1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "qemu/main-loop.h" 13 #include "exec/exec-all.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "idau.h" 17 18 19 typedef struct S1Translate { 20 ARMMMUIdx in_mmu_idx; 21 ARMMMUIdx in_ptw_idx; 22 bool in_secure; 23 bool in_debug; 24 bool out_secure; 25 bool out_rw; 26 bool out_be; 27 hwaddr out_virt; 28 hwaddr out_phys; 29 void *out_host; 30 } S1Translate; 31 32 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 33 uint64_t address, 34 MMUAccessType access_type, bool s1_is_el0, 35 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 36 __attribute__((nonnull)); 37 38 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw, 39 target_ulong address, 40 MMUAccessType access_type, 41 GetPhysAddrResult *result, 42 ARMMMUFaultInfo *fi) 43 __attribute__((nonnull)); 44 45 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 46 static const uint8_t pamax_map[] = { 47 [0] = 32, 48 [1] = 36, 49 [2] = 40, 50 [3] = 42, 51 [4] = 44, 52 [5] = 48, 53 [6] = 52, 54 }; 55 56 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 57 unsigned int arm_pamax(ARMCPU *cpu) 58 { 59 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 60 unsigned int parange = 61 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 62 63 /* 64 * id_aa64mmfr0 is a read-only register so values outside of the 65 * supported mappings can be considered an implementation error. 66 */ 67 assert(parange < ARRAY_SIZE(pamax_map)); 68 return pamax_map[parange]; 69 } 70 71 /* 72 * In machvirt_init, we call arm_pamax on a cpu that is not fully 73 * initialized, so we can't rely on the propagation done in realize. 74 */ 75 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) || 76 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) { 77 /* v7 with LPAE */ 78 return 40; 79 } 80 /* Anything else */ 81 return 32; 82 } 83 84 /* 85 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 86 */ 87 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 88 { 89 switch (mmu_idx) { 90 case ARMMMUIdx_E10_0: 91 return ARMMMUIdx_Stage1_E0; 92 case ARMMMUIdx_E10_1: 93 return ARMMMUIdx_Stage1_E1; 94 case ARMMMUIdx_E10_1_PAN: 95 return ARMMMUIdx_Stage1_E1_PAN; 96 default: 97 return mmu_idx; 98 } 99 } 100 101 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 102 { 103 return stage_1_mmu_idx(arm_mmu_idx(env)); 104 } 105 106 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 107 { 108 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 109 } 110 111 /* Return the TTBR associated with this translation regime */ 112 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 113 { 114 if (mmu_idx == ARMMMUIdx_Stage2) { 115 return env->cp15.vttbr_el2; 116 } 117 if (mmu_idx == ARMMMUIdx_Stage2_S) { 118 return env->cp15.vsttbr_el2; 119 } 120 if (ttbrn == 0) { 121 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 122 } else { 123 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 124 } 125 } 126 127 /* Return true if the specified stage of address translation is disabled */ 128 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, 129 bool is_secure) 130 { 131 uint64_t hcr_el2; 132 133 if (arm_feature(env, ARM_FEATURE_M)) { 134 switch (env->v7m.mpu_ctrl[is_secure] & 135 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 136 case R_V7M_MPU_CTRL_ENABLE_MASK: 137 /* Enabled, but not for HardFault and NMI */ 138 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 139 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 140 /* Enabled for all cases */ 141 return false; 142 case 0: 143 default: 144 /* 145 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 146 * we warned about that in armv7m_nvic.c when the guest set it. 147 */ 148 return true; 149 } 150 } 151 152 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure); 153 154 switch (mmu_idx) { 155 case ARMMMUIdx_Stage2: 156 case ARMMMUIdx_Stage2_S: 157 /* HCR.DC means HCR.VM behaves as 1 */ 158 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 159 160 case ARMMMUIdx_E10_0: 161 case ARMMMUIdx_E10_1: 162 case ARMMMUIdx_E10_1_PAN: 163 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ 164 if (hcr_el2 & HCR_TGE) { 165 return true; 166 } 167 break; 168 169 case ARMMMUIdx_Stage1_E0: 170 case ARMMMUIdx_Stage1_E1: 171 case ARMMMUIdx_Stage1_E1_PAN: 172 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 173 if (hcr_el2 & HCR_DC) { 174 return true; 175 } 176 break; 177 178 case ARMMMUIdx_E20_0: 179 case ARMMMUIdx_E20_2: 180 case ARMMMUIdx_E20_2_PAN: 181 case ARMMMUIdx_E2: 182 case ARMMMUIdx_E3: 183 break; 184 185 case ARMMMUIdx_Phys_NS: 186 case ARMMMUIdx_Phys_S: 187 /* No translation for physical address spaces. */ 188 return true; 189 190 default: 191 g_assert_not_reached(); 192 } 193 194 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 195 } 196 197 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) 198 { 199 /* 200 * For an S1 page table walk, the stage 1 attributes are always 201 * some form of "this is Normal memory". The combined S1+S2 202 * attributes are therefore only Device if stage 2 specifies Device. 203 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 204 * ie when cacheattrs.attrs bits [3:2] are 0b00. 205 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 206 * when cacheattrs.attrs bit [2] is 0. 207 */ 208 if (hcr & HCR_FWB) { 209 return (attrs & 0x4) == 0; 210 } else { 211 return (attrs & 0xc) == 0; 212 } 213 } 214 215 /* Translate a S1 pagetable walk through S2 if needed. */ 216 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, 217 hwaddr addr, ARMMMUFaultInfo *fi) 218 { 219 bool is_secure = ptw->in_secure; 220 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 221 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx; 222 uint8_t pte_attrs; 223 bool pte_secure; 224 225 ptw->out_virt = addr; 226 227 if (unlikely(ptw->in_debug)) { 228 /* 229 * From gdbstub, do not use softmmu so that we don't modify the 230 * state of the cpu at all, including softmmu tlb contents. 231 */ 232 if (regime_is_stage2(s2_mmu_idx)) { 233 S1Translate s2ptw = { 234 .in_mmu_idx = s2_mmu_idx, 235 .in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS, 236 .in_secure = is_secure, 237 .in_debug = true, 238 }; 239 GetPhysAddrResult s2 = { }; 240 241 if (get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD, 242 false, &s2, fi)) { 243 goto fail; 244 } 245 ptw->out_phys = s2.f.phys_addr; 246 pte_attrs = s2.cacheattrs.attrs; 247 pte_secure = s2.f.attrs.secure; 248 } else { 249 /* Regime is physical. */ 250 ptw->out_phys = addr; 251 pte_attrs = 0; 252 pte_secure = is_secure; 253 } 254 ptw->out_host = NULL; 255 ptw->out_rw = false; 256 } else { 257 #ifdef CONFIG_TCG 258 CPUTLBEntryFull *full; 259 int flags; 260 261 env->tlb_fi = fi; 262 flags = probe_access_full(env, addr, 0, MMU_DATA_LOAD, 263 arm_to_core_mmu_idx(s2_mmu_idx), 264 true, &ptw->out_host, &full, 0); 265 env->tlb_fi = NULL; 266 267 if (unlikely(flags & TLB_INVALID_MASK)) { 268 goto fail; 269 } 270 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 271 ptw->out_rw = full->prot & PAGE_WRITE; 272 pte_attrs = full->pte_attrs; 273 pte_secure = full->attrs.secure; 274 #else 275 g_assert_not_reached(); 276 #endif 277 } 278 279 if (regime_is_stage2(s2_mmu_idx)) { 280 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure); 281 282 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { 283 /* 284 * PTW set and S1 walk touched S2 Device memory: 285 * generate Permission fault. 286 */ 287 fi->type = ARMFault_Permission; 288 fi->s2addr = addr; 289 fi->stage2 = true; 290 fi->s1ptw = true; 291 fi->s1ns = !is_secure; 292 return false; 293 } 294 } 295 296 /* Check if page table walk is to secure or non-secure PA space. */ 297 ptw->out_secure = (is_secure 298 && !(pte_secure 299 ? env->cp15.vstcr_el2 & VSTCR_SW 300 : env->cp15.vtcr_el2 & VTCR_NSW)); 301 ptw->out_be = regime_translation_big_endian(env, mmu_idx); 302 return true; 303 304 fail: 305 assert(fi->type != ARMFault_None); 306 fi->s2addr = addr; 307 fi->stage2 = true; 308 fi->s1ptw = true; 309 fi->s1ns = !is_secure; 310 return false; 311 } 312 313 /* All loads done in the course of a page table walk go through here. */ 314 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, 315 ARMMMUFaultInfo *fi) 316 { 317 CPUState *cs = env_cpu(env); 318 void *host = ptw->out_host; 319 uint32_t data; 320 321 if (likely(host)) { 322 /* Page tables are in RAM, and we have the host address. */ 323 data = qatomic_read((uint32_t *)host); 324 if (ptw->out_be) { 325 data = be32_to_cpu(data); 326 } else { 327 data = le32_to_cpu(data); 328 } 329 } else { 330 /* Page tables are in MMIO. */ 331 MemTxAttrs attrs = { .secure = ptw->out_secure }; 332 AddressSpace *as = arm_addressspace(cs, attrs); 333 MemTxResult result = MEMTX_OK; 334 335 if (ptw->out_be) { 336 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); 337 } else { 338 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); 339 } 340 if (unlikely(result != MEMTX_OK)) { 341 fi->type = ARMFault_SyncExternalOnWalk; 342 fi->ea = arm_extabort_type(result); 343 return 0; 344 } 345 } 346 return data; 347 } 348 349 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, 350 ARMMMUFaultInfo *fi) 351 { 352 CPUState *cs = env_cpu(env); 353 void *host = ptw->out_host; 354 uint64_t data; 355 356 if (likely(host)) { 357 /* Page tables are in RAM, and we have the host address. */ 358 #ifdef CONFIG_ATOMIC64 359 data = qatomic_read__nocheck((uint64_t *)host); 360 if (ptw->out_be) { 361 data = be64_to_cpu(data); 362 } else { 363 data = le64_to_cpu(data); 364 } 365 #else 366 if (ptw->out_be) { 367 data = ldq_be_p(host); 368 } else { 369 data = ldq_le_p(host); 370 } 371 #endif 372 } else { 373 /* Page tables are in MMIO. */ 374 MemTxAttrs attrs = { .secure = ptw->out_secure }; 375 AddressSpace *as = arm_addressspace(cs, attrs); 376 MemTxResult result = MEMTX_OK; 377 378 if (ptw->out_be) { 379 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 380 } else { 381 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 382 } 383 if (unlikely(result != MEMTX_OK)) { 384 fi->type = ARMFault_SyncExternalOnWalk; 385 fi->ea = arm_extabort_type(result); 386 return 0; 387 } 388 } 389 return data; 390 } 391 392 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val, 393 uint64_t new_val, S1Translate *ptw, 394 ARMMMUFaultInfo *fi) 395 { 396 uint64_t cur_val; 397 void *host = ptw->out_host; 398 399 if (unlikely(!host)) { 400 fi->type = ARMFault_UnsuppAtomicUpdate; 401 fi->s1ptw = true; 402 return 0; 403 } 404 405 /* 406 * Raising a stage2 Protection fault for an atomic update to a read-only 407 * page is delayed until it is certain that there is a change to make. 408 */ 409 if (unlikely(!ptw->out_rw)) { 410 int flags; 411 void *discard; 412 413 env->tlb_fi = fi; 414 flags = probe_access_flags(env, ptw->out_virt, 0, MMU_DATA_STORE, 415 arm_to_core_mmu_idx(ptw->in_ptw_idx), 416 true, &discard, 0); 417 env->tlb_fi = NULL; 418 419 if (unlikely(flags & TLB_INVALID_MASK)) { 420 assert(fi->type != ARMFault_None); 421 fi->s2addr = ptw->out_virt; 422 fi->stage2 = true; 423 fi->s1ptw = true; 424 fi->s1ns = !ptw->in_secure; 425 return 0; 426 } 427 428 /* In case CAS mismatches and we loop, remember writability. */ 429 ptw->out_rw = true; 430 } 431 432 #ifdef CONFIG_ATOMIC64 433 if (ptw->out_be) { 434 old_val = cpu_to_be64(old_val); 435 new_val = cpu_to_be64(new_val); 436 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 437 cur_val = be64_to_cpu(cur_val); 438 } else { 439 old_val = cpu_to_le64(old_val); 440 new_val = cpu_to_le64(new_val); 441 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 442 cur_val = le64_to_cpu(cur_val); 443 } 444 #else 445 /* 446 * We can't support the full 64-bit atomic cmpxchg on the host. 447 * Because this is only used for FEAT_HAFDBS, which is only for AA64, 448 * we know that TCG_OVERSIZED_GUEST is set, which means that we are 449 * running in round-robin mode and could only race with dma i/o. 450 */ 451 #ifndef TCG_OVERSIZED_GUEST 452 # error "Unexpected configuration" 453 #endif 454 bool locked = qemu_mutex_iothread_locked(); 455 if (!locked) { 456 qemu_mutex_lock_iothread(); 457 } 458 if (ptw->out_be) { 459 cur_val = ldq_be_p(host); 460 if (cur_val == old_val) { 461 stq_be_p(host, new_val); 462 } 463 } else { 464 cur_val = ldq_le_p(host); 465 if (cur_val == old_val) { 466 stq_le_p(host, new_val); 467 } 468 } 469 if (!locked) { 470 qemu_mutex_unlock_iothread(); 471 } 472 #endif 473 474 return cur_val; 475 } 476 477 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 478 uint32_t *table, uint32_t address) 479 { 480 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 481 uint64_t tcr = regime_tcr(env, mmu_idx); 482 int maskshift = extract32(tcr, 0, 3); 483 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 484 uint32_t base_mask; 485 486 if (address & mask) { 487 if (tcr & TTBCR_PD1) { 488 /* Translation table walk disabled for TTBR1 */ 489 return false; 490 } 491 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 492 } else { 493 if (tcr & TTBCR_PD0) { 494 /* Translation table walk disabled for TTBR0 */ 495 return false; 496 } 497 base_mask = ~((uint32_t)0x3fffu >> maskshift); 498 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 499 } 500 *table |= (address >> 18) & 0x3ffc; 501 return true; 502 } 503 504 /* 505 * Translate section/page access permissions to page R/W protection flags 506 * @env: CPUARMState 507 * @mmu_idx: MMU index indicating required translation regime 508 * @ap: The 3-bit access permissions (AP[2:0]) 509 * @domain_prot: The 2-bit domain access permissions 510 * @is_user: TRUE if accessing from PL0 511 */ 512 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx, 513 int ap, int domain_prot, bool is_user) 514 { 515 if (domain_prot == 3) { 516 return PAGE_READ | PAGE_WRITE; 517 } 518 519 switch (ap) { 520 case 0: 521 if (arm_feature(env, ARM_FEATURE_V7)) { 522 return 0; 523 } 524 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 525 case SCTLR_S: 526 return is_user ? 0 : PAGE_READ; 527 case SCTLR_R: 528 return PAGE_READ; 529 default: 530 return 0; 531 } 532 case 1: 533 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 534 case 2: 535 if (is_user) { 536 return PAGE_READ; 537 } else { 538 return PAGE_READ | PAGE_WRITE; 539 } 540 case 3: 541 return PAGE_READ | PAGE_WRITE; 542 case 4: /* Reserved. */ 543 return 0; 544 case 5: 545 return is_user ? 0 : PAGE_READ; 546 case 6: 547 return PAGE_READ; 548 case 7: 549 if (!arm_feature(env, ARM_FEATURE_V6K)) { 550 return 0; 551 } 552 return PAGE_READ; 553 default: 554 g_assert_not_reached(); 555 } 556 } 557 558 /* 559 * Translate section/page access permissions to page R/W protection flags 560 * @env: CPUARMState 561 * @mmu_idx: MMU index indicating required translation regime 562 * @ap: The 3-bit access permissions (AP[2:0]) 563 * @domain_prot: The 2-bit domain access permissions 564 */ 565 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 566 int ap, int domain_prot) 567 { 568 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 569 regime_is_user(env, mmu_idx)); 570 } 571 572 /* 573 * Translate section/page access permissions to page R/W protection flags. 574 * @ap: The 2-bit simple AP (AP[2:1]) 575 * @is_user: TRUE if accessing from PL0 576 */ 577 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 578 { 579 switch (ap) { 580 case 0: 581 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 582 case 1: 583 return PAGE_READ | PAGE_WRITE; 584 case 2: 585 return is_user ? 0 : PAGE_READ; 586 case 3: 587 return PAGE_READ; 588 default: 589 g_assert_not_reached(); 590 } 591 } 592 593 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 594 { 595 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 596 } 597 598 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, 599 uint32_t address, MMUAccessType access_type, 600 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 601 { 602 int level = 1; 603 uint32_t table; 604 uint32_t desc; 605 int type; 606 int ap; 607 int domain = 0; 608 int domain_prot; 609 hwaddr phys_addr; 610 uint32_t dacr; 611 612 /* Pagetable walk. */ 613 /* Lookup l1 descriptor. */ 614 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { 615 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 616 fi->type = ARMFault_Translation; 617 goto do_fault; 618 } 619 if (!S1_ptw_translate(env, ptw, table, fi)) { 620 goto do_fault; 621 } 622 desc = arm_ldl_ptw(env, ptw, fi); 623 if (fi->type != ARMFault_None) { 624 goto do_fault; 625 } 626 type = (desc & 3); 627 domain = (desc >> 5) & 0x0f; 628 if (regime_el(env, ptw->in_mmu_idx) == 1) { 629 dacr = env->cp15.dacr_ns; 630 } else { 631 dacr = env->cp15.dacr_s; 632 } 633 domain_prot = (dacr >> (domain * 2)) & 3; 634 if (type == 0) { 635 /* Section translation fault. */ 636 fi->type = ARMFault_Translation; 637 goto do_fault; 638 } 639 if (type != 2) { 640 level = 2; 641 } 642 if (domain_prot == 0 || domain_prot == 2) { 643 fi->type = ARMFault_Domain; 644 goto do_fault; 645 } 646 if (type == 2) { 647 /* 1Mb section. */ 648 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 649 ap = (desc >> 10) & 3; 650 result->f.lg_page_size = 20; /* 1MB */ 651 } else { 652 /* Lookup l2 entry. */ 653 if (type == 1) { 654 /* Coarse pagetable. */ 655 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 656 } else { 657 /* Fine pagetable. */ 658 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 659 } 660 if (!S1_ptw_translate(env, ptw, table, fi)) { 661 goto do_fault; 662 } 663 desc = arm_ldl_ptw(env, ptw, fi); 664 if (fi->type != ARMFault_None) { 665 goto do_fault; 666 } 667 switch (desc & 3) { 668 case 0: /* Page translation fault. */ 669 fi->type = ARMFault_Translation; 670 goto do_fault; 671 case 1: /* 64k page. */ 672 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 673 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 674 result->f.lg_page_size = 16; 675 break; 676 case 2: /* 4k page. */ 677 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 678 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 679 result->f.lg_page_size = 12; 680 break; 681 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 682 if (type == 1) { 683 /* ARMv6/XScale extended small page format */ 684 if (arm_feature(env, ARM_FEATURE_XSCALE) 685 || arm_feature(env, ARM_FEATURE_V6)) { 686 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 687 result->f.lg_page_size = 12; 688 } else { 689 /* 690 * UNPREDICTABLE in ARMv5; we choose to take a 691 * page translation fault. 692 */ 693 fi->type = ARMFault_Translation; 694 goto do_fault; 695 } 696 } else { 697 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 698 result->f.lg_page_size = 10; 699 } 700 ap = (desc >> 4) & 3; 701 break; 702 default: 703 /* Never happens, but compiler isn't smart enough to tell. */ 704 g_assert_not_reached(); 705 } 706 } 707 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); 708 result->f.prot |= result->f.prot ? PAGE_EXEC : 0; 709 if (!(result->f.prot & (1 << access_type))) { 710 /* Access permission fault. */ 711 fi->type = ARMFault_Permission; 712 goto do_fault; 713 } 714 result->f.phys_addr = phys_addr; 715 return false; 716 do_fault: 717 fi->domain = domain; 718 fi->level = level; 719 return true; 720 } 721 722 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, 723 uint32_t address, MMUAccessType access_type, 724 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 725 { 726 ARMCPU *cpu = env_archcpu(env); 727 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 728 int level = 1; 729 uint32_t table; 730 uint32_t desc; 731 uint32_t xn; 732 uint32_t pxn = 0; 733 int type; 734 int ap; 735 int domain = 0; 736 int domain_prot; 737 hwaddr phys_addr; 738 uint32_t dacr; 739 bool ns; 740 int user_prot; 741 742 /* Pagetable walk. */ 743 /* Lookup l1 descriptor. */ 744 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 745 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 746 fi->type = ARMFault_Translation; 747 goto do_fault; 748 } 749 if (!S1_ptw_translate(env, ptw, table, fi)) { 750 goto do_fault; 751 } 752 desc = arm_ldl_ptw(env, ptw, fi); 753 if (fi->type != ARMFault_None) { 754 goto do_fault; 755 } 756 type = (desc & 3); 757 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 758 /* Section translation fault, or attempt to use the encoding 759 * which is Reserved on implementations without PXN. 760 */ 761 fi->type = ARMFault_Translation; 762 goto do_fault; 763 } 764 if ((type == 1) || !(desc & (1 << 18))) { 765 /* Page or Section. */ 766 domain = (desc >> 5) & 0x0f; 767 } 768 if (regime_el(env, mmu_idx) == 1) { 769 dacr = env->cp15.dacr_ns; 770 } else { 771 dacr = env->cp15.dacr_s; 772 } 773 if (type == 1) { 774 level = 2; 775 } 776 domain_prot = (dacr >> (domain * 2)) & 3; 777 if (domain_prot == 0 || domain_prot == 2) { 778 /* Section or Page domain fault */ 779 fi->type = ARMFault_Domain; 780 goto do_fault; 781 } 782 if (type != 1) { 783 if (desc & (1 << 18)) { 784 /* Supersection. */ 785 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 786 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 787 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 788 result->f.lg_page_size = 24; /* 16MB */ 789 } else { 790 /* Section. */ 791 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 792 result->f.lg_page_size = 20; /* 1MB */ 793 } 794 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 795 xn = desc & (1 << 4); 796 pxn = desc & 1; 797 ns = extract32(desc, 19, 1); 798 } else { 799 if (cpu_isar_feature(aa32_pxn, cpu)) { 800 pxn = (desc >> 2) & 1; 801 } 802 ns = extract32(desc, 3, 1); 803 /* Lookup l2 entry. */ 804 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 805 if (!S1_ptw_translate(env, ptw, table, fi)) { 806 goto do_fault; 807 } 808 desc = arm_ldl_ptw(env, ptw, fi); 809 if (fi->type != ARMFault_None) { 810 goto do_fault; 811 } 812 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 813 switch (desc & 3) { 814 case 0: /* Page translation fault. */ 815 fi->type = ARMFault_Translation; 816 goto do_fault; 817 case 1: /* 64k page. */ 818 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 819 xn = desc & (1 << 15); 820 result->f.lg_page_size = 16; 821 break; 822 case 2: case 3: /* 4k page. */ 823 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 824 xn = desc & 1; 825 result->f.lg_page_size = 12; 826 break; 827 default: 828 /* Never happens, but compiler isn't smart enough to tell. */ 829 g_assert_not_reached(); 830 } 831 } 832 if (domain_prot == 3) { 833 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 834 } else { 835 if (pxn && !regime_is_user(env, mmu_idx)) { 836 xn = 1; 837 } 838 if (xn && access_type == MMU_INST_FETCH) { 839 fi->type = ARMFault_Permission; 840 goto do_fault; 841 } 842 843 if (arm_feature(env, ARM_FEATURE_V6K) && 844 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 845 /* The simplified model uses AP[0] as an access control bit. */ 846 if ((ap & 1) == 0) { 847 /* Access flag fault. */ 848 fi->type = ARMFault_AccessFlag; 849 goto do_fault; 850 } 851 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 852 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1); 853 } else { 854 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 855 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1); 856 } 857 if (result->f.prot && !xn) { 858 result->f.prot |= PAGE_EXEC; 859 } 860 if (!