1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "qemu/main-loop.h" 13 #include "exec/exec-all.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "idau.h" 17 18 19 typedef struct S1Translate { 20 ARMMMUIdx in_mmu_idx; 21 ARMMMUIdx in_ptw_idx; 22 bool in_secure; 23 bool in_debug; 24 bool out_secure; 25 bool out_rw; 26 bool out_be; 27 hwaddr out_virt; 28 hwaddr out_phys; 29 void *out_host; 30 } S1Translate; 31 32 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 33 uint64_t address, 34 MMUAccessType access_type, bool s1_is_el0, 35 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 36 __attribute__((nonnull)); 37 38 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw, 39 target_ulong address, 40 MMUAccessType access_type, 41 GetPhysAddrResult *result, 42 ARMMMUFaultInfo *fi) 43 __attribute__((nonnull)); 44 45 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 46 static const uint8_t pamax_map[] = { 47 [0] = 32, 48 [1] = 36, 49 [2] = 40, 50 [3] = 42, 51 [4] = 44, 52 [5] = 48, 53 [6] = 52, 54 }; 55 56 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 57 unsigned int arm_pamax(ARMCPU *cpu) 58 { 59 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 60 unsigned int parange = 61 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 62 63 /* 64 * id_aa64mmfr0 is a read-only register so values outside of the 65 * supported mappings can be considered an implementation error. 66 */ 67 assert(parange < ARRAY_SIZE(pamax_map)); 68 return pamax_map[parange]; 69 } 70 71 /* 72 * In machvirt_init, we call arm_pamax on a cpu that is not fully 73 * initialized, so we can't rely on the propagation done in realize. 74 */ 75 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) || 76 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) { 77 /* v7 with LPAE */ 78 return 40; 79 } 80 /* Anything else */ 81 return 32; 82 } 83 84 /* 85 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 86 */ 87 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 88 { 89 switch (mmu_idx) { 90 case ARMMMUIdx_E10_0: 91 return ARMMMUIdx_Stage1_E0; 92 case ARMMMUIdx_E10_1: 93 return ARMMMUIdx_Stage1_E1; 94 case ARMMMUIdx_E10_1_PAN: 95 return ARMMMUIdx_Stage1_E1_PAN; 96 default: 97 return mmu_idx; 98 } 99 } 100 101 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 102 { 103 return stage_1_mmu_idx(arm_mmu_idx(env)); 104 } 105 106 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 107 { 108 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 109 } 110 111 /* Return the TTBR associated with this translation regime */ 112 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 113 { 114 if (mmu_idx == ARMMMUIdx_Stage2) { 115 return env->cp15.vttbr_el2; 116 } 117 if (mmu_idx == ARMMMUIdx_Stage2_S) { 118 return env->cp15.vsttbr_el2; 119 } 120 if (ttbrn == 0) { 121 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 122 } else { 123 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 124 } 125 } 126 127 /* Return true if the specified stage of address translation is disabled */ 128 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, 129 bool is_secure) 130 { 131 uint64_t hcr_el2; 132 133 if (arm_feature(env, ARM_FEATURE_M)) { 134 switch (env->v7m.mpu_ctrl[is_secure] & 135 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 136 case R_V7M_MPU_CTRL_ENABLE_MASK: 137 /* Enabled, but not for HardFault and NMI */ 138 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 139 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 140 /* Enabled for all cases */ 141 return false; 142 case 0: 143 default: 144 /* 145 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 146 * we warned about that in armv7m_nvic.c when the guest set it. 147 */ 148 return true; 149 } 150 } 151 152 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure); 153 154 switch (mmu_idx) { 155 case ARMMMUIdx_Stage2: 156 case ARMMMUIdx_Stage2_S: 157 /* HCR.DC means HCR.VM behaves as 1 */ 158 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 159 160 case ARMMMUIdx_E10_0: 161 case ARMMMUIdx_E10_1: 162 case ARMMMUIdx_E10_1_PAN: 163 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ 164 if (hcr_el2 & HCR_TGE) { 165 return true; 166 } 167 break; 168 169 case ARMMMUIdx_Stage1_E0: 170 case ARMMMUIdx_Stage1_E1: 171 case ARMMMUIdx_Stage1_E1_PAN: 172 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 173 if (hcr_el2 & HCR_DC) { 174 return true; 175 } 176 break; 177 178 case ARMMMUIdx_E20_0: 179 case ARMMMUIdx_E20_2: 180 case ARMMMUIdx_E20_2_PAN: 181 case ARMMMUIdx_E2: 182 case ARMMMUIdx_E3: 183 break; 184 185 case ARMMMUIdx_Phys_NS: 186 case ARMMMUIdx_Phys_S: 187 /* No translation for physical address spaces. */ 188 return true; 189 190 default: 191 g_assert_not_reached(); 192 } 193 194 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 195 } 196 197 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) 198 { 199 /* 200 * For an S1 page table walk, the stage 1 attributes are always 201 * some form of "this is Normal memory". The combined S1+S2 202 * attributes are therefore only Device if stage 2 specifies Device. 203 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 204 * ie when cacheattrs.attrs bits [3:2] are 0b00. 205 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 206 * when cacheattrs.attrs bit [2] is 0. 207 */ 208 if (hcr & HCR_FWB) { 209 return (attrs & 0x4) == 0; 210 } else { 211 return (attrs & 0xc) == 0; 212 } 213 } 214 215 /* Translate a S1 pagetable walk through S2 if needed. */ 216 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, 217 hwaddr addr, ARMMMUFaultInfo *fi) 218 { 219 bool is_secure = ptw->in_secure; 220 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 221 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx; 222 uint8_t pte_attrs; 223 bool pte_secure; 224 225 ptw->out_virt = addr; 226 227 if (unlikely(ptw->in_debug)) { 228 /* 229 * From gdbstub, do not use softmmu so that we don't modify the 230 * state of the cpu at all, including softmmu tlb contents. 231 */ 232 if (regime_is_stage2(s2_mmu_idx)) { 233 S1Translate s2ptw = { 234 .in_mmu_idx = s2_mmu_idx, 235 .in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS, 236 .in_secure = is_secure, 237 .in_debug = true, 238 }; 239 GetPhysAddrResult s2 = { }; 240 241 if (get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD, 242 false, &s2, fi)) { 243 goto fail; 244 } 245 ptw->out_phys = s2.f.phys_addr; 246 pte_attrs = s2.cacheattrs.attrs; 247 pte_secure = s2.f.attrs.secure; 248 } else { 249 /* Regime is physical. */ 250 ptw->out_phys = addr; 251 pte_attrs = 0; 252 pte_secure = is_secure; 253 } 254 ptw->out_host = NULL; 255 ptw->out_rw = false; 256 } else { 257 #ifdef CONFIG_TCG 258 CPUTLBEntryFull *full; 259 int flags; 260 261 env->tlb_fi = fi; 262 flags = probe_access_full(env, addr, 0, MMU_DATA_LOAD, 263 arm_to_core_mmu_idx(s2_mmu_idx), 264 true, &ptw->out_host, &full, 0); 265 env->tlb_fi = NULL; 266 267 if (unlikely(flags & TLB_INVALID_MASK)) { 268 goto fail; 269 } 270 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 271 ptw->out_rw = full->prot & PAGE_WRITE; 272 pte_attrs = full->pte_attrs; 273 pte_secure = full->attrs.secure; 274 #else 275 g_assert_not_reached(); 276 #endif 277 } 278 279 if (regime_is_stage2(s2_mmu_idx)) { 280 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure); 281 282 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { 283 /* 284 * PTW set and S1 walk touched S2 Device memory: 285 * generate Permission fault. 286 */ 287 fi->type = ARMFault_Permission; 288 fi->s2addr = addr; 289 fi->stage2 = true; 290 fi->s1ptw = true; 291 fi->s1ns = !is_secure; 292 return false; 293 } 294 } 295 296 /* Check if page table walk is to secure or non-secure PA space. */ 297 ptw->out_secure = (is_secure 298 && !(pte_secure 299 ? env->cp15.vstcr_el2 & VSTCR_SW 300 : env->cp15.vtcr_el2 & VTCR_NSW)); 301 ptw->out_be = regime_translation_big_endian(env, mmu_idx); 302 return true; 303 304 fail: 305 assert(fi->type != ARMFault_None); 306 fi->s2addr = addr; 307 fi->stage2 = true; 308 fi->s1ptw = true; 309 fi->s1ns = !is_secure; 310 return false; 311 } 312 313 /* All loads done in the course of a page table walk go through here. */ 314 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, 315 ARMMMUFaultInfo *fi) 316 { 317 CPUState *cs = env_cpu(env); 318 void *host = ptw->out_host; 319 uint32_t data; 320 321 if (likely(host)) { 322 /* Page tables are in RAM, and we have the host address. */ 323 data = qatomic_read((uint32_t *)host); 324 if (ptw->out_be) { 325 data = be32_to_cpu(data); 326 } else { 327 data = le32_to_cpu(data); 328 } 329 } else { 330 /* Page tables are in MMIO. */ 331 MemTxAttrs attrs = { .secure = ptw->out_secure }; 332 AddressSpace *as = arm_addressspace(cs, attrs); 333 MemTxResult result = MEMTX_OK; 334 335 if (ptw->out_be) { 336 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); 337 } else { 338 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); 339 } 340 if (unlikely(result != MEMTX_OK)) { 341 fi->type = ARMFault_SyncExternalOnWalk; 342 fi->ea = arm_extabort_type(result); 343 return 0; 344 } 345 } 346 return data; 347 } 348 349 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, 350 ARMMMUFaultInfo *fi) 351 { 352 CPUState *cs = env_cpu(env); 353 void *host = ptw->out_host; 354 uint64_t data; 355 356 if (likely(host)) { 357 /* Page tables are in RAM, and we have the host address. */ 358 #ifdef CONFIG_ATOMIC64 359 data = qatomic_read__nocheck((uint64_t *)host); 360 if (ptw->out_be) { 361 data = be64_to_cpu(data); 362 } else { 363 data = le64_to_cpu(data); 364 } 365 #else 366 if (ptw->out_be) { 367 data = ldq_be_p(host); 368 } else { 369 data = ldq_le_p(host); 370 } 371 #endif 372 } else { 373 /* Page tables are in MMIO. */ 374 MemTxAttrs attrs = { .secure = ptw->out_secure }; 375 AddressSpace *as = arm_addressspace(cs, attrs); 376 MemTxResult result = MEMTX_OK; 377 378 if (ptw->out_be) { 379 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 380 } else { 381 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 382 } 383 if (unlikely(result != MEMTX_OK)) { 384 fi->type = ARMFault_SyncExternalOnWalk; 385 fi->ea = arm_extabort_type(result); 386 return 0; 387 } 388 } 389 return data; 390 } 391 392 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val, 393 uint64_t new_val, S1Translate *ptw, 394 ARMMMUFaultInfo *fi) 395 { 396 uint64_t cur_val; 397 void *host = ptw->out_host; 398 399 if (unlikely(!host)) { 400 fi->type = ARMFault_UnsuppAtomicUpdate; 401 fi->s1ptw = true; 402 return 0; 403 } 404 405 /* 406 * Raising a stage2 Protection fault for an atomic update to a read-only 407 * page is delayed until it is certain that there is a change to make. 408 */ 409 if (unlikely(!ptw->out_rw)) { 410 int flags; 411 void *discard; 412 413 env->tlb_fi = fi; 414 flags = probe_access_flags(env, ptw->out_virt, 0, MMU_DATA_STORE, 415 arm_to_core_mmu_idx(ptw->in_ptw_idx), 416 true, &discard, 0); 417 env->tlb_fi = NULL; 418 419 if (unlikely(flags & TLB_INVALID_MASK)) { 420 assert(fi->type != ARMFault_None); 421 fi->s2addr = ptw->out_virt; 422 fi->stage2 = true; 423 fi->s1ptw = true; 424 fi->s1ns = !ptw->in_secure; 425 return 0; 426 } 427 428 /* In case CAS mismatches