1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "qemu/main-loop.h" 13 #include "exec/exec-all.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "idau.h" 17 #ifdef CONFIG_TCG 18 # include "tcg/oversized-guest.h" 19 #endif 20 21 typedef struct S1Translate { 22 /* 23 * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk. 24 * Together with in_space, specifies the architectural translation regime. 25 */ 26 ARMMMUIdx in_mmu_idx; 27 /* 28 * in_ptw_idx: specifies which mmuidx to use for the actual 29 * page table descriptor load operations. This will be one of the 30 * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes. 31 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 32 * this field is updated accordingly. 33 */ 34 ARMMMUIdx in_ptw_idx; 35 /* 36 * in_space: the security space for this walk. This plus 37 * the in_mmu_idx specify the architectural translation regime. 38 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 39 * this field is updated accordingly. 40 * 41 * Note that the security space for the in_ptw_idx may be different 42 * from that for the in_mmu_idx. We do not need to explicitly track 43 * the in_ptw_idx security space because: 44 * - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx 45 * itself specifies the security space 46 * - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security 47 * space used for ptw reads is the same as that of the security 48 * space of the stage 1 translation for all cases except where 49 * stage 1 is Secure; in that case the only possibilities for 50 * the ptw read are Secure and NonSecure, and the in_ptw_idx 51 * value being Stage2 vs Stage2_S distinguishes those. 52 */ 53 ARMSecuritySpace in_space; 54 /* 55 * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug 56 * accesses will not update the guest page table access flags 57 * and will not change the state of the softmmu TLBs. 58 */ 59 bool in_debug; 60 /* 61 * If this is stage 2 of a stage 1+2 page table walk, then this must 62 * be true if stage 1 is an EL0 access; otherwise this is ignored. 63 * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}. 64 */ 65 bool in_s1_is_el0; 66 bool out_rw; 67 bool out_be; 68 ARMSecuritySpace out_space; 69 hwaddr out_virt; 70 hwaddr out_phys; 71 void *out_host; 72 } S1Translate; 73 74 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 75 target_ulong address, 76 MMUAccessType access_type, 77 GetPhysAddrResult *result, 78 ARMMMUFaultInfo *fi); 79 80 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 81 target_ulong address, 82 MMUAccessType access_type, 83 GetPhysAddrResult *result, 84 ARMMMUFaultInfo *fi); 85 86 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 87 static const uint8_t pamax_map[] = { 88 [0] = 32, 89 [1] = 36, 90 [2] = 40, 91 [3] = 42, 92 [4] = 44, 93 [5] = 48, 94 [6] = 52, 95 }; 96 97 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 98 unsigned int arm_pamax(ARMCPU *cpu) 99 { 100 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 101 unsigned int parange = 102 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 103 104 /* 105 * id_aa64mmfr0 is a read-only register so values outside of the 106 * supported mappings can be considered an implementation error. 107 */ 108 assert(parange < ARRAY_SIZE(pamax_map)); 109 return pamax_map[parange]; 110 } 111 112 /* 113 * In machvirt_init, we call arm_pamax on a cpu that is not fully 114 * initialized, so we can't rely on the propagation done in realize. 115 */ 116 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) || 117 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) { 118 /* v7 with LPAE */ 119 return 40; 120 } 121 /* Anything else */ 122 return 32; 123 } 124 125 /* 126 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 127 */ 128 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 129 { 130 switch (mmu_idx) { 131 case ARMMMUIdx_E10_0: 132 return ARMMMUIdx_Stage1_E0; 133 case ARMMMUIdx_E10_1: 134 return ARMMMUIdx_Stage1_E1; 135 case ARMMMUIdx_E10_1_PAN: 136 return ARMMMUIdx_Stage1_E1_PAN; 137 default: 138 return mmu_idx; 139 } 140 } 141 142 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 143 { 144 return stage_1_mmu_idx(arm_mmu_idx(env)); 145 } 146 147 /* 148 * Return where we should do ptw loads from for a stage 2 walk. 149 * This depends on whether the address we are looking up is a 150 * Secure IPA or a NonSecure IPA, which we know from whether this is 151 * Stage2 or Stage2_S. 152 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits. 153 */ 154 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx) 155 { 156 bool s2walk_secure; 157 158 /* 159 * We're OK to check the current state of the CPU here because 160 * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit 161 * changes. 162 * (2) there's no way to do a lookup that cares about Stage 2 for a 163 * different security state to the current one for AArch64, and AArch32 164 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do 165 * an NS stage 1+2 lookup while the NS bit is 0.) 166 */ 167 if (!arm_el_is_aa64(env, 3)) { 168 return ARMMMUIdx_Phys_NS; 169 } 170 171 switch (arm_security_space_below_el3(env)) { 172 case ARMSS_NonSecure: 173 return ARMMMUIdx_Phys_NS; 174 case ARMSS_Realm: 175 return ARMMMUIdx_Phys_Realm; 176 case ARMSS_Secure: 177 if (stage2idx == ARMMMUIdx_Stage2_S) { 178 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW); 179 } else { 180 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW); 181 } 182 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 183 default: 184 g_assert_not_reached(); 185 } 186 } 187 188 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 189 { 190 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 191 } 192 193 /* Return the TTBR associated with this translation regime */ 194 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 195 { 196 if (mmu_idx == ARMMMUIdx_Stage2) { 197 return env->cp15.vttbr_el2; 198 } 199 if (mmu_idx == ARMMMUIdx_Stage2_S) { 200 return env->cp15.vsttbr_el2; 201 } 202 if (ttbrn == 0) { 203 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 204 } else { 205 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 206 } 207 } 208 209 /* Return true if the specified stage of address translation is disabled */ 210 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, 211 ARMSecuritySpace space) 212 { 213 uint64_t hcr_el2; 214 215 if (arm_feature(env, ARM_FEATURE_M)) { 216 bool is_secure = arm_space_is_secure(space); 217 switch (env->v7m.mpu_ctrl[is_secure] & 218 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 219 case R_V7M_MPU_CTRL_ENABLE_MASK: 220 /* Enabled, but not for HardFault and NMI */ 221 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 222 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 223 /* Enabled for all cases */ 224 return false; 225 case 0: 226 default: 227 /* 228 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 229 * we warned about that in armv7m_nvic.c when the guest set it. 230 */ 231 return true; 232 } 233 } 234 235 236 switch (mmu_idx) { 237 case ARMMMUIdx_Stage2: 238 case ARMMMUIdx_Stage2_S: 239 /* HCR.DC means HCR.VM behaves as 1 */ 240 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 241 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 242 243 case ARMMMUIdx_E10_0: 244 case ARMMMUIdx_E10_1: 245 case ARMMMUIdx_E10_1_PAN: 246 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ 247 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 248 if (hcr_el2 & HCR_TGE) { 249 return true; 250 } 251 break; 252 253 case ARMMMUIdx_Stage1_E0: 254 case ARMMMUIdx_Stage1_E1: 255 case ARMMMUIdx_Stage1_E1_PAN: 256 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 257 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 258 if (hcr_el2 & HCR_DC) { 259 return true; 260 } 261 break; 262 263 case ARMMMUIdx_E20_0: 264 case ARMMMUIdx_E20_2: 265 case ARMMMUIdx_E20_2_PAN: 266 case ARMMMUIdx_E2: 267 case ARMMMUIdx_E3: 268 break; 269 270 case ARMMMUIdx_Phys_S: 271 case ARMMMUIdx_Phys_NS: 272 case ARMMMUIdx_Phys_Root: 273 case ARMMMUIdx_Phys_Realm: 274 /* No translation for physical address spaces. */ 275 return true; 276 277 default: 278 g_assert_not_reached(); 279 } 280 281 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 282 } 283 284 static bool granule_protection_check(CPUARMState *env, uint64_t paddress, 285 ARMSecuritySpace pspace, 286 ARMMMUFaultInfo *fi) 287 { 288 MemTxAttrs attrs = { 289 .secure = true, 290 .space = ARMSS_Root, 291 }; 292 ARMCPU *cpu = env_archcpu(env); 293 uint64_t gpccr = env->cp15.gpccr_el3; 294 unsigned pps, pgs, l0gptsz, level = 0; 295 uint64_t tableaddr, pps_mask, align, entry, index; 296 AddressSpace *as; 297 MemTxResult result; 298 int gpi; 299 300 if (!FIELD_EX64(gpccr, GPCCR, GPC)) { 301 return true; 302 } 303 304 /* 305 * GPC Priority 1 (R_GMGRR): 306 * R_JWCSM: If the configuration of GPCCR_EL3 is invalid, 307 * the access fails as GPT walk fault at level 0. 308 */ 309 310 /* 311 * Configuration of PPS to a value exceeding the implemented 312 * physical address size is invalid. 313 */ 314 pps = FIELD_EX64(gpccr, GPCCR, PPS); 315 if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) { 316 goto fault_walk; 317 } 318 pps = pamax_map[pps]; 319 pps_mask = MAKE_64BIT_MASK(0, pps); 320 321 switch (FIELD_EX64(gpccr, GPCCR, SH)) { 322 case 0b10: /* outer shareable */ 323 break; 324 case 0b00: /* non-shareable */ 325 case 0b11: /* inner shareable */ 326 /* Inner and Outer non-cacheable requires Outer shareable. */ 327 if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 && 328 FIELD_EX64(gpccr, GPCCR, IRGN) == 0) { 329 goto fault_walk; 330 } 331 break; 332 default: /* reserved */ 333 goto fault_walk; 334 } 335 336 switch (FIELD_EX64(gpccr, GPCCR, PGS)) { 337 case 0b00: /* 4KB */ 338 pgs = 12; 339 break; 340 case 0b01: /* 64KB */ 341 pgs = 16; 342 break; 343 case 0b10: /* 16KB */ 344 pgs = 14; 345 break; 346 default: /* reserved */ 347 goto fault_walk; 348 } 349 350 /* Note this field is read-only and fixed at reset. */ 351 l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ); 352 353 /* 354 * GPC Priority 2: Secure, Realm or Root address exceeds PPS. 355 * R_CPDSB: A NonSecure physical address input exceeding PPS 356 * does not experience any fault. 357 */ 358 if (paddress & ~pps_mask) { 359 if (pspace == ARMSS_NonSecure) { 360 return true; 361 } 362 goto fault_size; 363 } 364 365 /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */ 366 tableaddr = env->cp15.gptbr_el3 << 12; 367 if (tableaddr & ~pps_mask) { 368 goto fault_size; 369 } 370 371 /* 372 * BADDR is aligned per a function of PPS and L0GPTSZ. 373 * These bits of GPTBR_EL3 are RES0, but are not a configuration error, 374 * unlike the RES0 bits of the GPT entries (R_XNKFZ). 375 */ 376 align = MAX(pps - l0gptsz + 3, 12); 377 align = MAKE_64BIT_MASK(0, align); 378 tableaddr &= ~align; 379 380 as = arm_addressspace(env_cpu(env), attrs); 381 382 /* Level 0 lookup. */ 383 index = extract64(paddress, l0gptsz, pps - l0gptsz); 384 tableaddr += index * 8; 385 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 386 if (result != MEMTX_OK) { 387 goto fault_eabt; 388 } 389 390 switch (extract32(entry, 0, 4)) { 391 case 1: /* block descriptor */ 392 if (entry >> 8) { 393 goto fault_walk; /* RES0 bits not 0 */ 394 } 395 gpi = extract32(entry, 4, 4); 396 goto found; 397 case 3: /* table descriptor */ 398 tableaddr = entry & ~0xf; 399 align = MAX(l0gptsz - pgs - 1, 12); 400 align = MAKE_64BIT_MASK(0, align); 401 if (tableaddr & (~pps_mask | align)) { 402 goto fault_walk; /* RES0 bits not 0 */ 403 } 404 break; 405 default: /* invalid */ 406 goto fault_walk; 407 } 408 409 /* Level 1 lookup */ 410 level = 1; 411 index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4); 412 tableaddr += index * 8; 413 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 414 if (result != MEMTX_OK) { 415 goto fault_eabt; 416 } 417 418 switch (extract32(entry, 0, 4)) { 419 case 1: /* contiguous descriptor */ 420 if (entry >> 10) { 421 goto fault_walk; /* RES0 bits not 0 */ 422 } 423 /* 424 * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE, 425 * and because we cannot invalidate by pa, and thus will always 426 * flush entire tlbs, we don't actually care about the range here 427 * and can simply extract the GPI as the result. 428 */ 429 if (extract32(entry, 8, 2) == 0) { 430 goto fault_walk; /* reserved contig */ 431 } 432 gpi = extract32(entry, 4, 4); 433 break; 434 default: 435 index = extract64(paddress, pgs, 4); 436 gpi = extract64(entry, index * 4, 4); 437 break; 438 } 439 440 found: 441 switch (gpi) { 442 case 0b0000: /* no access */ 443 break; 444 case 0b1111: /* all access */ 445 return true; 446 case 0b1000: 447 case 0b1001: 448 case 0b1010: 449 case 0b1011: 450 if (pspace == (gpi & 3)) { 451 return true; 452 } 453 break; 454 default: 455 goto fault_walk; /* reserved */ 456 } 457 458 fi->gpcf = GPCF_Fail; 459 goto fault_common; 460 fault_eabt: 461 fi->gpcf = GPCF_EABT; 462 goto fault_common; 463 fault_size: 464 fi->gpcf = GPCF_AddressSize; 465 goto fault_common; 466 fault_walk: 467 fi->gpcf = GPCF_Walk; 468 fault_common: 469 fi->level = level; 470 fi->paddr = paddress; 471 fi->paddr_space = pspace; 472 return false; 473 } 474 475 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) 476 { 477 /* 478 * For an S1 page table walk, the stage 1 attributes are always 479 * some form of "this is Normal memory". The combined S1+S2 480 * attributes are therefore only Device if stage 2 specifies Device. 