means HCR.VM behaves as 1 */ 163 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 164 } 165 166 if (hcr_el2 & HCR_TGE) { 167 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 168 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 169 return true; 170 } 171 } 172 173 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 174 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 175 return true; 176 } 177 178 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 179 } 180 181 static bool ptw_attrs_are_device(CPUARMState *env, ARMCacheAttrs cacheattrs) 182 { 183 /* 184 * For an S1 page table walk, the stage 1 attributes are always 185 * some form of "this is Normal memory". The combined S1+S2 186 * attributes are therefore only Device if stage 2 specifies Device. 187 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 188 * ie when cacheattrs.attrs bits [3:2] are 0b00. 189 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 190 * when cacheattrs.attrs bit [2] is 0. 191 */ 192 assert(cacheattrs.is_s2_format); 193 if (arm_hcr_el2_eff(env) & HCR_FWB) { 194 return (cacheattrs.attrs & 0x4) == 0; 195 } else { 196 return (cacheattrs.attrs & 0xc) == 0; 197 } 198 } 199 200 /* Translate a S1 pagetable walk through S2 if needed. */ 201 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 202 hwaddr addr, bool *is_secure, 203 ARMMMUFaultInfo *fi) 204 { 205 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 206 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 207 target_ulong s2size; 208 hwaddr s2pa; 209 int s2prot; 210 int ret; 211 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 212 : ARMMMUIdx_Stage2; 213 ARMCacheAttrs cacheattrs = {}; 214 MemTxAttrs txattrs = {}; 215 216 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 217 &s2pa, &txattrs, &s2prot, &s2size, fi, 218 &cacheattrs); 219 if (ret) { 220 assert(fi->type != ARMFault_None); 221 fi->s2addr = addr; 222 fi->stage2 = true; 223 fi->s1ptw = true; 224 fi->s1ns = !*is_secure; 225 return ~0; 226 } 227 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 228 ptw_attrs_are_device(env, cacheattrs)) { 229 /* 230 * PTW set and S1 walk touched S2 Device memory: 231 * generate Permission fault. 232 */ 233 fi->type = ARMFault_Permission; 234 fi->s2addr = addr; 235 fi->stage2 = true; 236 fi->s1ptw = true; 237 fi->s1ns = !*is_secure; 238 return ~0; 239 } 240 241 if (arm_is_secure_below_el3(env)) { 242 /* Check if page table walk is to secure or non-secure PA space. */ 243 if (*is_secure) { 244 *is_secure = !(env->cp15.vstcr_el2 & VSTCR_SW); 245 } else { 246 *is_secure = !(env->cp15.vtcr_el2 & VTCR_NSW); 247 } 248 } else { 249 assert(!*is_secure); 250 } 251 252 addr = s2pa; 253 } 254 return addr; 255 } 256 257 /* All loads done in the course of a page table walk go through here. */ 258 static uint32_t arm_ldl_ptw(CPUARMState *env, hwaddr addr, bool is_secure, 259 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 260 { 261 CPUState *cs = env_cpu(env); 262 MemTxAttrs attrs = {}; 263 MemTxResult result = MEMTX_OK; 264 AddressSpace *as; 265 uint32_t data; 266 267 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 268 attrs.secure = is_secure; 269 as = arm_addressspace(cs, attrs); 270 if (fi->s1ptw) { 271 return 0; 272 } 273 if (regime_translation_big_endian(env, mmu_idx)) { 274 data = address_space_ldl_be(as, addr, attrs, &result); 275 } else { 276 data = address_space_ldl_le(as, addr, attrs, &result); 277 } 278 if (result == MEMTX_OK) { 279 return data; 280 } 281 fi->type = ARMFault_SyncExternalOnWalk; 282 fi->ea = arm_extabort_type(result); 283 return 0; 284 } 285 286 static uint64_t arm_ldq_ptw(CPUARMState *env, hwaddr addr, bool is_secure, 287 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 288 { 289 CPUState *cs = env_cpu(env); 290 MemTxAttrs attrs = {}; 291 MemTxResult result = MEMTX_OK; 292 AddressSpace *as; 293 uint64_t data; 294 295 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 296 attrs.secure = is_secure; 297 as = arm_addressspace(cs, attrs); 298 if (fi->s1ptw) { 299 return 0; 300 } 301 if (regime_translation_big_endian(env, mmu_idx)) { 302 data = address_space_ldq_be(as, addr, attrs, &result); 303 } else { 304 data = address_space_ldq_le(as, addr, attrs, &result); 305 } 306 if (result == MEMTX_OK) { 307 return data; 308 } 309 fi->type = ARMFault_SyncExternalOnWalk; 310 fi->ea = arm_extabort_type(result); 311 return 0; 312 } 313 314 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 315 uint32_t *table, uint32_t address) 316 { 317 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 318 uint64_t tcr = regime_tcr(env, mmu_idx); 319 int maskshift = extract32(tcr, 0, 3); 320 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 321 uint32_t base_mask; 322 323 if (address & mask) { 324 if (tcr & TTBCR_PD1) { 325 /* Translation table walk disabled for TTBR1 */ 326 return false; 327 } 328 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 329 } else { 330 if (tcr & TTBCR_PD0) { 331 /* Translation table walk disabled for TTBR0 */ 332 return false; 333 } 334 base_mask = ~((uint32_t)0x3fffu >> maskshift); 335 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 336 } 337 *table |= (address >> 18) & 0x3ffc; 338 return true; 339 } 340 341 /* 342 * Translate section/page access permissions to page R/W protection flags 343 * @env: CPUARMState 344 * @mmu_idx: MMU index indicating required translation regime 345 * @ap: The 3-bit access permissions (AP[2:0]) 346 * @domain_prot: The 2-bit domain access permissions 347 */ 348 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 349 int ap, int domain_prot) 350 { 351 bool is_user = regime_is_user(env, mmu_idx); 352 353 if (domain_prot == 3) { 354 return PAGE_READ | PAGE_WRITE; 355 } 356 357 switch (ap) { 358 case 0: 359 if (arm_feature(env, ARM_FEATURE_V7)) { 360 return 0; 361 } 362 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 363 case SCTLR_S: 364 return is_user ? 0 : PAGE_READ; 365 case SCTLR_R: 366 return PAGE_READ; 367 default: 368 return 0; 369 } 370 case 1: 371 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 372 case 2: 373 if (is_user) { 374 return PAGE_READ; 375 } else { 376 return PAGE_READ | PAGE_WRITE; 377 } 378 case 3: 379 return PAGE_READ | PAGE_WRITE; 380 case 4: /* Reserved. */ 381 return 0; 382 case 5: 383 return is_user ? 0 : PAGE_READ; 384 case 6: 385 return PAGE_READ; 386 case 7: 387 if (!arm_feature(env, ARM_FEATURE_V6K)) { 388 return 0; 389 } 390 return PAGE_READ; 391 default: 392 g_assert_not_reached(); 393 } 394 } 395 396 /* 397 * Translate section/page access permissions to page R/W protection flags. 398 * @ap: The 2-bit simple AP (AP[2:1]) 399 * @is_user: TRUE if accessing from PL0 400 */ 401 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 402 { 403 switch (ap) { 404 case 0: 405 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 406 case 1: 407 return PAGE_READ | PAGE_WRITE; 408 case 2: 409 return is_user ? 0 : PAGE_READ; 410 case 3: 411 return PAGE_READ; 412 default: 413 g_assert_not_reached(); 414 } 415 } 416 417 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 418 { 419 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 420 } 421 422 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 423 MMUAccessType access_type, ARMMMUIdx mmu_idx, 424 hwaddr *phys_ptr, int *prot, 425 target_ulong *page_size, 426 ARMMMUFaultInfo *fi) 427 { 428 int level = 1; 429 uint32_t table; 430 uint32_t desc; 431 int type; 432 int ap; 433 int domain = 0; 434 int domain_prot; 435 hwaddr phys_addr; 436 uint32_t dacr; 437 438 /* Pagetable walk. */ 439 /* Lookup l1 descriptor. */ 440 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 441 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 442 fi->type = ARMFault_Translation; 443 goto do_fault; 444 } 445 desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx), 446 mmu_idx, fi); 447 if (fi->type != ARMFault_None) { 448 goto do_fault; 449 } 450 type = (desc & 3); 451 domain = (desc >> 5) & 0x0f; 452 if (regime_el(env, mmu_idx) == 1) { 453 dacr = env->cp15.dacr_ns; 454 } else { 455 dacr = env->cp15.dacr_s; 456 } 457 domain_prot = (dacr >> (domain * 2)) & 3; 458 if (type == 0) { 459 /* Section translation fault. */ 460 fi->type = ARMFault_Translation; 461 goto do_fault; 462 } 463 if (type != 2) { 464 level = 2; 465 } 466 if (domain_prot == 0 || domain_prot == 2) { 467 fi->type = ARMFault_Domain; 468 goto do_fault; 469 } 470 if (type == 2) { 471 /* 1Mb section. */ 472 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 473 ap = (desc >> 10) & 3; 474 *page_size = 1024 * 1024; 475 } else { 476 /* Lookup l2 entry. */ 477 if (type == 1) { 478 /* Coarse pagetable. */ 479 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 480 } else { 481 /* Fine pagetable. */ 482 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 483 } 484 desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx), 485 mmu_idx, fi); 486 if (fi->type != ARMFault_None) { 487 goto do_fault; 488 } 489 switch (desc & 3) { 490 case 0: /* Page translation fault. */ 491 fi->type = ARMFault_Translation; 492 goto do_fault; 493 case 1: /* 64k page. */ 494 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 495 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 496 *page_size = 0x10000; 497 break; 498 case 2: /* 4k page. */ 499 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 500 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 501 *page_size = 0x1000; 502 break; 503 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 504 if (type == 1) { 505 /* ARMv6/XScale extended small page format */ 506 if (arm_feature(env, ARM_FEATURE_XSCALE) 507 || arm_feature(env, ARM_FEATURE_V6)) { 508 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 509 *page_size = 0x1000; 510 } else { 511 /* 512 * UNPREDICTABLE in ARMv5; we choose to take a 513 * page translation fault. 