xref: /openbmc/qemu/target/arm/ptw.c (revision 83b4613b)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "cpu-features.h"
17 #include "idau.h"
18 #ifdef CONFIG_TCG
19 # include "tcg/oversized-guest.h"
20 #endif
21 
22 typedef struct S1Translate {
23     /*
24      * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
25      * Together with in_space, specifies the architectural translation regime.
26      */
27     ARMMMUIdx in_mmu_idx;
28     /*
29      * in_ptw_idx: specifies which mmuidx to use for the actual
30      * page table descriptor load operations. This will be one of the
31      * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
32      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
33      * this field is updated accordingly.
34      */
35     ARMMMUIdx in_ptw_idx;
36     /*
37      * in_space: the security space for this walk. This plus
38      * the in_mmu_idx specify the architectural translation regime.
39      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
40      * this field is updated accordingly.
41      *
42      * Note that the security space for the in_ptw_idx may be different
43      * from that for the in_mmu_idx. We do not need to explicitly track
44      * the in_ptw_idx security space because:
45      *  - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
46      *    itself specifies the security space
47      *  - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
48      *    space used for ptw reads is the same as that of the security
49      *    space of the stage 1 translation for all cases except where
50      *    stage 1 is Secure; in that case the only possibilities for
51      *    the ptw read are Secure and NonSecure, and the in_ptw_idx
52      *    value being Stage2 vs Stage2_S distinguishes those.
53      */
54     ARMSecuritySpace in_space;
55     /*
56      * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
57      * accesses will not update the guest page table access flags
58      * and will not change the state of the softmmu TLBs.
59      */
60     bool in_debug;
61     /*
62      * If this is stage 2 of a stage 1+2 page table walk, then this must
63      * be true if stage 1 is an EL0 access; otherwise this is ignored.
64      * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
65      */
66     bool in_s1_is_el0;
67     bool out_rw;
68     bool out_be;
69     ARMSecuritySpace out_space;
70     hwaddr out_virt;
71     hwaddr out_phys;
72     void *out_host;
73 } S1Translate;
74 
75 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
76                                 target_ulong address,
77                                 MMUAccessType access_type,
78                                 GetPhysAddrResult *result,
79                                 ARMMMUFaultInfo *fi);
80 
81 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
82                               target_ulong address,
83                               MMUAccessType access_type,
84                               GetPhysAddrResult *result,
85                               ARMMMUFaultInfo *fi);
86 
87 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
88 static const uint8_t pamax_map[] = {
89     [0] = 32,
90     [1] = 36,
91     [2] = 40,
92     [3] = 42,
93     [4] = 44,
94     [5] = 48,
95     [6] = 52,
96 };
97 
98 /*
99  * The cpu-specific constant value of PAMax; also used by hw/arm/virt.
100  * Note that machvirt_init calls this on a CPU that is inited but not realized!
101  */
102 unsigned int arm_pamax(ARMCPU *cpu)
103 {
104     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
105         unsigned int parange =
106             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
107 
108         /*
109          * id_aa64mmfr0 is a read-only register so values outside of the
110          * supported mappings can be considered an implementation error.
111          */
112         assert(parange < ARRAY_SIZE(pamax_map));
113         return pamax_map[parange];
114     }
115 
116     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
117         /* v7 or v8 with LPAE */
118         return 40;
119     }
120     /* Anything else */
121     return 32;
122 }
123 
124 /*
125  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
126  */
127 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
128 {
129     switch (mmu_idx) {
130     case ARMMMUIdx_E10_0:
131         return ARMMMUIdx_Stage1_E0;
132     case ARMMMUIdx_E10_1:
133         return ARMMMUIdx_Stage1_E1;
134     case ARMMMUIdx_E10_1_PAN:
135         return ARMMMUIdx_Stage1_E1_PAN;
136     default:
137         return mmu_idx;
138     }
139 }
140 
141 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
142 {
143     return stage_1_mmu_idx(arm_mmu_idx(env));
144 }
145 
146 /*
147  * Return where we should do ptw loads from for a stage 2 walk.
148  * This depends on whether the address we are looking up is a
149  * Secure IPA or a NonSecure IPA, which we know from whether this is
150  * Stage2 or Stage2_S.
151  * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
152  */
153 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
154 {
155     bool s2walk_secure;
156 
157     /*
158      * We're OK to check the current state of the CPU here because
159      * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit
160      * changes.
161      * (2) there's no way to do a lookup that cares about Stage 2 for a
162      * different security state to the current one for AArch64, and AArch32
163      * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
164      * an NS stage 1+2 lookup while the NS bit is 0.)