481 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 482 * ie when cacheattrs.attrs bits [3:2] are 0b00. 483 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 484 * when cacheattrs.attrs bit [2] is 0. 485 */ 486 if (hcr & HCR_FWB) { 487 return (attrs & 0x4) == 0; 488 } else { 489 return (attrs & 0xc) == 0; 490 } 491 } 492 493 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space, 494 ARMMMUIdx s2_mmu_idx) 495 { 496 /* 497 * Return the security space to use for stage 2 when doing 498 * the S1 page table descriptor load. 499 */ 500 if (regime_is_stage2(s2_mmu_idx)) { 501 /* 502 * The security space for ptw reads is almost always the same 503 * as that of the security space of the stage 1 translation. 504 * The only exception is when stage 1 is Secure; in that case 505 * the ptw read might be to the Secure or the NonSecure space 506 * (but never Realm or Root), and the s2_mmu_idx tells us which. 507 * Root translations are always single-stage. 508 */ 509 if (s1_space == ARMSS_Secure) { 510 return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S); 511 } else { 512 assert(s2_mmu_idx != ARMMMUIdx_Stage2_S); 513 assert(s1_space != ARMSS_Root); 514 return s1_space; 515 } 516 } else { 517 /* ptw loads are from phys: the mmu idx itself says which space */ 518 return arm_phys_to_space(s2_mmu_idx); 519 } 520 } 521 522 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx) 523 { 524 /* 525 * For stage 2 faults in Secure EL22, S1NS indicates 526 * whether the faulting IPA is in the Secure or NonSecure 527 * IPA space. For all other kinds of fault, it is false. 528 */ 529 return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx) 530 && s2_mmu_idx == ARMMMUIdx_Stage2_S; 531 } 532 533 /* Translate a S1 pagetable walk through S2 if needed. */ 534 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, 535 hwaddr addr, ARMMMUFaultInfo *fi) 536 { 537 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 538 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx; 539 uint8_t pte_attrs; 540 541 ptw->out_virt = addr; 542 543 if (unlikely(ptw->in_debug)) { 544 /* 545 * From gdbstub, do not use softmmu so that we don't modify the 546 * state of the cpu at all, including softmmu tlb contents. 547 */ 548 ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx); 549 S1Translate s2ptw = { 550 .in_mmu_idx = s2_mmu_idx, 551 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx), 552 .in_space = s2_space, 553 .in_debug = true, 554 }; 555 GetPhysAddrResult s2 = { }; 556 557 if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) { 558 goto fail; 559 } 560 561 ptw->out_phys = s2.f.phys_addr; 562 pte_attrs = s2.cacheattrs.attrs; 563 ptw->out_host = NULL; 564 ptw->out_rw = false; 565 ptw->out_space = s2.f.attrs.space; 566 } else { 567 #ifdef CONFIG_TCG 568 CPUTLBEntryFull *full; 569 int flags; 570 571 env->tlb_fi = fi; 572 flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD, 573 arm_to_core_mmu_idx(s2_mmu_idx), 574 &ptw->out_host, &full); 575 env->tlb_fi = NULL; 576 577 if (unlikely(flags & TLB_INVALID_MASK)) { 578 goto fail; 579 } 580 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 581 ptw->out_rw = full->prot & PAGE_WRITE; 582 pte_attrs = full->extra.arm.pte_attrs; 583 ptw->out_space = full->attrs.space; 584 #else 585 g_assert_not_reached(); 586 #endif 587 } 588 589 if (regime_is_stage2(s2_mmu_idx)) { 590 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 591 592 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { 593 /* 594 * PTW set and S1 walk touched S2 Device memory: 595 * generate Permission fault. 596 */ 597 fi->type = ARMFault_Permission; 598 fi->s2addr = addr; 599 fi->stage2 = true; 600 fi->s1ptw = true; 601 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 602 return false; 603 } 604 } 605 606 ptw->out_be = regime_translation_big_endian(env, mmu_idx); 607 return true; 608 609 fail: 610 assert(fi->type != ARMFault_None); 611 if (fi->type == ARMFault_GPCFOnOutput) { 612 fi->type = ARMFault_GPCFOnWalk; 613 } 614 fi->s2addr = addr; 615 fi->stage2 = regime_is_stage2(s2_mmu_idx); 616 fi->s1ptw = fi->stage2; 617 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 618 return false; 619 } 620 621 /* All loads done in the course of a page table walk go through here. */ 622 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, 623 ARMMMUFaultInfo *fi) 624 { 625 CPUState *cs = env_cpu(env); 626 void *host = ptw->out_host; 627 uint32_t data; 628 629 if (likely(host)) { 630 /* Page tables are in RAM, and we have the host address. */ 631 data = qatomic_read((uint32_t *)host); 632 if (ptw->out_be) { 633 data = be32_to_cpu(data); 634 } else { 635 data = le32_to_cpu(data); 636 } 637 } else { 638 /* Page tables are in MMIO. */ 639 MemTxAttrs attrs = { 640 .space = ptw->out_space, 641 .secure = arm_space_is_secure(ptw->out_space), 642 }; 643 AddressSpace *as = arm_addressspace(cs, attrs); 644 MemTxResult result = MEMTX_OK; 645 646 if (ptw->out_be) { 647 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); 648 } else { 649 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); 650 } 651 if (unlikely(result != MEMTX_OK)) { 652 fi->type = ARMFault_SyncExternalOnWalk; 653 fi->ea = arm_extabort_type(result); 654 return 0; 655 } 656 } 657 return data; 658 } 659 660 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, 661 ARMMMUFaultInfo *fi) 662 { 663 CPUState *cs = env_cpu(env); 664 void *host = ptw->out_host; 665 uint64_t data; 666 667 if (likely(host)) { 668 /* Page tables are in RAM, and we have the host address. */ 669 #ifdef CONFIG_ATOMIC64 670 data = qatomic_read__nocheck((uint64_t *)host); 671 if (ptw->out_be) { 672 data = be64_to_cpu(data); 673 } else { 674 data = le64_to_cpu(data); 675 } 676 #else 677 if (ptw->out_be) { 678 data = ldq_be_p(host); 679 } else { 680 data = ldq_le_p(host); 681 } 682 #endif 683 } else { 684 /* Page tables are in MMIO. */ 685 MemTxAttrs attrs = { 686 .space = ptw->out_space, 687 .secure = arm_space_is_secure(ptw->out_space), 688 }; 689 AddressSpace *as = arm_addressspace(cs, attrs); 690 MemTxResult result = MEMTX_OK; 691 692 if (ptw->out_be) { 693 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 694 } else { 695 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 696 } 697 if (unlikely(result != MEMTX_OK)) { 698 fi->type = ARMFault_SyncExternalOnWalk; 699 fi->ea = arm_extabort_type(result); 700 return 0; 701 } 702 } 703 return data; 704 } 705 706 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val, 707 uint64_t new_val, S1Translate *ptw, 708 ARMMMUFaultInfo *fi) 709 { 710 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG) 711 uint64_t cur_val; 712 void *host = ptw->out_host; 713 714 if (unlikely(!host)) { 715 fi->type = ARMFault_UnsuppAtomicUpdate; 716 return 0; 717 } 718 719 /* 720 * Raising a stage2 Protection fault for an atomic update to a read-only 721 * page is delayed until it is certain that there is a change to make. 722 */ 723 if (unlikely(!ptw->out_rw)) { 724 int flags; 725 726 env->tlb_fi = fi; 727 flags = probe_access_full_mmu(env, ptw->out_virt, 0, 728 MMU_DATA_STORE, 729 arm_to_core_mmu_idx(ptw->in_ptw_idx), 730 NULL, NULL); 731 env->tlb_fi = NULL; 732 733 if (unlikely(flags & TLB_INVALID_MASK)) { 734 /* 735 * We know this must be a stage 2 fault because the granule 736 * protection table does not separately track read and write 737 * permission, so all GPC faults are caught in S1_ptw_translate(): 738 * we only get here for "readable but not writeable". 739 */ 740 assert(fi->type != ARMFault_None); 741 fi->s2addr = ptw->out_virt; 742 fi->stage2 = true; 743 fi->s1ptw = true; 744 fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx); 745 return 0; 746 } 747 748 /* In case CAS mismatches and we loop, remember writability. */ 749 ptw->out_rw = true; 750 } 751 752 #ifdef CONFIG_ATOMIC64 753 if (ptw->out_be) { 754 old_val = cpu_to_be64(old_val); 755 new_val = cpu_to_be64(new_val); 756 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 757 cur_val = be64_to_cpu(cur_val); 758 } else { 759 old_val = cpu_to_le64(old_val); 760 new_val = cpu_to_le64(new_val); 761 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 762 cur_val = le64_to_cpu(cur_val); 763 } 764 #else 765 /* 766 * We can't support the full 64-bit atomic cmpxchg on the host. 767 * Because this is only used for FEAT_HAFDBS, which is only for AA64, 768 * we know that TCG_OVERSIZED_GUEST is set, which means that we are 769 * running in round-robin mode and could only race with dma i/o. 770 */ 771 #if !TCG_OVERSIZED_GUEST 772 # error "Unexpected configuration" 773 #endif 774 bool locked = qemu_mutex_iothread_locked(); 775 if (!locked) { 776 qemu_mutex_lock_iothread(); 777 } 778 if (ptw->out_be) { 779 cur_val = ldq_be_p(host); 780 if (cur_val == old_val) { 781 stq_be_p(host, new_val); 782 } 783 } else { 784 cur_val = ldq_le_p(host); 785 if (cur_val == old_val) { 786 stq_le_p(host, new_val); 787 } 788 } 789 if (!locked) { 790 qemu_mutex_unlock_iothread(); 791 } 792 #endif 793 794 return cur_val; 795 #else 796 /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */ 797 g_assert_not_reached(); 798 #endif 799 } 800 801 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 802 uint32_t *table, uint32_t address) 803 { 804 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 805 uint64_t tcr = regime_tcr(env, mmu_idx); 806 int maskshift = extract32(tcr, 0, 3); 807 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 808 uint32_t base_mask; 809 810 if (address & mask) { 811 if (tcr & TTBCR_PD1) { 812 /* Translation table walk disabled for TTBR1 */ 813 return false; 814 } 815 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 816 } else { 817 if (tcr & TTBCR_PD0) { 818 /* Translation table walk disabled for TTBR0 */ 819 return false; 820 } 821 base_mask = ~((uint32_t)0x3fffu >> maskshift); 822 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 823 } 824 *table |= (address >> 18) & 0x3ffc; 825 return true; 826 } 827 828 /* 829 * Translate section/page access permissions to page R/W protection flags 830 * @env: CPUARMState 831 * @mmu_idx: MMU index indicating required translation regime 832 * @ap: The 3-bit access permissions (AP[2:0]) 833 * @domain_prot: The 2-bit domain access permissions 834 * @is_user: TRUE if accessing from PL0 835 */ 836 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx, 837 int ap, int domain_prot, bool is_user) 838 { 839 if (domain_prot == 3) { 840 return PAGE_READ | PAGE_WRITE; 841 } 842 843 switch (ap) { 844 case 0: 845 if (arm_feature(env, ARM_FEATURE_V7)) { 846 return 0; 847 } 848 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 849 case SCTLR_S: 850 return is_user ? 0 : PAGE_READ; 851 case SCTLR_R: 852 return PAGE_READ; 853 default: 854 return 0; 855 } 856 case 1: 857 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 858 case 2: 859 if (is_user) { 860 return PAGE_READ; 861 } else { 862 return PAGE_READ | PAGE_WRITE; 863 } 864 case 3: 865 return PAGE_READ | PAGE_WRITE; 866 case 4: /* Reserved. */ 867 return 0; 868 case 5: 869 return is_user ? 0 : PAGE_READ; 870 case 6: 871 return PAGE_READ; 872 case 7: 873 if (!arm_feature(env, ARM_FEATURE_V6K)) { 874 return 0; 875 } 876 return PAGE_READ; 877 default: 878 g_assert_not_reached(); 879 } 880 } 881 882 /* 883 * Translate section/page access permissions to page R/W protection flags 884 * @env: CPUARMState 885 * @mmu_idx: MMU index indicating required translation regime 886 * @ap: The 3-bit access permissions (AP[2:0]) 887 * @domain_prot: The 2-bit domain access permissions 888 */ 889 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 890 int ap, int domain_prot) 891 { 892 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 893 regime_is_user(env, mmu_idx)); 894 } 895 896 /* 897 * Translate section/page access permissions to page R/W protection flags. 898 * @ap: The 2-bit simple AP (AP[2:1]) 899 * @is_user: TRUE if accessing from PL0 900 */ 901 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 902 { 903 switch (ap) { 904 case 0: 905 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 906 case 1: 907 return PAGE_READ | PAGE_WRITE; 908 case 2: 909 return is_user ? 