xref: /openbmc/qemu/target/arm/ptw.c (revision 9c36407a)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "idau.h"
17 #ifdef CONFIG_TCG
18 # include "tcg/oversized-guest.h"
19 #endif
20 
21 typedef struct S1Translate {
22     ARMMMUIdx in_mmu_idx;
23     ARMMMUIdx in_ptw_idx;
24     bool in_secure;
25     bool in_debug;
26     bool out_secure;
27     bool out_rw;
28     bool out_be;
29     hwaddr out_virt;
30     hwaddr out_phys;
31     void *out_host;
32 } S1Translate;
33 
34 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
35                                uint64_t address,
36                                MMUAccessType access_type, bool s1_is_el0,
37                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
38     __attribute__((nonnull));
39 
40 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
41                                       target_ulong address,
42                                       MMUAccessType access_type,
43                                       GetPhysAddrResult *result,
44                                       ARMMMUFaultInfo *fi)
45     __attribute__((nonnull));
46 
47 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
48 static const uint8_t pamax_map[] = {
49     [0] = 32,
50     [1] = 36,
51     [2] = 40,
52     [3] = 42,
53     [4] = 44,
54     [5] = 48,
55     [6] = 52,
56 };
57 
58 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
59 unsigned int arm_pamax(ARMCPU *cpu)
60 {
61     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
62         unsigned int parange =
63             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
64 
65         /*
66          * id_aa64mmfr0 is a read-only register so values outside of the
67          * supported mappings can be considered an implementation error.
68          */
69         assert(parange < ARRAY_SIZE(pamax_map));
70         return pamax_map[parange];
71     }
72 
73     /*
74      * In machvirt_init, we call arm_pamax on a cpu that is not fully
75      * initialized, so we can't rely on the propagation done in realize.
76      */
77     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
78         arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
79         /* v7 with LPAE */
80         return 40;
81     }
82     /* Anything else */
83     return 32;
84 }
85 
86 /*
87  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
88  */
89 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
90 {
91     switch (mmu_idx) {
92     case ARMMMUIdx_E10_0:
93         return ARMMMUIdx_Stage1_E0;
94     case ARMMMUIdx_E10_1:
95         return ARMMMUIdx_Stage1_E1;
96     case ARMMMUIdx_E10_1_PAN:
97         return ARMMMUIdx_Stage1_E1_PAN;
98     default:
99         return mmu_idx;
100     }
101 }
102 
103 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
104 {
105     return stage_1_mmu_idx(arm_mmu_idx(env));
106 }
107 
108 /*
109  * Return where we should do ptw loads from for a stage 2 walk.
110  * This depends on whether the address we are looking up is a
111  * Secure IPA or a NonSecure IPA, which we know from whether this is
112  * Stage2 or Stage2_S.
113  * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
114  */
115 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
116 {
117     bool s2walk_secure;
118 
119     /*
120      * We're OK to check the current state of the CPU here because
121      * (1) we always invalidate all TLBs when the SCR_EL3.NS bit changes
122      * (2) there's no way to do a lookup that cares about Stage 2 for a
123      * different security state to the current one for AArch64, and AArch32
124      * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
125      * an NS stage 1+2 lookup while the NS bit is 0.)
126      */
127     if (!arm_is_secure_below_el3(env) || !arm_el_is_aa64(env, 3)) {
128         return ARMMMUIdx_Phys_NS;
129     }
130     if (stage2idx == ARMMMUIdx_Stage2_S) {
131         s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
132     } else {
133         s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
134     }
135     return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
136 
137 }
138 
139 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
140 {
141     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
142 }
143 
144 /* Return the TTBR associated with this translation regime */
145 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
146 {
147     if (mmu_idx == ARMMMUIdx_Stage2) {
148         return env->cp15.vttbr_el2;
149     }
150     if (mmu_idx == ARMMMUIdx_Stage2_S) {
151         return env->cp15.vsttbr_el2;
152     }
153     if (ttbrn == 0) {
154         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
155     } else {
156         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
157     }
158 }
159 
160 /* Return true if the specified stage of address translation is disabled */
161 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
162                                         bool is_secure)
163 {
164     uint64_t hcr_el2;
165 
166     if (arm_feature(env, ARM_FEATURE_M)) {
167         switch (env->v7m.mpu_ctrl[is_secure] &
168                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
169         case R_V7M_MPU_CTRL_ENABLE_MASK:
170             /* Enabled, but not for HardFault and NMI */
171             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
172         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
173             /* Enabled for all cases */
174             return false;
175         case 0:
176         default:
177             /*
178              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
179              * we warned about that in armv7m_nvic.c when the guest set it.
180              */
181             return true;
182         }
183     }
184 
185     hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
186 
187     switch (mmu_idx) {
188     case ARMMMUIdx_Stage2:
189     case ARMMMUIdx_Stage2_S:
190         /* HCR.DC means HCR.VM behaves as 1 */
191         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
192 
193     case ARMMMUIdx_E10_0:
194     case ARMMMUIdx_E10_1:
195     case ARMMMUIdx_E10_1_PAN:
196         /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
197         if (hcr_el2 & HCR_TGE) {
198             return true;
199         }
200         break;
201 
202     case ARMMMUIdx_Stage1_E0:
203     case ARMMMUIdx_Stage1_E1:
204     case ARMMMUIdx_Stage1_E1_PAN:
205         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
206         if (hcr_el2 & HCR_DC) {
207             return true;
208         }
209         break;
210 
211     case ARMMMUIdx_E20_0:
212     case ARMMMUIdx_E20_2:
213     case ARMMMUIdx_E20_2_PAN:
214     case ARMMMUIdx_E2:
215     case ARMMMUIdx_E3:
216         break;
217 
218     case ARMMMUIdx_Phys_NS:
219     case ARMMMUIdx_Phys_S:
220         /* No translation for physical address spaces. */
221         return true;
222 
223     default:
224         g_assert_not_reached();
225     }
226 
227     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
228 }
229 
230 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
231 {
232     /*
233      * For an S1 page table walk, the stage 1 attributes are always
234      * some form of "this is Normal memory". The combined S1+S2
235      * attributes are therefore only Device if stage 2 specifies Device.
236      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
237      * ie when cacheattrs.attrs bits [3:2] are 0b00.
238      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
239      * when cacheattrs.attrs bit [2] is 0.
240      */
241     if (hcr & HCR_FWB) {
242         return (attrs & 0x4) == 0;
243     } else {
244         return (attrs & 0xc) == 0;
245     }
246 }
247 
248 /* Translate a S1 pagetable walk through S2 if needed.  */
249 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
250                              hwaddr addr, ARMMMUFaultInfo *fi)
251 {
252     bool is_secure = ptw->in_secure;
253     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
254     ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
255     uint8_t pte_attrs;
256 
257     ptw->out_virt = addr;
258 
259     if (unlikely(ptw->in_debug)) {
260         /*
261          * From gdbstub, do not use softmmu so that we don't modify the
262          * state of the cpu at all, including softmmu tlb contents.
263          */
264         if (regime_is_stage2(s2_mmu_idx)) {
265             S1Translate s2ptw = {
266                 .in_mmu_idx = s2_mmu_idx,
267                 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
268                 .in_secure = s2_mmu_idx == ARMMMUIdx_Stage2_S,
269                 .in_debug = true,
270             };
271             GetPhysAddrResult s2 = { };
272 
273             if (get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
274                                    false, &s2, fi)) {
275                 goto fail;
276             }
277             ptw->out_phys = s2.f.phys_addr;
278             pte_attrs = s2.cacheattrs.attrs;
279             ptw->out_secure = s2.f.attrs.secure;
280         } else {
281             /* Regime is physical. */
282             ptw->out_phys = addr;
283             pte_attrs = 0;
284             ptw->out_secure = s2_mmu_idx == ARMMMUIdx_Phys_S;
285         }
286         ptw->out_host = NULL;
287         ptw->out_rw = false;
288     } else {
289 #ifdef CONFIG_TCG
290         CPUTLBEntryFull *full;
291         int flags;
292 
293         env->tlb_fi = fi;
294         flags = probe_access_full(env, addr, 0, MMU_DATA_LOAD,
295                                   arm_to_core_mmu_idx(s2_mmu_idx),
296                                   true, &ptw->out_host, &full, 0);
297         env->tlb_fi = NULL;
298 
299         if (unlikely(flags & TLB_INVALID_MASK)) {
300             goto fail;
301         }
302         ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
303         ptw->out_rw = full->prot & PAGE_WRITE;
304         pte_attrs = full->pte_attrs;
305         ptw->out_secure = full->attrs.secure;
306 #else
307         g_assert_not_reached();
308 #endif
309     }
310 
311     if (regime_is_stage2(s2_mmu_idx)) {
312         uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
313 
314         if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
315             /*
316              * PTW set and S1 walk touched S2 Device memory:
317              * generate Permission fault.
318              */
319             fi->type = ARMFault_Permission;
320             fi->s2addr = addr;
321             fi->stage2 = true;
322             fi->s1ptw = true;
323             fi->s1ns = !is_secure;
324             return false;
325         }
326     }
327 
328     ptw->out_be = regime_translation_big_endian(env, mmu_idx);
329     return true;
330 
331  fail:
332     assert(fi->type != ARMFault_None);
333     fi->s2addr = addr;
334     fi->stage2 = true;
335     fi->s1ptw = true;
336     fi->s1ns = !is_secure;
337     return false;
338 }
339 
340 /* All loads done in the course of a page table walk go through here. */
341 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
342                             ARMMMUFaultInfo *fi)
343 {
344     CPUState *cs = env_cpu(env);
345     void *host = ptw->out_host;
346     uint32_t data;
347 
348     if (likely(host)) {
349         /* Page tables are in RAM, and we have the host address. */
350         data = qatomic_read((uint32_t *)host);
351         if (ptw->out_be) {
352             data = be32_to_cpu(data);
353         } else {
354             data = le32_to_cpu(data);
355         }
356     } else {
357         /* Page tables are in MMIO. */
358         MemTxAttrs attrs = { .secure = ptw->out_secure };
359         AddressSpace *as = arm_addressspace(cs, attrs);
360         MemTxResult result = MEMTX_OK;
361 
362         if (ptw->out_be) {
363             data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
364         } else {
365             data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
366         }
367         if (unlikely(result != MEMTX_OK)) {
368             fi->type = ARMFault_SyncExternalOnWalk;
369             fi->ea = arm_extabort_type(result);
370             return 0;
371         }
372     }
373     return data;
374 }
375 
376 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
377                             ARMMMUFaultInfo *fi)
378 {
379     CPUState *cs = env_cpu(env);
380     void *host = ptw->out_host;
381     uint64_t data;
382 
383     if (likely(host)) {
384         /* Page tables are in RAM, and we have the host address. */
385 #ifdef CONFIG_ATOMIC64
386         data = qatomic_read__nocheck((uint64_t *)host);
387         if (ptw->out_be) {
388             data = be64_to_cpu(data);
389         } else {
390             data = le64_to_cpu(data);
391         }
392 #else
393         if (ptw->out_be) {
394             data = ldq_be_p(host);
395         } else {
396             data = ldq_le_p(host);
397         }
398 #endif
399     } else {
400         /* Page tables are in MMIO. */
401         MemTxAttrs attrs = { .secure = ptw->out_secure };
402         AddressSpace *as = arm_addressspace(cs, attrs);
403         MemTxResult result = MEMTX_OK;
404 
405         if (ptw->out_be) {
406             data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
407         } else {
408             data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
409         }
410         if (unlikely(result != MEMTX_OK)) {
411             fi->type = ARMFault_SyncExternalOnWalk;
412             fi->ea = arm_extabort_type(result);
413             return 0;
414         }
415     }
416     return data;
417 }
418 
419 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
420                              uint64_t new_val, S1Translate *ptw,
421                              ARMMMUFaultInfo *fi)
422 {
423 #ifdef TARGET_AARCH64
424     uint64_t cur_val;
425     void *host = ptw->out_host;
426 
427     if (unlikely(!host)) {
428         fi->type = ARMFault_UnsuppAtomicUpdate;
429         fi->s1ptw = true;
430         return 0;
431     }
432 
433     /*
434      * Raising a stage2 Protection fault for an atomic update to a read-only
435      * page is delayed until it is certain that there is a change to make.
