xref: /openbmc/qemu/target/arm/ptw.c (revision cc37d98b)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "idau.h"
17 
18 
19 typedef struct S1Translate {
20     ARMMMUIdx in_mmu_idx;
21     ARMMMUIdx in_ptw_idx;
22     bool in_secure;
23     bool in_debug;
24     bool out_secure;
25     bool out_rw;
26     bool out_be;
27     hwaddr out_virt;
28     hwaddr out_phys;
29     void *out_host;
30 } S1Translate;
31 
32 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
33                                uint64_t address,
34                                MMUAccessType access_type, bool s1_is_el0,
35                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
36     __attribute__((nonnull));
37 
38 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
39                                       target_ulong address,
40                                       MMUAccessType access_type,
41                                       GetPhysAddrResult *result,
42                                       ARMMMUFaultInfo *fi)
43     __attribute__((nonnull));
44 
45 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
46 static const uint8_t pamax_map[] = {
47     [0] = 32,
48     [1] = 36,
49     [2] = 40,
50     [3] = 42,
51     [4] = 44,
52     [5] = 48,
53     [6] = 52,
54 };
55 
56 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
57 unsigned int arm_pamax(ARMCPU *cpu)
58 {
59     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
60         unsigned int parange =
61             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
62 
63         /*
64          * id_aa64mmfr0 is a read-only register so values outside of the
65          * supported mappings can be considered an implementation error.
66          */
67         assert(parange < ARRAY_SIZE(pamax_map));
68         return pamax_map[parange];
69     }
70 
71     /*
72      * In machvirt_init, we call arm_pamax on a cpu that is not fully
73      * initialized, so we can't rely on the propagation done in realize.
74      */
75     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
76         arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
77         /* v7 with LPAE */
78         return 40;
79     }
80     /* Anything else */
81     return 32;
82 }
83 
84 /*
85  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
86  */
87 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
88 {
89     switch (mmu_idx) {
90     case ARMMMUIdx_E10_0:
91         return ARMMMUIdx_Stage1_E0;
92     case ARMMMUIdx_E10_1:
93         return ARMMMUIdx_Stage1_E1;
94     case ARMMMUIdx_E10_1_PAN:
95         return ARMMMUIdx_Stage1_E1_PAN;
96     default:
97         return mmu_idx;
98     }
99 }
100 
101 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
102 {
103     return stage_1_mmu_idx(arm_mmu_idx(env));
104 }
105 
106 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
107 {
108     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
109 }
110 
111 /* Return the TTBR associated with this translation regime */
112 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
113 {
114     if (mmu_idx == ARMMMUIdx_Stage2) {
115         return env->cp15.vttbr_el2;
116     }
117     if (mmu_idx == ARMMMUIdx_Stage2_S) {
118         return env->cp15.vsttbr_el2;
119     }
120     if (ttbrn == 0) {
121         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
122     } else {
123         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
124     }
125 }
126 
127 /* Return true if the specified stage of address translation is disabled */
128 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
129                                         bool is_secure)
130 {
131     uint64_t hcr_el2;
132 
133     if (arm_feature(env, ARM_FEATURE_M)) {
134         switch (env->v7m.mpu_ctrl[is_secure] &
135                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
136         case R_V7M_MPU_CTRL_ENABLE_MASK:
137             /* Enabled, but not for HardFault and NMI */
138             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
139         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
140             /* Enabled for all cases */
141             return false;
142         case 0:
143         default:
144             /*
145              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
146              * we warned about that in armv7m_nvic.c when the guest set it.
147              */
148             return true;
149         }
150     }
151 
152     hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
153 
154     switch (mmu_idx) {
155     case ARMMMUIdx_Stage2:
156     case ARMMMUIdx_Stage2_S:
157         /* HCR.DC means HCR.VM behaves as 1 */
158         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
159 
160     case ARMMMUIdx_E10_0:
161     case ARMMMUIdx_E10_1:
162     case ARMMMUIdx_E10_1_PAN:
163         /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
164         if (hcr_el2 & HCR_TGE) {
165             return true;
166         }
167         break;
168 
169     case ARMMMUIdx_Stage1_E0:
170     case ARMMMUIdx_Stage1_E1:
171     case ARMMMUIdx_Stage1_E1_PAN:
172         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
173         if (hcr_el2 & HCR_DC) {
174             return true;
175         }
176         break;
177 
178     case ARMMMUIdx_E20_0:
179     case ARMMMUIdx_E20_2:
180     case ARMMMUIdx_E20_2_PAN:
181     case ARMMMUIdx_E2:
182     case ARMMMUIdx_E3:
183         break;
184 
185     case ARMMMUIdx_Phys_NS:
186     case ARMMMUIdx_Phys_S:
187         /* No translation for physical address spaces. */
188         return true;
189 
190     default:
191         g_assert_not_reached();
192     }
193 
194     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
195 }
196 
197 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
198 {
199     /*
200      * For an S1 page table walk, the stage 1 attributes are always
201      * some form of "this is Normal memory". The combined S1+S2
202      * attributes are therefore only Device if stage 2 specifies Device.
203      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
204      * ie when cacheattrs.attrs bits [3:2] are 0b00.
205      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
206      * when cacheattrs.attrs bit [2] is 0.
207      */
208     if (hcr & HCR_FWB) {
209         return (attrs & 0x4) == 0;
210     } else {
211         return (attrs & 0xc) == 0;
212     }
213 }
214 
215 /* Translate a S1 pagetable walk through S2 if needed.  */
216 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
217                              hwaddr addr, ARMMMUFaultInfo *fi)
218 {
219     bool is_secure = ptw->in_secure;
220     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
221     ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
222     uint8_t pte_attrs;
223     bool pte_secure;
224 
225     ptw->out_virt = addr;
226 
227     if (unlikely(ptw->in_debug)) {
228         /*
229          * From gdbstub, do not use softmmu so that we don't modify the
230          * state of the cpu at all, including softmmu tlb contents.
231          */
232         if (regime_is_stage2(s2_mmu_idx)) {
233             S1Translate s2ptw = {
234                 .in_mmu_idx = s2_mmu_idx,
235                 .in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS,
236                 .in_secure = is_secure,
237                 .in_debug = true,
238             };
239             GetPhysAddrResult s2 = { };
240 
241             if (get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
242                                    false, &s2, fi)) {
243                 goto fail;
244             }
245             ptw->out_phys = s2.f.phys_addr;
246             pte_attrs = s2.cacheattrs.attrs;
247             pte_secure = s2.f.attrs.secure;
248         } else {
249             /* Regime is physical. */
250             ptw->out_phys = addr;
251             pte_attrs = 0;
252             pte_secure = is_secure;
253         }
254         ptw->out_host = NULL;
255         ptw->out_rw = false;
256     } else {
257 #ifdef CONFIG_TCG
258         CPUTLBEntryFull *full;
259         int flags;
260 
261         env->tlb_fi = fi;
262         flags = probe_access_full(env, addr, 0, MMU_DATA_LOAD,
263                                   arm_to_core_mmu_idx(s2_mmu_idx),
264                                   true, &ptw->out_host, &full, 0);
265         env->tlb_fi = NULL;
266 
267         if (unlikely(flags & TLB_INVALID_MASK)) {
268             goto fail;
269         }
270         ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
271         ptw->out_rw = full->prot & PAGE_WRITE;
272         pte_attrs = full->pte_attrs;
273         pte_secure = full->attrs.secure;
274 #else
275         g_assert_not_reached();
276 #endif
277     }
278 
279     if (regime_is_stage2(s2_mmu_idx)) {
280         uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
281 
282         if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
283             /*
284              * PTW set and S1 walk touched S2 Device memory:
285              * generate Permission fault.
286              */
287             fi->type = ARMFault_Permission;
288             fi->s2addr = addr;
289             fi->stage2 = true;
290             fi->s1ptw = true;
291             fi->s1ns = !is_secure;
292             return false;
293         }
294     }
295 
296     /* Check if page table walk is to secure or non-secure PA space. */
297     ptw->out_secure = (is_secure
298                        && !(pte_secure
299                             ? env->cp15.vstcr_el2 & VSTCR_SW
300                             : env->cp15.vtcr_el2 & VTCR_NSW));
301     ptw->out_be = regime_translation_big_endian(env, mmu_idx);
302     return true;
303 
304  fail:
305     assert(fi->type != ARMFault_None);
306     fi->s2addr = addr;
307     fi->stage2 = true;
308     fi->s1ptw = true;
309     fi->s1ns = !is_secure;
310     return false;
311 }
312 
313 /* All loads done in the course of a page table walk go through here. */
314 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
315                             ARMMMUFaultInfo *fi)
316 {
317     CPUState *cs = env_cpu(env);
318     void *host = ptw->out_host;
319     uint32_t data;
320 
321     if (likely(host)) {
322         /* Page tables are in RAM, and we have the host address. */
323         data = qatomic_read((uint32_t *)host);
324         if (ptw->out_be) {
325             data = be32_to_cpu(data);
326         } else {
327             data = le32_to_cpu(data);
328         }
329     } else {
330         /* Page tables are in MMIO. */
331         MemTxAttrs attrs = { .secure = ptw->out_secure };
332         AddressSpace *as = arm_addressspace(cs, attrs);
333         MemTxResult result = MEMTX_OK;
334 
335         if (ptw->out_be) {
336             data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
337         } else {
338             data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
339         }
340         if (unlikely(result != MEMTX_OK)) {
341             fi->type = ARMFault_SyncExternalOnWalk;
342             fi->ea = arm_extabort_type(result);
343             return 0;
344         }
345     }
346     return data;
347 }
348 
349 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
350                             ARMMMUFaultInfo *fi)
351 {
352     CPUState *cs = env_cpu(env);
353     void *host = ptw->out_host;
354     uint64_t data;
355 
356     if (likely(host)) {
357         /* Page tables are in RAM, and we have the host address. */
358 #ifdef CONFIG_ATOMIC64
359         data = qatomic_read__nocheck((uint64_t *)host);
360         if (ptw->out_be) {
361             data = be64_to_cpu(data);
362         } else {
363             data = le64_to_cpu(data);
364         }
365 #else
366         if (ptw->out_be) {
367             data = ldq_be_p(host);
368         } else {
369             data = ldq_le_p(host);
370         }
371 #endif
372     } else {
373         /* Page tables are in MMIO. */
374         MemTxAttrs attrs = { .secure = ptw->out_secure };
375         AddressSpace *as = arm_addressspace(cs, attrs);
376         MemTxResult result = MEMTX_OK;
377 
378         if (ptw->out_be) {
379             data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
380         } else {
381             data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
382         }
383         if (unlikely(result != MEMTX_OK)) {
384             fi->type = ARMFault_SyncExternalOnWalk;
385             fi->ea = arm_extabort_type(result);
386             return 0;
387         }
388     }
389     return data;
390 }
391 
392 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
393                              uint64_t new_val, S1Translate *ptw,
394                              ARMMMUFaultInfo *fi)
395 {
396     uint64_t cur_val;
397     void *host = ptw->out_host;
398 
399     if (unlikely(!host)) {
400         fi->type = ARMFault_UnsuppAtomicUpdate;
401         fi->s1ptw = true;
402         return 0;
403     }
404 
405     /*
406      * Raising a stage2 Protection fault for an atomic update to a read-only
407      * page is delayed until it is certain that there is a change to make.