514 */ 515 fi->type = ARMFault_Translation; 516 goto do_fault; 517 } 518 } else { 519 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 520 *page_size = 0x400; 521 } 522 ap = (desc >> 4) & 3; 523 break; 524 default: 525 /* Never happens, but compiler isn't smart enough to tell. */ 526 g_assert_not_reached(); 527 } 528 } 529 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 530 *prot |= *prot ? PAGE_EXEC : 0; 531 if (!(*prot & (1 << access_type))) { 532 /* Access permission fault. */ 533 fi->type = ARMFault_Permission; 534 goto do_fault; 535 } 536 *phys_ptr = phys_addr; 537 return false; 538 do_fault: 539 fi->domain = domain; 540 fi->level = level; 541 return true; 542 } 543 544 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 545 MMUAccessType access_type, ARMMMUIdx mmu_idx, 546 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 547 target_ulong *page_size, ARMMMUFaultInfo *fi) 548 { 549 ARMCPU *cpu = env_archcpu(env); 550 int level = 1; 551 uint32_t table; 552 uint32_t desc; 553 uint32_t xn; 554 uint32_t pxn = 0; 555 int type; 556 int ap; 557 int domain = 0; 558 int domain_prot; 559 hwaddr phys_addr; 560 uint32_t dacr; 561 bool ns; 562 563 /* Pagetable walk. */ 564 /* Lookup l1 descriptor. */ 565 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 566 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 567 fi->type = ARMFault_Translation; 568 goto do_fault; 569 } 570 desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx), 571 mmu_idx, fi); 572 if (fi->type != ARMFault_None) { 573 goto do_fault; 574 } 575 type = (desc & 3); 576 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 577 /* Section translation fault, or attempt to use the encoding 578 * which is Reserved on implementations without PXN. 579 */ 580 fi->type = ARMFault_Translation; 581 goto do_fault; 582 } 583 if ((type == 1) || !(desc & (1 << 18))) { 584 /* Page or Section. */ 585 domain = (desc >> 5) & 0x0f; 586 } 587 if (regime_el(env, mmu_idx) == 1) { 588 dacr = env->cp15.dacr_ns; 589 } else { 590 dacr = env->cp15.dacr_s; 591 } 592 if (type == 1) { 593 level = 2; 594 } 595 domain_prot = (dacr >> (domain * 2)) & 3; 596 if (domain_prot == 0 || domain_prot == 2) { 597 /* Section or Page domain fault */ 598 fi->type = ARMFault_Domain; 599 goto do_fault; 600 } 601 if (type != 1) { 602 if (desc & (1 << 18)) { 603 /* Supersection. */ 604 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 605 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 606 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 607 *page_size = 0x1000000; 608 } else { 609 /* Section. */ 610 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 611 *page_size = 0x100000; 612 } 613 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 614 xn = desc & (1 << 4); 615 pxn = desc & 1; 616 ns = extract32(desc, 19, 1); 617 } else { 618 if (cpu_isar_feature(aa32_pxn, cpu)) { 619 pxn = (desc >> 2) & 1; 620 } 621 ns = extract32(desc, 3, 1); 622 /* Lookup l2 entry. */ 623 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 624 desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx), 625 mmu_idx, fi); 626 if (fi->type != ARMFault_None) { 627 goto do_fault; 628 } 629 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 630 switch (desc & 3) { 631 case 0: /* Page translation fault. */ 632 fi->type = ARMFault_Translation; 633 goto do_fault; 634 case 1: /* 64k page. */ 635 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 636 xn = desc & (1 << 15); 637 *page_size = 0x10000; 638 break; 639 case 2: case 3: /* 4k page. */ 640 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 641 xn = desc & 1; 642 *page_size = 0x1000; 643 break; 644 default: 645 /* Never happens, but compiler isn't smart enough to tell. */ 646 g_assert_not_reached(); 647 } 648 } 649 if (domain_prot == 3) { 650 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 651 } else { 652 if (pxn && !regime_is_user(env, mmu_idx)) { 653 xn = 1; 654 } 655 if (xn && access_type == MMU_INST_FETCH) { 656 fi->type = ARMFault_Permission; 657 goto do_fault; 658 } 659 660 if (arm_feature(env, ARM_FEATURE_V6K) && 661 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 662 /* The simplified model uses AP[0] as an access control bit. */ 663 if ((ap & 1) == 0) { 664 /* Access flag fault. */ 665 fi->type = ARMFault_AccessFlag; 666 goto do_fault; 667 } 668 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 669 } else { 670 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 671 } 672 if (*prot && !xn) { 673 *prot |= PAGE_EXEC; 674 } 675 if (!(*prot & (1 << access_type))) { 676 /* Access permission fault. */ 677 fi->type = ARMFault_Permission; 678 goto do_fault; 679 } 680 } 681 if (ns) { 682 /* The NS bit will (as required by the architecture) have no effect if 683 * the CPU doesn't support TZ or this is a non-secure translation 684 * regime, because the attribute will already be non-secure. 685 */ 686 attrs->secure = false; 687 } 688 *phys_ptr = phys_addr; 689 return false; 690 do_fault: 691 fi->domain = domain; 692 fi->level = level; 693 return true; 694 } 695 696 /* 697 * Translate S2 section/page access permissions to protection flags 698 * @env: CPUARMState 699 * @s2ap: The 2-bit stage2 access permissions (S2AP) 700 * @xn: XN (execute-never) bits 701 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 702 */ 703 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 704 { 705 int prot = 0; 706 707 if (s2ap & 1) { 708 prot |= PAGE_READ; 709 } 710 if (s2ap & 2) { 711 prot |= PAGE_WRITE; 712 } 713 714 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 715 switch (xn) { 716 case 0: 717 prot |= PAGE_EXEC; 718 break; 719 case 1: 720 if (s1_is_el0) { 721 prot |= PAGE_EXEC; 722 } 723 break; 724 case 2: 725 break; 726 case 3: 727 if (!s1_is_el0) { 728 prot |= PAGE_EXEC; 729 } 730 break; 731 default: 732 g_assert_not_reached(); 733 } 734 } else { 735 if (!extract32(xn, 1, 1)) { 736 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 737 prot |= PAGE_EXEC; 738 } 739 } 740 } 741 return prot; 742 } 743 744 /* 745 * Translate section/page access permissions to protection flags 746 * @env: CPUARMState 747 * @mmu_idx: MMU index indicating required translation regime 748 * @is_aa64: TRUE if AArch64 749 * @ap: The 2-bit simple AP (AP[2:1]) 750 * @ns: NS (non-secure) bit 751 * @xn: XN (execute-never) bit 752 * @pxn: PXN (privileged execute-never) bit 753 */ 754 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 755 int ap, int ns, int xn, int pxn) 756 { 757 bool is_user = regime_is_user(env, mmu_idx); 758 int prot_rw, user_rw; 759 bool have_wxn; 760 int wxn = 0; 761 762 assert(mmu_idx != ARMMMUIdx_Stage2); 763 assert(mmu_idx != ARMMMUIdx_Stage2_S); 764 765 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 766 if (is_user) { 767 prot_rw = user_rw; 768 } else { 769 if (user_rw && regime_is_pan(env, mmu_idx)) { 770 /* PAN forbids data accesses but doesn't affect insn fetch */ 771 prot_rw = 0; 772 } else { 773 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 774 } 775 } 776 777 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 778 return prot_rw; 779 } 780 781 /* TODO have_wxn should be replaced with 782 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 783 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 784 * compatible processors have EL2, which is required for [U]WXN. 785 */ 786 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 787 788 if (have_wxn) { 789 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 790 } 791 792 if (is_aa64) { 793 if (regime_has_2_ranges(mmu_idx) && !is_user) { 794 xn = pxn || (user_rw & PAGE_WRITE); 795 } 796 } else if (arm_feature(env, ARM_FEATURE_V7)) { 797 switch (regime_el(env, mmu_idx)) { 798 case 1: 799 case 3: 800 if (is_user) { 801 xn = xn || !(user_rw & PAGE_READ); 802 } else { 803 int uwxn = 0; 804 if (have_wxn) { 805 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 806 } 807 xn = xn || !(prot_rw & PAGE_READ) || pxn || 808 (uwxn && (user_rw & PAGE_WRITE)); 809 } 810 break; 811 case 2: 812 break; 813 } 814 } else { 815 xn = wxn = 0; 816 } 817 818 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 819 return prot_rw; 820 } 821 return prot_rw | PAGE_EXEC; 822 } 823 824 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 825 ARMMMUIdx mmu_idx) 826 { 827 uint64_t tcr = regime_tcr(env, mmu_idx); 828 uint32_t el = regime_el(env, mmu_idx); 829 int select, tsz; 830 bool epd, hpd; 831 832 assert(mmu_idx != ARMMMUIdx_Stage2_S); 833 834 if (mmu_idx == ARMMMUIdx_Stage2) { 835 /* VTCR */ 836 bool sext = extract32(tcr, 4, 1); 837 bool sign = extract32(tcr, 3, 1); 838 839 /* 840 * If the sign-extend bit is not the same as t0sz[3], the result 841 * is unpredictable. Flag this as a guest error. 