(result->f.prot & (1 << access_type))) { 861 /* Access permission fault. */ 862 fi->type = ARMFault_Permission; 863 goto do_fault; 864 } 865 if (regime_is_pan(env, mmu_idx) && 866 !regime_is_user(env, mmu_idx) && 867 user_prot && 868 access_type != MMU_INST_FETCH) { 869 /* Privileged Access Never fault */ 870 fi->type = ARMFault_Permission; 871 goto do_fault; 872 } 873 } 874 if (ns) { 875 /* The NS bit will (as required by the architecture) have no effect if 876 * the CPU doesn't support TZ or this is a non-secure translation 877 * regime, because the attribute will already be non-secure. 878 */ 879 result->f.attrs.secure = false; 880 } 881 result->f.phys_addr = phys_addr; 882 return false; 883 do_fault: 884 fi->domain = domain; 885 fi->level = level; 886 return true; 887 } 888 889 /* 890 * Translate S2 section/page access permissions to protection flags 891 * @env: CPUARMState 892 * @s2ap: The 2-bit stage2 access permissions (S2AP) 893 * @xn: XN (execute-never) bits 894 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 895 */ 896 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 897 { 898 int prot = 0; 899 900 if (s2ap & 1) { 901 prot |= PAGE_READ; 902 } 903 if (s2ap & 2) { 904 prot |= PAGE_WRITE; 905 } 906 907 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 908 switch (xn) { 909 case 0: 910 prot |= PAGE_EXEC; 911 break; 912 case 1: 913 if (s1_is_el0) { 914 prot |= PAGE_EXEC; 915 } 916 break; 917 case 2: 918 break; 919 case 3: 920 if (!s1_is_el0) { 921 prot |= PAGE_EXEC; 922 } 923 break; 924 default: 925 g_assert_not_reached(); 926 } 927 } else { 928 if (!extract32(xn, 1, 1)) { 929 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 930 prot |= PAGE_EXEC; 931 } 932 } 933 } 934 return prot; 935 } 936 937 /* 938 * Translate section/page access permissions to protection flags 939 * @env: CPUARMState 940 * @mmu_idx: MMU index indicating required translation regime 941 * @is_aa64: TRUE if AArch64 942 * @ap: The 2-bit simple AP (AP[2:1]) 943 * @ns: NS (non-secure) bit 944 * @xn: XN (execute-never) bit 945 * @pxn: PXN (privileged execute-never) bit 946 */ 947 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 948 int ap, int ns, int xn, int pxn) 949 { 950 bool is_user = regime_is_user(env, mmu_idx); 951 int prot_rw, user_rw; 952 bool have_wxn; 953 int wxn = 0; 954 955 assert(!regime_is_stage2(mmu_idx)); 956 957 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 958 if (is_user) { 959 prot_rw = user_rw; 960 } else { 961 if (user_rw && regime_is_pan(env, mmu_idx)) { 962 /* PAN forbids data accesses but doesn't affect insn fetch */ 963 prot_rw = 0; 964 } else { 965 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 966 } 967 } 968 969 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 970 return prot_rw; 971 } 972 973 /* TODO have_wxn should be replaced with 974 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 975 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 976 * compatible processors have EL2, which is required for [U]WXN. 977 */ 978 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 979 980 if (have_wxn) { 981 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 982 } 983 984 if (is_aa64) { 985 if (regime_has_2_ranges(mmu_idx) && !is_user) { 986 xn = pxn || (user_rw & PAGE_WRITE); 987 } 988 } else if (arm_feature(env, ARM_FEATURE_V7)) { 989 switch (regime_el(env, mmu_idx)) { 990 case 1: 991 case 3: 992 if (is_user) { 993 xn = xn || !(user_rw & PAGE_READ); 994 } else { 995 int uwxn = 0; 996 if (have_wxn) { 997 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 998 } 999 xn = xn || !(prot_rw & PAGE_READ) || pxn || 1000 (uwxn && (user_rw & PAGE_WRITE)); 1001 } 1002 break; 1003 case 2: 1004 break; 1005 } 1006 } else { 1007 xn = wxn = 0; 1008 } 1009 1010 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 1011 return prot_rw; 1012 } 1013 return prot_rw | PAGE_EXEC; 1014 } 1015 1016 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 1017 ARMMMUIdx mmu_idx) 1018 { 1019 uint64_t tcr = regime_tcr(env, mmu_idx); 1020 uint32_t el = regime_el(env, mmu_idx); 1021 int select, tsz; 1022 bool epd, hpd; 1023 1024 assert(mmu_idx != ARMMMUIdx_Stage2_S); 1025 1026 if (mmu_idx == ARMMMUIdx_Stage2) { 1027 /* VTCR */ 1028 bool sext = extract32(tcr, 4, 1); 1029 bool sign = extract32(tcr, 3, 1); 1030 1031 /* 1032 * If the sign-extend bit is not the same as t0sz[3], the result 1033 * is unpredictable. Flag this as a guest error. 1034 */ 1035 if (sign != sext) { 1036 qemu_log_mask(LOG_GUEST_ERROR, 1037 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 1038 } 1039 tsz = sextract32(tcr, 0, 4) + 8; 1040 select = 0; 1041 hpd = false; 1042 epd = false; 1043 } else if (el == 2) { 1044 /* HTCR */ 1045 tsz = extract32(tcr, 0, 3); 1046 select = 0; 1047 hpd = extract64(tcr, 24, 1); 1048 epd = false; 1049 } else { 1050 int t0sz = extract32(tcr, 0, 3); 1051 int t1sz = extract32(tcr, 16, 3); 1052 1053 if (t1sz == 0) { 1054 select = va > (0xffffffffu >> t0sz); 1055 } else { 1056 /* Note that we will detect errors later. */ 1057 select = va >= ~(0xffffffffu >> t1sz); 1058 } 1059 if (!select) { 1060 tsz = t0sz; 1061 epd = extract32(tcr, 7, 1); 1062 hpd = extract64(tcr, 41, 1); 1063 } else { 1064 tsz = t1sz; 1065 epd = extract32(tcr, 23, 1); 1066 hpd = extract64(tcr, 42, 1); 1067 } 1068 /* For aarch32, hpd0 is not enabled without t2e as well. */ 1069 hpd &= extract32(tcr, 6, 1); 1070 } 1071 1072 return (ARMVAParameters) { 1073 .tsz = tsz, 1074 .select = select, 1075 .epd = epd, 1076 .hpd = hpd, 1077 }; 1078 } 1079 1080 /* 1081 * check_s2_mmu_setup 1082 * @cpu: ARMCPU 1083 * @is_aa64: True if the translation regime is in AArch64 state 1084 * @startlevel: Suggested starting level 1085 * @inputsize: Bitsize of IPAs 1086 * @stride: Page-table stride (See the ARM ARM) 1087 * 1088 * Returns true if the suggested S2 translation parameters are OK and 1089 * false otherwise. 1090 */ 1091 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 1092 int inputsize, int stride, int outputsize) 1093 { 1094 const int grainsize = stride + 3; 1095 int startsizecheck; 1096 1097 /* 1098 * Negative levels are usually not allowed... 1099 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which 1100 * begins with level -1. Note that previous feature tests will have 1101 * eliminated this combination if it is not enabled. 1102 */ 1103 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { 1104 return false; 1105 } 1106 1107 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 1108 if (startsizecheck < 1 || startsizecheck > stride + 4) { 1109 return false; 1110 } 1111 1112 if (is_aa64) { 1113 switch (stride) { 1114 case 13: /* 64KB Pages. */ 1115 if (level == 0 || (level == 1 && outputsize <= 42)) { 1116 return false; 1117 } 1118 break; 1119 case 11: /* 16KB Pages. */ 1120 if (level == 0 || (level == 1 && outputsize <= 40)) { 1121 return false; 1122 } 1123 break; 1124 case 9: /* 4KB Pages. */ 1125 if (level == 0 && outputsize <= 42) { 1126 return false; 1127 } 1128 break; 1129 default: 1130 g_assert_not_reached(); 1131 } 1132 1133 /* Inputsize checks. */ 1134 if (inputsize > outputsize && 1135 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 1136 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 1137 return false; 1138 } 1139 } else { 1140 /* AArch32 only supports 4KB pages. Assert on that. */ 1141 assert(stride == 9); 1142 1143 if (level == 0) { 1144 return false; 1145 } 1146 } 1147 return true; 1148 } 1149 1150 /** 1151 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 1152 * 1153 * Returns false if the translation was successful. Otherwise, phys_ptr, 1154 * attrs, prot and page_size may not be filled in, and the populated fsr 1155 * value provides information on why the translation aborted, in the format 1156 * of a long-format DFSR/IFSR fault register, with the following caveat: 1157 * the WnR bit is never set (the caller must do this). 1158 * 1159 * @env: CPUARMState 1160 * @ptw: Current and next stage parameters for the walk. 1161 * @address: virtual address to get physical address for 1162 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 1163 * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2 1164 * (so this is a stage 2 page table walk), 1165 * must be true if this is stage 2 of a stage 1+2 1166 * walk for an EL0 access. If @mmu_idx is anything else, 1167 * @s1_is_el0 is ignored. 1168 * @result: set on translation success, 1169 * @fi: set to fault info if the translation fails 1170 */ 1171 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 1172 uint64_t address, 1173 MMUAccessType access_type, bool s1_is_el0, 1174 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1175 { 1176 ARMCPU *cpu = env_archcpu(env); 1177 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1178 bool is_secure = ptw->in_secure; 1179 int32_t level; 1180 ARMVAParameters param; 1181 uint64_t ttbr; 1182 hwaddr descaddr, indexmask, indexmask_grainsize; 1183 uint32_t tableattrs; 1184 target_ulong page_size; 1185 uint64_t attrs; 1186 int32_t stride; 1187 int addrsize, inputsize, outputsize; 1188 uint64_t tcr = regime_tcr(env, mmu_idx); 1189 int ap, ns, xn, pxn; 1190 uint32_t el = regime_el(env, mmu_idx); 1191 uint64_t descaddrmask; 1192 bool aarch64 = arm_el_is_aa64(env, el); 1193 uint64_t descriptor, new_descriptor; 1194 bool nstable; 1195 1196 /* TODO: This code does not support shareability levels. */ 1197 if (aarch64) { 1198 int ps; 1199 1200 param = aa64_va_parameters(env, address, mmu_idx, 1201 access_type != MMU_INST_FETCH); 1202 level = 0; 1203 1204 /* 1205 * If TxSZ is programmed to a value larger than the maximum, 1206 * or smaller than the effective minimum, it is IMPLEMENTATION 1207 * DEFINED whether we behave as if the field were programmed 1208 * within bounds, or if a level 0 Translation fault is generated. 1209 * 1210 * With FEAT_LVA, fault on less than minimum becomes required, 1211 * so our choice is to always raise the fault. 