and we loop, remember writability. */ 429 ptw->out_rw = true; 430 } 431 432 #ifdef CONFIG_ATOMIC64 433 if (ptw->out_be) { 434 old_val = cpu_to_be64(old_val); 435 new_val = cpu_to_be64(new_val); 436 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 437 cur_val = be64_to_cpu(cur_val); 438 } else { 439 old_val = cpu_to_le64(old_val); 440 new_val = cpu_to_le64(new_val); 441 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 442 cur_val = le64_to_cpu(cur_val); 443 } 444 #else 445 /* 446 * We can't support the full 64-bit atomic cmpxchg on the host. 447 * Because this is only used for FEAT_HAFDBS, which is only for AA64, 448 * we know that TCG_OVERSIZED_GUEST is set, which means that we are 449 * running in round-robin mode and could only race with dma i/o. 450 */ 451 #ifndef TCG_OVERSIZED_GUEST 452 # error "Unexpected configuration" 453 #endif 454 bool locked = qemu_mutex_iothread_locked(); 455 if (!locked) { 456 qemu_mutex_lock_iothread(); 457 } 458 if (ptw->out_be) { 459 cur_val = ldq_be_p(host); 460 if (cur_val == old_val) { 461 stq_be_p(host, new_val); 462 } 463 } else { 464 cur_val = ldq_le_p(host); 465 if (cur_val == old_val) { 466 stq_le_p(host, new_val); 467 } 468 } 469 if (!locked) { 470 qemu_mutex_unlock_iothread(); 471 } 472 #endif 473 474 return cur_val; 475 } 476 477 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 478 uint32_t *table, uint32_t address) 479 { 480 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 481 uint64_t tcr = regime_tcr(env, mmu_idx); 482 int maskshift = extract32(tcr, 0, 3); 483 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 484 uint32_t base_mask; 485 486 if (address & mask) { 487 if (tcr & TTBCR_PD1) { 488 /* Translation table walk disabled for TTBR1 */ 489 return false; 490 } 491 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 492 } else { 493 if (tcr & TTBCR_PD0) { 494 /* Translation table walk disabled for TTBR0 */ 495 return false; 496 } 497 base_mask = ~((uint32_t)0x3fffu >> maskshift); 498 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 499 } 500 *table |= (address >> 18) & 0x3ffc; 501 return true; 502 } 503 504 /* 505 * Translate section/page access permissions to page R/W protection flags 506 * @env: CPUARMState 507 * @mmu_idx: MMU index indicating required translation regime 508 * @ap: The 3-bit access permissions (AP[2:0]) 509 * @domain_prot: The 2-bit domain access permissions 510 * @is_user: TRUE if accessing from PL0 511 */ 512 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx, 513 int ap, int domain_prot, bool is_user) 514 { 515 if (domain_prot == 3) { 516 return PAGE_READ | PAGE_WRITE; 517 } 518 519 switch (ap) { 520 case 0: 521 if (arm_feature(env, ARM_FEATURE_V7)) { 522 return 0; 523 } 524 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 525 case SCTLR_S: 526 return is_user ? 0 : PAGE_READ; 527 case SCTLR_R: 528 return PAGE_READ; 529 default: 530 return 0; 531 } 532 case 1: 533 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 534 case 2: 535 if (is_user) { 536 return PAGE_READ; 537 } else { 538 return PAGE_READ | PAGE_WRITE; 539 } 540 case 3: 541 return PAGE_READ | PAGE_WRITE; 542 case 4: /* Reserved. */ 543 return 0; 544 case 5: 545 return is_user ? 0 : PAGE_READ; 546 case 6: 547 return PAGE_READ; 548 case 7: 549 if (!arm_feature(env, ARM_FEATURE_V6K)) { 550 return 0; 551 } 552 return PAGE_READ; 553 default: 554 g_assert_not_reached(); 555 } 556 } 557 558 /* 559 * Translate section/page access permissions to page R/W protection flags 560 * @env: CPUARMState 561 * @mmu_idx: MMU index indicating required translation regime 562 * @ap: The 3-bit access permissions (AP[2:0]) 563 * @domain_prot: The 2-bit domain access permissions 564 */ 565 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 566 int ap, int domain_prot) 567 { 568 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 569 regime_is_user(env, mmu_idx)); 570 } 571 572 /* 573 * Translate section/page access permissions to page R/W protection flags. 574 * @ap: The 2-bit simple AP (AP[2:1]) 575 * @is_user: TRUE if accessing from PL0 576 */ 577 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 578 { 579 switch (ap) { 580 case 0: 581 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 582 case 1: 583 return PAGE_READ | PAGE_WRITE; 584 case 2: 585 return is_user ? 0 : PAGE_READ; 586 case 3: 587 return PAGE_READ; 588 default: 589 g_assert_not_reached(); 590 } 591 } 592 593 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 594 { 595 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 596 } 597 598 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, 599 uint32_t address, MMUAccessType access_type, 600 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 601 { 602 int level = 1; 603 uint32_t table; 604 uint32_t desc; 605 int type; 606 int ap; 607 int domain = 0; 608 int domain_prot; 609 hwaddr phys_addr; 610 uint32_t dacr; 611 612 /* Pagetable walk. */ 613 /* Lookup l1 descriptor. */ 614 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { 615 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 616 fi->type = ARMFault_Translation; 617 goto do_fault; 618 } 619 if (!S1_ptw_translate(env, ptw, table, fi)) { 620 goto do_fault; 621 } 622 desc = arm_ldl_ptw(env, ptw, fi); 623 if (fi->type != ARMFault_None) { 624 goto do_fault; 625 } 626 type = (desc & 3); 627 domain = (desc >> 5) & 0x0f; 628 if (regime_el(env, ptw->in_mmu_idx) == 1) { 629 dacr = env->cp15.dacr_ns; 630 } else { 631 dacr = env->cp15.dacr_s; 632 } 633 domain_prot = (dacr >> (domain * 2)) & 3; 634 if (type == 0) { 635 /* Section translation fault. */ 636 fi->type = ARMFault_Translation; 637 goto do_fault; 638 } 639 if (type != 2) { 640 level = 2; 641 } 642 if (domain_prot == 0 || domain_prot == 2) { 643 fi->type = ARMFault_Domain; 644 goto do_fault; 645 } 646 if (type == 2) { 647 /* 1Mb section. */ 648 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 649 ap = (desc >> 10) & 3; 650 result->f.lg_page_size = 20; /* 1MB */ 651 } else { 652 /* Lookup l2 entry. */ 653 if (type == 1) { 654 /* Coarse pagetable. */ 655 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 656 } else { 657 /* Fine pagetable. */ 658 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 659 } 660 if (!S1_ptw_translate(env, ptw, table, fi)) { 661 goto do_fault; 662 } 663 desc = arm_ldl_ptw(env, ptw, fi); 664 if (fi->type != ARMFault_None) { 665 goto do_fault; 666 } 667 switch (desc & 3) { 668 case 0: /* Page translation fault. */ 669 fi->type = ARMFault_Translation; 670 goto do_fault; 671 case 1: /* 64k page. */ 672 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 673 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 674 result->f.lg_page_size = 16; 675 break; 676 case 2: /* 4k page. */ 677 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 678 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 679 result->f.lg_page_size = 12; 680 break; 681 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 682 if (type == 1) { 683 /* ARMv6/XScale extended small page format */ 684 if (arm_feature(env, ARM_FEATURE_XSCALE) 685 || arm_feature(env, ARM_FEATURE_V6)) { 686 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 687 result->f.lg_page_size = 12; 688 } else { 689 /* 690 * UNPREDICTABLE in ARMv5; we choose to take a 691 * page translation fault. 692 */ 693 fi->type = ARMFault_Translation; 694 goto do_fault; 695 } 696 } else { 697 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 698 result->f.lg_page_size = 10; 699 } 700 ap = (desc >> 4) & 3; 701 break; 702 default: 703 /* Never happens, but compiler isn't smart enough to tell. */ 704 g_assert_not_reached(); 705 } 706 } 707 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); 708 result->f.prot |= result->f.prot ? PAGE_EXEC : 0; 709 if (!(result->f.prot & (1 << access_type))) { 710 /* Access permission fault. */ 711 fi->type = ARMFault_Permission; 712 goto do_fault; 713 } 714 result->f.phys_addr = phys_addr; 715 return false; 716 do_fault: 717 fi->domain = domain; 718 fi->level = level; 719 return true; 720 } 721 722 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, 723 uint32_t address, MMUAccessType access_type, 724 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 725 { 726 ARMCPU *cpu = env_archcpu(env); 727 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 728 int level = 1; 729 uint32_t table; 730 uint32_t desc; 731 uint32_t xn; 732 uint32_t pxn = 0; 733 int type; 734 int ap; 735 int domain = 0; 736 int domain_prot; 737 hwaddr phys_addr; 738 uint32_t dacr; 739 bool ns; 740 int user_prot; 741 742 /* Pagetable walk. */ 743 /* Lookup l1 descriptor. */ 744 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 745 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 746 fi->type = ARMFault_Translation; 747 goto do_fault; 748 } 749 if (!S1_ptw_translate(env, ptw, table, fi)) { 750 goto do_fault; 751 } 752 desc = arm_ldl_ptw(env, ptw, fi); 753 if (fi->type != ARMFault_None) { 754 goto do_fault; 755 } 756 type = (desc & 3); 757 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 758 /* Section translation fault, or attempt to use the encoding 759 * which is Reserved on implementations without PXN. 760 */ 761 fi->type = ARMFault_Translation; 762 goto do_fault; 763 } 764 if ((type == 1) || !(desc & (1 << 18))) { 765 /* Page or Section. */ 766 domain = (desc >> 5) & 0x0f; 767 } 768 if (regime_el(env, mmu_idx) == 1) { 769 dacr = env->cp15.dacr_ns; 770 } else { 771 dacr = env->cp15.dacr_s; 772 } 773 if (type == 1) { 774 level = 2; 775 } 776 domain_prot = (dacr >> (domain * 2)) & 3; 777 if (domain_prot == 0 || domain_prot == 2) { 778 /* Section or Page domain fault */ 779 fi->type = ARMFault_Domain; 780 goto do_fault; 781 } 782 if (type != 1) { 783 if (desc & (1 << 18)) { 784 /* Supersection. */ 785 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 786 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 787 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 788 result->f.lg_page_size = 24; /* 16MB */ 789 } else { 790 /* Section. */ 791 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 792 result->f.lg_page_size = 20; /* 1MB */ 793 } 794 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 795 xn = desc & (1 << 4); 796 pxn = desc & 1; 797 ns = extract32(desc, 19, 1); 798 } else { 799 if (cpu_isar_feature(aa32_pxn, cpu)) { 800 pxn = (desc >> 2) & 1; 801 } 802 ns = extract32(desc, 3, 1); 803 /* Lookup l2 entry. */ 804 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 805 if (!S1_ptw_translate(env, ptw, table, fi)) { 806 goto do_fault; 807 } 808 desc = arm_ldl_ptw(env, ptw, fi); 809 if (fi->type != ARMFault_None) { 810 goto do_fault; 811 } 812 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 813 switch (desc & 3) { 814 case 0: /* Page translation fault. */ 815 fi->type = ARMFault_Translation; 816 goto do_fault; 817 case 1: /* 64k page. */ 818 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 819 xn = desc & (1 << 15); 820 result->f.lg_page_size = 16; 821 break; 822 case 2: case 3: /* 4k page. */ 823 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 824 xn = desc & 1; 825 result->f.lg_page_size = 12; 826 break; 827 default: 828 /* Never happens, but compiler isn't smart enough to tell. */ 829 g_assert_not_reached(); 830 } 831 } 832 if (domain_prot == 3) { 833 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 834 } else { 835 if (pxn && !regime_is_user(env, mmu_idx)) { 836 xn = 1; 837 } 838 if (xn && access_type == MMU_INST_FETCH) { 839 fi->type = ARMFault_Permission; 840 goto do_fault; 841 } 842 843 if (arm_feature(env, ARM_FEATURE_V6K) && 844 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 845 /* The simplified model uses AP[0] as an access control bit. */ 846 if ((ap & 1) == 0) { 847 /* Access flag fault. */ 848 fi->type = ARMFault_AccessFlag; 849 goto do_fault; 850 } 851 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 852 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1); 853 } else { 854 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 855 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1); 856 } 857 if (result->f.prot && !xn) { 858 result->f.prot |= PAGE_EXEC; 859 } 860 if (!