842 */ 843 if (sign != sext) { 844 qemu_log_mask(LOG_GUEST_ERROR, 845 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 846 } 847 tsz = sextract32(tcr, 0, 4) + 8; 848 select = 0; 849 hpd = false; 850 epd = false; 851 } else if (el == 2) { 852 /* HTCR */ 853 tsz = extract32(tcr, 0, 3); 854 select = 0; 855 hpd = extract64(tcr, 24, 1); 856 epd = false; 857 } else { 858 int t0sz = extract32(tcr, 0, 3); 859 int t1sz = extract32(tcr, 16, 3); 860 861 if (t1sz == 0) { 862 select = va > (0xffffffffu >> t0sz); 863 } else { 864 /* Note that we will detect errors later. */ 865 select = va >= ~(0xffffffffu >> t1sz); 866 } 867 if (!select) { 868 tsz = t0sz; 869 epd = extract32(tcr, 7, 1); 870 hpd = extract64(tcr, 41, 1); 871 } else { 872 tsz = t1sz; 873 epd = extract32(tcr, 23, 1); 874 hpd = extract64(tcr, 42, 1); 875 } 876 /* For aarch32, hpd0 is not enabled without t2e as well. */ 877 hpd &= extract32(tcr, 6, 1); 878 } 879 880 return (ARMVAParameters) { 881 .tsz = tsz, 882 .select = select, 883 .epd = epd, 884 .hpd = hpd, 885 }; 886 } 887 888 /* 889 * check_s2_mmu_setup 890 * @cpu: ARMCPU 891 * @is_aa64: True if the translation regime is in AArch64 state 892 * @startlevel: Suggested starting level 893 * @inputsize: Bitsize of IPAs 894 * @stride: Page-table stride (See the ARM ARM) 895 * 896 * Returns true if the suggested S2 translation parameters are OK and 897 * false otherwise. 898 */ 899 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 900 int inputsize, int stride, int outputsize) 901 { 902 const int grainsize = stride + 3; 903 int startsizecheck; 904 905 /* 906 * Negative levels are usually not allowed... 907 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which 908 * begins with level -1. Note that previous feature tests will have 909 * eliminated this combination if it is not enabled. 910 */ 911 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { 912 return false; 913 } 914 915 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 916 if (startsizecheck < 1 || startsizecheck > stride + 4) { 917 return false; 918 } 919 920 if (is_aa64) { 921 switch (stride) { 922 case 13: /* 64KB Pages. */ 923 if (level == 0 || (level == 1 && outputsize <= 42)) { 924 return false; 925 } 926 break; 927 case 11: /* 16KB Pages. */ 928 if (level == 0 || (level == 1 && outputsize <= 40)) { 929 return false; 930 } 931 break; 932 case 9: /* 4KB Pages. */ 933 if (level == 0 && outputsize <= 42) { 934 return false; 935 } 936 break; 937 default: 938 g_assert_not_reached(); 939 } 940 941 /* Inputsize checks. */ 942 if (inputsize > outputsize && 943 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 944 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 945 return false; 946 } 947 } else { 948 /* AArch32 only supports 4KB pages. Assert on that. */ 949 assert(stride == 9); 950 951 if (level == 0) { 952 return false; 953 } 954 } 955 return true; 956 } 957 958 /** 959 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 960 * 961 * Returns false if the translation was successful. Otherwise, phys_ptr, 962 * attrs, prot and page_size may not be filled in, and the populated fsr 963 * value provides information on why the translation aborted, in the format 964 * of a long-format DFSR/IFSR fault register, with the following caveat: 965 * the WnR bit is never set (the caller must do this). 966 * 967 * @env: CPUARMState 968 * @address: virtual address to get physical address for 969 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 970 * @mmu_idx: MMU index indicating required translation regime 971 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page 972 * table walk), must be true if this is stage 2 of a stage 1+2 973 * walk for an EL0 access. If @mmu_idx is anything else, 974 * @s1_is_el0 is ignored. 975 * @phys_ptr: set to the physical address corresponding to the virtual address 976 * @attrs: set to the memory transaction attributes to use 977 * @prot: set to the permissions for the page containing phys_ptr 978 * @page_size_ptr: set to the size of the page containing phys_ptr 979 * @fi: set to fault info if the translation fails 980 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 981 */ 982 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 983 MMUAccessType access_type, ARMMMUIdx mmu_idx, 984 bool s1_is_el0, hwaddr *phys_ptr, 985 MemTxAttrs *txattrs, int *prot, 986 target_ulong *page_size_ptr, 987 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 988 { 989 ARMCPU *cpu = env_archcpu(env); 990 /* Read an LPAE long-descriptor translation table. */ 991 ARMFaultType fault_type = ARMFault_Translation; 992 uint32_t level; 993 ARMVAParameters param; 994 uint64_t ttbr; 995 hwaddr descaddr, indexmask, indexmask_grainsize; 996 uint32_t tableattrs; 997 target_ulong page_size; 998 uint32_t attrs; 999 int32_t stride; 1000 int addrsize, inputsize, outputsize; 1001 uint64_t tcr = regime_tcr(env, mmu_idx); 1002 int ap, ns, xn, pxn; 1003 uint32_t el = regime_el(env, mmu_idx); 1004 uint64_t descaddrmask; 1005 bool aarch64 = arm_el_is_aa64(env, el); 1006 bool guarded = false; 1007 1008 /* TODO: This code does not support shareability levels. */ 1009 if (aarch64) { 1010 int ps; 1011 1012 param = aa64_va_parameters(env, address, mmu_idx, 1013 access_type != MMU_INST_FETCH); 1014 level = 0; 1015 1016 /* 1017 * If TxSZ is programmed to a value larger than the maximum, 1018 * or smaller than the effective minimum, it is IMPLEMENTATION 1019 * DEFINED whether we behave as if the field were programmed 1020 * within bounds, or if a level 0 Translation fault is generated. 1021 * 1022 * With FEAT_LVA, fault on less than minimum becomes required, 1023 * so our choice is to always raise the fault. 1024 */ 1025 if (param.tsz_oob) { 1026 fault_type = ARMFault_Translation; 1027 goto do_fault; 1028 } 1029 1030 addrsize = 64 - 8 * param.tbi; 1031 inputsize = 64 - param.tsz; 1032 1033 /* 1034 * Bound PS by PARANGE to find the effective output address size. 1035 * ID_AA64MMFR0 is a read-only register so values outside of the 1036 * supported mappings can be considered an implementation error. 1037 */ 1038 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1039 ps = MIN(ps, param.ps); 1040 assert(ps < ARRAY_SIZE(pamax_map)); 1041 outputsize = pamax_map[ps]; 1042 } else { 1043 param = aa32_va_parameters(env, address, mmu_idx); 1044 level = 1; 1045 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1046 inputsize = addrsize - param.tsz; 1047 outputsize = 40; 1048 } 1049 1050 /* 1051 * We determined the region when collecting the parameters, but we 1052 * have not yet validated that the address is valid for the region. 1053 * Extract the top bits and verify that they all match select. 1054 * 1055 * For aa32, if inputsize == addrsize, then we have selected the 1056 * region by exclusion in aa32_va_parameters and there is no more 1057 * validation to do here. 1058 */ 1059 if (inputsize < addrsize) { 1060 target_ulong top_bits = sextract64(address, inputsize, 1061 addrsize - inputsize); 1062 if (-top_bits != param.select) { 1063 /* The gap between the two regions is a Translation fault */ 1064 fault_type = ARMFault_Translation; 1065 goto do_fault; 1066 } 1067 } 1068 1069 if (param.using64k) { 1070 stride = 13; 1071 } else if (param.using16k) { 1072 stride = 11; 1073 } else { 1074 stride = 9; 1075 } 1076 1077 /* 1078 * Note that QEMU ignores shareability and cacheability attributes, 1079 * so we don't need to do anything with the SH, ORGN, IRGN fields 1080 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1081 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1082 * implement any ASID-like capability so we can ignore it (instead 1083 * we will always flush the TLB any time the ASID is changed). 1084 */ 1085 ttbr = regime_ttbr(env, mmu_idx, param.select); 1086 1087 /* 1088 * Here we should have set up all the parameters for the translation: 1089 * inputsize, ttbr, epd, stride, tbi 1090 */ 1091 1092 if (param.epd) { 1093 /* 1094 * Translation table walk disabled => Translation fault on TLB miss 1095 * Note: This is always 0 on 64-bit EL2 and EL3. 1096 */ 1097 goto do_fault; 1098 } 1099 1100 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 1101 /* 1102 * The starting level depends on the virtual address size (which can 1103 * be up to 48 bits) and the translation granule size. It indicates 1104 * the number of strides (stride bits at a time) needed to 1105 * consume the bits of the input address. In the pseudocode this is: 1106 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1107 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1108 * our 'stride + 3' and 'stride' is our 'stride'. 