436      */
437     if (unlikely(!ptw->out_rw)) {
438         int flags;
439         void *discard;
440 
441         env->tlb_fi = fi;
442         flags = probe_access_flags(env, ptw->out_virt, 0, MMU_DATA_STORE,
443                                    arm_to_core_mmu_idx(ptw->in_ptw_idx),
444                                    true, &discard, 0);
445         env->tlb_fi = NULL;
446 
447         if (unlikely(flags & TLB_INVALID_MASK)) {
448             assert(fi->type != ARMFault_None);
449             fi->s2addr = ptw->out_virt;
450             fi->stage2 = true;
451             fi->s1ptw = true;
452             fi->s1ns = !ptw->in_secure;
453             return 0;
454         }
455 
456         /* In case CAS mismatches and we loop, remember writability. */
457         ptw->out_rw = true;
458     }
459 
460 #ifdef CONFIG_ATOMIC64
461     if (ptw->out_be) {
462         old_val = cpu_to_be64(old_val);
463         new_val = cpu_to_be64(new_val);
464         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
465         cur_val = be64_to_cpu(cur_val);
466     } else {
467         old_val = cpu_to_le64(old_val);
468         new_val = cpu_to_le64(new_val);
469         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
470         cur_val = le64_to_cpu(cur_val);
471     }
472 #else
473     /*
474      * We can't support the full 64-bit atomic cmpxchg on the host.
475      * Because this is only used for FEAT_HAFDBS, which is only for AA64,
476      * we know that TCG_OVERSIZED_GUEST is set, which means that we are
477      * running in round-robin mode and could only race with dma i/o.
478      */
479 #if !TCG_OVERSIZED_GUEST
480 # error "Unexpected configuration"
481 #endif
482     bool locked = qemu_mutex_iothread_locked();
483     if (!locked) {
484        qemu_mutex_lock_iothread();
485     }
486     if (ptw->out_be) {
487         cur_val = ldq_be_p(host);
488         if (cur_val == old_val) {
489             stq_be_p(host, new_val);
490         }
491     } else {
492         cur_val = ldq_le_p(host);
493         if (cur_val == old_val) {
494             stq_le_p(host, new_val);
495         }
496     }
497     if (!locked) {
498         qemu_mutex_unlock_iothread();
499     }
500 #endif
501 
502     return cur_val;
503 #else
504     /* AArch32 does not have FEAT_HADFS. */
505     g_assert_not_reached();
506 #endif
507 }
508 
509 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
510                                      uint32_t *table, uint32_t address)
511 {
512     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
513     uint64_t tcr = regime_tcr(env, mmu_idx);
514     int maskshift = extract32(tcr, 0, 3);
515     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
516     uint32_t base_mask;
517 
518     if (address & mask) {
519         if (tcr & TTBCR_PD1) {
520             /* Translation table walk disabled for TTBR1 */
521             return false;
522         }
523         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
524     } else {
525         if (tcr & TTBCR_PD0) {
526             /* Translation table walk disabled for TTBR0 */
527             return false;
528         }
529         base_mask = ~((uint32_t)0x3fffu >> maskshift);
530         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
531     }
532     *table |= (address >> 18) & 0x3ffc;
533     return true;
534 }
535 
536 /*
537  * Translate section/page access permissions to page R/W protection flags
538  * @env:         CPUARMState
539  * @mmu_idx:     MMU index indicating required translation regime
540  * @ap:          The 3-bit access permissions (AP[2:0])
541  * @domain_prot: The 2-bit domain access permissions
542  * @is_user: TRUE if accessing from PL0
543  */
544 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
545                          int ap, int domain_prot, bool is_user)
546 {
547     if (domain_prot == 3) {
548         return PAGE_READ | PAGE_WRITE;
549     }
550 
551     switch (ap) {
552     case 0:
553         if (arm_feature(env, ARM_FEATURE_V7)) {
554             return 0;
555         }
556         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
557         case SCTLR_S:
558             return is_user ? 0 : PAGE_READ;
559         case SCTLR_R:
560             return PAGE_READ;
561         default:
562             return 0;
563         }
564     case 1:
565         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
566     case 2:
567         if (is_user) {
568             return PAGE_READ;
569         } else {
570             return PAGE_READ | PAGE_WRITE;
571         }
572     case 3:
573         return PAGE_READ | PAGE_WRITE;
574     case 4: /* Reserved.  */
575         return 0;
576     case 5:
577         return is_user ? 0 : PAGE_READ;
578     case 6:
579         return PAGE_READ;
580     case 7:
581         if (!arm_feature(env, ARM_FEATURE_V6K)) {
582             return 0;
583         }
584         return PAGE_READ;
585     default:
586         g_assert_not_reached();
587     }
588 }
589 
590 /*
591  * Translate section/page access permissions to page R/W protection flags
592  * @env:         CPUARMState
593  * @mmu_idx:     MMU index indicating required translation regime
594  * @ap:          The 3-bit access permissions (AP[2:0])
595  * @domain_prot: The 2-bit domain access permissions
596  */
597 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
598                          int ap, int domain_prot)
599 {
600    return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
601                                 regime_is_user(env, mmu_idx));
602 }
603 
604 /*
605  * Translate section/page access permissions to page R/W protection flags.
606  * @ap:      The 2-bit simple AP (AP[2:1])
607  * @is_user: TRUE if accessing from PL0
608  */
609 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
610 {
611     switch (ap) {
612     case 0:
613         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
614     case 1:
615         return PAGE_READ | PAGE_WRITE;
616     case 2:
617         return is_user ? 0 : PAGE_READ;
618     case 3:
619         return PAGE_READ;
620     default:
621         g_assert_not_reached();
622     }
623 }
624 
625 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
626 {
627     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
628 }
629 
630 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
631                              uint32_t address, MMUAccessType access_type,
632                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
633 {
634     int level = 1;
635     uint32_t table;
636     uint32_t desc;
637     int type;
638     int ap;
639     int domain = 0;
640     int domain_prot;
641     hwaddr phys_addr;
642     uint32_t dacr;
643 
644     /* Pagetable walk.  */
645     /* Lookup l1 descriptor.  */
646     if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
647         /* Section translation fault if page walk is disabled by PD0 or PD1 */
648         fi->type = ARMFault_Translation;
649         goto do_fault;
650     }
651     if (!S1_ptw_translate(env, ptw, table, fi)) {
652         goto do_fault;
653     }
654     desc = arm_ldl_ptw(env, ptw, fi);
655     if (fi->type != ARMFault_None) {
656         goto do_fault;
657     }
658     type = (desc & 3);
659     domain = (desc >> 5) & 0x0f;
660     if (regime_el(env, ptw->in_mmu_idx) == 1) {
661         dacr = env->cp15.dacr_ns;
662     } else {
663         dacr = env->cp15.dacr_s;
664     }
665     domain_prot = (dacr >> (domain * 2)) & 3;
666     if (type == 0) {
667         /* Section translation fault.  */
668         fi->type = ARMFault_Translation;
669         goto do_fault;
670     }
671     if (type != 2) {
672         level = 2;
673     }
674     if (domain_prot == 0 || domain_prot == 2) {
675         fi->type = ARMFault_Domain;
676         goto do_fault;
677     }
678     if (type == 2) {
679         /* 1Mb section.  */
680         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
681         ap = (desc >> 10) & 3;
682         result->f.lg_page_size = 20; /* 1MB */
683     } else {
684         /* Lookup l2 entry.  */
685         if (type == 1) {
686             /* Coarse pagetable.  */
687             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
688         } else {
689             /* Fine pagetable.  */
690             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
691         }
692         if (!S1_ptw_translate(env, ptw, table, fi)) {
693             goto do_fault;
694         }
695         desc = arm_ldl_ptw(env, ptw, fi);
696         if (fi->type != ARMFault_None) {
697             goto do_fault;
698         }
699         switch (desc & 3) {
700         case 0: /* Page translation fault.  */
701             fi->type = ARMFault_Translation;
702             goto do_fault;
703         case 1: /* 64k page.  */
704             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
705             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
706             result->f.lg_page_size = 16;
707             break;
708         case 2: /* 4k page.  */
709             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
710             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
711             result->f.lg_page_size = 12;
712             break;
713         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
714             if (type == 1) {
715                 /* ARMv6/XScale extended small page format */
716                 if (arm_feature(env, ARM_FEATURE_XSCALE)
717                     || arm_feature(env, ARM_FEATURE_V6)) {
718                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
719                     result->f.lg_page_size = 12;
720                 } else {
721                     /*
722                      * UNPREDICTABLE in ARMv5; we choose to take a
723                      * page translation fault.
724                      */
725                     fi->type = ARMFault_Translation;
726                     goto do_fault;
727                 }
728             } else {
729                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
730                 result->f.lg_page_size = 10;
731             }
732             ap = (desc >> 4) & 3;
733             break;
734         default:
735             /* Never happens, but compiler isn't smart enough to tell.  */
736             g_assert_not_reached();
737         }
738     }
739     result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
740     result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
741     if (!(result->f.prot & (1 << access_type))) {
742         /* Access permission fault.  */
743         fi->type = ARMFault_Permission;
744         goto do_fault;
745     }
746     result->f.phys_addr = phys_addr;
747     return false;
748 do_fault:
749     fi->domain = domain;
750     fi->level = level;
751     return true;
752 }
753 
754 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
755                              uint32_t address, MMUAccessType access_type,
756                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
757 {
758     ARMCPU *cpu = env_archcpu(env);
759     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
760     int level = 1;
761     uint32_t table;
762     uint32_t desc;
763     uint32_t xn;
764     uint32_t pxn = 0;
765     int type;
766     int ap;
767     int domain = 0;
768     int domain_prot;
769     hwaddr phys_addr;
770     uint32_t dacr;
771     bool ns;
772     int user_prot;
773 
774     /* Pagetable walk.  */
775     /* Lookup l1 descriptor.  */
776     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
777         /* Section translation fault if page walk is disabled by PD0 or PD1 */
778         fi->type = ARMFault_Translation;
779         goto do_fault;
780     }
781     if (!S1_ptw_translate(env, ptw, table, fi)) {
782         goto do_fault;
783     }
784     desc = arm_ldl_ptw(env, ptw, fi);
785     if (fi->type != ARMFault_None) {
786         goto do_fault;
787     }
788     type = (desc & 3);
789     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
790         /* Section translation fault, or attempt to use the encoding
791          * which is Reserved on implementations without PXN.
