1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "exec/exec-all.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "idau.h" 16 17 18 typedef struct S1Translate { 19 ARMMMUIdx in_mmu_idx; 20 bool in_secure; 21 bool in_debug; 22 bool out_secure; 23 bool out_be; 24 hwaddr out_phys; 25 void *out_host; 26 } S1Translate; 27 28 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 29 uint64_t address, 30 MMUAccessType access_type, bool s1_is_el0, 31 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 32 __attribute__((nonnull)); 33 34 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw, 35 target_ulong address, 36 MMUAccessType access_type, 37 GetPhysAddrResult *result, 38 ARMMMUFaultInfo *fi) 39 __attribute__((nonnull)); 40 41 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 42 static const uint8_t pamax_map[] = { 43 [0] = 32, 44 [1] = 36, 45 [2] = 40, 46 [3] = 42, 47 [4] = 44, 48 [5] = 48, 49 [6] = 52, 50 }; 51 52 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 53 unsigned int arm_pamax(ARMCPU *cpu) 54 { 55 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 56 unsigned int parange = 57 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 58 59 /* 60 * id_aa64mmfr0 is a read-only register so values outside of the 61 * supported mappings can be considered an implementation error. 62 */ 63 assert(parange < ARRAY_SIZE(pamax_map)); 64 return pamax_map[parange]; 65 } 66 67 /* 68 * In machvirt_init, we call arm_pamax on a cpu that is not fully 69 * initialized, so we can't rely on the propagation done in realize. 70 */ 71 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) || 72 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) { 73 /* v7 with LPAE */ 74 return 40; 75 } 76 /* Anything else */ 77 return 32; 78 } 79 80 /* 81 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 82 */ 83 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 84 { 85 switch (mmu_idx) { 86 case ARMMMUIdx_E10_0: 87 return ARMMMUIdx_Stage1_E0; 88 case ARMMMUIdx_E10_1: 89 return ARMMMUIdx_Stage1_E1; 90 case ARMMMUIdx_E10_1_PAN: 91 return ARMMMUIdx_Stage1_E1_PAN; 92 default: 93 return mmu_idx; 94 } 95 } 96 97 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 98 { 99 return stage_1_mmu_idx(arm_mmu_idx(env)); 100 } 101 102 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 103 { 104 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 105 } 106 107 static bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 108 { 109 switch (mmu_idx) { 110 case ARMMMUIdx_E20_0: 111 case ARMMMUIdx_Stage1_E0: 112 case ARMMMUIdx_MUser: 113 case ARMMMUIdx_MSUser: 114 case ARMMMUIdx_MUserNegPri: 115 case ARMMMUIdx_MSUserNegPri: 116 return true; 117 default: 118 return false; 119 case ARMMMUIdx_E10_0: 120 case ARMMMUIdx_E10_1: 121 case ARMMMUIdx_E10_1_PAN: 122 g_assert_not_reached(); 123 } 124 } 125 126 /* Return the TTBR associated with this translation regime */ 127 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 128 { 129 if (mmu_idx == ARMMMUIdx_Stage2) { 130 return env->cp15.vttbr_el2; 131 } 132 if (mmu_idx == ARMMMUIdx_Stage2_S) { 133 return env->cp15.vsttbr_el2; 134 } 135 if (ttbrn == 0) { 136 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 137 } else { 138 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 139 } 140 } 141 142 /* Return true if the specified stage of address translation is disabled */ 143 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, 144 bool is_secure) 145 { 146 uint64_t hcr_el2; 147 148 if (arm_feature(env, ARM_FEATURE_M)) { 149 switch (env->v7m.mpu_ctrl[is_secure] & 150 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 151 case R_V7M_MPU_CTRL_ENABLE_MASK: 152 /* Enabled, but not for HardFault and NMI */ 153 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 154 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 155 /* Enabled for all cases */ 156 return false; 157 case 0: 158 default: 159 /* 160 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 161 * we warned about that in armv7m_nvic.c when the guest set it. 162 */ 163 return true; 164 } 165 } 166 167 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure); 168 169 switch (mmu_idx) { 170 case ARMMMUIdx_Stage2: 171 case ARMMMUIdx_Stage2_S: 172 /* HCR.DC means HCR.VM behaves as 1 */ 173 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 174 175 case ARMMMUIdx_E10_0: 176 case ARMMMUIdx_E10_1: 177 case ARMMMUIdx_E10_1_PAN: 178 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ 179 if (hcr_el2 & HCR_TGE) { 180 return true; 181 } 182 break; 183 184 case ARMMMUIdx_Stage1_E0: 185 case ARMMMUIdx_Stage1_E1: 186 case ARMMMUIdx_Stage1_E1_PAN: 187 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 188 if (hcr_el2 & HCR_DC) { 189 return true; 190 } 191 break; 192 193 case ARMMMUIdx_E20_0: 194 case ARMMMUIdx_E20_2: 195 case ARMMMUIdx_E20_2_PAN: 196 case ARMMMUIdx_E2: 197 case ARMMMUIdx_E3: 198 break; 199 200 case ARMMMUIdx_Phys_NS: 201 case ARMMMUIdx_Phys_S: 202 /* No translation for physical address spaces. */ 203 return true; 204 205 default: 206 g_assert_not_reached(); 207 } 208 209 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 210 } 211 212 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) 213 { 214 /* 215 * For an S1 page table walk, the stage 1 attributes are always 216 * some form of "this is Normal memory". The combined S1+S2 217 * attributes are therefore only Device if stage 2 specifies Device. 218 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 219 * ie when cacheattrs.attrs bits [3:2] are 0b00. 220 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 221 * when cacheattrs.attrs bit [2] is 0. 222 */ 223 if (hcr & HCR_FWB) { 224 return (attrs & 0x4) == 0; 225 } else { 226 return (attrs & 0xc) == 0; 227 } 228 } 229 230 /* Translate a S1 pagetable walk through S2 if needed. */ 231 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, 232 hwaddr addr, ARMMMUFaultInfo *fi) 233 { 234 bool is_secure = ptw->in_secure; 235 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 236 ARMMMUIdx s2_mmu_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 237 bool s2_phys = false; 238 uint8_t pte_attrs; 239 bool pte_secure; 240 241 if (!arm_mmu_idx_is_stage1_of_2(mmu_idx) 242 || regime_translation_disabled(env, s2_mmu_idx, is_secure)) { 243 s2_mmu_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 244 s2_phys = true; 245 } 246 247 if (unlikely(ptw->in_debug)) { 248 /* 249 * From gdbstub, do not use softmmu so that we don't modify the 250 * state of the cpu at all, including softmmu tlb contents. 251 */ 252 if (s2_phys) { 253 ptw->out_phys = addr; 254 pte_attrs = 0; 255 pte_secure = is_secure; 256 } else { 257 S1Translate s2ptw = { 258 .in_mmu_idx = s2_mmu_idx, 259 .in_secure = is_secure, 260 .in_debug = true, 261 }; 262 GetPhysAddrResult s2 = { }; 263 if (!get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD, 264 false, &s2, fi)) { 265 goto fail; 266 } 267 ptw->out_phys = s2.f.phys_addr; 268 pte_attrs = s2.cacheattrs.attrs; 269 pte_secure = s2.f.attrs.secure; 270 } 271 ptw->out_host = NULL; 272 } else { 273 CPUTLBEntryFull *full; 274 int flags; 275 276 env->tlb_fi = fi; 277 flags = probe_access_full(env, addr, MMU_DATA_LOAD, 278 arm_to_core_mmu_idx(s2_mmu_idx), 279 true, &ptw->out_host, &full, 0); 280 env->tlb_fi = NULL; 281 282 if (unlikely(flags & TLB_INVALID_MASK)) { 283 goto fail; 284 } 285 ptw->out_phys = full->phys_addr; 286 pte_attrs = full->pte_attrs; 287 pte_secure = full->attrs.secure; 288 } 289 290 if (!s2_phys) { 291 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure); 292 293 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { 294 /* 295 * PTW set and S1 walk touched S2 Device memory: 296 * generate Permission fault. 297 */ 298 fi->type = ARMFault_Permission; 299 fi->s2addr = addr; 300 fi->stage2 = true; 301 fi->s1ptw = true; 302 fi->s1ns = !is_secure; 303 return false; 304 } 305 } 306 307 /* Check if page table walk is to secure or non-secure PA space. */ 308 ptw->out_secure = (is_secure 309 && !(pte_secure 310 ? env->cp15.vstcr_el2 & VSTCR_SW 311 : env->cp15.vtcr_el2 & VTCR_NSW)); 312 ptw->out_be = regime_translation_big_endian(env, mmu_idx); 313 return true; 314 315 fail: 316 assert(fi->type != ARMFault_None); 317 fi->s2addr = addr; 318 fi->stage2 = true; 319 fi->s1ptw = true; 320 fi->s1ns = !is_secure; 321 return false; 322 } 323 324 /* All loads done in the course of a page table walk go through here. */ 325 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, hwaddr addr, 326 ARMMMUFaultInfo *fi) 327 { 328 CPUState *cs = env_cpu(env); 329 uint32_t data; 330 331 if (!S1_ptw_translate(env, ptw, addr, fi)) { 332 /* Failure. */ 333 assert(fi->s1ptw); 334 return 0; 335 } 336 337 if (likely(ptw->out_host)) { 338 /* Page tables are in RAM, and we have the host address. */ 339 if (ptw->out_be) { 340 data = ldl_be_p(ptw->out_host); 341 } else { 342 data = ldl_le_p(ptw->out_host); 343 } 344 } else { 345 /* Page tables are in MMIO. */ 346 MemTxAttrs attrs = { .secure = ptw->out_secure }; 347 AddressSpace *as = arm_addressspace(cs, attrs); 348 MemTxResult result = MEMTX_OK; 349 350 if (ptw->out_be) { 351 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); 352 } else { 353 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); 354 } 355 if (unlikely(result != MEMTX_OK)) { 356 fi->type = ARMFault_SyncExternalOnWalk; 357 fi->ea = arm_extabort_type(result); 358 return 0; 359 } 360 } 361 return data; 362 } 363 364 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, hwaddr addr, 365 ARMMMUFaultInfo *fi) 366 { 367 CPUState *cs = env_cpu(env); 368 uint64_t data; 369 370 if (!S1_ptw_translate(env, ptw, addr, fi)) { 371 /* Failure. */ 372 assert(fi->s1ptw); 373 return 0; 374 } 375 376 if (likely(ptw->out_host)) { 377 /* Page tables are in RAM, and we have the host address. */ 378 if (ptw->out_be) { 379 data = ldq_be_p(ptw->out_host); 380 } else { 381 data = ldq_le_p(ptw->out_host); 382 } 383 } else { 384 /* Page tables are in MMIO. */ 385 MemTxAttrs attrs = { .secure = ptw->out_secure }; 386 AddressSpace *as = arm_addressspace(cs, attrs); 387 MemTxResult result = MEMTX_OK; 388 389 if (ptw->out_be) { 390 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 391 } else { 392 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 393 } 394 if (unlikely(result != MEMTX_OK)) { 395 fi->type = ARMFault_SyncExternalOnWalk; 396 fi->ea = arm_extabort_type(result); 397 return 0; 398 } 399 } 400 return data; 401 } 402 403 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 404 uint32_t *table, uint32_t address) 405 { 406 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 407 uint64_t tcr = regime_tcr(env, mmu_idx); 408 int maskshift = extract32(tcr, 0, 3); 409 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 410 uint32_t base_mask; 411 412 if (address & mask) { 413 if (tcr & TTBCR_PD1) { 414 /* Translation table walk disabled for TTBR1 */ 415 return false; 416 } 417 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 418 } else { 419 if (tcr & TTBCR_PD0) { 420 /* Translation table walk disabled for TTBR0 */ 421 return false; 422 } 423 base_mask = ~((uint32_t)0x3fffu >> maskshift); 424 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 425 } 426 *table |= (address >> 18) & 0x3ffc; 427 return true; 428 } 429 430 /* 431 * Translate section/page access permissions to page R/W protection flags 432 * @env: CPUARMState 433 * @mmu_idx: MMU index indicating required translation regime 434 * @ap: The 3-bit access permissions (AP[2:0]) 435 * @domain_prot: The 2-bit domain access permissions 436 */ 437 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 438 int ap, int domain_prot) 439 { 440 bool is_user = regime_is_user(env, mmu_idx); 441 442 if (domain_prot == 3) { 443 return PAGE_READ | PAGE_WRITE; 444 } 445 446 switch (ap) { 447 case 0: 448 if (arm_feature(env, ARM_FEATURE_V7)) { 449 return 0; 450 } 451 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 452 case SCTLR_S: 453 return is_user ? 0 : PAGE_READ; 454 case SCTLR_R: 455 return PAGE_READ; 456 default: 457 return 0; 458 } 459 case 1: 460 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 461 case 2: 462 if (is_user) { 463 return PAGE_READ; 464 } else { 465 return PAGE_READ | PAGE_WRITE; 466 } 467 case 3: 468 return PAGE_READ | PAGE_WRITE; 469 case 4: /* Reserved. */ 470 return 0; 471 case 5: 472 return is_user ? 0 : PAGE_READ; 473 case 6: 474 return PAGE_READ; 475 case 7: 476 if (!arm_feature(env, ARM_FEATURE_V6K)) { 477 return 0; 478 } 479 return PAGE_READ; 480 default: 481 g_assert_not_reached(); 482 } 483 } 484 485 /* 486 * Translate section/page access permissions to page R/W protection flags. 487 * @ap: The 2-bit simple AP (AP[2:1]) 488 * @is_user: TRUE if accessing from PL0 489 */ 490 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 491 { 492 switch (ap) { 493 case 0: 494 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 495 case 1: 496 return PAGE_READ | PAGE_WRITE; 497 case 2: 498 return is_user ? 0 : PAGE_READ; 499 case 3: 500 return PAGE_READ; 501 default: 502 g_assert_not_reached(); 503 } 504 } 505 506 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 507 { 508 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 509 } 510 511 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, 512 uint32_t address, MMUAccessType access_type, 513 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 514 { 515 int level = 1; 516 uint32_t table; 517 uint32_t desc; 518 int type; 519 int ap; 520 int domain = 0; 521 int domain_prot; 522 hwaddr phys_addr; 523 uint32_t dacr; 524 525 /* Pagetable walk. */ 526 /* Lookup l1 descriptor. */ 527 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { 528 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 529 fi->type = ARMFault_Translation; 530 goto do_fault; 531 } 532 desc = arm_ldl_ptw(env, ptw, table, fi); 533 if (fi->type != ARMFault_None) { 534 goto do_fault; 535 } 536 type = (desc & 3); 537 domain = (desc >> 5) & 0x0f; 538 if (regime_el(env, ptw->in_mmu_idx) == 1) { 539 dacr = env->cp15.dacr_ns; 540 } else { 541 dacr = env->cp15.dacr_s; 542 } 543 domain_prot = (dacr >> (domain * 2)) & 3; 544 if (type == 0) { 545 /* Section translation fault. */ 546 fi->type = ARMFault_Translation; 547 goto do_fault; 548 } 549 if (type != 2) { 550 level = 2; 551 } 552 if (domain_prot == 0 || domain_prot == 2) { 553 fi->type = ARMFault_Domain; 554 goto do_fault; 555 } 556 if (type == 2) { 557 /* 1Mb section. */ 558 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 559 ap = (desc >> 10) & 3; 560 result->f.lg_page_size = 20; /* 1MB */ 561 } else { 562 /* Lookup l2 entry. */ 563 if (type == 1) { 564 /* Coarse pagetable. */ 565 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 566 } else { 567 /* Fine pagetable. */ 568 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 569 } 570 desc = arm_ldl_ptw(env, ptw, table, fi); 571 if (fi->type != ARMFault_None) { 572 goto do_fault; 573 } 574 switch (desc & 3) { 575 case 0: /* Page translation fault. */ 576 fi->type = ARMFault_Translation; 577 goto do_fault; 578 case 1: /* 64k page. */ 579 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 580 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 581 result->f.lg_page_size = 16; 582 break; 583 case 2: /* 4k page. */ 584 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 585 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 586 result->f.lg_page_size = 12; 587 break; 588 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 589 if (type == 1) { 590 /* ARMv6/XScale extended small page format */ 591 if (arm_feature(env, ARM_FEATURE_XSCALE) 592 || arm_feature(env, ARM_FEATURE_V6)) { 593 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 594 result->f.lg_page_size = 12; 595 } else { 596 /* 597 * UNPREDICTABLE in ARMv5; we choose to take a 598 * page translation fault. 599 */ 600 fi->type = ARMFault_Translation; 601 goto do_fault; 602 } 603 } else { 604 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 605 result->f.lg_page_size = 10; 606 } 607 ap = (desc >> 4) & 3; 608 break; 609 default: 610 /* Never happens, but compiler isn't smart enough to tell. */ 611 g_assert_not_reached(); 612 } 613 } 614 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); 615 result->f.prot |= result->f.prot ? PAGE_EXEC : 0; 616 if (!(result->f.prot & (1 << access_type))) { 617 /* Access permission fault. */ 618 fi->type = ARMFault_Permission; 619 goto do_fault; 620 } 621 result->f.phys_addr = phys_addr; 622 return false; 623 do_fault: 624 fi->domain = domain; 625 fi->level = level; 626 return true; 627 } 628 629 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, 630 uint32_t address, MMUAccessType access_type, 631 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 632 { 633 ARMCPU *cpu = env_archcpu(env); 634 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 635 int level = 1; 636 uint32_t table; 637 uint32_t desc; 638 uint32_t xn; 639 uint32_t pxn = 0; 640 int type; 641 int ap; 642 int domain = 0; 643 int domain_prot; 644 hwaddr phys_addr; 645 uint32_t dacr; 646 bool ns; 647 648 /* Pagetable walk. */ 649 /* Lookup l1 descriptor. */ 650 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 651 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 652 fi->type = ARMFault_Translation; 653 goto do_fault; 654 } 655 desc = arm_ldl_ptw(env, ptw, table, fi); 656 if (fi->type != ARMFault_None) { 657 goto do_fault; 658 } 659 type = (desc & 3); 660 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 661 /* Section translation fault, or attempt to use the encoding 662 * which is Reserved on implementations without PXN. 663 */ 664 fi->type = ARMFault_Translation; 665 goto do_fault; 666 } 667 if ((type == 1) || !(desc & (1 << 18))) { 668 /* Page or Section. */ 669 domain = (desc >> 5) & 0x0f; 670 } 671 if (regime_el(env, mmu_idx) == 1) { 672 dacr = env->cp15.dacr_ns; 673 } else { 674 dacr = env->cp15.dacr_s; 675 } 676 if (type == 1) { 677 level = 2; 678 } 679 domain_prot = (dacr >> (domain * 2)) & 3; 680 if (domain_prot == 0 || domain_prot == 2) { 681 /* Section or Page domain fault */ 682 fi->type = ARMFault_Domain; 683 goto do_fault; 684 } 685 if (type != 1) { 686 if (desc & (1 << 18)) { 687 /* Supersection. */ 688 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 689 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 690 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 691 result->f.lg_page_size = 24; /* 16MB */ 692 } else { 693 /* Section. */ 694 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 695 result->f.lg_page_size = 20; /* 1MB */ 696 } 697 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 698 xn = desc & (1 << 4); 699 pxn = desc & 1; 700 ns = extract32(desc, 19, 1); 701 } else { 702 if (cpu_isar_feature(aa32_pxn, cpu)) { 703 pxn = (desc >> 2) & 1; 704 } 705 ns = extract32(desc, 3, 1); 706 /* Lookup l2 entry. */ 707 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 708 desc = arm_ldl_ptw(env, ptw, table, fi); 709 if (fi->type != ARMFault_None) { 710 goto do_fault; 711 } 712 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 713 switch (desc & 3) { 714 case 0: /* Page translation fault. */ 715 fi->type = ARMFault_Translation; 716 goto do_fault; 717 case 1: /* 64k page. */ 718 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 719 xn = desc & (1 << 15); 720 result->f.lg_page_size = 16; 721 break; 722 case 2: case 3: /* 4k page. */ 723 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 724 xn = desc & 1; 725 result->f.lg_page_size = 12; 726 break; 727 default: 728 /* Never happens, but compiler isn't smart enough to tell. */ 729 g_assert_not_reached(); 730 } 731 } 732 if (domain_prot == 3) { 733 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 734 } else { 735 if (pxn && !regime_is_user(env, mmu_idx)) { 736 xn = 1; 737 } 738 if (xn && access_type == MMU_INST_FETCH) { 739 fi->type = ARMFault_Permission; 740 goto do_fault; 741 } 742 743 if (arm_feature(env, ARM_FEATURE_V6K) && 744 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 745 /* The simplified model uses AP[0] as an access control bit. */ 746 if ((ap & 1) == 0) { 747 /* Access flag fault. */ 748 fi->type = ARMFault_AccessFlag; 749 goto do_fault; 750 } 751 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 752 } else { 753 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 754 } 755 if (result->f.prot && !xn) { 756 result->f.prot |= PAGE_EXEC; 757 } 758 if (!