1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "qemu/main-loop.h" 13 #include "exec/exec-all.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "idau.h" 17 #ifdef CONFIG_TCG 18 # include "tcg/oversized-guest.h" 19 #endif 20 21 typedef struct S1Translate { 22 ARMMMUIdx in_mmu_idx; 23 ARMMMUIdx in_ptw_idx; 24 bool in_secure; 25 bool in_debug; 26 bool out_secure; 27 bool out_rw; 28 bool out_be; 29 hwaddr out_virt; 30 hwaddr out_phys; 31 void *out_host; 32 } S1Translate; 33 34 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 35 uint64_t address, 36 MMUAccessType access_type, bool s1_is_el0, 37 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 38 __attribute__((nonnull)); 39 40 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw, 41 target_ulong address, 42 MMUAccessType access_type, 43 GetPhysAddrResult *result, 44 ARMMMUFaultInfo *fi) 45 __attribute__((nonnull)); 46 47 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 48 static const uint8_t pamax_map[] = { 49 [0] = 32, 50 [1] = 36, 51 [2] = 40, 52 [3] = 42, 53 [4] = 44, 54 [5] = 48, 55 [6] = 52, 56 }; 57 58 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 59 unsigned int arm_pamax(ARMCPU *cpu) 60 { 61 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 62 unsigned int parange = 63 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 64 65 /* 66 * id_aa64mmfr0 is a read-only register so values outside of the 67 * supported mappings can be considered an implementation error. 68 */ 69 assert(parange < ARRAY_SIZE(pamax_map)); 70 return pamax_map[parange]; 71 } 72 73 /* 74 * In machvirt_init, we call arm_pamax on a cpu that is not fully 75 * initialized, so we can't rely on the propagation done in realize. 76 */ 77 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) || 78 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) { 79 /* v7 with LPAE */ 80 return 40; 81 } 82 /* Anything else */ 83 return 32; 84 } 85 86 /* 87 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 88 */ 89 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 90 { 91 switch (mmu_idx) { 92 case ARMMMUIdx_E10_0: 93 return ARMMMUIdx_Stage1_E0; 94 case ARMMMUIdx_E10_1: 95 return ARMMMUIdx_Stage1_E1; 96 case ARMMMUIdx_E10_1_PAN: 97 return ARMMMUIdx_Stage1_E1_PAN; 98 default: 99 return mmu_idx; 100 } 101 } 102 103 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 104 { 105 return stage_1_mmu_idx(arm_mmu_idx(env)); 106 } 107 108 /* 109 * Return where we should do ptw loads from for a stage 2 walk. 110 * This depends on whether the address we are looking up is a 111 * Secure IPA or a NonSecure IPA, which we know from whether this is 112 * Stage2 or Stage2_S. 113 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits. 114 */ 115 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx) 116 { 117 bool s2walk_secure; 118 119 /* 120 * We're OK to check the current state of the CPU here because 121 * (1) we always invalidate all TLBs when the SCR_EL3.NS bit changes 122 * (2) there's no way to do a lookup that cares about Stage 2 for a 123 * different security state to the current one for AArch64, and AArch32 124 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do 125 * an NS stage 1+2 lookup while the NS bit is 0.) 126 */ 127 if (!arm_is_secure_below_el3(env) || !arm_el_is_aa64(env, 3)) { 128 return ARMMMUIdx_Phys_NS; 129 } 130 if (stage2idx == ARMMMUIdx_Stage2_S) { 131 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW); 132 } else { 133 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW); 134 } 135 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 136 137 } 138 139 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 140 { 141 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 142 } 143 144 /* Return the TTBR associated with this translation regime */ 145 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 146 { 147 if (mmu_idx == ARMMMUIdx_Stage2) { 148 return env->cp15.vttbr_el2; 149 } 150 if (mmu_idx == ARMMMUIdx_Stage2_S) { 151 return env->cp15.vsttbr_el2; 152 } 153 if (ttbrn == 0) { 154 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 155 } else { 156 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 157 } 158 } 159 160 /* Return true if the specified stage of address translation is disabled */ 161 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, 162 bool is_secure) 163 { 164 uint64_t hcr_el2; 165 166 if (arm_feature(env, ARM_FEATURE_M)) { 167 switch (env->v7m.mpu_ctrl[is_secure] & 168 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 169 case R_V7M_MPU_CTRL_ENABLE_MASK: 170 /* Enabled, but not for HardFault and NMI */ 171 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 172 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 173 /* Enabled for all cases */ 174 return false; 175 case 0: 176 default: 177 /* 178 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 179 * we warned about that in armv7m_nvic.c when the guest set it. 180 */ 181 return true; 182 } 183 } 184 185 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure); 186 187 switch (mmu_idx) { 188 case ARMMMUIdx_Stage2: 189 case ARMMMUIdx_Stage2_S: 190 /* HCR.DC means HCR.VM behaves as 1 */ 191 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 192 193 case ARMMMUIdx_E10_0: 194 case ARMMMUIdx_E10_1: 195 case ARMMMUIdx_E10_1_PAN: 196 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ 197 if (hcr_el2 & HCR_TGE) { 198 return true; 199 } 200 break; 201 202 case ARMMMUIdx_Stage1_E0: 203 case ARMMMUIdx_Stage1_E1: 204 case ARMMMUIdx_Stage1_E1_PAN: 205 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 206 if (hcr_el2 & HCR_DC) { 207 return true; 208 } 209 break; 210 211 case ARMMMUIdx_E20_0: 212 case ARMMMUIdx_E20_2: 213 case ARMMMUIdx_E20_2_PAN: 214 case ARMMMUIdx_E2: 215 case ARMMMUIdx_E3: 216 break; 217 218 case ARMMMUIdx_Phys_NS: 219 case ARMMMUIdx_Phys_S: 220 /* No translation for physical address spaces. */ 221 return true; 222 223 default: 224 g_assert_not_reached(); 225 } 226 227 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 228 } 229 230 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) 231 { 232 /* 233 * For an S1 page table walk, the stage 1 attributes are always 234 * some form of "this is Normal memory". The combined S1+S2 235 * attributes are therefore only Device if stage 2 specifies Device. 236 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 237 * ie when cacheattrs.attrs bits [3:2] are 0b00. 238 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 239 * when cacheattrs.attrs bit [2] is 0. 240 */ 241 if (hcr & HCR_FWB) { 242 return (attrs & 0x4) == 0; 243 } else { 244 return (attrs & 0xc) == 0; 245 } 246 } 247 248 /* Translate a S1 pagetable walk through S2 if needed. */ 249 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, 250 hwaddr addr, ARMMMUFaultInfo *fi) 251 { 252 bool is_secure = ptw->in_secure; 253 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 254 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx; 255 uint8_t pte_attrs; 256 257 ptw->out_virt = addr; 258 259 if (unlikely(ptw->in_debug)) { 260 /* 261 * From gdbstub, do not use softmmu so that we don't modify the 262 * state of the cpu at all, including softmmu tlb contents. 263 */ 264 if (regime_is_stage2(s2_mmu_idx)) { 265 S1Translate s2ptw = { 266 .in_mmu_idx = s2_mmu_idx, 267 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx), 268 .in_secure = s2_mmu_idx == ARMMMUIdx_Stage2_S, 269 .in_debug = true, 270 }; 271 GetPhysAddrResult s2 = { }; 272 273 if (get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD, 274 false, &s2, fi)) { 275 goto fail; 276 } 277 ptw->out_phys = s2.f.phys_addr; 278 pte_attrs = s2.cacheattrs.attrs; 279 ptw->out_secure = s2.f.attrs.secure; 280 } else { 281 /* Regime is physical. */ 282 ptw->out_phys = addr; 283 pte_attrs = 0; 284 ptw->out_secure = s2_mmu_idx == ARMMMUIdx_Phys_S; 285 } 286 ptw->out_host = NULL; 287 ptw->out_rw = false; 288 } else { 289 #ifdef CONFIG_TCG 290 CPUTLBEntryFull *full; 291 int flags; 292 293 env->tlb_fi = fi; 294 flags = probe_access_full(env, addr, 0, MMU_DATA_LOAD, 295 arm_to_core_mmu_idx(s2_mmu_idx), 296 true, &ptw->out_host, &full, 0); 297 env->tlb_fi = NULL; 298 299 if (unlikely(flags & TLB_INVALID_MASK)) { 300 goto fail; 301 } 302 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 303 ptw->out_rw = full->prot & PAGE_WRITE; 304 pte_attrs = full->pte_attrs; 305 ptw->out_secure = full->attrs.secure; 306 #else 307 g_assert_not_reached(); 308 #endif 309 } 310 311 if (regime_is_stage2(s2_mmu_idx)) { 312 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure); 313 314 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { 315 /* 316 * PTW set and S1 walk touched S2 Device memory: 317 * generate Permission fault. 318 */ 319 fi->type = ARMFault_Permission; 320 fi->s2addr = addr; 321 fi->stage2 = true; 322 fi->s1ptw = true; 323 fi->s1ns = !is_secure; 324 return false; 325 } 326 } 327 328 ptw->out_be = regime_translation_big_endian(env, mmu_idx); 329 return true; 330 331 fail: 332 assert(fi->type != ARMFault_None); 333 fi->s2addr = addr; 334 fi->stage2 = true; 335 fi->s1ptw = true; 336 fi->s1ns = !is_secure; 337 return false; 338 } 339 340 /* All loads done in the course of a page table walk go through here. */ 341 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, 342 ARMMMUFaultInfo *fi) 343 { 344 CPUState *cs = env_cpu(env); 345 void *host = ptw->out_host; 346 uint32_t data; 347 348 if (likely(host)) { 349 /* Page tables are in RAM, and we have the host address. */ 350 data = qatomic_read((uint32_t *)host); 351 if (ptw->out_be) { 352 data = be32_to_cpu(data); 353 } else { 354 data = le32_to_cpu(data); 355 } 356 } else { 357 /* Page tables are in MMIO. */ 358 MemTxAttrs attrs = { .secure = ptw->out_secure }; 359 AddressSpace *as = arm_addressspace(cs, attrs); 360 MemTxResult result = MEMTX_OK; 361 362 if (ptw->out_be) { 363 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); 364 } else { 365 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); 366 } 367 if (unlikely(result != MEMTX_OK)) { 368 fi->type = ARMFault_SyncExternalOnWalk; 369 fi->ea = arm_extabort_type(result); 370 return 0; 371 } 372 } 373 return data; 374 } 375 376 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, 377 ARMMMUFaultInfo *fi) 378 { 379 CPUState *cs = env_cpu(env); 380 void *host = ptw->out_host; 381 uint64_t data; 382 383 if (likely(host)) { 384 /* Page tables are in RAM, and we have the host address. */ 385 #ifdef CONFIG_ATOMIC64 386 data = qatomic_read__nocheck((uint64_t *)host); 387 if (ptw->out_be) { 388 data = be64_to_cpu(data); 389 } else { 390 data = le64_to_cpu(data); 391 } 392 #else 393 if (ptw->out_be) { 394 data = ldq_be_p(host); 395 } else { 396 data = ldq_le_p(host); 397 } 398 #endif 399 } else { 400 /* Page tables are in MMIO. */ 401 MemTxAttrs attrs = { .secure = ptw->out_secure }; 402 AddressSpace *as = arm_addressspace(cs, attrs); 403 MemTxResult result = MEMTX_OK; 404 405 if (ptw->out_be) { 406 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 407 } else { 408 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 409 } 410 if (unlikely(result != MEMTX_OK)) { 411 fi->type = ARMFault_SyncExternalOnWalk; 412 fi->ea = arm_extabort_type(result); 413 return 0; 414 } 415 } 416 return data; 417 } 418 419 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val, 420 uint64_t new_val, S1Translate *ptw, 421 ARMMMUFaultInfo *fi) 422 { 423 #ifdef TARGET_AARCH64 424 uint64_t cur_val; 425 void *host = ptw->out_host; 426 427 if (unlikely(!host)) { 428 fi->type = ARMFault_UnsuppAtomicUpdate; 429 fi->s1ptw = true; 430 return 0; 431 } 432 433 /* 434 * Raising a stage2 Protection fault for an atomic update to a read-only 435 * page is delayed until it is certain that there is a change to make. 436 */ 437 if (unlikely(!ptw->out_rw)) { 438 int flags; 439 void *discard; 440 441 env->tlb_fi = fi; 442 flags = probe_access_flags(env, ptw->out_virt, 0, MMU_DATA_STORE, 443 arm_to_core_mmu_idx(ptw->in_ptw_idx), 444 true, &discard, 0); 445 env->tlb_fi = NULL; 446 447 if (unlikely(flags & TLB_INVALID_MASK)) { 448 assert(fi->type != ARMFault_None); 449 fi->s2addr = ptw->out_virt; 450 fi->stage2 = true; 451 fi->s1ptw = true; 452 fi->s1ns = !ptw->in_secure; 453 return 0; 454 } 455 456 /* In case CAS mismatches and we loop, remember writability. */ 457 ptw->out_rw = true; 458 } 459 460 #ifdef CONFIG_ATOMIC64 461 if (ptw->out_be) { 462 old_val = cpu_to_be64(old_val); 463 new_val = cpu_to_be64(new_val); 464 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 465 cur_val = be64_to_cpu(cur_val); 466 } else { 467 old_val = cpu_to_le64(old_val); 468 new_val = cpu_to_le64(new_val); 469 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 470 cur_val = le64_to_cpu(cur_val); 471 } 472 #else 473 /* 474 * We can't support the full 64-bit atomic cmpxchg on the host. 475 * Because this is only used for FEAT_HAFDBS, which is only for AA64, 476 * we know that TCG_OVERSIZED_GUEST is set, which means that we are 477 * running in round-robin mode and could only race with dma i/o. 478 */ 479 #if !TCG_OVERSIZED_GUEST 480 # error "Unexpected configuration" 481 #endif 482 bool locked = qemu_mutex_iothread_locked(); 483 if (!locked) { 484 qemu_mutex_lock_iothread(); 485 } 486 if (ptw->out_be) { 487 cur_val = ldq_be_p(host); 488 if (cur_val == old_val) { 489 stq_be_p(host, new_val); 490 } 491 } else { 492 cur_val = ldq_le_p(host); 493 if (cur_val == old_val) { 494 stq_le_p(host, new_val); 495 } 496 } 497 if (!locked) { 498 qemu_mutex_unlock_iothread(); 499 } 500 #endif 501 502 return cur_val; 503 #else 504 /* AArch32 does not have FEAT_HADFS. */ 505 g_assert_not_reached(); 506 #endif 507 } 508 509 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 510 uint32_t *table, uint32_t address) 511 { 512 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 513 uint64_t tcr = regime_tcr(env, mmu_idx); 514 int maskshift = extract32(tcr, 0, 3); 515 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 516 uint32_t base_mask; 517 518 if (address & mask) { 519 if (tcr & TTBCR_PD1) { 520 /* Translation table walk disabled for TTBR1 */ 521 return false; 522 } 523 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 524 } else { 525 if (tcr & TTBCR_PD0) { 526 /* Translation table walk disabled for TTBR0 */ 527 return false; 528 } 529 base_mask = ~((uint32_t)0x3fffu >> maskshift); 530 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 531 } 532 *table |= (address >> 18) & 0x3ffc; 533 return true; 534 } 535 536 /* 537 * Translate section/page access permissions to page R/W protection flags 538 * @env: CPUARMState 539 * @mmu_idx: MMU index indicating required translation regime 540 * @ap: The 3-bit access permissions (AP[2:0]) 541 * @domain_prot: The 2-bit domain access permissions 542 * @is_user: TRUE if accessing from PL0 543 */ 544 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx, 545 int ap, int domain_prot, bool is_user) 546 { 547 if (domain_prot == 3) { 548 return PAGE_READ | PAGE_WRITE; 549 } 550 551 switch (ap) { 552 case 0: 553 if (arm_feature(env, ARM_FEATURE_V7)) { 554 return 0; 555 } 556 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 557 case SCTLR_S: 558 return is_user ? 0 : PAGE_READ; 559 case SCTLR_R: 560 return PAGE_READ; 561 default: 562 return 0; 563 } 564 case 1: 565 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 566 case 2: 567 if (is_user) { 568 return PAGE_READ; 569 } else { 570 return PAGE_READ | PAGE_WRITE; 571 } 572 case 3: 573 return PAGE_READ | PAGE_WRITE; 574 case 4: /* Reserved. */ 575 return 0; 576 case 5: 577 return is_user ? 0 : PAGE_READ; 578 case 6: 579 return PAGE_READ; 580 case 7: 581 if (!arm_feature(env, ARM_FEATURE_V6K)) { 582 return 0; 583 } 584 return PAGE_READ; 585 default: 586 g_assert_not_reached(); 587 } 588 } 589 590 /* 591 * Translate section/page access permissions to page R/W protection flags 592 * @env: CPUARMState 593 * @mmu_idx: MMU index indicating required translation regime 594 * @ap: The 3-bit access permissions (AP[2:0]) 595 * @domain_prot: The 2-bit domain access permissions 596 */ 597 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 598 int ap, int domain_prot) 599 { 600 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 601 regime_is_user(env, mmu_idx)); 602 } 603 604 /* 605 * Translate section/page access permissions to page R/W protection flags. 606 * @ap: The 2-bit simple AP (AP[2:1]) 607 * @is_user: TRUE if accessing from PL0 608 */ 609 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 610 { 611 switch (ap) { 612 case 0: 613 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 614 case 1: 615 return PAGE_READ | PAGE_WRITE; 616 case 2: 617 return is_user ? 0 : PAGE_READ; 618 case 3: 619 return PAGE_READ; 620 default: 621 g_assert_not_reached(); 622 } 623 } 624 625 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 626 { 627 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 628 } 629 630 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, 631 uint32_t address, MMUAccessType access_type, 632 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 633 { 634 int level = 1; 635 uint32_t table; 636 uint32_t desc; 637 int type; 638 int ap; 639 int domain = 0; 640 int domain_prot; 641 hwaddr phys_addr; 642 uint32_t dacr; 643 644 /* Pagetable walk. */ 645 /* Lookup l1 descriptor. */ 646 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { 647 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 648 fi->type = ARMFault_Translation; 649 goto do_fault; 650 } 651 if (!S1_ptw_translate(env, ptw, table, fi)) { 652 goto do_fault; 653 } 654 desc = arm_ldl_ptw(env, ptw, fi); 655 if (fi->type != ARMFault_None) { 656 goto do_fault; 657 } 658 type = (desc & 3); 659 domain = (desc >> 5) & 0x0f; 660 if (regime_el(env, ptw->in_mmu_idx) == 1) { 661 dacr = env->cp15.dacr_ns; 662 } else { 663 dacr = env->cp15.dacr_s; 664 } 665 domain_prot = (dacr >> (domain * 2)) & 3; 666 if (type == 0) { 667 /* Section translation fault. */ 668 fi->type = ARMFault_Translation; 669 goto do_fault; 670 } 671 if (type != 2) { 672 level = 2; 673 } 674 if (domain_prot == 0 || domain_prot == 2) { 675 fi->type = ARMFault_Domain; 676 goto do_fault; 677 } 678 if (type == 2) { 679 /* 1Mb section. */ 680 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 681 ap = (desc >> 10) & 3; 682 result->f.lg_page_size = 20; /* 1MB */ 683 } else { 684 /* Lookup l2 entry. */ 685 if (type == 1) { 686 /* Coarse pagetable. */ 687 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 688 } else { 689 /* Fine pagetable. */ 690 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 691 } 692 if (!S1_ptw_translate(env, ptw, table, fi)) { 693 goto do_fault; 694 } 695 desc = arm_ldl_ptw(env, ptw, fi); 696 if (fi->type != ARMFault_None) { 697 goto do_fault; 698 } 699 switch (desc & 3) { 700 case 0: /* Page translation fault. */ 701 fi->type = ARMFault_Translation; 702 goto do_fault; 703 case 1: /* 64k page. */ 704 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 705 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 706 result->f.lg_page_size = 16; 707 break; 708 case 2: /* 4k page. */ 709 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 710 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 711 result->f.lg_page_size = 12; 712 break; 713 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 714 if (type == 1) { 715 /* ARMv6/XScale extended small page format */ 716 if (arm_feature(env, ARM_FEATURE_XSCALE) 717 || arm_feature(env, ARM_FEATURE_V6)) { 718 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 719 result->f.lg_page_size = 12; 720 } else { 721 /* 722 * UNPREDICTABLE in ARMv5; we choose to take a 723 * page translation fault. 724 */ 725 fi->type = ARMFault_Translation; 726 goto do_fault; 727 } 728 } else { 729 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 730 result->f.lg_page_size = 10; 731 } 732 ap = (desc >> 4) & 3; 733 break; 734 default: 735 /* Never happens, but compiler isn't smart enough to tell. */ 736 g_assert_not_reached(); 737 } 738 } 739 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); 740 result->f.prot |= result->f.prot ? PAGE_EXEC : 0; 741 if (!(result->f.prot & (1 << access_type))) { 742 /* Access permission fault. */ 743 fi->type = ARMFault_Permission; 744 goto do_fault; 745 } 746 result->f.phys_addr = phys_addr; 747 return false; 748 do_fault: 749 fi->domain = domain; 750 fi->level = level; 751 return true; 752 } 753 754 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, 755 uint32_t address, MMUAccessType access_type, 756 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 757 { 758 ARMCPU *cpu = env_archcpu(env); 759 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 760 int level = 1; 761 uint32_t table; 762 uint32_t desc; 763 uint32_t xn; 764 uint32_t pxn = 0; 765 int type; 766 int ap; 767 int domain = 0; 768 int domain_prot; 769 hwaddr phys_addr; 770 uint32_t dacr; 771 bool ns; 772 int user_prot; 773 774 /* Pagetable walk. */ 775 /* Lookup l1 descriptor. */ 776 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 777 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 778 fi->type = ARMFault_Translation; 779 goto do_fault; 780 } 781 if (!S1_ptw_translate(env, ptw, table, fi)) { 782 goto do_fault; 783 } 784 desc = arm_ldl_ptw(env, ptw, fi); 785 if (fi->type != ARMFault_None) { 786 goto do_fault; 787 } 788 type = (desc & 3); 789 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 790 /* Section translation fault, or attempt to use the encoding 791 * which is Reserved on implementations without PXN. 792 */ 793 fi->type = ARMFault_Translation; 794 goto do_fault; 795 } 796 if ((type == 1) || !