1109 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1110 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1111 * = 4 - (inputsize - 4) / stride; 1112 */ 1113 level = 4 - (inputsize - 4) / stride; 1114 } else { 1115 /* 1116 * For stage 2 translations the starting level is specified by the 1117 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 1118 */ 1119 uint32_t sl0 = extract32(tcr, 6, 2); 1120 uint32_t sl2 = extract64(tcr, 33, 1); 1121 uint32_t startlevel; 1122 bool ok; 1123 1124 /* SL2 is RES0 unless DS=1 & 4kb granule. */ 1125 if (param.ds && stride == 9 && sl2) { 1126 if (sl0 != 0) { 1127 level = 0; 1128 fault_type = ARMFault_Translation; 1129 goto do_fault; 1130 } 1131 startlevel = -1; 1132 } else if (!aarch64 || stride == 9) { 1133 /* AArch32 or 4KB pages */ 1134 startlevel = 2 - sl0; 1135 1136 if (cpu_isar_feature(aa64_st, cpu)) { 1137 startlevel &= 3; 1138 } 1139 } else { 1140 /* 16KB or 64KB pages */ 1141 startlevel = 3 - sl0; 1142 } 1143 1144 /* Check that the starting level is valid. */ 1145 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 1146 inputsize, stride, outputsize); 1147 if (!ok) { 1148 fault_type = ARMFault_Translation; 1149 goto do_fault; 1150 } 1151 level = startlevel; 1152 } 1153 1154 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1155 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1156 1157 /* Now we can extract the actual base address from the TTBR */ 1158 descaddr = extract64(ttbr, 0, 48); 1159 1160 /* 1161 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1162 * 1163 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1164 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1165 * but we've just cleared the bits above 47, so simplify the test. 1166 */ 1167 if (outputsize > 48) { 1168 descaddr |= extract64(ttbr, 2, 4) << 48; 1169 } else if (descaddr >> outputsize) { 1170 level = 0; 1171 fault_type = ARMFault_AddressSize; 1172 goto do_fault; 1173 } 1174 1175 /* 1176 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1177 * and also to mask out CnP (bit 0) which could validly be non-zero. 1178 */ 1179 descaddr &= ~indexmask; 1180 1181 /* 1182 * For AArch32, the address field in the descriptor goes up to bit 39 1183 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1184 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1185 * bits as part of the address, which will be checked via outputsize. 1186 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1187 * the highest bits of a 52-bit output are placed elsewhere. 1188 */ 1189 if (param.ds) { 1190 descaddrmask = MAKE_64BIT_MASK(0, 50); 1191 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1192 descaddrmask = MAKE_64BIT_MASK(0, 48); 1193 } else { 1194 descaddrmask = MAKE_64BIT_MASK(0, 40); 1195 } 1196 descaddrmask &= ~indexmask_grainsize; 1197 1198 /* 1199 * Secure accesses start with the page table in secure memory and 1200 * can be downgraded to non-secure at any step. Non-secure accesses 1201 * remain non-secure. We implement this by just ORing in the NSTable/NS 1202 * bits at each step. 1203 */ 1204 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 1205 for (;;) { 1206 uint64_t descriptor; 1207 bool nstable; 1208 1209 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1210 descaddr &= ~7ULL; 1211 nstable = extract32(tableattrs, 4, 1); 1212 descriptor = arm_ldq_ptw(env, descaddr, !nstable, mmu_idx, fi); 1213 if (fi->type != ARMFault_None) { 1214 goto do_fault; 1215 } 1216 1217 if (!(descriptor & 1) || 1218 (!(descriptor & 2) && (level == 3))) { 1219 /* Invalid, or the Reserved level 3 encoding */ 1220 goto do_fault; 1221 } 1222 1223 descaddr = descriptor & descaddrmask; 1224 1225 /* 1226 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1227 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1228 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1229 * raise AddressSizeFault. 1230 */ 1231 if (outputsize > 48) { 1232 if (param.ds) { 1233 descaddr |= extract64(descriptor, 8, 2) << 50; 1234 } else { 1235 descaddr |= extract64(descriptor, 12, 4) << 48; 1236 } 1237 } else if (descaddr >> outputsize) { 1238 fault_type = ARMFault_AddressSize; 1239 goto do_fault; 1240 } 1241 1242 if ((descriptor & 2) && (level < 3)) { 1243 /* 1244 * Table entry. The top five bits are attributes which may 1245 * propagate down through lower levels of the table (and 1246 * which are all arranged so that 0 means "no effect", so 1247 * we can gather them up by ORing in the bits at each level). 1248 */ 1249 tableattrs |= extract64(descriptor, 59, 5); 1250 level++; 1251 indexmask = indexmask_grainsize; 1252 continue; 1253 } 1254 /* 1255 * Block entry at level 1 or 2, or page entry at level 3. 1256 * These are basically the same thing, although the number 1257 * of bits we pull in from the vaddr varies. Note that although 1258 * descaddrmask masks enough of the low bits of the descriptor 1259 * to give a correct page or table address, the address field 1260 * in a block descriptor is smaller; so we need to explicitly 1261 * clear the lower bits here before ORing in the low vaddr bits. 1262 */ 1263 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1264 descaddr &= ~(hwaddr)(page_size - 1); 1265 descaddr |= (address & (page_size - 1)); 1266 /* Extract attributes from the descriptor */ 1267 attrs = extract64(descriptor, 2, 10) 1268 | (extract64(descriptor, 52, 12) << 10); 1269 1270 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 1271 /* Stage 2 table descriptors do not include any attribute fields */ 1272 break; 1273 } 1274 /* Merge in attributes from table descriptors */ 1275 attrs |= nstable << 3; /* NS */ 1276 guarded = extract64(descriptor, 50, 1); /* GP */ 1277 if (param.hpd) { 1278 /* HPD disables all the table attributes except NSTable. */ 1279 break; 1280 } 1281 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 1282 /* 1283 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 1284 * means "force PL1 access only", which means forcing AP[1] to 0. 1285 */ 1286 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 1287 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 1288 break; 1289 } 1290 /* 1291 * Here descaddr is the final physical address, and attributes 1292 * are all in attrs. 1293 */ 1294 fault_type = ARMFault_AccessFlag; 1295 if ((attrs & (1 << 8)) == 0) { 1296 /* Access flag */ 1297 goto do_fault; 1298 } 1299 1300 ap = extract32(attrs, 4, 2); 1301 1302 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 1303 ns = mmu_idx == ARMMMUIdx_Stage2; 1304 xn = extract32(attrs, 11, 2); 1305 *prot = get_S2prot(env, ap, xn, s1_is_el0); 1306 } else { 1307 ns = extract32(attrs, 3, 1); 1308 xn = extract32(attrs, 12, 1); 1309 pxn = extract32(attrs, 11, 1); 1310 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 1311 } 1312 1313 fault_type = ARMFault_Permission; 1314 if (!(*prot & (1 << access_type))) { 1315 goto do_fault; 1316 } 1317 1318 if (ns) { 1319 /* 1320 * The NS bit will (as required by the architecture) have no effect if 1321 * the CPU doesn't support TZ or this is a non-secure translation 1322 * regime, because the attribute will already be non-secure. 1323 */ 1324 txattrs->secure = false; 1325 } 1326 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 1327 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 1328 arm_tlb_bti_gp(txattrs) = true; 1329 } 1330 1331 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 1332 cacheattrs->is_s2_format = true; 1333 cacheattrs->attrs = extract32(attrs, 0, 4); 1334 } else { 1335 /* Index into MAIR registers for cache attributes */ 1336 uint8_t attrindx = extract32(attrs, 0, 3); 1337 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 1338 assert(attrindx <= 7); 1339 cacheattrs->is_s2_format = false; 1340 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 1341 } 1342 1343 /* 1344 * For FEAT_LPA2 and effective DS, the SH field in the attributes 1345 * was re-purposed for output address bits. The SH attribute in 1346 * that case comes from TCR_ELx, which we extracted earlier. 