(result->f.prot & (1 << access_type))) { 861 /* Access permission fault. */ 862 fi->type = ARMFault_Permission; 863 goto do_fault; 864 } 865 if (regime_is_pan(env, mmu_idx) && 866 !regime_is_user(env, mmu_idx) && 867 user_prot && 868 access_type != MMU_INST_FETCH) { 869 /* Privileged Access Never fault */ 870 fi->type = ARMFault_Permission; 871 goto do_fault; 872 } 873 } 874 if (ns) { 875 /* The NS bit will (as required by the architecture) have no effect if 876 * the CPU doesn't support TZ or this is a non-secure translation 877 * regime, because the attribute will already be non-secure. 878 */ 879 result->f.attrs.secure = false; 880 } 881 result->f.phys_addr = phys_addr; 882 return false; 883 do_fault: 884 fi->domain = domain; 885 fi->level = level; 886 return true; 887 } 888 889 /* 890 * Translate S2 section/page access permissions to protection flags 891 * @env: CPUARMState 892 * @s2ap: The 2-bit stage2 access permissions (S2AP) 893 * @xn: XN (execute-never) bits 894 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 895 */ 896 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 897 { 898 int prot = 0; 899 900 if (s2ap & 1) { 901 prot |= PAGE_READ; 902 } 903 if (s2ap & 2) { 904 prot |= PAGE_WRITE; 905 } 906 907 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 908 switch (xn) { 909 case 0: 910 prot |= PAGE_EXEC; 911 break; 912 case 1: 913 if (s1_is_el0) { 914 prot |= PAGE_EXEC; 915 } 916 break; 917 case 2: 918 break; 919 case 3: 920 if (!s1_is_el0) { 921 prot |= PAGE_EXEC; 922 } 923 break; 924 default: 925 g_assert_not_reached(); 926 } 927 } else { 928 if (!extract32(xn, 1, 1)) { 929 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 930 prot |= PAGE_EXEC; 931 } 932 } 933 } 934 return prot; 935 } 936 937 /* 938 * Translate section/page access permissions to protection flags 939 * @env: CPUARMState 940 * @mmu_idx: MMU index indicating required translation regime 941 * @is_aa64: TRUE if AArch64 942 * @ap: The 2-bit simple AP (AP[2:1]) 943 * @ns: NS (non-secure) bit 944 * @xn: XN (execute-never) bit 945 * @pxn: PXN (privileged execute-never) bit 946 */ 947 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 948 int ap, int ns, int xn, int pxn) 949 { 950 bool is_user = regime_is_user(env, mmu_idx); 951 int prot_rw, user_rw; 952 bool have_wxn; 953 int wxn = 0; 954 955 assert(!regime_is_stage2(mmu_idx)); 956 957 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 958 if (is_user) { 959 prot_rw = user_rw; 960 } else { 961 if (user_rw && regime_is_pan(env, mmu_idx)) { 962 /* PAN forbids data accesses but doesn't affect insn fetch */ 963 prot_rw = 0; 964 } else { 965 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 966 } 967 } 968 969 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 970 return prot_rw; 971 } 972 973 /* TODO have_wxn should be replaced with 974 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 975 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 976 * compatible processors have EL2, which is required for [U]WXN. 977 */ 978 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 979 980 if (have_wxn) { 981 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 982 } 983 984 if (is_aa64) { 985 if (regime_has_2_ranges(mmu_idx) && !is_user) { 986 xn = pxn || (user_rw & PAGE_WRITE); 987 } 988 } else if (arm_feature(env, ARM_FEATURE_V7)) { 989 switch (regime_el(env, mmu_idx)) { 990 case 1: 991 case 3: 992 if (is_user) { 993 xn = xn || !(user_rw & PAGE_READ); 994 } else { 995 int uwxn = 0; 996 if (have_wxn) { 997 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 998 } 999 xn = xn || !(prot_rw & PAGE_READ) || pxn || 1000 (uwxn && (user_rw & PAGE_WRITE)); 1001 } 1002 break; 1003 case 2: 1004 break; 1005 } 1006 } else { 1007 xn = wxn = 0; 1008 } 1009 1010 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 1011 return prot_rw; 1012 } 1013 return prot_rw | PAGE_EXEC; 1014 } 1015 1016 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 1017 ARMMMUIdx mmu_idx) 1018 { 1019 uint64_t tcr = regime_tcr(env, mmu_idx); 1020 uint32_t el = regime_el(env, mmu_idx); 1021 int select, tsz; 1022 bool epd, hpd; 1023 1024 assert(mmu_idx != ARMMMUIdx_Stage2_S); 1025 1026 if (mmu_idx == ARMMMUIdx_Stage2) { 1027 /* VTCR */ 1028 bool sext = extract32(tcr, 4, 1); 1029 bool sign = extract32(tcr, 3, 1); 1030 1031 /* 1032 * If the sign-extend bit is not the same as t0sz[3], the result 1033 * is unpredictable. Flag this as a guest error. 1034 */ 1035 if (sign != sext) { 1036 qemu_log_mask(LOG_GUEST_ERROR, 1037 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 1038 } 1039 tsz = sextract32(tcr, 0, 4) + 8; 1040 select = 0; 1041 hpd = false; 1042 epd = false; 1043 } else if (el == 2) { 1044 /* HTCR */ 1045 tsz = extract32(tcr, 0, 3); 1046 select = 0; 1047 hpd = extract64(tcr, 24, 1); 1048 epd = false; 1049 } else { 1050 int t0sz = extract32(tcr, 0, 3); 1051 int t1sz = extract32(tcr, 16, 3); 1052 1053 if (t1sz == 0) { 1054 select = va > (0xffffffffu >> t0sz); 1055 } else { 1056 /* Note that we will detect errors later. */ 1057 select = va >= ~(0xffffffffu >> t1sz); 1058 } 1059 if (!select) { 1060 tsz = t0sz; 1061 epd = extract32(tcr, 7, 1); 1062 hpd = extract64(tcr, 41, 1); 1063 } else { 1064 tsz = t1sz; 1065 epd = extract32(tcr, 23, 1); 1066 hpd = extract64(tcr, 42, 1); 1067 } 1068 /* For aarch32, hpd0 is not enabled without t2e as well. */ 1069 hpd &= extract32(tcr, 6, 1); 1070 } 1071 1072 return (ARMVAParameters) { 1073 .tsz = tsz, 1074 .select = select, 1075 .epd = epd, 1076 .hpd = hpd, 1077 }; 1078 } 1079 1080 /* 1081 * check_s2_mmu_setup 1082 * @cpu: ARMCPU 1083 * @is_aa64: True if the translation regime is in AArch64 state 1084 * @tcr: VTCR_EL2 or VSTCR_EL2 1085 * @ds: Effective value of TCR.DS. 1086 * @iasize: Bitsize of IPAs 1087 * @stride: Page-table stride (See the ARM ARM) 1088 * 1089 * Decode the starting level of the S2 lookup, returning INT_MIN if 1090 * the configuration is invalid. 1091 */ 1092 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr, 1093 bool ds, int iasize, int stride) 1094 { 1095 int sl0, sl2, startlevel, granulebits, levels; 1096 int s1_min_iasize, s1_max_iasize; 1097 1098 sl0 = extract32(tcr, 6, 2); 1099 if (is_aa64) { 1100 /* 1101 * AArch64.S2InvalidTxSZ: While we checked tsz_oob near the top of 1102 * get_phys_addr_lpae, that used aa64_va_parameters which apply 1103 * to aarch64. If Stage1 is aarch32, the min_txsz is larger. 1104 * See AArch64.S2MinTxSZ, where min_tsz is 24, translated to 1105 * inputsize is 64 - 24 = 40. 1106 */ 1107 if (iasize < 40 && !arm_el_is_aa64(&cpu->env, 1)) { 1108 goto fail; 1109 } 1110 1111 /* 1112 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size, 1113 * so interleave AArch64.S2StartLevel. 1114 */ 1115 switch (stride) { 1116 case 9: /* 4KB */ 1117 /* SL2 is RES0 unless DS=1 & 4KB granule. */ 1118 sl2 = extract64(tcr, 33, 1); 1119 if (ds && sl2) { 1120 if (sl0 != 0) { 1121 goto fail; 1122 } 1123 startlevel = -1; 1124 } else { 1125 startlevel = 2 - sl0; 1126 switch (sl0) { 1127 case 2: 1128 if (arm_pamax(cpu) < 44) { 1129 goto fail; 1130 } 1131 break; 1132 case 3: 1133 if (!cpu_isar_feature(aa64_st, cpu)) { 1134 goto fail; 1135 } 1136 startlevel = 3; 1137 break; 1138 } 1139 } 1140 break; 1141 case 11: /* 16KB */ 1142 switch (sl0) { 1143 case 2: 1144 if (arm_pamax(cpu) < 42) { 1145 goto fail; 1146 } 1147 break; 1148 case 3: 1149 if (!ds) { 1150 goto fail; 1151 } 1152 break; 1153 } 1154 startlevel = 3 - sl0; 1155 break; 1156 case 13: /* 64KB */ 1157 switch (sl0) { 1158 case 2: 1159 if (arm_pamax(cpu) < 44) { 1160 goto fail; 1161 } 1162 break; 1163 case 3: 1164 goto fail; 1165 } 1166 startlevel = 3 - sl0; 1167 break; 1168 default: 1169 g_assert_not_reached(); 1170 } 1171 } else { 1172 /* 1173 * Things are simpler for AArch32 EL2, with only 4k pages. 1174 * There is no separate S2InvalidSL function, but AArch32.S2Walk 1175 * begins with walkparms.sl0 in {'1x'}. 1176 */ 1177 assert(stride == 9); 1178 if (sl0 >= 2) { 1179 goto fail; 1180 } 1181 startlevel = 2 - sl0; 1182 } 1183 1184 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */ 1185 levels = 3 - startlevel; 1186 granulebits = stride + 3; 1187 1188 s1_min_iasize = levels * stride + granulebits + 1; 1189 s1_max_iasize = s1_min_iasize + (stride - 1) + 4; 1190 1191 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) { 1192 return startlevel; 1193 } 1194 1195 fail: 1196 return INT_MIN; 1197 } 1198 1199 /** 1200 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 1201 * 1202 * Returns false if the translation was successful. Otherwise, phys_ptr, 1203 * attrs, prot and page_size may not be filled in, and the populated fsr 1204 * value provides information on why the translation aborted, in the format 1205 * of a long-format DFSR/IFSR fault register, with the following caveat: 1206 * the WnR bit is never set (the caller must do this). 1207 * 1208 * @env: CPUARMState 1209 * @ptw: Current and next stage parameters for the walk. 1210 * @address: virtual address to get physical address for 1211 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 1212 * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2 1213 * (so this is a stage 2 page table walk), 1214 * must be true if this is stage 2 of a stage 1+2 1215 * walk for an EL0 access. If @mmu_idx is anything else, 1216 * @s1_is_el0 is ignored. 1217 * @result: set on translation success, 1218 * @fi: set to fault info if the translation fails 1219 */ 1220 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 1221 uint64_t address, 1222 MMUAccessType access_type, bool s1_is_el0, 1223 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1224 { 1225 ARMCPU *cpu = env_archcpu(env); 1226 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1227 bool is_secure = ptw->in_secure; 1228 int32_t level; 1229 ARMVAParameters param; 1230 uint64_t ttbr; 1231 hwaddr descaddr, indexmask, indexmask_grainsize; 1232 uint32_t tableattrs; 1233 target_ulong page_size; 1234 uint64_t attrs; 1235 int32_t stride; 1236 int addrsize, inputsize, outputsize; 1237 uint64_t tcr = regime_tcr(env, mmu_idx); 1238 int ap, ns, xn, pxn; 1239 uint32_t el = regime_el(env, mmu_idx); 1240 uint64_t descaddrmask; 1241 bool aarch64 = arm_el_is_aa64(env, el); 1242 uint64_t descriptor, new_descriptor; 1243 bool nstable; 1244 1245 /* TODO: This code does not support shareability levels. */ 1246 if (aarch64) { 1247 int ps; 1248 1249 param = aa64_va_parameters(env, address, mmu_idx, 1250 access_type != MMU_INST_FETCH); 1251 level = 0; 1252 1253 /* 1254 * If TxSZ is programmed to a value larger than the maximum, 1255 * or smaller than the effective minimum, it is IMPLEMENTATION 1256 * DEFINED whether we behave as if the field were programmed 1257 * within bounds, or if a level 0 Translation fault is generated. 