792          */
793         fi->type = ARMFault_Translation;
794         goto do_fault;
795     }
796     if ((type == 1) || !(desc & (1 << 18))) {
797         /* Page or Section.  */
798         domain = (desc >> 5) & 0x0f;
799     }
800     if (regime_el(env, mmu_idx) == 1) {
801         dacr = env->cp15.dacr_ns;
802     } else {
803         dacr = env->cp15.dacr_s;
804     }
805     if (type == 1) {
806         level = 2;
807     }
808     domain_prot = (dacr >> (domain * 2)) & 3;
809     if (domain_prot == 0 || domain_prot == 2) {
810         /* Section or Page domain fault */
811         fi->type = ARMFault_Domain;
812         goto do_fault;
813     }
814     if (type != 1) {
815         if (desc & (1 << 18)) {
816             /* Supersection.  */
817             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
818             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
819             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
820             result->f.lg_page_size = 24;  /* 16MB */
821         } else {
822             /* Section.  */
823             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
824             result->f.lg_page_size = 20;  /* 1MB */
825         }
826         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
827         xn = desc & (1 << 4);
828         pxn = desc & 1;
829         ns = extract32(desc, 19, 1);
830     } else {
831         if (cpu_isar_feature(aa32_pxn, cpu)) {
832             pxn = (desc >> 2) & 1;
833         }
834         ns = extract32(desc, 3, 1);
835         /* Lookup l2 entry.  */
836         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
837         if (!S1_ptw_translate(env, ptw, table, fi)) {
838             goto do_fault;
839         }
840         desc = arm_ldl_ptw(env, ptw, fi);
841         if (fi->type != ARMFault_None) {
842             goto do_fault;
843         }
844         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
845         switch (desc & 3) {
846         case 0: /* Page translation fault.  */
847             fi->type = ARMFault_Translation;
848             goto do_fault;
849         case 1: /* 64k page.  */
850             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
851             xn = desc & (1 << 15);
852             result->f.lg_page_size = 16;
853             break;
854         case 2: case 3: /* 4k page.  */
855             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
856             xn = desc & 1;
857             result->f.lg_page_size = 12;
858             break;
859         default:
860             /* Never happens, but compiler isn't smart enough to tell.  */
861             g_assert_not_reached();
862         }
863     }
864     if (domain_prot == 3) {
865         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
866     } else {
867         if (pxn && !regime_is_user(env, mmu_idx)) {
868             xn = 1;
869         }
870         if (xn && access_type == MMU_INST_FETCH) {
871             fi->type = ARMFault_Permission;
872             goto do_fault;
873         }
874 
875         if (arm_feature(env, ARM_FEATURE_V6K) &&
876                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
877             /* The simplified model uses AP[0] as an access control bit.  */
878             if ((ap & 1) == 0) {
879                 /* Access flag fault.  */
880                 fi->type = ARMFault_AccessFlag;
881                 goto do_fault;
882             }
883             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
884             user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
885         } else {
886             result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
887             user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
888         }
889         if (result->f.prot && !xn) {
890             result->f.prot |= PAGE_EXEC;
891         }
892         if (!(result->f.prot & (1 << access_type))) {
893             /* Access permission fault.  */
894             fi->type = ARMFault_Permission;
895             goto do_fault;
896         }
897         if (regime_is_pan(env, mmu_idx) &&
898             !regime_is_user(env, mmu_idx) &&
899             user_prot &&
900             access_type != MMU_INST_FETCH) {
901             /* Privileged Access Never fault */
902             fi->type = ARMFault_Permission;
903             goto do_fault;
904         }
905     }
906     if (ns) {
907         /* The NS bit will (as required by the architecture) have no effect if
908          * the CPU doesn't support TZ or this is a non-secure translation
909          * regime, because the attribute will already be non-secure.
910          */
911         result->f.attrs.secure = false;
912     }
913     result->f.phys_addr = phys_addr;
914     return false;
915 do_fault:
916     fi->domain = domain;
917     fi->level = level;
918     return true;
919 }
920 
921 /*
922  * Translate S2 section/page access permissions to protection flags
923  * @env:     CPUARMState
924  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
925  * @xn:      XN (execute-never) bits
926  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
927  */
928 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
929 {
930     int prot = 0;
931 
932     if (s2ap & 1) {
933         prot |= PAGE_READ;
934     }
935     if (s2ap & 2) {
936         prot |= PAGE_WRITE;
937     }
938 
939     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
940         switch (xn) {
941         case 0:
942             prot |= PAGE_EXEC;
943             break;
944         case 1:
945             if (s1_is_el0) {
946                 prot |= PAGE_EXEC;
947             }
948             break;
949         case 2:
950             break;
951         case 3:
952             if (!s1_is_el0) {
953                 prot |= PAGE_EXEC;
954             }
955             break;
956         default:
957             g_assert_not_reached();
958         }
959     } else {
960         if (!extract32(xn, 1, 1)) {
961             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
962                 prot |= PAGE_EXEC;
963             }
964         }
965     }
966     return prot;
967 }
968 
969 /*
970  * Translate section/page access permissions to protection flags
971  * @env:     CPUARMState
972  * @mmu_idx: MMU index indicating required translation regime
973  * @is_aa64: TRUE if AArch64
974  * @ap:      The 2-bit simple AP (AP[2:1])
975  * @ns:      NS (non-secure) bit
976  * @xn:      XN (execute-never) bit
977  * @pxn:     PXN (privileged execute-never) bit
978  */
979 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
980                       int ap, int ns, int xn, int pxn)
981 {
982     ARMCPU *cpu = env_archcpu(env);
983     bool is_user = regime_is_user(env, mmu_idx);
984     int prot_rw, user_rw;
985     bool have_wxn;
986     int wxn = 0;
987 
988     assert(!regime_is_stage2(mmu_idx));
989 
990     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
991     if (is_user) {
992         prot_rw = user_rw;
993     } else {
994         /*
995          * PAN controls can forbid data accesses but don't affect insn fetch.
996          * Plain PAN forbids data accesses if EL0 has data permissions;
997          * PAN3 forbids data accesses if EL0 has either data or exec perms.
998          * Note that for AArch64 the 'user can exec' case is exactly !xn.
999          * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1000          * do not affect EPAN.
1001          */
1002         if (user_rw && regime_is_pan(env, mmu_idx)) {
1003             prot_rw = 0;
1004         } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1005                    regime_is_pan(env, mmu_idx) &&
1006                    (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1007             prot_rw = 0;
1008         } else {
1009             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
1010         }
1011     }
1012 
1013     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
1014         return prot_rw;
1015     }
1016 
1017     /* TODO have_wxn should be replaced with
1018      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1019      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1020      * compatible processors have EL2, which is required for [U]WXN.
1021      */
1022     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1023 
1024     if (have_wxn) {
1025         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1026     }
1027 
1028     if (is_aa64) {
1029         if (regime_has_2_ranges(mmu_idx) && !is_user) {
1030             xn = pxn || (user_rw & PAGE_WRITE);
1031         }
1032     } else if (arm_feature(env, ARM_FEATURE_V7)) {
1033         switch (regime_el(env, mmu_idx)) {
1034         case 1:
1035         case 3:
1036             if (is_user) {
1037                 xn = xn || !(user_rw & PAGE_READ);
1038             } else {
1039                 int uwxn = 0;
1040                 if (have_wxn) {
1041                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1042                 }
1043                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1044                      (uwxn && (user_rw & PAGE_WRITE));
1045             }
1046             break;
1047         case 2:
1048             break;
1049         }
1050     } else {
1051         xn = wxn = 0;
1052     }
1053 
1054     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1055         return prot_rw;
1056     }
1057     return prot_rw | PAGE_EXEC;
1058 }
1059 
1060 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1061                                           ARMMMUIdx mmu_idx)
1062 {
1063     uint64_t tcr = regime_tcr(env, mmu_idx);
1064     uint32_t el = regime_el(env, mmu_idx);
1065     int select, tsz;
1066     bool epd, hpd;
1067 
1068     assert(mmu_idx != ARMMMUIdx_Stage2_S);
1069 
1070     if (mmu_idx == ARMMMUIdx_Stage2) {
1071         /* VTCR */
1072         bool sext = extract32(tcr, 4, 1);
1073         bool sign = extract32(tcr, 3, 1);
1074 
1075         /*
1076          * If the sign-extend bit is not the same as t0sz[3], the result
1077          * is unpredictable. Flag this as a guest error.
1078          */
1079         if (sign != sext) {
1080             qemu_log_mask(LOG_GUEST_ERROR,
1081                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1082         }
1083         tsz = sextract32(tcr, 0, 4) + 8;
1084         select = 0;
1085         hpd = false;
1086         epd = false;
1087     } else if (el == 2) {
1088         /* HTCR */
1089         tsz = extract32(tcr, 0, 3);
1090         select = 0;
1091         hpd = extract64(tcr, 24, 1);
1092         epd = false;
1093     } else {
1094         int t0sz = extract32(tcr, 0, 3);
1095         int t1sz = extract32(tcr, 16, 3);
1096 
1097         if (t1sz == 0) {
1098             select = va > (0xffffffffu >> t0sz);
1099         } else {
1100             /* Note that we will detect errors later.  */
1101             select = va >= ~(0xffffffffu >> t1sz);
1102         }
1103         if (!select) {
1104             tsz = t0sz;
1105             epd = extract32(tcr, 7, 1);
1106             hpd = extract64(tcr, 41, 1);
1107         } else {
1108             tsz = t1sz;
1109             epd = extract32(tcr, 23, 1);
1110             hpd = extract64(tcr, 42, 1);
1111         }
1112         /* For aarch32, hpd0 is not enabled without t2e as well.  */
1113         hpd &= extract32(tcr, 6, 1);
1114     }
1115 
1116     return (ARMVAParameters) {
1117         .tsz = tsz,
1118         .select = select,
1119         .epd = epd,
1120         .hpd = hpd,
1121     };
1122 }
1123 
1124 /*
1125  * check_s2_mmu_setup
1126  * @cpu:        ARMCPU
1127  * @is_aa64:    True if the translation regime is in AArch64 state
1128  * @tcr:        VTCR_EL2 or VSTCR_EL2
1129  * @ds:         Effective value of TCR.DS.
1130  * @iasize:     Bitsize of IPAs
1131  * @stride:     Page-table stride (See the ARM ARM)
1132  *
1133  * Decode the starting level of the S2 lookup, returning INT_MIN if
1134  * the configuration is invalid.
1135  */
1136 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1137                               bool ds, int iasize, int stride)
1138 {
1139     int sl0, sl2, startlevel, granulebits, levels;
1140     int s1_min_iasize, s1_max_iasize;
1141 
1142     sl0 = extract32(tcr, 6, 2);
1143     if (is_aa64) {
1144         /*
1145          * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1146          * so interleave AArch64.S2StartLevel.
1147          */
1148         switch (stride) {
1149         case 9: /* 4KB */
1150             /* SL2 is RES0 unless DS=1 & 4KB granule. */
1151             sl2 = extract64(tcr, 33, 1);
1152             if (ds && sl2) {
1153                 if (sl0 != 0) {
1154                     goto fail;
1155                 }
1156                 startlevel = -1;
1157             } else {
1158                 startlevel = 2 - sl0;
1159                 switch (sl0) {
1160                 case 2:
1161                     if (arm_pamax(cpu) < 44) {
1162                         goto fail;
1163                     }
1164                     break;
1165                 case 3:
1166                     if (!cpu_isar_feature(aa64_st, cpu)) {
1167                         goto fail;
1168                     }
1169                     startlevel = 3;
1170                     break;
1171                 }
1172             }
1173             break;
1174         case 11: /* 16KB */
1175             switch (sl0) {
1176             case 2:
1177                 if (arm_pamax(cpu) < 42) {
1178                     goto fail;
1179                 }
1180                 break;
1181             case 3:
1182                 if (!ds) {
1183                     goto fail;
1184                 }
1185                 break;
1186             }
1187             startlevel = 3 - sl0;
1188             break;
1189         case 13: /* 64KB */
1190             switch (sl0) {
1191             case 2:
1192                 if (arm_pamax(cpu) < 44) {
1193                     goto fail;
1194                 }
1195                 break;
1196             case 3:
1197                 goto fail;
1198             }
1199             startlevel = 3 - sl0;
1200             break;
1201         default:
1202             g_assert_not_reached();
1203         }
1204     } else {
1205         /*
1206          * Things are simpler for AArch32 EL2, with only 4k pages.
1207          * There is no separate S2InvalidSL function, but AArch32.S2Walk
1208          * begins with walkparms.sl0 in {'1x'}.
1209          */
1210         assert(stride == 9);
1211         if (sl0 >= 2) {
1212             goto fail;
1213         }
1214         startlevel = 2 - sl0;
1215     }
1216 
1217     /* AArch{64,32}.S2InconsistentSL are functionally equivalent.  */
1218     levels = 3 - startlevel;
1219     granulebits = stride + 3;
1220 
1221     s1_min_iasize = levels * stride + granulebits + 1;
1222     s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1223 
1224     if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1225         return startlevel;
1226     }
1227 
1228  fail:
1229     return INT_MIN;
1230 }
1231 
1232 /**
1233  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1234  *
1235  * Returns false if the translation was successful. Otherwise, phys_ptr,
1236  * attrs, prot and page_size may not be filled in, and the populated fsr
1237  * value provides information on why the translation aborted, in the format
1238  * of a long-format DFSR/IFSR fault register, with the following caveat:
1239  * the WnR bit is never set (the caller must do this).
1240  *
1241  * @env: CPUARMState
1242  * @ptw: Current and next stage parameters for the walk.