0 : PAGE_READ; 910 case 3: 911 return PAGE_READ; 912 default: 913 g_assert_not_reached(); 914 } 915 } 916 917 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 918 { 919 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 920 } 921 922 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, 923 uint32_t address, MMUAccessType access_type, 924 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 925 { 926 int level = 1; 927 uint32_t table; 928 uint32_t desc; 929 int type; 930 int ap; 931 int domain = 0; 932 int domain_prot; 933 hwaddr phys_addr; 934 uint32_t dacr; 935 936 /* Pagetable walk. */ 937 /* Lookup l1 descriptor. */ 938 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { 939 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 940 fi->type = ARMFault_Translation; 941 goto do_fault; 942 } 943 if (!S1_ptw_translate(env, ptw, table, fi)) { 944 goto do_fault; 945 } 946 desc = arm_ldl_ptw(env, ptw, fi); 947 if (fi->type != ARMFault_None) { 948 goto do_fault; 949 } 950 type = (desc & 3); 951 domain = (desc >> 5) & 0x0f; 952 if (regime_el(env, ptw->in_mmu_idx) == 1) { 953 dacr = env->cp15.dacr_ns; 954 } else { 955 dacr = env->cp15.dacr_s; 956 } 957 domain_prot = (dacr >> (domain * 2)) & 3; 958 if (type == 0) { 959 /* Section translation fault. */ 960 fi->type = ARMFault_Translation; 961 goto do_fault; 962 } 963 if (type != 2) { 964 level = 2; 965 } 966 if (domain_prot == 0 || domain_prot == 2) { 967 fi->type = ARMFault_Domain; 968 goto do_fault; 969 } 970 if (type == 2) { 971 /* 1Mb section. */ 972 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 973 ap = (desc >> 10) & 3; 974 result->f.lg_page_size = 20; /* 1MB */ 975 } else { 976 /* Lookup l2 entry. */ 977 if (type == 1) { 978 /* Coarse pagetable. */ 979 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 980 } else { 981 /* Fine pagetable. */ 982 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 983 } 984 if (!S1_ptw_translate(env, ptw, table, fi)) { 985 goto do_fault; 986 } 987 desc = arm_ldl_ptw(env, ptw, fi); 988 if (fi->type != ARMFault_None) { 989 goto do_fault; 990 } 991 switch (desc & 3) { 992 case 0: /* Page translation fault. */ 993 fi->type = ARMFault_Translation; 994 goto do_fault; 995 case 1: /* 64k page. */ 996 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 997 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 998 result->f.lg_page_size = 16; 999 break; 1000 case 2: /* 4k page. */ 1001 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1002 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 1003 result->f.lg_page_size = 12; 1004 break; 1005 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 1006 if (type == 1) { 1007 /* ARMv6/XScale extended small page format */ 1008 if (arm_feature(env, ARM_FEATURE_XSCALE) 1009 || arm_feature(env, ARM_FEATURE_V6)) { 1010 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1011 result->f.lg_page_size = 12; 1012 } else { 1013 /* 1014 * UNPREDICTABLE in ARMv5; we choose to take a 1015 * page translation fault. 1016 */ 1017 fi->type = ARMFault_Translation; 1018 goto do_fault; 1019 } 1020 } else { 1021 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 1022 result->f.lg_page_size = 10; 1023 } 1024 ap = (desc >> 4) & 3; 1025 break; 1026 default: 1027 /* Never happens, but compiler isn't smart enough to tell. */ 1028 g_assert_not_reached(); 1029 } 1030 } 1031 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); 1032 result->f.prot |= result->f.prot ? PAGE_EXEC : 0; 1033 if (!(result->f.prot & (1 << access_type))) { 1034 /* Access permission fault. */ 1035 fi->type = ARMFault_Permission; 1036 goto do_fault; 1037 } 1038 result->f.phys_addr = phys_addr; 1039 return false; 1040 do_fault: 1041 fi->domain = domain; 1042 fi->level = level; 1043 return true; 1044 } 1045 1046 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, 1047 uint32_t address, MMUAccessType access_type, 1048 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1049 { 1050 ARMCPU *cpu = env_archcpu(env); 1051 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1052 int level = 1; 1053 uint32_t table; 1054 uint32_t desc; 1055 uint32_t xn; 1056 uint32_t pxn = 0; 1057 int type; 1058 int ap; 1059 int domain = 0; 1060 int domain_prot; 1061 hwaddr phys_addr; 1062 uint32_t dacr; 1063 bool ns; 1064 int user_prot; 1065 1066 /* Pagetable walk. */ 1067 /* Lookup l1 descriptor. */ 1068 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 1069 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 1070 fi->type = ARMFault_Translation; 1071 goto do_fault; 1072 } 1073 if (!S1_ptw_translate(env, ptw, table, fi)) { 1074 goto do_fault; 1075 } 1076 desc = arm_ldl_ptw(env, ptw, fi); 1077 if (fi->type != ARMFault_None) { 1078 goto do_fault; 1079 } 1080 type = (desc & 3); 1081 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 1082 /* Section translation fault, or attempt to use the encoding 1083 * which is Reserved on implementations without PXN. 1084 */ 1085 fi->type = ARMFault_Translation; 1086 goto do_fault; 1087 } 1088 if ((type == 1) || !(desc & (1 << 18))) { 1089 /* Page or Section. */ 1090 domain = (desc >> 5) & 0x0f; 1091 } 1092 if (regime_el(env, mmu_idx) == 1) { 1093 dacr = env->cp15.dacr_ns; 1094 } else { 1095 dacr = env->cp15.dacr_s; 1096 } 1097 if (type == 1) { 1098 level = 2; 1099 } 1100 domain_prot = (dacr >> (domain * 2)) & 3; 1101 if (domain_prot == 0 || domain_prot == 2) { 1102 /* Section or Page domain fault */ 1103 fi->type = ARMFault_Domain; 1104 goto do_fault; 1105 } 1106 if (type != 1) { 1107 if (desc & (1 << 18)) { 1108 /* Supersection. */ 1109 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 1110 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 1111 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 1112 result->f.lg_page_size = 24; /* 16MB */ 1113 } else { 1114 /* Section. */ 1115 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 1116 result->f.lg_page_size = 20; /* 1MB */ 1117 } 1118 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 1119 xn = desc & (1 << 4); 1120 pxn = desc & 1; 1121 ns = extract32(desc, 19, 1); 1122 } else { 1123 if (cpu_isar_feature(aa32_pxn, cpu)) { 1124 pxn = (desc >> 2) & 1; 1125 } 1126 ns = extract32(desc, 3, 1); 1127 /* Lookup l2 entry. */ 1128 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 1129 if (!S1_ptw_translate(env, ptw, table, fi)) { 1130 goto do_fault; 1131 } 1132 desc = arm_ldl_ptw(env, ptw, fi); 1133 if (fi->type != ARMFault_None) { 1134 goto do_fault; 1135 } 1136 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 1137 switch (desc & 3) { 1138 case 0: /* Page translation fault. */ 1139 fi->type = ARMFault_Translation; 1140 goto do_fault; 1141 case 1: /* 64k page. */ 1142 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 1143 xn = desc & (1 << 15); 1144 result->f.lg_page_size = 16; 1145 break; 1146 case 2: case 3: /* 4k page. */ 1147 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1148 xn = desc & 1; 1149 result->f.lg_page_size = 12; 1150 break; 1151 default: 1152 /* Never happens, but compiler isn't smart enough to tell. */ 1153 g_assert_not_reached(); 1154 } 1155 } 1156 if (domain_prot == 3) { 1157 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1158 } else { 1159 if (pxn && !regime_is_user(env, mmu_idx)) { 1160 xn = 1; 1161 } 1162 if (xn && access_type == MMU_INST_FETCH) { 1163 fi->type = ARMFault_Permission; 1164 goto do_fault; 1165 } 1166 1167 if (arm_feature(env, ARM_FEATURE_V6K) && 1168 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 1169 /* The simplified model uses AP[0] as an access control bit. */ 1170 if ((ap & 1) == 0) { 1171 /* Access flag fault. */ 1172 fi->type = ARMFault_AccessFlag; 1173 goto do_fault; 1174 } 1175 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 1176 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1); 1177 } else { 1178 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 1179 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1); 1180 } 1181 if (result->f.prot && !xn) { 1182 result->f.prot |= PAGE_EXEC; 1183 } 1184 if (!(result->f.prot & (1 << access_type))) { 1185 /* Access permission fault. */ 1186 fi->type = ARMFault_Permission; 1187 goto do_fault; 1188 } 1189 if (regime_is_pan(env, mmu_idx) && 1190 !regime_is_user(env, mmu_idx) && 1191 user_prot && 1192 access_type != MMU_INST_FETCH) { 1193 /* Privileged Access Never fault */ 1194 fi->type = ARMFault_Permission; 1195 goto do_fault; 1196 } 1197 } 1198 if (ns) { 1199 /* The NS bit will (as required by the architecture) have no effect if 1200 * the CPU doesn't support TZ or this is a non-secure translation 1201 * regime, because the attribute will already be non-secure. 1202 */ 1203 result->f.attrs.secure = false; 1204 result->f.attrs.space = ARMSS_NonSecure; 1205 } 1206 result->f.phys_addr = phys_addr; 1207 return false; 1208 do_fault: 1209 fi->domain = domain; 1210 fi->level = level; 1211 return true; 1212 } 1213 1214 /* 1215 * Translate S2 section/page access permissions to protection flags 1216 * @env: CPUARMState 1217 * @s2ap: The 2-bit stage2 access permissions (S2AP) 1218 * @xn: XN (execute-never) bits 1219 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 1220 */ 1221 static int get_S2prot_noexecute(int s2ap) 1222 { 1223 int prot = 0; 1224 1225 if (s2ap & 1) { 1226 prot |= PAGE_READ; 1227 } 1228 if (s2ap & 2) { 1229 prot |= PAGE_WRITE; 1230 } 1231 return prot; 1232 } 1233 1234 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 1235 { 1236 int prot = get_S2prot_noexecute(s2ap); 1237 1238 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 1239 switch (xn) { 1240 case 0: 1241 prot |= PAGE_EXEC; 1242 break; 1243 case 1: 1244 if (s1_is_el0) { 1245 prot |= PAGE_EXEC; 1246 } 1247 break; 1248 case 2: 1249 break; 1250 case 3: 1251 if (!s1_is_el0) { 1252 prot |= PAGE_EXEC; 1253 } 1254 break; 1255 default: 1256 g_assert_not_reached(); 1257 } 1258 } else { 1259 if (!extract32(xn, 1, 1)) { 1260 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 1261 prot |= PAGE_EXEC; 1262 } 1263 } 1264 } 1265 return prot; 1266 } 1267 1268 /* 1269 * Translate section/page access permissions to protection flags 1270 * @env: CPUARMState 1271 * @mmu_idx: MMU index indicating required translation regime 1272 * @is_aa64: TRUE if AArch64 1273 * @ap: The 2-bit simple AP (AP[2:1]) 1274 * @xn: XN (execute-never) bit 1275 * @pxn: PXN (privileged execute-never) bit 1276 * @in_pa: The original input pa space 1277 * @out_pa: The output pa space, modified by NSTable, NS, and NSE 1278 */ 1279 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 1280 int ap, int xn, int pxn, 1281 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa) 1282 { 1283 ARMCPU *cpu = env_archcpu(env); 1284 bool is_user = regime_is_user(env, mmu_idx); 1285 int prot_rw, user_rw; 1286 bool have_wxn; 1287 int wxn = 0; 1288 1289 assert(!regime_is_stage2(mmu_idx)); 1290 1291 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 1292 if (is_user) { 1293 prot_rw = user_rw; 1294 } else { 1295 /* 1296 * PAN controls can forbid data accesses but don't affect insn fetch. 1297 * Plain PAN forbids data accesses if EL0 has data permissions; 1298 * PAN3 forbids data accesses if EL0 has either data or exec perms. 1299 * Note that for AArch64 the 'user can exec' case is exactly !xn. 1300 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0 1301 * do not affect EPAN. 1302 */ 1303 if (user_rw && regime_is_pan(env, mmu_idx)) { 1304 prot_rw = 0; 1305 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 && 1306 regime_is_pan(env, mmu_idx) && 1307 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) { 1308 prot_rw = 0; 1309 } else { 1310 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 1311 } 1312 } 1313 1314 if (in_pa != out_pa) { 1315 switch (in_pa) { 1316 case ARMSS_Root: 1317 /* 1318 * R_ZWRVD: permission fault for insn fetched from non-Root, 1319 * I_WWBFB: SIF has no effect in EL3. 1320 */ 1321 return prot_rw; 1322 case ARMSS_Realm: 1323 /* 1324 * R_PKTDS: permission fault for insn fetched from non-Realm, 1325 * for Realm EL2 or EL2&0. The corresponding fault for EL1&0 1326 * happens during any stage2 translation. 1327 */ 1328 switch (mmu_idx) { 1329 case ARMMMUIdx_E2: 1330 case ARMMMUIdx_E20_0: 1331 case ARMMMUIdx_E20_2: 1332 case ARMMMUIdx_E20_2_PAN: 1333 return prot_rw; 1334 default: 1335 break; 1336 } 1337 break; 1338 case ARMSS_Secure: 1339 if (env->cp15.scr_el3 & SCR_SIF) { 1340 return prot_rw; 1341 } 1342 break; 1343 default: 1344 /* Input NonSecure must have output NonSecure. */ 1345 g_assert_not_reached(); 1346 } 1347 } 1348 1349 /* TODO have_wxn should be replaced with 1350 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 1351 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 1352 * compatible processors have EL2, which is required for [U]WXN. 1353 */ 1354 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 1355 1356 if (have_wxn) { 1357 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 1358 } 1359 1360 if (is_aa64) { 1361 if (regime_has_2_ranges(mmu_idx) && !is_user) { 1362 xn = pxn || (user_rw & PAGE_WRITE); 1363 } 1364 } else if (arm_feature(env, ARM_FEATURE_V7)) { 1365 switch (regime_el(env, mmu_idx)) { 1366 case 1: 1367 case 3: 1368 if (is_user) { 1369 xn = xn || !(user_rw & PAGE_READ); 1370 } else { 1371 int uwxn = 0; 1372 if (have_wxn) { 1373 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 1374 } 1375 xn = xn || !