(desc & (1 << 18))) { 797 /* Page or Section. */ 798 domain = (desc >> 5) & 0x0f; 799 } 800 if (regime_el(env, mmu_idx) == 1) { 801 dacr = env->cp15.dacr_ns; 802 } else { 803 dacr = env->cp15.dacr_s; 804 } 805 if (type == 1) { 806 level = 2; 807 } 808 domain_prot = (dacr >> (domain * 2)) & 3; 809 if (domain_prot == 0 || domain_prot == 2) { 810 /* Section or Page domain fault */ 811 fi->type = ARMFault_Domain; 812 goto do_fault; 813 } 814 if (type != 1) { 815 if (desc & (1 << 18)) { 816 /* Supersection. */ 817 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 818 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 819 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 820 result->f.lg_page_size = 24; /* 16MB */ 821 } else { 822 /* Section. */ 823 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 824 result->f.lg_page_size = 20; /* 1MB */ 825 } 826 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 827 xn = desc & (1 << 4); 828 pxn = desc & 1; 829 ns = extract32(desc, 19, 1); 830 } else { 831 if (cpu_isar_feature(aa32_pxn, cpu)) { 832 pxn = (desc >> 2) & 1; 833 } 834 ns = extract32(desc, 3, 1); 835 /* Lookup l2 entry. */ 836 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 837 if (!S1_ptw_translate(env, ptw, table, fi)) { 838 goto do_fault; 839 } 840 desc = arm_ldl_ptw(env, ptw, fi); 841 if (fi->type != ARMFault_None) { 842 goto do_fault; 843 } 844 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 845 switch (desc & 3) { 846 case 0: /* Page translation fault. */ 847 fi->type = ARMFault_Translation; 848 goto do_fault; 849 case 1: /* 64k page. */ 850 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 851 xn = desc & (1 << 15); 852 result->f.lg_page_size = 16; 853 break; 854 case 2: case 3: /* 4k page. */ 855 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 856 xn = desc & 1; 857 result->f.lg_page_size = 12; 858 break; 859 default: 860 /* Never happens, but compiler isn't smart enough to tell. */ 861 g_assert_not_reached(); 862 } 863 } 864 if (domain_prot == 3) { 865 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 866 } else { 867 if (pxn && !regime_is_user(env, mmu_idx)) { 868 xn = 1; 869 } 870 if (xn && access_type == MMU_INST_FETCH) { 871 fi->type = ARMFault_Permission; 872 goto do_fault; 873 } 874 875 if (arm_feature(env, ARM_FEATURE_V6K) && 876 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 877 /* The simplified model uses AP[0] as an access control bit. */ 878 if ((ap & 1) == 0) { 879 /* Access flag fault. */ 880 fi->type = ARMFault_AccessFlag; 881 goto do_fault; 882 } 883 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 884 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1); 885 } else { 886 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 887 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1); 888 } 889 if (result->f.prot && !xn) { 890 result->f.prot |= PAGE_EXEC; 891 } 892 if (!(result->f.prot & (1 << access_type))) { 893 /* Access permission fault. */ 894 fi->type = ARMFault_Permission; 895 goto do_fault; 896 } 897 if (regime_is_pan(env, mmu_idx) && 898 !regime_is_user(env, mmu_idx) && 899 user_prot && 900 access_type != MMU_INST_FETCH) { 901 /* Privileged Access Never fault */ 902 fi->type = ARMFault_Permission; 903 goto do_fault; 904 } 905 } 906 if (ns) { 907 /* The NS bit will (as required by the architecture) have no effect if 908 * the CPU doesn't support TZ or this is a non-secure translation 909 * regime, because the attribute will already be non-secure. 910 */ 911 result->f.attrs.secure = false; 912 } 913 result->f.phys_addr = phys_addr; 914 return false; 915 do_fault: 916 fi->domain = domain; 917 fi->level = level; 918 return true; 919 } 920 921 /* 922 * Translate S2 section/page access permissions to protection flags 923 * @env: CPUARMState 924 * @s2ap: The 2-bit stage2 access permissions (S2AP) 925 * @xn: XN (execute-never) bits 926 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 927 */ 928 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 929 { 930 int prot = 0; 931 932 if (s2ap & 1) { 933 prot |= PAGE_READ; 934 } 935 if (s2ap & 2) { 936 prot |= PAGE_WRITE; 937 } 938 939 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 940 switch (xn) { 941 case 0: 942 prot |= PAGE_EXEC; 943 break; 944 case 1: 945 if (s1_is_el0) { 946 prot |= PAGE_EXEC; 947 } 948 break; 949 case 2: 950 break; 951 case 3: 952 if (!s1_is_el0) { 953 prot |= PAGE_EXEC; 954 } 955 break; 956 default: 957 g_assert_not_reached(); 958 } 959 } else { 960 if (!extract32(xn, 1, 1)) { 961 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 962 prot |= PAGE_EXEC; 963 } 964 } 965 } 966 return prot; 967 } 968 969 /* 970 * Translate section/page access permissions to protection flags 971 * @env: CPUARMState 972 * @mmu_idx: MMU index indicating required translation regime 973 * @is_aa64: TRUE if AArch64 974 * @ap: The 2-bit simple AP (AP[2:1]) 975 * @ns: NS (non-secure) bit 976 * @xn: XN (execute-never) bit 977 * @pxn: PXN (privileged execute-never) bit 978 */ 979 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 980 int ap, int ns, int xn, int pxn) 981 { 982 ARMCPU *cpu = env_archcpu(env); 983 bool is_user = regime_is_user(env, mmu_idx); 984 int prot_rw, user_rw; 985 bool have_wxn; 986 int wxn = 0; 987 988 assert(!regime_is_stage2(mmu_idx)); 989 990 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 991 if (is_user) { 992 prot_rw = user_rw; 993 } else { 994 /* 995 * PAN controls can forbid data accesses but don't affect insn fetch. 996 * Plain PAN forbids data accesses if EL0 has data permissions; 997 * PAN3 forbids data accesses if EL0 has either data or exec perms. 998 * Note that for AArch64 the 'user can exec' case is exactly !xn. 999 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0 1000 * do not affect EPAN. 1001 */ 1002 if (user_rw && regime_is_pan(env, mmu_idx)) { 1003 prot_rw = 0; 1004 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 && 1005 regime_is_pan(env, mmu_idx) && 1006 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) { 1007 prot_rw = 0; 1008 } else { 1009 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 1010 } 1011 } 1012 1013 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 1014 return prot_rw; 1015 } 1016 1017 /* TODO have_wxn should be replaced with 1018 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 1019 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 1020 * compatible processors have EL2, which is required for [U]WXN. 1021 */ 1022 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 1023 1024 if (have_wxn) { 1025 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 1026 } 1027 1028 if (is_aa64) { 1029 if (regime_has_2_ranges(mmu_idx) && !is_user) { 1030 xn = pxn || (user_rw & PAGE_WRITE); 1031 } 1032 } else if (arm_feature(env, ARM_FEATURE_V7)) { 1033 switch (regime_el(env, mmu_idx)) { 1034 case 1: 1035 case 3: 1036 if (is_user) { 1037 xn = xn || !(user_rw & PAGE_READ); 1038 } else { 1039 int uwxn = 0; 1040 if (have_wxn) { 1041 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 1042 } 1043 xn = xn || !(prot_rw & PAGE_READ) || pxn || 1044 (uwxn && (user_rw & PAGE_WRITE)); 1045 } 1046 break; 1047 case 2: 1048 break; 1049 } 1050 } else { 1051 xn = wxn = 0; 1052 } 1053 1054 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 1055 return prot_rw; 1056 } 1057 return prot_rw | PAGE_EXEC; 1058 } 1059 1060 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 1061 ARMMMUIdx mmu_idx) 1062 { 1063 uint64_t tcr = regime_tcr(env, mmu_idx); 1064 uint32_t el = regime_el(env, mmu_idx); 1065 int select, tsz; 1066 bool epd, hpd; 1067 1068 assert(mmu_idx != ARMMMUIdx_Stage2_S); 1069 1070 if (mmu_idx == ARMMMUIdx_Stage2) { 1071 /* VTCR */ 1072 bool sext = extract32(tcr, 4, 1); 1073 bool sign = extract32(tcr, 3, 1); 1074 1075 /* 1076 * If the sign-extend bit is not the same as t0sz[3], the result 1077 * is unpredictable. Flag this as a guest error. 1078 */ 1079 if (sign != sext) { 1080 qemu_log_mask(LOG_GUEST_ERROR, 1081 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 1082 } 1083 tsz = sextract32(tcr, 0, 4) + 8; 1084 select = 0; 1085 hpd = false; 1086 epd = false; 1087 } else if (el == 2) { 1088 /* HTCR */ 1089 tsz = extract32(tcr, 0, 3); 1090 select = 0; 1091 hpd = extract64(tcr, 24, 1); 1092 epd = false; 1093 } else { 1094 int t0sz = extract32(tcr, 0, 3); 1095 int t1sz = extract32(tcr, 16, 3); 1096 1097 if (t1sz == 0) { 1098 select = va > (0xffffffffu >> t0sz); 1099 } else { 1100 /* Note that we will detect errors later. */ 1101 select = va >= ~(0xffffffffu >> t1sz); 1102 } 1103 if (!select) { 1104 tsz = t0sz; 1105 epd = extract32(tcr, 7, 1); 1106 hpd = extract64(tcr, 41, 1); 1107 } else { 1108 tsz = t1sz; 1109 epd = extract32(tcr, 23, 1); 1110 hpd = extract64(tcr, 42, 1); 1111 } 1112 /* For aarch32, hpd0 is not enabled without t2e as well. */ 1113 hpd &= extract32(tcr, 6, 1); 1114 } 1115 1116 return (ARMVAParameters) { 1117 .tsz = tsz, 1118 .select = select, 1119 .epd = epd, 1120 .hpd = hpd, 1121 }; 1122 } 1123 1124 /* 1125 * check_s2_mmu_setup 1126 * @cpu: ARMCPU 1127 * @is_aa64: True if the translation regime is in AArch64 state 1128 * @tcr: VTCR_EL2 or VSTCR_EL2 1129 * @ds: Effective value of TCR.DS. 1130 * @iasize: Bitsize of IPAs 1131 * @stride: Page-table stride (See the ARM ARM) 1132 * 1133 * Decode the starting level of the S2 lookup, returning INT_MIN if 1134 * the configuration is invalid. 1135 */ 1136 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr, 1137 bool ds, int iasize, int stride) 1138 { 1139 int sl0, sl2, startlevel, granulebits, levels; 1140 int s1_min_iasize, s1_max_iasize; 1141 1142 sl0 = extract32(tcr, 6, 2); 1143 if (is_aa64) { 1144 /* 1145 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size, 1146 * so interleave AArch64.S2StartLevel. 1147 */ 1148 switch (stride) { 1149 case 9: /* 4KB */ 1150 /* SL2 is RES0 unless DS=1 & 4KB granule. */ 1151 sl2 = extract64(tcr, 33, 1); 1152 if (ds && sl2) { 1153 if (sl0 != 0) { 1154 goto fail; 1155 } 1156 startlevel = -1; 1157 } else { 1158 startlevel = 2 - sl0; 1159 switch (sl0) { 1160 case 2: 1161 if (arm_pamax(cpu) < 44) { 1162 goto fail; 1163 } 1164 break; 1165 case 3: 1166 if (!cpu_isar_feature(aa64_st, cpu)) { 1167 goto fail; 1168 } 1169 startlevel = 3; 1170 break; 1171 } 1172 } 1173 break; 1174 case 11: /* 16KB */ 1175 switch (sl0) { 1176 case 2: 1177 if (arm_pamax(cpu) < 42) { 1178 goto fail; 1179 } 1180 break; 1181 case 3: 1182 if (!ds) { 1183 goto fail; 1184 } 1185 break; 1186 } 1187 startlevel = 3 - sl0; 1188 break; 1189 case 13: /* 64KB */ 1190 switch (sl0) { 1191 case 2: 1192 if (arm_pamax(cpu) < 44) { 1193 goto fail; 1194 } 1195 break; 1196 case 3: 1197 goto fail; 1198 } 1199 startlevel = 3 - sl0; 1200 break; 1201 default: 1202 g_assert_not_reached(); 1203 } 1204 } else { 1205 /* 1206 * Things are simpler for AArch32 EL2, with only 4k pages. 1207 * There is no separate S2InvalidSL function, but AArch32.S2Walk 1208 * begins with walkparms.sl0 in {'1x'}. 1209 */ 1210 assert(stride == 9); 1211 if (sl0 >= 2) { 1212 goto fail; 1213 } 1214 startlevel = 2 - sl0; 1215 } 1216 1217 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */ 1218 levels = 3 - startlevel; 1219 granulebits = stride + 3; 1220 1221 s1_min_iasize = levels * stride + granulebits + 1; 1222 s1_max_iasize = s1_min_iasize + (stride - 1) + 4; 1223 1224 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) { 1225 return startlevel; 1226 } 1227 1228 fail: 1229 return INT_MIN; 1230 } 1231 1232 /** 1233 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 1234 * 1235 * Returns false if the translation was successful. Otherwise, phys_ptr, 1236 * attrs, prot and page_size may not be filled in, and the populated fsr 1237 * value provides information on why the translation aborted, in the format 1238 * of a long-format DFSR/IFSR fault register, with the following caveat: 1239 * the WnR bit is never set (the caller must do this). 1240 * 1241 * @env: CPUARMState 1242 * @ptw: Current and next stage parameters for the walk. 1243 * @address: virtual address to get physical address for 1244 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 1245 * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2 1246 * (so this is a stage 2 page table walk), 1247 * must be true if this is stage 2 of a stage 1+2 1248 * walk for an EL0 access. If @mmu_idx is anything else, 1249 * @s1_is_el0 is ignored. 