(result->f.prot & (1 << access_type))) { 759 /* Access permission fault. */ 760 fi->type = ARMFault_Permission; 761 goto do_fault; 762 } 763 } 764 if (ns) { 765 /* The NS bit will (as required by the architecture) have no effect if 766 * the CPU doesn't support TZ or this is a non-secure translation 767 * regime, because the attribute will already be non-secure. 768 */ 769 result->f.attrs.secure = false; 770 } 771 result->f.phys_addr = phys_addr; 772 return false; 773 do_fault: 774 fi->domain = domain; 775 fi->level = level; 776 return true; 777 } 778 779 /* 780 * Translate S2 section/page access permissions to protection flags 781 * @env: CPUARMState 782 * @s2ap: The 2-bit stage2 access permissions (S2AP) 783 * @xn: XN (execute-never) bits 784 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 785 */ 786 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 787 { 788 int prot = 0; 789 790 if (s2ap & 1) { 791 prot |= PAGE_READ; 792 } 793 if (s2ap & 2) { 794 prot |= PAGE_WRITE; 795 } 796 797 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 798 switch (xn) { 799 case 0: 800 prot |= PAGE_EXEC; 801 break; 802 case 1: 803 if (s1_is_el0) { 804 prot |= PAGE_EXEC; 805 } 806 break; 807 case 2: 808 break; 809 case 3: 810 if (!s1_is_el0) { 811 prot |= PAGE_EXEC; 812 } 813 break; 814 default: 815 g_assert_not_reached(); 816 } 817 } else { 818 if (!extract32(xn, 1, 1)) { 819 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 820 prot |= PAGE_EXEC; 821 } 822 } 823 } 824 return prot; 825 } 826 827 /* 828 * Translate section/page access permissions to protection flags 829 * @env: CPUARMState 830 * @mmu_idx: MMU index indicating required translation regime 831 * @is_aa64: TRUE if AArch64 832 * @ap: The 2-bit simple AP (AP[2:1]) 833 * @ns: NS (non-secure) bit 834 * @xn: XN (execute-never) bit 835 * @pxn: PXN (privileged execute-never) bit 836 */ 837 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 838 int ap, int ns, int xn, int pxn) 839 { 840 bool is_user = regime_is_user(env, mmu_idx); 841 int prot_rw, user_rw; 842 bool have_wxn; 843 int wxn = 0; 844 845 assert(mmu_idx != ARMMMUIdx_Stage2); 846 assert(mmu_idx != ARMMMUIdx_Stage2_S); 847 848 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 849 if (is_user) { 850 prot_rw = user_rw; 851 } else { 852 if (user_rw && regime_is_pan(env, mmu_idx)) { 853 /* PAN forbids data accesses but doesn't affect insn fetch */ 854 prot_rw = 0; 855 } else { 856 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 857 } 858 } 859 860 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 861 return prot_rw; 862 } 863 864 /* TODO have_wxn should be replaced with 865 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 866 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 867 * compatible processors have EL2, which is required for [U]WXN. 868 */ 869 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 870 871 if (have_wxn) { 872 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 873 } 874 875 if (is_aa64) { 876 if (regime_has_2_ranges(mmu_idx) && !is_user) { 877 xn = pxn || (user_rw & PAGE_WRITE); 878 } 879 } else if (arm_feature(env, ARM_FEATURE_V7)) { 880 switch (regime_el(env, mmu_idx)) { 881 case 1: 882 case 3: 883 if (is_user) { 884 xn = xn || !(user_rw & PAGE_READ); 885 } else { 886 int uwxn = 0; 887 if (have_wxn) { 888 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 889 } 890 xn = xn || !(prot_rw & PAGE_READ) || pxn || 891 (uwxn && (user_rw & PAGE_WRITE)); 892 } 893 break; 894 case 2: 895 break; 896 } 897 } else { 898 xn = wxn = 0; 899 } 900 901 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 902 return prot_rw; 903 } 904 return prot_rw | PAGE_EXEC; 905 } 906 907 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 908 ARMMMUIdx mmu_idx) 909 { 910 uint64_t tcr = regime_tcr(env, mmu_idx); 911 uint32_t el = regime_el(env, mmu_idx); 912 int select, tsz; 913 bool epd, hpd; 914 915 assert(mmu_idx != ARMMMUIdx_Stage2_S); 916 917 if (mmu_idx == ARMMMUIdx_Stage2) { 918 /* VTCR */ 919 bool sext = extract32(tcr, 4, 1); 920 bool sign = extract32(tcr, 3, 1); 921 922 /* 923 * If the sign-extend bit is not the same as t0sz[3], the result 924 * is unpredictable. Flag this as a guest error. 925 */ 926 if (sign != sext) { 927 qemu_log_mask(LOG_GUEST_ERROR, 928 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 929 } 930 tsz = sextract32(tcr, 0, 4) + 8; 931 select = 0; 932 hpd = false; 933 epd = false; 934 } else if (el == 2) { 935 /* HTCR */ 936 tsz = extract32(tcr, 0, 3); 937 select = 0; 938 hpd = extract64(tcr, 24, 1); 939 epd = false; 940 } else { 941 int t0sz = extract32(tcr, 0, 3); 942 int t1sz = extract32(tcr, 16, 3); 943 944 if (t1sz == 0) { 945 select = va > (0xffffffffu >> t0sz); 946 } else { 947 /* Note that we will detect errors later. */ 948 select = va >= ~(0xffffffffu >> t1sz); 949 } 950 if (!select) { 951 tsz = t0sz; 952 epd = extract32(tcr, 7, 1); 953 hpd = extract64(tcr, 41, 1); 954 } else { 955 tsz = t1sz; 956 epd = extract32(tcr, 23, 1); 957 hpd = extract64(tcr, 42, 1); 958 } 959 /* For aarch32, hpd0 is not enabled without t2e as well. */ 960 hpd &= extract32(tcr, 6, 1); 961 } 962 963 return (ARMVAParameters) { 964 .tsz = tsz, 965 .select = select, 966 .epd = epd, 967 .hpd = hpd, 968 }; 969 } 970 971 /* 972 * check_s2_mmu_setup 973 * @cpu: ARMCPU 974 * @is_aa64: True if the translation regime is in AArch64 state 975 * @startlevel: Suggested starting level 976 * @inputsize: Bitsize of IPAs 977 * @stride: Page-table stride (See the ARM ARM) 978 * 979 * Returns true if the suggested S2 translation parameters are OK and 980 * false otherwise. 981 */ 982 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 983 int inputsize, int stride, int outputsize) 984 { 985 const int grainsize = stride + 3; 986 int startsizecheck; 987 988 /* 989 * Negative levels are usually not allowed... 990 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which 991 * begins with level -1. Note that previous feature tests will have 992 * eliminated this combination if it is not enabled. 993 */ 994 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { 995 return false; 996 } 997 998 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 999 if (startsizecheck < 1 || startsizecheck > stride + 4) { 1000 return false; 1001 } 1002 1003 if (is_aa64) { 1004 switch (stride) { 1005 case 13: /* 64KB Pages. */ 1006 if (level == 0 || (level == 1 && outputsize <= 42)) { 1007 return false; 1008 } 1009 break; 1010 case 11: /* 16KB Pages. */ 1011 if (level == 0 || (level == 1 && outputsize <= 40)) { 1012 return false; 1013 } 1014 break; 1015 case 9: /* 4KB Pages. */ 1016 if (level == 0 && outputsize <= 42) { 1017 return false; 1018 } 1019 break; 1020 default: 1021 g_assert_not_reached(); 1022 } 1023 1024 /* Inputsize checks. */ 1025 if (inputsize > outputsize && 1026 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 1027 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 1028 return false; 1029 } 1030 } else { 1031 /* AArch32 only supports 4KB pages. Assert on that. */ 1032 assert(stride == 9); 1033 1034 if (level == 0) { 1035 return false; 1036 } 1037 } 1038 return true; 1039 } 1040 1041 /** 1042 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 1043 * 1044 * Returns false if the translation was successful. Otherwise, phys_ptr, 1045 * attrs, prot and page_size may not be filled in, and the populated fsr 1046 * value provides information on why the translation aborted, in the format 1047 * of a long-format DFSR/IFSR fault register, with the following caveat: 1048 * the WnR bit is never set (the caller must do this). 1049 * 1050 * @env: CPUARMState 1051 * @ptw: Current and next stage parameters for the walk. 1052 * @address: virtual address to get physical address for 1053 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 1054 * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2 1055 * (so this is a stage 2 page table walk), 1056 * must be true if this is stage 2 of a stage 1+2 1057 * walk for an EL0 access. If @mmu_idx is anything else, 1058 * @s1_is_el0 is ignored. 1059 * @result: set on translation success, 1060 * @fi: set to fault info if the translation fails 1061 */ 1062 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 1063 uint64_t address, 1064 MMUAccessType access_type, bool s1_is_el0, 1065 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1066 { 1067 ARMCPU *cpu = env_archcpu(env); 1068 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1069 bool is_secure = ptw->in_secure; 1070 /* Read an LPAE long-descriptor translation table. */ 1071 ARMFaultType fault_type = ARMFault_Translation; 1072 uint32_t level; 1073 ARMVAParameters param; 1074 uint64_t ttbr; 1075 hwaddr descaddr, indexmask, indexmask_grainsize; 1076 uint32_t tableattrs; 1077 target_ulong page_size; 1078 uint32_t attrs; 1079 int32_t stride; 1080 int addrsize, inputsize, outputsize; 1081 uint64_t tcr = regime_tcr(env, mmu_idx); 1082 int ap, ns, xn, pxn; 1083 uint32_t el = regime_el(env, mmu_idx); 1084 uint64_t descaddrmask; 1085 bool aarch64 = arm_el_is_aa64(env, el); 1086 bool guarded = false; 1087 1088 /* TODO: This code does not support shareability levels. */ 1089 if (aarch64) { 1090 int ps; 1091 1092 param = aa64_va_parameters(env, address, mmu_idx, 1093 access_type != MMU_INST_FETCH); 1094 level = 0; 1095 1096 /* 1097 * If TxSZ is programmed to a value larger than the maximum, 1098 * or smaller than the effective minimum, it is IMPLEMENTATION 1099 * DEFINED whether we behave as if the field were programmed 1100 * within bounds, or if a level 0 Translation fault is generated. 