(prot_rw & PAGE_READ) || pxn || 1376 (uwxn && (user_rw & PAGE_WRITE)); 1377 } 1378 break; 1379 case 2: 1380 break; 1381 } 1382 } else { 1383 xn = wxn = 0; 1384 } 1385 1386 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 1387 return prot_rw; 1388 } 1389 return prot_rw | PAGE_EXEC; 1390 } 1391 1392 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 1393 ARMMMUIdx mmu_idx) 1394 { 1395 uint64_t tcr = regime_tcr(env, mmu_idx); 1396 uint32_t el = regime_el(env, mmu_idx); 1397 int select, tsz; 1398 bool epd, hpd; 1399 1400 assert(mmu_idx != ARMMMUIdx_Stage2_S); 1401 1402 if (mmu_idx == ARMMMUIdx_Stage2) { 1403 /* VTCR */ 1404 bool sext = extract32(tcr, 4, 1); 1405 bool sign = extract32(tcr, 3, 1); 1406 1407 /* 1408 * If the sign-extend bit is not the same as t0sz[3], the result 1409 * is unpredictable. Flag this as a guest error. 1410 */ 1411 if (sign != sext) { 1412 qemu_log_mask(LOG_GUEST_ERROR, 1413 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 1414 } 1415 tsz = sextract32(tcr, 0, 4) + 8; 1416 select = 0; 1417 hpd = false; 1418 epd = false; 1419 } else if (el == 2) { 1420 /* HTCR */ 1421 tsz = extract32(tcr, 0, 3); 1422 select = 0; 1423 hpd = extract64(tcr, 24, 1); 1424 epd = false; 1425 } else { 1426 int t0sz = extract32(tcr, 0, 3); 1427 int t1sz = extract32(tcr, 16, 3); 1428 1429 if (t1sz == 0) { 1430 select = va > (0xffffffffu >> t0sz); 1431 } else { 1432 /* Note that we will detect errors later. */ 1433 select = va >= ~(0xffffffffu >> t1sz); 1434 } 1435 if (!select) { 1436 tsz = t0sz; 1437 epd = extract32(tcr, 7, 1); 1438 hpd = extract64(tcr, 41, 1); 1439 } else { 1440 tsz = t1sz; 1441 epd = extract32(tcr, 23, 1); 1442 hpd = extract64(tcr, 42, 1); 1443 } 1444 /* For aarch32, hpd0 is not enabled without t2e as well. */ 1445 hpd &= extract32(tcr, 6, 1); 1446 } 1447 1448 return (ARMVAParameters) { 1449 .tsz = tsz, 1450 .select = select, 1451 .epd = epd, 1452 .hpd = hpd, 1453 }; 1454 } 1455 1456 /* 1457 * check_s2_mmu_setup 1458 * @cpu: ARMCPU 1459 * @is_aa64: True if the translation regime is in AArch64 state 1460 * @tcr: VTCR_EL2 or VSTCR_EL2 1461 * @ds: Effective value of TCR.DS. 1462 * @iasize: Bitsize of IPAs 1463 * @stride: Page-table stride (See the ARM ARM) 1464 * 1465 * Decode the starting level of the S2 lookup, returning INT_MIN if 1466 * the configuration is invalid. 1467 */ 1468 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr, 1469 bool ds, int iasize, int stride) 1470 { 1471 int sl0, sl2, startlevel, granulebits, levels; 1472 int s1_min_iasize, s1_max_iasize; 1473 1474 sl0 = extract32(tcr, 6, 2); 1475 if (is_aa64) { 1476 /* 1477 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size, 1478 * so interleave AArch64.S2StartLevel. 1479 */ 1480 switch (stride) { 1481 case 9: /* 4KB */ 1482 /* SL2 is RES0 unless DS=1 & 4KB granule. */ 1483 sl2 = extract64(tcr, 33, 1); 1484 if (ds && sl2) { 1485 if (sl0 != 0) { 1486 goto fail; 1487 } 1488 startlevel = -1; 1489 } else { 1490 startlevel = 2 - sl0; 1491 switch (sl0) { 1492 case 2: 1493 if (arm_pamax(cpu) < 44) { 1494 goto fail; 1495 } 1496 break; 1497 case 3: 1498 if (!cpu_isar_feature(aa64_st, cpu)) { 1499 goto fail; 1500 } 1501 startlevel = 3; 1502 break; 1503 } 1504 } 1505 break; 1506 case 11: /* 16KB */ 1507 switch (sl0) { 1508 case 2: 1509 if (arm_pamax(cpu) < 42) { 1510 goto fail; 1511 } 1512 break; 1513 case 3: 1514 if (!ds) { 1515 goto fail; 1516 } 1517 break; 1518 } 1519 startlevel = 3 - sl0; 1520 break; 1521 case 13: /* 64KB */ 1522 switch (sl0) { 1523 case 2: 1524 if (arm_pamax(cpu) < 44) { 1525 goto fail; 1526 } 1527 break; 1528 case 3: 1529 goto fail; 1530 } 1531 startlevel = 3 - sl0; 1532 break; 1533 default: 1534 g_assert_not_reached(); 1535 } 1536 } else { 1537 /* 1538 * Things are simpler for AArch32 EL2, with only 4k pages. 1539 * There is no separate S2InvalidSL function, but AArch32.S2Walk 1540 * begins with walkparms.sl0 in {'1x'}. 1541 */ 1542 assert(stride == 9); 1543 if (sl0 >= 2) { 1544 goto fail; 1545 } 1546 startlevel = 2 - sl0; 1547 } 1548 1549 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */ 1550 levels = 3 - startlevel; 1551 granulebits = stride + 3; 1552 1553 s1_min_iasize = levels * stride + granulebits + 1; 1554 s1_max_iasize = s1_min_iasize + (stride - 1) + 4; 1555 1556 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) { 1557 return startlevel; 1558 } 1559 1560 fail: 1561 return INT_MIN; 1562 } 1563 1564 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds, 1565 ARMGranuleSize gran, int level) 1566 { 1567 /* 1568 * See pseudocode AArch46.BlockDescSupported(): block descriptors 1569 * are not valid at all levels, depending on the page size. 1570 */ 1571 switch (gran) { 1572 case Gran4K: 1573 return (level == 0 && ds) || level == 1 || level == 2; 1574 case Gran16K: 1575 return (level == 1 && ds) || level == 2; 1576 case Gran64K: 1577 return (level == 1 && arm_pamax(cpu) == 52) || level == 2; 1578 default: 1579 g_assert_not_reached(); 1580 } 1581 } 1582 1583 /** 1584 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 1585 * 1586 * Returns false if the translation was successful. Otherwise, phys_ptr, 1587 * attrs, prot and page_size may not be filled in, and the populated fsr 1588 * value provides information on why the translation aborted, in the format 1589 * of a long-format DFSR/IFSR fault register, with the following caveat: 1590 * the WnR bit is never set (the caller must do this). 1591 * 1592 * @env: CPUARMState 1593 * @ptw: Current and next stage parameters for the walk. 1594 * @address: virtual address to get physical address for 1595 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 1596 * @result: set on translation success, 1597 * @fi: set to fault info if the translation fails 1598 */ 1599 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 1600 uint64_t address, 1601 MMUAccessType access_type, 1602 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1603 { 1604 ARMCPU *cpu = env_archcpu(env); 1605 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1606 int32_t level; 1607 ARMVAParameters param; 1608 uint64_t ttbr; 1609 hwaddr descaddr, indexmask, indexmask_grainsize; 1610 uint32_t tableattrs; 1611 target_ulong page_size; 1612 uint64_t attrs; 1613 int32_t stride; 1614 int addrsize, inputsize, outputsize; 1615 uint64_t tcr = regime_tcr(env, mmu_idx); 1616 int ap, xn, pxn; 1617 uint32_t el = regime_el(env, mmu_idx); 1618 uint64_t descaddrmask; 1619 bool aarch64 = arm_el_is_aa64(env, el); 1620 uint64_t descriptor, new_descriptor; 1621 ARMSecuritySpace out_space; 1622 1623 /* TODO: This code does not support shareability levels. */ 1624 if (aarch64) { 1625 int ps; 1626 1627 param = aa64_va_parameters(env, address, mmu_idx, 1628 access_type != MMU_INST_FETCH, 1629 !arm_el_is_aa64(env, 1)); 1630 level = 0; 1631 1632 /* 1633 * If TxSZ is programmed to a value larger than the maximum, 1634 * or smaller than the effective minimum, it is IMPLEMENTATION 1635 * DEFINED whether we behave as if the field were programmed 1636 * within bounds, or if a level 0 Translation fault is generated. 1637 * 1638 * With FEAT_LVA, fault on less than minimum becomes required, 1639 * so our choice is to always raise the fault. 1640 */ 1641 if (param.tsz_oob) { 1642 goto do_translation_fault; 1643 } 1644 1645 addrsize = 64 - 8 * param.tbi; 1646 inputsize = 64 - param.tsz; 1647 1648 /* 1649 * Bound PS by PARANGE to find the effective output address size. 1650 * ID_AA64MMFR0 is a read-only register so values outside of the 1651 * supported mappings can be considered an implementation error. 1652 */ 1653 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1654 ps = MIN(ps, param.ps); 1655 assert(ps < ARRAY_SIZE(pamax_map)); 1656 outputsize = pamax_map[ps]; 1657 1658 /* 1659 * With LPA2, the effective output address (OA) size is at most 48 bits 1660 * unless TCR.DS == 1 1661 */ 1662 if (!param.ds && param.gran != Gran64K) { 1663 outputsize = MIN(outputsize, 48); 1664 } 1665 } else { 1666 param = aa32_va_parameters(env, address, mmu_idx); 1667 level = 1; 1668 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1669 inputsize = addrsize - param.tsz; 1670 outputsize = 40; 1671 } 1672 1673 /* 1674 * We determined the region when collecting the parameters, but we 1675 * have not yet validated that the address is valid for the region. 1676 * Extract the top bits and verify that they all match select. 1677 * 1678 * For aa32, if inputsize == addrsize, then we have selected the 1679 * region by exclusion in aa32_va_parameters and there is no more 1680 * validation to do here. 1681 */ 1682 if (inputsize < addrsize) { 1683 target_ulong top_bits = sextract64(address, inputsize, 1684 addrsize - inputsize); 1685 if (-top_bits != param.select) { 1686 /* The gap between the two regions is a Translation fault */ 1687 goto do_translation_fault; 1688 } 1689 } 1690 1691 stride = arm_granule_bits(param.gran) - 3; 1692 1693 /* 1694 * Note that QEMU ignores shareability and cacheability attributes, 1695 * so we don't need to do anything with the SH, ORGN, IRGN fields 1696 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1697 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1698 * implement any ASID-like capability so we can ignore it (instead 1699 * we will always flush the TLB any time the ASID is changed). 1700 */ 1701 ttbr = regime_ttbr(env, mmu_idx, param.select); 1702 1703 /* 1704 * Here we should have set up all the parameters for the translation: 1705 * inputsize, ttbr, epd, stride, tbi 1706 */ 1707 1708 if (param.epd) { 1709 /* 1710 * Translation table walk disabled => Translation fault on TLB miss 1711 * Note: This is always 0 on 64-bit EL2 and EL3. 1712 */ 1713 goto do_translation_fault; 1714 } 1715 1716 if (!regime_is_stage2(mmu_idx)) { 1717 /* 1718 * The starting level depends on the virtual address size (which can 1719 * be up to 48 bits) and the translation granule size. It indicates 1720 * the number of strides (stride bits at a time) needed to 1721 * consume the bits of the input address. In the pseudocode this is: 1722 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1723 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1724 * our 'stride + 3' and 'stride' is our 'stride'. 1725 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1726 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1727 * = 4 - (inputsize - 4) / stride; 1728 */ 1729 level = 4 - (inputsize - 4) / stride; 1730 } else { 1731 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds, 1732 inputsize, stride); 1733 if (startlevel == INT_MIN) { 1734 level = 0; 1735 goto do_translation_fault; 1736 } 1737 level = startlevel; 1738 } 1739 1740 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1741 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1742 1743 /* Now we can extract the actual base address from the TTBR */ 1744 descaddr = extract64(ttbr, 0, 48); 1745 1746 /* 1747 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1748 * 1749 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1750 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1751 * but we've just cleared the bits above 47, so simplify the test. 1752 */ 1753 if (outputsize > 48) { 1754 descaddr |= extract64(ttbr, 2, 4) << 48; 1755 } else if (descaddr >> outputsize) { 1756 level = 0; 1757 fi->type = ARMFault_AddressSize; 1758 goto do_fault; 1759 } 1760 1761 /* 1762 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1763 * and also to mask out CnP (bit 0) which could validly be non-zero. 1764 */ 1765 descaddr &= ~indexmask; 1766 1767 /* 1768 * For AArch32, the address field in the descriptor goes up to bit 39 1769 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1770 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1771 * bits as part of the address, which will be checked via outputsize. 1772 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1773 * the highest bits of a 52-bit output are placed elsewhere. 1774 */ 1775 if (param.ds) { 1776 descaddrmask = MAKE_64BIT_MASK(0, 50); 1777 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1778 descaddrmask = MAKE_64BIT_MASK(0, 48); 1779 } else { 1780 descaddrmask = MAKE_64BIT_MASK(0, 40); 1781 } 1782 descaddrmask &= ~indexmask_grainsize; 1783 tableattrs = 0; 1784 1785 next_level: 1786 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1787 descaddr &= ~7ULL; 1788 1789 /* 1790 * Process the NSTable bit from the previous level. This changes 1791 * the table address space and the output space from Secure to 1792 * NonSecure. With RME, the EL3 translation regime does not change 1793 * from Root to NonSecure. 1794 */ 1795 if (ptw->in_space == ARMSS_Secure 1796 && !regime_is_stage2(mmu_idx) 1797 && extract32(tableattrs, 4, 1)) { 1798 /* 1799 * Stage2_S -> Stage2 or Phys_S -> Phys_NS 1800 * Assert the relative order of the secure/non-secure indexes. 1801 */ 1802 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS); 1803 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2); 1804 ptw->in_ptw_idx += 1; 1805 ptw->in_space = ARMSS_NonSecure; 1806 } 1807 1808 if (!S1_ptw_translate(env, ptw, descaddr, fi)) { 1809 goto do_fault; 1810 } 1811 descriptor = arm_ldq_ptw(env, ptw, fi); 1812 if (fi->type != ARMFault_None) { 1813 goto do_fault; 1814 } 1815 new_descriptor = descriptor; 1816 1817 restart_atomic_update: 1818 if (!(descriptor & 1) || 1819 (!(descriptor & 2) && 1820 !