1250 * @result: set on translation success, 1251 * @fi: set to fault info if the translation fails 1252 */ 1253 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 1254 uint64_t address, 1255 MMUAccessType access_type, bool s1_is_el0, 1256 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1257 { 1258 ARMCPU *cpu = env_archcpu(env); 1259 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1260 bool is_secure = ptw->in_secure; 1261 int32_t level; 1262 ARMVAParameters param; 1263 uint64_t ttbr; 1264 hwaddr descaddr, indexmask, indexmask_grainsize; 1265 uint32_t tableattrs; 1266 target_ulong page_size; 1267 uint64_t attrs; 1268 int32_t stride; 1269 int addrsize, inputsize, outputsize; 1270 uint64_t tcr = regime_tcr(env, mmu_idx); 1271 int ap, ns, xn, pxn; 1272 uint32_t el = regime_el(env, mmu_idx); 1273 uint64_t descaddrmask; 1274 bool aarch64 = arm_el_is_aa64(env, el); 1275 uint64_t descriptor, new_descriptor; 1276 bool nstable; 1277 1278 /* TODO: This code does not support shareability levels. */ 1279 if (aarch64) { 1280 int ps; 1281 1282 param = aa64_va_parameters(env, address, mmu_idx, 1283 access_type != MMU_INST_FETCH, 1284 !arm_el_is_aa64(env, 1)); 1285 level = 0; 1286 1287 /* 1288 * If TxSZ is programmed to a value larger than the maximum, 1289 * or smaller than the effective minimum, it is IMPLEMENTATION 1290 * DEFINED whether we behave as if the field were programmed 1291 * within bounds, or if a level 0 Translation fault is generated. 1292 * 1293 * With FEAT_LVA, fault on less than minimum becomes required, 1294 * so our choice is to always raise the fault. 1295 */ 1296 if (param.tsz_oob) { 1297 goto do_translation_fault; 1298 } 1299 1300 addrsize = 64 - 8 * param.tbi; 1301 inputsize = 64 - param.tsz; 1302 1303 /* 1304 * Bound PS by PARANGE to find the effective output address size. 1305 * ID_AA64MMFR0 is a read-only register so values outside of the 1306 * supported mappings can be considered an implementation error. 1307 */ 1308 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1309 ps = MIN(ps, param.ps); 1310 assert(ps < ARRAY_SIZE(pamax_map)); 1311 outputsize = pamax_map[ps]; 1312 1313 /* 1314 * With LPA2, the effective output address (OA) size is at most 48 bits 1315 * unless TCR.DS == 1 1316 */ 1317 if (!param.ds && param.gran != Gran64K) { 1318 outputsize = MIN(outputsize, 48); 1319 } 1320 } else { 1321 param = aa32_va_parameters(env, address, mmu_idx); 1322 level = 1; 1323 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1324 inputsize = addrsize - param.tsz; 1325 outputsize = 40; 1326 } 1327 1328 /* 1329 * We determined the region when collecting the parameters, but we 1330 * have not yet validated that the address is valid for the region. 1331 * Extract the top bits and verify that they all match select. 1332 * 1333 * For aa32, if inputsize == addrsize, then we have selected the 1334 * region by exclusion in aa32_va_parameters and there is no more 1335 * validation to do here. 1336 */ 1337 if (inputsize < addrsize) { 1338 target_ulong top_bits = sextract64(address, inputsize, 1339 addrsize - inputsize); 1340 if (-top_bits != param.select) { 1341 /* The gap between the two regions is a Translation fault */ 1342 goto do_translation_fault; 1343 } 1344 } 1345 1346 stride = arm_granule_bits(param.gran) - 3; 1347 1348 /* 1349 * Note that QEMU ignores shareability and cacheability attributes, 1350 * so we don't need to do anything with the SH, ORGN, IRGN fields 1351 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1352 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1353 * implement any ASID-like capability so we can ignore it (instead 1354 * we will always flush the TLB any time the ASID is changed). 1355 */ 1356 ttbr = regime_ttbr(env, mmu_idx, param.select); 1357 1358 /* 1359 * Here we should have set up all the parameters for the translation: 1360 * inputsize, ttbr, epd, stride, tbi 1361 */ 1362 1363 if (param.epd) { 1364 /* 1365 * Translation table walk disabled => Translation fault on TLB miss 1366 * Note: This is always 0 on 64-bit EL2 and EL3. 1367 */ 1368 goto do_translation_fault; 1369 } 1370 1371 if (!regime_is_stage2(mmu_idx)) { 1372 /* 1373 * The starting level depends on the virtual address size (which can 1374 * be up to 48 bits) and the translation granule size. It indicates 1375 * the number of strides (stride bits at a time) needed to 1376 * consume the bits of the input address. In the pseudocode this is: 1377 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1378 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1379 * our 'stride + 3' and 'stride' is our 'stride'. 1380 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1381 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1382 * = 4 - (inputsize - 4) / stride; 1383 */ 1384 level = 4 - (inputsize - 4) / stride; 1385 } else { 1386 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds, 1387 inputsize, stride); 1388 if (startlevel == INT_MIN) { 1389 level = 0; 1390 goto do_translation_fault; 1391 } 1392 level = startlevel; 1393 } 1394 1395 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1396 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1397 1398 /* Now we can extract the actual base address from the TTBR */ 1399 descaddr = extract64(ttbr, 0, 48); 1400 1401 /* 1402 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1403 * 1404 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1405 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1406 * but we've just cleared the bits above 47, so simplify the test. 1407 */ 1408 if (outputsize > 48) { 1409 descaddr |= extract64(ttbr, 2, 4) << 48; 1410 } else if (descaddr >> outputsize) { 1411 level = 0; 1412 fi->type = ARMFault_AddressSize; 1413 goto do_fault; 1414 } 1415 1416 /* 1417 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1418 * and also to mask out CnP (bit 0) which could validly be non-zero. 1419 */ 1420 descaddr &= ~indexmask; 1421 1422 /* 1423 * For AArch32, the address field in the descriptor goes up to bit 39 1424 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1425 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1426 * bits as part of the address, which will be checked via outputsize. 1427 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1428 * the highest bits of a 52-bit output are placed elsewhere. 1429 */ 1430 if (param.ds) { 1431 descaddrmask = MAKE_64BIT_MASK(0, 50); 1432 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1433 descaddrmask = MAKE_64BIT_MASK(0, 48); 1434 } else { 1435 descaddrmask = MAKE_64BIT_MASK(0, 40); 1436 } 1437 descaddrmask &= ~indexmask_grainsize; 1438 1439 /* 1440 * Secure stage 1 accesses start with the page table in secure memory and 1441 * can be downgraded to non-secure at any step. Non-secure accesses 1442 * remain non-secure. We implement this by just ORing in the NSTable/NS 1443 * bits at each step. 1444 * Stage 2 never gets this kind of downgrade. 1445 */ 1446 tableattrs = is_secure ? 0 : (1 << 4); 1447 1448 next_level: 1449 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1450 descaddr &= ~7ULL; 1451 nstable = !regime_is_stage2(mmu_idx) && extract32(tableattrs, 4, 1); 1452 if (nstable) { 1453 /* 1454 * Stage2_S -> Stage2 or Phys_S -> Phys_NS 1455 * Assert that the non-secure idx are even, and relative order. 1456 */ 1457 QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0); 1458 QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0); 1459 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S); 1460 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S); 1461 ptw->in_ptw_idx &= ~1; 1462 ptw->in_secure = false; 1463 } 1464 if (!S1_ptw_translate(env, ptw, descaddr, fi)) { 1465 goto do_fault; 1466 } 1467 descriptor = arm_ldq_ptw(env, ptw, fi); 1468 if (fi->type != ARMFault_None) { 1469 goto do_fault; 1470 } 1471 new_descriptor = descriptor; 1472 1473 restart_atomic_update: 1474 if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) { 1475 /* Invalid, or the Reserved level 3 encoding */ 1476 goto do_translation_fault; 1477 } 1478 1479 descaddr = descriptor & descaddrmask; 1480 1481 /* 1482 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1483 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1484 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1485 * raise AddressSizeFault. 1486 */ 1487 if (outputsize > 48) { 1488 if (param.ds) { 1489 descaddr |= extract64(descriptor, 8, 2) << 50; 1490 } else { 1491 descaddr |= extract64(descriptor, 12, 4) << 48; 1492 } 1493 } else if (descaddr >> outputsize) { 1494 fi->type = ARMFault_AddressSize; 1495 goto do_fault; 1496 } 1497 1498 if ((descriptor & 2) && (level < 3)) { 1499 /* 1500 * Table entry. The top five bits are attributes which may 1501 * propagate down through lower levels of the table (and 1502 * which are all arranged so that 0 means "no effect", so 1503 * we can gather them up by ORing in the bits at each level). 1504 */ 1505 tableattrs |= extract64(descriptor, 59, 5); 1506 level++; 1507 indexmask = indexmask_grainsize; 1508 goto next_level; 1509 } 1510 1511 /* 1512 * Block entry at level 1 or 2, or page entry at level 3. 1513 * These are basically the same thing, although the number 1514 * of bits we pull in from the vaddr varies. Note that although 1515 * descaddrmask masks enough of the low bits of the descriptor 1516 * to give a correct page or table address, the address field 1517 * in a block descriptor is smaller; so we need to explicitly 1518 * clear the lower bits here before ORing in the low vaddr bits. 1519 * 1520 * Afterward, descaddr is the final physical address. 1521 */ 1522 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1523 descaddr &= ~(hwaddr)(page_size - 1); 1524 descaddr |= (address & (page_size - 1)); 1525 1526 if (likely(!ptw->in_debug)) { 1527 /* 1528 * Access flag. 1529 * If HA is enabled, prepare to update the descriptor below. 1530 * Otherwise, pass the access fault on to software. 1531 */ 1532 if (!(descriptor & (1 << 10))) { 1533 if (param.ha) { 1534 new_descriptor |= 1 << 10; /* AF */ 1535 } else { 1536 fi->type = ARMFault_AccessFlag; 1537 goto do_fault; 1538 } 1539 } 1540 1541 /* 1542 * Dirty Bit. 1543 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP 1544 * bit for writeback. The actual write protection test may still be 1545 * overridden by tableattrs, to be merged below. 1546 */ 1547 if (param.hd 1548 && extract64(descriptor, 51, 1) /* DBM */ 1549 && access_type == MMU_DATA_STORE) { 1550 if (regime_is_stage2(mmu_idx)) { 1551 new_descriptor |= 1ull << 7; /* set S2AP[1] */ 1552 } else { 1553 new_descriptor &= ~(1ull << 7); /* clear AP[2] */ 1554 } 1555 } 1556 } 1557 1558 /* 1559 * Extract attributes from the (modified) descriptor, and apply 1560 * table descriptors. Stage 2 table descriptors do not include 1561 * any attribute fields. HPD disables all the table attributes 1562 * except NSTable. 1563 */ 1564 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14)); 1565 if (!regime_is_stage2(mmu_idx)) { 1566 attrs |= nstable << 5; /* NS */ 1567 if (!param.hpd) { 1568 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */ 1569 /* 1570 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 1571 * means "force PL1 access only", which means forcing AP[1] to 0. 