165      */
166     if (!arm_el_is_aa64(env, 3)) {
167         return ARMMMUIdx_Phys_NS;
168     }
169 
170     switch (arm_security_space_below_el3(env)) {
171     case ARMSS_NonSecure:
172         return ARMMMUIdx_Phys_NS;
173     case ARMSS_Realm:
174         return ARMMMUIdx_Phys_Realm;
175     case ARMSS_Secure:
176         if (stage2idx == ARMMMUIdx_Stage2_S) {
177             s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
178         } else {
179             s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
180         }
181         return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
182     default:
183         g_assert_not_reached();
184     }
185 }
186 
187 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
188 {
189     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
190 }
191 
192 /* Return the TTBR associated with this translation regime */
193 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
194 {
195     if (mmu_idx == ARMMMUIdx_Stage2) {
196         return env->cp15.vttbr_el2;
197     }
198     if (mmu_idx == ARMMMUIdx_Stage2_S) {
199         return env->cp15.vsttbr_el2;
200     }
201     if (ttbrn == 0) {
202         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
203     } else {
204         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
205     }
206 }
207 
208 /* Return true if the specified stage of address translation is disabled */
209 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
210                                         ARMSecuritySpace space)
211 {
212     uint64_t hcr_el2;
213 
214     if (arm_feature(env, ARM_FEATURE_M)) {
215         bool is_secure = arm_space_is_secure(space);
216         switch (env->v7m.mpu_ctrl[is_secure] &
217                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
218         case R_V7M_MPU_CTRL_ENABLE_MASK:
219             /* Enabled, but not for HardFault and NMI */
220             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
221         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
222             /* Enabled for all cases */
223             return false;
224         case 0:
225         default:
226             /*
227              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
228              * we warned about that in armv7m_nvic.c when the guest set it.
229              */
230             return true;
231         }
232     }
233 
234 
235     switch (mmu_idx) {
236     case ARMMMUIdx_Stage2:
237     case ARMMMUIdx_Stage2_S:
238         /* HCR.DC means HCR.VM behaves as 1 */
239         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
240         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
241 
242     case ARMMMUIdx_E10_0:
243     case ARMMMUIdx_E10_1:
244     case ARMMMUIdx_E10_1_PAN:
245         /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
246         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
247         if (hcr_el2 & HCR_TGE) {
248             return true;
249         }
250         break;
251 
252     case ARMMMUIdx_Stage1_E0:
253     case ARMMMUIdx_Stage1_E1:
254     case ARMMMUIdx_Stage1_E1_PAN:
255         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
256         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
257         if (hcr_el2 & HCR_DC) {
258             return true;
259         }
260         break;
261 
262     case ARMMMUIdx_E20_0:
263     case ARMMMUIdx_E20_2:
264     case ARMMMUIdx_E20_2_PAN:
265     case ARMMMUIdx_E2:
266     case ARMMMUIdx_E3:
267         break;
268 
269     case ARMMMUIdx_Phys_S:
270     case ARMMMUIdx_Phys_NS:
271     case ARMMMUIdx_Phys_Root:
272     case ARMMMUIdx_Phys_Realm:
273         /* No translation for physical address spaces. */
274         return true;
275 
276     default:
277         g_assert_not_reached();
278     }
279 
280     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
281 }
282 
283 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
284                                      ARMSecuritySpace pspace,
285                                      ARMMMUFaultInfo *fi)
286 {
287     MemTxAttrs attrs = {
288         .secure = true,
289         .space = ARMSS_Root,
290     };
291     ARMCPU *cpu = env_archcpu(env);
292     uint64_t gpccr = env->cp15.gpccr_el3;
293     unsigned pps, pgs, l0gptsz, level = 0;
294     uint64_t tableaddr, pps_mask, align, entry, index;
295     AddressSpace *as;
296     MemTxResult result;
297     int gpi;
298 
299     if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
300         return true;
301     }
302 
303     /*
304      * GPC Priority 1 (R_GMGRR):
305      * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
306      * the access fails as GPT walk fault at level 0.
307      */
308 
309     /*
310      * Configuration of PPS to a value exceeding the implemented
311      * physical address size is invalid.
312      */
313     pps = FIELD_EX64(gpccr, GPCCR, PPS);
314     if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
315         goto fault_walk;
316     }
317     pps = pamax_map[pps];
318     pps_mask = MAKE_64BIT_MASK(0, pps);
319 
320     switch (FIELD_EX64(gpccr, GPCCR, SH)) {
321     case 0b10: /* outer shareable */
322         break;
323     case 0b00: /* non-shareable */
324     case 0b11: /* inner shareable */
325         /* Inner and Outer non-cacheable requires Outer shareable. */
326         if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
327             FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
328             goto fault_walk;
329         }
330         break;
331     default:   /* reserved */
332         goto fault_walk;
333     }
334 
335     switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
336     case 0b00: /* 4KB */
337         pgs = 12;
338         break;
339     case 0b01: /* 64KB */
340         pgs = 16;
341         break;
342     case 0b10: /* 16KB */
343         pgs = 14;
344         break;
345     default: /* reserved */
346         goto fault_walk;
347     }
348 
349     /* Note this field is read-only and fixed at reset. */
350     l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
351 
352     /*
353      * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
354      * R_CPDSB: A NonSecure physical address input exceeding PPS
355      * does not experience any fault.
356      */
357     if (paddress & ~pps_mask) {
358         if (pspace == ARMSS_NonSecure) {
359             return true;
360         }
361         goto fault_size;
362     }
363 
364     /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
365     tableaddr = env->cp15.gptbr_el3 << 12;
366     if (tableaddr & ~pps_mask) {
367         goto fault_size;
368     }
369 
370     /*
371      * BADDR is aligned per a function of PPS and L0GPTSZ.