408      */
409     if (unlikely(!ptw->out_rw)) {
410         int flags;
411         void *discard;
412 
413         env->tlb_fi = fi;
414         flags = probe_access_flags(env, ptw->out_virt, 0, MMU_DATA_STORE,
415                                    arm_to_core_mmu_idx(ptw->in_ptw_idx),
416                                    true, &discard, 0);
417         env->tlb_fi = NULL;
418 
419         if (unlikely(flags & TLB_INVALID_MASK)) {
420             assert(fi->type != ARMFault_None);
421             fi->s2addr = ptw->out_virt;
422             fi->stage2 = true;
423             fi->s1ptw = true;
424             fi->s1ns = !ptw->in_secure;
425             return 0;
426         }
427 
428         /* In case CAS mismatches and we loop, remember writability. */
429         ptw->out_rw = true;
430     }
431 
432 #ifdef CONFIG_ATOMIC64
433     if (ptw->out_be) {
434         old_val = cpu_to_be64(old_val);
435         new_val = cpu_to_be64(new_val);
436         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
437         cur_val = be64_to_cpu(cur_val);
438     } else {
439         old_val = cpu_to_le64(old_val);
440         new_val = cpu_to_le64(new_val);
441         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
442         cur_val = le64_to_cpu(cur_val);
443     }
444 #else
445     /*
446      * We can't support the full 64-bit atomic cmpxchg on the host.
447      * Because this is only used for FEAT_HAFDBS, which is only for AA64,
448      * we know that TCG_OVERSIZED_GUEST is set, which means that we are
449      * running in round-robin mode and could only race with dma i/o.
450      */
451 #ifndef TCG_OVERSIZED_GUEST
452 # error "Unexpected configuration"
453 #endif
454     bool locked = qemu_mutex_iothread_locked();
455     if (!locked) {
456        qemu_mutex_lock_iothread();
457     }
458     if (ptw->out_be) {
459         cur_val = ldq_be_p(host);
460         if (cur_val == old_val) {
461             stq_be_p(host, new_val);
462         }
463     } else {
464         cur_val = ldq_le_p(host);
465         if (cur_val == old_val) {
466             stq_le_p(host, new_val);
467         }
468     }
469     if (!locked) {
470         qemu_mutex_unlock_iothread();
471     }
472 #endif
473 
474     return cur_val;
475 }
476 
477 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
478                                      uint32_t *table, uint32_t address)
479 {
480     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
481     uint64_t tcr = regime_tcr(env, mmu_idx);
482     int maskshift = extract32(tcr, 0, 3);
483     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
484     uint32_t base_mask;
485 
486     if (address & mask) {
487         if (tcr & TTBCR_PD1) {
488             /* Translation table walk disabled for TTBR1 */
489             return false;
490         }
491         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
492     } else {
493         if (tcr & TTBCR_PD0) {
494             /* Translation table walk disabled for TTBR0 */
495             return false;
496         }
497         base_mask = ~((uint32_t)0x3fffu >> maskshift);
498         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
499     }
500     *table |= (address >> 18) & 0x3ffc;
501     return true;
502 }
503 
504 /*
505  * Translate section/page access permissions to page R/W protection flags
506  * @env:         CPUARMState
507  * @mmu_idx:     MMU index indicating required translation regime
508  * @ap:          The 3-bit access permissions (AP[2:0])
509  * @domain_prot: The 2-bit domain access permissions
510  * @is_user: TRUE if accessing from PL0
511  */
512 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
513                          int ap, int domain_prot, bool is_user)
514 {
515     if (domain_prot == 3) {
516         return PAGE_READ | PAGE_WRITE;
517     }
518 
519     switch (ap) {
520     case 0:
521         if (arm_feature(env, ARM_FEATURE_V7)) {
522             return 0;
523         }
524         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
525         case SCTLR_S:
526             return is_user ? 0 : PAGE_READ;
527         case SCTLR_R:
528             return PAGE_READ;
529         default:
530             return 0;
531         }
532     case 1:
533         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
534     case 2:
535         if (is_user) {
536             return PAGE_READ;
537         } else {
538             return PAGE_READ | PAGE_WRITE;
539         }
540     case 3:
541         return PAGE_READ | PAGE_WRITE;
542     case 4: /* Reserved.  */
543         return 0;
544     case 5:
545         return is_user ? 0 : PAGE_READ;
546     case 6:
547         return PAGE_READ;
548     case 7:
549         if (!arm_feature(env, ARM_FEATURE_V6K)) {
550             return 0;
551         }
552         return PAGE_READ;
553     default:
554         g_assert_not_reached();
555     }
556 }
557 
558 /*
559  * Translate section/page access permissions to page R/W protection flags
560  * @env:         CPUARMState
561  * @mmu_idx:     MMU index indicating required translation regime
562  * @ap:          The 3-bit access permissions (AP[2:0])
563  * @domain_prot: The 2-bit domain access permissions
564  */
565 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
566                          int ap, int domain_prot)
567 {
568    return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
569                                 regime_is_user(env, mmu_idx));
570 }
571 
572 /*
573  * Translate section/page access permissions to page R/W protection flags.
574  * @ap:      The 2-bit simple AP (AP[2:1])
575  * @is_user: TRUE if accessing from PL0
576  */
577 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
578 {
579     switch (ap) {
580     case 0:
581         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
582     case 1:
583         return PAGE_READ | PAGE_WRITE;
584     case 2:
585         return is_user ? 0 : PAGE_READ;
586     case 3:
587         return PAGE_READ;
588     default:
589         g_assert_not_reached();
590     }
591 }
592 
593 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
594 {
595     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
596 }
597 
598 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
599                              uint32_t address, MMUAccessType access_type,
600                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
601 {
602     int level = 1;
603     uint32_t table;
604     uint32_t desc;
605     int type;
606     int ap;
607     int domain = 0;
608     int domain_prot;
609     hwaddr phys_addr;
610     uint32_t dacr;
611 
612     /* Pagetable walk.  */
613     /* Lookup l1 descriptor.  */
614     if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
615         /* Section translation fault if page walk is disabled by PD0 or PD1 */
616         fi->type = ARMFault_Translation;
617         goto do_fault;
618     }
619     if (!S1_ptw_translate(env, ptw, table, fi)) {
620         goto do_fault;
621     }
622     desc = arm_ldl_ptw(env, ptw, fi);
623     if (fi->type != ARMFault_None) {
624         goto do_fault;
625     }
626     type = (desc & 3);
627     domain = (desc >> 5) & 0x0f;
628     if (regime_el(env, ptw->in_mmu_idx) == 1) {
629         dacr = env->cp15.dacr_ns;
630     } else {
631         dacr = env->cp15.dacr_s;
632     }
633     domain_prot = (dacr >> (domain * 2)) & 3;
634     if (type == 0) {
635         /* Section translation fault.  */
636         fi->type = ARMFault_Translation;
637         goto do_fault;
638     }
639     if (type != 2) {
640         level = 2;
641     }
642     if (domain_prot == 0 || domain_prot == 2) {
643         fi->type = ARMFault_Domain;
644         goto do_fault;
645     }
646     if (type == 2) {
647         /* 1Mb section.  */
648         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
649         ap = (desc >> 10) & 3;
650         result->f.lg_page_size = 20; /* 1MB */
651     } else {
652         /* Lookup l2 entry.  */
653         if (type == 1) {
654             /* Coarse pagetable.  */
655             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
656         } else {
657             /* Fine pagetable.  */
658             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
659         }
660         if (!S1_ptw_translate(env, ptw, table, fi)) {
661             goto do_fault;
662         }
663         desc = arm_ldl_ptw(env, ptw, fi);
664         if (fi->type != ARMFault_None) {
665             goto do_fault;
666         }
667         switch (desc & 3) {
668         case 0: /* Page translation fault.  */
669             fi->type = ARMFault_Translation;
670             goto do_fault;
671         case 1: /* 64k page.  */
672             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
673             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
674             result->f.lg_page_size = 16;
675             break;
676         case 2: /* 4k page.  */
677             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
678             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
679             result->f.lg_page_size = 12;
680             break;
681         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
682             if (type == 1) {
683                 /* ARMv6/XScale extended small page format */
684                 if (arm_feature(env, ARM_FEATURE_XSCALE)
685                     || arm_feature(env, ARM_FEATURE_V6)) {
686                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
687                     result->f.lg_page_size = 12;
688                 } else {
689                     /*
690                      * UNPREDICTABLE in ARMv5; we choose to take a
691                      * page translation fault.
692                      */
693                     fi->type = ARMFault_Translation;
694                     goto do_fault;
695                 }
696             } else {
697                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
698                 result->f.lg_page_size = 10;
699             }
700             ap = (desc >> 4) & 3;
701             break;
702         default:
703             /* Never happens, but compiler isn't smart enough to tell.  */
704             g_assert_not_reached();
705         }
706     }
707     result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
708     result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
709     if (!(result->f.prot & (1 << access_type))) {
710         /* Access permission fault.  */
711         fi->type = ARMFault_Permission;
712         goto do_fault;
713     }
714     result->f.phys_addr = phys_addr;
715     return false;
716 do_fault:
717     fi->domain = domain;
718     fi->level = level;
719     return true;
720 }
721 
722 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
723                              uint32_t address, MMUAccessType access_type,
724                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
725 {
726     ARMCPU *cpu = env_archcpu(env);
727     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
728     int level = 1;
729     uint32_t table;
730     uint32_t desc;
731     uint32_t xn;
732     uint32_t pxn = 0;
733     int type;
734     int ap;
735     int domain = 0;
736     int domain_prot;
737     hwaddr phys_addr;
738     uint32_t dacr;
739     bool ns;
740     int user_prot;
741 
742     /* Pagetable walk.  */
743     /* Lookup l1 descriptor.  */
744     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
745         /* Section translation fault if page walk is disabled by PD0 or PD1 */
746         fi->type = ARMFault_Translation;
747         goto do_fault;
748     }
749     if (!S1_ptw_translate(env, ptw, table, fi)) {
750         goto do_fault;
751     }
752     desc = arm_ldl_ptw(env, ptw, fi);
753     if (fi->type != ARMFault_None) {
754         goto do_fault;
755     }
756     type = (desc & 3);
757     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
758         /* Section translation fault, or attempt to use the encoding
759          * which is Reserved on implementations without PXN.
760          */
761         fi->type = ARMFault_Translation;
762         goto do_fault;
763     }
764     if ((type == 1) || !(desc & (1 << 18))) {
765         /* Page or Section.  */
766         domain = (desc >> 5) & 0x0f;
767     }
768     if (regime_el(env, mmu_idx) == 1) {
769         dacr = env->cp15.dacr_ns;
770     } else {
771         dacr = env->cp15.dacr_s;
772     }
773     if (type == 1) {
774         level = 2;
775     }
776     domain_prot = (dacr >> (domain * 2)) & 3;
777     if (domain_prot == 0 || domain_prot == 2) {
778         /* Section or Page domain fault */
779         fi->type = ARMFault_Domain;
780         goto do_fault;
781     }
782     if (type != 1) {
783         if (desc & (1 << 18)) {
784             /* Supersection.  */
785             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
786             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
787             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
788             result->f.lg_page_size = 24;  /* 16MB */
789         } else {
790             /* Section.  */
791             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
792             result->f.lg_page_size = 20;  /* 1MB */
793         }
794         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
795         xn = desc & (1 << 4);
796         pxn = desc & 1;
797         ns = extract32(desc, 19, 1);
798     } else {
799         if (cpu_isar_feature(aa32_pxn, cpu)) {
800             pxn = (desc >> 2) & 1;
801         }
802         ns = extract32(desc, 3, 1);
803         /* Lookup l2 entry.  */
804         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
805         if (!S1_ptw_translate(env, ptw, table, fi)) {
806             goto do_fault;
807         }
808         desc = arm_ldl_ptw(env, ptw, fi);
809         if (fi->type != ARMFault_None) {
810             goto do_fault;
811         }
812         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
813         switch (desc & 3) {
814         case 0: /* Page translation fault.  */
815             fi->type = ARMFault_Translation;
816             goto do_fault;
817         case 1: /* 64k page.  */
818             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
819             xn = desc & (1 << 15);
820             result->f.lg_page_size = 16;
821             break;
822         case 2: case 3: /* 4k page.  */
823             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
824             xn = desc & 1;
825             result->f.lg_page_size = 12;
826             break;
827         default:
828             /* Never happens, but compiler isn't smart enough to tell.  */
829             g_assert_not_reached();
830         }
831     }
832     if (domain_prot == 3) {
833         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
834     } else {
835         if (pxn && !regime_is_user(env, mmu_idx)) {
836             xn = 1;
837         }
838         if (xn && access_type == MMU_INST_FETCH) {
839             fi->type = ARMFault_Permission;
840             goto do_fault;
841         }
842 
843         if (arm_feature(env, ARM_FEATURE_V6K) &&
844                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
845             /* The simplified model uses AP[0] as an access control bit.  */
846             if ((ap & 1) == 0) {
847                 /* Access flag fault.  */
848                 fi->type = ARMFault_AccessFlag;
849                 goto do_fault;
850             }
851             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
852             user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
853         } else {
854             result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
855             user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
856         }
857         if (result->f.prot && !xn) {
858             result->f.prot |= PAGE_EXEC;
859         }
860         if (!(result->f.prot & (1 << access_type))) {
861             /* Access permission fault.  */
862             fi->type = ARMFault_Permission;
863             goto do_fault;
864         }
865         if (regime_is_pan(env, mmu_idx) &&
866             !regime_is_user(env, mmu_idx) &&
867             user_prot &&
868             access_type != MMU_INST_FETCH) {
869             /* Privileged Access Never fault */
870             fi->type = ARMFault_Permission;
871             goto do_fault;
872         }
873     }
874     if (ns) {
875         /* The NS bit will (as required by the architecture) have no effect if
876          * the CPU doesn't support TZ or this is a non-secure translation
877          * regime, because the attribute will already be non-secure.