1572 */ 1573 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */ 1574 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */ 1575 } 1576 } 1577 1578 ap = extract32(attrs, 6, 2); 1579 if (regime_is_stage2(mmu_idx)) { 1580 ns = mmu_idx == ARMMMUIdx_Stage2; 1581 xn = extract64(attrs, 53, 2); 1582 result->f.prot = get_S2prot(env, ap, xn, s1_is_el0); 1583 } else { 1584 ns = extract32(attrs, 5, 1); 1585 xn = extract64(attrs, 54, 1); 1586 pxn = extract64(attrs, 53, 1); 1587 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 1588 } 1589 1590 if (!(result->f.prot & (1 << access_type))) { 1591 fi->type = ARMFault_Permission; 1592 goto do_fault; 1593 } 1594 1595 /* If FEAT_HAFDBS has made changes, update the PTE. */ 1596 if (new_descriptor != descriptor) { 1597 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi); 1598 if (fi->type != ARMFault_None) { 1599 goto do_fault; 1600 } 1601 /* 1602 * I_YZSVV says that if the in-memory descriptor has changed, 1603 * then we must use the information in that new value 1604 * (which might include a different output address, different 1605 * attributes, or generate a fault). 1606 * Restart the handling of the descriptor value from scratch. 1607 */ 1608 if (new_descriptor != descriptor) { 1609 descriptor = new_descriptor; 1610 goto restart_atomic_update; 1611 } 1612 } 1613 1614 if (ns) { 1615 /* 1616 * The NS bit will (as required by the architecture) have no effect if 1617 * the CPU doesn't support TZ or this is a non-secure translation 1618 * regime, because the attribute will already be non-secure. 1619 */ 1620 result->f.attrs.secure = false; 1621 } 1622 1623 if (regime_is_stage2(mmu_idx)) { 1624 result->cacheattrs.is_s2_format = true; 1625 result->cacheattrs.attrs = extract32(attrs, 2, 4); 1626 } else { 1627 /* Index into MAIR registers for cache attributes */ 1628 uint8_t attrindx = extract32(attrs, 2, 3); 1629 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 1630 assert(attrindx <= 7); 1631 result->cacheattrs.is_s2_format = false; 1632 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 1633 1634 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ 1635 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { 1636 result->f.guarded = extract64(attrs, 50, 1); /* GP */ 1637 } 1638 } 1639 1640 /* 1641 * For FEAT_LPA2 and effective DS, the SH field in the attributes 1642 * was re-purposed for output address bits. The SH attribute in 1643 * that case comes from TCR_ELx, which we extracted earlier. 1644 */ 1645 if (param.ds) { 1646 result->cacheattrs.shareability = param.sh; 1647 } else { 1648 result->cacheattrs.shareability = extract32(attrs, 8, 2); 1649 } 1650 1651 result->f.phys_addr = descaddr; 1652 result->f.lg_page_size = ctz64(page_size); 1653 return false; 1654 1655 do_translation_fault: 1656 fi->type = ARMFault_Translation; 1657 do_fault: 1658 fi->level = level; 1659 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 1660 fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx); 1661 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 1662 return true; 1663 } 1664 1665 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 1666 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1667 bool is_secure, GetPhysAddrResult *result, 1668 ARMMMUFaultInfo *fi) 1669 { 1670 int n; 1671 uint32_t mask; 1672 uint32_t base; 1673 bool is_user = regime_is_user(env, mmu_idx); 1674 1675 if (regime_translation_disabled(env, mmu_idx, is_secure)) { 1676 /* MPU disabled. */ 1677 result->f.phys_addr = address; 1678 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1679 return false; 1680 } 1681 1682 result->f.phys_addr = address; 1683 for (n = 7; n >= 0; n--) { 1684 base = env->cp15.c6_region[n]; 1685 if ((base & 1) == 0) { 1686 continue; 1687 } 1688 mask = 1 << ((base >> 1) & 0x1f); 1689 /* Keep this shift separate from the above to avoid an 1690 (undefined) << 32. */ 1691 mask = (mask << 1) - 1; 1692 if (((base ^ address) & ~mask) == 0) { 1693 break; 1694 } 1695 } 1696 if (n < 0) { 1697 fi->type = ARMFault_Background; 1698 return true; 1699 } 1700 1701 if (access_type == MMU_INST_FETCH) { 1702 mask = env->cp15.pmsav5_insn_ap; 1703 } else { 1704 mask = env->cp15.pmsav5_data_ap; 1705 } 1706 mask = (mask >> (n * 4)) & 0xf; 1707 switch (mask) { 1708 case 0: 1709 fi->type = ARMFault_Permission; 1710 fi->level = 1; 1711 return true; 1712 case 1: 1713 if (is_user) { 1714 fi->type = ARMFault_Permission; 1715 fi->level = 1; 1716 return true; 1717 } 1718 result->f.prot = PAGE_READ | PAGE_WRITE; 1719 break; 1720 case 2: 1721 result->f.prot = PAGE_READ; 1722 if (!is_user) { 1723 result->f.prot |= PAGE_WRITE; 1724 } 1725 break; 1726 case 3: 1727 result->f.prot = PAGE_READ | PAGE_WRITE; 1728 break; 1729 case 5: 1730 if (is_user) { 1731 fi->type = ARMFault_Permission; 1732 fi->level = 1; 1733 return true; 1734 } 1735 result->f.prot = PAGE_READ; 1736 break; 1737 case 6: 1738 result->f.prot = PAGE_READ; 1739 break; 1740 default: 1741 /* Bad permission. */ 1742 fi->type = ARMFault_Permission; 1743 fi->level = 1; 1744 return true; 1745 } 1746 result->f.prot |= PAGE_EXEC; 1747 return false; 1748 } 1749 1750 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 1751 int32_t address, uint8_t *prot) 1752 { 1753 if (!arm_feature(env, ARM_FEATURE_M)) { 1754 *prot = PAGE_READ | PAGE_WRITE; 1755 switch (address) { 1756 case 0xF0000000 ... 0xFFFFFFFF: 1757 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 1758 /* hivecs execing is ok */ 1759 *prot |= PAGE_EXEC; 1760 } 1761 break; 1762 case 0x00000000 ... 0x7FFFFFFF: 1763 *prot |= PAGE_EXEC; 1764 break; 1765 } 1766 } else { 1767 /* Default system address map for M profile cores. 1768 * The architecture specifies which regions are execute-never; 1769 * at the MPU level no other checks are defined. 1770 */ 1771 switch (address) { 1772 case 0x00000000 ... 0x1fffffff: /* ROM */ 1773 case 0x20000000 ... 0x3fffffff: /* SRAM */ 1774 case 0x60000000 ... 0x7fffffff: /* RAM */ 1775 case 0x80000000 ... 0x9fffffff: /* RAM */ 1776 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1777 break; 1778 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 1779 case 0xa0000000 ... 0xbfffffff: /* Device */ 1780 case 0xc0000000 ... 0xdfffffff: /* Device */ 1781 case 0xe0000000 ... 0xffffffff: /* System */ 1782 *prot = PAGE_READ | PAGE_WRITE; 1783 break; 1784 default: 1785 g_assert_not_reached(); 1786 } 1787 } 1788 } 1789 1790 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 1791 { 1792 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 1793 return arm_feature(env, ARM_FEATURE_M) && 1794 extract32(address, 20, 12) == 0xe00; 1795 } 1796 1797 static bool m_is_system_region(CPUARMState *env, uint32_t address) 1798 { 1799 /* 1800 * True if address is in the M profile system region 1801 * 0xe0000000 - 0xffffffff 1802 */ 1803 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 1804 } 1805 1806 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 1807 bool is_secure, bool is_user) 1808 { 1809 /* 1810 * Return true if we should use the default memory map as a 1811 * "background" region if there are no hits against any MPU regions. 1812 */ 1813 CPUARMState *env = &cpu->env; 1814 1815 if (is_user) { 1816 return false; 1817 } 1818 1819 if (arm_feature(env, ARM_FEATURE_M)) { 1820 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 1821 } 1822 1823 if (mmu_idx == ARMMMUIdx_Stage2) { 1824 return false; 1825 } 1826 1827 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 1828 } 1829 1830 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 1831 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1832 bool secure, GetPhysAddrResult *result, 1833 ARMMMUFaultInfo *fi) 1834 { 1835 ARMCPU *cpu = env_archcpu(env); 1836 int n; 1837 bool is_user = regime_is_user(env, mmu_idx); 1838 1839 result->f.phys_addr = address; 1840 result->f.lg_page_size = TARGET_PAGE_BITS; 1841 result->f.prot = 0; 1842 1843 if (regime_translation_disabled(env, mmu_idx, secure) || 1844 m_is_ppb_region(env, address)) { 1845 /* 1846 * MPU disabled or M profile PPB access: use default memory map. 1847 * The other case which uses the default memory map in the 1848 * v7M ARM ARM pseudocode is exception vector reads from the vector 1849 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 1850 * which always does a direct read using address_space_ldl(), rather 1851 * than going via this function, so we don't need to check that here. 1852 */ 1853 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 1854 } else { /* MPU enabled */ 1855 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 1856 /* region search */ 1857 uint32_t base = env->pmsav7.drbar[n]; 1858 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 1859 uint32_t rmask; 1860 bool srdis = false; 1861 1862 if (!(env->pmsav7.drsr[n] & 0x1)) { 1863 continue; 1864 } 1865 1866 if (!rsize) { 1867 qemu_log_mask(LOG_GUEST_ERROR, 1868 "DRSR[%d]: Rsize field cannot be 0\n", n); 1869 continue; 1870 } 1871 rsize++; 1872 rmask = (1ull << rsize) - 1; 1873 1874 if (base & rmask) { 1875 qemu_log_mask(LOG_GUEST_ERROR, 1876 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 1877 "to DRSR region size, mask = 0x%" PRIx32 "\n", 1878 n, base, rmask); 1879 continue; 1880 } 1881 1882 if (address < base || address > base + rmask) { 1883 /* 1884 * Address not in this region. We must check whether the 1885 * region covers addresses in the same page as our address. 1886 * In that case we must not report a size that covers the 1887 * whole page for a subsequent hit against a different MPU 1888 * region or the background region, because it would result in 1889 * incorrect TLB hits for subsequent accesses to addresses that 1890 * are in this MPU region. 1891 */ 1892 if (ranges_overlap(base, rmask, 1893 address & TARGET_PAGE_MASK, 1894 TARGET_PAGE_SIZE)) { 1895 result->f.lg_page_size = 0; 1896 } 1897 continue; 1898 } 1899 1900 /* Region matched */ 1901 1902 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 1903 int i, snd; 1904 uint32_t srdis_mask; 1905 1906 rsize -= 3; /* sub region size (power of 2) */ 1907 snd = ((address - base) >> rsize) & 0x7; 1908 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 1909 1910 srdis_mask = srdis ? 