372      * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
373      * unlike the RES0 bits of the GPT entries (R_XNKFZ).
374      */
375     align = MAX(pps - l0gptsz + 3, 12);
376     align = MAKE_64BIT_MASK(0, align);
377     tableaddr &= ~align;
378 
379     as = arm_addressspace(env_cpu(env), attrs);
380 
381     /* Level 0 lookup. */
382     index = extract64(paddress, l0gptsz, pps - l0gptsz);
383     tableaddr += index * 8;
384     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
385     if (result != MEMTX_OK) {
386         goto fault_eabt;
387     }
388 
389     switch (extract32(entry, 0, 4)) {
390     case 1: /* block descriptor */
391         if (entry >> 8) {
392             goto fault_walk; /* RES0 bits not 0 */
393         }
394         gpi = extract32(entry, 4, 4);
395         goto found;
396     case 3: /* table descriptor */
397         tableaddr = entry & ~0xf;
398         align = MAX(l0gptsz - pgs - 1, 12);
399         align = MAKE_64BIT_MASK(0, align);
400         if (tableaddr & (~pps_mask | align)) {
401             goto fault_walk; /* RES0 bits not 0 */
402         }
403         break;
404     default: /* invalid */
405         goto fault_walk;
406     }
407 
408     /* Level 1 lookup */
409     level = 1;
410     index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
411     tableaddr += index * 8;
412     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
413     if (result != MEMTX_OK) {
414         goto fault_eabt;
415     }
416 
417     switch (extract32(entry, 0, 4)) {
418     case 1: /* contiguous descriptor */
419         if (entry >> 10) {
420             goto fault_walk; /* RES0 bits not 0 */
421         }
422         /*
423          * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
424          * and because we cannot invalidate by pa, and thus will always
425          * flush entire tlbs, we don't actually care about the range here
426          * and can simply extract the GPI as the result.
427          */
428         if (extract32(entry, 8, 2) == 0) {
429             goto fault_walk; /* reserved contig */
430         }
431         gpi = extract32(entry, 4, 4);
432         break;
433     default:
434         index = extract64(paddress, pgs, 4);
435         gpi = extract64(entry, index * 4, 4);
436         break;
437     }
438 
439  found:
440     switch (gpi) {
441     case 0b0000: /* no access */
442         break;
443     case 0b1111: /* all access */
444         return true;
445     case 0b1000:
446     case 0b1001:
447     case 0b1010:
448     case 0b1011:
449         if (pspace == (gpi & 3)) {
450             return true;
451         }
452         break;
453     default:
454         goto fault_walk; /* reserved */
455     }
456 
457     fi->gpcf = GPCF_Fail;
458     goto fault_common;
459  fault_eabt:
460     fi->gpcf = GPCF_EABT;
461     goto fault_common;
462  fault_size:
463     fi->gpcf = GPCF_AddressSize;
464     goto fault_common;
465  fault_walk:
466     fi->gpcf = GPCF_Walk;
467  fault_common:
468     fi->level = level;
469     fi->paddr = paddress;
470     fi->paddr_space = pspace;
471     return false;
472 }
473 
474 static bool S1_attrs_are_device(uint8_t attrs)
475 {
476     /*
477      * This slightly under-decodes the MAIR_ELx field:
478      * 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE;
479      * 0b0000dd1x is UNPREDICTABLE.
480      */
481     return (attrs & 0xf0) == 0;
482 }
483 
484 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
485 {
486     /*
487      * For an S1 page table walk, the stage 1 attributes are always
488      * some form of "this is Normal memory". The combined S1+S2
489      * attributes are therefore only Device if stage 2 specifies Device.
490      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
491      * ie when cacheattrs.attrs bits [3:2] are 0b00.
492      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
493      * when cacheattrs.attrs bit [2] is 0.
494      */
495     if (hcr & HCR_FWB) {
496         return (attrs & 0x4) == 0;
497     } else {
498         return (attrs & 0xc) == 0;
499     }
500 }
501 
502 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
503                                           ARMMMUIdx s2_mmu_idx)
504 {
505     /*
506      * Return the security space to use for stage 2 when doing
507      * the S1 page table descriptor load.
508      */
509     if (regime_is_stage2(s2_mmu_idx)) {
510         /*
511          * The security space for ptw reads is almost always the same
512          * as that of the security space of the stage 1 translation.
513          * The only exception is when stage 1 is Secure; in that case
514          * the ptw read might be to the Secure or the NonSecure space
515          * (but never Realm or Root), and the s2_mmu_idx tells us which.
516          * Root translations are always single-stage.
517          */
518         if (s1_space == ARMSS_Secure) {
519             return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
520         } else {
521             assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
522             assert(s1_space != ARMSS_Root);
523             return s1_space;
524         }
525     } else {
526         /* ptw loads are from phys: the mmu idx itself says which space */
527         return arm_phys_to_space(s2_mmu_idx);
528     }
529 }
530 
531 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx)
532 {
533     /*
534      * For stage 2 faults in Secure EL22, S1NS indicates
535      * whether the faulting IPA is in the Secure or NonSecure
536      * IPA space. For all other kinds of fault, it is false.