1347 */ 1348 if (param.ds) { 1349 cacheattrs->shareability = param.sh; 1350 } else { 1351 cacheattrs->shareability = extract32(attrs, 6, 2); 1352 } 1353 1354 *phys_ptr = descaddr; 1355 *page_size_ptr = page_size; 1356 return false; 1357 1358 do_fault: 1359 fi->type = fault_type; 1360 fi->level = level; 1361 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 1362 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 1363 mmu_idx == ARMMMUIdx_Stage2_S); 1364 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 1365 return true; 1366 } 1367 1368 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 1369 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1370 hwaddr *phys_ptr, int *prot, 1371 ARMMMUFaultInfo *fi) 1372 { 1373 int n; 1374 uint32_t mask; 1375 uint32_t base; 1376 bool is_user = regime_is_user(env, mmu_idx); 1377 1378 if (regime_translation_disabled(env, mmu_idx)) { 1379 /* MPU disabled. */ 1380 *phys_ptr = address; 1381 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1382 return false; 1383 } 1384 1385 *phys_ptr = address; 1386 for (n = 7; n >= 0; n--) { 1387 base = env->cp15.c6_region[n]; 1388 if ((base & 1) == 0) { 1389 continue; 1390 } 1391 mask = 1 << ((base >> 1) & 0x1f); 1392 /* Keep this shift separate from the above to avoid an 1393 (undefined) << 32. */ 1394 mask = (mask << 1) - 1; 1395 if (((base ^ address) & ~mask) == 0) { 1396 break; 1397 } 1398 } 1399 if (n < 0) { 1400 fi->type = ARMFault_Background; 1401 return true; 1402 } 1403 1404 if (access_type == MMU_INST_FETCH) { 1405 mask = env->cp15.pmsav5_insn_ap; 1406 } else { 1407 mask = env->cp15.pmsav5_data_ap; 1408 } 1409 mask = (mask >> (n * 4)) & 0xf; 1410 switch (mask) { 1411 case 0: 1412 fi->type = ARMFault_Permission; 1413 fi->level = 1; 1414 return true; 1415 case 1: 1416 if (is_user) { 1417 fi->type = ARMFault_Permission; 1418 fi->level = 1; 1419 return true; 1420 } 1421 *prot = PAGE_READ | PAGE_WRITE; 1422 break; 1423 case 2: 1424 *prot = PAGE_READ; 1425 if (!is_user) { 1426 *prot |= PAGE_WRITE; 1427 } 1428 break; 1429 case 3: 1430 *prot = PAGE_READ | PAGE_WRITE; 1431 break; 1432 case 5: 1433 if (is_user) { 1434 fi->type = ARMFault_Permission; 1435 fi->level = 1; 1436 return true; 1437 } 1438 *prot = PAGE_READ; 1439 break; 1440 case 6: 1441 *prot = PAGE_READ; 1442 break; 1443 default: 1444 /* Bad permission. */ 1445 fi->type = ARMFault_Permission; 1446 fi->level = 1; 1447 return true; 1448 } 1449 *prot |= PAGE_EXEC; 1450 return false; 1451 } 1452 1453 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 1454 int32_t address, int *prot) 1455 { 1456 if (!arm_feature(env, ARM_FEATURE_M)) { 1457 *prot = PAGE_READ | PAGE_WRITE; 1458 switch (address) { 1459 case 0xF0000000 ... 0xFFFFFFFF: 1460 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 1461 /* hivecs execing is ok */ 1462 *prot |= PAGE_EXEC; 1463 } 1464 break; 1465 case 0x00000000 ... 0x7FFFFFFF: 1466 *prot |= PAGE_EXEC; 1467 break; 1468 } 1469 } else { 1470 /* Default system address map for M profile cores. 1471 * The architecture specifies which regions are execute-never; 1472 * at the MPU level no other checks are defined. 1473 */ 1474 switch (address) { 1475 case 0x00000000 ... 0x1fffffff: /* ROM */ 1476 case 0x20000000 ... 0x3fffffff: /* SRAM */ 1477 case 0x60000000 ... 0x7fffffff: /* RAM */ 1478 case 0x80000000 ... 0x9fffffff: /* RAM */ 1479 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1480 break; 1481 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 1482 case 0xa0000000 ... 0xbfffffff: /* Device */ 1483 case 0xc0000000 ... 0xdfffffff: /* Device */ 1484 case 0xe0000000 ... 0xffffffff: /* System */ 1485 *prot = PAGE_READ | PAGE_WRITE; 1486 break; 1487 default: 1488 g_assert_not_reached(); 1489 } 1490 } 1491 } 1492 1493 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 1494 { 1495 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 1496 return arm_feature(env, ARM_FEATURE_M) && 1497 extract32(address, 20, 12) == 0xe00; 1498 } 1499 1500 static bool m_is_system_region(CPUARMState *env, uint32_t address) 1501 { 1502 /* 1503 * True if address is in the M profile system region 1504 * 0xe0000000 - 0xffffffff 1505 */ 1506 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 1507 } 1508 1509 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 1510 bool is_user) 1511 { 1512 /* 1513 * Return true if we should use the default memory map as a 1514 * "background" region if there are no hits against any MPU regions. 1515 */ 1516 CPUARMState *env = &cpu->env; 1517 1518 if (is_user) { 1519 return false; 1520 } 1521 1522 if (arm_feature(env, ARM_FEATURE_M)) { 1523 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 1524 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 1525 } else { 1526 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 1527 } 1528 } 1529 1530 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 1531 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1532 hwaddr *phys_ptr, int *prot, 1533 target_ulong *page_size, 1534 ARMMMUFaultInfo *fi) 1535 { 1536 ARMCPU *cpu = env_archcpu(env); 1537 int n; 1538 bool is_user = regime_is_user(env, mmu_idx); 1539 1540 *phys_ptr = address; 1541 *page_size = TARGET_PAGE_SIZE; 1542 *prot = 0; 1543 1544 if (regime_translation_disabled(env, mmu_idx) || 1545 m_is_ppb_region(env, address)) { 1546 /* 1547 * MPU disabled or M profile PPB access: use default memory map. 1548 * The other case which uses the default memory map in the 1549 * v7M ARM ARM pseudocode is exception vector reads from the vector 1550 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 1551 * which always does a direct read using address_space_ldl(), rather 1552 * than going via this function, so we don't need to check that here. 1553 */ 1554 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 1555 } else { /* MPU enabled */ 1556 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 1557 /* region search */ 1558 uint32_t base = env->pmsav7.drbar[n]; 1559 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 1560 uint32_t rmask; 1561 bool srdis = false; 1562 1563 if (!(env->pmsav7.drsr[n] & 0x1)) { 1564 continue; 1565 } 1566 1567 if (!rsize) { 1568 qemu_log_mask(LOG_GUEST_ERROR, 1569 "DRSR[%d]: Rsize field cannot be 0\n", n); 1570 continue; 1571 } 1572 rsize++; 1573 rmask = (1ull << rsize) - 1; 1574 1575 if (base & rmask) { 1576 qemu_log_mask(LOG_GUEST_ERROR, 1577 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 1578 "to DRSR region size, mask = 0x%" PRIx32 "\n", 1579 n, base, rmask); 1580 continue; 1581 } 1582 1583 if (address < base || address > base + rmask) { 1584 /* 1585 * Address not in this region. We must check whether the 1586 * region covers addresses in the same page as our address. 1587 * In that case we must not report a size that covers the 1588 * whole page for a subsequent hit against a different MPU 1589 * region or the background region, because it would result in 1590 * incorrect TLB hits for subsequent accesses to addresses that 1591 * are in this MPU region. 1592 */ 1593 if (ranges_overlap(base, rmask, 1594 address & TARGET_PAGE_MASK, 1595 TARGET_PAGE_SIZE)) { 1596 *page_size = 1; 1597 } 1598 continue; 1599 } 1600 1601 /* Region matched */ 1602 1603 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 1604 int i, snd; 1605 uint32_t srdis_mask; 1606 1607 rsize -= 3; /* sub region size (power of 2) */ 1608 snd = ((address - base) >> rsize) & 0x7; 1609 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 1610 1611 srdis_mask = srdis ? 0x3 : 0x0; 1612 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 1613 /* 1614 * This will check in groups of 2, 4 and then 8, whether 1615 * the subregion bits are consistent. rsize is incremented 1616 * back up to give the region size, considering consistent 1617 * adjacent subregions as one region. Stop testing if rsize 1618 * is already big enough for an entire QEMU page. 1619 */ 1620 int snd_rounded = snd & ~(i - 1); 1621 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 1622 snd_rounded + 8, i); 1623 if (srdis_mask ^ srdis_multi) { 1624 break; 1625 } 1626 srdis_mask = (srdis_mask << i) | srdis_mask; 1627 rsize++; 1628 } 1629 } 1630 if (srdis) { 1631 continue; 1632 } 1633 if (rsize < TARGET_PAGE_BITS) { 1634 *page_size = 1 << rsize; 1635 } 1636 break; 1637 } 1638 1639 if (n == -1) { /* no hits */ 1640 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 1641 /* background fault */ 1642 fi->type = ARMFault_Background; 1643 return true; 1644 } 1645 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 1646 } else { /* a MPU hit! */ 1647 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 1648 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 1649 1650 if (m_is_system_region(env, address)) { 1651 /* System space is always execute never */ 1652 xn = 1; 1653 } 1654 1655 if (is_user) { /* User mode AP bit decoding */ 1656 switch (ap) { 1657 case 0: 1658 case 1: 1659 case 5: 1660 break; /* no access */ 1661 case 3: 1662 *prot |= PAGE_WRITE; 1663 /* fall through */ 1664 case 2: 1665 case 6: 1666 *prot |= PAGE_READ | PAGE_EXEC; 1667 break; 1668 case 7: 1669 /* for v7M, same as 6; for R profile a reserved value */ 1670 if (arm_feature(env, ARM_FEATURE_M)) { 1671 *prot |= PAGE_READ | PAGE_EXEC; 1672 break; 1673 } 1674 /* fall through */ 1675 default: 1676 qemu_log_mask(LOG_GUEST_ERROR, 1677 "DRACR[%d]: Bad value for AP bits: 0x%" 1678 PRIx32 "\n", n, ap); 1679 } 1680 } else { /* Priv. mode AP bits decoding */ 1681 switch (ap) { 1682 case 0: 1683 break; /* no access */ 1684 case 1: 1685 case 2: 1686 case 3: 1687 *prot |= PAGE_WRITE; 1688 /* fall through */ 1689 case 5: 1690 case 6: 1691 *prot |= PAGE_READ | PAGE_EXEC; 1692 break; 1693 case 7: 1694 /* for v7M, same as 6; for R profile a reserved value */ 1695 if (arm_feature(env, ARM_FEATURE_M)) { 1696 *prot |= PAGE_READ | PAGE_EXEC; 1697 break; 1698 } 1699 /* fall through */ 1700 default: 1701 qemu_log_mask(LOG_GUEST_ERROR, 1702 "DRACR[%d]: Bad value for AP bits: 0x%" 1703 PRIx32 "\n", n, ap); 1704 } 1705 } 1706 1707 /* execute never */ 1708 if (xn) { 1709 *prot &= ~PAGE_EXEC; 1710 } 1711 } 1712 } 1713 1714 fi->type = ARMFault_Permission; 1715 fi->level = 1; 1716 return !