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) { 1821 /* Invalid, or a block descriptor at an invalid level */ 1822 goto do_translation_fault; 1823 } 1824 1825 descaddr = descriptor & descaddrmask; 1826 1827 /* 1828 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1829 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1830 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1831 * raise AddressSizeFault. 1832 */ 1833 if (outputsize > 48) { 1834 if (param.ds) { 1835 descaddr |= extract64(descriptor, 8, 2) << 50; 1836 } else { 1837 descaddr |= extract64(descriptor, 12, 4) << 48; 1838 } 1839 } else if (descaddr >> outputsize) { 1840 fi->type = ARMFault_AddressSize; 1841 goto do_fault; 1842 } 1843 1844 if ((descriptor & 2) && (level < 3)) { 1845 /* 1846 * Table entry. The top five bits are attributes which may 1847 * propagate down through lower levels of the table (and 1848 * which are all arranged so that 0 means "no effect", so 1849 * we can gather them up by ORing in the bits at each level). 1850 */ 1851 tableattrs |= extract64(descriptor, 59, 5); 1852 level++; 1853 indexmask = indexmask_grainsize; 1854 goto next_level; 1855 } 1856 1857 /* 1858 * Block entry at level 1 or 2, or page entry at level 3. 1859 * These are basically the same thing, although the number 1860 * of bits we pull in from the vaddr varies. Note that although 1861 * descaddrmask masks enough of the low bits of the descriptor 1862 * to give a correct page or table address, the address field 1863 * in a block descriptor is smaller; so we need to explicitly 1864 * clear the lower bits here before ORing in the low vaddr bits. 1865 * 1866 * Afterward, descaddr is the final physical address. 1867 */ 1868 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1869 descaddr &= ~(hwaddr)(page_size - 1); 1870 descaddr |= (address & (page_size - 1)); 1871 1872 if (likely(!ptw->in_debug)) { 1873 /* 1874 * Access flag. 1875 * If HA is enabled, prepare to update the descriptor below. 1876 * Otherwise, pass the access fault on to software. 1877 */ 1878 if (!(descriptor & (1 << 10))) { 1879 if (param.ha) { 1880 new_descriptor |= 1 << 10; /* AF */ 1881 } else { 1882 fi->type = ARMFault_AccessFlag; 1883 goto do_fault; 1884 } 1885 } 1886 1887 /* 1888 * Dirty Bit. 1889 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP 1890 * bit for writeback. The actual write protection test may still be 1891 * overridden by tableattrs, to be merged below. 1892 */ 1893 if (param.hd 1894 && extract64(descriptor, 51, 1) /* DBM */ 1895 && access_type == MMU_DATA_STORE) { 1896 if (regime_is_stage2(mmu_idx)) { 1897 new_descriptor |= 1ull << 7; /* set S2AP[1] */ 1898 } else { 1899 new_descriptor &= ~(1ull << 7); /* clear AP[2] */ 1900 } 1901 } 1902 } 1903 1904 /* 1905 * Extract attributes from the (modified) descriptor, and apply 1906 * table descriptors. Stage 2 table descriptors do not include 1907 * any attribute fields. HPD disables all the table attributes 1908 * except NSTable (which we have already handled). 1909 */ 1910 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14)); 1911 if (!regime_is_stage2(mmu_idx)) { 1912 if (!param.hpd) { 1913 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */ 1914 /* 1915 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 1916 * means "force PL1 access only", which means forcing AP[1] to 0. 1917 */ 1918 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */ 1919 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */ 1920 } 1921 } 1922 1923 ap = extract32(attrs, 6, 2); 1924 out_space = ptw->in_space; 1925 if (regime_is_stage2(mmu_idx)) { 1926 /* 1927 * R_GYNXY: For stage2 in Realm security state, bit 55 is NS. 1928 * The bit remains ignored for other security states. 1929 * R_YMCSL: Executing an insn fetched from non-Realm causes 1930 * a stage2 permission fault. 1931 */ 1932 if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) { 1933 out_space = ARMSS_NonSecure; 1934 result->f.prot = get_S2prot_noexecute(ap); 1935 } else { 1936 xn = extract64(attrs, 53, 2); 1937 result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0); 1938 } 1939 } else { 1940 int nse, ns = extract32(attrs, 5, 1); 1941 switch (out_space) { 1942 case ARMSS_Root: 1943 /* 1944 * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime. 1945 * R_XTYPW: NSE and NS together select the output pa space. 1946 */ 1947 nse = extract32(attrs, 11, 1); 1948 out_space = (nse << 1) | ns; 1949 if (out_space == ARMSS_Secure && 1950 !cpu_isar_feature(aa64_sel2, cpu)) { 1951 out_space = ARMSS_NonSecure; 1952 } 1953 break; 1954 case ARMSS_Secure: 1955 if (ns) { 1956 out_space = ARMSS_NonSecure; 1957 } 1958 break; 1959 case ARMSS_Realm: 1960 switch (mmu_idx) { 1961 case ARMMMUIdx_Stage1_E0: 1962 case ARMMMUIdx_Stage1_E1: 1963 case ARMMMUIdx_Stage1_E1_PAN: 1964 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */ 1965 break; 1966 case ARMMMUIdx_E2: 1967 case ARMMMUIdx_E20_0: 1968 case ARMMMUIdx_E20_2: 1969 case ARMMMUIdx_E20_2_PAN: 1970 /* 1971 * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1, 1972 * NS changes the output to non-secure space. 1973 */ 1974 if (ns) { 1975 out_space = ARMSS_NonSecure; 1976 } 1977 break; 1978 default: 1979 g_assert_not_reached(); 1980 } 1981 break; 1982 case ARMSS_NonSecure: 1983 /* R_QRMFF: For NonSecure state, the NS bit is RES0. */ 1984 break; 1985 default: 1986 g_assert_not_reached(); 1987 } 1988 xn = extract64(attrs, 54, 1); 1989 pxn = extract64(attrs, 53, 1); 1990 1991 /* 1992 * Note that we modified ptw->in_space earlier for NSTable, but 1993 * result->f.attrs retains a copy of the original security space. 1994 */ 1995 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn, 1996 result->f.attrs.space, out_space); 1997 } 1998 1999 if (!(result->f.prot & (1 << access_type))) { 2000 fi->type = ARMFault_Permission; 2001 goto do_fault; 2002 } 2003 2004 /* If FEAT_HAFDBS has made changes, update the PTE. */ 2005 if (new_descriptor != descriptor) { 2006 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi); 2007 if (fi->type != ARMFault_None) { 2008 goto do_fault; 2009 } 2010 /* 2011 * I_YZSVV says that if the in-memory descriptor has changed, 2012 * then we must use the information in that new value 2013 * (which might include a different output address, different 2014 * attributes, or generate a fault). 2015 * Restart the handling of the descriptor value from scratch. 2016 */ 2017 if (new_descriptor != descriptor) { 2018 descriptor = new_descriptor; 2019 goto restart_atomic_update; 2020 } 2021 } 2022 2023 result->f.attrs.space = out_space; 2024 result->f.attrs.secure = arm_space_is_secure(out_space); 2025 2026 if (regime_is_stage2(mmu_idx)) { 2027 result->cacheattrs.is_s2_format = true; 2028 result->cacheattrs.attrs = extract32(attrs, 2, 4); 2029 } else { 2030 /* Index into MAIR registers for cache attributes */ 2031 uint8_t attrindx = extract32(attrs, 2, 3); 2032 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2033 assert(attrindx <= 7); 2034 result->cacheattrs.is_s2_format = false; 2035 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2036 2037 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ 2038 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { 2039 result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */ 2040 } 2041 } 2042 2043 /* 2044 * For FEAT_LPA2 and effective DS, the SH field in the attributes 2045 * was re-purposed for output address bits. The SH attribute in 2046 * that case comes from TCR_ELx, which we extracted earlier. 2047 */ 2048 if (param.ds) { 2049 result->cacheattrs.shareability = param.sh; 2050 } else { 2051 result->cacheattrs.shareability = extract32(attrs, 8, 2); 2052 } 2053 2054 result->f.phys_addr = descaddr; 2055 result->f.lg_page_size = ctz64(page_size); 2056 return false; 2057 2058 do_translation_fault: 2059 fi->type = ARMFault_Translation; 2060 do_fault: 2061 if (fi->s1ptw) { 2062 /* Retain the existing stage 2 fi->level */ 2063 assert(fi->stage2); 2064 } else { 2065 fi->level = level; 2066 fi->stage2 = regime_is_stage2(mmu_idx); 2067 } 2068 fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx); 2069 return true; 2070 } 2071 2072 static bool get_phys_addr_pmsav5(CPUARMState *env, 2073 S1Translate *ptw, 2074 uint32_t address, 2075 MMUAccessType access_type, 2076 GetPhysAddrResult *result, 2077 ARMMMUFaultInfo *fi) 2078 { 2079 int n; 2080 uint32_t mask; 2081 uint32_t base; 2082 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2083 bool is_user = regime_is_user(env, mmu_idx); 2084 2085 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 2086 /* MPU disabled. */ 2087 result->f.phys_addr = address; 2088 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2089 return false; 2090 } 2091 2092 result->f.phys_addr = address; 2093 for (n = 7; n >= 0; n--) { 2094 base = env->cp15.c6_region[n]; 2095 if ((base & 1) == 0) { 2096 continue; 2097 } 2098 mask = 1 << ((base >> 1) & 0x1f); 2099 /* Keep this shift separate from the above to avoid an 2100 (undefined) << 32. */ 2101 mask = (mask << 1) - 1; 2102 if (((base ^ address) & ~mask) == 0) { 2103 break; 2104 } 2105 } 2106 if (n < 0) { 2107 fi->type = ARMFault_Background; 2108 return true; 2109 } 2110 2111 if (access_type == MMU_INST_FETCH) { 2112 mask = env->cp15.pmsav5_insn_ap; 2113 } else { 2114 mask = env->cp15.pmsav5_data_ap; 2115 } 2116 mask = (mask >> (n * 4)) & 0xf; 2117 switch (mask) { 2118 case 0: 2119 fi->type = ARMFault_Permission; 2120 fi->level = 1; 2121 return true; 2122 case 1: 2123 if (is_user) { 2124 fi->type = ARMFault_Permission; 2125 fi->level = 1; 2126 return true; 2127 } 2128 result->f.prot = PAGE_READ | PAGE_WRITE; 2129 break; 2130 case 2: 2131 result->f.prot = PAGE_READ; 2132 if (!is_user) { 2133 result->f.prot |= PAGE_WRITE; 2134 } 2135 break; 2136 case 3: 2137 result->f.prot = PAGE_READ | PAGE_WRITE; 2138 break; 2139 case 5: 2140 if (is_user) { 2141 fi->type = ARMFault_Permission; 2142 fi->level = 1; 2143 return true; 2144 } 2145 result->f.prot = PAGE_READ; 2146 break; 2147 case 6: 2148 result->f.prot = PAGE_READ; 2149 break; 2150 default: 2151 /* Bad permission. */ 2152 fi->type = ARMFault_Permission; 2153 fi->level = 1; 2154 return true; 2155 } 2156 result->f.prot |= PAGE_EXEC; 2157 return false; 2158 } 2159 2160 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 2161 int32_t address, uint8_t *prot) 2162 { 2163 if (!arm_feature(env, ARM_FEATURE_M)) { 2164 *prot = PAGE_READ | PAGE_WRITE; 2165 switch (address) { 2166 case 0xF0000000 ... 0xFFFFFFFF: 2167 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 2168 /* hivecs execing is ok */ 2169 *prot |= PAGE_EXEC; 2170 } 2171 break; 2172 case 0x00000000 ... 0x7FFFFFFF: 2173 *prot |= PAGE_EXEC; 2174 break; 2175 } 2176 } else { 2177 /* Default system address map for M profile cores. 2178 * The architecture specifies which regions are execute-never; 2179 * at the MPU level no other checks are defined. 2180 */ 2181 switch (address) { 2182 case 0x00000000 ... 0x1fffffff: /* ROM */ 2183 case 0x20000000 ... 0x3fffffff: /* SRAM */ 2184 case 0x60000000 ... 0x7fffffff: /* RAM */ 2185 case 0x80000000 ... 0x9fffffff: /* RAM */ 2186 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2187 break; 2188 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 2189 case 0xa0000000 ... 0xbfffffff: /* Device */ 2190 case 0xc0000000 ... 0xdfffffff: /* Device */ 2191 case 0xe0000000 ... 0xffffffff: /* System */ 2192 *prot = PAGE_READ | PAGE_WRITE; 2193 break; 2194 default: 2195 g_assert_not_reached(); 2196 } 2197 } 2198 } 2199 2200 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 2201 { 2202 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 2203 return arm_feature(env, ARM_FEATURE_M) && 2204 extract32(address, 20, 12) == 0xe00; 2205 } 2206 2207 static bool m_is_system_region(CPUARMState *env, uint32_t address) 2208 { 2209 /* 2210 * True if address is in the M profile system region 2211 * 0xe0000000 - 0xffffffff 2212 */ 2213 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 2214 } 2215 2216 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 2217 bool is_secure, bool is_user) 2218 { 2219 /* 2220 * Return true if we should use the default memory map as a 2221 * "background" region if there are no hits against any MPU regions. 2222 */ 2223 CPUARMState *env = &cpu->env; 2224 2225 if (is_user) { 2226 return false; 2227 } 2228 2229 if (arm_feature(env, ARM_FEATURE_M)) { 2230 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 2231 } 2232 2233 if (mmu_idx == ARMMMUIdx_Stage2) { 2234 return false; 2235 } 2236 2237 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 2238 } 2239 2240 static bool get_phys_addr_pmsav7(CPUARMState *env, 2241 S1Translate *ptw, 2242 uint32_t address, 2243 MMUAccessType access_type, 2244 GetPhysAddrResult *result, 2245 ARMMMUFaultInfo *fi) 2246 { 2247 ARMCPU *cpu = env_archcpu(env); 2248 int n; 2249 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2250 bool is_user = regime_is_user(env, mmu_idx); 2251 bool secure = arm_space_is_secure(ptw->in_space); 2252 2253 result->f.phys_addr = address; 2254 result->f.lg_page_size = TARGET_PAGE_BITS; 2255 result->f.prot = 0; 2256 2257 if (regime_translation_disabled(env, mmu_idx, ptw->in_space) || 2258 m_is_ppb_region(env, address)) { 2259 /* 2260 * MPU disabled or M profile PPB access: use default memory map. 2261 * The other case which uses the default memory map in the 2262 * v7M ARM ARM pseudocode is exception vector reads from the vector 2263 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 2264 * which always does a direct read using address_space_ldl(), rather 2265 * than going via this function, so we don't need to check that here. 2266 */ 2267 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2268 } else { /* MPU enabled */ 2269 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 2270 /* region search */ 2271 uint32_t base = env->pmsav7.drbar[n]; 2272 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 2273 uint32_t rmask; 2274 bool srdis = false; 2275 2276 if (!