0x3 : 0x0; 1911 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 1912 /* 1913 * This will check in groups of 2, 4 and then 8, whether 1914 * the subregion bits are consistent. rsize is incremented 1915 * back up to give the region size, considering consistent 1916 * adjacent subregions as one region. Stop testing if rsize 1917 * is already big enough for an entire QEMU page. 1918 */ 1919 int snd_rounded = snd & ~(i - 1); 1920 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 1921 snd_rounded + 8, i); 1922 if (srdis_mask ^ srdis_multi) { 1923 break; 1924 } 1925 srdis_mask = (srdis_mask << i) | srdis_mask; 1926 rsize++; 1927 } 1928 } 1929 if (srdis) { 1930 continue; 1931 } 1932 if (rsize < TARGET_PAGE_BITS) { 1933 result->f.lg_page_size = rsize; 1934 } 1935 break; 1936 } 1937 1938 if (n == -1) { /* no hits */ 1939 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 1940 /* background fault */ 1941 fi->type = ARMFault_Background; 1942 return true; 1943 } 1944 get_phys_addr_pmsav7_default(env, mmu_idx, address, 1945 &result->f.prot); 1946 } else { /* a MPU hit! */ 1947 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 1948 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 1949 1950 if (m_is_system_region(env, address)) { 1951 /* System space is always execute never */ 1952 xn = 1; 1953 } 1954 1955 if (is_user) { /* User mode AP bit decoding */ 1956 switch (ap) { 1957 case 0: 1958 case 1: 1959 case 5: 1960 break; /* no access */ 1961 case 3: 1962 result->f.prot |= PAGE_WRITE; 1963 /* fall through */ 1964 case 2: 1965 case 6: 1966 result->f.prot |= PAGE_READ | PAGE_EXEC; 1967 break; 1968 case 7: 1969 /* for v7M, same as 6; for R profile a reserved value */ 1970 if (arm_feature(env, ARM_FEATURE_M)) { 1971 result->f.prot |= PAGE_READ | PAGE_EXEC; 1972 break; 1973 } 1974 /* fall through */ 1975 default: 1976 qemu_log_mask(LOG_GUEST_ERROR, 1977 "DRACR[%d]: Bad value for AP bits: 0x%" 1978 PRIx32 "\n", n, ap); 1979 } 1980 } else { /* Priv. mode AP bits decoding */ 1981 switch (ap) { 1982 case 0: 1983 break; /* no access */ 1984 case 1: 1985 case 2: 1986 case 3: 1987 result->f.prot |= PAGE_WRITE; 1988 /* fall through */ 1989 case 5: 1990 case 6: 1991 result->f.prot |= PAGE_READ | PAGE_EXEC; 1992 break; 1993 case 7: 1994 /* for v7M, same as 6; for R profile a reserved value */ 1995 if (arm_feature(env, ARM_FEATURE_M)) { 1996 result->f.prot |= PAGE_READ | PAGE_EXEC; 1997 break; 1998 } 1999 /* fall through */ 2000 default: 2001 qemu_log_mask(LOG_GUEST_ERROR, 2002 "DRACR[%d]: Bad value for AP bits: 0x%" 2003 PRIx32 "\n", n, ap); 2004 } 2005 } 2006 2007 /* execute never */ 2008 if (xn) { 2009 result->f.prot &= ~PAGE_EXEC; 2010 } 2011 } 2012 } 2013 2014 fi->type = ARMFault_Permission; 2015 fi->level = 1; 2016 return !(result->f.prot & (1 << access_type)); 2017 } 2018 2019 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx, 2020 uint32_t secure) 2021 { 2022 if (regime_el(env, mmu_idx) == 2) { 2023 return env->pmsav8.hprbar; 2024 } else { 2025 return env->pmsav8.rbar[secure]; 2026 } 2027 } 2028 2029 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx, 2030 uint32_t secure) 2031 { 2032 if (regime_el(env, mmu_idx) == 2) { 2033 return env->pmsav8.hprlar; 2034 } else { 2035 return env->pmsav8.rlar[secure]; 2036 } 2037 } 2038 2039 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 2040 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2041 bool secure, GetPhysAddrResult *result, 2042 ARMMMUFaultInfo *fi, uint32_t *mregion) 2043 { 2044 /* 2045 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 2046 * that a full phys-to-virt translation does). 2047 * mregion is (if not NULL) set to the region number which matched, 2048 * or -1 if no region number is returned (MPU off, address did not 2049 * hit a region, address hit in multiple regions). 2050 * If the region hit doesn't cover the entire TARGET_PAGE the address 2051 * is within, then we set the result page_size to 1 to force the 2052 * memory system to use a subpage. 2053 */ 2054 ARMCPU *cpu = env_archcpu(env); 2055 bool is_user = regime_is_user(env, mmu_idx); 2056 int n; 2057 int matchregion = -1; 2058 bool hit = false; 2059 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2060 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2061 int region_counter; 2062 2063 if (regime_el(env, mmu_idx) == 2) { 2064 region_counter = cpu->pmsav8r_hdregion; 2065 } else { 2066 region_counter = cpu->pmsav7_dregion; 2067 } 2068 2069 result->f.lg_page_size = TARGET_PAGE_BITS; 2070 result->f.phys_addr = address; 2071 result->f.prot = 0; 2072 if (mregion) { 2073 *mregion = -1; 2074 } 2075 2076 if (mmu_idx == ARMMMUIdx_Stage2) { 2077 fi->stage2 = true; 2078 } 2079 2080 /* 2081 * Unlike the ARM ARM pseudocode, we don't need to check whether this 2082 * was an exception vector read from the vector table (which is always 2083 * done using the default system address map), because those accesses 2084 * are done in arm_v7m_load_vector(), which always does a direct 2085 * read using address_space_ldl(), rather than going via this function. 2086 */ 2087 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */ 2088 hit = true; 2089 } else if (m_is_ppb_region(env, address)) { 2090 hit = true; 2091 } else { 2092 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2093 hit = true; 2094 } 2095 2096 uint32_t bitmask; 2097 if (arm_feature(env, ARM_FEATURE_M)) { 2098 bitmask = 0x1f; 2099 } else { 2100 bitmask = 0x3f; 2101 fi->level = 0; 2102 } 2103 2104 for (n = region_counter - 1; n >= 0; n--) { 2105 /* region search */ 2106 /* 2107 * Note that the base address is bits [31:x] from the register 2108 * with bits [x-1:0] all zeroes, but the limit address is bits 2109 * [31:x] from the register with bits [x:0] all ones. Where x is 2110 * 5 for Cortex-M and 6 for Cortex-R 2111 */ 2112 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask; 2113 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask; 2114 2115 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) { 2116 /* Region disabled */ 2117 continue; 2118 } 2119 2120 if (address < base || address > limit) { 2121 /* 2122 * Address not in this region. We must check whether the 2123 * region covers addresses in the same page as our address. 2124 * In that case we must not report a size that covers the 2125 * whole page for a subsequent hit against a different MPU 2126 * region or the background region, because it would result in 2127 * incorrect TLB hits for subsequent accesses to addresses that 2128 * are in this MPU region. 2129 */ 2130 if (limit >= base && 2131 ranges_overlap(base, limit - base + 1, 2132 addr_page_base, 2133 TARGET_PAGE_SIZE)) { 2134 result->f.lg_page_size = 0; 2135 } 2136 continue; 2137 } 2138 2139 if (base > addr_page_base || limit < addr_page_limit) { 2140 result->f.lg_page_size = 0; 2141 } 2142 2143 if (matchregion != -1) { 2144 /* 2145 * Multiple regions match -- always a failure (unlike 2146 * PMSAv7 where highest-numbered-region wins) 2147 */ 2148 fi->type = ARMFault_Permission; 2149 if (arm_feature(env, ARM_FEATURE_M)) { 2150 fi->level = 1; 2151 } 2152 return true; 2153 } 2154 2155 matchregion = n; 2156 hit = true; 2157 } 2158 } 2159 2160 if (!hit) { 2161 if (arm_feature(env, ARM_FEATURE_M)) { 2162 fi->type = ARMFault_Background; 2163 } else { 2164 fi->type = ARMFault_Permission; 2165 } 2166 return true; 2167 } 2168 2169 if (matchregion == -1) { 2170 /* hit using the background region */ 2171 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2172 } else { 2173 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion]; 2174 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion]; 2175 uint32_t ap = extract32(matched_rbar, 1, 2); 2176 uint32_t xn = extract32(matched_rbar, 0, 1); 2177 bool pxn = false; 2178 2179 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 2180 pxn = extract32(matched_rlar, 4, 1); 2181 } 2182 2183 if (m_is_system_region(env, address)) { 2184 /* System space is always execute never */ 2185 xn = 1; 2186 } 2187 2188 if (regime_el(env, mmu_idx) == 2) { 2189 result->f.prot = simple_ap_to_rw_prot_is_user(ap, 2190 mmu_idx != ARMMMUIdx_E2); 2191 } else { 2192 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 2193 } 2194 2195 if (!arm_feature(env, ARM_FEATURE_M)) { 2196 uint8_t attrindx = extract32(matched_rlar, 1, 3); 2197 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2198 uint8_t sh = extract32(matched_rlar, 3, 2); 2199 2200 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN && 2201 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) { 2202 xn = 0x1; 2203 } 2204 2205 if ((regime_el(env, mmu_idx) == 1) && 2206 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) { 2207 pxn = 0x1; 2208 } 2209 2210 result->cacheattrs.is_s2_format = false; 2211 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2212 result->cacheattrs.shareability = sh; 2213 } 2214 2215 if (result->f.prot && !xn && !(pxn && !is_user)) { 2216 result->f.prot |= PAGE_EXEC; 2217 } 2218 2219 if (mregion) { 2220 *mregion = matchregion; 2221 } 2222 } 2223 2224 fi->type = ARMFault_Permission; 2225 if (arm_feature(env, ARM_FEATURE_M)) { 2226 fi->level = 1; 2227 } 2228 return !(result->f.prot & (1 << access_type)); 2229 } 2230 2231 static bool v8m_is_sau_exempt(CPUARMState *env, 2232 uint32_t address, MMUAccessType access_type) 2233 { 2234 /* 2235 * The architecture specifies that certain address ranges are 2236 * exempt from v8M SAU/IDAU checks. 2237 */ 2238 return 2239 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 2240 (address >= 0xe0000000 && address <= 0xe0002fff) || 2241 (address >= 0xe000e000 && address <= 0xe000efff) || 2242 (address >= 0xe002e000 && address <= 0xe002efff) || 2243 (address >= 0xe0040000 && address <= 0xe0041fff) || 2244 (address >= 0xe00ff000 && address <= 0xe00fffff); 2245 } 2246 2247 void v8m_security_lookup(CPUARMState *env, uint32_t address, 2248 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2249 bool is_secure, V8M_SAttributes *sattrs) 2250 { 2251 /* 2252 * Look up the security attributes for this address. Compare the 2253 * pseudocode SecurityCheck() function. 2254 * We assume the caller has zero-initialized *sattrs. 2255 */ 2256 ARMCPU *cpu = env_archcpu(env); 2257 int r; 2258 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 2259 int idau_region = IREGION_NOTVALID; 2260 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2261 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2262 2263 if (cpu->idau) { 2264 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 2265 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 2266 2267 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 2268 &idau_nsc); 2269 } 2270 2271 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 2272 /* 0xf0000000..0xffffffff is always S for insn fetches */ 2273 return; 2274 } 2275 2276 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 2277 sattrs->ns = !is_secure; 2278 return; 2279 } 2280 2281 if (idau_region != IREGION_NOTVALID) { 2282 sattrs->irvalid = true; 2283 sattrs->iregion = idau_region; 2284 } 2285 2286 switch (env->sau.ctrl & 3) { 2287 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 2288 break; 2289 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 2290 sattrs->ns = true; 2291 break; 2292 default: /* SAU.ENABLE == 1 */ 2293 for (r = 0; r < cpu->sau_sregion; r++) { 2294 if (env->sau.rlar[r] & 1) { 2295 uint32_t base = env->sau.rbar[r] & ~0x1f; 2296 uint32_t limit = env->sau.rlar[r] | 0x1f; 2297 2298 if (base <= address && limit >= address) { 2299 if (base > addr_page_base || limit < addr_page_limit) { 2300 sattrs->subpage = true; 2301 } 2302 if (sattrs->srvalid) { 2303 /* 2304 * If we hit in more than one region then we must report 2305 * as Secure, not NS-Callable, with no valid region 2306 * number info. 2307 */ 2308 sattrs->ns = false; 2309 sattrs->nsc = false; 2310 sattrs->sregion = 0; 2311 sattrs->srvalid = false; 2312 break; 2313 } else { 2314 if (env->sau.rlar[r] & 2) { 2315 sattrs->nsc = true; 2316 } else { 2317 sattrs->ns = true; 2318 } 2319 sattrs->srvalid = true; 2320 sattrs->sregion = r; 2321 } 2322 } else { 2323 /* 2324 * Address not in this region. We must check whether the 2325 * region covers addresses in the same page as our address. 2326 * In that case we must not report a size that covers the 2327 * whole page for a subsequent hit against a different MPU 2328 * region or the background region, because it would result 2329 * in incorrect TLB hits for subsequent accesses to 2330 * addresses that are in this MPU region. 