1243  * @address: virtual address to get physical address for
1244  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1245  * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2
1246  *             (so this is a stage 2 page table walk),
1247  *             must be true if this is stage 2 of a stage 1+2
1248  *             walk for an EL0 access. If @mmu_idx is anything else,
1249  *             @s1_is_el0 is ignored.
1250  * @result: set on translation success,
1251  * @fi: set to fault info if the translation fails
1252  */
1253 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1254                                uint64_t address,
1255                                MMUAccessType access_type, bool s1_is_el0,
1256                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1257 {
1258     ARMCPU *cpu = env_archcpu(env);
1259     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1260     bool is_secure = ptw->in_secure;
1261     int32_t level;
1262     ARMVAParameters param;
1263     uint64_t ttbr;
1264     hwaddr descaddr, indexmask, indexmask_grainsize;
1265     uint32_t tableattrs;
1266     target_ulong page_size;
1267     uint64_t attrs;
1268     int32_t stride;
1269     int addrsize, inputsize, outputsize;
1270     uint64_t tcr = regime_tcr(env, mmu_idx);
1271     int ap, ns, xn, pxn;
1272     uint32_t el = regime_el(env, mmu_idx);
1273     uint64_t descaddrmask;
1274     bool aarch64 = arm_el_is_aa64(env, el);
1275     uint64_t descriptor, new_descriptor;
1276     bool nstable;
1277 
1278     /* TODO: This code does not support shareability levels. */
1279     if (aarch64) {
1280         int ps;
1281 
1282         param = aa64_va_parameters(env, address, mmu_idx,
1283                                    access_type != MMU_INST_FETCH,
1284                                    !arm_el_is_aa64(env, 1));
1285         level = 0;
1286 
1287         /*
1288          * If TxSZ is programmed to a value larger than the maximum,
1289          * or smaller than the effective minimum, it is IMPLEMENTATION
1290          * DEFINED whether we behave as if the field were programmed
1291          * within bounds, or if a level 0 Translation fault is generated.
1292          *
1293          * With FEAT_LVA, fault on less than minimum becomes required,
1294          * so our choice is to always raise the fault.
1295          */
1296         if (param.tsz_oob) {
1297             goto do_translation_fault;
1298         }
1299 
1300         addrsize = 64 - 8 * param.tbi;
1301         inputsize = 64 - param.tsz;
1302 
1303         /*
1304          * Bound PS by PARANGE to find the effective output address size.
1305          * ID_AA64MMFR0 is a read-only register so values outside of the
1306          * supported mappings can be considered an implementation error.
1307          */
1308         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1309         ps = MIN(ps, param.ps);
1310         assert(ps < ARRAY_SIZE(pamax_map));
1311         outputsize = pamax_map[ps];
1312 
1313         /*
1314          * With LPA2, the effective output address (OA) size is at most 48 bits
1315          * unless TCR.DS == 1
1316          */
1317         if (!param.ds && param.gran != Gran64K) {
1318             outputsize = MIN(outputsize, 48);
1319         }
1320     } else {
1321         param = aa32_va_parameters(env, address, mmu_idx);
1322         level = 1;
1323         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1324         inputsize = addrsize - param.tsz;
1325         outputsize = 40;
1326     }
1327 
1328     /*
1329      * We determined the region when collecting the parameters, but we
1330      * have not yet validated that the address is valid for the region.
1331      * Extract the top bits and verify that they all match select.
1332      *
1333      * For aa32, if inputsize == addrsize, then we have selected the
1334      * region by exclusion in aa32_va_parameters and there is no more
1335      * validation to do here.
1336      */
1337     if (inputsize < addrsize) {
1338         target_ulong top_bits = sextract64(address, inputsize,
1339                                            addrsize - inputsize);
1340         if (-top_bits != param.select) {
1341             /* The gap between the two regions is a Translation fault */
1342             goto do_translation_fault;
1343         }
1344     }
1345 
1346     stride = arm_granule_bits(param.gran) - 3;
1347 
1348     /*
1349      * Note that QEMU ignores shareability and cacheability attributes,
1350      * so we don't need to do anything with the SH, ORGN, IRGN fields
1351      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1352      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1353      * implement any ASID-like capability so we can ignore it (instead
1354      * we will always flush the TLB any time the ASID is changed).
1355      */
1356     ttbr = regime_ttbr(env, mmu_idx, param.select);
1357 
1358     /*
1359      * Here we should have set up all the parameters for the translation:
1360      * inputsize, ttbr, epd, stride, tbi
1361      */
1362 
1363     if (param.epd) {
1364         /*
1365          * Translation table walk disabled => Translation fault on TLB miss
1366          * Note: This is always 0 on 64-bit EL2 and EL3.
1367          */
1368         goto do_translation_fault;
1369     }
1370 
1371     if (!regime_is_stage2(mmu_idx)) {
1372         /*
1373          * The starting level depends on the virtual address size (which can
1374          * be up to 48 bits) and the translation granule size. It indicates
1375          * the number of strides (stride bits at a time) needed to
1376          * consume the bits of the input address. In the pseudocode this is:
1377          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1378          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1379          * our 'stride + 3' and 'stride' is our 'stride'.
1380          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1381          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1382          * = 4 - (inputsize - 4) / stride;
1383          */
1384         level = 4 - (inputsize - 4) / stride;
1385     } else {
1386         int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1387                                             inputsize, stride);
1388         if (startlevel == INT_MIN) {
1389             level = 0;
1390             goto do_translation_fault;
1391         }
1392         level = startlevel;
1393     }
1394 
1395     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1396     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1397 
1398     /* Now we can extract the actual base address from the TTBR */
1399     descaddr = extract64(ttbr, 0, 48);
1400 
1401     /*
1402      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1403      *
1404      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1405      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1406      * but we've just cleared the bits above 47, so simplify the test.
1407      */
1408     if (outputsize > 48) {
1409         descaddr |= extract64(ttbr, 2, 4) << 48;
1410     } else if (descaddr >> outputsize) {
1411         level = 0;
1412         fi->type = ARMFault_AddressSize;
1413         goto do_fault;
1414     }
1415 
1416     /*
1417      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1418      * and also to mask out CnP (bit 0) which could validly be non-zero.
1419      */
1420     descaddr &= ~indexmask;
1421 
1422     /*
1423      * For AArch32, the address field in the descriptor goes up to bit 39
1424      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1425      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1426      * bits as part of the address, which will be checked via outputsize.
1427      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1428      * the highest bits of a 52-bit output are placed elsewhere.
1429      */
1430     if (param.ds) {
1431         descaddrmask = MAKE_64BIT_MASK(0, 50);
1432     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1433         descaddrmask = MAKE_64BIT_MASK(0, 48);
1434     } else {
1435         descaddrmask = MAKE_64BIT_MASK(0, 40);
1436     }
1437     descaddrmask &= ~indexmask_grainsize;
1438 
1439     /*
1440      * Secure stage 1 accesses start with the page table in secure memory and
1441      * can be downgraded to non-secure at any step. Non-secure accesses
1442      * remain non-secure. We implement this by just ORing in the NSTable/NS
1443      * bits at each step.
1444      * Stage 2 never gets this kind of downgrade.
1445      */
1446     tableattrs = is_secure ? 0 : (1 << 4);
1447 
1448  next_level:
1449     descaddr |= (address >> (stride * (4 - level))) & indexmask;
1450     descaddr &= ~7ULL;
1451     nstable = !regime_is_stage2(mmu_idx) && extract32(tableattrs, 4, 1);
1452     if (nstable) {
1453         /*
1454          * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1455          * Assert that the non-secure idx are even, and relative order.
1456          */
1457         QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0);
1458         QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0);
1459         QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S);
1460         QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S);
1461         ptw->in_ptw_idx &= ~1;
1462         ptw->in_secure = false;
1463     }
1464     if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1465         goto do_fault;
1466     }
1467     descriptor = arm_ldq_ptw(env, ptw, fi);
1468     if (fi->type != ARMFault_None) {
1469         goto do_fault;
1470     }
1471     new_descriptor = descriptor;
1472 
1473  restart_atomic_update:
1474     if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) {
1475         /* Invalid, or the Reserved level 3 encoding */
1476         goto do_translation_fault;
1477     }
1478 
1479     descaddr = descriptor & descaddrmask;
1480 
1481     /*
1482      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1483      * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1484      * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1485      * raise AddressSizeFault.
1486      */
1487     if (outputsize > 48) {
1488         if (param.ds) {
1489             descaddr |= extract64(descriptor, 8, 2) << 50;
1490         } else {
1491             descaddr |= extract64(descriptor, 12, 4) << 48;
1492         }
1493     } else if (descaddr >> outputsize) {
1494         fi->type = ARMFault_AddressSize;
1495         goto do_fault;
1496     }
1497 
1498     if ((descriptor & 2) && (level < 3)) {
1499         /*
1500          * Table entry. The top five bits are attributes which may
1501          * propagate down through lower levels of the table (and
1502          * which are all arranged so that 0 means "no effect", so
1503          * we can gather them up by ORing in the bits at each level).
1504          */
1505         tableattrs |= extract64(descriptor, 59, 5);
1506         level++;
1507         indexmask = indexmask_grainsize;
1508         goto next_level;
1509     }
1510 
1511     /*
1512      * Block entry at level 1 or 2, or page entry at level 3.
1513      * These are basically the same thing, although the number
1514      * of bits we pull in from the vaddr varies. Note that although
1515      * descaddrmask masks enough of the low bits of the descriptor
1516      * to give a correct page or table address, the address field
1517      * in a block descriptor is smaller; so we need to explicitly
1518      * clear the lower bits here before ORing in the low vaddr bits.
1519      *
1520      * Afterward, descaddr is the final physical address.
1521      */
1522     page_size = (1ULL << ((stride * (4 - level)) + 3));
1523     descaddr &= ~(hwaddr)(page_size - 1);
1524     descaddr |= (address & (page_size - 1));
1525 
1526     if (likely(!ptw->in_debug)) {
1527         /*
1528          * Access flag.
1529          * If HA is enabled, prepare to update the descriptor below.
1530          * Otherwise, pass the access fault on to software.
1531          */
1532         if (!(descriptor & (1 << 10))) {
1533             if (param.ha) {
1534                 new_descriptor |= 1 << 10; /* AF */
1535             } else {
1536                 fi->type = ARMFault_AccessFlag;
1537                 goto do_fault;
1538             }
1539         }
1540 
1541         /*
1542          * Dirty Bit.
1543          * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1544          * bit for writeback. The actual write protection test may still be
1545          * overridden by tableattrs, to be merged below.
1546          */
1547         if (param.hd
1548             && extract64(descriptor, 51, 1)  /* DBM */
1549             && access_type == MMU_DATA_STORE) {
1550             if (regime_is_stage2(mmu_idx)) {
1551                 new_descriptor |= 1ull << 7;    /* set S2AP[1] */
1552             } else {
1553                 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1554             }
1555         }
1556     }
1557 
1558     /*
1559      * Extract attributes from the (modified) descriptor, and apply
1560      * table descriptors. Stage 2 table descriptors do not include
1561      * any attribute fields. HPD disables all the table attributes
1562      * except NSTable.
1563      */
1564     attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1565     if (!regime_is_stage2(mmu_idx)) {
1566         attrs |= nstable << 5; /* NS */
1567         if (!param.hpd) {
1568             attrs |= extract64(tableattrs, 0, 2) << 53;     /* XN, PXN */
1569             /*
1570              * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1571              * means "force PL1 access only", which means forcing AP[1] to 0.