878          */
879         result->f.attrs.secure = false;
880     }
881     result->f.phys_addr = phys_addr;
882     return false;
883 do_fault:
884     fi->domain = domain;
885     fi->level = level;
886     return true;
887 }
888 
889 /*
890  * Translate S2 section/page access permissions to protection flags
891  * @env:     CPUARMState
892  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
893  * @xn:      XN (execute-never) bits
894  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
895  */
896 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
897 {
898     int prot = 0;
899 
900     if (s2ap & 1) {
901         prot |= PAGE_READ;
902     }
903     if (s2ap & 2) {
904         prot |= PAGE_WRITE;
905     }
906 
907     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
908         switch (xn) {
909         case 0:
910             prot |= PAGE_EXEC;
911             break;
912         case 1:
913             if (s1_is_el0) {
914                 prot |= PAGE_EXEC;
915             }
916             break;
917         case 2:
918             break;
919         case 3:
920             if (!s1_is_el0) {
921                 prot |= PAGE_EXEC;
922             }
923             break;
924         default:
925             g_assert_not_reached();
926         }
927     } else {
928         if (!extract32(xn, 1, 1)) {
929             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
930                 prot |= PAGE_EXEC;
931             }
932         }
933     }
934     return prot;
935 }
936 
937 /*
938  * Translate section/page access permissions to protection flags
939  * @env:     CPUARMState
940  * @mmu_idx: MMU index indicating required translation regime
941  * @is_aa64: TRUE if AArch64
942  * @ap:      The 2-bit simple AP (AP[2:1])
943  * @ns:      NS (non-secure) bit
944  * @xn:      XN (execute-never) bit
945  * @pxn:     PXN (privileged execute-never) bit
946  */
947 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
948                       int ap, int ns, int xn, int pxn)
949 {
950     bool is_user = regime_is_user(env, mmu_idx);
951     int prot_rw, user_rw;
952     bool have_wxn;
953     int wxn = 0;
954 
955     assert(!regime_is_stage2(mmu_idx));
956 
957     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
958     if (is_user) {
959         prot_rw = user_rw;
960     } else {
961         if (user_rw && regime_is_pan(env, mmu_idx)) {
962             /* PAN forbids data accesses but doesn't affect insn fetch */
963             prot_rw = 0;
964         } else {
965             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
966         }
967     }
968 
969     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
970         return prot_rw;
971     }
972 
973     /* TODO have_wxn should be replaced with
974      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
975      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
976      * compatible processors have EL2, which is required for [U]WXN.
977      */
978     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
979 
980     if (have_wxn) {
981         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
982     }
983 
984     if (is_aa64) {
985         if (regime_has_2_ranges(mmu_idx) && !is_user) {
986             xn = pxn || (user_rw & PAGE_WRITE);
987         }
988     } else if (arm_feature(env, ARM_FEATURE_V7)) {
989         switch (regime_el(env, mmu_idx)) {
990         case 1:
991         case 3:
992             if (is_user) {
993                 xn = xn || !(user_rw & PAGE_READ);
994             } else {
995                 int uwxn = 0;
996                 if (have_wxn) {
997                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
998                 }
999                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1000                      (uwxn && (user_rw & PAGE_WRITE));
1001             }
1002             break;
1003         case 2:
1004             break;
1005         }
1006     } else {
1007         xn = wxn = 0;
1008     }
1009 
1010     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1011         return prot_rw;
1012     }
1013     return prot_rw | PAGE_EXEC;
1014 }
1015 
1016 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1017                                           ARMMMUIdx mmu_idx)
1018 {
1019     uint64_t tcr = regime_tcr(env, mmu_idx);
1020     uint32_t el = regime_el(env, mmu_idx);
1021     int select, tsz;
1022     bool epd, hpd;
1023 
1024     assert(mmu_idx != ARMMMUIdx_Stage2_S);
1025 
1026     if (mmu_idx == ARMMMUIdx_Stage2) {
1027         /* VTCR */
1028         bool sext = extract32(tcr, 4, 1);
1029         bool sign = extract32(tcr, 3, 1);
1030 
1031         /*
1032          * If the sign-extend bit is not the same as t0sz[3], the result
1033          * is unpredictable. Flag this as a guest error.
1034          */
1035         if (sign != sext) {
1036             qemu_log_mask(LOG_GUEST_ERROR,
1037                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1038         }
1039         tsz = sextract32(tcr, 0, 4) + 8;
1040         select = 0;
1041         hpd = false;
1042         epd = false;
1043     } else if (el == 2) {
1044         /* HTCR */
1045         tsz = extract32(tcr, 0, 3);
1046         select = 0;
1047         hpd = extract64(tcr, 24, 1);
1048         epd = false;
1049     } else {
1050         int t0sz = extract32(tcr, 0, 3);
1051         int t1sz = extract32(tcr, 16, 3);
1052 
1053         if (t1sz == 0) {
1054             select = va > (0xffffffffu >> t0sz);
1055         } else {
1056             /* Note that we will detect errors later.  */
1057             select = va >= ~(0xffffffffu >> t1sz);
1058         }
1059         if (!select) {
1060             tsz = t0sz;
1061             epd = extract32(tcr, 7, 1);
1062             hpd = extract64(tcr, 41, 1);
1063         } else {
1064             tsz = t1sz;
1065             epd = extract32(tcr, 23, 1);
1066             hpd = extract64(tcr, 42, 1);
1067         }
1068         /* For aarch32, hpd0 is not enabled without t2e as well.  */
1069         hpd &= extract32(tcr, 6, 1);
1070     }
1071 
1072     return (ARMVAParameters) {
1073         .tsz = tsz,
1074         .select = select,
1075         .epd = epd,
1076         .hpd = hpd,
1077     };
1078 }
1079 
1080 /*
1081  * check_s2_mmu_setup
1082  * @cpu:        ARMCPU
1083  * @is_aa64:    True if the translation regime is in AArch64 state
1084  * @tcr:        VTCR_EL2 or VSTCR_EL2
1085  * @ds:         Effective value of TCR.DS.
1086  * @iasize:     Bitsize of IPAs
1087  * @stride:     Page-table stride (See the ARM ARM)
1088  *
1089  * Decode the starting level of the S2 lookup, returning INT_MIN if
1090  * the configuration is invalid.
1091  */
1092 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1093                               bool ds, int iasize, int stride)
1094 {
1095     int sl0, sl2, startlevel, granulebits, levels;
1096     int s1_min_iasize, s1_max_iasize;
1097 
1098     sl0 = extract32(tcr, 6, 2);
1099     if (is_aa64) {
1100         /*
1101          * AArch64.S2InvalidTxSZ: While we checked tsz_oob near the top of
1102          * get_phys_addr_lpae, that used aa64_va_parameters which apply
1103          * to aarch64.  If Stage1 is aarch32, the min_txsz is larger.
1104          * See AArch64.S2MinTxSZ, where min_tsz is 24, translated to
1105          * inputsize is 64 - 24 = 40.
1106          */
1107         if (iasize < 40 && !arm_el_is_aa64(&cpu->env, 1)) {
1108             goto fail;
1109         }
1110 
1111         /*
1112          * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1113          * so interleave AArch64.S2StartLevel.
1114          */
1115         switch (stride) {
1116         case 9: /* 4KB */
1117             /* SL2 is RES0 unless DS=1 & 4KB granule. */
1118             sl2 = extract64(tcr, 33, 1);
1119             if (ds && sl2) {
1120                 if (sl0 != 0) {
1121                     goto fail;
1122                 }
1123                 startlevel = -1;
1124             } else {
1125                 startlevel = 2 - sl0;
1126                 switch (sl0) {
1127                 case 2:
1128                     if (arm_pamax(cpu) < 44) {
1129                         goto fail;
1130                     }
1131                     break;
1132                 case 3:
1133                     if (!cpu_isar_feature(aa64_st, cpu)) {
1134                         goto fail;
1135                     }
1136                     startlevel = 3;
1137                     break;
1138                 }
1139             }
1140             break;
1141         case 11: /* 16KB */
1142             switch (sl0) {
1143             case 2:
1144                 if (arm_pamax(cpu) < 42) {
1145                     goto fail;
1146                 }
1147                 break;
1148             case 3:
1149                 if (!ds) {
1150                     goto fail;
1151                 }
1152                 break;
1153             }
1154             startlevel = 3 - sl0;
1155             break;
1156         case 13: /* 64KB */
1157             switch (sl0) {
1158             case 2:
1159                 if (arm_pamax(cpu) < 44) {
1160                     goto fail;
1161                 }
1162                 break;
1163             case 3:
1164                 goto fail;
1165             }
1166             startlevel = 3 - sl0;
1167             break;
1168         default:
1169             g_assert_not_reached();
1170         }
1171     } else {
1172         /*
1173          * Things are simpler for AArch32 EL2, with only 4k pages.
1174          * There is no separate S2InvalidSL function, but AArch32.S2Walk
1175          * begins with walkparms.sl0 in {'1x'}.
1176          */
1177         assert(stride == 9);
1178         if (sl0 >= 2) {
1179             goto fail;
1180         }
1181         startlevel = 2 - sl0;
1182     }
1183 
1184     /* AArch{64,32}.S2InconsistentSL are functionally equivalent.  */
1185     levels = 3 - startlevel;
1186     granulebits = stride + 3;
1187 
1188     s1_min_iasize = levels * stride + granulebits + 1;
1189     s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1190 
1191     if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1192         return startlevel;
1193     }
1194 
1195  fail:
1196     return INT_MIN;
1197 }
1198 
1199 /**
1200  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1201  *
1202  * Returns false if the translation was successful. Otherwise, phys_ptr,
1203  * attrs, prot and page_size may not be filled in, and the populated fsr
1204  * value provides information on why the translation aborted, in the format
1205  * of a long-format DFSR/IFSR fault register, with the following caveat:
1206  * the WnR bit is never set (the caller must do this).
1207  *
1208  * @env: CPUARMState
1209  * @ptw: Current and next stage parameters for the walk.
1210  * @address: virtual address to get physical address for
1211  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1212  * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2
1213  *             (so this is a stage 2 page table walk),
1214  *             must be true if this is stage 2 of a stage 1+2
1215  *             walk for an EL0 access. If @mmu_idx is anything else,
1216  *             @s1_is_el0 is ignored.