537      */
538     return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx)
539         && s2_mmu_idx == ARMMMUIdx_Stage2_S;
540 }
541 
542 /* Translate a S1 pagetable walk through S2 if needed.  */
543 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
544                              hwaddr addr, ARMMMUFaultInfo *fi)
545 {
546     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
547     ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
548     uint8_t pte_attrs;
549 
550     ptw->out_virt = addr;
551 
552     if (unlikely(ptw->in_debug)) {
553         /*
554          * From gdbstub, do not use softmmu so that we don't modify the
555          * state of the cpu at all, including softmmu tlb contents.
556          */
557         ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
558         S1Translate s2ptw = {
559             .in_mmu_idx = s2_mmu_idx,
560             .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
561             .in_space = s2_space,
562             .in_debug = true,
563         };
564         GetPhysAddrResult s2 = { };
565 
566         if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) {
567             goto fail;
568         }
569 
570         ptw->out_phys = s2.f.phys_addr;
571         pte_attrs = s2.cacheattrs.attrs;
572         ptw->out_host = NULL;
573         ptw->out_rw = false;
574         ptw->out_space = s2.f.attrs.space;
575     } else {
576 #ifdef CONFIG_TCG
577         CPUTLBEntryFull *full;
578         int flags;
579 
580         env->tlb_fi = fi;
581         flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
582                                       arm_to_core_mmu_idx(s2_mmu_idx),
583                                       &ptw->out_host, &full);
584         env->tlb_fi = NULL;
585 
586         if (unlikely(flags & TLB_INVALID_MASK)) {
587             goto fail;
588         }
589         ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
590         ptw->out_rw = full->prot & PAGE_WRITE;
591         pte_attrs = full->extra.arm.pte_attrs;
592         ptw->out_space = full->attrs.space;
593 #else
594         g_assert_not_reached();
595 #endif
596     }
597 
598     if (regime_is_stage2(s2_mmu_idx)) {
599         uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
600 
601         if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
602             /*
603              * PTW set and S1 walk touched S2 Device memory:
604              * generate Permission fault.
605              */
606             fi->type = ARMFault_Permission;
607             fi->s2addr = addr;
608             fi->stage2 = true;
609             fi->s1ptw = true;
610             fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
611             return false;
612         }
613     }
614 
615     ptw->out_be = regime_translation_big_endian(env, mmu_idx);
616     return true;
617 
618  fail:
619     assert(fi->type != ARMFault_None);
620     if (fi->type == ARMFault_GPCFOnOutput) {
621         fi->type = ARMFault_GPCFOnWalk;
622     }
623     fi->s2addr = addr;
624     fi->stage2 = regime_is_stage2(s2_mmu_idx);
625     fi->s1ptw = fi->stage2;
626     fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
627     return false;
628 }
629 
630 /* All loads done in the course of a page table walk go through here. */
631 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
632                             ARMMMUFaultInfo *fi)
633 {
634     CPUState *cs = env_cpu(env);
635     void *host = ptw->out_host;
636     uint32_t data;
637 
638     if (likely(host)) {
639         /* Page tables are in RAM, and we have the host address. */
640         data = qatomic_read((uint32_t *)host);
641         if (ptw->out_be) {
642             data = be32_to_cpu(data);
643         } else {
644             data = le32_to_cpu(data);
645         }
646     } else {
647         /* Page tables are in MMIO. */
648         MemTxAttrs attrs = {
649             .space = ptw->out_space,
650             .secure = arm_space_is_secure(ptw->out_space),
651         };
652         AddressSpace *as = arm_addressspace(cs, attrs);
653         MemTxResult result = MEMTX_OK;
654 
655         if (ptw->out_be) {
656             data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
657         } else {
658             data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
659         }
660         if (unlikely(result != MEMTX_OK)) {
661             fi->type = ARMFault_SyncExternalOnWalk;
662             fi->ea = arm_extabort_type(result);
663             return 0;
664         }
665     }
666     return data;
667 }
668 
669 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
670                             ARMMMUFaultInfo *fi)
671 {
672     CPUState *cs = env_cpu(env);
673     void *host = ptw->out_host;
674     uint64_t data;
675 
676     if (likely(host)) {
677         /* Page tables are in RAM, and we have the host address. */
678 #ifdef CONFIG_ATOMIC64
679         data = qatomic_read__nocheck((uint64_t *)host);
680         if (ptw->out_be) {
681             data = be64_to_cpu(data);
682         } else {
683             data = le64_to_cpu(data);
684         }
685 #else
686         if (ptw->out_be) {
687             data = ldq_be_p(host);
688         } else {
689             data = ldq_le_p(host);
690         }
691 #endif
692     } else {
693         /* Page tables are in MMIO. */
694         MemTxAttrs attrs = {
695             .space = ptw->out_space,
696             .secure = arm_space_is_secure(ptw->out_space),
697         };