(*prot & (1 << access_type)); 1717 } 1718 1719 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 1720 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1721 hwaddr *phys_ptr, MemTxAttrs *txattrs, 1722 int *prot, bool *is_subpage, 1723 ARMMMUFaultInfo *fi, uint32_t *mregion) 1724 { 1725 /* 1726 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 1727 * that a full phys-to-virt translation does). 1728 * mregion is (if not NULL) set to the region number which matched, 1729 * or -1 if no region number is returned (MPU off, address did not 1730 * hit a region, address hit in multiple regions). 1731 * We set is_subpage to true if the region hit doesn't cover the 1732 * entire TARGET_PAGE the address is within. 1733 */ 1734 ARMCPU *cpu = env_archcpu(env); 1735 bool is_user = regime_is_user(env, mmu_idx); 1736 uint32_t secure = regime_is_secure(env, mmu_idx); 1737 int n; 1738 int matchregion = -1; 1739 bool hit = false; 1740 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 1741 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 1742 1743 *is_subpage = false; 1744 *phys_ptr = address; 1745 *prot = 0; 1746 if (mregion) { 1747 *mregion = -1; 1748 } 1749 1750 /* 1751 * Unlike the ARM ARM pseudocode, we don't need to check whether this 1752 * was an exception vector read from the vector table (which is always 1753 * done using the default system address map), because those accesses 1754 * are done in arm_v7m_load_vector(), which always does a direct 1755 * read using address_space_ldl(), rather than going via this function. 1756 */ 1757 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 1758 hit = true; 1759 } else if (m_is_ppb_region(env, address)) { 1760 hit = true; 1761 } else { 1762 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 1763 hit = true; 1764 } 1765 1766 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 1767 /* region search */ 1768 /* 1769 * Note that the base address is bits [31:5] from the register 1770 * with bits [4:0] all zeroes, but the limit address is bits 1771 * [31:5] from the register with bits [4:0] all ones. 1772 */ 1773 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 1774 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 1775 1776 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 1777 /* Region disabled */ 1778 continue; 1779 } 1780 1781 if (address < base || address > limit) { 1782 /* 1783 * Address not in this region. We must check whether the 1784 * region covers addresses in the same page as our address. 1785 * In that case we must not report a size that covers the 1786 * whole page for a subsequent hit against a different MPU 1787 * region or the background region, because it would result in 1788 * incorrect TLB hits for subsequent accesses to addresses that 1789 * are in this MPU region. 1790 */ 1791 if (limit >= base && 1792 ranges_overlap(base, limit - base + 1, 1793 addr_page_base, 1794 TARGET_PAGE_SIZE)) { 1795 *is_subpage = true; 1796 } 1797 continue; 1798 } 1799 1800 if (base > addr_page_base || limit < addr_page_limit) { 1801 *is_subpage = true; 1802 } 1803 1804 if (matchregion != -1) { 1805 /* 1806 * Multiple regions match -- always a failure (unlike 1807 * PMSAv7 where highest-numbered-region wins) 1808 */ 1809 fi->type = ARMFault_Permission; 1810 fi->level = 1; 1811 return true; 1812 } 1813 1814 matchregion = n; 1815 hit = true; 1816 } 1817 } 1818 1819 if (!hit) { 1820 /* background fault */ 1821 fi->type = ARMFault_Background; 1822 return true; 1823 } 1824 1825 if (matchregion == -1) { 1826 /* hit using the background region */ 1827 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 1828 } else { 1829 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 1830 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 1831 bool pxn = false; 1832 1833 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 1834 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 1835 } 1836 1837 if (m_is_system_region(env, address)) { 1838 /* System space is always execute never */ 1839 xn = 1; 1840 } 1841 1842 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 1843 if (*prot && !xn && !(pxn && !is_user)) { 1844 *prot |= PAGE_EXEC; 1845 } 1846 /* 1847 * We don't need to look the attribute up in the MAIR0/MAIR1 1848 * registers because that only tells us about cacheability. 1849 */ 1850 if (mregion) { 1851 *mregion = matchregion; 1852 } 1853 } 1854 1855 fi->type = ARMFault_Permission; 1856 fi->level = 1; 1857 return !(*prot & (1 << access_type)); 1858 } 1859 1860 static bool v8m_is_sau_exempt(CPUARMState *env, 1861 uint32_t address, MMUAccessType access_type) 1862 { 1863 /* 1864 * The architecture specifies that certain address ranges are 1865 * exempt from v8M SAU/IDAU checks. 1866 */ 1867 return 1868 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 1869 (address >= 0xe0000000 && address <= 0xe0002fff) || 1870 (address >= 0xe000e000 && address <= 0xe000efff) || 1871 (address >= 0xe002e000 && address <= 0xe002efff) || 1872 (address >= 0xe0040000 && address <= 0xe0041fff) || 1873 (address >= 0xe00ff000 && address <= 0xe00fffff); 1874 } 1875 1876 void v8m_security_lookup(CPUARMState *env, uint32_t address, 1877 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1878 V8M_SAttributes *sattrs) 1879 { 1880 /* 1881 * Look up the security attributes for this address. Compare the 1882 * pseudocode SecurityCheck() function. 1883 * We assume the caller has zero-initialized *sattrs. 1884 */ 1885 ARMCPU *cpu = env_archcpu(env); 1886 int r; 1887 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 1888 int idau_region = IREGION_NOTVALID; 1889 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 1890 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 1891 1892 if (cpu->idau) { 1893 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 1894 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 1895 1896 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 1897 &idau_nsc); 1898 } 1899 1900 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 1901 /* 0xf0000000..0xffffffff is always S for insn fetches */ 1902 return; 1903 } 1904 1905 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 1906 sattrs->ns = !regime_is_secure(env, mmu_idx); 1907 return; 1908 } 1909 1910 if (idau_region != IREGION_NOTVALID) { 1911 sattrs->irvalid = true; 1912 sattrs->iregion = idau_region; 1913 } 1914 1915 switch (env->sau.ctrl & 3) { 1916 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 1917 break; 1918 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 1919 sattrs->ns = true; 1920 break; 1921 default: /* SAU.ENABLE == 1 */ 1922 for (r = 0; r < cpu->sau_sregion; r++) { 1923 if (env->sau.rlar[r] & 1) { 1924 uint32_t base = env->sau.rbar[r] & ~0x1f; 1925 uint32_t limit = env->sau.rlar[r] | 0x1f; 1926 1927 if (base <= address && limit >= address) { 1928 if (base > addr_page_base || limit < addr_page_limit) { 1929 sattrs->subpage = true; 1930 } 1931 if (sattrs->srvalid) { 1932 /* 1933 * If we hit in more than one region then we must report 1934 * as Secure, not NS-Callable, with no valid region 1935 * number info. 1936 */ 1937 sattrs->ns = false; 1938 sattrs->nsc = false; 1939 sattrs->sregion = 0; 1940 sattrs->srvalid = false; 1941 break; 1942 } else { 1943 if (env->sau.rlar[r] & 2) { 1944 sattrs->nsc = true; 1945 } else { 1946 sattrs->ns = true; 1947 } 1948 sattrs->srvalid = true; 1949 sattrs->sregion = r; 1950 } 1951 } else { 1952 /* 1953 * Address not in this region. We must check whether the 1954 * region covers addresses in the same page as our address. 1955 * In that case we must not report a size that covers the 1956 * whole page for a subsequent hit against a different MPU 1957 * region or the background region, because it would result 1958 * in incorrect TLB hits for subsequent accesses to 1959 * addresses that are in this MPU region. 1960 */ 1961 if (limit >= base && 1962 ranges_overlap(base, limit - base + 1, 1963 addr_page_base, 1964 TARGET_PAGE_SIZE)) { 1965 sattrs->subpage = true; 1966 } 1967 } 1968 } 1969 } 1970 break; 1971 } 1972 1973 /* 1974 * The IDAU will override the SAU lookup results if it specifies 1975 * higher security than the SAU does. 1976 */ 1977 if (!idau_ns) { 1978 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 1979 sattrs->ns = false; 1980 sattrs->nsc = idau_nsc; 1981 } 1982 } 1983 } 1984 1985 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 1986 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1987 hwaddr *phys_ptr, MemTxAttrs *txattrs, 1988 int *prot, target_ulong *page_size, 1989 ARMMMUFaultInfo *fi) 1990 { 1991 uint32_t secure = regime_is_secure(env, mmu_idx); 1992 V8M_SAttributes sattrs = {}; 1993 bool ret; 1994 bool mpu_is_subpage; 1995 1996 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1997 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 1998 if (access_type == MMU_INST_FETCH) { 1999 /* 2000 * Instruction fetches always use the MMU bank and the 2001 * transaction attribute determined by the fetch address, 2002 * regardless of CPU state. This is painful for QEMU 2003 * to handle, because it would mean we need to encode 2004 * into the mmu_idx not just the (user, negpri) information 2005 * for the current security state but also that for the 2006 * other security state, which would balloon the number 2007 * of mmu_idx values needed alarmingly. 