1217  * @result: set on translation success,
1218  * @fi: set to fault info if the translation fails
1219  */
1220 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1221                                uint64_t address,
1222                                MMUAccessType access_type, bool s1_is_el0,
1223                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1224 {
1225     ARMCPU *cpu = env_archcpu(env);
1226     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1227     bool is_secure = ptw->in_secure;
1228     int32_t level;
1229     ARMVAParameters param;
1230     uint64_t ttbr;
1231     hwaddr descaddr, indexmask, indexmask_grainsize;
1232     uint32_t tableattrs;
1233     target_ulong page_size;
1234     uint64_t attrs;
1235     int32_t stride;
1236     int addrsize, inputsize, outputsize;
1237     uint64_t tcr = regime_tcr(env, mmu_idx);
1238     int ap, ns, xn, pxn;
1239     uint32_t el = regime_el(env, mmu_idx);
1240     uint64_t descaddrmask;
1241     bool aarch64 = arm_el_is_aa64(env, el);
1242     uint64_t descriptor, new_descriptor;
1243     bool nstable;
1244 
1245     /* TODO: This code does not support shareability levels. */
1246     if (aarch64) {
1247         int ps;
1248 
1249         param = aa64_va_parameters(env, address, mmu_idx,
1250                                    access_type != MMU_INST_FETCH);
1251         level = 0;
1252 
1253         /*
1254          * If TxSZ is programmed to a value larger than the maximum,
1255          * or smaller than the effective minimum, it is IMPLEMENTATION
1256          * DEFINED whether we behave as if the field were programmed
1257          * within bounds, or if a level 0 Translation fault is generated.
1258          *
1259          * With FEAT_LVA, fault on less than minimum becomes required,
1260          * so our choice is to always raise the fault.
1261          */
1262         if (param.tsz_oob) {
1263             goto do_translation_fault;
1264         }
1265 
1266         addrsize = 64 - 8 * param.tbi;
1267         inputsize = 64 - param.tsz;
1268 
1269         /*
1270          * Bound PS by PARANGE to find the effective output address size.
1271          * ID_AA64MMFR0 is a read-only register so values outside of the
1272          * supported mappings can be considered an implementation error.
1273          */
1274         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1275         ps = MIN(ps, param.ps);
1276         assert(ps < ARRAY_SIZE(pamax_map));
1277         outputsize = pamax_map[ps];
1278 
1279         /*
1280          * With LPA2, the effective output address (OA) size is at most 48 bits
1281          * unless TCR.DS == 1
1282          */
1283         if (!param.ds && param.gran != Gran64K) {
1284             outputsize = MIN(outputsize, 48);
1285         }
1286     } else {
1287         param = aa32_va_parameters(env, address, mmu_idx);
1288         level = 1;
1289         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1290         inputsize = addrsize - param.tsz;
1291         outputsize = 40;
1292     }
1293 
1294     /*
1295      * We determined the region when collecting the parameters, but we
1296      * have not yet validated that the address is valid for the region.
1297      * Extract the top bits and verify that they all match select.
1298      *
1299      * For aa32, if inputsize == addrsize, then we have selected the
1300      * region by exclusion in aa32_va_parameters and there is no more
1301      * validation to do here.
1302      */
1303     if (inputsize < addrsize) {
1304         target_ulong top_bits = sextract64(address, inputsize,
1305                                            addrsize - inputsize);
1306         if (-top_bits != param.select) {
1307             /* The gap between the two regions is a Translation fault */
1308             goto do_translation_fault;
1309         }
1310     }
1311 
1312     stride = arm_granule_bits(param.gran) - 3;
1313 
1314     /*
1315      * Note that QEMU ignores shareability and cacheability attributes,
1316      * so we don't need to do anything with the SH, ORGN, IRGN fields
1317      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1318      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1319      * implement any ASID-like capability so we can ignore it (instead
1320      * we will always flush the TLB any time the ASID is changed).
1321      */
1322     ttbr = regime_ttbr(env, mmu_idx, param.select);
1323 
1324     /*
1325      * Here we should have set up all the parameters for the translation:
1326      * inputsize, ttbr, epd, stride, tbi
1327      */
1328 
1329     if (param.epd) {
1330         /*
1331          * Translation table walk disabled => Translation fault on TLB miss
1332          * Note: This is always 0 on 64-bit EL2 and EL3.
1333          */
1334         goto do_translation_fault;
1335     }
1336 
1337     if (!regime_is_stage2(mmu_idx)) {
1338         /*
1339          * The starting level depends on the virtual address size (which can
1340          * be up to 48 bits) and the translation granule size. It indicates
1341          * the number of strides (stride bits at a time) needed to
1342          * consume the bits of the input address. In the pseudocode this is:
1343          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1344          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1345          * our 'stride + 3' and 'stride' is our 'stride'.
1346          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1347          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1348          * = 4 - (inputsize - 4) / stride;
1349          */
1350         level = 4 - (inputsize - 4) / stride;
1351     } else {
1352         int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1353                                             inputsize, stride);
1354         if (startlevel == INT_MIN) {
1355             level = 0;
1356             goto do_translation_fault;
1357         }
1358         level = startlevel;
1359     }
1360 
1361     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1362     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1363 
1364     /* Now we can extract the actual base address from the TTBR */
1365     descaddr = extract64(ttbr, 0, 48);
1366 
1367     /*
1368      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1369      *
1370      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1371      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1372      * but we've just cleared the bits above 47, so simplify the test.
1373      */
1374     if (outputsize > 48) {
1375         descaddr |= extract64(ttbr, 2, 4) << 48;
1376     } else if (descaddr >> outputsize) {
1377         level = 0;
1378         fi->type = ARMFault_AddressSize;
1379         goto do_fault;
1380     }
1381 
1382     /*
1383      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1384      * and also to mask out CnP (bit 0) which could validly be non-zero.
1385      */
1386     descaddr &= ~indexmask;
1387 
1388     /*
1389      * For AArch32, the address field in the descriptor goes up to bit 39
1390      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1391      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1392      * bits as part of the address, which will be checked via outputsize.
1393      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1394      * the highest bits of a 52-bit output are placed elsewhere.
1395      */
1396     if (param.ds) {
1397         descaddrmask = MAKE_64BIT_MASK(0, 50);
1398     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1399         descaddrmask = MAKE_64BIT_MASK(0, 48);
1400     } else {
1401         descaddrmask = MAKE_64BIT_MASK(0, 40);
1402     }
1403     descaddrmask &= ~indexmask_grainsize;
1404 
1405     /*
1406      * Secure accesses start with the page table in secure memory and
1407      * can be downgraded to non-secure at any step. Non-secure accesses
1408      * remain non-secure. We implement this by just ORing in the NSTable/NS
1409      * bits at each step.
1410      */
1411     tableattrs = is_secure ? 0 : (1 << 4);
1412 
1413  next_level:
1414     descaddr |= (address >> (stride * (4 - level))) & indexmask;
1415     descaddr &= ~7ULL;
1416     nstable = extract32(tableattrs, 4, 1);
1417     if (nstable) {
1418         /*
1419          * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1420          * Assert that the non-secure idx are even, and relative order.
1421          */
1422         QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0);
1423         QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0);
1424         QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S);
1425         QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S);
1426         ptw->in_ptw_idx &= ~1;
1427         ptw->in_secure = false;
1428     }
1429     if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1430         goto do_fault;
1431     }
1432     descriptor = arm_ldq_ptw(env, ptw, fi);
1433     if (fi->type != ARMFault_None) {
1434         goto do_fault;
1435     }
1436     new_descriptor = descriptor;
1437 
1438  restart_atomic_update:
1439     if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) {
1440         /* Invalid, or the Reserved level 3 encoding */
1441         goto do_translation_fault;
1442     }
1443 
1444     descaddr = descriptor & descaddrmask;
1445 
1446     /*
1447      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1448      * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1449      * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1450      * raise AddressSizeFault.
1451      */
1452     if (outputsize > 48) {
1453         if (param.ds) {
1454             descaddr |= extract64(descriptor, 8, 2) << 50;
1455         } else {
1456             descaddr |= extract64(descriptor, 12, 4) << 48;
1457         }
1458     } else if (descaddr >> outputsize) {
1459         fi->type = ARMFault_AddressSize;
1460         goto do_fault;
1461     }
1462 
1463     if ((descriptor & 2) && (level < 3)) {
1464         /*
1465          * Table entry. The top five bits are attributes which may
1466          * propagate down through lower levels of the table (and
1467          * which are all arranged so that 0 means "no effect", so
1468          * we can gather them up by ORing in the bits at each level).
1469          */
1470         tableattrs |= extract64(descriptor, 59, 5);
1471         level++;
1472         indexmask = indexmask_grainsize;
1473         goto next_level;
1474     }
1475 
1476     /*
1477      * Block entry at level 1 or 2, or page entry at level 3.
1478      * These are basically the same thing, although the number
1479      * of bits we pull in from the vaddr varies. Note that although
1480      * descaddrmask masks enough of the low bits of the descriptor
1481      * to give a correct page or table address, the address field
1482      * in a block descriptor is smaller; so we need to explicitly
1483      * clear the lower bits here before ORing in the low vaddr bits.
1484      *
1485      * Afterward, descaddr is the final physical address.
1486      */
1487     page_size = (1ULL << ((stride * (4 - level)) + 3));
1488     descaddr &= ~(hwaddr)(page_size - 1);
1489     descaddr |= (address & (page_size - 1));
1490 
1491     if (likely(!ptw->in_debug)) {
1492         /*
1493          * Access flag.
1494          * If HA is enabled, prepare to update the descriptor below.
1495          * Otherwise, pass the access fault on to software.
1496          */
1497         if (!(descriptor & (1 << 10))) {
1498             if (param.ha) {
1499                 new_descriptor |= 1 << 10; /* AF */
1500             } else {
1501                 fi->type = ARMFault_AccessFlag;
1502                 goto do_fault;
1503             }
1504         }
1505 
1506         /*
1507          * Dirty Bit.
1508          * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1509          * bit for writeback. The actual write protection test may still be
1510          * overridden by tableattrs, to be merged below.
1511          */
1512         if (param.hd
1513             && extract64(descriptor, 51, 1)  /* DBM */
1514             && access_type == MMU_DATA_STORE) {
1515             if (regime_is_stage2(mmu_idx)) {
1516                 new_descriptor |= 1ull << 7;    /* set S2AP[1] */
1517             } else {
1518                 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1519             }
1520         }
1521     }
1522 
1523     /*
1524      * Extract attributes from the (modified) descriptor, and apply
1525      * table descriptors. Stage 2 table descriptors do not include
1526      * any attribute fields. HPD disables all the table attributes
1527      * except NSTable.
1528      */
1529     attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1530     if (!regime_is_stage2(mmu_idx)) {
1531         attrs |= nstable << 5; /* NS */
1532         if (!param.hpd) {
1533             attrs |= extract64(tableattrs, 0, 2) << 53;     /* XN, PXN */
1534             /*
1535              * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1536              * means "force PL1 access only", which means forcing AP[1] to 0.
1537              */
1538             attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1539             attrs |= extract32(tableattrs, 3, 1) << 7;    /* APT[1] => AP[2] */
1540         }
1541     }
1542 
1543     ap = extract32(attrs, 6, 2);
1544     if (regime_is_stage2(mmu_idx)) {
1545         ns = mmu_idx == ARMMMUIdx_Stage2;
1546         xn = extract64(attrs, 53, 2);
1547         result->f.prot = get_S2prot(env, ap, xn, s1_is_el0);
1548     } else {
1549         ns = extract32(attrs, 5, 1);
1550         xn = extract64(attrs, 54, 1);
1551         pxn = extract64(attrs, 53, 1);
1552         result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1553     }
1554 
1555     if (!(result->f.prot & (1 << access_type))) {
1556         fi->type = ARMFault_Permission;
1557         goto do_fault;
1558     }
1559 
1560     /* If FEAT_HAFDBS has made changes, update the PTE. */
1561     if (new_descriptor != descriptor) {
1562         new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
1563         if (fi->type != ARMFault_None) {
1564             goto do_fault;
1565         }
1566         /*
1567          * I_YZSVV says that if the in-memory descriptor has changed,
1568          * then we must use the information in that new value
1569          * (which might include a different output address, different
1570          * attributes, or generate a fault).