698         AddressSpace *as = arm_addressspace(cs, attrs);
699         MemTxResult result = MEMTX_OK;
700 
701         if (ptw->out_be) {
702             data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
703         } else {
704             data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
705         }
706         if (unlikely(result != MEMTX_OK)) {
707             fi->type = ARMFault_SyncExternalOnWalk;
708             fi->ea = arm_extabort_type(result);
709             return 0;
710         }
711     }
712     return data;
713 }
714 
715 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
716                              uint64_t new_val, S1Translate *ptw,
717                              ARMMMUFaultInfo *fi)
718 {
719 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
720     uint64_t cur_val;
721     void *host = ptw->out_host;
722 
723     if (unlikely(!host)) {
724         /* Page table in MMIO Memory Region */
725         CPUState *cs = env_cpu(env);
726         MemTxAttrs attrs = {
727             .space = ptw->out_space,
728             .secure = arm_space_is_secure(ptw->out_space),
729         };
730         AddressSpace *as = arm_addressspace(cs, attrs);
731         MemTxResult result = MEMTX_OK;
732         bool need_lock = !bql_locked();
733 
734         if (need_lock) {
735             bql_lock();
736         }
737         if (ptw->out_be) {
738             cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
739             if (unlikely(result != MEMTX_OK)) {
740                 fi->type = ARMFault_SyncExternalOnWalk;
741                 fi->ea = arm_extabort_type(result);
742                 if (need_lock) {
743                     bql_unlock();
744                 }
745                 return old_val;
746             }
747             if (cur_val == old_val) {
748                 address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result);
749                 if (unlikely(result != MEMTX_OK)) {
750                     fi->type = ARMFault_SyncExternalOnWalk;
751                     fi->ea = arm_extabort_type(result);
752                     if (need_lock) {
753                         bql_unlock();
754                     }
755                     return old_val;
756                 }
757                 cur_val = new_val;
758             }
759         } else {
760             cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
761             if (unlikely(result != MEMTX_OK)) {
762                 fi->type = ARMFault_SyncExternalOnWalk;
763                 fi->ea = arm_extabort_type(result);
764                 if (need_lock) {
765                     bql_unlock();
766                 }
767                 return old_val;
768             }
769             if (cur_val == old_val) {
770                 address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result);
771                 if (unlikely(result != MEMTX_OK)) {
772                     fi->type = ARMFault_SyncExternalOnWalk;
773                     fi->ea = arm_extabort_type(result);
774                     if (need_lock) {
775                         bql_unlock();
776                     }
777                     return old_val;
778                 }
779                 cur_val = new_val;
780             }
781         }
782         if (need_lock) {
783             bql_unlock();
784         }
785         return cur_val;
786     }
787 
788     /*
789      * Raising a stage2 Protection fault for an atomic update to a read-only
790      * page is delayed until it is certain that there is a change to make.
791      */
792     if (unlikely(!ptw->out_rw)) {
793         int flags;
794 
795         env->tlb_fi = fi;
796         flags = probe_access_full_mmu(env, ptw->out_virt, 0,
797                                       MMU_DATA_STORE,
798                                       arm_to_core_mmu_idx(ptw->in_ptw_idx),
799                                       NULL, NULL);
800         env->tlb_fi = NULL;
801 
802         if (unlikely(flags & TLB_INVALID_MASK)) {
803             /*
804              * We know this must be a stage 2 fault because the granule
805              * protection table does not separately track read and write
806              * permission, so all GPC faults are caught in S1_ptw_translate():
807              * we only get here for "readable but not writeable".
808              */
809             assert(fi->type != ARMFault_None);
810             fi->s2addr = ptw->out_virt;
811             fi->stage2 = true;
812             fi->s1ptw = true;
813             fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx);
814             return 0;
815         }
816 
817         /* In case CAS mismatches and we loop, remember writability. */
818         ptw->out_rw = true;
819     }
820 
821 #ifdef CONFIG_ATOMIC64
822     if (ptw->out_be) {
823         old_val = cpu_to_be64(old_val);
824         new_val = cpu_to_be64(new_val);
825         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
826         cur_val = be64_to_cpu(cur_val);
827     } else {
828         old_val = cpu_to_le64(old_val);
829         new_val = cpu_to_le64(new_val);
830         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
831         cur_val = le64_to_cpu(cur_val);
832     }
833 #else
834     /*
835      * We can't support the full 64-bit atomic cmpxchg on the host.
836      * Because this is only used for FEAT_HAFDBS, which is only for AA64,
837      * we know that TCG_OVERSIZED_GUEST is set, which means that we are
838      * running in round-robin mode and could only race with dma i/o.