1572              */
1573             attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1574             attrs |= extract32(tableattrs, 3, 1) << 7;    /* APT[1] => AP[2] */
1575         }
1576     }
1577 
1578     ap = extract32(attrs, 6, 2);
1579     if (regime_is_stage2(mmu_idx)) {
1580         ns = mmu_idx == ARMMMUIdx_Stage2;
1581         xn = extract64(attrs, 53, 2);
1582         result->f.prot = get_S2prot(env, ap, xn, s1_is_el0);
1583     } else {
1584         ns = extract32(attrs, 5, 1);
1585         xn = extract64(attrs, 54, 1);
1586         pxn = extract64(attrs, 53, 1);
1587         result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1588     }
1589 
1590     if (!(result->f.prot & (1 << access_type))) {
1591         fi->type = ARMFault_Permission;
1592         goto do_fault;
1593     }
1594 
1595     /* If FEAT_HAFDBS has made changes, update the PTE. */
1596     if (new_descriptor != descriptor) {
1597         new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
1598         if (fi->type != ARMFault_None) {
1599             goto do_fault;
1600         }
1601         /*
1602          * I_YZSVV says that if the in-memory descriptor has changed,
1603          * then we must use the information in that new value
1604          * (which might include a different output address, different
1605          * attributes, or generate a fault).
1606          * Restart the handling of the descriptor value from scratch.
1607          */
1608         if (new_descriptor != descriptor) {
1609             descriptor = new_descriptor;
1610             goto restart_atomic_update;
1611         }
1612     }
1613 
1614     if (ns) {
1615         /*
1616          * The NS bit will (as required by the architecture) have no effect if
1617          * the CPU doesn't support TZ or this is a non-secure translation
1618          * regime, because the attribute will already be non-secure.
1619          */
1620         result->f.attrs.secure = false;
1621     }
1622 
1623     if (regime_is_stage2(mmu_idx)) {
1624         result->cacheattrs.is_s2_format = true;
1625         result->cacheattrs.attrs = extract32(attrs, 2, 4);
1626     } else {
1627         /* Index into MAIR registers for cache attributes */
1628         uint8_t attrindx = extract32(attrs, 2, 3);
1629         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1630         assert(attrindx <= 7);
1631         result->cacheattrs.is_s2_format = false;
1632         result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
1633 
1634         /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
1635         if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
1636             result->f.guarded = extract64(attrs, 50, 1); /* GP */
1637         }
1638     }
1639 
1640     /*
1641      * For FEAT_LPA2 and effective DS, the SH field in the attributes
1642      * was re-purposed for output address bits.  The SH attribute in
1643      * that case comes from TCR_ELx, which we extracted earlier.
1644      */
1645     if (param.ds) {
1646         result->cacheattrs.shareability = param.sh;
1647     } else {
1648         result->cacheattrs.shareability = extract32(attrs, 8, 2);
1649     }
1650 
1651     result->f.phys_addr = descaddr;
1652     result->f.lg_page_size = ctz64(page_size);
1653     return false;
1654 
1655  do_translation_fault:
1656     fi->type = ARMFault_Translation;
1657  do_fault:
1658     fi->level = level;
1659     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
1660     fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx);
1661     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1662     return true;
1663 }
1664 
1665 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1666                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
1667                                  bool is_secure, GetPhysAddrResult *result,
1668                                  ARMMMUFaultInfo *fi)
1669 {
1670     int n;
1671     uint32_t mask;
1672     uint32_t base;
1673     bool is_user = regime_is_user(env, mmu_idx);
1674 
1675     if (regime_translation_disabled(env, mmu_idx, is_secure)) {
1676         /* MPU disabled.  */
1677         result->f.phys_addr = address;
1678         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1679         return false;
1680     }
1681 
1682     result->f.phys_addr = address;
1683     for (n = 7; n >= 0; n--) {
1684         base = env->cp15.c6_region[n];
1685         if ((base & 1) == 0) {
1686             continue;
1687         }
1688         mask = 1 << ((base >> 1) & 0x1f);
1689         /* Keep this shift separate from the above to avoid an
1690            (undefined) << 32.  */
1691         mask = (mask << 1) - 1;
1692         if (((base ^ address) & ~mask) == 0) {
1693             break;
1694         }
1695     }
1696     if (n < 0) {
1697         fi->type = ARMFault_Background;
1698         return true;
1699     }
1700 
1701     if (access_type == MMU_INST_FETCH) {
1702         mask = env->cp15.pmsav5_insn_ap;
1703     } else {
1704         mask = env->cp15.pmsav5_data_ap;
1705     }
1706     mask = (mask >> (n * 4)) & 0xf;
1707     switch (mask) {
1708     case 0:
1709         fi->type = ARMFault_Permission;
1710         fi->level = 1;
1711         return true;
1712     case 1:
1713         if (is_user) {
1714             fi->type = ARMFault_Permission;
1715             fi->level = 1;
1716             return true;
1717         }
1718         result->f.prot = PAGE_READ | PAGE_WRITE;
1719         break;
1720     case 2:
1721         result->f.prot = PAGE_READ;
1722         if (!is_user) {
1723             result->f.prot |= PAGE_WRITE;
1724         }
1725         break;
1726     case 3:
1727         result->f.prot = PAGE_READ | PAGE_WRITE;
1728         break;
1729     case 5:
1730         if (is_user) {
1731             fi->type = ARMFault_Permission;
1732             fi->level = 1;
1733             return true;
1734         }
1735         result->f.prot = PAGE_READ;
1736         break;
1737     case 6:
1738         result->f.prot = PAGE_READ;
1739         break;
1740     default:
1741         /* Bad permission.  */
1742         fi->type = ARMFault_Permission;
1743         fi->level = 1;
1744         return true;
1745     }
1746     result->f.prot |= PAGE_EXEC;
1747     return false;
1748 }
1749 
1750 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1751                                          int32_t address, uint8_t *prot)
1752 {
1753     if (!arm_feature(env, ARM_FEATURE_M)) {
1754         *prot = PAGE_READ | PAGE_WRITE;
1755         switch (address) {
1756         case 0xF0000000 ... 0xFFFFFFFF:
1757             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1758                 /* hivecs execing is ok */
1759                 *prot |= PAGE_EXEC;
1760             }
1761             break;
1762         case 0x00000000 ... 0x7FFFFFFF:
1763             *prot |= PAGE_EXEC;
1764             break;
1765         }
1766     } else {
1767         /* Default system address map for M profile cores.
1768          * The architecture specifies which regions are execute-never;
1769          * at the MPU level no other checks are defined.
1770          */
1771         switch (address) {
1772         case 0x00000000 ... 0x1fffffff: /* ROM */
1773         case 0x20000000 ... 0x3fffffff: /* SRAM */
1774         case 0x60000000 ... 0x7fffffff: /* RAM */
1775         case 0x80000000 ... 0x9fffffff: /* RAM */
1776             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1777             break;
1778         case 0x40000000 ... 0x5fffffff: /* Peripheral */
1779         case 0xa0000000 ... 0xbfffffff: /* Device */
1780         case 0xc0000000 ... 0xdfffffff: /* Device */
1781         case 0xe0000000 ... 0xffffffff: /* System */
1782             *prot = PAGE_READ | PAGE_WRITE;
1783             break;
1784         default:
1785             g_assert_not_reached();
1786         }
1787     }
1788 }
1789 
1790 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1791 {
1792     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1793     return arm_feature(env, ARM_FEATURE_M) &&
1794         extract32(address, 20, 12) == 0xe00;
1795 }
1796 
1797 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1798 {
1799     /*
1800      * True if address is in the M profile system region
1801      * 0xe0000000 - 0xffffffff
1802      */
1803     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1804 }
1805 
1806 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1807                                          bool is_secure, bool is_user)
1808 {
1809     /*
1810      * Return true if we should use the default memory map as a
1811      * "background" region if there are no hits against any MPU regions.
1812      */
1813     CPUARMState *env = &cpu->env;
1814 
1815     if (is_user) {
1816         return false;
1817     }
1818 
1819     if (arm_feature(env, ARM_FEATURE_M)) {
1820         return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1821     }
1822 
1823     if (mmu_idx == ARMMMUIdx_Stage2) {
1824         return false;
1825     }
1826 
1827     return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1828 }
1829 
1830 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1831                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
1832                                  bool secure, GetPhysAddrResult *result,
1833                                  ARMMMUFaultInfo *fi)
1834 {
1835     ARMCPU *cpu = env_archcpu(env);
1836     int n;
1837     bool is_user = regime_is_user(env, mmu_idx);
1838 
1839     result->f.phys_addr = address;
1840     result->f.lg_page_size = TARGET_PAGE_BITS;
1841     result->f.prot = 0;
1842 
1843     if (regime_translation_disabled(env, mmu_idx, secure) ||
1844         m_is_ppb_region(env, address)) {
1845         /*
1846          * MPU disabled or M profile PPB access: use default memory map.
1847          * The other case which uses the default memory map in the
1848          * v7M ARM ARM pseudocode is exception vector reads from the vector
1849          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1850          * which always does a direct read using address_space_ldl(), rather
1851          * than going via this function, so we don't need to check that here.
1852          */
1853         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
1854     } else { /* MPU enabled */
1855         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1856             /* region search */
1857             uint32_t base = env->pmsav7.drbar[n];
1858             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1859             uint32_t rmask;
1860             bool srdis = false;
1861 
1862             if (!(env->pmsav7.drsr[n] & 0x1)) {
1863                 continue;
1864             }
1865 
1866             if (!rsize) {
1867                 qemu_log_mask(LOG_GUEST_ERROR,
1868                               "DRSR[%d]: Rsize field cannot be 0\n", n);
1869                 continue;
1870             }
1871             rsize++;
1872             rmask = (1ull << rsize) - 1;
1873 
1874             if (base & rmask) {
1875                 qemu_log_mask(LOG_GUEST_ERROR,
1876                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1877                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
1878                               n, base, rmask);
1879                 continue;
1880             }
1881 
1882             if (address < base || address > base + rmask) {
1883                 /*
1884                  * Address not in this region. We must check whether the
1885                  * region covers addresses in the same page as our address.
1886                  * In that case we must not report a size that covers the
1887                  * whole page for a subsequent hit against a different MPU
1888                  * region or the background region, because it would result in
1889                  * incorrect TLB hits for subsequent accesses to addresses that
1890                  * are in this MPU region.
1891                  */
1892                 if (ranges_overlap(base, rmask,
1893                                    address & TARGET_PAGE_MASK,
1894                                    TARGET_PAGE_SIZE)) {
1895                     result->f.lg_page_size = 0;
1896                 }
1897                 continue;
1898             }
1899 
1900             /* Region matched */
1901 
1902             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1903                 int i, snd;
1904                 uint32_t srdis_mask;
1905 
1906                 rsize -= 3; /* sub region size (power of 2) */
1907                 snd = ((address - base) >> rsize) & 0x7;
1908                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1909 
1910                 srdis_mask = srdis ? 0x3 : 0x0;
1911                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1912                     /*
1913                      * This will check in groups of 2, 4 and then 8, whether
1914                      * the subregion bits are consistent. rsize is incremented
1915                      * back up to give the region size, considering consistent
1916                      * adjacent subregions as one region. Stop testing if rsize
1917                      * is already big enough for an entire QEMU page.