1571          * Restart the handling of the descriptor value from scratch.
1572          */
1573         if (new_descriptor != descriptor) {
1574             descriptor = new_descriptor;
1575             goto restart_atomic_update;
1576         }
1577     }
1578 
1579     if (ns) {
1580         /*
1581          * The NS bit will (as required by the architecture) have no effect if
1582          * the CPU doesn't support TZ or this is a non-secure translation
1583          * regime, because the attribute will already be non-secure.
1584          */
1585         result->f.attrs.secure = false;
1586     }
1587 
1588     /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB.  */
1589     if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
1590         result->f.guarded = extract64(attrs, 50, 1); /* GP */
1591     }
1592 
1593     if (regime_is_stage2(mmu_idx)) {
1594         result->cacheattrs.is_s2_format = true;
1595         result->cacheattrs.attrs = extract32(attrs, 2, 4);
1596     } else {
1597         /* Index into MAIR registers for cache attributes */
1598         uint8_t attrindx = extract32(attrs, 2, 3);
1599         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1600         assert(attrindx <= 7);
1601         result->cacheattrs.is_s2_format = false;
1602         result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
1603     }
1604 
1605     /*
1606      * For FEAT_LPA2 and effective DS, the SH field in the attributes
1607      * was re-purposed for output address bits.  The SH attribute in
1608      * that case comes from TCR_ELx, which we extracted earlier.
1609      */
1610     if (param.ds) {
1611         result->cacheattrs.shareability = param.sh;
1612     } else {
1613         result->cacheattrs.shareability = extract32(attrs, 8, 2);
1614     }
1615 
1616     result->f.phys_addr = descaddr;
1617     result->f.lg_page_size = ctz64(page_size);
1618     return false;
1619 
1620  do_translation_fault:
1621     fi->type = ARMFault_Translation;
1622  do_fault:
1623     fi->level = level;
1624     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
1625     fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx);
1626     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1627     return true;
1628 }
1629 
1630 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1631                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
1632                                  bool is_secure, GetPhysAddrResult *result,
1633                                  ARMMMUFaultInfo *fi)
1634 {
1635     int n;
1636     uint32_t mask;
1637     uint32_t base;
1638     bool is_user = regime_is_user(env, mmu_idx);
1639 
1640     if (regime_translation_disabled(env, mmu_idx, is_secure)) {
1641         /* MPU disabled.  */
1642         result->f.phys_addr = address;
1643         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1644         return false;
1645     }
1646 
1647     result->f.phys_addr = address;
1648     for (n = 7; n >= 0; n--) {
1649         base = env->cp15.c6_region[n];
1650         if ((base & 1) == 0) {
1651             continue;
1652         }
1653         mask = 1 << ((base >> 1) & 0x1f);
1654         /* Keep this shift separate from the above to avoid an
1655            (undefined) << 32.  */
1656         mask = (mask << 1) - 1;
1657         if (((base ^ address) & ~mask) == 0) {
1658             break;
1659         }
1660     }
1661     if (n < 0) {
1662         fi->type = ARMFault_Background;
1663         return true;
1664     }
1665 
1666     if (access_type == MMU_INST_FETCH) {
1667         mask = env->cp15.pmsav5_insn_ap;
1668     } else {
1669         mask = env->cp15.pmsav5_data_ap;
1670     }
1671     mask = (mask >> (n * 4)) & 0xf;
1672     switch (mask) {
1673     case 0:
1674         fi->type = ARMFault_Permission;
1675         fi->level = 1;
1676         return true;
1677     case 1:
1678         if (is_user) {
1679             fi->type = ARMFault_Permission;
1680             fi->level = 1;
1681             return true;
1682         }
1683         result->f.prot = PAGE_READ | PAGE_WRITE;
1684         break;
1685     case 2:
1686         result->f.prot = PAGE_READ;
1687         if (!is_user) {
1688             result->f.prot |= PAGE_WRITE;
1689         }
1690         break;
1691     case 3:
1692         result->f.prot = PAGE_READ | PAGE_WRITE;
1693         break;
1694     case 5:
1695         if (is_user) {
1696             fi->type = ARMFault_Permission;
1697             fi->level = 1;
1698             return true;
1699         }
1700         result->f.prot = PAGE_READ;
1701         break;
1702     case 6:
1703         result->f.prot = PAGE_READ;
1704         break;
1705     default:
1706         /* Bad permission.  */
1707         fi->type = ARMFault_Permission;
1708         fi->level = 1;
1709         return true;
1710     }
1711     result->f.prot |= PAGE_EXEC;
1712     return false;
1713 }
1714 
1715 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1716                                          int32_t address, uint8_t *prot)
1717 {
1718     if (!arm_feature(env, ARM_FEATURE_M)) {
1719         *prot = PAGE_READ | PAGE_WRITE;
1720         switch (address) {
1721         case 0xF0000000 ... 0xFFFFFFFF:
1722             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1723                 /* hivecs execing is ok */
1724                 *prot |= PAGE_EXEC;
1725             }
1726             break;
1727         case 0x00000000 ... 0x7FFFFFFF:
1728             *prot |= PAGE_EXEC;
1729             break;
1730         }
1731     } else {
1732         /* Default system address map for M profile cores.
1733          * The architecture specifies which regions are execute-never;
1734          * at the MPU level no other checks are defined.
1735          */
1736         switch (address) {
1737         case 0x00000000 ... 0x1fffffff: /* ROM */
1738         case 0x20000000 ... 0x3fffffff: /* SRAM */
1739         case 0x60000000 ... 0x7fffffff: /* RAM */
1740         case 0x80000000 ... 0x9fffffff: /* RAM */
1741             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1742             break;
1743         case 0x40000000 ... 0x5fffffff: /* Peripheral */
1744         case 0xa0000000 ... 0xbfffffff: /* Device */
1745         case 0xc0000000 ... 0xdfffffff: /* Device */
1746         case 0xe0000000 ... 0xffffffff: /* System */
1747             *prot = PAGE_READ | PAGE_WRITE;
1748             break;
1749         default:
1750             g_assert_not_reached();
1751         }
1752     }
1753 }
1754 
1755 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1756 {
1757     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1758     return arm_feature(env, ARM_FEATURE_M) &&
1759         extract32(address, 20, 12) == 0xe00;
1760 }
1761 
1762 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1763 {
1764     /*
1765      * True if address is in the M profile system region
1766      * 0xe0000000 - 0xffffffff
1767      */
1768     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1769 }
1770 
1771 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1772                                          bool is_secure, bool is_user)
1773 {
1774     /*
1775      * Return true if we should use the default memory map as a
1776      * "background" region if there are no hits against any MPU regions.
1777      */
1778     CPUARMState *env = &cpu->env;
1779 
1780     if (is_user) {
1781         return false;
1782     }
1783 
1784     if (arm_feature(env, ARM_FEATURE_M)) {
1785         return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1786     }
1787 
1788     if (mmu_idx == ARMMMUIdx_Stage2) {
1789         return false;
1790     }
1791 
1792     return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1793 }
1794 
1795 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1796                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
1797                                  bool secure, GetPhysAddrResult *result,
1798                                  ARMMMUFaultInfo *fi)
1799 {
1800     ARMCPU *cpu = env_archcpu(env);
1801     int n;
1802     bool is_user = regime_is_user(env, mmu_idx);
1803 
1804     result->f.phys_addr = address;
1805     result->f.lg_page_size = TARGET_PAGE_BITS;
1806     result->f.prot = 0;
1807 
1808     if (regime_translation_disabled(env, mmu_idx, secure) ||
1809         m_is_ppb_region(env, address)) {
1810         /*
1811          * MPU disabled or M profile PPB access: use default memory map.
1812          * The other case which uses the default memory map in the
1813          * v7M ARM ARM pseudocode is exception vector reads from the vector
1814          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1815          * which always does a direct read using address_space_ldl(), rather
1816          * than going via this function, so we don't need to check that here.
1817          */
1818         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
1819     } else { /* MPU enabled */
1820         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1821             /* region search */
1822             uint32_t base = env->pmsav7.drbar[n];
1823             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1824             uint32_t rmask;
1825             bool srdis = false;
1826 
1827             if (!(env->pmsav7.drsr[n] & 0x1)) {
1828                 continue;
1829             }
1830 
1831             if (!rsize) {
1832                 qemu_log_mask(LOG_GUEST_ERROR,
1833                               "DRSR[%d]: Rsize field cannot be 0\n", n);
1834                 continue;
1835             }
1836             rsize++;
1837             rmask = (1ull << rsize) - 1;
1838 
1839             if (base & rmask) {
1840                 qemu_log_mask(LOG_GUEST_ERROR,
1841                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1842                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
1843                               n, base, rmask);
1844                 continue;
1845             }
1846 
1847             if (address < base || address > base + rmask) {
1848                 /*
1849                  * Address not in this region. We must check whether the
1850                  * region covers addresses in the same page as our address.
1851                  * In that case we must not report a size that covers the
1852                  * whole page for a subsequent hit against a different MPU
1853                  * region or the background region, because it would result in
1854                  * incorrect TLB hits for subsequent accesses to addresses that
1855                  * are in this MPU region.
1856                  */
1857                 if (ranges_overlap(base, rmask,
1858                                    address & TARGET_PAGE_MASK,
1859                                    TARGET_PAGE_SIZE)) {
1860                     result->f.lg_page_size = 0;
1861                 }
1862                 continue;
1863             }
1864 
1865             /* Region matched */
1866 
1867             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1868                 int i, snd;
1869                 uint32_t srdis_mask;
1870 
1871                 rsize -= 3; /* sub region size (power of 2) */
1872                 snd = ((address - base) >> rsize) & 0x7;
1873                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1874 
1875                 srdis_mask = srdis ? 0x3 : 0x0;
1876                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1877                     /*
1878                      * This will check in groups of 2, 4 and then 8, whether
1879                      * the subregion bits are consistent. rsize is incremented
1880                      * back up to give the region size, considering consistent
1881                      * adjacent subregions as one region. Stop testing if rsize
1882                      * is already big enough for an entire QEMU page.