839      */
840 #if !TCG_OVERSIZED_GUEST
841 # error "Unexpected configuration"
842 #endif
843     bool locked = bql_locked();
844     if (!locked) {
845         bql_lock();
846     }
847     if (ptw->out_be) {
848         cur_val = ldq_be_p(host);
849         if (cur_val == old_val) {
850             stq_be_p(host, new_val);
851         }
852     } else {
853         cur_val = ldq_le_p(host);
854         if (cur_val == old_val) {
855             stq_le_p(host, new_val);
856         }
857     }
858     if (!locked) {
859         bql_unlock();
860     }
861 #endif
862 
863     return cur_val;
864 #else
865     /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
866     g_assert_not_reached();
867 #endif
868 }
869 
870 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
871                                      uint32_t *table, uint32_t address)
872 {
873     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
874     uint64_t tcr = regime_tcr(env, mmu_idx);
875     int maskshift = extract32(tcr, 0, 3);
876     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
877     uint32_t base_mask;
878 
879     if (address & mask) {
880         if (tcr & TTBCR_PD1) {
881             /* Translation table walk disabled for TTBR1 */
882             return false;
883         }
884         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
885     } else {
886         if (tcr & TTBCR_PD0) {
887             /* Translation table walk disabled for TTBR0 */
888             return false;
889         }
890         base_mask = ~((uint32_t)0x3fffu >> maskshift);
891         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
892     }
893     *table |= (address >> 18) & 0x3ffc;
894     return true;
895 }
896 
897 /*
898  * Translate section/page access permissions to page R/W protection flags
899  * @env:         CPUARMState
900  * @mmu_idx:     MMU index indicating required translation regime
901  * @ap:          The 3-bit access permissions (AP[2:0])
902  * @domain_prot: The 2-bit domain access permissions
903  * @is_user: TRUE if accessing from PL0
904  */
905 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
906                          int ap, int domain_prot, bool is_user)
907 {
908     if (domain_prot == 3) {
909         return PAGE_READ | PAGE_WRITE;
910     }
911 
912     switch (ap) {
913     case 0:
914         if (arm_feature(env, ARM_FEATURE_V7)) {
915             return 0;
916         }
917         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
918         case SCTLR_S:
919             return is_user ? 0 : PAGE_READ;
920         case SCTLR_R:
921             return PAGE_READ;
922         default:
923             return 0;
924         }
925     case 1:
926         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
927     case 2:
928         if (is_user) {
929             return PAGE_READ;
930         } else {
931             return PAGE_READ | PAGE_WRITE;
932         }
933     case 3:
934         return PAGE_READ | PAGE_WRITE;
935     case 4: /* Reserved.  */
936         return 0;
937     case 5:
938         return is_user ? 0 : PAGE_READ;
939     case 6:
940         return PAGE_READ;
941     case 7:
942         if (!arm_feature(env, ARM_FEATURE_V6K)) {
943             return 0;
944         }
945         return PAGE_READ;
946     default:
947         g_assert_not_reached();
948     }
949 }
950 
951 /*
952  * Translate section/page access permissions to page R/W protection flags
953  * @env:         CPUARMState
954  * @mmu_idx:     MMU index indicating required translation regime
955  * @ap:          The 3-bit access permissions (AP[2:0])
956  * @domain_prot: The 2-bit domain access permissions
957  */
958 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
959                          int ap, int domain_prot)
960 {
961    return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
962                                 regime_is_user(env, mmu_idx));
963 }
964 
965 /*
966  * Translate section/page access permissions to page R/W protection flags.
967  * @ap:      The 2-bit simple AP (AP[2:1])
968  * @is_user: TRUE if accessing from PL0
969  */
970 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
971 {
972     switch (ap) {
973     case 0:
974         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
975     case 1:
976         return PAGE_READ | PAGE_WRITE;
977     case 2:
978         return is_user ? 0 : PAGE_READ;
979     case 3:
980         return PAGE_READ;
981     default:
982         g_assert_not_reached();
983     }
984 }
985 
986 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
987 {
988     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
989 }
990 
991 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
992                              uint32_t address, MMUAccessType access_type,
993                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
994 {
995     int level = 1;
996     uint32_t table;
997     uint32_t desc;
998     int type;
999     int ap;
1000     int domain = 0;
1001     int domain_prot;
1002     hwaddr phys_addr;
1003     uint32_t dacr;
1004 
1005     /* Pagetable walk.  */
1006     /* Lookup l1 descriptor.  */
1007     if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
1008         /* Section translation fault if page walk is disabled by PD0 or PD1 */
1009         fi->type = ARMFault_Translation;
1010         goto do_fault;
1011     }
1012     if (!S1_ptw_translate(env, ptw, table, fi)) {
1013         goto do_fault;
1014     }
1015     desc = arm_ldl_ptw(env, ptw, fi);
1016     if (fi->type != ARMFault_None) {
1017         goto do_fault;
1018     }
1019     type = (desc & 3);
1020     domain = (desc >> 5) & 0x0f;
1021     if (regime_el(env, ptw->in_mmu_idx) == 1) {
1022         dacr = env->cp15.dacr_ns;
1023     } else {
1024         dacr = env->cp15.dacr_s;
1025     }
1026     domain_prot = (dacr >> (domain * 2)) & 3;
1027     if (type == 0) {
1028         /* Section translation fault.  */
1029         fi->type = ARMFault_Translation;
1030         goto do_fault;
1031     }
1032     if (type != 2) {
1033         level = 2;
1034     }
1035     if (domain_prot == 0 || domain_prot == 2) {
1036         fi->type = ARMFault_Domain;
1037         goto do_fault;
1038     }
1039     if (type == 2) {
1040         /* 1Mb section.  */
1041         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1042         ap = (desc >> 10) & 3;
1043         result->f.lg_page_size = 20; /* 1MB */
1044     } else {
1045         /* Lookup l2 entry.  */
1046         if (type == 1) {
1047             /* Coarse pagetable.  */
1048             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1049         } else {
1050             /* Fine pagetable.  */
1051             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1052         }
1053         if (!S1_ptw_translate(env, ptw, table, fi)) {
1054             goto do_fault;
1055         }
1056         desc = arm_ldl_ptw(env, ptw, fi);
1057         if (fi->type != ARMFault_None) {
1058             goto do_fault;
1059         }
1060         switch (desc & 3) {
1061         case 0: /* Page translation fault.  */
1062             fi->type = ARMFault_Translation;
1063             goto do_fault;
1064         case 1: /* 64k page.  */
1065             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1066             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1067             result->f.lg_page_size = 16;
1068             break;
1069         case 2: /* 4k page.  */
1070             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1071             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
1072             result->f.lg_page_size = 12;
1073             break;
1074         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
1075             if (type == 1) {
1076                 /* ARMv6/XScale extended small page format */
1077                 if (arm_feature(env, ARM_FEATURE_XSCALE)
1078                     || arm_feature(env, ARM_FEATURE_V6)) {
1079                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1080                     result->f.lg_page_size = 12;
1081                 } else {
1082                     /*
1083                      * UNPREDICTABLE in ARMv5; we choose to take a
1084                      * page translation fault.