1258 * 1259 * With FEAT_LVA, fault on less than minimum becomes required, 1260 * so our choice is to always raise the fault. 1261 */ 1262 if (param.tsz_oob) { 1263 goto do_translation_fault; 1264 } 1265 1266 addrsize = 64 - 8 * param.tbi; 1267 inputsize = 64 - param.tsz; 1268 1269 /* 1270 * Bound PS by PARANGE to find the effective output address size. 1271 * ID_AA64MMFR0 is a read-only register so values outside of the 1272 * supported mappings can be considered an implementation error. 1273 */ 1274 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1275 ps = MIN(ps, param.ps); 1276 assert(ps < ARRAY_SIZE(pamax_map)); 1277 outputsize = pamax_map[ps]; 1278 1279 /* 1280 * With LPA2, the effective output address (OA) size is at most 48 bits 1281 * unless TCR.DS == 1 1282 */ 1283 if (!param.ds && param.gran != Gran64K) { 1284 outputsize = MIN(outputsize, 48); 1285 } 1286 } else { 1287 param = aa32_va_parameters(env, address, mmu_idx); 1288 level = 1; 1289 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1290 inputsize = addrsize - param.tsz; 1291 outputsize = 40; 1292 } 1293 1294 /* 1295 * We determined the region when collecting the parameters, but we 1296 * have not yet validated that the address is valid for the region. 1297 * Extract the top bits and verify that they all match select. 1298 * 1299 * For aa32, if inputsize == addrsize, then we have selected the 1300 * region by exclusion in aa32_va_parameters and there is no more 1301 * validation to do here. 1302 */ 1303 if (inputsize < addrsize) { 1304 target_ulong top_bits = sextract64(address, inputsize, 1305 addrsize - inputsize); 1306 if (-top_bits != param.select) { 1307 /* The gap between the two regions is a Translation fault */ 1308 goto do_translation_fault; 1309 } 1310 } 1311 1312 stride = arm_granule_bits(param.gran) - 3; 1313 1314 /* 1315 * Note that QEMU ignores shareability and cacheability attributes, 1316 * so we don't need to do anything with the SH, ORGN, IRGN fields 1317 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1318 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1319 * implement any ASID-like capability so we can ignore it (instead 1320 * we will always flush the TLB any time the ASID is changed). 1321 */ 1322 ttbr = regime_ttbr(env, mmu_idx, param.select); 1323 1324 /* 1325 * Here we should have set up all the parameters for the translation: 1326 * inputsize, ttbr, epd, stride, tbi 1327 */ 1328 1329 if (param.epd) { 1330 /* 1331 * Translation table walk disabled => Translation fault on TLB miss 1332 * Note: This is always 0 on 64-bit EL2 and EL3. 1333 */ 1334 goto do_translation_fault; 1335 } 1336 1337 if (!regime_is_stage2(mmu_idx)) { 1338 /* 1339 * The starting level depends on the virtual address size (which can 1340 * be up to 48 bits) and the translation granule size. It indicates 1341 * the number of strides (stride bits at a time) needed to 1342 * consume the bits of the input address. In the pseudocode this is: 1343 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1344 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1345 * our 'stride + 3' and 'stride' is our 'stride'. 1346 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1347 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1348 * = 4 - (inputsize - 4) / stride; 1349 */ 1350 level = 4 - (inputsize - 4) / stride; 1351 } else { 1352 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds, 1353 inputsize, stride); 1354 if (startlevel == INT_MIN) { 1355 level = 0; 1356 goto do_translation_fault; 1357 } 1358 level = startlevel; 1359 } 1360 1361 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1362 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1363 1364 /* Now we can extract the actual base address from the TTBR */ 1365 descaddr = extract64(ttbr, 0, 48); 1366 1367 /* 1368 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1369 * 1370 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1371 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1372 * but we've just cleared the bits above 47, so simplify the test. 1373 */ 1374 if (outputsize > 48) { 1375 descaddr |= extract64(ttbr, 2, 4) << 48; 1376 } else if (descaddr >> outputsize) { 1377 level = 0; 1378 fi->type = ARMFault_AddressSize; 1379 goto do_fault; 1380 } 1381 1382 /* 1383 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1384 * and also to mask out CnP (bit 0) which could validly be non-zero. 1385 */ 1386 descaddr &= ~indexmask; 1387 1388 /* 1389 * For AArch32, the address field in the descriptor goes up to bit 39 1390 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1391 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1392 * bits as part of the address, which will be checked via outputsize. 1393 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1394 * the highest bits of a 52-bit output are placed elsewhere. 1395 */ 1396 if (param.ds) { 1397 descaddrmask = MAKE_64BIT_MASK(0, 50); 1398 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1399 descaddrmask = MAKE_64BIT_MASK(0, 48); 1400 } else { 1401 descaddrmask = MAKE_64BIT_MASK(0, 40); 1402 } 1403 descaddrmask &= ~indexmask_grainsize; 1404 1405 /* 1406 * Secure accesses start with the page table in secure memory and 1407 * can be downgraded to non-secure at any step. Non-secure accesses 1408 * remain non-secure. We implement this by just ORing in the NSTable/NS 1409 * bits at each step. 1410 */ 1411 tableattrs = is_secure ? 0 : (1 << 4); 1412 1413 next_level: 1414 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1415 descaddr &= ~7ULL; 1416 nstable = extract32(tableattrs, 4, 1); 1417 if (nstable) { 1418 /* 1419 * Stage2_S -> Stage2 or Phys_S -> Phys_NS 1420 * Assert that the non-secure idx are even, and relative order. 1421 */ 1422 QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0); 1423 QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0); 1424 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S); 1425 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S); 1426 ptw->in_ptw_idx &= ~1; 1427 ptw->in_secure = false; 1428 } 1429 if (!S1_ptw_translate(env, ptw, descaddr, fi)) { 1430 goto do_fault; 1431 } 1432 descriptor = arm_ldq_ptw(env, ptw, fi); 1433 if (fi->type != ARMFault_None) { 1434 goto do_fault; 1435 } 1436 new_descriptor = descriptor; 1437 1438 restart_atomic_update: 1439 if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) { 1440 /* Invalid, or the Reserved level 3 encoding */ 1441 goto do_translation_fault; 1442 } 1443 1444 descaddr = descriptor & descaddrmask; 1445 1446 /* 1447 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1448 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1449 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1450 * raise AddressSizeFault. 1451 */ 1452 if (outputsize > 48) { 1453 if (param.ds) { 1454 descaddr |= extract64(descriptor, 8, 2) << 50; 1455 } else { 1456 descaddr |= extract64(descriptor, 12, 4) << 48; 1457 } 1458 } else if (descaddr >> outputsize) { 1459 fi->type = ARMFault_AddressSize; 1460 goto do_fault; 1461 } 1462 1463 if ((descriptor & 2) && (level < 3)) { 1464 /* 1465 * Table entry. The top five bits are attributes which may 1466 * propagate down through lower levels of the table (and 1467 * which are all arranged so that 0 means "no effect", so 1468 * we can gather them up by ORing in the bits at each level). 1469 */ 1470 tableattrs |= extract64(descriptor, 59, 5); 1471 level++; 1472 indexmask = indexmask_grainsize; 1473 goto next_level; 1474 } 1475 1476 /* 1477 * Block entry at level 1 or 2, or page entry at level 3. 1478 * These are basically the same thing, although the number 1479 * of bits we pull in from the vaddr varies. Note that although 1480 * descaddrmask masks enough of the low bits of the descriptor 1481 * to give a correct page or table address, the address field 1482 * in a block descriptor is smaller; so we need to explicitly 1483 * clear the lower bits here before ORing in the low vaddr bits. 1484 * 1485 * Afterward, descaddr is the final physical address. 1486 */ 1487 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1488 descaddr &= ~(hwaddr)(page_size - 1); 1489 descaddr |= (address & (page_size - 1)); 1490 1491 if (likely(!ptw->in_debug)) { 1492 /* 1493 * Access flag. 1494 * If HA is enabled, prepare to update the descriptor below. 1495 * Otherwise, pass the access fault on to software. 1496 */ 1497 if (!(descriptor & (1 << 10))) { 1498 if (param.ha) { 1499 new_descriptor |= 1 << 10; /* AF */ 1500 } else { 1501 fi->type = ARMFault_AccessFlag; 1502 goto do_fault; 1503 } 1504 } 1505 1506 /* 1507 * Dirty Bit. 1508 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP 1509 * bit for writeback. The actual write protection test may still be 1510 * overridden by tableattrs, to be merged below. 1511 */ 1512 if (param.hd 1513 && extract64(descriptor, 51, 1) /* DBM */ 1514 && access_type == MMU_DATA_STORE) { 1515 if (regime_is_stage2(mmu_idx)) { 1516 new_descriptor |= 1ull << 7; /* set S2AP[1] */ 1517 } else { 1518 new_descriptor &= ~(1ull << 7); /* clear AP[2] */ 1519 } 1520 } 1521 } 1522 1523 /* 1524 * Extract attributes from the (modified) descriptor, and apply 1525 * table descriptors. Stage 2 table descriptors do not include 1526 * any attribute fields. HPD disables all the table attributes 1527 * except NSTable. 1528 */ 1529 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14)); 1530 if (!regime_is_stage2(mmu_idx)) { 1531 attrs |= nstable << 5; /* NS */ 1532 if (!param.hpd) { 1533 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */ 1534 /* 1535 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 1536 * means "force PL1 access only", which means forcing AP[1] to 0. 1537 */ 1538 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */ 1539 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */ 1540 } 1541 } 1542 1543 ap = extract32(attrs, 6, 2); 1544 if (regime_is_stage2(mmu_idx)) { 1545 ns = mmu_idx == ARMMMUIdx_Stage2; 1546 xn = extract64(attrs, 53, 2); 1547 result->f.prot = get_S2prot(env, ap, xn, s1_is_el0); 1548 } else { 1549 ns = extract32(attrs, 5, 1); 1550 xn = extract64(attrs, 54, 1); 1551 pxn = extract64(attrs, 53, 1); 1552 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 1553 } 1554 1555 if (!(result->f.prot & (1 << access_type))) { 1556 fi->type = ARMFault_Permission; 1557 goto do_fault; 1558 } 1559 1560 /* If FEAT_HAFDBS has made changes, update the PTE. */ 1561 if (new_descriptor != descriptor) { 1562 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi); 1563 if (fi->type != ARMFault_None) { 1564 goto do_fault; 1565 } 1566 /* 1567 * I_YZSVV says that if the in-memory descriptor has changed, 1568 * then we must use the information in that new value 1569 * (which might include a different output address, different 1570 * attributes, or generate a fault). 