2008 * Fortunately we can avoid this because it's not actually 2009 * possible to arbitrarily execute code from memory with 2010 * the wrong security attribute: it will always generate 2011 * an exception of some kind or another, apart from the 2012 * special case of an NS CPU executing an SG instruction 2013 * in S&NSC memory. So we always just fail the translation 2014 * here and sort things out in the exception handler 2015 * (including possibly emulating an SG instruction). 2016 */ 2017 if (sattrs.ns != !secure) { 2018 if (sattrs.nsc) { 2019 fi->type = ARMFault_QEMU_NSCExec; 2020 } else { 2021 fi->type = ARMFault_QEMU_SFault; 2022 } 2023 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 2024 *phys_ptr = address; 2025 *prot = 0; 2026 return true; 2027 } 2028 } else { 2029 /* 2030 * For data accesses we always use the MMU bank indicated 2031 * by the current CPU state, but the security attributes 2032 * might downgrade a secure access to nonsecure. 2033 */ 2034 if (sattrs.ns) { 2035 txattrs->secure = false; 2036 } else if (!secure) { 2037 /* 2038 * NS access to S memory must fault. 2039 * Architecturally we should first check whether the 2040 * MPU information for this address indicates that we 2041 * are doing an unaligned access to Device memory, which 2042 * should generate a UsageFault instead. QEMU does not 2043 * currently check for that kind of unaligned access though. 2044 * If we added it we would need to do so as a special case 2045 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2046 */ 2047 fi->type = ARMFault_QEMU_SFault; 2048 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 2049 *phys_ptr = address; 2050 *prot = 0; 2051 return true; 2052 } 2053 } 2054 } 2055 2056 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 2057 txattrs, prot, &mpu_is_subpage, fi, NULL); 2058 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 2059 return ret; 2060 } 2061 2062 /* 2063 * Translate from the 4-bit stage 2 representation of 2064 * memory attributes (without cache-allocation hints) to 2065 * the 8-bit representation of the stage 1 MAIR registers 2066 * (which includes allocation hints). 2067 * 2068 * ref: shared/translation/attrs/S2AttrDecode() 2069 * .../S2ConvertAttrsHints() 2070 */ 2071 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 2072 { 2073 uint8_t hiattr = extract32(s2attrs, 2, 2); 2074 uint8_t loattr = extract32(s2attrs, 0, 2); 2075 uint8_t hihint = 0, lohint = 0; 2076 2077 if (hiattr != 0) { /* normal memory */ 2078 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 2079 hiattr = loattr = 1; /* non-cacheable */ 2080 } else { 2081 if (hiattr != 1) { /* Write-through or write-back */ 2082 hihint = 3; /* RW allocate */ 2083 } 2084 if (loattr != 1) { /* Write-through or write-back */ 2085 lohint = 3; /* RW allocate */ 2086 } 2087 } 2088 } 2089 2090 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 2091 } 2092 2093 /* 2094 * Combine either inner or outer cacheability attributes for normal 2095 * memory, according to table D4-42 and pseudocode procedure 2096 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 2097 * 2098 * NB: only stage 1 includes allocation hints (RW bits), leading to 2099 * some asymmetry. 2100 */ 2101 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 2102 { 2103 if (s1 == 4 || s2 == 4) { 2104 /* non-cacheable has precedence */ 2105 return 4; 2106 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 2107 /* stage 1 write-through takes precedence */ 2108 return s1; 2109 } else if (extract32(s2, 2, 2) == 2) { 2110 /* stage 2 write-through takes precedence, but the allocation hint 2111 * is still taken from stage 1 2112 */ 2113 return (2 << 2) | extract32(s1, 0, 2); 2114 } else { /* write-back */ 2115 return s1; 2116 } 2117 } 2118 2119 /* 2120 * Combine the memory type and cacheability attributes of 2121 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 2122 * combined attributes in MAIR_EL1 format. 2123 */ 2124 static uint8_t combined_attrs_nofwb(CPUARMState *env, 2125 ARMCacheAttrs s1, ARMCacheAttrs s2) 2126 { 2127 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 2128 2129 s2_mair_attrs = convert_stage2_attrs(env, s2.attrs); 2130 2131 s1lo = extract32(s1.attrs, 0, 4); 2132 s2lo = extract32(s2_mair_attrs, 0, 4); 2133 s1hi = extract32(s1.attrs, 4, 4); 2134 s2hi = extract32(s2_mair_attrs, 4, 4); 2135 2136 /* Combine memory type and cacheability attributes */ 2137 if (s1hi == 0 || s2hi == 0) { 2138 /* Device has precedence over normal */ 2139 if (s1lo == 0 || s2lo == 0) { 2140 /* nGnRnE has precedence over anything */ 2141 ret_attrs = 0; 2142 } else if (s1lo == 4 || s2lo == 4) { 2143 /* non-Reordering has precedence over Reordering */ 2144 ret_attrs = 4; /* nGnRE */ 2145 } else if (s1lo == 8 || s2lo == 8) { 2146 /* non-Gathering has precedence over Gathering */ 2147 ret_attrs = 8; /* nGRE */ 2148 } else { 2149 ret_attrs = 0xc; /* GRE */ 2150 } 2151 } else { /* Normal memory */ 2152 /* Outer/inner cacheability combine independently */ 2153 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 2154 | combine_cacheattr_nibble(s1lo, s2lo); 2155 } 2156 return ret_attrs; 2157 } 2158 2159 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 2160 { 2161 /* 2162 * Given the 4 bits specifying the outer or inner cacheability 2163 * in MAIR format, return a value specifying Normal Write-Back, 2164 * with the allocation and transient hints taken from the input 2165 * if the input specified some kind of cacheable attribute. 2166 */ 2167 if (attr == 0 || attr == 4) { 2168 /* 2169 * 0 == an UNPREDICTABLE encoding 2170 * 4 == Non-cacheable 2171 * Either way, force Write-Back RW allocate non-transient 2172 */ 2173 return 0xf; 2174 } 2175 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 2176 return attr | 4; 2177 } 2178 2179 /* 2180 * Combine the memory type and cacheability attributes of 2181 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 2182 * combined attributes in MAIR_EL1 format. 2183 */ 2184 static uint8_t combined_attrs_fwb(CPUARMState *env, 2185 ARMCacheAttrs s1, ARMCacheAttrs s2) 2186 { 2187 switch (s2.attrs) { 2188 case 7: 2189 /* Use stage 1 attributes */ 2190 return s1.attrs; 2191 case 6: 2192 /* 2193 * Force Normal Write-Back. Note that if S1 is Normal cacheable 2194 * then we take the allocation hints from it; otherwise it is 2195 * RW allocate, non-transient. 2196 */ 2197 if ((s1.attrs & 0xf0) == 0) { 2198 /* S1 is Device */ 2199 return 0xff; 2200 } 2201 /* Need to check the Inner and Outer nibbles separately */ 2202 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 2203 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 2204 case 5: 2205 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 2206 if ((s1.attrs & 0xf0) == 0) { 2207 return s1.attrs; 2208 } 2209 return 0x44; 2210 case 0 ... 3: 2211 /* Force Device, of subtype specified by S2 */ 2212 return s2.attrs << 2; 2213 default: 2214 /* 2215 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 2216 * arbitrarily force Device. 2217 */ 2218 return 0; 2219 } 2220 } 2221 2222 /* 2223 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 2224 * and CombineS1S2Desc() 2225 * 2226 * @env: CPUARMState 2227 * @s1: Attributes from stage 1 walk 2228 * @s2: Attributes from stage 2 walk 2229 */ 2230 static ARMCacheAttrs combine_cacheattrs(CPUARMState *env, 2231 ARMCacheAttrs s1, ARMCacheAttrs s2) 2232 { 2233 ARMCacheAttrs ret; 2234 bool tagged = false; 2235 2236 assert(s2.is_s2_format && !s1.is_s2_format); 2237 ret.is_s2_format = false; 2238 2239 if (s1.attrs == 0xf0) { 2240 tagged = true; 2241 s1.attrs = 0xff; 2242 } 2243 2244 /* Combine shareability attributes (table D4-43) */ 2245 if (s1.shareability == 2 || s2.shareability == 2) { 2246 /* if either are outer-shareable, the result is outer-shareable */ 2247 ret.shareability = 2; 2248 } else if (s1.shareability == 3 || s2.shareability == 3) { 2249 /* if either are inner-shareable, the result is inner-shareable */ 2250 ret.shareability = 3; 2251 } else { 2252 /* both non-shareable */ 2253 ret.shareability = 0; 2254 } 2255 2256 /* Combine memory type and cacheability attributes */ 2257 if (arm_hcr_el2_eff(env) & HCR_FWB) { 2258 ret.attrs = combined_attrs_fwb(env, s1, s2); 2259 } else { 2260 ret.attrs = combined_attrs_nofwb(env, s1, s2); 2261 } 2262 2263 /* 2264 * Any location for which the resultant memory type is any 2265 * type of Device memory is always treated as Outer Shareable. 2266 * Any location for which the resultant memory type is Normal 2267 * Inner Non-cacheable, Outer Non-cacheable is always treated 2268 * as Outer Shareable. 2269 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 2270 */ 2271 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 2272 ret.shareability = 2; 2273 } 2274 2275 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 2276 if (tagged && ret.attrs == 0xff) { 2277 ret.attrs = 0xf0; 2278 } 2279 2280 return ret; 2281 } 2282 2283 /** 2284 * get_phys_addr - get the physical address for this virtual address 2285 * 2286 * Find the physical address corresponding to the given virtual address, 2287 * by doing a translation table walk on MMU based systems or using the 2288 * MPU state on MPU based systems. 