1918                      */
1919                     int snd_rounded = snd & ~(i - 1);
1920                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1921                                                      snd_rounded + 8, i);
1922                     if (srdis_mask ^ srdis_multi) {
1923                         break;
1924                     }
1925                     srdis_mask = (srdis_mask << i) | srdis_mask;
1926                     rsize++;
1927                 }
1928             }
1929             if (srdis) {
1930                 continue;
1931             }
1932             if (rsize < TARGET_PAGE_BITS) {
1933                 result->f.lg_page_size = rsize;
1934             }
1935             break;
1936         }
1937 
1938         if (n == -1) { /* no hits */
1939             if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1940                 /* background fault */
1941                 fi->type = ARMFault_Background;
1942                 return true;
1943             }
1944             get_phys_addr_pmsav7_default(env, mmu_idx, address,
1945                                          &result->f.prot);
1946         } else { /* a MPU hit! */
1947             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1948             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1949 
1950             if (m_is_system_region(env, address)) {
1951                 /* System space is always execute never */
1952                 xn = 1;
1953             }
1954 
1955             if (is_user) { /* User mode AP bit decoding */
1956                 switch (ap) {
1957                 case 0:
1958                 case 1:
1959                 case 5:
1960                     break; /* no access */
1961                 case 3:
1962                     result->f.prot |= PAGE_WRITE;
1963                     /* fall through */
1964                 case 2:
1965                 case 6:
1966                     result->f.prot |= PAGE_READ | PAGE_EXEC;
1967                     break;
1968                 case 7:
1969                     /* for v7M, same as 6; for R profile a reserved value */
1970                     if (arm_feature(env, ARM_FEATURE_M)) {
1971                         result->f.prot |= PAGE_READ | PAGE_EXEC;
1972                         break;
1973                     }
1974                     /* fall through */
1975                 default:
1976                     qemu_log_mask(LOG_GUEST_ERROR,
1977                                   "DRACR[%d]: Bad value for AP bits: 0x%"
1978                                   PRIx32 "\n", n, ap);
1979                 }
1980             } else { /* Priv. mode AP bits decoding */
1981                 switch (ap) {
1982                 case 0:
1983                     break; /* no access */
1984                 case 1:
1985                 case 2:
1986                 case 3:
1987                     result->f.prot |= PAGE_WRITE;
1988                     /* fall through */
1989                 case 5:
1990                 case 6:
1991                     result->f.prot |= PAGE_READ | PAGE_EXEC;
1992                     break;
1993                 case 7:
1994                     /* for v7M, same as 6; for R profile a reserved value */
1995                     if (arm_feature(env, ARM_FEATURE_M)) {
1996                         result->f.prot |= PAGE_READ | PAGE_EXEC;
1997                         break;
1998                     }
1999                     /* fall through */
2000                 default:
2001                     qemu_log_mask(LOG_GUEST_ERROR,
2002                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2003                                   PRIx32 "\n", n, ap);
2004                 }
2005             }
2006 
2007             /* execute never */
2008             if (xn) {
2009                 result->f.prot &= ~PAGE_EXEC;
2010             }
2011         }
2012     }
2013 
2014     fi->type = ARMFault_Permission;
2015     fi->level = 1;
2016     return !(result->f.prot & (1 << access_type));
2017 }
2018 
2019 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2020                              uint32_t secure)
2021 {
2022     if (regime_el(env, mmu_idx) == 2) {
2023         return env->pmsav8.hprbar;
2024     } else {
2025         return env->pmsav8.rbar[secure];
2026     }
2027 }
2028 
2029 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2030                              uint32_t secure)
2031 {
2032     if (regime_el(env, mmu_idx) == 2) {
2033         return env->pmsav8.hprlar;
2034     } else {
2035         return env->pmsav8.rlar[secure];
2036     }
2037 }
2038 
2039 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2040                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
2041                        bool secure, GetPhysAddrResult *result,
2042                        ARMMMUFaultInfo *fi, uint32_t *mregion)
2043 {
2044     /*
2045      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2046      * that a full phys-to-virt translation does).
2047      * mregion is (if not NULL) set to the region number which matched,
2048      * or -1 if no region number is returned (MPU off, address did not
2049      * hit a region, address hit in multiple regions).
2050      * If the region hit doesn't cover the entire TARGET_PAGE the address
2051      * is within, then we set the result page_size to 1 to force the
2052      * memory system to use a subpage.
2053      */
2054     ARMCPU *cpu = env_archcpu(env);
2055     bool is_user = regime_is_user(env, mmu_idx);
2056     int n;
2057     int matchregion = -1;
2058     bool hit = false;
2059     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2060     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2061     int region_counter;
2062 
2063     if (regime_el(env, mmu_idx) == 2) {
2064         region_counter = cpu->pmsav8r_hdregion;
2065     } else {
2066         region_counter = cpu->pmsav7_dregion;
2067     }
2068 
2069     result->f.lg_page_size = TARGET_PAGE_BITS;
2070     result->f.phys_addr = address;
2071     result->f.prot = 0;
2072     if (mregion) {
2073         *mregion = -1;
2074     }
2075 
2076     if (mmu_idx == ARMMMUIdx_Stage2) {
2077         fi->stage2 = true;
2078     }
2079 
2080     /*
2081      * Unlike the ARM ARM pseudocode, we don't need to check whether this
2082      * was an exception vector read from the vector table (which is always
2083      * done using the default system address map), because those accesses
2084      * are done in arm_v7m_load_vector(), which always does a direct
2085      * read using address_space_ldl(), rather than going via this function.
2086      */
2087     if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
2088         hit = true;
2089     } else if (m_is_ppb_region(env, address)) {
2090         hit = true;
2091     } else {
2092         if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2093             hit = true;
2094         }
2095 
2096         uint32_t bitmask;
2097         if (arm_feature(env, ARM_FEATURE_M)) {
2098             bitmask = 0x1f;
2099         } else {
2100             bitmask = 0x3f;
2101             fi->level = 0;
2102         }
2103 
2104         for (n = region_counter - 1; n >= 0; n--) {
2105             /* region search */
2106             /*
2107              * Note that the base address is bits [31:x] from the register
2108              * with bits [x-1:0] all zeroes, but the limit address is bits
2109              * [31:x] from the register with bits [x:0] all ones. Where x is
2110              * 5 for Cortex-M and 6 for Cortex-R
2111              */
2112             uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2113             uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2114 
2115             if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2116                 /* Region disabled */
2117                 continue;
2118             }
2119 
2120             if (address < base || address > limit) {
2121                 /*
2122                  * Address not in this region. We must check whether the
2123                  * region covers addresses in the same page as our address.
2124                  * In that case we must not report a size that covers the
2125                  * whole page for a subsequent hit against a different MPU
2126                  * region or the background region, because it would result in
2127                  * incorrect TLB hits for subsequent accesses to addresses that
2128                  * are in this MPU region.
2129                  */
2130                 if (limit >= base &&
2131                     ranges_overlap(base, limit - base + 1,
2132                                    addr_page_base,
2133                                    TARGET_PAGE_SIZE)) {
2134                     result->f.lg_page_size = 0;
2135                 }
2136                 continue;
2137             }
2138 
2139             if (base > addr_page_base || limit < addr_page_limit) {
2140                 result->f.lg_page_size = 0;
2141             }
2142 
2143             if (matchregion != -1) {
2144                 /*
2145                  * Multiple regions match -- always a failure (unlike
2146                  * PMSAv7 where highest-numbered-region wins)
2147                  */
2148                 fi->type = ARMFault_Permission;
2149                 if (arm_feature(env, ARM_FEATURE_M)) {
2150                     fi->level = 1;
2151                 }
2152                 return true;
2153             }
2154 
2155             matchregion = n;
2156             hit = true;
2157         }
2158     }
2159 
2160     if (!hit) {
2161         if (arm_feature(env, ARM_FEATURE_M)) {
2162             fi->type = ARMFault_Background;
2163         } else {
2164             fi->type = ARMFault_Permission;
2165         }
2166         return true;
2167     }
2168 
2169     if (matchregion == -1) {
2170         /* hit using the background region */
2171         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2172     } else {
2173         uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2174         uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2175         uint32_t ap = extract32(matched_rbar, 1, 2);
2176         uint32_t xn = extract32(matched_rbar, 0, 1);
2177         bool pxn = false;
2178 
2179         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2180             pxn = extract32(matched_rlar, 4, 1);
2181         }
2182 
2183         if (m_is_system_region(env, address)) {
2184             /* System space is always execute never */
2185             xn = 1;
2186         }
2187 
2188         if (regime_el(env, mmu_idx) == 2) {
2189             result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2190                                             mmu_idx != ARMMMUIdx_E2);
2191         } else {
2192             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2193         }
2194 
2195         if (!arm_feature(env, ARM_FEATURE_M)) {
2196             uint8_t attrindx = extract32(matched_rlar, 1, 3);
2197             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2198             uint8_t sh = extract32(matched_rlar, 3, 2);
2199 
2200             if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2201                 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2202                 xn = 0x1;
2203             }
2204 
2205             if ((regime_el(env, mmu_idx) == 1) &&
2206                 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2207                 pxn = 0x1;
2208             }
2209 
2210             result->cacheattrs.is_s2_format = false;
2211             result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2212             result->cacheattrs.shareability = sh;
2213         }
2214 
2215         if (result->f.prot && !xn && !(pxn && !is_user)) {
2216             result->f.prot |= PAGE_EXEC;
2217         }
2218 
2219         if (mregion) {
2220             *mregion = matchregion;
2221         }
2222     }
2223 
2224     fi->type = ARMFault_Permission;
2225     if (arm_feature(env, ARM_FEATURE_M)) {
2226         fi->level = 1;
2227     }
2228     return !(result->f.prot & (1 << access_type));
2229 }
2230 
2231 static bool v8m_is_sau_exempt(CPUARMState *env,
2232                               uint32_t address, MMUAccessType access_type)
2233 {
2234     /*
2235      * The architecture specifies that certain address ranges are
2236      * exempt from v8M SAU/IDAU checks.
2237      */
2238     return
2239         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2240         (address >= 0xe0000000 && address <= 0xe0002fff) ||
2241         (address >= 0xe000e000 && address <= 0xe000efff) ||
2242         (address >= 0xe002e000 && address <= 0xe002efff) ||
2243         (address >= 0xe0040000 && address <= 0xe0041fff) ||
2244         (address >= 0xe00ff000 && address <= 0xe00fffff);
2245 }
2246 
2247 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2248                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
2249                          bool is_secure, V8M_SAttributes *sattrs)
2250 {
2251     /*
2252      * Look up the security attributes for this address. Compare the
2253      * pseudocode SecurityCheck() function.
2254      * We assume the caller has zero-initialized *sattrs.
2255      */
2256     ARMCPU *cpu = env_archcpu(env);
2257     int r;
2258     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2259     int idau_region = IREGION_NOTVALID;
2260     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2261     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2262 
2263     if (cpu->idau) {
2264         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2265         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2266 
2267         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2268                    &idau_nsc);
2269     }
2270 
2271     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2272         /* 0xf0000000..0xffffffff is always S for insn fetches */
2273         return;
2274     }
2275 
2276     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2277         sattrs->ns = !is_secure;
2278         return;
2279     }
2280 
2281     if (idau_region != IREGION_NOTVALID) {
2282         sattrs->irvalid = true;
2283         sattrs->iregion = idau_region;
2284     }
2285 
2286     switch (env->sau.ctrl & 3) {
2287     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2288         break;
2289     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2290         sattrs->ns = true;
2291         break;
2292     default: /* SAU.ENABLE == 1 */
2293         for (r = 0; r < cpu->sau_sregion; r++) {
2294             if (env->sau.rlar[r] & 1) {
2295                 uint32_t base = env->sau.rbar[r] & ~0x1f;
2296                 uint32_t limit = env->sau.rlar[r] | 0x1f;
2297 
2298                 if (base <= address && limit >= address) {
2299                     if (base > addr_page_base || limit < addr_page_limit) {
2300                         sattrs->subpage = true;
2301                     }
2302                     if (sattrs->srvalid) {
2303                         /*
2304                          * If we hit in more than one region then we must report
2305                          * as Secure, not NS-Callable, with no valid region
2306                          * number info.
2307                          */
2308                         sattrs->ns = false;
2309                         sattrs->nsc = false;
2310                         sattrs->sregion = 0;
2311                         sattrs->srvalid = false;
2312                         break;
2313                     } else {
2314                         if (env->sau.rlar[r] & 2) {
2315                             sattrs->nsc = true;
2316                         } else {
2317                             sattrs->ns = true;
2318                         }
2319                         sattrs->srvalid = true;
2320                         sattrs->sregion = r;
2321                     }
2322                 } else {
2323                     /*
2324                      * Address not in this region. We must check whether the
2325                      * region covers addresses in the same page as our address.
2326                      * In that case we must not report a size that covers the
2327                      * whole page for a subsequent hit against a different MPU
2328                      * region or the background region, because it would result
2329                      * in incorrect TLB hits for subsequent accesses to
2330                      * addresses that are in this MPU region.
2331                      */
2332                     if (limit >= base &&
2333                         ranges_overlap(base, limit - base + 1,
2334                                        addr_page_base,
2335                                        TARGET_PAGE_SIZE)) {
2336                         sattrs->subpage = true;
2337                     }
2338                 }
2339             }
2340         }
2341         break;
2342     }
2343 
2344     /*
2345      * The IDAU will override the SAU lookup results if it specifies
2346      * higher security than the SAU does.