1085                      */
1086                     fi->type = ARMFault_Translation;
1087                     goto do_fault;
1088                 }
1089             } else {
1090                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1091                 result->f.lg_page_size = 10;
1092             }
1093             ap = (desc >> 4) & 3;
1094             break;
1095         default:
1096             /* Never happens, but compiler isn't smart enough to tell.  */
1097             g_assert_not_reached();
1098         }
1099     }
1100     result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
1101     result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
1102     if (!(result->f.prot & (1 << access_type))) {
1103         /* Access permission fault.  */
1104         fi->type = ARMFault_Permission;
1105         goto do_fault;
1106     }
1107     result->f.phys_addr = phys_addr;
1108     return false;
1109 do_fault:
1110     fi->domain = domain;
1111     fi->level = level;
1112     return true;
1113 }
1114 
1115 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
1116                              uint32_t address, MMUAccessType access_type,
1117                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1118 {
1119     ARMCPU *cpu = env_archcpu(env);
1120     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1121     int level = 1;
1122     uint32_t table;
1123     uint32_t desc;
1124     uint32_t xn;
1125     uint32_t pxn = 0;
1126     int type;
1127     int ap;
1128     int domain = 0;
1129     int domain_prot;
1130     hwaddr phys_addr;
1131     uint32_t dacr;
1132     bool ns;
1133     int user_prot;
1134 
1135     /* Pagetable walk.  */
1136     /* Lookup l1 descriptor.  */
1137     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
1138         /* Section translation fault if page walk is disabled by PD0 or PD1 */
1139         fi->type = ARMFault_Translation;
1140         goto do_fault;
1141     }
1142     if (!S1_ptw_translate(env, ptw, table, fi)) {
1143         goto do_fault;
1144     }
1145     desc = arm_ldl_ptw(env, ptw, fi);
1146     if (fi->type != ARMFault_None) {
1147         goto do_fault;
1148     }
1149     type = (desc & 3);
1150     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
1151         /* Section translation fault, or attempt to use the encoding
1152          * which is Reserved on implementations without PXN.
1153          */
1154         fi->type = ARMFault_Translation;
1155         goto do_fault;
1156     }
1157     if ((type == 1) || !(desc & (1 << 18))) {
1158         /* Page or Section.  */
1159         domain = (desc >> 5) & 0x0f;
1160     }
1161     if (regime_el(env, mmu_idx) == 1) {
1162         dacr = env->cp15.dacr_ns;
1163     } else {
1164         dacr = env->cp15.dacr_s;
1165     }
1166     if (type == 1) {
1167         level = 2;
1168     }
1169     domain_prot = (dacr >> (domain * 2)) & 3;
1170     if (domain_prot == 0 || domain_prot == 2) {
1171         /* Section or Page domain fault */
1172         fi->type = ARMFault_Domain;
1173         goto do_fault;
1174     }
1175     if (type != 1) {
1176         if (desc & (1 << 18)) {
1177             /* Supersection.  */
1178             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1179             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1180             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1181             result->f.lg_page_size = 24;  /* 16MB */
1182         } else {
1183             /* Section.  */
1184             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1185             result->f.lg_page_size = 20;  /* 1MB */
1186         }
1187         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1188         xn = desc & (1 << 4);
1189         pxn = desc & 1;
1190         ns = extract32(desc, 19, 1);
1191     } else {
1192         if (cpu_isar_feature(aa32_pxn, cpu)) {
1193             pxn = (desc >> 2) & 1;
1194         }
1195         ns = extract32(desc, 3, 1);
1196         /* Lookup l2 entry.  */
1197         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1198         if (!S1_ptw_translate(env, ptw, table, fi)) {
1199             goto do_fault;
1200         }
1201         desc = arm_ldl_ptw(env, ptw, fi);
1202         if (fi->type != ARMFault_None) {
1203             goto do_fault;
1204         }
1205         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1206         switch (desc & 3) {
1207         case 0: /* Page translation fault.  */
1208             fi->type = ARMFault_Translation;
1209             goto do_fault;
1210         case 1: /* 64k page.  */
1211             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1212             xn = desc & (1 << 15);
1213             result->f.lg_page_size = 16;
1214             break;
1215         case 2: case 3: /* 4k page.  */
1216             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1217             xn = desc & 1;
1218             result->f.lg_page_size = 12;