1571 * Restart the handling of the descriptor value from scratch. 1572 */ 1573 if (new_descriptor != descriptor) { 1574 descriptor = new_descriptor; 1575 goto restart_atomic_update; 1576 } 1577 } 1578 1579 if (ns) { 1580 /* 1581 * The NS bit will (as required by the architecture) have no effect if 1582 * the CPU doesn't support TZ or this is a non-secure translation 1583 * regime, because the attribute will already be non-secure. 1584 */ 1585 result->f.attrs.secure = false; 1586 } 1587 1588 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ 1589 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { 1590 result->f.guarded = extract64(attrs, 50, 1); /* GP */ 1591 } 1592 1593 if (regime_is_stage2(mmu_idx)) { 1594 result->cacheattrs.is_s2_format = true; 1595 result->cacheattrs.attrs = extract32(attrs, 2, 4); 1596 } else { 1597 /* Index into MAIR registers for cache attributes */ 1598 uint8_t attrindx = extract32(attrs, 2, 3); 1599 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 1600 assert(attrindx <= 7); 1601 result->cacheattrs.is_s2_format = false; 1602 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 1603 } 1604 1605 /* 1606 * For FEAT_LPA2 and effective DS, the SH field in the attributes 1607 * was re-purposed for output address bits. The SH attribute in 1608 * that case comes from TCR_ELx, which we extracted earlier. 1609 */ 1610 if (param.ds) { 1611 result->cacheattrs.shareability = param.sh; 1612 } else { 1613 result->cacheattrs.shareability = extract32(attrs, 8, 2); 1614 } 1615 1616 result->f.phys_addr = descaddr; 1617 result->f.lg_page_size = ctz64(page_size); 1618 return false; 1619 1620 do_translation_fault: 1621 fi->type = ARMFault_Translation; 1622 do_fault: 1623 fi->level = level; 1624 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 1625 fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx); 1626 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 1627 return true; 1628 } 1629 1630 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 1631 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1632 bool is_secure, GetPhysAddrResult *result, 1633 ARMMMUFaultInfo *fi) 1634 { 1635 int n; 1636 uint32_t mask; 1637 uint32_t base; 1638 bool is_user = regime_is_user(env, mmu_idx); 1639 1640 if (regime_translation_disabled(env, mmu_idx, is_secure)) { 1641 /* MPU disabled. */ 1642 result->f.phys_addr = address; 1643 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1644 return false; 1645 } 1646 1647 result->f.phys_addr = address; 1648 for (n = 7; n >= 0; n--) { 1649 base = env->cp15.c6_region[n]; 1650 if ((base & 1) == 0) { 1651 continue; 1652 } 1653 mask = 1 << ((base >> 1) & 0x1f); 1654 /* Keep this shift separate from the above to avoid an 1655 (undefined) << 32. */ 1656 mask = (mask << 1) - 1; 1657 if (((base ^ address) & ~mask) == 0) { 1658 break; 1659 } 1660 } 1661 if (n < 0) { 1662 fi->type = ARMFault_Background; 1663 return true; 1664 } 1665 1666 if (access_type == MMU_INST_FETCH) { 1667 mask = env->cp15.pmsav5_insn_ap; 1668 } else { 1669 mask = env->cp15.pmsav5_data_ap; 1670 } 1671 mask = (mask >> (n * 4)) & 0xf; 1672 switch (mask) { 1673 case 0: 1674 fi->type = ARMFault_Permission; 1675 fi->level = 1; 1676 return true; 1677 case 1: 1678 if (is_user) { 1679 fi->type = ARMFault_Permission; 1680 fi->level = 1; 1681 return true; 1682 } 1683 result->f.prot = PAGE_READ | PAGE_WRITE; 1684 break; 1685 case 2: 1686 result->f.prot = PAGE_READ; 1687 if (!is_user) { 1688 result->f.prot |= PAGE_WRITE; 1689 } 1690 break; 1691 case 3: 1692 result->f.prot = PAGE_READ | PAGE_WRITE; 1693 break; 1694 case 5: 1695 if (is_user) { 1696 fi->type = ARMFault_Permission; 1697 fi->level = 1; 1698 return true; 1699 } 1700 result->f.prot = PAGE_READ; 1701 break; 1702 case 6: 1703 result->f.prot = PAGE_READ; 1704 break; 1705 default: 1706 /* Bad permission. */ 1707 fi->type = ARMFault_Permission; 1708 fi->level = 1; 1709 return true; 1710 } 1711 result->f.prot |= PAGE_EXEC; 1712 return false; 1713 } 1714 1715 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 1716 int32_t address, uint8_t *prot) 1717 { 1718 if (!arm_feature(env, ARM_FEATURE_M)) { 1719 *prot = PAGE_READ | PAGE_WRITE; 1720 switch (address) { 1721 case 0xF0000000 ... 0xFFFFFFFF: 1722 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 1723 /* hivecs execing is ok */ 1724 *prot |= PAGE_EXEC; 1725 } 1726 break; 1727 case 0x00000000 ... 0x7FFFFFFF: 1728 *prot |= PAGE_EXEC; 1729 break; 1730 } 1731 } else { 1732 /* Default system address map for M profile cores. 1733 * The architecture specifies which regions are execute-never; 1734 * at the MPU level no other checks are defined. 1735 */ 1736 switch (address) { 1737 case 0x00000000 ... 0x1fffffff: /* ROM */ 1738 case 0x20000000 ... 0x3fffffff: /* SRAM */ 1739 case 0x60000000 ... 0x7fffffff: /* RAM */ 1740 case 0x80000000 ... 0x9fffffff: /* RAM */ 1741 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1742 break; 1743 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 1744 case 0xa0000000 ... 0xbfffffff: /* Device */ 1745 case 0xc0000000 ... 0xdfffffff: /* Device */ 1746 case 0xe0000000 ... 0xffffffff: /* System */ 1747 *prot = PAGE_READ | PAGE_WRITE; 1748 break; 1749 default: 1750 g_assert_not_reached(); 1751 } 1752 } 1753 } 1754 1755 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 1756 { 1757 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 1758 return arm_feature(env, ARM_FEATURE_M) && 1759 extract32(address, 20, 12) == 0xe00; 1760 } 1761 1762 static bool m_is_system_region(CPUARMState *env, uint32_t address) 1763 { 1764 /* 1765 * True if address is in the M profile system region 1766 * 0xe0000000 - 0xffffffff 1767 */ 1768 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 1769 } 1770 1771 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 1772 bool is_secure, bool is_user) 1773 { 1774 /* 1775 * Return true if we should use the default memory map as a 1776 * "background" region if there are no hits against any MPU regions. 1777 */ 1778 CPUARMState *env = &cpu->env; 1779 1780 if (is_user) { 1781 return false; 1782 } 1783 1784 if (arm_feature(env, ARM_FEATURE_M)) { 1785 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 1786 } 1787 1788 if (mmu_idx == ARMMMUIdx_Stage2) { 1789 return false; 1790 } 1791 1792 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 1793 } 1794 1795 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 1796 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1797 bool secure, GetPhysAddrResult *result, 1798 ARMMMUFaultInfo *fi) 1799 { 1800 ARMCPU *cpu = env_archcpu(env); 1801 int n; 1802 bool is_user = regime_is_user(env, mmu_idx); 1803 1804 result->f.phys_addr = address; 1805 result->f.lg_page_size = TARGET_PAGE_BITS; 1806 result->f.prot = 0; 1807 1808 if (regime_translation_disabled(env, mmu_idx, secure) || 1809 m_is_ppb_region(env, address)) { 1810 /* 1811 * MPU disabled or M profile PPB access: use default memory map. 1812 * The other case which uses the default memory map in the 1813 * v7M ARM ARM pseudocode is exception vector reads from the vector 1814 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 1815 * which always does a direct read using address_space_ldl(), rather 1816 * than going via this function, so we don't need to check that here. 1817 */ 1818 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 1819 } else { /* MPU enabled */ 1820 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 1821 /* region search */ 1822 uint32_t base = env->pmsav7.drbar[n]; 1823 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 1824 uint32_t rmask; 1825 bool srdis = false; 1826 1827 if (!(env->pmsav7.drsr[n] & 0x1)) { 1828 continue; 1829 } 1830 1831 if (!rsize) { 1832 qemu_log_mask(LOG_GUEST_ERROR, 1833 "DRSR[%d]: Rsize field cannot be 0\n", n); 1834 continue; 1835 } 1836 rsize++; 1837 rmask = (1ull << rsize) - 1; 1838 1839 if (base & rmask) { 1840 qemu_log_mask(LOG_GUEST_ERROR, 1841 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 1842 "to DRSR region size, mask = 0x%" PRIx32 "\n", 1843 n, base, rmask); 1844 continue; 1845 } 1846 1847 if (address < base || address > base + rmask) { 1848 /* 1849 * Address not in this region. We must check whether the 1850 * region covers addresses in the same page as our address. 1851 * In that case we must not report a size that covers the 1852 * whole page for a subsequent hit against a different MPU 1853 * region or the background region, because it would result in 1854 * incorrect TLB hits for subsequent accesses to addresses that 1855 * are in this MPU region. 1856 */ 1857 if (ranges_overlap(base, rmask, 1858 address & TARGET_PAGE_MASK, 1859 TARGET_PAGE_SIZE)) { 1860 result->f.lg_page_size = 0; 1861 } 1862 continue; 1863 } 1864 1865 /* Region matched */ 1866 1867 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 1868 int i, snd; 1869 uint32_t srdis_mask; 1870 1871 rsize -= 3; /* sub region size (power of 2) */ 1872 snd = ((address - base) >> rsize) & 0x7; 1873 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 1874 1875 srdis_mask = srdis ? 0x3 : 0x0; 1876 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 1877 /* 1878 * This will check in groups of 2, 4 and then 8, whether 1879 * the subregion bits are consistent. rsize is incremented 1880 * back up to give the region size, considering consistent 1881 * adjacent subregions as one region. Stop testing if rsize 1882 * is already big enough for an entire QEMU page. 1883 */ 1884 int snd_rounded = snd & ~(i - 1); 1885 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 1886 snd_rounded + 8, i); 1887 if (srdis_mask ^ srdis_multi) { 1888 break; 1889 } 1890 srdis_mask = (srdis_mask << i) | srdis_mask; 1891 rsize++; 1892 } 1893 } 1894 if (srdis) { 1895 continue; 1896 } 1897 if (rsize < TARGET_PAGE_BITS) { 1898 result->f.lg_page_size = rsize; 1899 } 1900 break; 1901 } 1902 1903 if (n == -1) { /* no hits */ 1904 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 1905 /* background fault */ 1906 fi->type = ARMFault_Background; 1907 return true; 1908 } 1909 get_phys_addr_pmsav7_default(env, mmu_idx, address, 1910 &result->f.prot); 1911 } else { /* a MPU hit! */ 1912 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 1913 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 1914 1915 if (m_is_system_region(env, address)) { 1916 /* System space is always execute never */ 1917 xn = 1; 1918 } 1919 1920 if (is_user) { /* User mode AP bit decoding */ 1921 switch (ap) { 1922 case 0: 1923 case 1: 1924 case 5: 1925 break; /* no access */ 1926 case 3: 1927 result->f.prot |= PAGE_WRITE; 1928 /* fall through */ 1929 case 2: 1930 case 6: 1931 result->f.prot |= PAGE_READ | PAGE_EXEC; 1932 break; 1933 case 7: 1934 /* for v7M, same as 6; for R profile a reserved value */ 1935 if (arm_feature(env, ARM_FEATURE_M)) { 1936 result->f.prot |= PAGE_READ | PAGE_EXEC; 1937 break; 1938 } 1939 /* fall through */ 1940 default: 1941 qemu_log_mask(LOG_GUEST_ERROR, 1942 "DRACR[%d]: Bad value for AP bits: 0x%" 1943 PRIx32 "\n", n, ap); 1944 } 1945 } else { /* Priv. mode AP bits decoding */ 1946 switch (ap) { 1947 case 0: 1948 break; /* no access */ 1949 case 1: 1950 case 2: 1951 case 3: 1952 result->f.prot |= PAGE_WRITE; 1953 /* fall through */ 1954 case 5: 1955 case 6: 1956 result->f.prot |= PAGE_READ | PAGE_EXEC; 1957 break; 1958 case 7: 1959 /* for v7M, same as 6; for R profile a reserved value */ 1960 if (arm_feature(env, ARM_FEATURE_M)) { 1961 result->f.prot |= PAGE_READ | PAGE_EXEC; 1962 break; 1963 } 1964 /* fall through */ 1965 default: 1966 qemu_log_mask(LOG_GUEST_ERROR, 1967 "DRACR[%d]: Bad value for AP bits: 0x%" 1968 PRIx32 "\n", n, ap); 1969 } 1970 } 1971 1972 /* execute never */ 1973 if (xn) { 1974 result->f.prot &= ~PAGE_EXEC; 1975 } 1976 } 1977 } 1978 1979 fi->type = ARMFault_Permission; 1980 fi->level = 1; 1981 return !