1212 */ 1213 if (param.tsz_oob) { 1214 goto do_translation_fault; 1215 } 1216 1217 addrsize = 64 - 8 * param.tbi; 1218 inputsize = 64 - param.tsz; 1219 1220 /* 1221 * Bound PS by PARANGE to find the effective output address size. 1222 * ID_AA64MMFR0 is a read-only register so values outside of the 1223 * supported mappings can be considered an implementation error. 1224 */ 1225 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1226 ps = MIN(ps, param.ps); 1227 assert(ps < ARRAY_SIZE(pamax_map)); 1228 outputsize = pamax_map[ps]; 1229 1230 /* 1231 * With LPA2, the effective output address (OA) size is at most 48 bits 1232 * unless TCR.DS == 1 1233 */ 1234 if (!param.ds && param.gran != Gran64K) { 1235 outputsize = MIN(outputsize, 48); 1236 } 1237 } else { 1238 param = aa32_va_parameters(env, address, mmu_idx); 1239 level = 1; 1240 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1241 inputsize = addrsize - param.tsz; 1242 outputsize = 40; 1243 } 1244 1245 /* 1246 * We determined the region when collecting the parameters, but we 1247 * have not yet validated that the address is valid for the region. 1248 * Extract the top bits and verify that they all match select. 1249 * 1250 * For aa32, if inputsize == addrsize, then we have selected the 1251 * region by exclusion in aa32_va_parameters and there is no more 1252 * validation to do here. 1253 */ 1254 if (inputsize < addrsize) { 1255 target_ulong top_bits = sextract64(address, inputsize, 1256 addrsize - inputsize); 1257 if (-top_bits != param.select) { 1258 /* The gap between the two regions is a Translation fault */ 1259 goto do_translation_fault; 1260 } 1261 } 1262 1263 stride = arm_granule_bits(param.gran) - 3; 1264 1265 /* 1266 * Note that QEMU ignores shareability and cacheability attributes, 1267 * so we don't need to do anything with the SH, ORGN, IRGN fields 1268 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1269 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1270 * implement any ASID-like capability so we can ignore it (instead 1271 * we will always flush the TLB any time the ASID is changed). 1272 */ 1273 ttbr = regime_ttbr(env, mmu_idx, param.select); 1274 1275 /* 1276 * Here we should have set up all the parameters for the translation: 1277 * inputsize, ttbr, epd, stride, tbi 1278 */ 1279 1280 if (param.epd) { 1281 /* 1282 * Translation table walk disabled => Translation fault on TLB miss 1283 * Note: This is always 0 on 64-bit EL2 and EL3. 1284 */ 1285 goto do_translation_fault; 1286 } 1287 1288 if (!regime_is_stage2(mmu_idx)) { 1289 /* 1290 * The starting level depends on the virtual address size (which can 1291 * be up to 48 bits) and the translation granule size. It indicates 1292 * the number of strides (stride bits at a time) needed to 1293 * consume the bits of the input address. In the pseudocode this is: 1294 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1295 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1296 * our 'stride + 3' and 'stride' is our 'stride'. 1297 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1298 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1299 * = 4 - (inputsize - 4) / stride; 1300 */ 1301 level = 4 - (inputsize - 4) / stride; 1302 } else { 1303 /* 1304 * For stage 2 translations the starting level is specified by the 1305 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 1306 */ 1307 uint32_t sl0 = extract32(tcr, 6, 2); 1308 uint32_t sl2 = extract64(tcr, 33, 1); 1309 int32_t startlevel; 1310 bool ok; 1311 1312 /* SL2 is RES0 unless DS=1 & 4kb granule. */ 1313 if (param.ds && stride == 9 && sl2) { 1314 if (sl0 != 0) { 1315 level = 0; 1316 goto do_translation_fault; 1317 } 1318 startlevel = -1; 1319 } else if (!aarch64 || stride == 9) { 1320 /* AArch32 or 4KB pages */ 1321 startlevel = 2 - sl0; 1322 1323 if (cpu_isar_feature(aa64_st, cpu)) { 1324 startlevel &= 3; 1325 } 1326 } else { 1327 /* 16KB or 64KB pages */ 1328 startlevel = 3 - sl0; 1329 } 1330 1331 /* Check that the starting level is valid. */ 1332 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 1333 inputsize, stride, outputsize); 1334 if (!ok) { 1335 goto do_translation_fault; 1336 } 1337 level = startlevel; 1338 } 1339 1340 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1341 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1342 1343 /* Now we can extract the actual base address from the TTBR */ 1344 descaddr = extract64(ttbr, 0, 48); 1345 1346 /* 1347 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1348 * 1349 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1350 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1351 * but we've just cleared the bits above 47, so simplify the test. 1352 */ 1353 if (outputsize > 48) { 1354 descaddr |= extract64(ttbr, 2, 4) << 48; 1355 } else if (descaddr >> outputsize) { 1356 level = 0; 1357 fi->type = ARMFault_AddressSize; 1358 goto do_fault; 1359 } 1360 1361 /* 1362 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1363 * and also to mask out CnP (bit 0) which could validly be non-zero. 1364 */ 1365 descaddr &= ~indexmask; 1366 1367 /* 1368 * For AArch32, the address field in the descriptor goes up to bit 39 1369 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1370 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1371 * bits as part of the address, which will be checked via outputsize. 1372 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1373 * the highest bits of a 52-bit output are placed elsewhere. 1374 */ 1375 if (param.ds) { 1376 descaddrmask = MAKE_64BIT_MASK(0, 50); 1377 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1378 descaddrmask = MAKE_64BIT_MASK(0, 48); 1379 } else { 1380 descaddrmask = MAKE_64BIT_MASK(0, 40); 1381 } 1382 descaddrmask &= ~indexmask_grainsize; 1383 1384 /* 1385 * Secure accesses start with the page table in secure memory and 1386 * can be downgraded to non-secure at any step. Non-secure accesses 1387 * remain non-secure. We implement this by just ORing in the NSTable/NS 1388 * bits at each step. 1389 */ 1390 tableattrs = is_secure ? 0 : (1 << 4); 1391 1392 next_level: 1393 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1394 descaddr &= ~7ULL; 1395 nstable = extract32(tableattrs, 4, 1); 1396 if (nstable) { 1397 /* 1398 * Stage2_S -> Stage2 or Phys_S -> Phys_NS 1399 * Assert that the non-secure idx are even, and relative order. 1400 */ 1401 QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0); 1402 QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0); 1403 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S); 1404 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S); 1405 ptw->in_ptw_idx &= ~1; 1406 ptw->in_secure = false; 1407 } 1408 if (!S1_ptw_translate(env, ptw, descaddr, fi)) { 1409 goto do_fault; 1410 } 1411 descriptor = arm_ldq_ptw(env, ptw, fi); 1412 if (fi->type != ARMFault_None) { 1413 goto do_fault; 1414 } 1415 new_descriptor = descriptor; 1416 1417 restart_atomic_update: 1418 if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) { 1419 /* Invalid, or the Reserved level 3 encoding */ 1420 goto do_translation_fault; 1421 } 1422 1423 descaddr = descriptor & descaddrmask; 1424 1425 /* 1426 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1427 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1428 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1429 * raise AddressSizeFault. 1430 */ 1431 if (outputsize > 48) { 1432 if (param.ds) { 1433 descaddr |= extract64(descriptor, 8, 2) << 50; 1434 } else { 1435 descaddr |= extract64(descriptor, 12, 4) << 48; 1436 } 1437 } else if (descaddr >> outputsize) { 1438 fi->type = ARMFault_AddressSize; 1439 goto do_fault; 1440 } 1441 1442 if ((descriptor & 2) && (level < 3)) { 1443 /* 1444 * Table entry. The top five bits are attributes which may 1445 * propagate down through lower levels of the table (and 1446 * which are all arranged so that 0 means "no effect", so 1447 * we can gather them up by ORing in the bits at each level). 1448 */ 1449 tableattrs |= extract64(descriptor, 59, 5); 1450 level++; 1451 indexmask = indexmask_grainsize; 1452 goto next_level; 1453 } 1454 1455 /* 1456 * Block entry at level 1 or 2, or page entry at level 3. 1457 * These are basically the same thing, although the number 1458 * of bits we pull in from the vaddr varies. Note that although 1459 * descaddrmask masks enough of the low bits of the descriptor 1460 * to give a correct page or table address, the address field 1461 * in a block descriptor is smaller; so we need to explicitly 1462 * clear the lower bits here before ORing in the low vaddr bits. 1463 * 1464 * Afterward, descaddr is the final physical address. 1465 */ 1466 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1467 descaddr &= ~(hwaddr)(page_size - 1); 1468 descaddr |= (address & (page_size - 1)); 1469 1470 if (likely(!ptw->in_debug)) { 1471 /* 1472 * Access flag. 1473 * If HA is enabled, prepare to update the descriptor below. 1474 * Otherwise, pass the access fault on to software. 1475 */ 1476 if (!(descriptor & (1 << 10))) { 1477 if (param.ha) { 1478 new_descriptor |= 1 << 10; /* AF */ 1479 } else { 1480 fi->type = ARMFault_AccessFlag; 1481 goto do_fault; 1482 } 1483 } 1484 1485 /* 1486 * Dirty Bit. 1487 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP 1488 * bit for writeback. The actual write protection test may still be 1489 * overridden by tableattrs, to be merged below. 1490 */ 1491 if (param.hd 1492 && extract64(descriptor, 51, 1) /* DBM */ 1493 && access_type == MMU_DATA_STORE) { 1494 if (regime_is_stage2(mmu_idx)) { 1495 new_descriptor |= 1ull << 7; /* set S2AP[1] */ 1496 } else { 1497 new_descriptor &= ~(1ull << 7); /* clear AP[2] */ 1498 } 1499 } 1500 } 1501 1502 /* 1503 * Extract attributes from the (modified) descriptor, and apply 1504 * table descriptors. Stage 2 table descriptors do not include 1505 * any attribute fields. HPD disables all the table attributes 1506 * except NSTable. 1507 */ 1508 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14)); 1509 if (!regime_is_stage2(mmu_idx)) { 1510 attrs |= nstable << 5; /* NS */ 1511 if (!param.hpd) { 1512 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */ 1513 /* 1514 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 1515 * means "force PL1 access only", which means forcing AP[1] to 0. 1516 */ 1517 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */ 1518 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */ 1519 } 1520 } 1521 1522 ap = extract32(attrs, 6, 2); 1523 if (regime_is_stage2(mmu_idx)) { 1524 ns = mmu_idx == ARMMMUIdx_Stage2; 1525 xn = extract64(attrs, 53, 2); 1526 result->f.prot = get_S2prot(env, ap, xn, s1_is_el0); 1527 } else { 1528 ns = extract32(attrs, 5, 1); 1529 xn = extract64(attrs, 54, 1); 1530 pxn = extract64(attrs, 53, 1); 1531 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 1532 } 1533 1534 if (!(result->f.prot & (1 << access_type))) { 1535 fi->type = ARMFault_Permission; 1536 goto do_fault; 1537 } 1538 1539 /* If FEAT_HAFDBS has made changes, update the PTE. */ 1540 if (new_descriptor != descriptor) { 1541 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi); 1542 if (fi->type != ARMFault_None) { 1543 goto do_fault; 1544 } 1545 /* 1546 * I_YZSVV says that if the in-memory descriptor has changed, 1547 * then we must use the information in that new value 1548 * (which might include a different output address, different 1549 * attributes, or generate a fault). 