1883                      */
1884                     int snd_rounded = snd & ~(i - 1);
1885                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1886                                                      snd_rounded + 8, i);
1887                     if (srdis_mask ^ srdis_multi) {
1888                         break;
1889                     }
1890                     srdis_mask = (srdis_mask << i) | srdis_mask;
1891                     rsize++;
1892                 }
1893             }
1894             if (srdis) {
1895                 continue;
1896             }
1897             if (rsize < TARGET_PAGE_BITS) {
1898                 result->f.lg_page_size = rsize;
1899             }
1900             break;
1901         }
1902 
1903         if (n == -1) { /* no hits */
1904             if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1905                 /* background fault */
1906                 fi->type = ARMFault_Background;
1907                 return true;
1908             }
1909             get_phys_addr_pmsav7_default(env, mmu_idx, address,
1910                                          &result->f.prot);
1911         } else { /* a MPU hit! */
1912             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1913             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1914 
1915             if (m_is_system_region(env, address)) {
1916                 /* System space is always execute never */
1917                 xn = 1;
1918             }
1919 
1920             if (is_user) { /* User mode AP bit decoding */
1921                 switch (ap) {
1922                 case 0:
1923                 case 1:
1924                 case 5:
1925                     break; /* no access */
1926                 case 3:
1927                     result->f.prot |= PAGE_WRITE;
1928                     /* fall through */
1929                 case 2:
1930                 case 6:
1931                     result->f.prot |= PAGE_READ | PAGE_EXEC;
1932                     break;
1933                 case 7:
1934                     /* for v7M, same as 6; for R profile a reserved value */
1935                     if (arm_feature(env, ARM_FEATURE_M)) {
1936                         result->f.prot |= PAGE_READ | PAGE_EXEC;
1937                         break;
1938                     }
1939                     /* fall through */
1940                 default:
1941                     qemu_log_mask(LOG_GUEST_ERROR,
1942                                   "DRACR[%d]: Bad value for AP bits: 0x%"
1943                                   PRIx32 "\n", n, ap);
1944                 }
1945             } else { /* Priv. mode AP bits decoding */
1946                 switch (ap) {
1947                 case 0:
1948                     break; /* no access */
1949                 case 1:
1950                 case 2:
1951                 case 3:
1952                     result->f.prot |= PAGE_WRITE;
1953                     /* fall through */
1954                 case 5:
1955                 case 6:
1956                     result->f.prot |= PAGE_READ | PAGE_EXEC;
1957                     break;
1958                 case 7:
1959                     /* for v7M, same as 6; for R profile a reserved value */
1960                     if (arm_feature(env, ARM_FEATURE_M)) {
1961                         result->f.prot |= PAGE_READ | PAGE_EXEC;
1962                         break;
1963                     }
1964                     /* fall through */
1965                 default:
1966                     qemu_log_mask(LOG_GUEST_ERROR,
1967                                   "DRACR[%d]: Bad value for AP bits: 0x%"
1968                                   PRIx32 "\n", n, ap);
1969                 }
1970             }
1971 
1972             /* execute never */
1973             if (xn) {
1974                 result->f.prot &= ~PAGE_EXEC;
1975             }
1976         }
1977     }
1978 
1979     fi->type = ARMFault_Permission;
1980     fi->level = 1;
1981     return !(result->f.prot & (1 << access_type));
1982 }
1983 
1984 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
1985                              uint32_t secure)
1986 {
1987     if (regime_el(env, mmu_idx) == 2) {
1988         return env->pmsav8.hprbar;
1989     } else {
1990         return env->pmsav8.rbar[secure];
1991     }
1992 }
1993 
1994 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
1995                              uint32_t secure)
1996 {
1997     if (regime_el(env, mmu_idx) == 2) {
1998         return env->pmsav8.hprlar;
1999     } else {
2000         return env->pmsav8.rlar[secure];
2001     }
2002 }
2003 
2004 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2005                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
2006                        bool secure, GetPhysAddrResult *result,
2007                        ARMMMUFaultInfo *fi, uint32_t *mregion)
2008 {
2009     /*
2010      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2011      * that a full phys-to-virt translation does).
2012      * mregion is (if not NULL) set to the region number which matched,
2013      * or -1 if no region number is returned (MPU off, address did not
2014      * hit a region, address hit in multiple regions).
2015      * If the region hit doesn't cover the entire TARGET_PAGE the address
2016      * is within, then we set the result page_size to 1 to force the
2017      * memory system to use a subpage.
2018      */
2019     ARMCPU *cpu = env_archcpu(env);
2020     bool is_user = regime_is_user(env, mmu_idx);
2021     int n;
2022     int matchregion = -1;
2023     bool hit = false;
2024     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2025     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2026     int region_counter;
2027 
2028     if (regime_el(env, mmu_idx) == 2) {
2029         region_counter = cpu->pmsav8r_hdregion;
2030     } else {
2031         region_counter = cpu->pmsav7_dregion;
2032     }
2033 
2034     result->f.lg_page_size = TARGET_PAGE_BITS;
2035     result->f.phys_addr = address;
2036     result->f.prot = 0;
2037     if (mregion) {
2038         *mregion = -1;
2039     }
2040 
2041     if (mmu_idx == ARMMMUIdx_Stage2) {
2042         fi->stage2 = true;
2043     }
2044 
2045     /*
2046      * Unlike the ARM ARM pseudocode, we don't need to check whether this
2047      * was an exception vector read from the vector table (which is always
2048      * done using the default system address map), because those accesses
2049      * are done in arm_v7m_load_vector(), which always does a direct
2050      * read using address_space_ldl(), rather than going via this function.
2051      */
2052     if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
2053         hit = true;
2054     } else if (m_is_ppb_region(env, address)) {
2055         hit = true;
2056     } else {
2057         if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2058             hit = true;
2059         }
2060 
2061         uint32_t bitmask;
2062         if (arm_feature(env, ARM_FEATURE_M)) {
2063             bitmask = 0x1f;
2064         } else {
2065             bitmask = 0x3f;
2066             fi->level = 0;
2067         }
2068 
2069         for (n = region_counter - 1; n >= 0; n--) {
2070             /* region search */
2071             /*
2072              * Note that the base address is bits [31:x] from the register
2073              * with bits [x-1:0] all zeroes, but the limit address is bits
2074              * [31:x] from the register with bits [x:0] all ones. Where x is
2075              * 5 for Cortex-M and 6 for Cortex-R
2076              */
2077             uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2078             uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2079 
2080             if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2081                 /* Region disabled */
2082                 continue;
2083             }
2084 
2085             if (address < base || address > limit) {
2086                 /*
2087                  * Address not in this region. We must check whether the
2088                  * region covers addresses in the same page as our address.
2089                  * In that case we must not report a size that covers the
2090                  * whole page for a subsequent hit against a different MPU
2091                  * region or the background region, because it would result in
2092                  * incorrect TLB hits for subsequent accesses to addresses that
2093                  * are in this MPU region.
2094                  */
2095                 if (limit >= base &&
2096                     ranges_overlap(base, limit - base + 1,
2097                                    addr_page_base,
2098                                    TARGET_PAGE_SIZE)) {
2099                     result->f.lg_page_size = 0;
2100                 }
2101                 continue;
2102             }
2103 
2104             if (base > addr_page_base || limit < addr_page_limit) {
2105                 result->f.lg_page_size = 0;
2106             }
2107 
2108             if (matchregion != -1) {
2109                 /*
2110                  * Multiple regions match -- always a failure (unlike
2111                  * PMSAv7 where highest-numbered-region wins)
2112                  */
2113                 fi->type = ARMFault_Permission;
2114                 if (arm_feature(env, ARM_FEATURE_M)) {
2115                     fi->level = 1;
2116                 }
2117                 return true;
2118             }
2119 
2120             matchregion = n;
2121             hit = true;
2122         }
2123     }
2124 
2125     if (!hit) {
2126         if (arm_feature(env, ARM_FEATURE_M)) {
2127             fi->type = ARMFault_Background;
2128         } else {
2129             fi->type = ARMFault_Permission;
2130         }
2131         return true;
2132     }
2133 
2134     if (matchregion == -1) {
2135         /* hit using the background region */
2136         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2137     } else {
2138         uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2139         uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2140         uint32_t ap = extract32(matched_rbar, 1, 2);
2141         uint32_t xn = extract32(matched_rbar, 0, 1);
2142         bool pxn = false;
2143 
2144         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2145             pxn = extract32(matched_rlar, 4, 1);
2146         }
2147 
2148         if (m_is_system_region(env, address)) {
2149             /* System space is always execute never */
2150             xn = 1;
2151         }
2152 
2153         if (regime_el(env, mmu_idx) == 2) {
2154             result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2155                                             mmu_idx != ARMMMUIdx_E2);
2156         } else {
2157             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2158         }
2159 
2160         if (!arm_feature(env, ARM_FEATURE_M)) {
2161             uint8_t attrindx = extract32(matched_rlar, 1, 3);
2162             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2163             uint8_t sh = extract32(matched_rlar, 3, 2);
2164 
2165             if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2166                 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2167                 xn = 0x1;
2168             }
2169 
2170             if ((regime_el(env, mmu_idx) == 1) &&
2171                 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2172                 pxn = 0x1;
2173             }
2174 
2175             result->cacheattrs.is_s2_format = false;
2176             result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2177             result->cacheattrs.shareability = sh;
2178         }
2179 
2180         if (result->f.prot && !xn && !(pxn && !is_user)) {
2181             result->f.prot |= PAGE_EXEC;
2182         }
2183 
2184         if (mregion) {
2185             *mregion = matchregion;
2186         }
2187     }
2188 
2189     fi->type = ARMFault_Permission;
2190     if (arm_feature(env, ARM_FEATURE_M)) {
2191         fi->level = 1;
2192     }
2193     return !(result->f.prot & (1 << access_type));
2194 }
2195 
2196 static bool v8m_is_sau_exempt(CPUARMState *env,
2197                               uint32_t address, MMUAccessType access_type)
2198 {
2199     /*
2200      * The architecture specifies that certain address ranges are
2201      * exempt from v8M SAU/IDAU checks.
2202      */
2203     return
2204         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2205         (address >= 0xe0000000 && address <= 0xe0002fff) ||
2206         (address >= 0xe000e000 && address <= 0xe000efff) ||
2207         (address >= 0xe002e000 && address <= 0xe002efff) ||
2208         (address >= 0xe0040000 && address <= 0xe0041fff) ||
2209         (address >= 0xe00ff000 && address <= 0xe00fffff);
2210 }
2211 
2212 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2213                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
2214                          bool is_secure, V8M_SAttributes *sattrs)
2215 {
2216     /*
2217      * Look up the security attributes for this address. Compare the
2218      * pseudocode SecurityCheck() function.
2219      * We assume the caller has zero-initialized *sattrs.
2220      */
2221     ARMCPU *cpu = env_archcpu(env);
2222     int r;
2223     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2224     int idau_region = IREGION_NOTVALID;
2225     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2226     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2227 
2228     if (cpu->idau) {
2229         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2230         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2231 
2232         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2233                    &idau_nsc);
2234     }
2235 
2236     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2237         /* 0xf0000000..0xffffffff is always S for insn fetches */
2238         return;
2239     }
2240 
2241     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2242         sattrs->ns = !is_secure;
2243         return;
2244     }
2245 
2246     if (idau_region != IREGION_NOTVALID) {
2247         sattrs->irvalid = true;
2248         sattrs->iregion = idau_region;
2249     }
2250 
2251     switch (env->sau.ctrl & 3) {
2252     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2253         break;
2254     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2255         sattrs->ns = true;
2256         break;
2257     default: /* SAU.ENABLE == 1 */
2258         for (r = 0; r < cpu->sau_sregion; r++) {
2259             if (env->sau.rlar[r] & 1) {
2260                 uint32_t base = env->sau.rbar[r] & ~0x1f;
2261                 uint32_t limit = env->sau.rlar[r] | 0x1f;
2262 
2263                 if (base <= address && limit >= address) {
2264                     if (base > addr_page_base || limit < addr_page_limit) {
2265                         sattrs->subpage = true;
2266                     }
2267                     if (sattrs->srvalid) {
2268                         /*
2269                          * If we hit in more than one region then we must report
2270                          * as Secure, not NS-Callable, with no valid region
2271                          * number info.
2272                          */
2273                         sattrs->ns = false;
2274                         sattrs->nsc = false;
2275                         sattrs->sregion = 0;
2276                         sattrs->srvalid = false;
2277                         break;
2278                     } else {
2279                         if (env->sau.rlar[r] & 2) {
2280                             sattrs->nsc = true;
2281                         } else {
2282                             sattrs->ns = true;
2283                         }
2284                         sattrs->srvalid = true;
2285                         sattrs->sregion = r;
2286                     }
2287                 } else {
2288                     /*
2289                      * Address not in this region. We must check whether the
2290                      * region covers addresses in the same page as our address.
2291                      * In that case we must not report a size that covers the
2292                      * whole page for a subsequent hit against a different MPU
2293                      * region or the background region, because it would result
2294                      * in incorrect TLB hits for subsequent accesses to
2295                      * addresses that are in this MPU region.
2296                      */
2297                     if (limit >= base &&
2298                         ranges_overlap(base, limit - base + 1,
2299                                        addr_page_base,
2300                                        TARGET_PAGE_SIZE)) {
2301                         sattrs->subpage = true;
2302                     }
2303                 }
2304             }
2305         }
2306         break;
2307     }
2308 
2309     /*
2310      * The IDAU will override the SAU lookup results if it specifies
2311      * higher security than the SAU does.