(result->f.prot & (1 << access_type)); 1982 } 1983 1984 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx, 1985 uint32_t secure) 1986 { 1987 if (regime_el(env, mmu_idx) == 2) { 1988 return env->pmsav8.hprbar; 1989 } else { 1990 return env->pmsav8.rbar[secure]; 1991 } 1992 } 1993 1994 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx, 1995 uint32_t secure) 1996 { 1997 if (regime_el(env, mmu_idx) == 2) { 1998 return env->pmsav8.hprlar; 1999 } else { 2000 return env->pmsav8.rlar[secure]; 2001 } 2002 } 2003 2004 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 2005 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2006 bool secure, GetPhysAddrResult *result, 2007 ARMMMUFaultInfo *fi, uint32_t *mregion) 2008 { 2009 /* 2010 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 2011 * that a full phys-to-virt translation does). 2012 * mregion is (if not NULL) set to the region number which matched, 2013 * or -1 if no region number is returned (MPU off, address did not 2014 * hit a region, address hit in multiple regions). 2015 * If the region hit doesn't cover the entire TARGET_PAGE the address 2016 * is within, then we set the result page_size to 1 to force the 2017 * memory system to use a subpage. 2018 */ 2019 ARMCPU *cpu = env_archcpu(env); 2020 bool is_user = regime_is_user(env, mmu_idx); 2021 int n; 2022 int matchregion = -1; 2023 bool hit = false; 2024 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2025 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2026 int region_counter; 2027 2028 if (regime_el(env, mmu_idx) == 2) { 2029 region_counter = cpu->pmsav8r_hdregion; 2030 } else { 2031 region_counter = cpu->pmsav7_dregion; 2032 } 2033 2034 result->f.lg_page_size = TARGET_PAGE_BITS; 2035 result->f.phys_addr = address; 2036 result->f.prot = 0; 2037 if (mregion) { 2038 *mregion = -1; 2039 } 2040 2041 if (mmu_idx == ARMMMUIdx_Stage2) { 2042 fi->stage2 = true; 2043 } 2044 2045 /* 2046 * Unlike the ARM ARM pseudocode, we don't need to check whether this 2047 * was an exception vector read from the vector table (which is always 2048 * done using the default system address map), because those accesses 2049 * are done in arm_v7m_load_vector(), which always does a direct 2050 * read using address_space_ldl(), rather than going via this function. 2051 */ 2052 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */ 2053 hit = true; 2054 } else if (m_is_ppb_region(env, address)) { 2055 hit = true; 2056 } else { 2057 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2058 hit = true; 2059 } 2060 2061 uint32_t bitmask; 2062 if (arm_feature(env, ARM_FEATURE_M)) { 2063 bitmask = 0x1f; 2064 } else { 2065 bitmask = 0x3f; 2066 fi->level = 0; 2067 } 2068 2069 for (n = region_counter - 1; n >= 0; n--) { 2070 /* region search */ 2071 /* 2072 * Note that the base address is bits [31:x] from the register 2073 * with bits [x-1:0] all zeroes, but the limit address is bits 2074 * [31:x] from the register with bits [x:0] all ones. Where x is 2075 * 5 for Cortex-M and 6 for Cortex-R 2076 */ 2077 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask; 2078 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask; 2079 2080 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) { 2081 /* Region disabled */ 2082 continue; 2083 } 2084 2085 if (address < base || address > limit) { 2086 /* 2087 * Address not in this region. We must check whether the 2088 * region covers addresses in the same page as our address. 2089 * In that case we must not report a size that covers the 2090 * whole page for a subsequent hit against a different MPU 2091 * region or the background region, because it would result in 2092 * incorrect TLB hits for subsequent accesses to addresses that 2093 * are in this MPU region. 2094 */ 2095 if (limit >= base && 2096 ranges_overlap(base, limit - base + 1, 2097 addr_page_base, 2098 TARGET_PAGE_SIZE)) { 2099 result->f.lg_page_size = 0; 2100 } 2101 continue; 2102 } 2103 2104 if (base > addr_page_base || limit < addr_page_limit) { 2105 result->f.lg_page_size = 0; 2106 } 2107 2108 if (matchregion != -1) { 2109 /* 2110 * Multiple regions match -- always a failure (unlike 2111 * PMSAv7 where highest-numbered-region wins) 2112 */ 2113 fi->type = ARMFault_Permission; 2114 if (arm_feature(env, ARM_FEATURE_M)) { 2115 fi->level = 1; 2116 } 2117 return true; 2118 } 2119 2120 matchregion = n; 2121 hit = true; 2122 } 2123 } 2124 2125 if (!hit) { 2126 if (arm_feature(env, ARM_FEATURE_M)) { 2127 fi->type = ARMFault_Background; 2128 } else { 2129 fi->type = ARMFault_Permission; 2130 } 2131 return true; 2132 } 2133 2134 if (matchregion == -1) { 2135 /* hit using the background region */ 2136 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2137 } else { 2138 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion]; 2139 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion]; 2140 uint32_t ap = extract32(matched_rbar, 1, 2); 2141 uint32_t xn = extract32(matched_rbar, 0, 1); 2142 bool pxn = false; 2143 2144 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 2145 pxn = extract32(matched_rlar, 4, 1); 2146 } 2147 2148 if (m_is_system_region(env, address)) { 2149 /* System space is always execute never */ 2150 xn = 1; 2151 } 2152 2153 if (regime_el(env, mmu_idx) == 2) { 2154 result->f.prot = simple_ap_to_rw_prot_is_user(ap, 2155 mmu_idx != ARMMMUIdx_E2); 2156 } else { 2157 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 2158 } 2159 2160 if (!arm_feature(env, ARM_FEATURE_M)) { 2161 uint8_t attrindx = extract32(matched_rlar, 1, 3); 2162 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2163 uint8_t sh = extract32(matched_rlar, 3, 2); 2164 2165 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN && 2166 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) { 2167 xn = 0x1; 2168 } 2169 2170 if ((regime_el(env, mmu_idx) == 1) && 2171 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) { 2172 pxn = 0x1; 2173 } 2174 2175 result->cacheattrs.is_s2_format = false; 2176 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2177 result->cacheattrs.shareability = sh; 2178 } 2179 2180 if (result->f.prot && !xn && !(pxn && !is_user)) { 2181 result->f.prot |= PAGE_EXEC; 2182 } 2183 2184 if (mregion) { 2185 *mregion = matchregion; 2186 } 2187 } 2188 2189 fi->type = ARMFault_Permission; 2190 if (arm_feature(env, ARM_FEATURE_M)) { 2191 fi->level = 1; 2192 } 2193 return !(result->f.prot & (1 << access_type)); 2194 } 2195 2196 static bool v8m_is_sau_exempt(CPUARMState *env, 2197 uint32_t address, MMUAccessType access_type) 2198 { 2199 /* 2200 * The architecture specifies that certain address ranges are 2201 * exempt from v8M SAU/IDAU checks. 2202 */ 2203 return 2204 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 2205 (address >= 0xe0000000 && address <= 0xe0002fff) || 2206 (address >= 0xe000e000 && address <= 0xe000efff) || 2207 (address >= 0xe002e000 && address <= 0xe002efff) || 2208 (address >= 0xe0040000 && address <= 0xe0041fff) || 2209 (address >= 0xe00ff000 && address <= 0xe00fffff); 2210 } 2211 2212 void v8m_security_lookup(CPUARMState *env, uint32_t address, 2213 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2214 bool is_secure, V8M_SAttributes *sattrs) 2215 { 2216 /* 2217 * Look up the security attributes for this address. Compare the 2218 * pseudocode SecurityCheck() function. 2219 * We assume the caller has zero-initialized *sattrs. 2220 */ 2221 ARMCPU *cpu = env_archcpu(env); 2222 int r; 2223 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 2224 int idau_region = IREGION_NOTVALID; 2225 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2226 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2227 2228 if (cpu->idau) { 2229 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 2230 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 2231 2232 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 2233 &idau_nsc); 2234 } 2235 2236 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 2237 /* 0xf0000000..0xffffffff is always S for insn fetches */ 2238 return; 2239 } 2240 2241 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 2242 sattrs->ns = !is_secure; 2243 return; 2244 } 2245 2246 if (idau_region != IREGION_NOTVALID) { 2247 sattrs->irvalid = true; 2248 sattrs->iregion = idau_region; 2249 } 2250 2251 switch (env->sau.ctrl & 3) { 2252 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 2253 break; 2254 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 2255 sattrs->ns = true; 2256 break; 2257 default: /* SAU.ENABLE == 1 */ 2258 for (r = 0; r < cpu->sau_sregion; r++) { 2259 if (env->sau.rlar[r] & 1) { 2260 uint32_t base = env->sau.rbar[r] & ~0x1f; 2261 uint32_t limit = env->sau.rlar[r] | 0x1f; 2262 2263 if (base <= address && limit >= address) { 2264 if (base > addr_page_base || limit < addr_page_limit) { 2265 sattrs->subpage = true; 2266 } 2267 if (sattrs->srvalid) { 2268 /* 2269 * If we hit in more than one region then we must report 2270 * as Secure, not NS-Callable, with no valid region 2271 * number info. 2272 */ 2273 sattrs->ns = false; 2274 sattrs->nsc = false; 2275 sattrs->sregion = 0; 2276 sattrs->srvalid = false; 2277 break; 2278 } else { 2279 if (env->sau.rlar[r] & 2) { 2280 sattrs->nsc = true; 2281 } else { 2282 sattrs->ns = true; 2283 } 2284 sattrs->srvalid = true; 2285 sattrs->sregion = r; 2286 } 2287 } else { 2288 /* 2289 * Address not in this region. We must check whether the 2290 * region covers addresses in the same page as our address. 2291 * In that case we must not report a size that covers the 2292 * whole page for a subsequent hit against a different MPU 2293 * region or the background region, because it would result 2294 * in incorrect TLB hits for subsequent accesses to 2295 * addresses that are in this MPU region. 