2331 */ 2332 if (limit >= base && 2333 ranges_overlap(base, limit - base + 1, 2334 addr_page_base, 2335 TARGET_PAGE_SIZE)) { 2336 sattrs->subpage = true; 2337 } 2338 } 2339 } 2340 } 2341 break; 2342 } 2343 2344 /* 2345 * The IDAU will override the SAU lookup results if it specifies 2346 * higher security than the SAU does. 2347 */ 2348 if (!idau_ns) { 2349 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 2350 sattrs->ns = false; 2351 sattrs->nsc = idau_nsc; 2352 } 2353 } 2354 } 2355 2356 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 2357 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2358 bool secure, GetPhysAddrResult *result, 2359 ARMMMUFaultInfo *fi) 2360 { 2361 V8M_SAttributes sattrs = {}; 2362 bool ret; 2363 2364 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2365 v8m_security_lookup(env, address, access_type, mmu_idx, 2366 secure, &sattrs); 2367 if (access_type == MMU_INST_FETCH) { 2368 /* 2369 * Instruction fetches always use the MMU bank and the 2370 * transaction attribute determined by the fetch address, 2371 * regardless of CPU state. This is painful for QEMU 2372 * to handle, because it would mean we need to encode 2373 * into the mmu_idx not just the (user, negpri) information 2374 * for the current security state but also that for the 2375 * other security state, which would balloon the number 2376 * of mmu_idx values needed alarmingly. 2377 * Fortunately we can avoid this because it's not actually 2378 * possible to arbitrarily execute code from memory with 2379 * the wrong security attribute: it will always generate 2380 * an exception of some kind or another, apart from the 2381 * special case of an NS CPU executing an SG instruction 2382 * in S&NSC memory. So we always just fail the translation 2383 * here and sort things out in the exception handler 2384 * (including possibly emulating an SG instruction). 2385 */ 2386 if (sattrs.ns != !secure) { 2387 if (sattrs.nsc) { 2388 fi->type = ARMFault_QEMU_NSCExec; 2389 } else { 2390 fi->type = ARMFault_QEMU_SFault; 2391 } 2392 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2393 result->f.phys_addr = address; 2394 result->f.prot = 0; 2395 return true; 2396 } 2397 } else { 2398 /* 2399 * For data accesses we always use the MMU bank indicated 2400 * by the current CPU state, but the security attributes 2401 * might downgrade a secure access to nonsecure. 2402 */ 2403 if (sattrs.ns) { 2404 result->f.attrs.secure = false; 2405 } else if (!secure) { 2406 /* 2407 * NS access to S memory must fault. 2408 * Architecturally we should first check whether the 2409 * MPU information for this address indicates that we 2410 * are doing an unaligned access to Device memory, which 2411 * should generate a UsageFault instead. QEMU does not 2412 * currently check for that kind of unaligned access though. 2413 * If we added it we would need to do so as a special case 2414 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2415 */ 2416 fi->type = ARMFault_QEMU_SFault; 2417 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2418 result->f.phys_addr = address; 2419 result->f.prot = 0; 2420 return true; 2421 } 2422 } 2423 } 2424 2425 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, 2426 result, fi, NULL); 2427 if (sattrs.subpage) { 2428 result->f.lg_page_size = 0; 2429 } 2430 return ret; 2431 } 2432 2433 /* 2434 * Translate from the 4-bit stage 2 representation of 2435 * memory attributes (without cache-allocation hints) to 2436 * the 8-bit representation of the stage 1 MAIR registers 2437 * (which includes allocation hints). 2438 * 2439 * ref: shared/translation/attrs/S2AttrDecode() 2440 * .../S2ConvertAttrsHints() 2441 */ 2442 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) 2443 { 2444 uint8_t hiattr = extract32(s2attrs, 2, 2); 2445 uint8_t loattr = extract32(s2attrs, 0, 2); 2446 uint8_t hihint = 0, lohint = 0; 2447 2448 if (hiattr != 0) { /* normal memory */ 2449 if (hcr & HCR_CD) { /* cache disabled */ 2450 hiattr = loattr = 1; /* non-cacheable */ 2451 } else { 2452 if (hiattr != 1) { /* Write-through or write-back */ 2453 hihint = 3; /* RW allocate */ 2454 } 2455 if (loattr != 1) { /* Write-through or write-back */ 2456 lohint = 3; /* RW allocate */ 2457 } 2458 } 2459 } 2460 2461 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 2462 } 2463 2464 /* 2465 * Combine either inner or outer cacheability attributes for normal 2466 * memory, according to table D4-42 and pseudocode procedure 2467 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 2468 * 2469 * NB: only stage 1 includes allocation hints (RW bits), leading to 2470 * some asymmetry. 2471 */ 2472 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 2473 { 2474 if (s1 == 4 || s2 == 4) { 2475 /* non-cacheable has precedence */ 2476 return 4; 2477 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 2478 /* stage 1 write-through takes precedence */ 2479 return s1; 2480 } else if (extract32(s2, 2, 2) == 2) { 2481 /* stage 2 write-through takes precedence, but the allocation hint 2482 * is still taken from stage 1 2483 */ 2484 return (2 << 2) | extract32(s1, 0, 2); 2485 } else { /* write-back */ 2486 return s1; 2487 } 2488 } 2489 2490 /* 2491 * Combine the memory type and cacheability attributes of 2492 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 2493 * combined attributes in MAIR_EL1 format. 2494 */ 2495 static uint8_t combined_attrs_nofwb(uint64_t hcr, 2496 ARMCacheAttrs s1, ARMCacheAttrs s2) 2497 { 2498 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 2499 2500 if (s2.is_s2_format) { 2501 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); 2502 } else { 2503 s2_mair_attrs = s2.attrs; 2504 } 2505 2506 s1lo = extract32(s1.attrs, 0, 4); 2507 s2lo = extract32(s2_mair_attrs, 0, 4); 2508 s1hi = extract32(s1.attrs, 4, 4); 2509 s2hi = extract32(s2_mair_attrs, 4, 4); 2510 2511 /* Combine memory type and cacheability attributes */ 2512 if (s1hi == 0 || s2hi == 0) { 2513 /* Device has precedence over normal */ 2514 if (s1lo == 0 || s2lo == 0) { 2515 /* nGnRnE has precedence over anything */ 2516 ret_attrs = 0; 2517 } else if (s1lo == 4 || s2lo == 4) { 2518 /* non-Reordering has precedence over Reordering */ 2519 ret_attrs = 4; /* nGnRE */ 2520 } else if (s1lo == 8 || s2lo == 8) { 2521 /* non-Gathering has precedence over Gathering */ 2522 ret_attrs = 8; /* nGRE */ 2523 } else { 2524 ret_attrs = 0xc; /* GRE */ 2525 } 2526 } else { /* Normal memory */ 2527 /* Outer/inner cacheability combine independently */ 2528 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 2529 | combine_cacheattr_nibble(s1lo, s2lo); 2530 } 2531 return ret_attrs; 2532 } 2533 2534 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 2535 { 2536 /* 2537 * Given the 4 bits specifying the outer or inner cacheability 2538 * in MAIR format, return a value specifying Normal Write-Back, 2539 * with the allocation and transient hints taken from the input 2540 * if the input specified some kind of cacheable attribute. 2541 */ 2542 if (attr == 0 || attr == 4) { 2543 /* 2544 * 0 == an UNPREDICTABLE encoding 2545 * 4 == Non-cacheable 2546 * Either way, force Write-Back RW allocate non-transient 2547 */ 2548 return 0xf; 2549 } 2550 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 2551 return attr | 4; 2552 } 2553 2554 /* 2555 * Combine the memory type and cacheability attributes of 2556 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 2557 * combined attributes in MAIR_EL1 format. 2558 */ 2559 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) 2560 { 2561 assert(s2.is_s2_format && !s1.is_s2_format); 2562 2563 switch (s2.attrs) { 2564 case 7: 2565 /* Use stage 1 attributes */ 2566 return s1.attrs; 2567 case 6: 2568 /* 2569 * Force Normal Write-Back. Note that if S1 is Normal cacheable 2570 * then we take the allocation hints from it; otherwise it is 2571 * RW allocate, non-transient. 2572 */ 2573 if ((s1.attrs & 0xf0) == 0) { 2574 /* S1 is Device */ 2575 return 0xff; 2576 } 2577 /* Need to check the Inner and Outer nibbles separately */ 2578 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 2579 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 2580 case 5: 2581 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 2582 if ((s1.attrs & 0xf0) == 0) { 2583 return s1.attrs; 2584 } 2585 return 0x44; 2586 case 0 ... 3: 2587 /* Force Device, of subtype specified by S2 */ 2588 return s2.attrs << 2; 2589 default: 2590 /* 2591 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 2592 * arbitrarily force Device. 2593 */ 2594 return 0; 2595 } 2596 } 2597 2598 /* 2599 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 2600 * and CombineS1S2Desc() 2601 * 2602 * @env: CPUARMState 2603 * @s1: Attributes from stage 1 walk 2604 * @s2: Attributes from stage 2 walk 2605 */ 2606 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, 2607 ARMCacheAttrs s1, ARMCacheAttrs s2) 2608 { 2609 ARMCacheAttrs ret; 2610 bool tagged = false; 2611 2612 assert(!s1.is_s2_format); 2613 ret.is_s2_format = false; 2614 ret.guarded = s1.guarded; 2615 2616 if (s1.attrs == 0xf0) { 2617 tagged = true; 2618 s1.attrs = 0xff; 2619 } 2620 2621 /* Combine shareability attributes (table D4-43) */ 2622 if (s1.shareability == 2 || s2.shareability == 2) { 2623 /* if either are outer-shareable, the result is outer-shareable */ 2624 ret.shareability = 2; 2625 } else if (s1.shareability == 3 || s2.shareability == 3) { 2626 /* if either are inner-shareable, the result is inner-shareable */ 2627 ret.shareability = 3; 2628 } else { 2629 /* both non-shareable */ 2630 ret.shareability = 0; 2631 } 2632 2633 /* Combine memory type and cacheability attributes */ 2634 if (hcr & HCR_FWB) { 2635 ret.attrs = combined_attrs_fwb(s1, s2); 2636 } else { 2637 ret.attrs = combined_attrs_nofwb(hcr, s1, s2); 2638 } 2639 2640 /* 2641 * Any location for which the resultant memory type is any 2642 * type of Device memory is always treated as Outer Shareable. 2643 * Any location for which the resultant memory type is Normal 2644 * Inner Non-cacheable, Outer Non-cacheable is always treated 2645 * as Outer Shareable. 2646 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 2647 */ 2648 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 2649 ret.shareability = 2; 2650 } 2651 2652 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 2653 if (tagged && ret.attrs == 0xff) { 2654 ret.attrs = 0xf0; 2655 } 2656 2657 return ret; 2658 } 2659 2660 /* 2661 * MMU disabled. S1 addresses within aa64 translation regimes are 2662 * still checked for bounds -- see AArch64.S1DisabledOutput(). 2663 */ 2664 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address, 2665 MMUAccessType access_type, 2666 ARMMMUIdx mmu_idx, bool is_secure, 2667 GetPhysAddrResult *result, 2668 ARMMMUFaultInfo *fi) 2669 { 2670 uint8_t memattr = 0x00; /* Device nGnRnE */ 2671 uint8_t shareability = 0; /* non-sharable */ 2672 int r_el; 2673 2674 switch (mmu_idx) { 2675 case ARMMMUIdx_Stage2: 2676 case ARMMMUIdx_Stage2_S: 2677 case ARMMMUIdx_Phys_NS: 2678 case ARMMMUIdx_Phys_S: 2679 break; 2680 2681 default: 2682 r_el = regime_el(env, mmu_idx); 2683 if (arm_el_is_aa64(env, r_el)) { 2684 int pamax = arm_pamax(env_archcpu(env)); 2685 uint64_t tcr = env->cp15.tcr_el[r_el]; 2686 int addrtop, tbi; 2687 2688 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 2689 if (access_type == MMU_INST_FETCH) { 2690 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 2691 } 2692 tbi = (tbi >> extract64(address, 55, 1)) & 1; 2693 addrtop = (tbi ? 