1101 * 1102 * With FEAT_LVA, fault on less than minimum becomes required, 1103 * so our choice is to always raise the fault. 1104 */ 1105 if (param.tsz_oob) { 1106 fault_type = ARMFault_Translation; 1107 goto do_fault; 1108 } 1109 1110 addrsize = 64 - 8 * param.tbi; 1111 inputsize = 64 - param.tsz; 1112 1113 /* 1114 * Bound PS by PARANGE to find the effective output address size. 1115 * ID_AA64MMFR0 is a read-only register so values outside of the 1116 * supported mappings can be considered an implementation error. 1117 */ 1118 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1119 ps = MIN(ps, param.ps); 1120 assert(ps < ARRAY_SIZE(pamax_map)); 1121 outputsize = pamax_map[ps]; 1122 } else { 1123 param = aa32_va_parameters(env, address, mmu_idx); 1124 level = 1; 1125 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1126 inputsize = addrsize - param.tsz; 1127 outputsize = 40; 1128 } 1129 1130 /* 1131 * We determined the region when collecting the parameters, but we 1132 * have not yet validated that the address is valid for the region. 1133 * Extract the top bits and verify that they all match select. 1134 * 1135 * For aa32, if inputsize == addrsize, then we have selected the 1136 * region by exclusion in aa32_va_parameters and there is no more 1137 * validation to do here. 1138 */ 1139 if (inputsize < addrsize) { 1140 target_ulong top_bits = sextract64(address, inputsize, 1141 addrsize - inputsize); 1142 if (-top_bits != param.select) { 1143 /* The gap between the two regions is a Translation fault */ 1144 fault_type = ARMFault_Translation; 1145 goto do_fault; 1146 } 1147 } 1148 1149 stride = arm_granule_bits(param.gran) - 3; 1150 1151 /* 1152 * Note that QEMU ignores shareability and cacheability attributes, 1153 * so we don't need to do anything with the SH, ORGN, IRGN fields 1154 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1155 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1156 * implement any ASID-like capability so we can ignore it (instead 1157 * we will always flush the TLB any time the ASID is changed). 1158 */ 1159 ttbr = regime_ttbr(env, mmu_idx, param.select); 1160 1161 /* 1162 * Here we should have set up all the parameters for the translation: 1163 * inputsize, ttbr, epd, stride, tbi 1164 */ 1165 1166 if (param.epd) { 1167 /* 1168 * Translation table walk disabled => Translation fault on TLB miss 1169 * Note: This is always 0 on 64-bit EL2 and EL3. 1170 */ 1171 goto do_fault; 1172 } 1173 1174 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 1175 /* 1176 * The starting level depends on the virtual address size (which can 1177 * be up to 48 bits) and the translation granule size. It indicates 1178 * the number of strides (stride bits at a time) needed to 1179 * consume the bits of the input address. In the pseudocode this is: 1180 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1181 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1182 * our 'stride + 3' and 'stride' is our 'stride'. 1183 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1184 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1185 * = 4 - (inputsize - 4) / stride; 1186 */ 1187 level = 4 - (inputsize - 4) / stride; 1188 } else { 1189 /* 1190 * For stage 2 translations the starting level is specified by the 1191 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 1192 */ 1193 uint32_t sl0 = extract32(tcr, 6, 2); 1194 uint32_t sl2 = extract64(tcr, 33, 1); 1195 uint32_t startlevel; 1196 bool ok; 1197 1198 /* SL2 is RES0 unless DS=1 & 4kb granule. */ 1199 if (param.ds && stride == 9 && sl2) { 1200 if (sl0 != 0) { 1201 level = 0; 1202 fault_type = ARMFault_Translation; 1203 goto do_fault; 1204 } 1205 startlevel = -1; 1206 } else if (!aarch64 || stride == 9) { 1207 /* AArch32 or 4KB pages */ 1208 startlevel = 2 - sl0; 1209 1210 if (cpu_isar_feature(aa64_st, cpu)) { 1211 startlevel &= 3; 1212 } 1213 } else { 1214 /* 16KB or 64KB pages */ 1215 startlevel = 3 - sl0; 1216 } 1217 1218 /* Check that the starting level is valid. */ 1219 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 1220 inputsize, stride, outputsize); 1221 if (!ok) { 1222 fault_type = ARMFault_Translation; 1223 goto do_fault; 1224 } 1225 level = startlevel; 1226 } 1227 1228 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1229 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1230 1231 /* Now we can extract the actual base address from the TTBR */ 1232 descaddr = extract64(ttbr, 0, 48); 1233 1234 /* 1235 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1236 * 1237 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1238 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1239 * but we've just cleared the bits above 47, so simplify the test. 1240 */ 1241 if (outputsize > 48) { 1242 descaddr |= extract64(ttbr, 2, 4) << 48; 1243 } else if (descaddr >> outputsize) { 1244 level = 0; 1245 fault_type = ARMFault_AddressSize; 1246 goto do_fault; 1247 } 1248 1249 /* 1250 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1251 * and also to mask out CnP (bit 0) which could validly be non-zero. 1252 */ 1253 descaddr &= ~indexmask; 1254 1255 /* 1256 * For AArch32, the address field in the descriptor goes up to bit 39 1257 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1258 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1259 * bits as part of the address, which will be checked via outputsize. 1260 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1261 * the highest bits of a 52-bit output are placed elsewhere. 1262 */ 1263 if (param.ds) { 1264 descaddrmask = MAKE_64BIT_MASK(0, 50); 1265 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1266 descaddrmask = MAKE_64BIT_MASK(0, 48); 1267 } else { 1268 descaddrmask = MAKE_64BIT_MASK(0, 40); 1269 } 1270 descaddrmask &= ~indexmask_grainsize; 1271 1272 /* 1273 * Secure accesses start with the page table in secure memory and 1274 * can be downgraded to non-secure at any step. Non-secure accesses 1275 * remain non-secure. We implement this by just ORing in the NSTable/NS 1276 * bits at each step. 1277 */ 1278 tableattrs = is_secure ? 0 : (1 << 4); 1279 for (;;) { 1280 uint64_t descriptor; 1281 bool nstable; 1282 1283 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1284 descaddr &= ~7ULL; 1285 nstable = extract32(tableattrs, 4, 1); 1286 ptw->in_secure = !nstable; 1287 descriptor = arm_ldq_ptw(env, ptw, descaddr, fi); 1288 if (fi->type != ARMFault_None) { 1289 goto do_fault; 1290 } 1291 1292 if (!(descriptor & 1) || 1293 (!(descriptor & 2) && (level == 3))) { 1294 /* Invalid, or the Reserved level 3 encoding */ 1295 goto do_fault; 1296 } 1297 1298 descaddr = descriptor & descaddrmask; 1299 1300 /* 1301 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1302 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1303 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1304 * raise AddressSizeFault. 1305 */ 1306 if (outputsize > 48) { 1307 if (param.ds) { 1308 descaddr |= extract64(descriptor, 8, 2) << 50; 1309 } else { 1310 descaddr |= extract64(descriptor, 12, 4) << 48; 1311 } 1312 } else if (descaddr >> outputsize) { 1313 fault_type = ARMFault_AddressSize; 1314 goto do_fault; 1315 } 1316 1317 if ((descriptor & 2) && (level < 3)) { 1318 /* 1319 * Table entry. The top five bits are attributes which may 1320 * propagate down through lower levels of the table (and 1321 * which are all arranged so that 0 means "no effect", so 1322 * we can gather them up by ORing in the bits at each level). 1323 */ 1324 tableattrs |= extract64(descriptor, 59, 5); 1325 level++; 1326 indexmask = indexmask_grainsize; 1327 continue; 1328 } 1329 /* 1330 * Block entry at level 1 or 2, or page entry at level 3. 1331 * These are basically the same thing, although the number 1332 * of bits we pull in from the vaddr varies. Note that although 1333 * descaddrmask masks enough of the low bits of the descriptor 1334 * to give a correct page or table address, the address field 1335 * in a block descriptor is smaller; so we need to explicitly 1336 * clear the lower bits here before ORing in the low vaddr bits. 1337 */ 1338 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1339 descaddr &= ~(hwaddr)(page_size - 1); 1340 descaddr |= (address & (page_size - 1)); 1341 /* Extract attributes from the descriptor */ 1342 attrs = extract64(descriptor, 2, 10) 1343 | (extract64(descriptor, 52, 12) << 10); 1344 1345 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 1346 /* Stage 2 table descriptors do not include any attribute fields */ 1347 break; 1348 } 1349 /* Merge in attributes from table descriptors */ 1350 attrs |= nstable << 3; /* NS */ 1351 guarded = extract64(descriptor, 50, 1); /* GP */ 1352 if (param.hpd) { 1353 /* HPD disables all the table attributes except NSTable. */ 1354 break; 1355 } 1356 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 1357 /* 1358 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 1359 * means "force PL1 access only", which means forcing AP[1] to 0. 1360 */ 1361 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 1362 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 1363 break; 1364 } 1365 /* 1366 * Here descaddr is the final physical address, and attributes 1367 * are all in attrs. 1368 */ 1369 fault_type = ARMFault_AccessFlag; 1370 if ((attrs & (1 << 8)) == 0) { 1371 /* Access flag */ 1372 goto do_fault; 1373 } 1374 1375 ap = extract32(attrs, 4, 2); 1376 1377 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 1378 ns = mmu_idx == ARMMMUIdx_Stage2; 1379 xn = extract32(attrs, 11, 2); 1380 result->f.prot = get_S2prot(env, ap, xn, s1_is_el0); 1381 } else { 1382 ns = extract32(attrs, 3, 1); 1383 xn = extract32(attrs, 12, 1); 1384 pxn = extract32(attrs, 11, 1); 1385 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 1386 } 1387 1388 fault_type = ARMFault_Permission; 1389 if (!(result->f.prot & (1 << access_type))) { 1390 goto do_fault; 1391 } 1392 1393 if (ns) { 1394 /* 1395 * The NS bit will (as required by the architecture) have no effect if 1396 * the CPU doesn't support TZ or this is a non-secure translation 1397 * regime, because the attribute will already be non-secure. 