2296 */ 2297 if (limit >= base && 2298 ranges_overlap(base, limit - base + 1, 2299 addr_page_base, 2300 TARGET_PAGE_SIZE)) { 2301 sattrs->subpage = true; 2302 } 2303 } 2304 } 2305 } 2306 break; 2307 } 2308 2309 /* 2310 * The IDAU will override the SAU lookup results if it specifies 2311 * higher security than the SAU does. 2312 */ 2313 if (!idau_ns) { 2314 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 2315 sattrs->ns = false; 2316 sattrs->nsc = idau_nsc; 2317 } 2318 } 2319 } 2320 2321 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 2322 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2323 bool secure, GetPhysAddrResult *result, 2324 ARMMMUFaultInfo *fi) 2325 { 2326 V8M_SAttributes sattrs = {}; 2327 bool ret; 2328 2329 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2330 v8m_security_lookup(env, address, access_type, mmu_idx, 2331 secure, &sattrs); 2332 if (access_type == MMU_INST_FETCH) { 2333 /* 2334 * Instruction fetches always use the MMU bank and the 2335 * transaction attribute determined by the fetch address, 2336 * regardless of CPU state. This is painful for QEMU 2337 * to handle, because it would mean we need to encode 2338 * into the mmu_idx not just the (user, negpri) information 2339 * for the current security state but also that for the 2340 * other security state, which would balloon the number 2341 * of mmu_idx values needed alarmingly. 2342 * Fortunately we can avoid this because it's not actually 2343 * possible to arbitrarily execute code from memory with 2344 * the wrong security attribute: it will always generate 2345 * an exception of some kind or another, apart from the 2346 * special case of an NS CPU executing an SG instruction 2347 * in S&NSC memory. So we always just fail the translation 2348 * here and sort things out in the exception handler 2349 * (including possibly emulating an SG instruction). 2350 */ 2351 if (sattrs.ns != !secure) { 2352 if (sattrs.nsc) { 2353 fi->type = ARMFault_QEMU_NSCExec; 2354 } else { 2355 fi->type = ARMFault_QEMU_SFault; 2356 } 2357 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2358 result->f.phys_addr = address; 2359 result->f.prot = 0; 2360 return true; 2361 } 2362 } else { 2363 /* 2364 * For data accesses we always use the MMU bank indicated 2365 * by the current CPU state, but the security attributes 2366 * might downgrade a secure access to nonsecure. 2367 */ 2368 if (sattrs.ns) { 2369 result->f.attrs.secure = false; 2370 } else if (!secure) { 2371 /* 2372 * NS access to S memory must fault. 2373 * Architecturally we should first check whether the 2374 * MPU information for this address indicates that we 2375 * are doing an unaligned access to Device memory, which 2376 * should generate a UsageFault instead. QEMU does not 2377 * currently check for that kind of unaligned access though. 2378 * If we added it we would need to do so as a special case 2379 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2380 */ 2381 fi->type = ARMFault_QEMU_SFault; 2382 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2383 result->f.phys_addr = address; 2384 result->f.prot = 0; 2385 return true; 2386 } 2387 } 2388 } 2389 2390 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, 2391 result, fi, NULL); 2392 if (sattrs.subpage) { 2393 result->f.lg_page_size = 0; 2394 } 2395 return ret; 2396 } 2397 2398 /* 2399 * Translate from the 4-bit stage 2 representation of 2400 * memory attributes (without cache-allocation hints) to 2401 * the 8-bit representation of the stage 1 MAIR registers 2402 * (which includes allocation hints). 2403 * 2404 * ref: shared/translation/attrs/S2AttrDecode() 2405 * .../S2ConvertAttrsHints() 2406 */ 2407 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) 2408 { 2409 uint8_t hiattr = extract32(s2attrs, 2, 2); 2410 uint8_t loattr = extract32(s2attrs, 0, 2); 2411 uint8_t hihint = 0, lohint = 0; 2412 2413 if (hiattr != 0) { /* normal memory */ 2414 if (hcr & HCR_CD) { /* cache disabled */ 2415 hiattr = loattr = 1; /* non-cacheable */ 2416 } else { 2417 if (hiattr != 1) { /* Write-through or write-back */ 2418 hihint = 3; /* RW allocate */ 2419 } 2420 if (loattr != 1) { /* Write-through or write-back */ 2421 lohint = 3; /* RW allocate */ 2422 } 2423 } 2424 } 2425 2426 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 2427 } 2428 2429 /* 2430 * Combine either inner or outer cacheability attributes for normal 2431 * memory, according to table D4-42 and pseudocode procedure 2432 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 2433 * 2434 * NB: only stage 1 includes allocation hints (RW bits), leading to 2435 * some asymmetry. 2436 */ 2437 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 2438 { 2439 if (s1 == 4 || s2 == 4) { 2440 /* non-cacheable has precedence */ 2441 return 4; 2442 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 2443 /* stage 1 write-through takes precedence */ 2444 return s1; 2445 } else if (extract32(s2, 2, 2) == 2) { 2446 /* stage 2 write-through takes precedence, but the allocation hint 2447 * is still taken from stage 1 2448 */ 2449 return (2 << 2) | extract32(s1, 0, 2); 2450 } else { /* write-back */ 2451 return s1; 2452 } 2453 } 2454 2455 /* 2456 * Combine the memory type and cacheability attributes of 2457 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 2458 * combined attributes in MAIR_EL1 format. 2459 */ 2460 static uint8_t combined_attrs_nofwb(uint64_t hcr, 2461 ARMCacheAttrs s1, ARMCacheAttrs s2) 2462 { 2463 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 2464 2465 if (s2.is_s2_format) { 2466 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); 2467 } else { 2468 s2_mair_attrs = s2.attrs; 2469 } 2470 2471 s1lo = extract32(s1.attrs, 0, 4); 2472 s2lo = extract32(s2_mair_attrs, 0, 4); 2473 s1hi = extract32(s1.attrs, 4, 4); 2474 s2hi = extract32(s2_mair_attrs, 4, 4); 2475 2476 /* Combine memory type and cacheability attributes */ 2477 if (s1hi == 0 || s2hi == 0) { 2478 /* Device has precedence over normal */ 2479 if (s1lo == 0 || s2lo == 0) { 2480 /* nGnRnE has precedence over anything */ 2481 ret_attrs = 0; 2482 } else if (s1lo == 4 || s2lo == 4) { 2483 /* non-Reordering has precedence over Reordering */ 2484 ret_attrs = 4; /* nGnRE */ 2485 } else if (s1lo == 8 || s2lo == 8) { 2486 /* non-Gathering has precedence over Gathering */ 2487 ret_attrs = 8; /* nGRE */ 2488 } else { 2489 ret_attrs = 0xc; /* GRE */ 2490 } 2491 } else { /* Normal memory */ 2492 /* Outer/inner cacheability combine independently */ 2493 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 2494 | combine_cacheattr_nibble(s1lo, s2lo); 2495 } 2496 return ret_attrs; 2497 } 2498 2499 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 2500 { 2501 /* 2502 * Given the 4 bits specifying the outer or inner cacheability 2503 * in MAIR format, return a value specifying Normal Write-Back, 2504 * with the allocation and transient hints taken from the input 2505 * if the input specified some kind of cacheable attribute. 2506 */ 2507 if (attr == 0 || attr == 4) { 2508 /* 2509 * 0 == an UNPREDICTABLE encoding 2510 * 4 == Non-cacheable 2511 * Either way, force Write-Back RW allocate non-transient 2512 */ 2513 return 0xf; 2514 } 2515 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 2516 return attr | 4; 2517 } 2518 2519 /* 2520 * Combine the memory type and cacheability attributes of 2521 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 2522 * combined attributes in MAIR_EL1 format. 2523 */ 2524 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) 2525 { 2526 assert(s2.is_s2_format && !s1.is_s2_format); 2527 2528 switch (s2.attrs) { 2529 case 7: 2530 /* Use stage 1 attributes */ 2531 return s1.attrs; 2532 case 6: 2533 /* 2534 * Force Normal Write-Back. Note that if S1 is Normal cacheable 2535 * then we take the allocation hints from it; otherwise it is 2536 * RW allocate, non-transient. 2537 */ 2538 if ((s1.attrs & 0xf0) == 0) { 2539 /* S1 is Device */ 2540 return 0xff; 2541 } 2542 /* Need to check the Inner and Outer nibbles separately */ 2543 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 2544 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 2545 case 5: 2546 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 2547 if ((s1.attrs & 0xf0) == 0) { 2548 return s1.attrs; 2549 } 2550 return 0x44; 2551 case 0 ... 3: 2552 /* Force Device, of subtype specified by S2 */ 2553 return s2.attrs << 2; 2554 default: 2555 /* 2556 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 2557 * arbitrarily force Device. 2558 */ 2559 return 0; 2560 } 2561 } 2562 2563 /* 2564 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 2565 * and CombineS1S2Desc() 2566 * 2567 * @env: CPUARMState 2568 * @s1: Attributes from stage 1 walk 2569 * @s2: Attributes from stage 2 walk 2570 */ 2571 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, 2572 ARMCacheAttrs s1, ARMCacheAttrs s2) 2573 { 2574 ARMCacheAttrs ret; 2575 bool tagged = false; 2576 2577 assert(!s1.is_s2_format); 2578 ret.is_s2_format = false; 2579 2580 if (s1.attrs == 0xf0) { 2581 tagged = true; 2582 s1.attrs = 0xff; 2583 } 2584 2585 /* Combine shareability attributes (table D4-43) */ 2586 if (s1.shareability == 2 || s2.shareability == 2) { 2587 /* if either are outer-shareable, the result is outer-shareable */ 2588 ret.shareability = 2; 2589 } else if (s1.shareability == 3 || s2.shareability == 3) { 2590 /* if either are inner-shareable, the result is inner-shareable */ 2591 ret.shareability = 3; 2592 } else { 2593 /* both non-shareable */ 2594 ret.shareability = 0; 2595 } 2596 2597 /* Combine memory type and cacheability attributes */ 2598 if (hcr & HCR_FWB) { 2599 ret.attrs = combined_attrs_fwb(s1, s2); 2600 } else { 2601 ret.attrs = combined_attrs_nofwb(hcr, s1, s2); 2602 } 2603 2604 /* 2605 * Any location for which the resultant memory type is any 2606 * type of Device memory is always treated as Outer Shareable. 2607 * Any location for which the resultant memory type is Normal 2608 * Inner Non-cacheable, Outer Non-cacheable is always treated 2609 * as Outer Shareable. 2610 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 2611 */ 2612 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 2613 ret.shareability = 2; 2614 } 2615 2616 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 2617 if (tagged && ret.attrs == 0xff) { 2618 ret.attrs = 0xf0; 2619 } 2620 2621 return ret; 2622 } 2623 2624 /* 2625 * MMU disabled. S1 addresses within aa64 translation regimes are 2626 * still checked for bounds -- see AArch64.S1DisabledOutput(). 2627 */ 2628 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address, 2629 MMUAccessType access_type, 2630 ARMMMUIdx mmu_idx, bool is_secure, 2631 GetPhysAddrResult *result, 2632 ARMMMUFaultInfo *fi) 2633 { 2634 uint8_t memattr = 0x00; /* Device nGnRnE */ 2635 uint8_t shareability = 0; /* non-sharable */ 2636 int r_el; 2637 2638 switch (mmu_idx) { 2639 case ARMMMUIdx_Stage2: 2640 case ARMMMUIdx_Stage2_S: 2641 case ARMMMUIdx_Phys_NS: 2642 case ARMMMUIdx_Phys_S: 2643 break; 2644 2645 default: 2646 r_el = regime_el(env, mmu_idx); 2647 if (arm_el_is_aa64(env, r_el)) { 2648 int pamax = arm_pamax(env_archcpu(env)); 2649 uint64_t tcr = env->cp15.tcr_el[r_el]; 2650 int addrtop, tbi; 2651 2652 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 2653 if (access_type == MMU_INST_FETCH) { 2654 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 2655 } 2656 tbi = (tbi >> extract64(address, 55, 1)) & 1; 2657 addrtop = (tbi ? 55 : 63); 2658 2659 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 2660 fi->type = ARMFault_AddressSize; 2661 fi->level = 0; 2662 fi->stage2 = false; 2663 return 1; 2664 } 2665 2666 /* 2667 * When TBI is disabled, we've just validated that all of the 2668 * bits above PAMax are zero, so logically we only need to 2669 * clear the top byte for TBI. But it's clearer to follow 2670 * the pseudocode set of addrdesc.paddress. 