(env->pmsav7.drsr[n] & 0x1)) { 2277 continue; 2278 } 2279 2280 if (!rsize) { 2281 qemu_log_mask(LOG_GUEST_ERROR, 2282 "DRSR[%d]: Rsize field cannot be 0\n", n); 2283 continue; 2284 } 2285 rsize++; 2286 rmask = (1ull << rsize) - 1; 2287 2288 if (base & rmask) { 2289 qemu_log_mask(LOG_GUEST_ERROR, 2290 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 2291 "to DRSR region size, mask = 0x%" PRIx32 "\n", 2292 n, base, rmask); 2293 continue; 2294 } 2295 2296 if (address < base || address > base + rmask) { 2297 /* 2298 * Address not in this region. We must check whether the 2299 * region covers addresses in the same page as our address. 2300 * In that case we must not report a size that covers the 2301 * whole page for a subsequent hit against a different MPU 2302 * region or the background region, because it would result in 2303 * incorrect TLB hits for subsequent accesses to addresses that 2304 * are in this MPU region. 2305 */ 2306 if (ranges_overlap(base, rmask, 2307 address & TARGET_PAGE_MASK, 2308 TARGET_PAGE_SIZE)) { 2309 result->f.lg_page_size = 0; 2310 } 2311 continue; 2312 } 2313 2314 /* Region matched */ 2315 2316 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 2317 int i, snd; 2318 uint32_t srdis_mask; 2319 2320 rsize -= 3; /* sub region size (power of 2) */ 2321 snd = ((address - base) >> rsize) & 0x7; 2322 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 2323 2324 srdis_mask = srdis ? 0x3 : 0x0; 2325 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 2326 /* 2327 * This will check in groups of 2, 4 and then 8, whether 2328 * the subregion bits are consistent. rsize is incremented 2329 * back up to give the region size, considering consistent 2330 * adjacent subregions as one region. Stop testing if rsize 2331 * is already big enough for an entire QEMU page. 2332 */ 2333 int snd_rounded = snd & ~(i - 1); 2334 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 2335 snd_rounded + 8, i); 2336 if (srdis_mask ^ srdis_multi) { 2337 break; 2338 } 2339 srdis_mask = (srdis_mask << i) | srdis_mask; 2340 rsize++; 2341 } 2342 } 2343 if (srdis) { 2344 continue; 2345 } 2346 if (rsize < TARGET_PAGE_BITS) { 2347 result->f.lg_page_size = rsize; 2348 } 2349 break; 2350 } 2351 2352 if (n == -1) { /* no hits */ 2353 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2354 /* background fault */ 2355 fi->type = ARMFault_Background; 2356 return true; 2357 } 2358 get_phys_addr_pmsav7_default(env, mmu_idx, address, 2359 &result->f.prot); 2360 } else { /* a MPU hit! */ 2361 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 2362 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 2363 2364 if (m_is_system_region(env, address)) { 2365 /* System space is always execute never */ 2366 xn = 1; 2367 } 2368 2369 if (is_user) { /* User mode AP bit decoding */ 2370 switch (ap) { 2371 case 0: 2372 case 1: 2373 case 5: 2374 break; /* no access */ 2375 case 3: 2376 result->f.prot |= PAGE_WRITE; 2377 /* fall through */ 2378 case 2: 2379 case 6: 2380 result->f.prot |= PAGE_READ | PAGE_EXEC; 2381 break; 2382 case 7: 2383 /* for v7M, same as 6; for R profile a reserved value */ 2384 if (arm_feature(env, ARM_FEATURE_M)) { 2385 result->f.prot |= PAGE_READ | PAGE_EXEC; 2386 break; 2387 } 2388 /* fall through */ 2389 default: 2390 qemu_log_mask(LOG_GUEST_ERROR, 2391 "DRACR[%d]: Bad value for AP bits: 0x%" 2392 PRIx32 "\n", n, ap); 2393 } 2394 } else { /* Priv. mode AP bits decoding */ 2395 switch (ap) { 2396 case 0: 2397 break; /* no access */ 2398 case 1: 2399 case 2: 2400 case 3: 2401 result->f.prot |= PAGE_WRITE; 2402 /* fall through */ 2403 case 5: 2404 case 6: 2405 result->f.prot |= PAGE_READ | PAGE_EXEC; 2406 break; 2407 case 7: 2408 /* for v7M, same as 6; for R profile a reserved value */ 2409 if (arm_feature(env, ARM_FEATURE_M)) { 2410 result->f.prot |= PAGE_READ | PAGE_EXEC; 2411 break; 2412 } 2413 /* fall through */ 2414 default: 2415 qemu_log_mask(LOG_GUEST_ERROR, 2416 "DRACR[%d]: Bad value for AP bits: 0x%" 2417 PRIx32 "\n", n, ap); 2418 } 2419 } 2420 2421 /* execute never */ 2422 if (xn) { 2423 result->f.prot &= ~PAGE_EXEC; 2424 } 2425 } 2426 } 2427 2428 fi->type = ARMFault_Permission; 2429 fi->level = 1; 2430 return !(result->f.prot & (1 << access_type)); 2431 } 2432 2433 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx, 2434 uint32_t secure) 2435 { 2436 if (regime_el(env, mmu_idx) == 2) { 2437 return env->pmsav8.hprbar; 2438 } else { 2439 return env->pmsav8.rbar[secure]; 2440 } 2441 } 2442 2443 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx, 2444 uint32_t secure) 2445 { 2446 if (regime_el(env, mmu_idx) == 2) { 2447 return env->pmsav8.hprlar; 2448 } else { 2449 return env->pmsav8.rlar[secure]; 2450 } 2451 } 2452 2453 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 2454 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2455 bool secure, GetPhysAddrResult *result, 2456 ARMMMUFaultInfo *fi, uint32_t *mregion) 2457 { 2458 /* 2459 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 2460 * that a full phys-to-virt translation does). 2461 * mregion is (if not NULL) set to the region number which matched, 2462 * or -1 if no region number is returned (MPU off, address did not 2463 * hit a region, address hit in multiple regions). 2464 * If the region hit doesn't cover the entire TARGET_PAGE the address 2465 * is within, then we set the result page_size to 1 to force the 2466 * memory system to use a subpage. 2467 */ 2468 ARMCPU *cpu = env_archcpu(env); 2469 bool is_user = regime_is_user(env, mmu_idx); 2470 int n; 2471 int matchregion = -1; 2472 bool hit = false; 2473 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2474 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2475 int region_counter; 2476 2477 if (regime_el(env, mmu_idx) == 2) { 2478 region_counter = cpu->pmsav8r_hdregion; 2479 } else { 2480 region_counter = cpu->pmsav7_dregion; 2481 } 2482 2483 result->f.lg_page_size = TARGET_PAGE_BITS; 2484 result->f.phys_addr = address; 2485 result->f.prot = 0; 2486 if (mregion) { 2487 *mregion = -1; 2488 } 2489 2490 if (mmu_idx == ARMMMUIdx_Stage2) { 2491 fi->stage2 = true; 2492 } 2493 2494 /* 2495 * Unlike the ARM ARM pseudocode, we don't need to check whether this 2496 * was an exception vector read from the vector table (which is always 2497 * done using the default system address map), because those accesses 2498 * are done in arm_v7m_load_vector(), which always does a direct 2499 * read using address_space_ldl(), rather than going via this function. 2500 */ 2501 if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) { 2502 /* MPU disabled */ 2503 hit = true; 2504 } else if (m_is_ppb_region(env, address)) { 2505 hit = true; 2506 } else { 2507 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2508 hit = true; 2509 } 2510 2511 uint32_t bitmask; 2512 if (arm_feature(env, ARM_FEATURE_M)) { 2513 bitmask = 0x1f; 2514 } else { 2515 bitmask = 0x3f; 2516 fi->level = 0; 2517 } 2518 2519 for (n = region_counter - 1; n >= 0; n--) { 2520 /* region search */ 2521 /* 2522 * Note that the base address is bits [31:x] from the register 2523 * with bits [x-1:0] all zeroes, but the limit address is bits 2524 * [31:x] from the register with bits [x:0] all ones. Where x is 2525 * 5 for Cortex-M and 6 for Cortex-R 2526 */ 2527 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask; 2528 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask; 2529 2530 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) { 2531 /* Region disabled */ 2532 continue; 2533 } 2534 2535 if (address < base || address > limit) { 2536 /* 2537 * Address not in this region. We must check whether the 2538 * region covers addresses in the same page as our address. 2539 * In that case we must not report a size that covers the 2540 * whole page for a subsequent hit against a different MPU 2541 * region or the background region, because it would result in 2542 * incorrect TLB hits for subsequent accesses to addresses that 2543 * are in this MPU region. 2544 */ 2545 if (limit >= base && 2546 ranges_overlap(base, limit - base + 1, 2547 addr_page_base, 2548 TARGET_PAGE_SIZE)) { 2549 result->f.lg_page_size = 0; 2550 } 2551 continue; 2552 } 2553 2554 if (base > addr_page_base || limit < addr_page_limit) { 2555 result->f.lg_page_size = 0; 2556 } 2557 2558 if (matchregion != -1) { 2559 /* 2560 * Multiple regions match -- always a failure (unlike 2561 * PMSAv7 where highest-numbered-region wins) 2562 */ 2563 fi->type = ARMFault_Permission; 2564 if (arm_feature(env, ARM_FEATURE_M)) { 2565 fi->level = 1; 2566 } 2567 return true; 2568 } 2569 2570 matchregion = n; 2571 hit = true; 2572 } 2573 } 2574 2575 if (!hit) { 2576 if (arm_feature(env, ARM_FEATURE_M)) { 2577 fi->type = ARMFault_Background; 2578 } else { 2579 fi->type = ARMFault_Permission; 2580 } 2581 return true; 2582 } 2583 2584 if (matchregion == -1) { 2585 /* hit using the background region */ 2586 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2587 } else { 2588 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion]; 2589 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion]; 2590 uint32_t ap = extract32(matched_rbar, 1, 2); 2591 uint32_t xn = extract32(matched_rbar, 0, 1); 2592 bool pxn = false; 2593 2594 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 2595 pxn = extract32(matched_rlar, 4, 1); 2596 } 2597 2598 if (m_is_system_region(env, address)) { 2599 /* System space is always execute never */ 2600 xn = 1; 2601 } 2602 2603 if (regime_el(env, mmu_idx) == 2) { 2604 result->f.prot = simple_ap_to_rw_prot_is_user(ap, 2605 mmu_idx != ARMMMUIdx_E2); 2606 } else { 2607 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 2608 } 2609 2610 if (!arm_feature(env, ARM_FEATURE_M)) { 2611 uint8_t attrindx = extract32(matched_rlar, 1, 3); 2612 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2613 uint8_t sh = extract32(matched_rlar, 3, 2); 2614 2615 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN && 2616 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) { 2617 xn = 0x1; 2618 } 2619 2620 if ((regime_el(env, mmu_idx) == 1) && 2621 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) { 2622 pxn = 0x1; 2623 } 2624 2625 result->cacheattrs.is_s2_format = false; 2626 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2627 result->cacheattrs.shareability = sh; 2628 } 2629 2630 if (result->f.prot && !xn && !(pxn && !is_user)) { 2631 result->f.prot |= PAGE_EXEC; 2632 } 2633 2634 if (mregion) { 2635 *mregion = matchregion; 2636 } 2637 } 2638 2639 fi->type = ARMFault_Permission; 2640 if (arm_feature(env, ARM_FEATURE_M)) { 2641 fi->level = 1; 2642 } 2643 return !(result->f.prot & (1 << access_type)); 2644 } 2645 2646 static bool v8m_is_sau_exempt(CPUARMState *env, 2647 uint32_t address, MMUAccessType access_type) 2648 { 2649 /* 2650 * The architecture specifies that certain address ranges are 2651 * exempt from v8M SAU/IDAU checks. 2652 */ 2653 return 2654 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 2655 (address >= 0xe0000000 && address <= 0xe0002fff) || 2656 (address >= 0xe000e000 && address <= 0xe000efff) || 2657 (address >= 0xe002e000 && address <= 0xe002efff) || 2658 (address >= 0xe0040000 && address <= 0xe0041fff) || 2659 (address >= 0xe00ff000 && address <= 0xe00fffff); 2660 } 2661 2662 void v8m_security_lookup(CPUARMState *env, uint32_t address, 2663 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2664 bool is_secure, V8M_SAttributes *sattrs) 2665 { 2666 /* 2667 * Look up the security attributes for this address. Compare the 2668 * pseudocode SecurityCheck() function. 2669 * We assume the caller has zero-initialized *sattrs. 