2312      */
2313     if (!idau_ns) {
2314         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2315             sattrs->ns = false;
2316             sattrs->nsc = idau_nsc;
2317         }
2318     }
2319 }
2320 
2321 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
2322                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
2323                                  bool secure, GetPhysAddrResult *result,
2324                                  ARMMMUFaultInfo *fi)
2325 {
2326     V8M_SAttributes sattrs = {};
2327     bool ret;
2328 
2329     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2330         v8m_security_lookup(env, address, access_type, mmu_idx,
2331                             secure, &sattrs);
2332         if (access_type == MMU_INST_FETCH) {
2333             /*
2334              * Instruction fetches always use the MMU bank and the
2335              * transaction attribute determined by the fetch address,
2336              * regardless of CPU state. This is painful for QEMU
2337              * to handle, because it would mean we need to encode
2338              * into the mmu_idx not just the (user, negpri) information
2339              * for the current security state but also that for the
2340              * other security state, which would balloon the number
2341              * of mmu_idx values needed alarmingly.
2342              * Fortunately we can avoid this because it's not actually
2343              * possible to arbitrarily execute code from memory with
2344              * the wrong security attribute: it will always generate
2345              * an exception of some kind or another, apart from the
2346              * special case of an NS CPU executing an SG instruction
2347              * in S&NSC memory. So we always just fail the translation
2348              * here and sort things out in the exception handler
2349              * (including possibly emulating an SG instruction).
2350              */
2351             if (sattrs.ns != !secure) {
2352                 if (sattrs.nsc) {
2353                     fi->type = ARMFault_QEMU_NSCExec;
2354                 } else {
2355                     fi->type = ARMFault_QEMU_SFault;
2356                 }
2357                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2358                 result->f.phys_addr = address;
2359                 result->f.prot = 0;
2360                 return true;
2361             }
2362         } else {
2363             /*
2364              * For data accesses we always use the MMU bank indicated
2365              * by the current CPU state, but the security attributes
2366              * might downgrade a secure access to nonsecure.
2367              */
2368             if (sattrs.ns) {
2369                 result->f.attrs.secure = false;
2370             } else if (!secure) {
2371                 /*
2372                  * NS access to S memory must fault.
2373                  * Architecturally we should first check whether the
2374                  * MPU information for this address indicates that we
2375                  * are doing an unaligned access to Device memory, which
2376                  * should generate a UsageFault instead. QEMU does not
2377                  * currently check for that kind of unaligned access though.
2378                  * If we added it we would need to do so as a special case
2379                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2380                  */
2381                 fi->type = ARMFault_QEMU_SFault;
2382                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2383                 result->f.phys_addr = address;
2384                 result->f.prot = 0;
2385                 return true;
2386             }
2387         }
2388     }
2389 
2390     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2391                             result, fi, NULL);
2392     if (sattrs.subpage) {
2393         result->f.lg_page_size = 0;
2394     }
2395     return ret;
2396 }
2397 
2398 /*
2399  * Translate from the 4-bit stage 2 representation of
2400  * memory attributes (without cache-allocation hints) to
2401  * the 8-bit representation of the stage 1 MAIR registers
2402  * (which includes allocation hints).
2403  *
2404  * ref: shared/translation/attrs/S2AttrDecode()
2405  *      .../S2ConvertAttrsHints()
2406  */
2407 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2408 {
2409     uint8_t hiattr = extract32(s2attrs, 2, 2);
2410     uint8_t loattr = extract32(s2attrs, 0, 2);
2411     uint8_t hihint = 0, lohint = 0;
2412 
2413     if (hiattr != 0) { /* normal memory */
2414         if (hcr & HCR_CD) { /* cache disabled */
2415             hiattr = loattr = 1; /* non-cacheable */
2416         } else {
2417             if (hiattr != 1) { /* Write-through or write-back */
2418                 hihint = 3; /* RW allocate */
2419             }
2420             if (loattr != 1) { /* Write-through or write-back */
2421                 lohint = 3; /* RW allocate */
2422             }
2423         }
2424     }
2425 
2426     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2427 }
2428 
2429 /*
2430  * Combine either inner or outer cacheability attributes for normal
2431  * memory, according to table D4-42 and pseudocode procedure
2432  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2433  *
2434  * NB: only stage 1 includes allocation hints (RW bits), leading to
2435  * some asymmetry.
2436  */
2437 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2438 {
2439     if (s1 == 4 || s2 == 4) {
2440         /* non-cacheable has precedence */
2441         return 4;
2442     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2443         /* stage 1 write-through takes precedence */
2444         return s1;
2445     } else if (extract32(s2, 2, 2) == 2) {
2446         /* stage 2 write-through takes precedence, but the allocation hint
2447          * is still taken from stage 1
2448          */
2449         return (2 << 2) | extract32(s1, 0, 2);
2450     } else { /* write-back */
2451         return s1;
2452     }
2453 }
2454 
2455 /*
2456  * Combine the memory type and cacheability attributes of
2457  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2458  * combined attributes in MAIR_EL1 format.
2459  */
2460 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2461                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
2462 {
2463     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2464 
2465     if (s2.is_s2_format) {
2466         s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2467     } else {
2468         s2_mair_attrs = s2.attrs;
2469     }
2470 
2471     s1lo = extract32(s1.attrs, 0, 4);
2472     s2lo = extract32(s2_mair_attrs, 0, 4);
2473     s1hi = extract32(s1.attrs, 4, 4);
2474     s2hi = extract32(s2_mair_attrs, 4, 4);
2475 
2476     /* Combine memory type and cacheability attributes */
2477     if (s1hi == 0 || s2hi == 0) {
2478         /* Device has precedence over normal */
2479         if (s1lo == 0 || s2lo == 0) {
2480             /* nGnRnE has precedence over anything */
2481             ret_attrs = 0;
2482         } else if (s1lo == 4 || s2lo == 4) {
2483             /* non-Reordering has precedence over Reordering */
2484             ret_attrs = 4;  /* nGnRE */
2485         } else if (s1lo == 8 || s2lo == 8) {
2486             /* non-Gathering has precedence over Gathering */
2487             ret_attrs = 8;  /* nGRE */
2488         } else {
2489             ret_attrs = 0xc; /* GRE */
2490         }
2491     } else { /* Normal memory */
2492         /* Outer/inner cacheability combine independently */
2493         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2494                   | combine_cacheattr_nibble(s1lo, s2lo);
2495     }
2496     return ret_attrs;
2497 }
2498 
2499 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2500 {
2501     /*
2502      * Given the 4 bits specifying the outer or inner cacheability
2503      * in MAIR format, return a value specifying Normal Write-Back,
2504      * with the allocation and transient hints taken from the input
2505      * if the input specified some kind of cacheable attribute.
2506      */
2507     if (attr == 0 || attr == 4) {
2508         /*
2509          * 0 == an UNPREDICTABLE encoding
2510          * 4 == Non-cacheable
2511          * Either way, force Write-Back RW allocate non-transient
2512          */
2513         return 0xf;
2514     }
2515     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2516     return attr | 4;
2517 }
2518 
2519 /*
2520  * Combine the memory type and cacheability attributes of
2521  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2522  * combined attributes in MAIR_EL1 format.
2523  */
2524 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2525 {
2526     assert(s2.is_s2_format && !s1.is_s2_format);
2527 
2528     switch (s2.attrs) {
2529     case 7:
2530         /* Use stage 1 attributes */
2531         return s1.attrs;
2532     case 6:
2533         /*
2534          * Force Normal Write-Back. Note that if S1 is Normal cacheable
2535          * then we take the allocation hints from it; otherwise it is
2536          * RW allocate, non-transient.
2537          */
2538         if ((s1.attrs & 0xf0) == 0) {
2539             /* S1 is Device */
2540             return 0xff;
2541         }
2542         /* Need to check the Inner and Outer nibbles separately */
2543         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2544             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2545     case 5:
2546         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2547         if ((s1.attrs & 0xf0) == 0) {
2548             return s1.attrs;
2549         }
2550         return 0x44;
2551     case 0 ... 3:
2552         /* Force Device, of subtype specified by S2 */
2553         return s2.attrs << 2;
2554     default:
2555         /*
2556          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2557          * arbitrarily force Device.
2558          */
2559         return 0;
2560     }
2561 }
2562 
2563 /*
2564  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2565  * and CombineS1S2Desc()
2566  *
2567  * @env:     CPUARMState
2568  * @s1:      Attributes from stage 1 walk
2569  * @s2:      Attributes from stage 2 walk
2570  */
2571 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
2572                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
2573 {
2574     ARMCacheAttrs ret;
2575     bool tagged = false;
2576 
2577     assert(!s1.is_s2_format);
2578     ret.is_s2_format = false;
2579 
2580     if (s1.attrs == 0xf0) {
2581         tagged = true;
2582         s1.attrs = 0xff;
2583     }
2584 
2585     /* Combine shareability attributes (table D4-43) */
2586     if (s1.shareability == 2 || s2.shareability == 2) {
2587         /* if either are outer-shareable, the result is outer-shareable */
2588         ret.shareability = 2;
2589     } else if (s1.shareability == 3 || s2.shareability == 3) {
2590         /* if either are inner-shareable, the result is inner-shareable */
2591         ret.shareability = 3;
2592     } else {
2593         /* both non-shareable */
2594         ret.shareability = 0;
2595     }
2596 
2597     /* Combine memory type and cacheability attributes */
2598     if (hcr & HCR_FWB) {
2599         ret.attrs = combined_attrs_fwb(s1, s2);
2600     } else {
2601         ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
2602     }
2603 
2604     /*
2605      * Any location for which the resultant memory type is any
2606      * type of Device memory is always treated as Outer Shareable.
2607      * Any location for which the resultant memory type is Normal
2608      * Inner Non-cacheable, Outer Non-cacheable is always treated
2609      * as Outer Shareable.
2610      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2611      */
2612     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2613         ret.shareability = 2;
2614     }
2615 
2616     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2617     if (tagged && ret.attrs == 0xff) {
2618         ret.attrs = 0xf0;
2619     }
2620 
2621     return ret;
2622 }
2623 
2624 /*
2625  * MMU disabled.  S1 addresses within aa64 translation regimes are
2626  * still checked for bounds -- see AArch64.S1DisabledOutput().
2627  */
2628 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
2629                                    MMUAccessType access_type,
2630                                    ARMMMUIdx mmu_idx, bool is_secure,
2631                                    GetPhysAddrResult *result,
2632                                    ARMMMUFaultInfo *fi)
2633 {
2634     uint8_t memattr = 0x00;    /* Device nGnRnE */
2635     uint8_t shareability = 0;  /* non-sharable */
2636     int r_el;
2637 
2638     switch (mmu_idx) {
2639     case ARMMMUIdx_Stage2:
2640     case ARMMMUIdx_Stage2_S:
2641     case ARMMMUIdx_Phys_NS:
2642     case ARMMMUIdx_Phys_S:
2643         break;
2644 
2645     default:
2646         r_el = regime_el(env, mmu_idx);
2647         if (arm_el_is_aa64(env, r_el)) {
2648             int pamax = arm_pamax(env_archcpu(env));
2649             uint64_t tcr = env->cp15.tcr_el[r_el];
2650             int addrtop, tbi;
2651 
2652             tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2653             if (access_type == MMU_INST_FETCH) {
2654                 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2655             }
2656             tbi = (tbi >> extract64(address, 55, 1)) & 1;
2657             addrtop = (tbi ? 55 : 63);
2658 
2659             if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2660                 fi->type = ARMFault_AddressSize;
2661                 fi->level = 0;
2662                 fi->stage2 = false;
2663                 return 1;
2664             }
2665 
2666             /*
2667              * When TBI is disabled, we've just validated that all of the
2668              * bits above PAMax are zero, so logically we only need to
2669              * clear the top byte for TBI.  But it's clearer to follow
2670              * the pseudocode set of addrdesc.paddress.