2671 */ 2672 address = extract64(address, 0, 52); 2673 } 2674 2675 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 2676 if (r_el == 1) { 2677 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure); 2678 if (hcr & HCR_DC) { 2679 if (hcr & HCR_DCT) { 2680 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 2681 } else { 2682 memattr = 0xff; /* Normal, WB, RWA */ 2683 } 2684 } 2685 } 2686 if (memattr == 0 && access_type == MMU_INST_FETCH) { 2687 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 2688 memattr = 0xee; /* Normal, WT, RA, NT */ 2689 } else { 2690 memattr = 0x44; /* Normal, NC, No */ 2691 } 2692 shareability = 2; /* outer sharable */ 2693 } 2694 result->cacheattrs.is_s2_format = false; 2695 break; 2696 } 2697 2698 result->f.phys_addr = address; 2699 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2700 result->f.lg_page_size = TARGET_PAGE_BITS; 2701 result->cacheattrs.shareability = shareability; 2702 result->cacheattrs.attrs = memattr; 2703 return false; 2704 } 2705 2706 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, 2707 target_ulong address, 2708 MMUAccessType access_type, 2709 GetPhysAddrResult *result, 2710 ARMMMUFaultInfo *fi) 2711 { 2712 hwaddr ipa; 2713 int s1_prot, s1_lgpgsz; 2714 bool is_secure = ptw->in_secure; 2715 bool ret, ipa_secure, s2walk_secure; 2716 ARMCacheAttrs cacheattrs1; 2717 bool is_el0; 2718 uint64_t hcr; 2719 2720 ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi); 2721 2722 /* If S1 fails, return early. */ 2723 if (ret) { 2724 return ret; 2725 } 2726 2727 ipa = result->f.phys_addr; 2728 ipa_secure = result->f.attrs.secure; 2729 if (is_secure) { 2730 /* Select TCR based on the NS bit from the S1 walk. */ 2731 s2walk_secure = !(ipa_secure 2732 ? env->cp15.vstcr_el2 & VSTCR_SW 2733 : env->cp15.vtcr_el2 & VTCR_NSW); 2734 } else { 2735 assert(!ipa_secure); 2736 s2walk_secure = false; 2737 } 2738 2739 is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; 2740 ptw->in_mmu_idx = s2walk_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 2741 ptw->in_ptw_idx = s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 2742 ptw->in_secure = s2walk_secure; 2743 2744 /* 2745 * S1 is done, now do S2 translation. 2746 * Save the stage1 results so that we may merge prot and cacheattrs later. 2747 */ 2748 s1_prot = result->f.prot; 2749 s1_lgpgsz = result->f.lg_page_size; 2750 cacheattrs1 = result->cacheattrs; 2751 memset(result, 0, sizeof(*result)); 2752 2753 if (arm_feature(env, ARM_FEATURE_PMSA)) { 2754 ret = get_phys_addr_pmsav8(env, ipa, access_type, 2755 ptw->in_mmu_idx, is_secure, result, fi); 2756 } else { 2757 ret = get_phys_addr_lpae(env, ptw, ipa, access_type, 2758 is_el0, result, fi); 2759 } 2760 fi->s2addr = ipa; 2761 2762 /* Combine the S1 and S2 perms. */ 2763 result->f.prot &= s1_prot; 2764 2765 /* If S2 fails, return early. */ 2766 if (ret) { 2767 return ret; 2768 } 2769 2770 /* 2771 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE, 2772 * this means "don't put this in the TLB"; in this case, return a 2773 * result with lg_page_size == 0 to achieve that. Otherwise, 2774 * use the maximum of the S1 & S2 page size, so that invalidation 2775 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though 2776 * we know the combined result permissions etc only cover the minimum 2777 * of the S1 and S2 page size, because we know that the common TLB code 2778 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE, 2779 * and passing a larger page size value only affects invalidations.) 2780 */ 2781 if (result->f.lg_page_size < TARGET_PAGE_BITS || 2782 s1_lgpgsz < TARGET_PAGE_BITS) { 2783 result->f.lg_page_size = 0; 2784 } else if (result->f.lg_page_size < s1_lgpgsz) { 2785 result->f.lg_page_size = s1_lgpgsz; 2786 } 2787 2788 /* Combine the S1 and S2 cache attributes. */ 2789 hcr = arm_hcr_el2_eff_secstate(env, is_secure); 2790 if (hcr & HCR_DC) { 2791 /* 2792 * HCR.DC forces the first stage attributes to 2793 * Normal Non-Shareable, 2794 * Inner Write-Back Read-Allocate Write-Allocate, 2795 * Outer Write-Back Read-Allocate Write-Allocate. 2796 * Do not overwrite Tagged within attrs. 2797 */ 2798 if (cacheattrs1.attrs != 0xf0) { 2799 cacheattrs1.attrs = 0xff; 2800 } 2801 cacheattrs1.shareability = 0; 2802 } 2803 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, 2804 result->cacheattrs); 2805 2806 /* 2807 * Check if IPA translates to secure or non-secure PA space. 2808 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. 2809 */ 2810 result->f.attrs.secure = 2811 (is_secure 2812 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) 2813 && (ipa_secure 2814 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)))); 2815 2816 return false; 2817 } 2818 2819 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw, 2820 target_ulong address, 2821 MMUAccessType access_type, 2822 GetPhysAddrResult *result, 2823 ARMMMUFaultInfo *fi) 2824 { 2825 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2826 bool is_secure = ptw->in_secure; 2827 ARMMMUIdx s1_mmu_idx; 2828 2829 /* 2830 * The page table entries may downgrade secure to non-secure, but 2831 * cannot upgrade an non-secure translation regime's attributes 2832 * to secure. 2833 */ 2834 result->f.attrs.secure = is_secure; 2835 2836 switch (mmu_idx) { 2837 case ARMMMUIdx_Phys_S: 2838 case ARMMMUIdx_Phys_NS: 2839 /* Checking Phys early avoids special casing later vs regime_el. */ 2840 return get_phys_addr_disabled(env, address, access_type, mmu_idx, 2841 is_secure, result, fi); 2842 2843 case ARMMMUIdx_Stage1_E0: 2844 case ARMMMUIdx_Stage1_E1: 2845 case ARMMMUIdx_Stage1_E1_PAN: 2846 /* First stage lookup uses second stage for ptw. */ 2847 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 2848 break; 2849 2850 case ARMMMUIdx_E10_0: 2851 s1_mmu_idx = ARMMMUIdx_Stage1_E0; 2852 goto do_twostage; 2853 case ARMMMUIdx_E10_1: 2854 s1_mmu_idx = ARMMMUIdx_Stage1_E1; 2855 goto do_twostage; 2856 case ARMMMUIdx_E10_1_PAN: 2857 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 2858 do_twostage: 2859 /* 2860 * Call ourselves recursively to do the stage 1 and then stage 2 2861 * translations if mmu_idx is a two-stage regime, and EL2 present. 2862 * Otherwise, a stage1+stage2 translation is just stage 1. 2863 */ 2864 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; 2865 if (arm_feature(env, ARM_FEATURE_EL2) && 2866 !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) { 2867 return get_phys_addr_twostage(env, ptw, address, access_type, 2868 result, fi); 2869 } 2870 /* fall through */ 2871 2872 default: 2873 /* Single stage and second stage uses physical for ptw. */ 2874 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 2875 break; 2876 } 2877 2878 result->f.attrs.user = regime_is_user(env, mmu_idx); 2879 2880 /* 2881 * Fast Context Switch Extension. This doesn't exist at all in v8. 2882 * In v7 and earlier it affects all stage 1 translations. 2883 */ 2884 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 2885 && !arm_feature(env, ARM_FEATURE_V8)) { 2886 if (regime_el(env, mmu_idx) == 3) { 2887 address += env->cp15.fcseidr_s; 2888 } else { 2889 address += env->cp15.fcseidr_ns; 2890 } 2891 } 2892 2893 if (arm_feature(env, ARM_FEATURE_PMSA)) { 2894 bool ret; 2895 result->f.lg_page_size = TARGET_PAGE_BITS; 2896 2897 if (arm_feature(env, ARM_FEATURE_V8)) { 2898 /* PMSAv8 */ 2899 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 2900 is_secure, result, fi); 2901 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2902 /* PMSAv7 */ 2903 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 2904 is_secure, result, fi); 2905 } else { 2906 /* Pre-v7 MPU */ 2907 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 2908 is_secure, result, fi); 2909 } 2910 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 2911 " mmu_idx %u -> %s (prot %c%c%c)\n", 2912 access_type == MMU_DATA_LOAD ? "reading" : 2913 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 2914 (uint32_t)address, mmu_idx, 2915 ret ? "Miss" : "Hit", 2916 result->f.prot & PAGE_READ ? 'r' : '-', 2917 result->f.prot & PAGE_WRITE ? 'w' : '-', 2918 result->f.prot & PAGE_EXEC ? 'x' : '-'); 2919 2920 return ret; 2921 } 2922 2923 /* Definitely a real MMU, not an MPU */ 2924 2925 if (regime_translation_disabled(env, mmu_idx, is_secure)) { 2926 return get_phys_addr_disabled(env, address, access_type, mmu_idx, 2927 is_secure, result, fi); 2928 } 2929 2930 if (regime_using_lpae_format(env, mmu_idx)) { 2931 return get_phys_addr_lpae(env, ptw, address, access_type, false, 2932 result, fi); 2933 } else if (arm_feature(env, ARM_FEATURE_V7) || 2934 regime_sctlr(env, mmu_idx) & SCTLR_XP) { 2935 return get_phys_addr_v6(env, ptw, address, access_type, result, fi); 2936 } else { 2937 return get_phys_addr_v5(env, ptw, address, access_type, result, fi); 2938 } 2939 } 2940 2941 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address, 2942 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2943 bool is_secure, GetPhysAddrResult *result, 2944 ARMMMUFaultInfo *fi) 2945 { 2946 S1Translate ptw = { 2947 .in_mmu_idx = mmu_idx, 2948 .in_secure = is_secure, 2949 }; 2950 return get_phys_addr_with_struct(env, &ptw, address, access_type, 2951 result, fi); 2952 } 2953 2954 bool get_phys_addr(CPUARMState *env, target_ulong address, 2955 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2956 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 2957 { 2958 bool is_secure; 2959 2960 switch (mmu_idx) { 2961 case ARMMMUIdx_E10_0: 2962 case ARMMMUIdx_E10_1: 2963 case ARMMMUIdx_E10_1_PAN: 2964 case ARMMMUIdx_E20_0: 2965 case ARMMMUIdx_E20_2: 2966 case ARMMMUIdx_E20_2_PAN: 2967 case ARMMMUIdx_Stage1_E0: 2968 case ARMMMUIdx_Stage1_E1: 2969 case ARMMMUIdx_Stage1_E1_PAN: 2970 case ARMMMUIdx_E2: 2971 is_secure = arm_is_secure_below_el3(env); 2972 break; 2973 case ARMMMUIdx_Stage2: 2974 case ARMMMUIdx_Phys_NS: 2975 case ARMMMUIdx_MPrivNegPri: 2976 case ARMMMUIdx_MUserNegPri: 2977 case ARMMMUIdx_MPriv: 2978 case ARMMMUIdx_MUser: 2979 is_secure = false; 2980 break; 2981 case ARMMMUIdx_E3: 2982 case ARMMMUIdx_Stage2_S: 2983 case ARMMMUIdx_Phys_S: 2984 case ARMMMUIdx_MSPrivNegPri: 2985 case ARMMMUIdx_MSUserNegPri: 2986 case ARMMMUIdx_MSPriv: 2987 case ARMMMUIdx_MSUser: 2988 is_secure = true; 2989 break; 2990 default: 2991 g_assert_not_reached(); 2992 } 2993 return get_phys_addr_with_secure(env, address, access_type, mmu_idx, 2994 is_secure, result, fi); 2995 } 2996 2997 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 2998 MemTxAttrs *attrs) 2999 { 3000 ARMCPU *cpu = ARM_CPU(cs); 3001 CPUARMState *env = &cpu->env; 3002 S1Translate ptw = { 3003 .in_mmu_idx = arm_mmu_idx(env), 3004 .in_secure = arm_is_secure(env), 3005 .in_debug = true, 3006 }; 3007 GetPhysAddrResult res = {}; 3008 ARMMMUFaultInfo fi = {}; 3009 bool ret; 3010 3011 ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi); 3012 *attrs = res.f.attrs; 3013 3014 if (ret) { 3015 return -1; 3016 } 3017 return res.f.phys_addr; 3018 } 3019