1550 * Restart the handling of the descriptor value from scratch. 1551 */ 1552 if (new_descriptor != descriptor) { 1553 descriptor = new_descriptor; 1554 goto restart_atomic_update; 1555 } 1556 } 1557 1558 if (ns) { 1559 /* 1560 * The NS bit will (as required by the architecture) have no effect if 1561 * the CPU doesn't support TZ or this is a non-secure translation 1562 * regime, because the attribute will already be non-secure. 1563 */ 1564 result->f.attrs.secure = false; 1565 } 1566 1567 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ 1568 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { 1569 result->f.guarded = extract64(attrs, 50, 1); /* GP */ 1570 } 1571 1572 if (regime_is_stage2(mmu_idx)) { 1573 result->cacheattrs.is_s2_format = true; 1574 result->cacheattrs.attrs = extract32(attrs, 2, 4); 1575 } else { 1576 /* Index into MAIR registers for cache attributes */ 1577 uint8_t attrindx = extract32(attrs, 2, 3); 1578 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 1579 assert(attrindx <= 7); 1580 result->cacheattrs.is_s2_format = false; 1581 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 1582 } 1583 1584 /* 1585 * For FEAT_LPA2 and effective DS, the SH field in the attributes 1586 * was re-purposed for output address bits. The SH attribute in 1587 * that case comes from TCR_ELx, which we extracted earlier. 1588 */ 1589 if (param.ds) { 1590 result->cacheattrs.shareability = param.sh; 1591 } else { 1592 result->cacheattrs.shareability = extract32(attrs, 8, 2); 1593 } 1594 1595 result->f.phys_addr = descaddr; 1596 result->f.lg_page_size = ctz64(page_size); 1597 return false; 1598 1599 do_translation_fault: 1600 fi->type = ARMFault_Translation; 1601 do_fault: 1602 fi->level = level; 1603 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 1604 fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx); 1605 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 1606 return true; 1607 } 1608 1609 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 1610 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1611 bool is_secure, GetPhysAddrResult *result, 1612 ARMMMUFaultInfo *fi) 1613 { 1614 int n; 1615 uint32_t mask; 1616 uint32_t base; 1617 bool is_user = regime_is_user(env, mmu_idx); 1618 1619 if (regime_translation_disabled(env, mmu_idx, is_secure)) { 1620 /* MPU disabled. */ 1621 result->f.phys_addr = address; 1622 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1623 return false; 1624 } 1625 1626 result->f.phys_addr = address; 1627 for (n = 7; n >= 0; n--) { 1628 base = env->cp15.c6_region[n]; 1629 if ((base & 1) == 0) { 1630 continue; 1631 } 1632 mask = 1 << ((base >> 1) & 0x1f); 1633 /* Keep this shift separate from the above to avoid an 1634 (undefined) << 32. */ 1635 mask = (mask << 1) - 1; 1636 if (((base ^ address) & ~mask) == 0) { 1637 break; 1638 } 1639 } 1640 if (n < 0) { 1641 fi->type = ARMFault_Background; 1642 return true; 1643 } 1644 1645 if (access_type == MMU_INST_FETCH) { 1646 mask = env->cp15.pmsav5_insn_ap; 1647 } else { 1648 mask = env->cp15.pmsav5_data_ap; 1649 } 1650 mask = (mask >> (n * 4)) & 0xf; 1651 switch (mask) { 1652 case 0: 1653 fi->type = ARMFault_Permission; 1654 fi->level = 1; 1655 return true; 1656 case 1: 1657 if (is_user) { 1658 fi->type = ARMFault_Permission; 1659 fi->level = 1; 1660 return true; 1661 } 1662 result->f.prot = PAGE_READ | PAGE_WRITE; 1663 break; 1664 case 2: 1665 result->f.prot = PAGE_READ; 1666 if (!is_user) { 1667 result->f.prot |= PAGE_WRITE; 1668 } 1669 break; 1670 case 3: 1671 result->f.prot = PAGE_READ | PAGE_WRITE; 1672 break; 1673 case 5: 1674 if (is_user) { 1675 fi->type = ARMFault_Permission; 1676 fi->level = 1; 1677 return true; 1678 } 1679 result->f.prot = PAGE_READ; 1680 break; 1681 case 6: 1682 result->f.prot = PAGE_READ; 1683 break; 1684 default: 1685 /* Bad permission. */ 1686 fi->type = ARMFault_Permission; 1687 fi->level = 1; 1688 return true; 1689 } 1690 result->f.prot |= PAGE_EXEC; 1691 return false; 1692 } 1693 1694 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 1695 int32_t address, uint8_t *prot) 1696 { 1697 if (!arm_feature(env, ARM_FEATURE_M)) { 1698 *prot = PAGE_READ | PAGE_WRITE; 1699 switch (address) { 1700 case 0xF0000000 ... 0xFFFFFFFF: 1701 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 1702 /* hivecs execing is ok */ 1703 *prot |= PAGE_EXEC; 1704 } 1705 break; 1706 case 0x00000000 ... 0x7FFFFFFF: 1707 *prot |= PAGE_EXEC; 1708 break; 1709 } 1710 } else { 1711 /* Default system address map for M profile cores. 1712 * The architecture specifies which regions are execute-never; 1713 * at the MPU level no other checks are defined. 1714 */ 1715 switch (address) { 1716 case 0x00000000 ... 0x1fffffff: /* ROM */ 1717 case 0x20000000 ... 0x3fffffff: /* SRAM */ 1718 case 0x60000000 ... 0x7fffffff: /* RAM */ 1719 case 0x80000000 ... 0x9fffffff: /* RAM */ 1720 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1721 break; 1722 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 1723 case 0xa0000000 ... 0xbfffffff: /* Device */ 1724 case 0xc0000000 ... 0xdfffffff: /* Device */ 1725 case 0xe0000000 ... 0xffffffff: /* System */ 1726 *prot = PAGE_READ | PAGE_WRITE; 1727 break; 1728 default: 1729 g_assert_not_reached(); 1730 } 1731 } 1732 } 1733 1734 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 1735 { 1736 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 1737 return arm_feature(env, ARM_FEATURE_M) && 1738 extract32(address, 20, 12) == 0xe00; 1739 } 1740 1741 static bool m_is_system_region(CPUARMState *env, uint32_t address) 1742 { 1743 /* 1744 * True if address is in the M profile system region 1745 * 0xe0000000 - 0xffffffff 1746 */ 1747 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 1748 } 1749 1750 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 1751 bool is_secure, bool is_user) 1752 { 1753 /* 1754 * Return true if we should use the default memory map as a 1755 * "background" region if there are no hits against any MPU regions. 1756 */ 1757 CPUARMState *env = &cpu->env; 1758 1759 if (is_user) { 1760 return false; 1761 } 1762 1763 if (arm_feature(env, ARM_FEATURE_M)) { 1764 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 1765 } 1766 1767 if (mmu_idx == ARMMMUIdx_Stage2) { 1768 return false; 1769 } 1770 1771 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 1772 } 1773 1774 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 1775 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1776 bool secure, GetPhysAddrResult *result, 1777 ARMMMUFaultInfo *fi) 1778 { 1779 ARMCPU *cpu = env_archcpu(env); 1780 int n; 1781 bool is_user = regime_is_user(env, mmu_idx); 1782 1783 result->f.phys_addr = address; 1784 result->f.lg_page_size = TARGET_PAGE_BITS; 1785 result->f.prot = 0; 1786 1787 if (regime_translation_disabled(env, mmu_idx, secure) || 1788 m_is_ppb_region(env, address)) { 1789 /* 1790 * MPU disabled or M profile PPB access: use default memory map. 1791 * The other case which uses the default memory map in the 1792 * v7M ARM ARM pseudocode is exception vector reads from the vector 1793 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 1794 * which always does a direct read using address_space_ldl(), rather 1795 * than going via this function, so we don't need to check that here. 1796 */ 1797 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 1798 } else { /* MPU enabled */ 1799 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 1800 /* region search */ 1801 uint32_t base = env->pmsav7.drbar[n]; 1802 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 1803 uint32_t rmask; 1804 bool srdis = false; 1805 1806 if (!(env->pmsav7.drsr[n] & 0x1)) { 1807 continue; 1808 } 1809 1810 if (!rsize) { 1811 qemu_log_mask(LOG_GUEST_ERROR, 1812 "DRSR[%d]: Rsize field cannot be 0\n", n); 1813 continue; 1814 } 1815 rsize++; 1816 rmask = (1ull << rsize) - 1; 1817 1818 if (base & rmask) { 1819 qemu_log_mask(LOG_GUEST_ERROR, 1820 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 1821 "to DRSR region size, mask = 0x%" PRIx32 "\n", 1822 n, base, rmask); 1823 continue; 1824 } 1825 1826 if (address < base || address > base + rmask) { 1827 /* 1828 * Address not in this region. We must check whether the 1829 * region covers addresses in the same page as our address. 1830 * In that case we must not report a size that covers the 1831 * whole page for a subsequent hit against a different MPU 1832 * region or the background region, because it would result in 1833 * incorrect TLB hits for subsequent accesses to addresses that 1834 * are in this MPU region. 1835 */ 1836 if (ranges_overlap(base, rmask, 1837 address & TARGET_PAGE_MASK, 1838 TARGET_PAGE_SIZE)) { 1839 result->f.lg_page_size = 0; 1840 } 1841 continue; 1842 } 1843 1844 /* Region matched */ 1845 1846 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 1847 int i, snd; 1848 uint32_t srdis_mask; 1849 1850 rsize -= 3; /* sub region size (power of 2) */ 1851 snd = ((address - base) >> rsize) & 0x7; 1852 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 1853 1854 srdis_mask = srdis ? 0x3 : 0x0; 1855 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 1856 /* 1857 * This will check in groups of 2, 4 and then 8, whether 1858 * the subregion bits are consistent. rsize is incremented 1859 * back up to give the region size, considering consistent 1860 * adjacent subregions as one region. Stop testing if rsize 1861 * is already big enough for an entire QEMU page. 1862 */ 1863 int snd_rounded = snd & ~(i - 1); 1864 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 1865 snd_rounded + 8, i); 1866 if (srdis_mask ^ srdis_multi) { 1867 break; 1868 } 1869 srdis_mask = (srdis_mask << i) | srdis_mask; 1870 rsize++; 1871 } 1872 } 1873 if (srdis) { 1874 continue; 1875 } 1876 if (rsize < TARGET_PAGE_BITS) { 1877 result->f.lg_page_size = rsize; 1878 } 1879 break; 1880 } 1881 1882 if (n == -1) { /* no hits */ 1883 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 1884 /* background fault */ 1885 fi->type = ARMFault_Background; 1886 return true; 1887 } 1888 get_phys_addr_pmsav7_default(env, mmu_idx, address, 1889 &result->f.prot); 1890 } else { /* a MPU hit! */ 1891 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 1892 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 1893 1894 if (m_is_system_region(env, address)) { 1895 /* System space is always execute never */ 1896 xn = 1; 1897 } 1898 1899 if (is_user) { /* User mode AP bit decoding */ 1900 switch (ap) { 1901 case 0: 1902 case 1: 1903 case 5: 1904 break; /* no access */ 1905 case 3: 1906 result->f.prot |= PAGE_WRITE; 1907 /* fall through */ 1908 case 2: 1909 case 6: 1910 result->f.prot |= PAGE_READ | PAGE_EXEC; 1911 break; 1912 case 7: 1913 /* for v7M, same as 6; for R profile a reserved value */ 1914 if (arm_feature(env, ARM_FEATURE_M)) { 1915 result->f.prot |= PAGE_READ | PAGE_EXEC; 1916 break; 1917 } 1918 /* fall through */ 1919 default: 1920 qemu_log_mask(LOG_GUEST_ERROR, 1921 "DRACR[%d]: Bad value for AP bits: 0x%" 1922 PRIx32 "\n", n, ap); 1923 } 1924 } else { /* Priv. mode AP bits decoding */ 1925 switch (ap) { 1926 case 0: 1927 break; /* no access */ 1928 case 1: 1929 case 2: 1930 case 3: 1931 result->f.prot |= PAGE_WRITE; 1932 /* fall through */ 1933 case 5: 1934 case 6: 1935 result->f.prot |= PAGE_READ | PAGE_EXEC; 1936 break; 1937 case 7: 1938 /* for v7M, same as 6; for R profile a reserved value */ 1939 if (arm_feature(env, ARM_FEATURE_M)) { 1940 result->f.prot |= PAGE_READ | PAGE_EXEC; 1941 break; 1942 } 1943 /* fall through */ 1944 default: 1945 qemu_log_mask(LOG_GUEST_ERROR, 1946 "DRACR[%d]: Bad value for AP bits: 0x%" 1947 PRIx32 "\n", n, ap); 1948 } 1949 } 1950 1951 /* execute never */ 1952 if (xn) { 1953 result->f.prot &= ~PAGE_EXEC; 1954 } 1955 } 1956 } 1957 1958 fi->type = ARMFault_Permission; 1959 fi->level = 1; 1960 return !