2670 */ 2671 ARMCPU *cpu = env_archcpu(env); 2672 int r; 2673 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 2674 int idau_region = IREGION_NOTVALID; 2675 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2676 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2677 2678 if (cpu->idau) { 2679 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 2680 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 2681 2682 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 2683 &idau_nsc); 2684 } 2685 2686 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 2687 /* 0xf0000000..0xffffffff is always S for insn fetches */ 2688 return; 2689 } 2690 2691 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 2692 sattrs->ns = !is_secure; 2693 return; 2694 } 2695 2696 if (idau_region != IREGION_NOTVALID) { 2697 sattrs->irvalid = true; 2698 sattrs->iregion = idau_region; 2699 } 2700 2701 switch (env->sau.ctrl & 3) { 2702 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 2703 break; 2704 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 2705 sattrs->ns = true; 2706 break; 2707 default: /* SAU.ENABLE == 1 */ 2708 for (r = 0; r < cpu->sau_sregion; r++) { 2709 if (env->sau.rlar[r] & 1) { 2710 uint32_t base = env->sau.rbar[r] & ~0x1f; 2711 uint32_t limit = env->sau.rlar[r] | 0x1f; 2712 2713 if (base <= address && limit >= address) { 2714 if (base > addr_page_base || limit < addr_page_limit) { 2715 sattrs->subpage = true; 2716 } 2717 if (sattrs->srvalid) { 2718 /* 2719 * If we hit in more than one region then we must report 2720 * as Secure, not NS-Callable, with no valid region 2721 * number info. 2722 */ 2723 sattrs->ns = false; 2724 sattrs->nsc = false; 2725 sattrs->sregion = 0; 2726 sattrs->srvalid = false; 2727 break; 2728 } else { 2729 if (env->sau.rlar[r] & 2) { 2730 sattrs->nsc = true; 2731 } else { 2732 sattrs->ns = true; 2733 } 2734 sattrs->srvalid = true; 2735 sattrs->sregion = r; 2736 } 2737 } else { 2738 /* 2739 * Address not in this region. We must check whether the 2740 * region covers addresses in the same page as our address. 2741 * In that case we must not report a size that covers the 2742 * whole page for a subsequent hit against a different MPU 2743 * region or the background region, because it would result 2744 * in incorrect TLB hits for subsequent accesses to 2745 * addresses that are in this MPU region. 2746 */ 2747 if (limit >= base && 2748 ranges_overlap(base, limit - base + 1, 2749 addr_page_base, 2750 TARGET_PAGE_SIZE)) { 2751 sattrs->subpage = true; 2752 } 2753 } 2754 } 2755 } 2756 break; 2757 } 2758 2759 /* 2760 * The IDAU will override the SAU lookup results if it specifies 2761 * higher security than the SAU does. 2762 */ 2763 if (!idau_ns) { 2764 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 2765 sattrs->ns = false; 2766 sattrs->nsc = idau_nsc; 2767 } 2768 } 2769 } 2770 2771 static bool get_phys_addr_pmsav8(CPUARMState *env, 2772 S1Translate *ptw, 2773 uint32_t address, 2774 MMUAccessType access_type, 2775 GetPhysAddrResult *result, 2776 ARMMMUFaultInfo *fi) 2777 { 2778 V8M_SAttributes sattrs = {}; 2779 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2780 bool secure = arm_space_is_secure(ptw->in_space); 2781 bool ret; 2782 2783 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2784 v8m_security_lookup(env, address, access_type, mmu_idx, 2785 secure, &sattrs); 2786 if (access_type == MMU_INST_FETCH) { 2787 /* 2788 * Instruction fetches always use the MMU bank and the 2789 * transaction attribute determined by the fetch address, 2790 * regardless of CPU state. This is painful for QEMU 2791 * to handle, because it would mean we need to encode 2792 * into the mmu_idx not just the (user, negpri) information 2793 * for the current security state but also that for the 2794 * other security state, which would balloon the number 2795 * of mmu_idx values needed alarmingly. 2796 * Fortunately we can avoid this because it's not actually 2797 * possible to arbitrarily execute code from memory with 2798 * the wrong security attribute: it will always generate 2799 * an exception of some kind or another, apart from the 2800 * special case of an NS CPU executing an SG instruction 2801 * in S&NSC memory. So we always just fail the translation 2802 * here and sort things out in the exception handler 2803 * (including possibly emulating an SG instruction). 2804 */ 2805 if (sattrs.ns != !secure) { 2806 if (sattrs.nsc) { 2807 fi->type = ARMFault_QEMU_NSCExec; 2808 } else { 2809 fi->type = ARMFault_QEMU_SFault; 2810 } 2811 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2812 result->f.phys_addr = address; 2813 result->f.prot = 0; 2814 return true; 2815 } 2816 } else { 2817 /* 2818 * For data accesses we always use the MMU bank indicated 2819 * by the current CPU state, but the security attributes 2820 * might downgrade a secure access to nonsecure. 2821 */ 2822 if (sattrs.ns) { 2823 result->f.attrs.secure = false; 2824 result->f.attrs.space = ARMSS_NonSecure; 2825 } else if (!secure) { 2826 /* 2827 * NS access to S memory must fault. 2828 * Architecturally we should first check whether the 2829 * MPU information for this address indicates that we 2830 * are doing an unaligned access to Device memory, which 2831 * should generate a UsageFault instead. QEMU does not 2832 * currently check for that kind of unaligned access though. 2833 * If we added it we would need to do so as a special case 2834 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2835 */ 2836 fi->type = ARMFault_QEMU_SFault; 2837 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2838 result->f.phys_addr = address; 2839 result->f.prot = 0; 2840 return true; 2841 } 2842 } 2843 } 2844 2845 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, 2846 result, fi, NULL); 2847 if (sattrs.subpage) { 2848 result->f.lg_page_size = 0; 2849 } 2850 return ret; 2851 } 2852 2853 /* 2854 * Translate from the 4-bit stage 2 representation of 2855 * memory attributes (without cache-allocation hints) to 2856 * the 8-bit representation of the stage 1 MAIR registers 2857 * (which includes allocation hints). 2858 * 2859 * ref: shared/translation/attrs/S2AttrDecode() 2860 * .../S2ConvertAttrsHints() 2861 */ 2862 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) 2863 { 2864 uint8_t hiattr = extract32(s2attrs, 2, 2); 2865 uint8_t loattr = extract32(s2attrs, 0, 2); 2866 uint8_t hihint = 0, lohint = 0; 2867 2868 if (hiattr != 0) { /* normal memory */ 2869 if (hcr & HCR_CD) { /* cache disabled */ 2870 hiattr = loattr = 1; /* non-cacheable */ 2871 } else { 2872 if (hiattr != 1) { /* Write-through or write-back */ 2873 hihint = 3; /* RW allocate */ 2874 } 2875 if (loattr != 1) { /* Write-through or write-back */ 2876 lohint = 3; /* RW allocate */ 2877 } 2878 } 2879 } 2880 2881 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 2882 } 2883 2884 /* 2885 * Combine either inner or outer cacheability attributes for normal 2886 * memory, according to table D4-42 and pseudocode procedure 2887 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 2888 * 2889 * NB: only stage 1 includes allocation hints (RW bits), leading to 2890 * some asymmetry. 2891 */ 2892 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 2893 { 2894 if (s1 == 4 || s2 == 4) { 2895 /* non-cacheable has precedence */ 2896 return 4; 2897 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 2898 /* stage 1 write-through takes precedence */ 2899 return s1; 2900 } else if (extract32(s2, 2, 2) == 2) { 2901 /* stage 2 write-through takes precedence, but the allocation hint 2902 * is still taken from stage 1 2903 */ 2904 return (2 << 2) | extract32(s1, 0, 2); 2905 } else { /* write-back */ 2906 return s1; 2907 } 2908 } 2909 2910 /* 2911 * Combine the memory type and cacheability attributes of 2912 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 2913 * combined attributes in MAIR_EL1 format. 2914 */ 2915 static uint8_t combined_attrs_nofwb(uint64_t hcr, 2916 ARMCacheAttrs s1, ARMCacheAttrs s2) 2917 { 2918 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 2919 2920 if (s2.is_s2_format) { 2921 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); 2922 } else { 2923 s2_mair_attrs = s2.attrs; 2924 } 2925 2926 s1lo = extract32(s1.attrs, 0, 4); 2927 s2lo = extract32(s2_mair_attrs, 0, 4); 2928 s1hi = extract32(s1.attrs, 4, 4); 2929 s2hi = extract32(s2_mair_attrs, 4, 4); 2930 2931 /* Combine memory type and cacheability attributes */ 2932 if (s1hi == 0 || s2hi == 0) { 2933 /* Device has precedence over normal */ 2934 if (s1lo == 0 || s2lo == 0) { 2935 /* nGnRnE has precedence over anything */ 2936 ret_attrs = 0; 2937 } else if (s1lo == 4 || s2lo == 4) { 2938 /* non-Reordering has precedence over Reordering */ 2939 ret_attrs = 4; /* nGnRE */ 2940 } else if (s1lo == 8 || s2lo == 8) { 2941 /* non-Gathering has precedence over Gathering */ 2942 ret_attrs = 8; /* nGRE */ 2943 } else { 2944 ret_attrs = 0xc; /* GRE */ 2945 } 2946 } else { /* Normal memory */ 2947 /* Outer/inner cacheability combine independently */ 2948 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 2949 | combine_cacheattr_nibble(s1lo, s2lo); 2950 } 2951 return ret_attrs; 2952 } 2953 2954 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 2955 { 2956 /* 2957 * Given the 4 bits specifying the outer or inner cacheability 2958 * in MAIR format, return a value specifying Normal Write-Back, 2959 * with the allocation and transient hints taken from the input 2960 * if the input specified some kind of cacheable attribute. 2961 */ 2962 if (attr == 0 || attr == 4) { 2963 /* 2964 * 0 == an UNPREDICTABLE encoding 2965 * 4 == Non-cacheable 2966 * Either way, force Write-Back RW allocate non-transient 2967 */ 2968 return 0xf; 2969 } 2970 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 2971 return attr | 4; 2972 } 2973 2974 /* 2975 * Combine the memory type and cacheability attributes of 2976 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 2977 * combined attributes in MAIR_EL1 format. 2978 */ 2979 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) 2980 { 2981 assert(s2.is_s2_format && !s1.is_s2_format); 2982 2983 switch (s2.attrs) { 2984 case 7: 2985 /* Use stage 1 attributes */ 2986 return s1.attrs; 2987 case 6: 2988 /* 2989 * Force Normal Write-Back. Note that if S1 is Normal cacheable 2990 * then we take the allocation hints from it; otherwise it is 2991 * RW allocate, non-transient. 2992 */ 2993 if ((s1.attrs & 0xf0) == 0) { 2994 /* S1 is Device */ 2995 return 0xff; 2996 } 2997 /* Need to check the Inner and Outer nibbles separately */ 2998 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 2999 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 3000 case 5: 3001 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 3002 if ((s1.attrs & 0xf0) == 0) { 3003 return s1.attrs; 3004 } 3005 return 0x44; 3006 case 0 ... 3: 3007 /* Force Device, of subtype specified by S2 */ 3008 return s2.attrs << 2; 3009 default: 3010 /* 3011 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 3012 * arbitrarily force Device. 3013 */ 3014 return 0; 3015 } 3016 } 3017 3018 /* 3019 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 3020 * and CombineS1S2Desc() 3021 * 3022 * @env: CPUARMState 3023 * @s1: Attributes from stage 1 walk 3024 * @s2: Attributes from stage 2 walk 3025 */ 3026 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, 3027 ARMCacheAttrs s1, ARMCacheAttrs s2) 3028 { 3029 ARMCacheAttrs ret; 3030 bool tagged = false; 3031 3032 assert(!s1.is_s2_format); 3033 ret.is_s2_format = false; 3034 ret.guarded = s1.guarded; 3035 3036 if (s1.attrs == 0xf0) { 3037 tagged = true; 3038 s1.attrs = 0xff; 3039 } 3040 3041 /* Combine shareability attributes (table D4-43) */ 3042 if (s1.shareability == 2 || s2.shareability == 2) { 3043 /* if either are outer-shareable, the result is outer-shareable */ 3044 ret.shareability = 2; 3045 } else if (s1.shareability == 3 || s2.shareability == 3) { 3046 /* if either are inner-shareable, the result is inner-shareable */ 3047 ret.shareability = 3; 3048 } else { 3049 /* both non-shareable */ 3050 ret.shareability = 0; 3051 } 3052 3053 /* Combine memory type and cacheability attributes */ 3054 if (hcr & HCR_FWB) { 3055 ret.attrs = combined_attrs_fwb(s1, s2); 3056 } else { 3057 ret.attrs = combined_attrs_nofwb(hcr, s1, s2); 3058 } 3059 3060 /* 3061 * Any location for which the resultant memory type is any 3062 * type of Device memory is always treated as Outer Shareable. 3063 * Any location for which the resultant memory type is Normal 3064 * Inner Non-cacheable, Outer Non-cacheable is always treated 3065 * as Outer Shareable. 3066 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 3067 */ 3068 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 3069 ret.shareability = 2; 3070 } 3071 3072 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 3073 if (tagged && ret.attrs == 0xff) { 3074 ret.attrs = 0xf0; 3075 } 3076 3077 return ret; 3078 } 3079 3080 /* 3081 * MMU disabled. S1 addresses within aa64 translation regimes are 3082 * still checked for bounds -- see AArch64.S1DisabledOutput(). 3083 */ 3084 static bool get_phys_addr_disabled(CPUARMState *env, 3085 S1Translate *ptw, 3086 target_ulong address, 3087 MMUAccessType access_type, 3088 GetPhysAddrResult *result, 3089 ARMMMUFaultInfo *fi) 3090 { 3091 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3092 uint8_t memattr = 0x00; /* Device nGnRnE */ 3093 uint8_t shareability = 0; /* non-shareable */ 3094 int r_el; 3095 3096 switch (mmu_idx) { 3097 case ARMMMUIdx_Stage2: 3098 case ARMMMUIdx_Stage2_S: 3099 case ARMMMUIdx_Phys_S: 3100 case ARMMMUIdx_Phys_NS: 3101 case ARMMMUIdx_Phys_Root: 3102 case ARMMMUIdx_Phys_Realm: 3103 break; 3104 3105 default: 3106 r_el = regime_el(env, mmu_idx); 3107 if (arm_el_is_aa64(env, r_el)) { 3108 int pamax = arm_pamax(env_archcpu(env)); 3109 uint64_t tcr = env->cp15.tcr_el[r_el]; 3110 int addrtop, tbi; 3111 3112 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 3113 if (access_type == MMU_INST_FETCH) { 3114 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 3115 } 3116 tbi = (tbi >> extract64(address, 55, 1)) & 1; 3117 addrtop = (tbi ? 