1398 */ 1399 result->f.attrs.secure = false; 1400 } 1401 1402 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ 1403 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { 1404 result->f.guarded = guarded; 1405 } 1406 1407 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 1408 result->cacheattrs.is_s2_format = true; 1409 result->cacheattrs.attrs = extract32(attrs, 0, 4); 1410 } else { 1411 /* Index into MAIR registers for cache attributes */ 1412 uint8_t attrindx = extract32(attrs, 0, 3); 1413 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 1414 assert(attrindx <= 7); 1415 result->cacheattrs.is_s2_format = false; 1416 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 1417 } 1418 1419 /* 1420 * For FEAT_LPA2 and effective DS, the SH field in the attributes 1421 * was re-purposed for output address bits. The SH attribute in 1422 * that case comes from TCR_ELx, which we extracted earlier. 1423 */ 1424 if (param.ds) { 1425 result->cacheattrs.shareability = param.sh; 1426 } else { 1427 result->cacheattrs.shareability = extract32(attrs, 6, 2); 1428 } 1429 1430 result->f.phys_addr = descaddr; 1431 result->f.lg_page_size = ctz64(page_size); 1432 return false; 1433 1434 do_fault: 1435 fi->type = fault_type; 1436 fi->level = level; 1437 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 1438 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 1439 mmu_idx == ARMMMUIdx_Stage2_S); 1440 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 1441 return true; 1442 } 1443 1444 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 1445 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1446 bool is_secure, GetPhysAddrResult *result, 1447 ARMMMUFaultInfo *fi) 1448 { 1449 int n; 1450 uint32_t mask; 1451 uint32_t base; 1452 bool is_user = regime_is_user(env, mmu_idx); 1453 1454 if (regime_translation_disabled(env, mmu_idx, is_secure)) { 1455 /* MPU disabled. */ 1456 result->f.phys_addr = address; 1457 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1458 return false; 1459 } 1460 1461 result->f.phys_addr = address; 1462 for (n = 7; n >= 0; n--) { 1463 base = env->cp15.c6_region[n]; 1464 if ((base & 1) == 0) { 1465 continue; 1466 } 1467 mask = 1 << ((base >> 1) & 0x1f); 1468 /* Keep this shift separate from the above to avoid an 1469 (undefined) << 32. */ 1470 mask = (mask << 1) - 1; 1471 if (((base ^ address) & ~mask) == 0) { 1472 break; 1473 } 1474 } 1475 if (n < 0) { 1476 fi->type = ARMFault_Background; 1477 return true; 1478 } 1479 1480 if (access_type == MMU_INST_FETCH) { 1481 mask = env->cp15.pmsav5_insn_ap; 1482 } else { 1483 mask = env->cp15.pmsav5_data_ap; 1484 } 1485 mask = (mask >> (n * 4)) & 0xf; 1486 switch (mask) { 1487 case 0: 1488 fi->type = ARMFault_Permission; 1489 fi->level = 1; 1490 return true; 1491 case 1: 1492 if (is_user) { 1493 fi->type = ARMFault_Permission; 1494 fi->level = 1; 1495 return true; 1496 } 1497 result->f.prot = PAGE_READ | PAGE_WRITE; 1498 break; 1499 case 2: 1500 result->f.prot = PAGE_READ; 1501 if (!is_user) { 1502 result->f.prot |= PAGE_WRITE; 1503 } 1504 break; 1505 case 3: 1506 result->f.prot = PAGE_READ | PAGE_WRITE; 1507 break; 1508 case 5: 1509 if (is_user) { 1510 fi->type = ARMFault_Permission; 1511 fi->level = 1; 1512 return true; 1513 } 1514 result->f.prot = PAGE_READ; 1515 break; 1516 case 6: 1517 result->f.prot = PAGE_READ; 1518 break; 1519 default: 1520 /* Bad permission. */ 1521 fi->type = ARMFault_Permission; 1522 fi->level = 1; 1523 return true; 1524 } 1525 result->f.prot |= PAGE_EXEC; 1526 return false; 1527 } 1528 1529 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 1530 int32_t address, uint8_t *prot) 1531 { 1532 if (!arm_feature(env, ARM_FEATURE_M)) { 1533 *prot = PAGE_READ | PAGE_WRITE; 1534 switch (address) { 1535 case 0xF0000000 ... 0xFFFFFFFF: 1536 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 1537 /* hivecs execing is ok */ 1538 *prot |= PAGE_EXEC; 1539 } 1540 break; 1541 case 0x00000000 ... 0x7FFFFFFF: 1542 *prot |= PAGE_EXEC; 1543 break; 1544 } 1545 } else { 1546 /* Default system address map for M profile cores. 1547 * The architecture specifies which regions are execute-never; 1548 * at the MPU level no other checks are defined. 1549 */ 1550 switch (address) { 1551 case 0x00000000 ... 0x1fffffff: /* ROM */ 1552 case 0x20000000 ... 0x3fffffff: /* SRAM */ 1553 case 0x60000000 ... 0x7fffffff: /* RAM */ 1554 case 0x80000000 ... 0x9fffffff: /* RAM */ 1555 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1556 break; 1557 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 1558 case 0xa0000000 ... 0xbfffffff: /* Device */ 1559 case 0xc0000000 ... 0xdfffffff: /* Device */ 1560 case 0xe0000000 ... 0xffffffff: /* System */ 1561 *prot = PAGE_READ | PAGE_WRITE; 1562 break; 1563 default: 1564 g_assert_not_reached(); 1565 } 1566 } 1567 } 1568 1569 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 1570 { 1571 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 1572 return arm_feature(env, ARM_FEATURE_M) && 1573 extract32(address, 20, 12) == 0xe00; 1574 } 1575 1576 static bool m_is_system_region(CPUARMState *env, uint32_t address) 1577 { 1578 /* 1579 * True if address is in the M profile system region 1580 * 0xe0000000 - 0xffffffff 1581 */ 1582 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 1583 } 1584 1585 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 1586 bool is_secure, bool is_user) 1587 { 1588 /* 1589 * Return true if we should use the default memory map as a 1590 * "background" region if there are no hits against any MPU regions. 1591 */ 1592 CPUARMState *env = &cpu->env; 1593 1594 if (is_user) { 1595 return false; 1596 } 1597 1598 if (arm_feature(env, ARM_FEATURE_M)) { 1599 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 1600 } else { 1601 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 1602 } 1603 } 1604 1605 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 1606 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1607 bool secure, GetPhysAddrResult *result, 1608 ARMMMUFaultInfo *fi) 1609 { 1610 ARMCPU *cpu = env_archcpu(env); 1611 int n; 1612 bool is_user = regime_is_user(env, mmu_idx); 1613 1614 result->f.phys_addr = address; 1615 result->f.lg_page_size = TARGET_PAGE_BITS; 1616 result->f.prot = 0; 1617 1618 if (regime_translation_disabled(env, mmu_idx, secure) || 1619 m_is_ppb_region(env, address)) { 1620 /* 1621 * MPU disabled or M profile PPB access: use default memory map. 1622 * The other case which uses the default memory map in the 1623 * v7M ARM ARM pseudocode is exception vector reads from the vector 1624 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 1625 * which always does a direct read using address_space_ldl(), rather 1626 * than going via this function, so we don't need to check that here. 1627 */ 1628 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 1629 } else { /* MPU enabled */ 1630 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 1631 /* region search */ 1632 uint32_t base = env->pmsav7.drbar[n]; 1633 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 1634 uint32_t rmask; 1635 bool srdis = false; 1636 1637 if (!(env->pmsav7.drsr[n] & 0x1)) { 1638 continue; 1639 } 1640 1641 if (!rsize) { 1642 qemu_log_mask(LOG_GUEST_ERROR, 1643 "DRSR[%d]: Rsize field cannot be 0\n", n); 1644 continue; 1645 } 1646 rsize++; 1647 rmask = (1ull << rsize) - 1; 1648 1649 if (base & rmask) { 1650 qemu_log_mask(LOG_GUEST_ERROR, 1651 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 1652 "to DRSR region size, mask = 0x%" PRIx32 "\n", 1653 n, base, rmask); 1654 continue; 1655 } 1656 1657 if (address < base || address > base + rmask) { 1658 /* 1659 * Address not in this region. We must check whether the 1660 * region covers addresses in the same page as our address. 1661 * In that case we must not report a size that covers the 1662 * whole page for a subsequent hit against a different MPU 1663 * region or the background region, because it would result in 1664 * incorrect TLB hits for subsequent accesses to addresses that 1665 * are in this MPU region. 1666 */ 1667 if (ranges_overlap(base, rmask, 1668 address & TARGET_PAGE_MASK, 1669 TARGET_PAGE_SIZE)) { 1670 result->f.lg_page_size = 0; 1671 } 1672 continue; 1673 } 1674 1675 /* Region matched */ 1676 1677 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 1678 int i, snd; 1679 uint32_t srdis_mask; 1680 1681 rsize -= 3; /* sub region size (power of 2) */ 1682 snd = ((address - base) >> rsize) & 0x7; 1683 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 1684 1685 srdis_mask = srdis ? 