(result->f.prot & (1 << access_type)); 1961 } 1962 1963 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx, 1964 uint32_t secure) 1965 { 1966 if (regime_el(env, mmu_idx) == 2) { 1967 return env->pmsav8.hprbar; 1968 } else { 1969 return env->pmsav8.rbar[secure]; 1970 } 1971 } 1972 1973 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx, 1974 uint32_t secure) 1975 { 1976 if (regime_el(env, mmu_idx) == 2) { 1977 return env->pmsav8.hprlar; 1978 } else { 1979 return env->pmsav8.rlar[secure]; 1980 } 1981 } 1982 1983 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 1984 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1985 bool secure, GetPhysAddrResult *result, 1986 ARMMMUFaultInfo *fi, uint32_t *mregion) 1987 { 1988 /* 1989 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 1990 * that a full phys-to-virt translation does). 1991 * mregion is (if not NULL) set to the region number which matched, 1992 * or -1 if no region number is returned (MPU off, address did not 1993 * hit a region, address hit in multiple regions). 1994 * If the region hit doesn't cover the entire TARGET_PAGE the address 1995 * is within, then we set the result page_size to 1 to force the 1996 * memory system to use a subpage. 1997 */ 1998 ARMCPU *cpu = env_archcpu(env); 1999 bool is_user = regime_is_user(env, mmu_idx); 2000 int n; 2001 int matchregion = -1; 2002 bool hit = false; 2003 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2004 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2005 int region_counter; 2006 2007 if (regime_el(env, mmu_idx) == 2) { 2008 region_counter = cpu->pmsav8r_hdregion; 2009 } else { 2010 region_counter = cpu->pmsav7_dregion; 2011 } 2012 2013 result->f.lg_page_size = TARGET_PAGE_BITS; 2014 result->f.phys_addr = address; 2015 result->f.prot = 0; 2016 if (mregion) { 2017 *mregion = -1; 2018 } 2019 2020 if (mmu_idx == ARMMMUIdx_Stage2) { 2021 fi->stage2 = true; 2022 } 2023 2024 /* 2025 * Unlike the ARM ARM pseudocode, we don't need to check whether this 2026 * was an exception vector read from the vector table (which is always 2027 * done using the default system address map), because those accesses 2028 * are done in arm_v7m_load_vector(), which always does a direct 2029 * read using address_space_ldl(), rather than going via this function. 2030 */ 2031 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */ 2032 hit = true; 2033 } else if (m_is_ppb_region(env, address)) { 2034 hit = true; 2035 } else { 2036 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2037 hit = true; 2038 } 2039 2040 uint32_t bitmask; 2041 if (arm_feature(env, ARM_FEATURE_M)) { 2042 bitmask = 0x1f; 2043 } else { 2044 bitmask = 0x3f; 2045 fi->level = 0; 2046 } 2047 2048 for (n = region_counter - 1; n >= 0; n--) { 2049 /* region search */ 2050 /* 2051 * Note that the base address is bits [31:x] from the register 2052 * with bits [x-1:0] all zeroes, but the limit address is bits 2053 * [31:x] from the register with bits [x:0] all ones. Where x is 2054 * 5 for Cortex-M and 6 for Cortex-R 2055 */ 2056 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask; 2057 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask; 2058 2059 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) { 2060 /* Region disabled */ 2061 continue; 2062 } 2063 2064 if (address < base || address > limit) { 2065 /* 2066 * Address not in this region. We must check whether the 2067 * region covers addresses in the same page as our address. 2068 * In that case we must not report a size that covers the 2069 * whole page for a subsequent hit against a different MPU 2070 * region or the background region, because it would result in 2071 * incorrect TLB hits for subsequent accesses to addresses that 2072 * are in this MPU region. 2073 */ 2074 if (limit >= base && 2075 ranges_overlap(base, limit - base + 1, 2076 addr_page_base, 2077 TARGET_PAGE_SIZE)) { 2078 result->f.lg_page_size = 0; 2079 } 2080 continue; 2081 } 2082 2083 if (base > addr_page_base || limit < addr_page_limit) { 2084 result->f.lg_page_size = 0; 2085 } 2086 2087 if (matchregion != -1) { 2088 /* 2089 * Multiple regions match -- always a failure (unlike 2090 * PMSAv7 where highest-numbered-region wins) 2091 */ 2092 fi->type = ARMFault_Permission; 2093 if (arm_feature(env, ARM_FEATURE_M)) { 2094 fi->level = 1; 2095 } 2096 return true; 2097 } 2098 2099 matchregion = n; 2100 hit = true; 2101 } 2102 } 2103 2104 if (!hit) { 2105 if (arm_feature(env, ARM_FEATURE_M)) { 2106 fi->type = ARMFault_Background; 2107 } else { 2108 fi->type = ARMFault_Permission; 2109 } 2110 return true; 2111 } 2112 2113 if (matchregion == -1) { 2114 /* hit using the background region */ 2115 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2116 } else { 2117 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion]; 2118 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion]; 2119 uint32_t ap = extract32(matched_rbar, 1, 2); 2120 uint32_t xn = extract32(matched_rbar, 0, 1); 2121 bool pxn = false; 2122 2123 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 2124 pxn = extract32(matched_rlar, 4, 1); 2125 } 2126 2127 if (m_is_system_region(env, address)) { 2128 /* System space is always execute never */ 2129 xn = 1; 2130 } 2131 2132 if (regime_el(env, mmu_idx) == 2) { 2133 result->f.prot = simple_ap_to_rw_prot_is_user(ap, 2134 mmu_idx != ARMMMUIdx_E2); 2135 } else { 2136 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 2137 } 2138 2139 if (!arm_feature(env, ARM_FEATURE_M)) { 2140 uint8_t attrindx = extract32(matched_rlar, 1, 3); 2141 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2142 uint8_t sh = extract32(matched_rlar, 3, 2); 2143 2144 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN && 2145 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) { 2146 xn = 0x1; 2147 } 2148 2149 if ((regime_el(env, mmu_idx) == 1) && 2150 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) { 2151 pxn = 0x1; 2152 } 2153 2154 result->cacheattrs.is_s2_format = false; 2155 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2156 result->cacheattrs.shareability = sh; 2157 } 2158 2159 if (result->f.prot && !xn && !(pxn && !is_user)) { 2160 result->f.prot |= PAGE_EXEC; 2161 } 2162 2163 if (mregion) { 2164 *mregion = matchregion; 2165 } 2166 } 2167 2168 fi->type = ARMFault_Permission; 2169 if (arm_feature(env, ARM_FEATURE_M)) { 2170 fi->level = 1; 2171 } 2172 return !(result->f.prot & (1 << access_type)); 2173 } 2174 2175 static bool v8m_is_sau_exempt(CPUARMState *env, 2176 uint32_t address, MMUAccessType access_type) 2177 { 2178 /* 2179 * The architecture specifies that certain address ranges are 2180 * exempt from v8M SAU/IDAU checks. 2181 */ 2182 return 2183 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 2184 (address >= 0xe0000000 && address <= 0xe0002fff) || 2185 (address >= 0xe000e000 && address <= 0xe000efff) || 2186 (address >= 0xe002e000 && address <= 0xe002efff) || 2187 (address >= 0xe0040000 && address <= 0xe0041fff) || 2188 (address >= 0xe00ff000 && address <= 0xe00fffff); 2189 } 2190 2191 void v8m_security_lookup(CPUARMState *env, uint32_t address, 2192 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2193 bool is_secure, V8M_SAttributes *sattrs) 2194 { 2195 /* 2196 * Look up the security attributes for this address. Compare the 2197 * pseudocode SecurityCheck() function. 2198 * We assume the caller has zero-initialized *sattrs. 2199 */ 2200 ARMCPU *cpu = env_archcpu(env); 2201 int r; 2202 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 2203 int idau_region = IREGION_NOTVALID; 2204 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2205 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2206 2207 if (cpu->idau) { 2208 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 2209 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 2210 2211 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 2212 &idau_nsc); 2213 } 2214 2215 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 2216 /* 0xf0000000..0xffffffff is always S for insn fetches */ 2217 return; 2218 } 2219 2220 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 2221 sattrs->ns = !is_secure; 2222 return; 2223 } 2224 2225 if (idau_region != IREGION_NOTVALID) { 2226 sattrs->irvalid = true; 2227 sattrs->iregion = idau_region; 2228 } 2229 2230 switch (env->sau.ctrl & 3) { 2231 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 2232 break; 2233 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 2234 sattrs->ns = true; 2235 break; 2236 default: /* SAU.ENABLE == 1 */ 2237 for (r = 0; r < cpu->sau_sregion; r++) { 2238 if (env->sau.rlar[r] & 1) { 2239 uint32_t base = env->sau.rbar[r] & ~0x1f; 2240 uint32_t limit = env->sau.rlar[r] | 0x1f; 2241 2242 if (base <= address && limit >= address) { 2243 if (base > addr_page_base || limit < addr_page_limit) { 2244 sattrs->subpage = true; 2245 } 2246 if (sattrs->srvalid) { 2247 /* 2248 * If we hit in more than one region then we must report 2249 * as Secure, not NS-Callable, with no valid region 2250 * number info. 2251 */ 2252 sattrs->ns = false; 2253 sattrs->nsc = false; 2254 sattrs->sregion = 0; 2255 sattrs->srvalid = false; 2256 break; 2257 } else { 2258 if (env->sau.rlar[r] & 2) { 2259 sattrs->nsc = true; 2260 } else { 2261 sattrs->ns = true; 2262 } 2263 sattrs->srvalid = true; 2264 sattrs->sregion = r; 2265 } 2266 } else { 2267 /* 2268 * Address not in this region. We must check whether the 2269 * region covers addresses in the same page as our address. 2270 * In that case we must not report a size that covers the 2271 * whole page for a subsequent hit against a different MPU 2272 * region or the background region, because it would result 2273 * in incorrect TLB hits for subsequent accesses to 2274 * addresses that are in this MPU region. 