2289 * 2290 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 2291 * prot and page_size may not be filled in, and the populated fsr value provides 2292 * information on why the translation aborted, in the format of a 2293 * DFSR/IFSR fault register, with the following caveats: 2294 * * we honour the short vs long DFSR format differences. 2295 * * the WnR bit is never set (the caller must do this). 2296 * * for PSMAv5 based systems we don't bother to return a full FSR format 2297 * value. 2298 * 2299 * @env: CPUARMState 2300 * @address: virtual address to get physical address for 2301 * @access_type: 0 for read, 1 for write, 2 for execute 2302 * @mmu_idx: MMU index indicating required translation regime 2303 * @phys_ptr: set to the physical address corresponding to the virtual address 2304 * @attrs: set to the memory transaction attributes to use 2305 * @prot: set to the permissions for the page containing phys_ptr 2306 * @page_size: set to the size of the page containing phys_ptr 2307 * @fi: set to fault info if the translation fails 2308 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 2309 */ 2310 bool get_phys_addr(CPUARMState *env, target_ulong address, 2311 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2312 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 2313 target_ulong *page_size, 2314 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 2315 { 2316 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 2317 2318 if (mmu_idx != s1_mmu_idx) { 2319 /* 2320 * Call ourselves recursively to do the stage 1 and then stage 2 2321 * translations if mmu_idx is a two-stage regime. 2322 */ 2323 if (arm_feature(env, ARM_FEATURE_EL2)) { 2324 hwaddr ipa; 2325 int s2_prot; 2326 int ret; 2327 bool ipa_secure; 2328 ARMCacheAttrs cacheattrs2 = {}; 2329 ARMMMUIdx s2_mmu_idx; 2330 bool is_el0; 2331 2332 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 2333 attrs, prot, page_size, fi, cacheattrs); 2334 2335 /* If S1 fails or S2 is disabled, return early. */ 2336 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 2337 *phys_ptr = ipa; 2338 return ret; 2339 } 2340 2341 ipa_secure = attrs->secure; 2342 if (arm_is_secure_below_el3(env)) { 2343 if (ipa_secure) { 2344 attrs->secure = !(env->cp15.vstcr_el2 & VSTCR_SW); 2345 } else { 2346 attrs->secure = !(env->cp15.vtcr_el2 & VTCR_NSW); 2347 } 2348 } else { 2349 assert(!ipa_secure); 2350 } 2351 2352 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 2353 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 2354 2355 /* S1 is done. Now do S2 translation. */ 2356 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 2357 phys_ptr, attrs, &s2_prot, 2358 page_size, fi, &cacheattrs2); 2359 fi->s2addr = ipa; 2360 /* Combine the S1 and S2 perms. */ 2361 *prot &= s2_prot; 2362 2363 /* If S2 fails, return early. */ 2364 if (ret) { 2365 return ret; 2366 } 2367 2368 /* Combine the S1 and S2 cache attributes. */ 2369 if (arm_hcr_el2_eff(env) & HCR_DC) { 2370 /* 2371 * HCR.DC forces the first stage attributes to 2372 * Normal Non-Shareable, 2373 * Inner Write-Back Read-Allocate Write-Allocate, 2374 * Outer Write-Back Read-Allocate Write-Allocate. 2375 * Do not overwrite Tagged within attrs. 2376 */ 2377 if (cacheattrs->attrs != 0xf0) { 2378 cacheattrs->attrs = 0xff; 2379 } 2380 cacheattrs->shareability = 0; 2381 } 2382 *cacheattrs = combine_cacheattrs(env, *cacheattrs, cacheattrs2); 2383 2384 /* Check if IPA translates to secure or non-secure PA space. */ 2385 if (arm_is_secure_below_el3(env)) { 2386 if (ipa_secure) { 2387 attrs->secure = 2388 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)); 2389 } else { 2390 attrs->secure = 2391 !((env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)) 2392 || (env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))); 2393 } 2394 } 2395 return 0; 2396 } else { 2397 /* 2398 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 2399 */ 2400 mmu_idx = stage_1_mmu_idx(mmu_idx); 2401 } 2402 } 2403 2404 /* 2405 * The page table entries may downgrade secure to non-secure, but 2406 * cannot upgrade an non-secure translation regime's attributes 2407 * to secure. 2408 */ 2409 attrs->secure = regime_is_secure(env, mmu_idx); 2410 attrs->user = regime_is_user(env, mmu_idx); 2411 2412 /* 2413 * Fast Context Switch Extension. This doesn't exist at all in v8. 2414 * In v7 and earlier it affects all stage 1 translations. 2415 */ 2416 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 2417 && !arm_feature(env, ARM_FEATURE_V8)) { 2418 if (regime_el(env, mmu_idx) == 3) { 2419 address += env->cp15.fcseidr_s; 2420 } else { 2421 address += env->cp15.fcseidr_ns; 2422 } 2423 } 2424 2425 if (arm_feature(env, ARM_FEATURE_PMSA)) { 2426 bool ret; 2427 *page_size = TARGET_PAGE_SIZE; 2428 2429 if (arm_feature(env, ARM_FEATURE_V8)) { 2430 /* PMSAv8 */ 2431 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 2432 phys_ptr, attrs, prot, page_size, fi); 2433 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2434 /* PMSAv7 */ 2435 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 2436 phys_ptr, prot, page_size, fi); 2437 } else { 2438 /* Pre-v7 MPU */ 2439 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 2440 phys_ptr, prot, fi); 2441 } 2442 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 2443 " mmu_idx %u -> %s (prot %c%c%c)\n", 2444 access_type == MMU_DATA_LOAD ? "reading" : 2445 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 2446 (uint32_t)address, mmu_idx, 2447 ret ? "Miss" : "Hit", 2448 *prot & PAGE_READ ? 'r' : '-', 2449 *prot & PAGE_WRITE ? 'w' : '-', 2450 *prot & PAGE_EXEC ? 'x' : '-'); 2451 2452 return ret; 2453 } 2454 2455 /* Definitely a real MMU, not an MPU */ 2456 2457 if (regime_translation_disabled(env, mmu_idx)) { 2458 uint64_t hcr; 2459 uint8_t memattr; 2460 2461 /* 2462 * MMU disabled. S1 addresses within aa64 translation regimes are 2463 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 2464 */ 2465 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 2466 int r_el = regime_el(env, mmu_idx); 2467 if (arm_el_is_aa64(env, r_el)) { 2468 int pamax = arm_pamax(env_archcpu(env)); 2469 uint64_t tcr = env->cp15.tcr_el[r_el]; 2470 int addrtop, tbi; 2471 2472 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 2473 if (access_type == MMU_INST_FETCH) { 2474 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 2475 } 2476 tbi = (tbi >> extract64(address, 55, 1)) & 1; 2477 addrtop = (tbi ? 55 : 63); 2478 2479 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 2480 fi->type = ARMFault_AddressSize; 2481 fi->level = 0; 2482 fi->stage2 = false; 2483 return 1; 2484 } 2485 2486 /* 2487 * When TBI is disabled, we've just validated that all of the 2488 * bits above PAMax are zero, so logically we only need to 2489 * clear the top byte for TBI. But it's clearer to follow 2490 * the pseudocode set of addrdesc.paddress. 2491 */ 2492 address = extract64(address, 0, 52); 2493 } 2494 } 2495 *phys_ptr = address; 2496 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2497 *page_size = TARGET_PAGE_SIZE; 2498 2499 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 2500 hcr = arm_hcr_el2_eff(env); 2501 cacheattrs->shareability = 0; 2502 cacheattrs->is_s2_format = false; 2503 if (hcr & HCR_DC) { 2504 if (hcr & HCR_DCT) { 2505 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 2506 } else { 2507 memattr = 0xff; /* Normal, WB, RWA */ 2508 } 2509 } else if (access_type == MMU_INST_FETCH) { 2510 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 2511 memattr = 0xee; /* Normal, WT, RA, NT */ 2512 } else { 2513 memattr = 0x44; /* Normal, NC, No */ 2514 } 2515 cacheattrs->shareability = 2; /* outer sharable */ 2516 } else { 2517 memattr = 0x00; /* Device, nGnRnE */ 2518 } 2519 cacheattrs->attrs = memattr; 2520 return 0; 2521 } 2522 2523 if (regime_using_lpae_format(env, mmu_idx)) { 2524 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 2525 phys_ptr, attrs, prot, page_size, 2526 fi, cacheattrs); 2527 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 2528 return get_phys_addr_v6(env, address, access_type, mmu_idx, 2529 phys_ptr, attrs, prot, page_size, fi); 2530 } else { 2531 return get_phys_addr_v5(env, address, access_type, mmu_idx, 2532 phys_ptr, prot, page_size, fi); 2533 } 2534 } 2535 2536 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 2537 MemTxAttrs *attrs) 2538 { 2539 ARMCPU *cpu = ARM_CPU(cs); 2540 CPUARMState *env = &cpu->env; 2541 hwaddr phys_addr; 2542 target_ulong page_size; 2543 int prot; 2544 bool ret; 2545 ARMMMUFaultInfo fi = {}; 2546 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 2547 ARMCacheAttrs cacheattrs = {}; 2548 2549 *attrs = (MemTxAttrs) {}; 2550 2551 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 2552 attrs, &prot, &page_size, &fi, &cacheattrs); 2553 2554 if (ret) { 2555 return -1; 2556 } 2557 return phys_addr; 2558 } 2559