0x3 : 0x0; 1686 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 1687 /* 1688 * This will check in groups of 2, 4 and then 8, whether 1689 * the subregion bits are consistent. rsize is incremented 1690 * back up to give the region size, considering consistent 1691 * adjacent subregions as one region. Stop testing if rsize 1692 * is already big enough for an entire QEMU page. 1693 */ 1694 int snd_rounded = snd & ~(i - 1); 1695 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 1696 snd_rounded + 8, i); 1697 if (srdis_mask ^ srdis_multi) { 1698 break; 1699 } 1700 srdis_mask = (srdis_mask << i) | srdis_mask; 1701 rsize++; 1702 } 1703 } 1704 if (srdis) { 1705 continue; 1706 } 1707 if (rsize < TARGET_PAGE_BITS) { 1708 result->f.lg_page_size = rsize; 1709 } 1710 break; 1711 } 1712 1713 if (n == -1) { /* no hits */ 1714 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 1715 /* background fault */ 1716 fi->type = ARMFault_Background; 1717 return true; 1718 } 1719 get_phys_addr_pmsav7_default(env, mmu_idx, address, 1720 &result->f.prot); 1721 } else { /* a MPU hit! */ 1722 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 1723 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 1724 1725 if (m_is_system_region(env, address)) { 1726 /* System space is always execute never */ 1727 xn = 1; 1728 } 1729 1730 if (is_user) { /* User mode AP bit decoding */ 1731 switch (ap) { 1732 case 0: 1733 case 1: 1734 case 5: 1735 break; /* no access */ 1736 case 3: 1737 result->f.prot |= PAGE_WRITE; 1738 /* fall through */ 1739 case 2: 1740 case 6: 1741 result->f.prot |= PAGE_READ | PAGE_EXEC; 1742 break; 1743 case 7: 1744 /* for v7M, same as 6; for R profile a reserved value */ 1745 if (arm_feature(env, ARM_FEATURE_M)) { 1746 result->f.prot |= PAGE_READ | PAGE_EXEC; 1747 break; 1748 } 1749 /* fall through */ 1750 default: 1751 qemu_log_mask(LOG_GUEST_ERROR, 1752 "DRACR[%d]: Bad value for AP bits: 0x%" 1753 PRIx32 "\n", n, ap); 1754 } 1755 } else { /* Priv. mode AP bits decoding */ 1756 switch (ap) { 1757 case 0: 1758 break; /* no access */ 1759 case 1: 1760 case 2: 1761 case 3: 1762 result->f.prot |= PAGE_WRITE; 1763 /* fall through */ 1764 case 5: 1765 case 6: 1766 result->f.prot |= PAGE_READ | PAGE_EXEC; 1767 break; 1768 case 7: 1769 /* for v7M, same as 6; for R profile a reserved value */ 1770 if (arm_feature(env, ARM_FEATURE_M)) { 1771 result->f.prot |= PAGE_READ | PAGE_EXEC; 1772 break; 1773 } 1774 /* fall through */ 1775 default: 1776 qemu_log_mask(LOG_GUEST_ERROR, 1777 "DRACR[%d]: Bad value for AP bits: 0x%" 1778 PRIx32 "\n", n, ap); 1779 } 1780 } 1781 1782 /* execute never */ 1783 if (xn) { 1784 result->f.prot &= ~PAGE_EXEC; 1785 } 1786 } 1787 } 1788 1789 fi->type = ARMFault_Permission; 1790 fi->level = 1; 1791 return !(result->f.prot & (1 << access_type)); 1792 } 1793 1794 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 1795 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1796 bool secure, GetPhysAddrResult *result, 1797 ARMMMUFaultInfo *fi, uint32_t *mregion) 1798 { 1799 /* 1800 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 1801 * that a full phys-to-virt translation does). 1802 * mregion is (if not NULL) set to the region number which matched, 1803 * or -1 if no region number is returned (MPU off, address did not 1804 * hit a region, address hit in multiple regions). 1805 * If the region hit doesn't cover the entire TARGET_PAGE the address 1806 * is within, then we set the result page_size to 1 to force the 1807 * memory system to use a subpage. 1808 */ 1809 ARMCPU *cpu = env_archcpu(env); 1810 bool is_user = regime_is_user(env, mmu_idx); 1811 int n; 1812 int matchregion = -1; 1813 bool hit = false; 1814 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 1815 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 1816 1817 result->f.lg_page_size = TARGET_PAGE_BITS; 1818 result->f.phys_addr = address; 1819 result->f.prot = 0; 1820 if (mregion) { 1821 *mregion = -1; 1822 } 1823 1824 /* 1825 * Unlike the ARM ARM pseudocode, we don't need to check whether this 1826 * was an exception vector read from the vector table (which is always 1827 * done using the default system address map), because those accesses 1828 * are done in arm_v7m_load_vector(), which always does a direct 1829 * read using address_space_ldl(), rather than going via this function. 1830 */ 1831 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */ 1832 hit = true; 1833 } else if (m_is_ppb_region(env, address)) { 1834 hit = true; 1835 } else { 1836 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 1837 hit = true; 1838 } 1839 1840 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 1841 /* region search */ 1842 /* 1843 * Note that the base address is bits [31:5] from the register 1844 * with bits [4:0] all zeroes, but the limit address is bits 1845 * [31:5] from the register with bits [4:0] all ones. 1846 */ 1847 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 1848 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 1849 1850 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 1851 /* Region disabled */ 1852 continue; 1853 } 1854 1855 if (address < base || address > limit) { 1856 /* 1857 * Address not in this region. We must check whether the 1858 * region covers addresses in the same page as our address. 1859 * In that case we must not report a size that covers the 1860 * whole page for a subsequent hit against a different MPU 1861 * region or the background region, because it would result in 1862 * incorrect TLB hits for subsequent accesses to addresses that 1863 * are in this MPU region. 1864 */ 1865 if (limit >= base && 1866 ranges_overlap(base, limit - base + 1, 1867 addr_page_base, 1868 TARGET_PAGE_SIZE)) { 1869 result->f.lg_page_size = 0; 1870 } 1871 continue; 1872 } 1873 1874 if (base > addr_page_base || limit < addr_page_limit) { 1875 result->f.lg_page_size = 0; 1876 } 1877 1878 if (matchregion != -1) { 1879 /* 1880 * Multiple regions match -- always a failure (unlike 1881 * PMSAv7 where highest-numbered-region wins) 1882 */ 1883 fi->type = ARMFault_Permission; 1884 fi->level = 1; 1885 return true; 1886 } 1887 1888 matchregion = n; 1889 hit = true; 1890 } 1891 } 1892 1893 if (!hit) { 1894 /* background fault */ 1895 fi->type = ARMFault_Background; 1896 return true; 1897 } 1898 1899 if (matchregion == -1) { 1900 /* hit using the background region */ 1901 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 1902 } else { 1903 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 1904 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 1905 bool pxn = false; 1906 1907 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 1908 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 1909 } 1910 1911 if (m_is_system_region(env, address)) { 1912 /* System space is always execute never */ 1913 xn = 1; 1914 } 1915 1916 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 1917 if (result->f.prot && !xn && !(pxn && !is_user)) { 1918 result->f.prot |= PAGE_EXEC; 1919 } 1920 /* 1921 * We don't need to look the attribute up in the MAIR0/MAIR1 1922 * registers because that only tells us about cacheability. 1923 */ 1924 if (mregion) { 1925 *mregion = matchregion; 1926 } 1927 } 1928 1929 fi->type = ARMFault_Permission; 1930 fi->level = 1; 1931 return !(result->f.prot & (1 << access_type)); 1932 } 1933 1934 static bool v8m_is_sau_exempt(CPUARMState *env, 1935 uint32_t address, MMUAccessType access_type) 1936 { 1937 /* 1938 * The architecture specifies that certain address ranges are 1939 * exempt from v8M SAU/IDAU checks. 1940 */ 1941 return 1942 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 1943 (address >= 0xe0000000 && address <= 0xe0002fff) || 1944 (address >= 0xe000e000 && address <= 0xe000efff) || 1945 (address >= 0xe002e000 && address <= 0xe002efff) || 1946 (address >= 0xe0040000 && address <= 0xe0041fff) || 1947 (address >= 0xe00ff000 && address <= 0xe00fffff); 1948 } 1949 1950 void v8m_security_lookup(CPUARMState *env, uint32_t address, 1951 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1952 bool is_secure, V8M_SAttributes *sattrs) 1953 { 1954 /* 1955 * Look up the security attributes for this address. Compare the 1956 * pseudocode SecurityCheck() function. 1957 * We assume the caller has zero-initialized *sattrs. 1958 */ 1959 ARMCPU *cpu = env_archcpu(env); 1960 int r; 1961 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 1962 int idau_region = IREGION_NOTVALID; 1963 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 1964 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 1965 1966 if (cpu->idau) { 1967 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 1968 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 1969 1970 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 1971 &idau_nsc); 1972 } 1973 1974 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 1975 /* 0xf0000000..0xffffffff is always S for insn fetches */ 1976 return; 1977 } 1978 1979 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 1980 sattrs->ns = !is_secure; 1981 return; 1982 } 1983 1984 if (idau_region != IREGION_NOTVALID) { 1985 sattrs->irvalid = true; 1986 sattrs->iregion = idau_region; 1987 } 1988 1989 switch (env->sau.ctrl & 3) { 1990 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 1991 break; 1992 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 1993 sattrs->ns = true; 1994 break; 1995 default: /* SAU.ENABLE == 1 */ 1996 for (r = 0; r < cpu->sau_sregion; r++) { 1997 if (env->sau.rlar[r] & 1) { 1998 uint32_t base = env->sau.rbar[r] & ~0x1f; 1999 uint32_t limit = env->sau.rlar[r] | 0x1f; 2000 2001 if (base <= address && limit >= address) { 2002 if (base > addr_page_base || limit < addr_page_limit) { 2003 sattrs->subpage = true; 2004 } 2005 if (sattrs->srvalid) { 2006 /* 2007 * If we hit in more than one region then we must report 2008 * as Secure, not NS-Callable, with no valid region 2009 * number info. 2010 */ 2011 sattrs->ns = false; 2012 sattrs->nsc = false; 2013 sattrs->sregion = 0; 2014 sattrs->srvalid = false; 2015 break; 2016 } else { 2017 if (env->sau.rlar[r] & 2) { 2018 sattrs->nsc = true; 2019 } else { 2020 sattrs->ns = true; 2021 } 2022 sattrs->srvalid = true; 2023 sattrs->sregion = r; 2024 } 2025 } else { 2026 /* 2027 * Address not in this region. We must check whether the 2028 * region covers addresses in the same page as our address. 2029 * In that case we must not report a size that covers the 2030 * whole page for a subsequent hit against a different MPU 2031 * region or the background region, because it would result 2032 * in incorrect TLB hits for subsequent accesses to 2033 * addresses that are in this MPU region. 