2275 */ 2276 if (limit >= base && 2277 ranges_overlap(base, limit - base + 1, 2278 addr_page_base, 2279 TARGET_PAGE_SIZE)) { 2280 sattrs->subpage = true; 2281 } 2282 } 2283 } 2284 } 2285 break; 2286 } 2287 2288 /* 2289 * The IDAU will override the SAU lookup results if it specifies 2290 * higher security than the SAU does. 2291 */ 2292 if (!idau_ns) { 2293 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 2294 sattrs->ns = false; 2295 sattrs->nsc = idau_nsc; 2296 } 2297 } 2298 } 2299 2300 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 2301 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2302 bool secure, GetPhysAddrResult *result, 2303 ARMMMUFaultInfo *fi) 2304 { 2305 V8M_SAttributes sattrs = {}; 2306 bool ret; 2307 2308 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2309 v8m_security_lookup(env, address, access_type, mmu_idx, 2310 secure, &sattrs); 2311 if (access_type == MMU_INST_FETCH) { 2312 /* 2313 * Instruction fetches always use the MMU bank and the 2314 * transaction attribute determined by the fetch address, 2315 * regardless of CPU state. This is painful for QEMU 2316 * to handle, because it would mean we need to encode 2317 * into the mmu_idx not just the (user, negpri) information 2318 * for the current security state but also that for the 2319 * other security state, which would balloon the number 2320 * of mmu_idx values needed alarmingly. 2321 * Fortunately we can avoid this because it's not actually 2322 * possible to arbitrarily execute code from memory with 2323 * the wrong security attribute: it will always generate 2324 * an exception of some kind or another, apart from the 2325 * special case of an NS CPU executing an SG instruction 2326 * in S&NSC memory. So we always just fail the translation 2327 * here and sort things out in the exception handler 2328 * (including possibly emulating an SG instruction). 2329 */ 2330 if (sattrs.ns != !secure) { 2331 if (sattrs.nsc) { 2332 fi->type = ARMFault_QEMU_NSCExec; 2333 } else { 2334 fi->type = ARMFault_QEMU_SFault; 2335 } 2336 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2337 result->f.phys_addr = address; 2338 result->f.prot = 0; 2339 return true; 2340 } 2341 } else { 2342 /* 2343 * For data accesses we always use the MMU bank indicated 2344 * by the current CPU state, but the security attributes 2345 * might downgrade a secure access to nonsecure. 2346 */ 2347 if (sattrs.ns) { 2348 result->f.attrs.secure = false; 2349 } else if (!secure) { 2350 /* 2351 * NS access to S memory must fault. 2352 * Architecturally we should first check whether the 2353 * MPU information for this address indicates that we 2354 * are doing an unaligned access to Device memory, which 2355 * should generate a UsageFault instead. QEMU does not 2356 * currently check for that kind of unaligned access though. 2357 * If we added it we would need to do so as a special case 2358 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2359 */ 2360 fi->type = ARMFault_QEMU_SFault; 2361 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2362 result->f.phys_addr = address; 2363 result->f.prot = 0; 2364 return true; 2365 } 2366 } 2367 } 2368 2369 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, 2370 result, fi, NULL); 2371 if (sattrs.subpage) { 2372 result->f.lg_page_size = 0; 2373 } 2374 return ret; 2375 } 2376 2377 /* 2378 * Translate from the 4-bit stage 2 representation of 2379 * memory attributes (without cache-allocation hints) to 2380 * the 8-bit representation of the stage 1 MAIR registers 2381 * (which includes allocation hints). 2382 * 2383 * ref: shared/translation/attrs/S2AttrDecode() 2384 * .../S2ConvertAttrsHints() 2385 */ 2386 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) 2387 { 2388 uint8_t hiattr = extract32(s2attrs, 2, 2); 2389 uint8_t loattr = extract32(s2attrs, 0, 2); 2390 uint8_t hihint = 0, lohint = 0; 2391 2392 if (hiattr != 0) { /* normal memory */ 2393 if (hcr & HCR_CD) { /* cache disabled */ 2394 hiattr = loattr = 1; /* non-cacheable */ 2395 } else { 2396 if (hiattr != 1) { /* Write-through or write-back */ 2397 hihint = 3; /* RW allocate */ 2398 } 2399 if (loattr != 1) { /* Write-through or write-back */ 2400 lohint = 3; /* RW allocate */ 2401 } 2402 } 2403 } 2404 2405 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 2406 } 2407 2408 /* 2409 * Combine either inner or outer cacheability attributes for normal 2410 * memory, according to table D4-42 and pseudocode procedure 2411 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 2412 * 2413 * NB: only stage 1 includes allocation hints (RW bits), leading to 2414 * some asymmetry. 2415 */ 2416 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 2417 { 2418 if (s1 == 4 || s2 == 4) { 2419 /* non-cacheable has precedence */ 2420 return 4; 2421 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 2422 /* stage 1 write-through takes precedence */ 2423 return s1; 2424 } else if (extract32(s2, 2, 2) == 2) { 2425 /* stage 2 write-through takes precedence, but the allocation hint 2426 * is still taken from stage 1 2427 */ 2428 return (2 << 2) | extract32(s1, 0, 2); 2429 } else { /* write-back */ 2430 return s1; 2431 } 2432 } 2433 2434 /* 2435 * Combine the memory type and cacheability attributes of 2436 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 2437 * combined attributes in MAIR_EL1 format. 2438 */ 2439 static uint8_t combined_attrs_nofwb(uint64_t hcr, 2440 ARMCacheAttrs s1, ARMCacheAttrs s2) 2441 { 2442 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 2443 2444 if (s2.is_s2_format) { 2445 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); 2446 } else { 2447 s2_mair_attrs = s2.attrs; 2448 } 2449 2450 s1lo = extract32(s1.attrs, 0, 4); 2451 s2lo = extract32(s2_mair_attrs, 0, 4); 2452 s1hi = extract32(s1.attrs, 4, 4); 2453 s2hi = extract32(s2_mair_attrs, 4, 4); 2454 2455 /* Combine memory type and cacheability attributes */ 2456 if (s1hi == 0 || s2hi == 0) { 2457 /* Device has precedence over normal */ 2458 if (s1lo == 0 || s2lo == 0) { 2459 /* nGnRnE has precedence over anything */ 2460 ret_attrs = 0; 2461 } else if (s1lo == 4 || s2lo == 4) { 2462 /* non-Reordering has precedence over Reordering */ 2463 ret_attrs = 4; /* nGnRE */ 2464 } else if (s1lo == 8 || s2lo == 8) { 2465 /* non-Gathering has precedence over Gathering */ 2466 ret_attrs = 8; /* nGRE */ 2467 } else { 2468 ret_attrs = 0xc; /* GRE */ 2469 } 2470 } else { /* Normal memory */ 2471 /* Outer/inner cacheability combine independently */ 2472 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 2473 | combine_cacheattr_nibble(s1lo, s2lo); 2474 } 2475 return ret_attrs; 2476 } 2477 2478 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 2479 { 2480 /* 2481 * Given the 4 bits specifying the outer or inner cacheability 2482 * in MAIR format, return a value specifying Normal Write-Back, 2483 * with the allocation and transient hints taken from the input 2484 * if the input specified some kind of cacheable attribute. 2485 */ 2486 if (attr == 0 || attr == 4) { 2487 /* 2488 * 0 == an UNPREDICTABLE encoding 2489 * 4 == Non-cacheable 2490 * Either way, force Write-Back RW allocate non-transient 2491 */ 2492 return 0xf; 2493 } 2494 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 2495 return attr | 4; 2496 } 2497 2498 /* 2499 * Combine the memory type and cacheability attributes of 2500 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 2501 * combined attributes in MAIR_EL1 format. 2502 */ 2503 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) 2504 { 2505 assert(s2.is_s2_format && !s1.is_s2_format); 2506 2507 switch (s2.attrs) { 2508 case 7: 2509 /* Use stage 1 attributes */ 2510 return s1.attrs; 2511 case 6: 2512 /* 2513 * Force Normal Write-Back. Note that if S1 is Normal cacheable 2514 * then we take the allocation hints from it; otherwise it is 2515 * RW allocate, non-transient. 2516 */ 2517 if ((s1.attrs & 0xf0) == 0) { 2518 /* S1 is Device */ 2519 return 0xff; 2520 } 2521 /* Need to check the Inner and Outer nibbles separately */ 2522 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 2523 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 2524 case 5: 2525 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 2526 if ((s1.attrs & 0xf0) == 0) { 2527 return s1.attrs; 2528 } 2529 return 0x44; 2530 case 0 ... 3: 2531 /* Force Device, of subtype specified by S2 */ 2532 return s2.attrs << 2; 2533 default: 2534 /* 2535 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 2536 * arbitrarily force Device. 2537 */ 2538 return 0; 2539 } 2540 } 2541 2542 /* 2543 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 2544 * and CombineS1S2Desc() 2545 * 2546 * @env: CPUARMState 2547 * @s1: Attributes from stage 1 walk 2548 * @s2: Attributes from stage 2 walk 2549 */ 2550 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, 2551 ARMCacheAttrs s1, ARMCacheAttrs s2) 2552 { 2553 ARMCacheAttrs ret; 2554 bool tagged = false; 2555 2556 assert(!s1.is_s2_format); 2557 ret.is_s2_format = false; 2558 2559 if (s1.attrs == 0xf0) { 2560 tagged = true; 2561 s1.attrs = 0xff; 2562 } 2563 2564 /* Combine shareability attributes (table D4-43) */ 2565 if (s1.shareability == 2 || s2.shareability == 2) { 2566 /* if either are outer-shareable, the result is outer-shareable */ 2567 ret.shareability = 2; 2568 } else if (s1.shareability == 3 || s2.shareability == 3) { 2569 /* if either are inner-shareable, the result is inner-shareable */ 2570 ret.shareability = 3; 2571 } else { 2572 /* both non-shareable */ 2573 ret.shareability = 0; 2574 } 2575 2576 /* Combine memory type and cacheability attributes */ 2577 if (hcr & HCR_FWB) { 2578 ret.attrs = combined_attrs_fwb(s1, s2); 2579 } else { 2580 ret.attrs = combined_attrs_nofwb(hcr, s1, s2); 2581 } 2582 2583 /* 2584 * Any location for which the resultant memory type is any 2585 * type of Device memory is always treated as Outer Shareable. 2586 * Any location for which the resultant memory type is Normal 2587 * Inner Non-cacheable, Outer Non-cacheable is always treated 2588 * as Outer Shareable. 2589 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 2590 */ 2591 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 2592 ret.shareability = 2; 2593 } 2594 2595 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 2596 if (tagged && ret.attrs == 0xff) { 2597 ret.attrs = 0xf0; 2598 } 2599 2600 return ret; 2601 } 2602 2603 /* 2604 * MMU disabled. S1 addresses within aa64 translation regimes are 2605 * still checked for bounds -- see AArch64.S1DisabledOutput(). 2606 */ 2607 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address, 2608 MMUAccessType access_type, 2609 ARMMMUIdx mmu_idx, bool is_secure, 2610 GetPhysAddrResult *result, 2611 ARMMMUFaultInfo *fi) 2612 { 2613 uint8_t memattr = 0x00; /* Device nGnRnE */ 2614 uint8_t shareability = 0; /* non-sharable */ 2615 int r_el; 2616 2617 switch (mmu_idx) { 2618 case ARMMMUIdx_Stage2: 2619 case ARMMMUIdx_Stage2_S: 2620 case ARMMMUIdx_Phys_NS: 2621 case ARMMMUIdx_Phys_S: 2622 break; 2623 2624 default: 2625 r_el = regime_el(env, mmu_idx); 2626 if (arm_el_is_aa64(env, r_el)) { 2627 int pamax = arm_pamax(env_archcpu(env)); 2628 uint64_t tcr = env->cp15.tcr_el[r_el]; 2629 int addrtop, tbi; 2630 2631 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 2632 if (access_type == MMU_INST_FETCH) { 2633 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 2634 } 2635 tbi = (tbi >> extract64(address, 55, 1)) & 1; 2636 addrtop = (tbi ? 55 : 63); 2637 2638 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 2639 fi->type = ARMFault_AddressSize; 2640 fi->level = 0; 2641 fi->stage2 = false; 2642 return 1; 2643 } 2644 2645 /* 2646 * When TBI is disabled, we've just validated that all of the 2647 * bits above PAMax are zero, so logically we only need to 2648 * clear the top byte for TBI. But it's clearer to follow 2649 * the pseudocode set of addrdesc.paddress. 