55 : 63); 2694 2695 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 2696 fi->type = ARMFault_AddressSize; 2697 fi->level = 0; 2698 fi->stage2 = false; 2699 return 1; 2700 } 2701 2702 /* 2703 * When TBI is disabled, we've just validated that all of the 2704 * bits above PAMax are zero, so logically we only need to 2705 * clear the top byte for TBI. But it's clearer to follow 2706 * the pseudocode set of addrdesc.paddress. 2707 */ 2708 address = extract64(address, 0, 52); 2709 } 2710 2711 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 2712 if (r_el == 1) { 2713 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure); 2714 if (hcr & HCR_DC) { 2715 if (hcr & HCR_DCT) { 2716 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 2717 } else { 2718 memattr = 0xff; /* Normal, WB, RWA */ 2719 } 2720 } 2721 } 2722 if (memattr == 0 && access_type == MMU_INST_FETCH) { 2723 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 2724 memattr = 0xee; /* Normal, WT, RA, NT */ 2725 } else { 2726 memattr = 0x44; /* Normal, NC, No */ 2727 } 2728 shareability = 2; /* outer sharable */ 2729 } 2730 result->cacheattrs.is_s2_format = false; 2731 break; 2732 } 2733 2734 result->f.phys_addr = address; 2735 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2736 result->f.lg_page_size = TARGET_PAGE_BITS; 2737 result->cacheattrs.shareability = shareability; 2738 result->cacheattrs.attrs = memattr; 2739 return false; 2740 } 2741 2742 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, 2743 target_ulong address, 2744 MMUAccessType access_type, 2745 GetPhysAddrResult *result, 2746 ARMMMUFaultInfo *fi) 2747 { 2748 hwaddr ipa; 2749 int s1_prot, s1_lgpgsz; 2750 bool is_secure = ptw->in_secure; 2751 bool ret, ipa_secure; 2752 ARMCacheAttrs cacheattrs1; 2753 bool is_el0; 2754 uint64_t hcr; 2755 2756 ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi); 2757 2758 /* If S1 fails, return early. */ 2759 if (ret) { 2760 return ret; 2761 } 2762 2763 ipa = result->f.phys_addr; 2764 ipa_secure = result->f.attrs.secure; 2765 2766 is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; 2767 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 2768 ptw->in_secure = ipa_secure; 2769 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx); 2770 2771 /* 2772 * S1 is done, now do S2 translation. 2773 * Save the stage1 results so that we may merge prot and cacheattrs later. 2774 */ 2775 s1_prot = result->f.prot; 2776 s1_lgpgsz = result->f.lg_page_size; 2777 cacheattrs1 = result->cacheattrs; 2778 memset(result, 0, sizeof(*result)); 2779 2780 if (arm_feature(env, ARM_FEATURE_PMSA)) { 2781 ret = get_phys_addr_pmsav8(env, ipa, access_type, 2782 ptw->in_mmu_idx, is_secure, result, fi); 2783 } else { 2784 ret = get_phys_addr_lpae(env, ptw, ipa, access_type, 2785 is_el0, result, fi); 2786 } 2787 fi->s2addr = ipa; 2788 2789 /* Combine the S1 and S2 perms. */ 2790 result->f.prot &= s1_prot; 2791 2792 /* If S2 fails, return early. */ 2793 if (ret) { 2794 return ret; 2795 } 2796 2797 /* 2798 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE, 2799 * this means "don't put this in the TLB"; in this case, return a 2800 * result with lg_page_size == 0 to achieve that. Otherwise, 2801 * use the maximum of the S1 & S2 page size, so that invalidation 2802 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though 2803 * we know the combined result permissions etc only cover the minimum 2804 * of the S1 and S2 page size, because we know that the common TLB code 2805 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE, 2806 * and passing a larger page size value only affects invalidations.) 2807 */ 2808 if (result->f.lg_page_size < TARGET_PAGE_BITS || 2809 s1_lgpgsz < TARGET_PAGE_BITS) { 2810 result->f.lg_page_size = 0; 2811 } else if (result->f.lg_page_size < s1_lgpgsz) { 2812 result->f.lg_page_size = s1_lgpgsz; 2813 } 2814 2815 /* Combine the S1 and S2 cache attributes. */ 2816 hcr = arm_hcr_el2_eff_secstate(env, is_secure); 2817 if (hcr & HCR_DC) { 2818 /* 2819 * HCR.DC forces the first stage attributes to 2820 * Normal Non-Shareable, 2821 * Inner Write-Back Read-Allocate Write-Allocate, 2822 * Outer Write-Back Read-Allocate Write-Allocate. 2823 * Do not overwrite Tagged within attrs. 2824 */ 2825 if (cacheattrs1.attrs != 0xf0) { 2826 cacheattrs1.attrs = 0xff; 2827 } 2828 cacheattrs1.shareability = 0; 2829 } 2830 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, 2831 result->cacheattrs); 2832 2833 /* 2834 * Check if IPA translates to secure or non-secure PA space. 2835 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. 2836 */ 2837 result->f.attrs.secure = 2838 (is_secure 2839 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) 2840 && (ipa_secure 2841 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)))); 2842 2843 return false; 2844 } 2845 2846 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw, 2847 target_ulong address, 2848 MMUAccessType access_type, 2849 GetPhysAddrResult *result, 2850 ARMMMUFaultInfo *fi) 2851 { 2852 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2853 bool is_secure = ptw->in_secure; 2854 ARMMMUIdx s1_mmu_idx; 2855 2856 /* 2857 * The page table entries may downgrade secure to non-secure, but 2858 * cannot upgrade an non-secure translation regime's attributes 2859 * to secure. 2860 */ 2861 result->f.attrs.secure = is_secure; 2862 2863 switch (mmu_idx) { 2864 case ARMMMUIdx_Phys_S: 2865 case ARMMMUIdx_Phys_NS: 2866 /* Checking Phys early avoids special casing later vs regime_el. */ 2867 return get_phys_addr_disabled(env, address, access_type, mmu_idx, 2868 is_secure, result, fi); 2869 2870 case ARMMMUIdx_Stage1_E0: 2871 case ARMMMUIdx_Stage1_E1: 2872 case ARMMMUIdx_Stage1_E1_PAN: 2873 /* First stage lookup uses second stage for ptw. */ 2874 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 2875 break; 2876 2877 case ARMMMUIdx_Stage2: 2878 case ARMMMUIdx_Stage2_S: 2879 /* 2880 * Second stage lookup uses physical for ptw; whether this is S or 2881 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for 2882 * the Secure EL2&0 regime. 2883 */ 2884 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx); 2885 break; 2886 2887 case ARMMMUIdx_E10_0: 2888 s1_mmu_idx = ARMMMUIdx_Stage1_E0; 2889 goto do_twostage; 2890 case ARMMMUIdx_E10_1: 2891 s1_mmu_idx = ARMMMUIdx_Stage1_E1; 2892 goto do_twostage; 2893 case ARMMMUIdx_E10_1_PAN: 2894 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 2895 do_twostage: 2896 /* 2897 * Call ourselves recursively to do the stage 1 and then stage 2 2898 * translations if mmu_idx is a two-stage regime, and EL2 present. 2899 * Otherwise, a stage1+stage2 translation is just stage 1. 2900 */ 2901 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; 2902 if (arm_feature(env, ARM_FEATURE_EL2) && 2903 !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) { 2904 return get_phys_addr_twostage(env, ptw, address, access_type, 2905 result, fi); 2906 } 2907 /* fall through */ 2908 2909 default: 2910 /* Single stage uses physical for ptw. */ 2911 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 2912 break; 2913 } 2914 2915 result->f.attrs.user = regime_is_user(env, mmu_idx); 2916 2917 /* 2918 * Fast Context Switch Extension. This doesn't exist at all in v8. 2919 * In v7 and earlier it affects all stage 1 translations. 2920 */ 2921 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 2922 && !arm_feature(env, ARM_FEATURE_V8)) { 2923 if (regime_el(env, mmu_idx) == 3) { 2924 address += env->cp15.fcseidr_s; 2925 } else { 2926 address += env->cp15.fcseidr_ns; 2927 } 2928 } 2929 2930 if (arm_feature(env, ARM_FEATURE_PMSA)) { 2931 bool ret; 2932 result->f.lg_page_size = TARGET_PAGE_BITS; 2933 2934 if (arm_feature(env, ARM_FEATURE_V8)) { 2935 /* PMSAv8 */ 2936 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 2937 is_secure, result, fi); 2938 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2939 /* PMSAv7 */ 2940 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 2941 is_secure, result, fi); 2942 } else { 2943 /* Pre-v7 MPU */ 2944 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 2945 is_secure, result, fi); 2946 } 2947 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 2948 " mmu_idx %u -> %s (prot %c%c%c)\n", 2949 access_type == MMU_DATA_LOAD ? "reading" : 2950 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 2951 (uint32_t)address, mmu_idx, 2952 ret ? "Miss" : "Hit", 2953 result->f.prot & PAGE_READ ? 'r' : '-', 2954 result->f.prot & PAGE_WRITE ? 'w' : '-', 2955 result->f.prot & PAGE_EXEC ? 'x' : '-'); 2956 2957 return ret; 2958 } 2959 2960 /* Definitely a real MMU, not an MPU */ 2961 2962 if (regime_translation_disabled(env, mmu_idx, is_secure)) { 2963 return get_phys_addr_disabled(env, address, access_type, mmu_idx, 2964 is_secure, result, fi); 2965 } 2966 2967 if (regime_using_lpae_format(env, mmu_idx)) { 2968 return get_phys_addr_lpae(env, ptw, address, access_type, false, 2969 result, fi); 2970 } else if (arm_feature(env, ARM_FEATURE_V7) || 2971 regime_sctlr(env, mmu_idx) & SCTLR_XP) { 2972 return get_phys_addr_v6(env, ptw, address, access_type, result, fi); 2973 } else { 2974 return get_phys_addr_v5(env, ptw, address, access_type, result, fi); 2975 } 2976 } 2977 2978 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address, 2979 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2980 bool is_secure, GetPhysAddrResult *result, 2981 ARMMMUFaultInfo *fi) 2982 { 2983 S1Translate ptw = { 2984 .in_mmu_idx = mmu_idx, 2985 .in_secure = is_secure, 2986 }; 2987 return get_phys_addr_with_struct(env, &ptw, address, access_type, 2988 result, fi); 2989 } 2990 2991 bool get_phys_addr(CPUARMState *env, target_ulong address, 2992 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2993 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 2994 { 2995 bool is_secure; 2996 2997 switch (mmu_idx) { 2998 case ARMMMUIdx_E10_0: 2999 case ARMMMUIdx_E10_1: 3000 case ARMMMUIdx_E10_1_PAN: 3001 case ARMMMUIdx_E20_0: 3002 case ARMMMUIdx_E20_2: 3003 case ARMMMUIdx_E20_2_PAN: 3004 case ARMMMUIdx_Stage1_E0: 3005 case ARMMMUIdx_Stage1_E1: 3006 case ARMMMUIdx_Stage1_E1_PAN: 3007 case ARMMMUIdx_E2: 3008 is_secure = arm_is_secure_below_el3(env); 3009 break; 3010 case ARMMMUIdx_Stage2: 3011 case ARMMMUIdx_Phys_NS: 3012 case ARMMMUIdx_MPrivNegPri: 3013 case ARMMMUIdx_MUserNegPri: 3014 case ARMMMUIdx_MPriv: 3015 case ARMMMUIdx_MUser: 3016 is_secure = false; 3017 break; 3018 case ARMMMUIdx_E3: 3019 case ARMMMUIdx_Stage2_S: 3020 case ARMMMUIdx_Phys_S: 3021 case ARMMMUIdx_MSPrivNegPri: 3022 case ARMMMUIdx_MSUserNegPri: 3023 case ARMMMUIdx_MSPriv: 3024 case ARMMMUIdx_MSUser: 3025 is_secure = true; 3026 break; 3027 default: 3028 g_assert_not_reached(); 3029 } 3030 return get_phys_addr_with_secure(env, address, access_type, mmu_idx, 3031 is_secure, result, fi); 3032 } 3033 3034 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 3035 MemTxAttrs *attrs) 3036 { 3037 ARMCPU *cpu = ARM_CPU(cs); 3038 CPUARMState *env = &cpu->env; 3039 S1Translate ptw = { 3040 .in_mmu_idx = arm_mmu_idx(env), 3041 .in_secure = arm_is_secure(env), 3042 .in_debug = true, 3043 }; 3044 GetPhysAddrResult res = {}; 3045 ARMMMUFaultInfo fi = {}; 3046 bool ret; 3047 3048 ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi); 3049 *attrs = res.f.attrs; 3050 3051 if (ret) { 3052 return -1; 3053 } 3054 return res.f.phys_addr; 3055 } 3056