2034 */ 2035 if (limit >= base && 2036 ranges_overlap(base, limit - base + 1, 2037 addr_page_base, 2038 TARGET_PAGE_SIZE)) { 2039 sattrs->subpage = true; 2040 } 2041 } 2042 } 2043 } 2044 break; 2045 } 2046 2047 /* 2048 * The IDAU will override the SAU lookup results if it specifies 2049 * higher security than the SAU does. 2050 */ 2051 if (!idau_ns) { 2052 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 2053 sattrs->ns = false; 2054 sattrs->nsc = idau_nsc; 2055 } 2056 } 2057 } 2058 2059 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 2060 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2061 bool secure, GetPhysAddrResult *result, 2062 ARMMMUFaultInfo *fi) 2063 { 2064 V8M_SAttributes sattrs = {}; 2065 bool ret; 2066 2067 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2068 v8m_security_lookup(env, address, access_type, mmu_idx, 2069 secure, &sattrs); 2070 if (access_type == MMU_INST_FETCH) { 2071 /* 2072 * Instruction fetches always use the MMU bank and the 2073 * transaction attribute determined by the fetch address, 2074 * regardless of CPU state. This is painful for QEMU 2075 * to handle, because it would mean we need to encode 2076 * into the mmu_idx not just the (user, negpri) information 2077 * for the current security state but also that for the 2078 * other security state, which would balloon the number 2079 * of mmu_idx values needed alarmingly. 2080 * Fortunately we can avoid this because it's not actually 2081 * possible to arbitrarily execute code from memory with 2082 * the wrong security attribute: it will always generate 2083 * an exception of some kind or another, apart from the 2084 * special case of an NS CPU executing an SG instruction 2085 * in S&NSC memory. So we always just fail the translation 2086 * here and sort things out in the exception handler 2087 * (including possibly emulating an SG instruction). 2088 */ 2089 if (sattrs.ns != !secure) { 2090 if (sattrs.nsc) { 2091 fi->type = ARMFault_QEMU_NSCExec; 2092 } else { 2093 fi->type = ARMFault_QEMU_SFault; 2094 } 2095 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2096 result->f.phys_addr = address; 2097 result->f.prot = 0; 2098 return true; 2099 } 2100 } else { 2101 /* 2102 * For data accesses we always use the MMU bank indicated 2103 * by the current CPU state, but the security attributes 2104 * might downgrade a secure access to nonsecure. 2105 */ 2106 if (sattrs.ns) { 2107 result->f.attrs.secure = false; 2108 } else if (!secure) { 2109 /* 2110 * NS access to S memory must fault. 2111 * Architecturally we should first check whether the 2112 * MPU information for this address indicates that we 2113 * are doing an unaligned access to Device memory, which 2114 * should generate a UsageFault instead. QEMU does not 2115 * currently check for that kind of unaligned access though. 2116 * If we added it we would need to do so as a special case 2117 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2118 */ 2119 fi->type = ARMFault_QEMU_SFault; 2120 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2121 result->f.phys_addr = address; 2122 result->f.prot = 0; 2123 return true; 2124 } 2125 } 2126 } 2127 2128 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, 2129 result, fi, NULL); 2130 if (sattrs.subpage) { 2131 result->f.lg_page_size = 0; 2132 } 2133 return ret; 2134 } 2135 2136 /* 2137 * Translate from the 4-bit stage 2 representation of 2138 * memory attributes (without cache-allocation hints) to 2139 * the 8-bit representation of the stage 1 MAIR registers 2140 * (which includes allocation hints). 2141 * 2142 * ref: shared/translation/attrs/S2AttrDecode() 2143 * .../S2ConvertAttrsHints() 2144 */ 2145 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) 2146 { 2147 uint8_t hiattr = extract32(s2attrs, 2, 2); 2148 uint8_t loattr = extract32(s2attrs, 0, 2); 2149 uint8_t hihint = 0, lohint = 0; 2150 2151 if (hiattr != 0) { /* normal memory */ 2152 if (hcr & HCR_CD) { /* cache disabled */ 2153 hiattr = loattr = 1; /* non-cacheable */ 2154 } else { 2155 if (hiattr != 1) { /* Write-through or write-back */ 2156 hihint = 3; /* RW allocate */ 2157 } 2158 if (loattr != 1) { /* Write-through or write-back */ 2159 lohint = 3; /* RW allocate */ 2160 } 2161 } 2162 } 2163 2164 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 2165 } 2166 2167 /* 2168 * Combine either inner or outer cacheability attributes for normal 2169 * memory, according to table D4-42 and pseudocode procedure 2170 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 2171 * 2172 * NB: only stage 1 includes allocation hints (RW bits), leading to 2173 * some asymmetry. 2174 */ 2175 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 2176 { 2177 if (s1 == 4 || s2 == 4) { 2178 /* non-cacheable has precedence */ 2179 return 4; 2180 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 2181 /* stage 1 write-through takes precedence */ 2182 return s1; 2183 } else if (extract32(s2, 2, 2) == 2) { 2184 /* stage 2 write-through takes precedence, but the allocation hint 2185 * is still taken from stage 1 2186 */ 2187 return (2 << 2) | extract32(s1, 0, 2); 2188 } else { /* write-back */ 2189 return s1; 2190 } 2191 } 2192 2193 /* 2194 * Combine the memory type and cacheability attributes of 2195 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 2196 * combined attributes in MAIR_EL1 format. 2197 */ 2198 static uint8_t combined_attrs_nofwb(uint64_t hcr, 2199 ARMCacheAttrs s1, ARMCacheAttrs s2) 2200 { 2201 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 2202 2203 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); 2204 2205 s1lo = extract32(s1.attrs, 0, 4); 2206 s2lo = extract32(s2_mair_attrs, 0, 4); 2207 s1hi = extract32(s1.attrs, 4, 4); 2208 s2hi = extract32(s2_mair_attrs, 4, 4); 2209 2210 /* Combine memory type and cacheability attributes */ 2211 if (s1hi == 0 || s2hi == 0) { 2212 /* Device has precedence over normal */ 2213 if (s1lo == 0 || s2lo == 0) { 2214 /* nGnRnE has precedence over anything */ 2215 ret_attrs = 0; 2216 } else if (s1lo == 4 || s2lo == 4) { 2217 /* non-Reordering has precedence over Reordering */ 2218 ret_attrs = 4; /* nGnRE */ 2219 } else if (s1lo == 8 || s2lo == 8) { 2220 /* non-Gathering has precedence over Gathering */ 2221 ret_attrs = 8; /* nGRE */ 2222 } else { 2223 ret_attrs = 0xc; /* GRE */ 2224 } 2225 } else { /* Normal memory */ 2226 /* Outer/inner cacheability combine independently */ 2227 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 2228 | combine_cacheattr_nibble(s1lo, s2lo); 2229 } 2230 return ret_attrs; 2231 } 2232 2233 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 2234 { 2235 /* 2236 * Given the 4 bits specifying the outer or inner cacheability 2237 * in MAIR format, return a value specifying Normal Write-Back, 2238 * with the allocation and transient hints taken from the input 2239 * if the input specified some kind of cacheable attribute. 2240 */ 2241 if (attr == 0 || attr == 4) { 2242 /* 2243 * 0 == an UNPREDICTABLE encoding 2244 * 4 == Non-cacheable 2245 * Either way, force Write-Back RW allocate non-transient 2246 */ 2247 return 0xf; 2248 } 2249 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 2250 return attr | 4; 2251 } 2252 2253 /* 2254 * Combine the memory type and cacheability attributes of 2255 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 2256 * combined attributes in MAIR_EL1 format. 2257 */ 2258 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) 2259 { 2260 switch (s2.attrs) { 2261 case 7: 2262 /* Use stage 1 attributes */ 2263 return s1.attrs; 2264 case 6: 2265 /* 2266 * Force Normal Write-Back. Note that if S1 is Normal cacheable 2267 * then we take the allocation hints from it; otherwise it is 2268 * RW allocate, non-transient. 2269 */ 2270 if ((s1.attrs & 0xf0) == 0) { 2271 /* S1 is Device */ 2272 return 0xff; 2273 } 2274 /* Need to check the Inner and Outer nibbles separately */ 2275 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 2276 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 2277 case 5: 2278 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 2279 if ((s1.attrs & 0xf0) == 0) { 2280 return s1.attrs; 2281 } 2282 return 0x44; 2283 case 0 ... 3: 2284 /* Force Device, of subtype specified by S2 */ 2285 return s2.attrs << 2; 2286 default: 2287 /* 2288 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 2289 * arbitrarily force Device. 2290 */ 2291 return 0; 2292 } 2293 } 2294 2295 /* 2296 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 2297 * and CombineS1S2Desc() 2298 * 2299 * @env: CPUARMState 2300 * @s1: Attributes from stage 1 walk 2301 * @s2: Attributes from stage 2 walk 2302 */ 2303 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, 2304 ARMCacheAttrs s1, ARMCacheAttrs s2) 2305 { 2306 ARMCacheAttrs ret; 2307 bool tagged = false; 2308 2309 assert(s2.is_s2_format && !s1.is_s2_format); 2310 ret.is_s2_format = false; 2311 2312 if (s1.attrs == 0xf0) { 2313 tagged = true; 2314 s1.attrs = 0xff; 2315 } 2316 2317 /* Combine shareability attributes (table D4-43) */ 2318 if (s1.shareability == 2 || s2.shareability == 2) { 2319 /* if either are outer-shareable, the result is outer-shareable */ 2320 ret.shareability = 2; 2321 } else if (s1.shareability == 3 || s2.shareability == 3) { 2322 /* if either are inner-shareable, the result is inner-shareable */ 2323 ret.shareability = 3; 2324 } else { 2325 /* both non-shareable */ 2326 ret.shareability = 0; 2327 } 2328 2329 /* Combine memory type and cacheability attributes */ 2330 if (hcr & HCR_FWB) { 2331 ret.attrs = combined_attrs_fwb(s1, s2); 2332 } else { 2333 ret.attrs = combined_attrs_nofwb(hcr, s1, s2); 2334 } 2335 2336 /* 2337 * Any location for which the resultant memory type is any 2338 * type of Device memory is always treated as Outer Shareable. 2339 * Any location for which the resultant memory type is Normal 2340 * Inner Non-cacheable, Outer Non-cacheable is always treated 2341 * as Outer Shareable. 2342 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 2343 */ 2344 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 2345 ret.shareability = 2; 2346 } 2347 2348 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 2349 if (tagged && ret.attrs == 0xff) { 2350 ret.attrs = 0xf0; 2351 } 2352 2353 return ret; 2354 } 2355 2356 /* 2357 * MMU disabled. S1 addresses within aa64 translation regimes are 2358 * still checked for bounds -- see AArch64.S1DisabledOutput(). 