2347      */
2348     if (!idau_ns) {
2349         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2350             sattrs->ns = false;
2351             sattrs->nsc = idau_nsc;
2352         }
2353     }
2354 }
2355 
2356 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
2357                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
2358                                  bool secure, GetPhysAddrResult *result,
2359                                  ARMMMUFaultInfo *fi)
2360 {
2361     V8M_SAttributes sattrs = {};
2362     bool ret;
2363 
2364     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2365         v8m_security_lookup(env, address, access_type, mmu_idx,
2366                             secure, &sattrs);
2367         if (access_type == MMU_INST_FETCH) {
2368             /*
2369              * Instruction fetches always use the MMU bank and the
2370              * transaction attribute determined by the fetch address,
2371              * regardless of CPU state. This is painful for QEMU
2372              * to handle, because it would mean we need to encode
2373              * into the mmu_idx not just the (user, negpri) information
2374              * for the current security state but also that for the
2375              * other security state, which would balloon the number
2376              * of mmu_idx values needed alarmingly.
2377              * Fortunately we can avoid this because it's not actually
2378              * possible to arbitrarily execute code from memory with
2379              * the wrong security attribute: it will always generate
2380              * an exception of some kind or another, apart from the
2381              * special case of an NS CPU executing an SG instruction
2382              * in S&NSC memory. So we always just fail the translation
2383              * here and sort things out in the exception handler
2384              * (including possibly emulating an SG instruction).
2385              */
2386             if (sattrs.ns != !secure) {
2387                 if (sattrs.nsc) {
2388                     fi->type = ARMFault_QEMU_NSCExec;
2389                 } else {
2390                     fi->type = ARMFault_QEMU_SFault;
2391                 }
2392                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2393                 result->f.phys_addr = address;
2394                 result->f.prot = 0;
2395                 return true;
2396             }
2397         } else {
2398             /*
2399              * For data accesses we always use the MMU bank indicated
2400              * by the current CPU state, but the security attributes
2401              * might downgrade a secure access to nonsecure.
2402              */
2403             if (sattrs.ns) {
2404                 result->f.attrs.secure = false;
2405             } else if (!secure) {
2406                 /*
2407                  * NS access to S memory must fault.
2408                  * Architecturally we should first check whether the
2409                  * MPU information for this address indicates that we
2410                  * are doing an unaligned access to Device memory, which
2411                  * should generate a UsageFault instead. QEMU does not
2412                  * currently check for that kind of unaligned access though.
2413                  * If we added it we would need to do so as a special case
2414                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2415                  */
2416                 fi->type = ARMFault_QEMU_SFault;
2417                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2418                 result->f.phys_addr = address;
2419                 result->f.prot = 0;
2420                 return true;
2421             }
2422         }
2423     }
2424 
2425     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2426                             result, fi, NULL);
2427     if (sattrs.subpage) {
2428         result->f.lg_page_size = 0;
2429     }
2430     return ret;
2431 }
2432 
2433 /*
2434  * Translate from the 4-bit stage 2 representation of
2435  * memory attributes (without cache-allocation hints) to
2436  * the 8-bit representation of the stage 1 MAIR registers
2437  * (which includes allocation hints).
2438  *
2439  * ref: shared/translation/attrs/S2AttrDecode()
2440  *      .../S2ConvertAttrsHints()
2441  */
2442 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2443 {
2444     uint8_t hiattr = extract32(s2attrs, 2, 2);
2445     uint8_t loattr = extract32(s2attrs, 0, 2);
2446     uint8_t hihint = 0, lohint = 0;
2447 
2448     if (hiattr != 0) { /* normal memory */
2449         if (hcr & HCR_CD) { /* cache disabled */
2450             hiattr = loattr = 1; /* non-cacheable */
2451         } else {
2452             if (hiattr != 1) { /* Write-through or write-back */
2453                 hihint = 3; /* RW allocate */
2454             }
2455             if (loattr != 1) { /* Write-through or write-back */
2456                 lohint = 3; /* RW allocate */
2457             }
2458         }
2459     }
2460 
2461     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2462 }
2463 
2464 /*
2465  * Combine either inner or outer cacheability attributes for normal
2466  * memory, according to table D4-42 and pseudocode procedure
2467  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2468  *
2469  * NB: only stage 1 includes allocation hints (RW bits), leading to
2470  * some asymmetry.
2471  */
2472 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2473 {
2474     if (s1 == 4 || s2 == 4) {
2475         /* non-cacheable has precedence */
2476         return 4;
2477     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2478         /* stage 1 write-through takes precedence */
2479         return s1;
2480     } else if (extract32(s2, 2, 2) == 2) {
2481         /* stage 2 write-through takes precedence, but the allocation hint
2482          * is still taken from stage 1
2483          */
2484         return (2 << 2) | extract32(s1, 0, 2);
2485     } else { /* write-back */
2486         return s1;
2487     }
2488 }
2489 
2490 /*
2491  * Combine the memory type and cacheability attributes of
2492  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2493  * combined attributes in MAIR_EL1 format.
2494  */
2495 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2496                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
2497 {
2498     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2499 
2500     if (s2.is_s2_format) {
2501         s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2502     } else {
2503         s2_mair_attrs = s2.attrs;
2504     }
2505 
2506     s1lo = extract32(s1.attrs, 0, 4);
2507     s2lo = extract32(s2_mair_attrs, 0, 4);
2508     s1hi = extract32(s1.attrs, 4, 4);
2509     s2hi = extract32(s2_mair_attrs, 4, 4);
2510 
2511     /* Combine memory type and cacheability attributes */
2512     if (s1hi == 0 || s2hi == 0) {
2513         /* Device has precedence over normal */
2514         if (s1lo == 0 || s2lo == 0) {
2515             /* nGnRnE has precedence over anything */
2516             ret_attrs = 0;
2517         } else if (s1lo == 4 || s2lo == 4) {
2518             /* non-Reordering has precedence over Reordering */
2519             ret_attrs = 4;  /* nGnRE */
2520         } else if (s1lo == 8 || s2lo == 8) {
2521             /* non-Gathering has precedence over Gathering */
2522             ret_attrs = 8;  /* nGRE */
2523         } else {
2524             ret_attrs = 0xc; /* GRE */
2525         }
2526     } else { /* Normal memory */
2527         /* Outer/inner cacheability combine independently */
2528         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2529                   | combine_cacheattr_nibble(s1lo, s2lo);
2530     }
2531     return ret_attrs;
2532 }
2533 
2534 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2535 {
2536     /*
2537      * Given the 4 bits specifying the outer or inner cacheability
2538      * in MAIR format, return a value specifying Normal Write-Back,
2539      * with the allocation and transient hints taken from the input
2540      * if the input specified some kind of cacheable attribute.
2541      */
2542     if (attr == 0 || attr == 4) {
2543         /*
2544          * 0 == an UNPREDICTABLE encoding
2545          * 4 == Non-cacheable
2546          * Either way, force Write-Back RW allocate non-transient
2547          */
2548         return 0xf;
2549     }
2550     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2551     return attr | 4;
2552 }
2553 
2554 /*
2555  * Combine the memory type and cacheability attributes of
2556  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2557  * combined attributes in MAIR_EL1 format.
2558  */
2559 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2560 {
2561     assert(s2.is_s2_format && !s1.is_s2_format);
2562 
2563     switch (s2.attrs) {
2564     case 7:
2565         /* Use stage 1 attributes */
2566         return s1.attrs;
2567     case 6:
2568         /*
2569          * Force Normal Write-Back. Note that if S1 is Normal cacheable
2570          * then we take the allocation hints from it; otherwise it is
2571          * RW allocate, non-transient.
2572          */
2573         if ((s1.attrs & 0xf0) == 0) {
2574             /* S1 is Device */
2575             return 0xff;
2576         }
2577         /* Need to check the Inner and Outer nibbles separately */
2578         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2579             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2580     case 5:
2581         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2582         if ((s1.attrs & 0xf0) == 0) {
2583             return s1.attrs;
2584         }
2585         return 0x44;
2586     case 0 ... 3:
2587         /* Force Device, of subtype specified by S2 */
2588         return s2.attrs << 2;
2589     default:
2590         /*
2591          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2592          * arbitrarily force Device.
2593          */
2594         return 0;
2595     }
2596 }
2597 
2598 /*
2599  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2600  * and CombineS1S2Desc()
2601  *
2602  * @env:     CPUARMState
2603  * @s1:      Attributes from stage 1 walk
2604  * @s2:      Attributes from stage 2 walk
2605  */
2606 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
2607                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
2608 {
2609     ARMCacheAttrs ret;
2610     bool tagged = false;
2611 
2612     assert(!s1.is_s2_format);
2613     ret.is_s2_format = false;
2614     ret.guarded = s1.guarded;
2615 
2616     if (s1.attrs == 0xf0) {
2617         tagged = true;
2618         s1.attrs = 0xff;
2619     }
2620 
2621     /* Combine shareability attributes (table D4-43) */
2622     if (s1.shareability == 2 || s2.shareability == 2) {
2623         /* if either are outer-shareable, the result is outer-shareable */
2624         ret.shareability = 2;
2625     } else if (s1.shareability == 3 || s2.shareability == 3) {
2626         /* if either are inner-shareable, the result is inner-shareable */
2627         ret.shareability = 3;
2628     } else {
2629         /* both non-shareable */
2630         ret.shareability = 0;
2631     }
2632 
2633     /* Combine memory type and cacheability attributes */
2634     if (hcr & HCR_FWB) {
2635         ret.attrs = combined_attrs_fwb(s1, s2);
2636     } else {
2637         ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
2638     }
2639 
2640     /*
2641      * Any location for which the resultant memory type is any
2642      * type of Device memory is always treated as Outer Shareable.
2643      * Any location for which the resultant memory type is Normal
2644      * Inner Non-cacheable, Outer Non-cacheable is always treated
2645      * as Outer Shareable.
2646      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2647      */
2648     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2649         ret.shareability = 2;
2650     }
2651 
2652     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2653     if (tagged && ret.attrs == 0xff) {
2654         ret.attrs = 0xf0;
2655     }
2656 
2657     return ret;
2658 }
2659 
2660 /*
2661  * MMU disabled.  S1 addresses within aa64 translation regimes are
2662  * still checked for bounds -- see AArch64.S1DisabledOutput().
2663  */
2664 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
2665                                    MMUAccessType access_type,
2666                                    ARMMMUIdx mmu_idx, bool is_secure,
2667                                    GetPhysAddrResult *result,
2668                                    ARMMMUFaultInfo *fi)
2669 {
2670     uint8_t memattr = 0x00;    /* Device nGnRnE */
2671     uint8_t shareability = 0;  /* non-sharable */
2672     int r_el;
2673 
2674     switch (mmu_idx) {
2675     case ARMMMUIdx_Stage2:
2676     case ARMMMUIdx_Stage2_S:
2677     case ARMMMUIdx_Phys_NS:
2678     case ARMMMUIdx_Phys_S:
2679         break;
2680 
2681     default:
2682         r_el = regime_el(env, mmu_idx);
2683         if (arm_el_is_aa64(env, r_el)) {
2684             int pamax = arm_pamax(env_archcpu(env));
2685             uint64_t tcr = env->cp15.tcr_el[r_el];
2686             int addrtop, tbi;
2687 
2688             tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2689             if (access_type == MMU_INST_FETCH) {
2690                 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2691             }
2692             tbi = (tbi >> extract64(address, 55, 1)) & 1;
2693             addrtop = (tbi ? 55 : 63);
2694 
2695             if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2696                 fi->type = ARMFault_AddressSize;
2697                 fi->level = 0;
2698                 fi->stage2 = false;
2699                 return 1;
2700             }
2701 
2702             /*
2703              * When TBI is disabled, we've just validated that all of the
2704              * bits above PAMax are zero, so logically we only need to
2705              * clear the top byte for TBI.  But it's clearer to follow
2706              * the pseudocode set of addrdesc.paddress.