2650 */ 2651 address = extract64(address, 0, 52); 2652 } 2653 2654 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 2655 if (r_el == 1) { 2656 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure); 2657 if (hcr & HCR_DC) { 2658 if (hcr & HCR_DCT) { 2659 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 2660 } else { 2661 memattr = 0xff; /* Normal, WB, RWA */ 2662 } 2663 } 2664 } 2665 if (memattr == 0 && access_type == MMU_INST_FETCH) { 2666 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 2667 memattr = 0xee; /* Normal, WT, RA, NT */ 2668 } else { 2669 memattr = 0x44; /* Normal, NC, No */ 2670 } 2671 shareability = 2; /* outer sharable */ 2672 } 2673 result->cacheattrs.is_s2_format = false; 2674 break; 2675 } 2676 2677 result->f.phys_addr = address; 2678 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2679 result->f.lg_page_size = TARGET_PAGE_BITS; 2680 result->cacheattrs.shareability = shareability; 2681 result->cacheattrs.attrs = memattr; 2682 return false; 2683 } 2684 2685 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, 2686 target_ulong address, 2687 MMUAccessType access_type, 2688 GetPhysAddrResult *result, 2689 ARMMMUFaultInfo *fi) 2690 { 2691 hwaddr ipa; 2692 int s1_prot, s1_lgpgsz; 2693 bool is_secure = ptw->in_secure; 2694 bool ret, ipa_secure, s2walk_secure; 2695 ARMCacheAttrs cacheattrs1; 2696 bool is_el0; 2697 uint64_t hcr; 2698 2699 ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi); 2700 2701 /* If S1 fails, return early. */ 2702 if (ret) { 2703 return ret; 2704 } 2705 2706 ipa = result->f.phys_addr; 2707 ipa_secure = result->f.attrs.secure; 2708 if (is_secure) { 2709 /* Select TCR based on the NS bit from the S1 walk. */ 2710 s2walk_secure = !(ipa_secure 2711 ? env->cp15.vstcr_el2 & VSTCR_SW 2712 : env->cp15.vtcr_el2 & VTCR_NSW); 2713 } else { 2714 assert(!ipa_secure); 2715 s2walk_secure = false; 2716 } 2717 2718 is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; 2719 ptw->in_mmu_idx = s2walk_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 2720 ptw->in_ptw_idx = s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 2721 ptw->in_secure = s2walk_secure; 2722 2723 /* 2724 * S1 is done, now do S2 translation. 2725 * Save the stage1 results so that we may merge prot and cacheattrs later. 2726 */ 2727 s1_prot = result->f.prot; 2728 s1_lgpgsz = result->f.lg_page_size; 2729 cacheattrs1 = result->cacheattrs; 2730 memset(result, 0, sizeof(*result)); 2731 2732 if (arm_feature(env, ARM_FEATURE_PMSA)) { 2733 ret = get_phys_addr_pmsav8(env, ipa, access_type, 2734 ptw->in_mmu_idx, is_secure, result, fi); 2735 } else { 2736 ret = get_phys_addr_lpae(env, ptw, ipa, access_type, 2737 is_el0, result, fi); 2738 } 2739 fi->s2addr = ipa; 2740 2741 /* Combine the S1 and S2 perms. */ 2742 result->f.prot &= s1_prot; 2743 2744 /* If S2 fails, return early. */ 2745 if (ret) { 2746 return ret; 2747 } 2748 2749 /* 2750 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE, 2751 * this means "don't put this in the TLB"; in this case, return a 2752 * result with lg_page_size == 0 to achieve that. Otherwise, 2753 * use the maximum of the S1 & S2 page size, so that invalidation 2754 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though 2755 * we know the combined result permissions etc only cover the minimum 2756 * of the S1 and S2 page size, because we know that the common TLB code 2757 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE, 2758 * and passing a larger page size value only affects invalidations.) 2759 */ 2760 if (result->f.lg_page_size < TARGET_PAGE_BITS || 2761 s1_lgpgsz < TARGET_PAGE_BITS) { 2762 result->f.lg_page_size = 0; 2763 } else if (result->f.lg_page_size < s1_lgpgsz) { 2764 result->f.lg_page_size = s1_lgpgsz; 2765 } 2766 2767 /* Combine the S1 and S2 cache attributes. */ 2768 hcr = arm_hcr_el2_eff_secstate(env, is_secure); 2769 if (hcr & HCR_DC) { 2770 /* 2771 * HCR.DC forces the first stage attributes to 2772 * Normal Non-Shareable, 2773 * Inner Write-Back Read-Allocate Write-Allocate, 2774 * Outer Write-Back Read-Allocate Write-Allocate. 2775 * Do not overwrite Tagged within attrs. 2776 */ 2777 if (cacheattrs1.attrs != 0xf0) { 2778 cacheattrs1.attrs = 0xff; 2779 } 2780 cacheattrs1.shareability = 0; 2781 } 2782 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, 2783 result->cacheattrs); 2784 2785 /* 2786 * Check if IPA translates to secure or non-secure PA space. 2787 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. 2788 */ 2789 result->f.attrs.secure = 2790 (is_secure 2791 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) 2792 && (ipa_secure 2793 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)))); 2794 2795 return false; 2796 } 2797 2798 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw, 2799 target_ulong address, 2800 MMUAccessType access_type, 2801 GetPhysAddrResult *result, 2802 ARMMMUFaultInfo *fi) 2803 { 2804 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2805 bool is_secure = ptw->in_secure; 2806 ARMMMUIdx s1_mmu_idx; 2807 2808 /* 2809 * The page table entries may downgrade secure to non-secure, but 2810 * cannot upgrade an non-secure translation regime's attributes 2811 * to secure. 2812 */ 2813 result->f.attrs.secure = is_secure; 2814 2815 switch (mmu_idx) { 2816 case ARMMMUIdx_Phys_S: 2817 case ARMMMUIdx_Phys_NS: 2818 /* Checking Phys early avoids special casing later vs regime_el. */ 2819 return get_phys_addr_disabled(env, address, access_type, mmu_idx, 2820 is_secure, result, fi); 2821 2822 case ARMMMUIdx_Stage1_E0: 2823 case ARMMMUIdx_Stage1_E1: 2824 case ARMMMUIdx_Stage1_E1_PAN: 2825 /* First stage lookup uses second stage for ptw. */ 2826 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 2827 break; 2828 2829 case ARMMMUIdx_E10_0: 2830 s1_mmu_idx = ARMMMUIdx_Stage1_E0; 2831 goto do_twostage; 2832 case ARMMMUIdx_E10_1: 2833 s1_mmu_idx = ARMMMUIdx_Stage1_E1; 2834 goto do_twostage; 2835 case ARMMMUIdx_E10_1_PAN: 2836 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 2837 do_twostage: 2838 /* 2839 * Call ourselves recursively to do the stage 1 and then stage 2 2840 * translations if mmu_idx is a two-stage regime, and EL2 present. 2841 * Otherwise, a stage1+stage2 translation is just stage 1. 2842 */ 2843 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; 2844 if (arm_feature(env, ARM_FEATURE_EL2) && 2845 !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) { 2846 return get_phys_addr_twostage(env, ptw, address, access_type, 2847 result, fi); 2848 } 2849 /* fall through */ 2850 2851 default: 2852 /* Single stage and second stage uses physical for ptw. */ 2853 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 2854 break; 2855 } 2856 2857 result->f.attrs.user = regime_is_user(env, mmu_idx); 2858 2859 /* 2860 * Fast Context Switch Extension. This doesn't exist at all in v8. 2861 * In v7 and earlier it affects all stage 1 translations. 2862 */ 2863 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 2864 && !arm_feature(env, ARM_FEATURE_V8)) { 2865 if (regime_el(env, mmu_idx) == 3) { 2866 address += env->cp15.fcseidr_s; 2867 } else { 2868 address += env->cp15.fcseidr_ns; 2869 } 2870 } 2871 2872 if (arm_feature(env, ARM_FEATURE_PMSA)) { 2873 bool ret; 2874 result->f.lg_page_size = TARGET_PAGE_BITS; 2875 2876 if (arm_feature(env, ARM_FEATURE_V8)) { 2877 /* PMSAv8 */ 2878 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 2879 is_secure, result, fi); 2880 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2881 /* PMSAv7 */ 2882 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 2883 is_secure, result, fi); 2884 } else { 2885 /* Pre-v7 MPU */ 2886 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 2887 is_secure, result, fi); 2888 } 2889 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 2890 " mmu_idx %u -> %s (prot %c%c%c)\n", 2891 access_type == MMU_DATA_LOAD ? "reading" : 2892 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 2893 (uint32_t)address, mmu_idx, 2894 ret ? "Miss" : "Hit", 2895 result->f.prot & PAGE_READ ? 'r' : '-', 2896 result->f.prot & PAGE_WRITE ? 'w' : '-', 2897 result->f.prot & PAGE_EXEC ? 'x' : '-'); 2898 2899 return ret; 2900 } 2901 2902 /* Definitely a real MMU, not an MPU */ 2903 2904 if (regime_translation_disabled(env, mmu_idx, is_secure)) { 2905 return get_phys_addr_disabled(env, address, access_type, mmu_idx, 2906 is_secure, result, fi); 2907 } 2908 2909 if (regime_using_lpae_format(env, mmu_idx)) { 2910 return get_phys_addr_lpae(env, ptw, address, access_type, false, 2911 result, fi); 2912 } else if (arm_feature(env, ARM_FEATURE_V7) || 2913 regime_sctlr(env, mmu_idx) & SCTLR_XP) { 2914 return get_phys_addr_v6(env, ptw, address, access_type, result, fi); 2915 } else { 2916 return get_phys_addr_v5(env, ptw, address, access_type, result, fi); 2917 } 2918 } 2919 2920 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address, 2921 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2922 bool is_secure, GetPhysAddrResult *result, 2923 ARMMMUFaultInfo *fi) 2924 { 2925 S1Translate ptw = { 2926 .in_mmu_idx = mmu_idx, 2927 .in_secure = is_secure, 2928 }; 2929 return get_phys_addr_with_struct(env, &ptw, address, access_type, 2930 result, fi); 2931 } 2932 2933 bool get_phys_addr(CPUARMState *env, target_ulong address, 2934 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2935 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 2936 { 2937 bool is_secure; 2938 2939 switch (mmu_idx) { 2940 case ARMMMUIdx_E10_0: 2941 case ARMMMUIdx_E10_1: 2942 case ARMMMUIdx_E10_1_PAN: 2943 case ARMMMUIdx_E20_0: 2944 case ARMMMUIdx_E20_2: 2945 case ARMMMUIdx_E20_2_PAN: 2946 case ARMMMUIdx_Stage1_E0: 2947 case ARMMMUIdx_Stage1_E1: 2948 case ARMMMUIdx_Stage1_E1_PAN: 2949 case ARMMMUIdx_E2: 2950 is_secure = arm_is_secure_below_el3(env); 2951 break; 2952 case ARMMMUIdx_Stage2: 2953 case ARMMMUIdx_Phys_NS: 2954 case ARMMMUIdx_MPrivNegPri: 2955 case ARMMMUIdx_MUserNegPri: 2956 case ARMMMUIdx_MPriv: 2957 case ARMMMUIdx_MUser: 2958 is_secure = false; 2959 break; 2960 case ARMMMUIdx_E3: 2961 case ARMMMUIdx_Stage2_S: 2962 case ARMMMUIdx_Phys_S: 2963 case ARMMMUIdx_MSPrivNegPri: 2964 case ARMMMUIdx_MSUserNegPri: 2965 case ARMMMUIdx_MSPriv: 2966 case ARMMMUIdx_MSUser: 2967 is_secure = true; 2968 break; 2969 default: 2970 g_assert_not_reached(); 2971 } 2972 return get_phys_addr_with_secure(env, address, access_type, mmu_idx, 2973 is_secure, result, fi); 2974 } 2975 2976 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 2977 MemTxAttrs *attrs) 2978 { 2979 ARMCPU *cpu = ARM_CPU(cs); 2980 CPUARMState *env = &cpu->env; 2981 S1Translate ptw = { 2982 .in_mmu_idx = arm_mmu_idx(env), 2983 .in_secure = arm_is_secure(env), 2984 .in_debug = true, 2985 }; 2986 GetPhysAddrResult res = {}; 2987 ARMMMUFaultInfo fi = {}; 2988 bool ret; 2989 2990 ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi); 2991 *attrs = res.f.attrs; 2992 2993 if (ret) { 2994 return -1; 2995 } 2996 return res.f.phys_addr; 2997 } 2998