2359 */ 2360 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address, 2361 MMUAccessType access_type, 2362 ARMMMUIdx mmu_idx, bool is_secure, 2363 GetPhysAddrResult *result, 2364 ARMMMUFaultInfo *fi) 2365 { 2366 uint8_t memattr = 0x00; /* Device nGnRnE */ 2367 uint8_t shareability = 0; /* non-sharable */ 2368 int r_el; 2369 2370 switch (mmu_idx) { 2371 case ARMMMUIdx_Stage2: 2372 case ARMMMUIdx_Stage2_S: 2373 case ARMMMUIdx_Phys_NS: 2374 case ARMMMUIdx_Phys_S: 2375 break; 2376 2377 default: 2378 r_el = regime_el(env, mmu_idx); 2379 if (arm_el_is_aa64(env, r_el)) { 2380 int pamax = arm_pamax(env_archcpu(env)); 2381 uint64_t tcr = env->cp15.tcr_el[r_el]; 2382 int addrtop, tbi; 2383 2384 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 2385 if (access_type == MMU_INST_FETCH) { 2386 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 2387 } 2388 tbi = (tbi >> extract64(address, 55, 1)) & 1; 2389 addrtop = (tbi ? 55 : 63); 2390 2391 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 2392 fi->type = ARMFault_AddressSize; 2393 fi->level = 0; 2394 fi->stage2 = false; 2395 return 1; 2396 } 2397 2398 /* 2399 * When TBI is disabled, we've just validated that all of the 2400 * bits above PAMax are zero, so logically we only need to 2401 * clear the top byte for TBI. But it's clearer to follow 2402 * the pseudocode set of addrdesc.paddress. 2403 */ 2404 address = extract64(address, 0, 52); 2405 } 2406 2407 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 2408 if (r_el == 1) { 2409 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure); 2410 if (hcr & HCR_DC) { 2411 if (hcr & HCR_DCT) { 2412 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 2413 } else { 2414 memattr = 0xff; /* Normal, WB, RWA */ 2415 } 2416 } 2417 } 2418 if (memattr == 0 && access_type == MMU_INST_FETCH) { 2419 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 2420 memattr = 0xee; /* Normal, WT, RA, NT */ 2421 } else { 2422 memattr = 0x44; /* Normal, NC, No */ 2423 } 2424 shareability = 2; /* outer sharable */ 2425 } 2426 result->cacheattrs.is_s2_format = false; 2427 break; 2428 } 2429 2430 result->f.phys_addr = address; 2431 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2432 result->f.lg_page_size = TARGET_PAGE_BITS; 2433 result->cacheattrs.shareability = shareability; 2434 result->cacheattrs.attrs = memattr; 2435 return false; 2436 } 2437 2438 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, 2439 target_ulong address, 2440 MMUAccessType access_type, 2441 GetPhysAddrResult *result, 2442 ARMMMUFaultInfo *fi) 2443 { 2444 hwaddr ipa; 2445 int s1_prot; 2446 bool is_secure = ptw->in_secure; 2447 bool ret, ipa_secure, s2walk_secure; 2448 ARMCacheAttrs cacheattrs1; 2449 bool is_el0; 2450 uint64_t hcr; 2451 2452 ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi); 2453 2454 /* If S1 fails or S2 is disabled, return early. */ 2455 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) { 2456 return ret; 2457 } 2458 2459 ipa = result->f.phys_addr; 2460 ipa_secure = result->f.attrs.secure; 2461 if (is_secure) { 2462 /* Select TCR based on the NS bit from the S1 walk. */ 2463 s2walk_secure = !(ipa_secure 2464 ? env->cp15.vstcr_el2 & VSTCR_SW 2465 : env->cp15.vtcr_el2 & VTCR_NSW); 2466 } else { 2467 assert(!ipa_secure); 2468 s2walk_secure = false; 2469 } 2470 2471 is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; 2472 ptw->in_mmu_idx = s2walk_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 2473 ptw->in_secure = s2walk_secure; 2474 2475 /* 2476 * S1 is done, now do S2 translation. 2477 * Save the stage1 results so that we may merge prot and cacheattrs later. 2478 */ 2479 s1_prot = result->f.prot; 2480 cacheattrs1 = result->cacheattrs; 2481 memset(result, 0, sizeof(*result)); 2482 2483 ret = get_phys_addr_lpae(env, ptw, ipa, access_type, is_el0, result, fi); 2484 fi->s2addr = ipa; 2485 2486 /* Combine the S1 and S2 perms. */ 2487 result->f.prot &= s1_prot; 2488 2489 /* If S2 fails, return early. */ 2490 if (ret) { 2491 return ret; 2492 } 2493 2494 /* Combine the S1 and S2 cache attributes. */ 2495 hcr = arm_hcr_el2_eff_secstate(env, is_secure); 2496 if (hcr & HCR_DC) { 2497 /* 2498 * HCR.DC forces the first stage attributes to 2499 * Normal Non-Shareable, 2500 * Inner Write-Back Read-Allocate Write-Allocate, 2501 * Outer Write-Back Read-Allocate Write-Allocate. 2502 * Do not overwrite Tagged within attrs. 2503 */ 2504 if (cacheattrs1.attrs != 0xf0) { 2505 cacheattrs1.attrs = 0xff; 2506 } 2507 cacheattrs1.shareability = 0; 2508 } 2509 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, 2510 result->cacheattrs); 2511 2512 /* 2513 * Check if IPA translates to secure or non-secure PA space. 2514 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. 2515 */ 2516 result->f.attrs.secure = 2517 (is_secure 2518 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) 2519 && (ipa_secure 2520 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)))); 2521 2522 return false; 2523 } 2524 2525 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw, 2526 target_ulong address, 2527 MMUAccessType access_type, 2528 GetPhysAddrResult *result, 2529 ARMMMUFaultInfo *fi) 2530 { 2531 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2532 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 2533 bool is_secure = ptw->in_secure; 2534 2535 if (mmu_idx != s1_mmu_idx) { 2536 /* 2537 * Call ourselves recursively to do the stage 1 and then stage 2 2538 * translations if mmu_idx is a two-stage regime, and EL2 present. 2539 * Otherwise, a stage1+stage2 translation is just stage 1. 2540 */ 2541 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; 2542 if (arm_feature(env, ARM_FEATURE_EL2)) { 2543 return get_phys_addr_twostage(env, ptw, address, access_type, 2544 result, fi); 2545 } 2546 } 2547 2548 /* 2549 * The page table entries may downgrade secure to non-secure, but 2550 * cannot upgrade an non-secure translation regime's attributes 2551 * to secure. 2552 */ 2553 result->f.attrs.secure = is_secure; 2554 result->f.attrs.user = regime_is_user(env, mmu_idx); 2555 2556 /* 2557 * Fast Context Switch Extension. This doesn't exist at all in v8. 2558 * In v7 and earlier it affects all stage 1 translations. 2559 */ 2560 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 2561 && !arm_feature(env, ARM_FEATURE_V8)) { 2562 if (regime_el(env, mmu_idx) == 3) { 2563 address += env->cp15.fcseidr_s; 2564 } else { 2565 address += env->cp15.fcseidr_ns; 2566 } 2567 } 2568 2569 if (arm_feature(env, ARM_FEATURE_PMSA)) { 2570 bool ret; 2571 result->f.lg_page_size = TARGET_PAGE_BITS; 2572 2573 if (arm_feature(env, ARM_FEATURE_V8)) { 2574 /* PMSAv8 */ 2575 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 2576 is_secure, result, fi); 2577 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2578 /* PMSAv7 */ 2579 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 2580 is_secure, result, fi); 2581 } else { 2582 /* Pre-v7 MPU */ 2583 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 2584 is_secure, result, fi); 2585 } 2586 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 2587 " mmu_idx %u -> %s (prot %c%c%c)\n", 2588 access_type == MMU_DATA_LOAD ? "reading" : 2589 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 2590 (uint32_t)address, mmu_idx, 2591 ret ? "Miss" : "Hit", 2592 result->f.prot & PAGE_READ ? 'r' : '-', 2593 result->f.prot & PAGE_WRITE ? 'w' : '-', 2594 result->f.prot & PAGE_EXEC ? 'x' : '-'); 2595 2596 return ret; 2597 } 2598 2599 /* Definitely a real MMU, not an MPU */ 2600 2601 if (regime_translation_disabled(env, mmu_idx, is_secure)) { 2602 return get_phys_addr_disabled(env, address, access_type, mmu_idx, 2603 is_secure, result, fi); 2604 } 2605 2606 if (regime_using_lpae_format(env, mmu_idx)) { 2607 return get_phys_addr_lpae(env, ptw, address, access_type, false, 2608 result, fi); 2609 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 2610 return get_phys_addr_v6(env, ptw, address, access_type, result, fi); 2611 } else { 2612 return get_phys_addr_v5(env, ptw, address, access_type, result, fi); 2613 } 2614 } 2615 2616 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address, 2617 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2618 bool is_secure, GetPhysAddrResult *result, 2619 ARMMMUFaultInfo *fi) 2620 { 2621 S1Translate ptw = { 2622 .in_mmu_idx = mmu_idx, 2623 .in_secure = is_secure, 2624 }; 2625 return get_phys_addr_with_struct(env, &ptw, address, access_type, 2626 result, fi); 2627 } 2628 2629 bool get_phys_addr(CPUARMState *env, target_ulong address, 2630 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2631 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 2632 { 2633 bool is_secure; 2634 2635 switch (mmu_idx) { 2636 case ARMMMUIdx_E10_0: 2637 case ARMMMUIdx_E10_1: 2638 case ARMMMUIdx_E10_1_PAN: 2639 case ARMMMUIdx_E20_0: 2640 case ARMMMUIdx_E20_2: 2641 case ARMMMUIdx_E20_2_PAN: 2642 case ARMMMUIdx_Stage1_E0: 2643 case ARMMMUIdx_Stage1_E1: 2644 case ARMMMUIdx_Stage1_E1_PAN: 2645 case ARMMMUIdx_E2: 2646 is_secure = arm_is_secure_below_el3(env); 2647 break; 2648 case ARMMMUIdx_Stage2: 2649 case ARMMMUIdx_Phys_NS: 2650 case ARMMMUIdx_MPrivNegPri: 2651 case ARMMMUIdx_MUserNegPri: 2652 case ARMMMUIdx_MPriv: 2653 case ARMMMUIdx_MUser: 2654 is_secure = false; 2655 break; 2656 case ARMMMUIdx_E3: 2657 case ARMMMUIdx_Stage2_S: 2658 case ARMMMUIdx_Phys_S: 2659 case ARMMMUIdx_MSPrivNegPri: 2660 case ARMMMUIdx_MSUserNegPri: 2661 case ARMMMUIdx_MSPriv: 2662 case ARMMMUIdx_MSUser: 2663 is_secure = true; 2664 break; 2665 default: 2666 g_assert_not_reached(); 2667 } 2668 return get_phys_addr_with_secure(env, address, access_type, mmu_idx, 2669 is_secure, result, fi); 2670 } 2671 2672 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 2673 MemTxAttrs *attrs) 2674 { 2675 ARMCPU *cpu = ARM_CPU(cs); 2676 CPUARMState *env = &cpu->env; 2677 S1Translate ptw = { 2678 .in_mmu_idx = arm_mmu_idx(env), 2679 .in_secure = arm_is_secure(env), 2680 .in_debug = true, 2681 }; 2682 GetPhysAddrResult res = {}; 2683 ARMMMUFaultInfo fi = {}; 2684 bool ret; 2685 2686 ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi); 2687 *attrs = res.f.attrs; 2688 2689 if (ret) { 2690 return -1; 2691 } 2692 return res.f.phys_addr; 2693 } 2694