55 : 63); 3118 3119 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 3120 fi->type = ARMFault_AddressSize; 3121 fi->level = 0; 3122 fi->stage2 = false; 3123 return 1; 3124 } 3125 3126 /* 3127 * When TBI is disabled, we've just validated that all of the 3128 * bits above PAMax are zero, so logically we only need to 3129 * clear the top byte for TBI. But it's clearer to follow 3130 * the pseudocode set of addrdesc.paddress. 3131 */ 3132 address = extract64(address, 0, 52); 3133 } 3134 3135 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 3136 if (r_el == 1) { 3137 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 3138 if (hcr & HCR_DC) { 3139 if (hcr & HCR_DCT) { 3140 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 3141 } else { 3142 memattr = 0xff; /* Normal, WB, RWA */ 3143 } 3144 } 3145 } 3146 if (memattr == 0) { 3147 if (access_type == MMU_INST_FETCH) { 3148 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 3149 memattr = 0xee; /* Normal, WT, RA, NT */ 3150 } else { 3151 memattr = 0x44; /* Normal, NC, No */ 3152 } 3153 } 3154 shareability = 2; /* outer shareable */ 3155 } 3156 result->cacheattrs.is_s2_format = false; 3157 break; 3158 } 3159 3160 result->f.phys_addr = address; 3161 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 3162 result->f.lg_page_size = TARGET_PAGE_BITS; 3163 result->cacheattrs.shareability = shareability; 3164 result->cacheattrs.attrs = memattr; 3165 return false; 3166 } 3167 3168 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, 3169 target_ulong address, 3170 MMUAccessType access_type, 3171 GetPhysAddrResult *result, 3172 ARMMMUFaultInfo *fi) 3173 { 3174 hwaddr ipa; 3175 int s1_prot, s1_lgpgsz; 3176 ARMSecuritySpace in_space = ptw->in_space; 3177 bool ret, ipa_secure; 3178 ARMCacheAttrs cacheattrs1; 3179 ARMSecuritySpace ipa_space; 3180 uint64_t hcr; 3181 3182 ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi); 3183 3184 /* If S1 fails, return early. */ 3185 if (ret) { 3186 return ret; 3187 } 3188 3189 ipa = result->f.phys_addr; 3190 ipa_secure = result->f.attrs.secure; 3191 ipa_space = result->f.attrs.space; 3192 3193 ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; 3194 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3195 ptw->in_space = ipa_space; 3196 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx); 3197 3198 /* 3199 * S1 is done, now do S2 translation. 3200 * Save the stage1 results so that we may merge prot and cacheattrs later. 3201 */ 3202 s1_prot = result->f.prot; 3203 s1_lgpgsz = result->f.lg_page_size; 3204 cacheattrs1 = result->cacheattrs; 3205 memset(result, 0, sizeof(*result)); 3206 3207 ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi); 3208 fi->s2addr = ipa; 3209 3210 /* Combine the S1 and S2 perms. */ 3211 result->f.prot &= s1_prot; 3212 3213 /* If S2 fails, return early. */ 3214 if (ret) { 3215 return ret; 3216 } 3217 3218 /* 3219 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE, 3220 * this means "don't put this in the TLB"; in this case, return a 3221 * result with lg_page_size == 0 to achieve that. Otherwise, 3222 * use the maximum of the S1 & S2 page size, so that invalidation 3223 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though 3224 * we know the combined result permissions etc only cover the minimum 3225 * of the S1 and S2 page size, because we know that the common TLB code 3226 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE, 3227 * and passing a larger page size value only affects invalidations.) 3228 */ 3229 if (result->f.lg_page_size < TARGET_PAGE_BITS || 3230 s1_lgpgsz < TARGET_PAGE_BITS) { 3231 result->f.lg_page_size = 0; 3232 } else if (result->f.lg_page_size < s1_lgpgsz) { 3233 result->f.lg_page_size = s1_lgpgsz; 3234 } 3235 3236 /* Combine the S1 and S2 cache attributes. */ 3237 hcr = arm_hcr_el2_eff_secstate(env, in_space); 3238 if (hcr & HCR_DC) { 3239 /* 3240 * HCR.DC forces the first stage attributes to 3241 * Normal Non-Shareable, 3242 * Inner Write-Back Read-Allocate Write-Allocate, 3243 * Outer Write-Back Read-Allocate Write-Allocate. 3244 * Do not overwrite Tagged within attrs. 3245 */ 3246 if (cacheattrs1.attrs != 0xf0) { 3247 cacheattrs1.attrs = 0xff; 3248 } 3249 cacheattrs1.shareability = 0; 3250 } 3251 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, 3252 result->cacheattrs); 3253 3254 /* 3255 * Check if IPA translates to secure or non-secure PA space. 3256 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. 3257 */ 3258 if (in_space == ARMSS_Secure) { 3259 result->f.attrs.secure = 3260 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) 3261 && (ipa_secure 3262 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))); 3263 result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure); 3264 } 3265 3266 return false; 3267 } 3268 3269 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 3270 target_ulong address, 3271 MMUAccessType access_type, 3272 GetPhysAddrResult *result, 3273 ARMMMUFaultInfo *fi) 3274 { 3275 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3276 ARMMMUIdx s1_mmu_idx; 3277 3278 /* 3279 * The page table entries may downgrade Secure to NonSecure, but 3280 * cannot upgrade a NonSecure translation regime's attributes 3281 * to Secure or Realm. 3282 */ 3283 result->f.attrs.space = ptw->in_space; 3284 result->f.attrs.secure = arm_space_is_secure(ptw->in_space); 3285 3286 switch (mmu_idx) { 3287 case ARMMMUIdx_Phys_S: 3288 case ARMMMUIdx_Phys_NS: 3289 case ARMMMUIdx_Phys_Root: 3290 case ARMMMUIdx_Phys_Realm: 3291 /* Checking Phys early avoids special casing later vs regime_el. */ 3292 return get_phys_addr_disabled(env, ptw, address, access_type, 3293 result, fi); 3294 3295 case ARMMMUIdx_Stage1_E0: 3296 case ARMMMUIdx_Stage1_E1: 3297 case ARMMMUIdx_Stage1_E1_PAN: 3298 /* 3299 * First stage lookup uses second stage for ptw; only 3300 * Secure has both S and NS IPA and starts with Stage2_S. 3301 */ 3302 ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ? 3303 ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3304 break; 3305 3306 case ARMMMUIdx_Stage2: 3307 case ARMMMUIdx_Stage2_S: 3308 /* 3309 * Second stage lookup uses physical for ptw; whether this is S or 3310 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for 3311 * the Secure EL2&0 regime. 3312 */ 3313 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx); 3314 break; 3315 3316 case ARMMMUIdx_E10_0: 3317 s1_mmu_idx = ARMMMUIdx_Stage1_E0; 3318 goto do_twostage; 3319 case ARMMMUIdx_E10_1: 3320 s1_mmu_idx = ARMMMUIdx_Stage1_E1; 3321 goto do_twostage; 3322 case ARMMMUIdx_E10_1_PAN: 3323 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3324 do_twostage: 3325 /* 3326 * Call ourselves recursively to do the stage 1 and then stage 2 3327 * translations if mmu_idx is a two-stage regime, and EL2 present. 3328 * Otherwise, a stage1+stage2 translation is just stage 1. 3329 */ 3330 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; 3331 if (arm_feature(env, ARM_FEATURE_EL2) && 3332 !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) { 3333 return get_phys_addr_twostage(env, ptw, address, access_type, 3334 result, fi); 3335 } 3336 /* fall through */ 3337 3338 default: 3339 /* Single stage uses physical for ptw. */ 3340 ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space); 3341 break; 3342 } 3343 3344 result->f.attrs.user = regime_is_user(env, mmu_idx); 3345 3346 /* 3347 * Fast Context Switch Extension. This doesn't exist at all in v8. 3348 * In v7 and earlier it affects all stage 1 translations. 3349 */ 3350 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 3351 && !arm_feature(env, ARM_FEATURE_V8)) { 3352 if (regime_el(env, mmu_idx) == 3) { 3353 address += env->cp15.fcseidr_s; 3354 } else { 3355 address += env->cp15.fcseidr_ns; 3356 } 3357 } 3358 3359 if (arm_feature(env, ARM_FEATURE_PMSA)) { 3360 bool ret; 3361 result->f.lg_page_size = TARGET_PAGE_BITS; 3362 3363 if (arm_feature(env, ARM_FEATURE_V8)) { 3364 /* PMSAv8 */ 3365 ret = get_phys_addr_pmsav8(env, ptw, address, access_type, 3366 result, fi); 3367 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3368 /* PMSAv7 */ 3369 ret = get_phys_addr_pmsav7(env, ptw, address, access_type, 3370 result, fi); 3371 } else { 3372 /* Pre-v7 MPU */ 3373 ret = get_phys_addr_pmsav5(env, ptw, address, access_type, 3374 result, fi); 3375 } 3376 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 3377 " mmu_idx %u -> %s (prot %c%c%c)\n", 3378 access_type == MMU_DATA_LOAD ? "reading" : 3379 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 3380 (uint32_t)address, mmu_idx, 3381 ret ? "Miss" : "Hit", 3382 result->f.prot & PAGE_READ ? 'r' : '-', 3383 result->f.prot & PAGE_WRITE ? 'w' : '-', 3384 result->f.prot & PAGE_EXEC ? 'x' : '-'); 3385 3386 return ret; 3387 } 3388 3389 /* Definitely a real MMU, not an MPU */ 3390 3391 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 3392 return get_phys_addr_disabled(env, ptw, address, access_type, 3393 result, fi); 3394 } 3395 3396 if (regime_using_lpae_format(env, mmu_idx)) { 3397 return get_phys_addr_lpae(env, ptw, address, access_type, result, fi); 3398 } else if (arm_feature(env, ARM_FEATURE_V7) || 3399 regime_sctlr(env, mmu_idx) & SCTLR_XP) { 3400 return get_phys_addr_v6(env, ptw, address, access_type, result, fi); 3401 } else { 3402 return get_phys_addr_v5(env, ptw, address, access_type, result, fi); 3403 } 3404 } 3405 3406 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 3407 target_ulong address, 3408 MMUAccessType access_type, 3409 GetPhysAddrResult *result, 3410 ARMMMUFaultInfo *fi) 3411 { 3412 if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) { 3413 return true; 3414 } 3415 if (!granule_protection_check(env, result->f.phys_addr, 3416 result->f.attrs.space, fi)) { 3417 fi->type = ARMFault_GPCFOnOutput; 3418 return true; 3419 } 3420 return false; 3421 } 3422 3423 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address, 3424 MMUAccessType access_type, 3425 ARMMMUIdx mmu_idx, ARMSecuritySpace space, 3426 GetPhysAddrResult *result, 3427 ARMMMUFaultInfo *fi) 3428 { 3429 S1Translate ptw = { 3430 .in_mmu_idx = mmu_idx, 3431 .in_space = space, 3432 }; 3433 return get_phys_addr_nogpc(env, &ptw, address, access_type, result, fi); 3434 } 3435 3436 bool get_phys_addr(CPUARMState *env, target_ulong address, 3437 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3438 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 3439 { 3440 S1Translate ptw = { 3441 .in_mmu_idx = mmu_idx, 3442 }; 3443 ARMSecuritySpace ss; 3444 3445 switch (mmu_idx) { 3446 case ARMMMUIdx_E10_0: 3447 case ARMMMUIdx_E10_1: 3448 case ARMMMUIdx_E10_1_PAN: 3449 case ARMMMUIdx_E20_0: 3450 case ARMMMUIdx_E20_2: 3451 case ARMMMUIdx_E20_2_PAN: 3452 case ARMMMUIdx_Stage1_E0: 3453 case ARMMMUIdx_Stage1_E1: 3454 case ARMMMUIdx_Stage1_E1_PAN: 3455 case ARMMMUIdx_E2: 3456 ss = arm_security_space_below_el3(env); 3457 break; 3458 case ARMMMUIdx_Stage2: 3459 /* 3460 * For Secure EL2, we need this index to be NonSecure; 3461 * otherwise this will already be NonSecure or Realm. 3462 */ 3463 ss = arm_security_space_below_el3(env); 3464 if (ss == ARMSS_Secure) { 3465 ss = ARMSS_NonSecure; 3466 } 3467 break; 3468 case ARMMMUIdx_Phys_NS: 3469 case ARMMMUIdx_MPrivNegPri: 3470 case ARMMMUIdx_MUserNegPri: 3471 case ARMMMUIdx_MPriv: 3472 case ARMMMUIdx_MUser: 3473 ss = ARMSS_NonSecure; 3474 break; 3475 case ARMMMUIdx_Stage2_S: 3476 case ARMMMUIdx_Phys_S: 3477 case ARMMMUIdx_MSPrivNegPri: 3478 case ARMMMUIdx_MSUserNegPri: 3479 case ARMMMUIdx_MSPriv: 3480 case ARMMMUIdx_MSUser: 3481 ss = ARMSS_Secure; 3482 break; 3483 case ARMMMUIdx_E3: 3484 if (arm_feature(env, ARM_FEATURE_AARCH64) && 3485 cpu_isar_feature(aa64_rme, env_archcpu(env))) { 3486 ss = ARMSS_Root; 3487 } else { 3488 ss = ARMSS_Secure; 3489 } 3490 break; 3491 case ARMMMUIdx_Phys_Root: 3492 ss = ARMSS_Root; 3493 break; 3494 case ARMMMUIdx_Phys_Realm: 3495 ss = ARMSS_Realm; 3496 break; 3497 default: 3498 g_assert_not_reached(); 3499 } 3500 3501 ptw.in_space = ss; 3502 return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi); 3503 } 3504 3505 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 3506 MemTxAttrs *attrs) 3507 { 3508 ARMCPU *cpu = ARM_CPU(cs); 3509 CPUARMState *env = &cpu->env; 3510 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 3511 ARMSecuritySpace ss = arm_security_space(env); 3512 S1Translate ptw = { 3513 .in_mmu_idx = mmu_idx, 3514 .in_space = ss, 3515 .in_debug = true, 3516 }; 3517 GetPhysAddrResult res = {}; 3518 ARMMMUFaultInfo fi = {}; 3519 bool ret; 3520 3521 ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi); 3522 *attrs = res.f.attrs; 3523 3524 if (ret) { 3525 return -1; 3526 } 3527 return res.f.phys_addr; 3528 } 3529