2671              */
2672             address = extract64(address, 0, 52);
2673         }
2674 
2675         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2676         if (r_el == 1) {
2677             uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2678             if (hcr & HCR_DC) {
2679                 if (hcr & HCR_DCT) {
2680                     memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
2681                 } else {
2682                     memattr = 0xff;  /* Normal, WB, RWA */
2683                 }
2684             }
2685         }
2686         if (memattr == 0 && access_type == MMU_INST_FETCH) {
2687             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2688                 memattr = 0xee;  /* Normal, WT, RA, NT */
2689             } else {
2690                 memattr = 0x44;  /* Normal, NC, No */
2691             }
2692             shareability = 2; /* outer sharable */
2693         }
2694         result->cacheattrs.is_s2_format = false;
2695         break;
2696     }
2697 
2698     result->f.phys_addr = address;
2699     result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2700     result->f.lg_page_size = TARGET_PAGE_BITS;
2701     result->cacheattrs.shareability = shareability;
2702     result->cacheattrs.attrs = memattr;
2703     return false;
2704 }
2705 
2706 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
2707                                    target_ulong address,
2708                                    MMUAccessType access_type,
2709                                    GetPhysAddrResult *result,
2710                                    ARMMMUFaultInfo *fi)
2711 {
2712     hwaddr ipa;
2713     int s1_prot, s1_lgpgsz;
2714     bool is_secure = ptw->in_secure;
2715     bool ret, ipa_secure, s2walk_secure;
2716     ARMCacheAttrs cacheattrs1;
2717     bool is_el0;
2718     uint64_t hcr;
2719 
2720     ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi);
2721 
2722     /* If S1 fails, return early.  */
2723     if (ret) {
2724         return ret;
2725     }
2726 
2727     ipa = result->f.phys_addr;
2728     ipa_secure = result->f.attrs.secure;
2729     if (is_secure) {
2730         /* Select TCR based on the NS bit from the S1 walk. */
2731         s2walk_secure = !(ipa_secure
2732                           ? env->cp15.vstcr_el2 & VSTCR_SW
2733                           : env->cp15.vtcr_el2 & VTCR_NSW);
2734     } else {
2735         assert(!ipa_secure);
2736         s2walk_secure = false;
2737     }
2738 
2739     is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
2740     ptw->in_mmu_idx = s2walk_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2741     ptw->in_ptw_idx = s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2742     ptw->in_secure = s2walk_secure;
2743 
2744     /*
2745      * S1 is done, now do S2 translation.
2746      * Save the stage1 results so that we may merge prot and cacheattrs later.
2747      */
2748     s1_prot = result->f.prot;
2749     s1_lgpgsz = result->f.lg_page_size;
2750     cacheattrs1 = result->cacheattrs;
2751     memset(result, 0, sizeof(*result));
2752 
2753     if (arm_feature(env, ARM_FEATURE_PMSA)) {
2754         ret = get_phys_addr_pmsav8(env, ipa, access_type,
2755                                    ptw->in_mmu_idx, is_secure, result, fi);
2756     } else {
2757         ret = get_phys_addr_lpae(env, ptw, ipa, access_type,
2758                                  is_el0, result, fi);
2759     }
2760     fi->s2addr = ipa;
2761 
2762     /* Combine the S1 and S2 perms.  */
2763     result->f.prot &= s1_prot;
2764 
2765     /* If S2 fails, return early.  */
2766     if (ret) {
2767         return ret;
2768     }
2769 
2770     /*
2771      * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
2772      * this means "don't put this in the TLB"; in this case, return a
2773      * result with lg_page_size == 0 to achieve that. Otherwise,
2774      * use the maximum of the S1 & S2 page size, so that invalidation
2775      * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
2776      * we know the combined result permissions etc only cover the minimum
2777      * of the S1 and S2 page size, because we know that the common TLB code
2778      * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
2779      * and passing a larger page size value only affects invalidations.)
2780      */
2781     if (result->f.lg_page_size < TARGET_PAGE_BITS ||
2782         s1_lgpgsz < TARGET_PAGE_BITS) {
2783         result->f.lg_page_size = 0;
2784     } else if (result->f.lg_page_size < s1_lgpgsz) {
2785         result->f.lg_page_size = s1_lgpgsz;
2786     }
2787 
2788     /* Combine the S1 and S2 cache attributes. */
2789     hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2790     if (hcr & HCR_DC) {
2791         /*
2792          * HCR.DC forces the first stage attributes to
2793          *  Normal Non-Shareable,
2794          *  Inner Write-Back Read-Allocate Write-Allocate,
2795          *  Outer Write-Back Read-Allocate Write-Allocate.
2796          * Do not overwrite Tagged within attrs.
2797          */
2798         if (cacheattrs1.attrs != 0xf0) {
2799             cacheattrs1.attrs = 0xff;
2800         }
2801         cacheattrs1.shareability = 0;
2802     }
2803     result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
2804                                             result->cacheattrs);
2805 
2806     /*
2807      * Check if IPA translates to secure or non-secure PA space.
2808      * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
2809      */
2810     result->f.attrs.secure =
2811         (is_secure
2812          && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
2813          && (ipa_secure
2814              || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))));
2815 
2816     return false;
2817 }
2818 
2819 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
2820                                       target_ulong address,
2821                                       MMUAccessType access_type,
2822                                       GetPhysAddrResult *result,
2823                                       ARMMMUFaultInfo *fi)
2824 {
2825     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2826     bool is_secure = ptw->in_secure;
2827     ARMMMUIdx s1_mmu_idx;
2828 
2829     /*
2830      * The page table entries may downgrade secure to non-secure, but
2831      * cannot upgrade an non-secure translation regime's attributes
2832      * to secure.
2833      */
2834     result->f.attrs.secure = is_secure;
2835 
2836     switch (mmu_idx) {
2837     case ARMMMUIdx_Phys_S:
2838     case ARMMMUIdx_Phys_NS:
2839         /* Checking Phys early avoids special casing later vs regime_el. */
2840         return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2841                                       is_secure, result, fi);
2842 
2843     case ARMMMUIdx_Stage1_E0:
2844     case ARMMMUIdx_Stage1_E1:
2845     case ARMMMUIdx_Stage1_E1_PAN:
2846         /* First stage lookup uses second stage for ptw. */
2847         ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2848         break;
2849 
2850     case ARMMMUIdx_E10_0:
2851         s1_mmu_idx = ARMMMUIdx_Stage1_E0;
2852         goto do_twostage;
2853     case ARMMMUIdx_E10_1:
2854         s1_mmu_idx = ARMMMUIdx_Stage1_E1;
2855         goto do_twostage;
2856     case ARMMMUIdx_E10_1_PAN:
2857         s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
2858     do_twostage:
2859         /*
2860          * Call ourselves recursively to do the stage 1 and then stage 2
2861          * translations if mmu_idx is a two-stage regime, and EL2 present.
2862          * Otherwise, a stage1+stage2 translation is just stage 1.
2863          */
2864         ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
2865         if (arm_feature(env, ARM_FEATURE_EL2) &&
2866             !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) {
2867             return get_phys_addr_twostage(env, ptw, address, access_type,
2868                                           result, fi);
2869         }
2870         /* fall through */
2871 
2872     default:
2873         /* Single stage and second stage uses physical for ptw. */
2874         ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2875         break;
2876     }
2877 
2878     result->f.attrs.user = regime_is_user(env, mmu_idx);
2879 
2880     /*
2881      * Fast Context Switch Extension. This doesn't exist at all in v8.
2882      * In v7 and earlier it affects all stage 1 translations.
2883      */
2884     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2885         && !arm_feature(env, ARM_FEATURE_V8)) {
2886         if (regime_el(env, mmu_idx) == 3) {
2887             address += env->cp15.fcseidr_s;
2888         } else {
2889             address += env->cp15.fcseidr_ns;
2890         }
2891     }
2892 
2893     if (arm_feature(env, ARM_FEATURE_PMSA)) {
2894         bool ret;
2895         result->f.lg_page_size = TARGET_PAGE_BITS;
2896 
2897         if (arm_feature(env, ARM_FEATURE_V8)) {
2898             /* PMSAv8 */
2899             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2900                                        is_secure, result, fi);
2901         } else if (arm_feature(env, ARM_FEATURE_V7)) {
2902             /* PMSAv7 */
2903             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2904                                        is_secure, result, fi);
2905         } else {
2906             /* Pre-v7 MPU */
2907             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2908                                        is_secure, result, fi);
2909         }
2910         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2911                       " mmu_idx %u -> %s (prot %c%c%c)\n",
2912                       access_type == MMU_DATA_LOAD ? "reading" :
2913                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2914                       (uint32_t)address, mmu_idx,
2915                       ret ? "Miss" : "Hit",
2916                       result->f.prot & PAGE_READ ? 'r' : '-',
2917                       result->f.prot & PAGE_WRITE ? 'w' : '-',
2918                       result->f.prot & PAGE_EXEC ? 'x' : '-');
2919 
2920         return ret;
2921     }
2922 
2923     /* Definitely a real MMU, not an MPU */
2924 
2925     if (regime_translation_disabled(env, mmu_idx, is_secure)) {
2926         return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2927                                       is_secure, result, fi);
2928     }
2929 
2930     if (regime_using_lpae_format(env, mmu_idx)) {
2931         return get_phys_addr_lpae(env, ptw, address, access_type, false,
2932                                   result, fi);
2933     } else if (arm_feature(env, ARM_FEATURE_V7) ||
2934                regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2935         return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
2936     } else {
2937         return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
2938     }
2939 }
2940 
2941 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
2942                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
2943                                bool is_secure, GetPhysAddrResult *result,
2944                                ARMMMUFaultInfo *fi)
2945 {
2946     S1Translate ptw = {
2947         .in_mmu_idx = mmu_idx,
2948         .in_secure = is_secure,
2949     };
2950     return get_phys_addr_with_struct(env, &ptw, address, access_type,
2951                                      result, fi);
2952 }
2953 
2954 bool get_phys_addr(CPUARMState *env, target_ulong address,
2955                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
2956                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
2957 {
2958     bool is_secure;
2959 
2960     switch (mmu_idx) {
2961     case ARMMMUIdx_E10_0:
2962     case ARMMMUIdx_E10_1:
2963     case ARMMMUIdx_E10_1_PAN:
2964     case ARMMMUIdx_E20_0:
2965     case ARMMMUIdx_E20_2:
2966     case ARMMMUIdx_E20_2_PAN:
2967     case ARMMMUIdx_Stage1_E0:
2968     case ARMMMUIdx_Stage1_E1:
2969     case ARMMMUIdx_Stage1_E1_PAN:
2970     case ARMMMUIdx_E2:
2971         is_secure = arm_is_secure_below_el3(env);
2972         break;
2973     case ARMMMUIdx_Stage2:
2974     case ARMMMUIdx_Phys_NS:
2975     case ARMMMUIdx_MPrivNegPri:
2976     case ARMMMUIdx_MUserNegPri:
2977     case ARMMMUIdx_MPriv:
2978     case ARMMMUIdx_MUser:
2979         is_secure = false;
2980         break;
2981     case ARMMMUIdx_E3:
2982     case ARMMMUIdx_Stage2_S:
2983     case ARMMMUIdx_Phys_S:
2984     case ARMMMUIdx_MSPrivNegPri:
2985     case ARMMMUIdx_MSUserNegPri:
2986     case ARMMMUIdx_MSPriv:
2987     case ARMMMUIdx_MSUser:
2988         is_secure = true;
2989         break;
2990     default:
2991         g_assert_not_reached();
2992     }
2993     return get_phys_addr_with_secure(env, address, access_type, mmu_idx,
2994                                      is_secure, result, fi);
2995 }
2996 
2997 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
2998                                          MemTxAttrs *attrs)
2999 {
3000     ARMCPU *cpu = ARM_CPU(cs);
3001     CPUARMState *env = &cpu->env;
3002     S1Translate ptw = {
3003         .in_mmu_idx = arm_mmu_idx(env),
3004         .in_secure = arm_is_secure(env),
3005         .in_debug = true,
3006     };
3007     GetPhysAddrResult res = {};
3008     ARMMMUFaultInfo fi = {};
3009     bool ret;
3010 
3011     ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3012     *attrs = res.f.attrs;
3013 
3014     if (ret) {
3015         return -1;
3016     }
3017     return res.f.phys_addr;
3018 }
3019