2707              */
2708             address = extract64(address, 0, 52);
2709         }
2710 
2711         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2712         if (r_el == 1) {
2713             uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2714             if (hcr & HCR_DC) {
2715                 if (hcr & HCR_DCT) {
2716                     memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
2717                 } else {
2718                     memattr = 0xff;  /* Normal, WB, RWA */
2719                 }
2720             }
2721         }
2722         if (memattr == 0 && access_type == MMU_INST_FETCH) {
2723             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2724                 memattr = 0xee;  /* Normal, WT, RA, NT */
2725             } else {
2726                 memattr = 0x44;  /* Normal, NC, No */
2727             }
2728             shareability = 2; /* outer sharable */
2729         }
2730         result->cacheattrs.is_s2_format = false;
2731         break;
2732     }
2733 
2734     result->f.phys_addr = address;
2735     result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2736     result->f.lg_page_size = TARGET_PAGE_BITS;
2737     result->cacheattrs.shareability = shareability;
2738     result->cacheattrs.attrs = memattr;
2739     return false;
2740 }
2741 
2742 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
2743                                    target_ulong address,
2744                                    MMUAccessType access_type,
2745                                    GetPhysAddrResult *result,
2746                                    ARMMMUFaultInfo *fi)
2747 {
2748     hwaddr ipa;
2749     int s1_prot, s1_lgpgsz;
2750     bool is_secure = ptw->in_secure;
2751     bool ret, ipa_secure;
2752     ARMCacheAttrs cacheattrs1;
2753     bool is_el0;
2754     uint64_t hcr;
2755 
2756     ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi);
2757 
2758     /* If S1 fails, return early.  */
2759     if (ret) {
2760         return ret;
2761     }
2762 
2763     ipa = result->f.phys_addr;
2764     ipa_secure = result->f.attrs.secure;
2765 
2766     is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
2767     ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2768     ptw->in_secure = ipa_secure;
2769     ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
2770 
2771     /*
2772      * S1 is done, now do S2 translation.
2773      * Save the stage1 results so that we may merge prot and cacheattrs later.
2774      */
2775     s1_prot = result->f.prot;
2776     s1_lgpgsz = result->f.lg_page_size;
2777     cacheattrs1 = result->cacheattrs;
2778     memset(result, 0, sizeof(*result));
2779 
2780     if (arm_feature(env, ARM_FEATURE_PMSA)) {
2781         ret = get_phys_addr_pmsav8(env, ipa, access_type,
2782                                    ptw->in_mmu_idx, is_secure, result, fi);
2783     } else {
2784         ret = get_phys_addr_lpae(env, ptw, ipa, access_type,
2785                                  is_el0, result, fi);
2786     }
2787     fi->s2addr = ipa;
2788 
2789     /* Combine the S1 and S2 perms.  */
2790     result->f.prot &= s1_prot;
2791 
2792     /* If S2 fails, return early.  */
2793     if (ret) {
2794         return ret;
2795     }
2796 
2797     /*
2798      * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
2799      * this means "don't put this in the TLB"; in this case, return a
2800      * result with lg_page_size == 0 to achieve that. Otherwise,
2801      * use the maximum of the S1 & S2 page size, so that invalidation
2802      * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
2803      * we know the combined result permissions etc only cover the minimum
2804      * of the S1 and S2 page size, because we know that the common TLB code
2805      * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
2806      * and passing a larger page size value only affects invalidations.)
2807      */
2808     if (result->f.lg_page_size < TARGET_PAGE_BITS ||
2809         s1_lgpgsz < TARGET_PAGE_BITS) {
2810         result->f.lg_page_size = 0;
2811     } else if (result->f.lg_page_size < s1_lgpgsz) {
2812         result->f.lg_page_size = s1_lgpgsz;
2813     }
2814 
2815     /* Combine the S1 and S2 cache attributes. */
2816     hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2817     if (hcr & HCR_DC) {
2818         /*
2819          * HCR.DC forces the first stage attributes to
2820          *  Normal Non-Shareable,
2821          *  Inner Write-Back Read-Allocate Write-Allocate,
2822          *  Outer Write-Back Read-Allocate Write-Allocate.
2823          * Do not overwrite Tagged within attrs.
2824          */
2825         if (cacheattrs1.attrs != 0xf0) {
2826             cacheattrs1.attrs = 0xff;
2827         }
2828         cacheattrs1.shareability = 0;
2829     }
2830     result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
2831                                             result->cacheattrs);
2832 
2833     /*
2834      * Check if IPA translates to secure or non-secure PA space.
2835      * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
2836      */
2837     result->f.attrs.secure =
2838         (is_secure
2839          && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
2840          && (ipa_secure
2841              || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))));
2842 
2843     return false;
2844 }
2845 
2846 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
2847                                       target_ulong address,
2848                                       MMUAccessType access_type,
2849                                       GetPhysAddrResult *result,
2850                                       ARMMMUFaultInfo *fi)
2851 {
2852     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2853     bool is_secure = ptw->in_secure;
2854     ARMMMUIdx s1_mmu_idx;
2855 
2856     /*
2857      * The page table entries may downgrade secure to non-secure, but
2858      * cannot upgrade an non-secure translation regime's attributes
2859      * to secure.
2860      */
2861     result->f.attrs.secure = is_secure;
2862 
2863     switch (mmu_idx) {
2864     case ARMMMUIdx_Phys_S:
2865     case ARMMMUIdx_Phys_NS:
2866         /* Checking Phys early avoids special casing later vs regime_el. */
2867         return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2868                                       is_secure, result, fi);
2869 
2870     case ARMMMUIdx_Stage1_E0:
2871     case ARMMMUIdx_Stage1_E1:
2872     case ARMMMUIdx_Stage1_E1_PAN:
2873         /* First stage lookup uses second stage for ptw. */
2874         ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2875         break;
2876 
2877     case ARMMMUIdx_Stage2:
2878     case ARMMMUIdx_Stage2_S:
2879         /*
2880          * Second stage lookup uses physical for ptw; whether this is S or
2881          * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
2882          * the Secure EL2&0 regime.
2883          */
2884         ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
2885         break;
2886 
2887     case ARMMMUIdx_E10_0:
2888         s1_mmu_idx = ARMMMUIdx_Stage1_E0;
2889         goto do_twostage;
2890     case ARMMMUIdx_E10_1:
2891         s1_mmu_idx = ARMMMUIdx_Stage1_E1;
2892         goto do_twostage;
2893     case ARMMMUIdx_E10_1_PAN:
2894         s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
2895     do_twostage:
2896         /*
2897          * Call ourselves recursively to do the stage 1 and then stage 2
2898          * translations if mmu_idx is a two-stage regime, and EL2 present.
2899          * Otherwise, a stage1+stage2 translation is just stage 1.
2900          */
2901         ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
2902         if (arm_feature(env, ARM_FEATURE_EL2) &&
2903             !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) {
2904             return get_phys_addr_twostage(env, ptw, address, access_type,
2905                                           result, fi);
2906         }
2907         /* fall through */
2908 
2909     default:
2910         /* Single stage uses physical for ptw. */
2911         ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2912         break;
2913     }
2914 
2915     result->f.attrs.user = regime_is_user(env, mmu_idx);
2916 
2917     /*
2918      * Fast Context Switch Extension. This doesn't exist at all in v8.
2919      * In v7 and earlier it affects all stage 1 translations.
2920      */
2921     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2922         && !arm_feature(env, ARM_FEATURE_V8)) {
2923         if (regime_el(env, mmu_idx) == 3) {
2924             address += env->cp15.fcseidr_s;
2925         } else {
2926             address += env->cp15.fcseidr_ns;
2927         }
2928     }
2929 
2930     if (arm_feature(env, ARM_FEATURE_PMSA)) {
2931         bool ret;
2932         result->f.lg_page_size = TARGET_PAGE_BITS;
2933 
2934         if (arm_feature(env, ARM_FEATURE_V8)) {
2935             /* PMSAv8 */
2936             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2937                                        is_secure, result, fi);
2938         } else if (arm_feature(env, ARM_FEATURE_V7)) {
2939             /* PMSAv7 */
2940             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2941                                        is_secure, result, fi);
2942         } else {
2943             /* Pre-v7 MPU */
2944             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2945                                        is_secure, result, fi);
2946         }
2947         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2948                       " mmu_idx %u -> %s (prot %c%c%c)\n",
2949                       access_type == MMU_DATA_LOAD ? "reading" :
2950                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2951                       (uint32_t)address, mmu_idx,
2952                       ret ? "Miss" : "Hit",
2953                       result->f.prot & PAGE_READ ? 'r' : '-',
2954                       result->f.prot & PAGE_WRITE ? 'w' : '-',
2955                       result->f.prot & PAGE_EXEC ? 'x' : '-');
2956 
2957         return ret;
2958     }
2959 
2960     /* Definitely a real MMU, not an MPU */
2961 
2962     if (regime_translation_disabled(env, mmu_idx, is_secure)) {
2963         return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2964                                       is_secure, result, fi);
2965     }
2966 
2967     if (regime_using_lpae_format(env, mmu_idx)) {
2968         return get_phys_addr_lpae(env, ptw, address, access_type, false,
2969                                   result, fi);
2970     } else if (arm_feature(env, ARM_FEATURE_V7) ||
2971                regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2972         return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
2973     } else {
2974         return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
2975     }
2976 }
2977 
2978 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
2979                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
2980                                bool is_secure, GetPhysAddrResult *result,
2981                                ARMMMUFaultInfo *fi)
2982 {
2983     S1Translate ptw = {
2984         .in_mmu_idx = mmu_idx,
2985         .in_secure = is_secure,
2986     };
2987     return get_phys_addr_with_struct(env, &ptw, address, access_type,
2988                                      result, fi);
2989 }
2990 
2991 bool get_phys_addr(CPUARMState *env, target_ulong address,
2992                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
2993                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
2994 {
2995     bool is_secure;
2996 
2997     switch (mmu_idx) {
2998     case ARMMMUIdx_E10_0:
2999     case ARMMMUIdx_E10_1:
3000     case ARMMMUIdx_E10_1_PAN:
3001     case ARMMMUIdx_E20_0:
3002     case ARMMMUIdx_E20_2:
3003     case ARMMMUIdx_E20_2_PAN:
3004     case ARMMMUIdx_Stage1_E0:
3005     case ARMMMUIdx_Stage1_E1:
3006     case ARMMMUIdx_Stage1_E1_PAN:
3007     case ARMMMUIdx_E2:
3008         is_secure = arm_is_secure_below_el3(env);
3009         break;
3010     case ARMMMUIdx_Stage2:
3011     case ARMMMUIdx_Phys_NS:
3012     case ARMMMUIdx_MPrivNegPri:
3013     case ARMMMUIdx_MUserNegPri:
3014     case ARMMMUIdx_MPriv:
3015     case ARMMMUIdx_MUser:
3016         is_secure = false;
3017         break;
3018     case ARMMMUIdx_E3:
3019     case ARMMMUIdx_Stage2_S:
3020     case ARMMMUIdx_Phys_S:
3021     case ARMMMUIdx_MSPrivNegPri:
3022     case ARMMMUIdx_MSUserNegPri:
3023     case ARMMMUIdx_MSPriv:
3024     case ARMMMUIdx_MSUser:
3025         is_secure = true;
3026         break;
3027     default:
3028         g_assert_not_reached();
3029     }
3030     return get_phys_addr_with_secure(env, address, access_type, mmu_idx,
3031                                      is_secure, result, fi);
3032 }
3033 
3034 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3035                                          MemTxAttrs *attrs)
3036 {
3037     ARMCPU *cpu = ARM_CPU(cs);
3038     CPUARMState *env = &cpu->env;
3039     S1Translate ptw = {
3040         .in_mmu_idx = arm_mmu_idx(env),
3041         .in_secure = arm_is_secure(env),
3042         .in_debug = true,
3043     };
3044     GetPhysAddrResult res = {};
3045     ARMMMUFaultInfo fi = {};
3046     bool ret;
3047 
3048     ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3049     *attrs = res.f.attrs;
3050 
3051     if (ret) {
3052         return -1;
3053     }
3054     return res.f.phys_addr;
3055 }
3056