1219             break;
1220         default:
1221             /* Never happens, but compiler isn't smart enough to tell.  */
1222             g_assert_not_reached();
1223         }
1224     }
1225     if (domain_prot == 3) {
1226         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1227     } else {
1228         if (pxn && !regime_is_user(env, mmu_idx)) {
1229             xn = 1;
1230         }
1231         if (xn && access_type == MMU_INST_FETCH) {
1232             fi->type = ARMFault_Permission;
1233             goto do_fault;
1234         }
1235 
1236         if (arm_feature(env, ARM_FEATURE_V6K) &&
1237                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1238             /* The simplified model uses AP[0] as an access control bit.  */
1239             if ((ap & 1) == 0) {
1240                 /* Access flag fault.  */
1241                 fi->type = ARMFault_AccessFlag;
1242                 goto do_fault;
1243             }
1244             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1245             user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1246         } else {
1247             result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1248             user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1249         }
1250         if (result->f.prot && !xn) {
1251             result->f.prot |= PAGE_EXEC;
1252         }
1253         if (!(result->f.prot & (1 << access_type))) {
1254             /* Access permission fault.  */
1255             fi->type = ARMFault_Permission;
1256             goto do_fault;
1257         }
1258         if (regime_is_pan(env, mmu_idx) &&
1259             !regime_is_user(env, mmu_idx) &&
1260             user_prot &&
1261             access_type != MMU_INST_FETCH) {
1262             /* Privileged Access Never fault */
1263             fi->type = ARMFault_Permission;
1264             goto do_fault;
1265         }
1266     }
1267     if (ns) {
1268         /* The NS bit will (as required by the architecture) have no effect if
1269          * the CPU doesn't support TZ or this is a non-secure translation
1270          * regime, because the attribute will already be non-secure.
1271          */
1272         result->f.attrs.secure = false;
1273         result->f.attrs.space = ARMSS_NonSecure;
1274     }
1275     result->f.phys_addr = phys_addr;
1276     return false;
1277 do_fault:
1278     fi->domain = domain;
1279     fi->level = level;
1280     return true;
1281 }
1282 
1283 /*
1284  * Translate S2 section/page access permissions to protection flags
1285  * @env:     CPUARMState
1286  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
1287  * @xn:      XN (execute-never) bits
1288  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1289  */
1290 static int get_S2prot_noexecute(int s2ap)
1291 {
1292     int prot = 0;
1293 
1294     if (s2ap & 1) {
1295         prot |= PAGE_READ;
1296     }
1297     if (s2ap & 2) {
1298         prot |= PAGE_WRITE;
1299     }
1300     return prot;
1301 }
1302 
1303 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1304 {
1305     int prot = get_S2prot_noexecute(s2ap);
1306 
1307     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1308         switch (xn) {
1309         case 0:
1310             prot |= PAGE_EXEC;
1311             break;
1312         case 1:
1313             if (s1_is_el0) {
1314                 prot |= PAGE_EXEC;
1315             }
1316             break;
1317         case 2:
1318             break;
1319         case 3:
1320             if (!s1_is_el0) {
1321                 prot |= PAGE_EXEC;
1322             }
1323             break;
1324         default:
1325             g_assert_not_reached();
1326         }
1327     } else {
1328         if (!extract32(xn, 1, 1)) {
1329             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1330                 prot |= PAGE_EXEC;
1331             }
1332         }
1333     }
1334     return prot;
1335 }
1336 
1337 /*
1338  * Translate section/page access permissions to protection flags
1339  * @env:     CPUARMState
1340  * @mmu_idx: MMU index indicating required translation regime
1341  * @is_aa64: TRUE if AArch64
1342  * @ap:      The 2-bit simple AP (AP[2:1])
1343  * @xn:      XN (execute-never) bit
1344  * @pxn:     PXN (privileged execute-never) bit
1345  * @in_pa:   The original input pa space
1346  * @out_pa:  The output pa space, modified by NSTable, NS, and NSE
1347  */
1348 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1349                       int ap, int xn, int pxn,
1350                       ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1351 {
1352     ARMCPU *cpu = env_archcpu(env);
1353     bool is_user = regime_is_user(env, mmu_idx);
1354     int prot_rw, user_rw;
1355     bool have_wxn;
1356     int wxn = 0;
1357 
1358     assert(!regime_is_stage2(mmu_idx));
1359 
1360     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
1361     if (is_user) {
1362         prot_rw = user_rw;
1363     } else {
1364         /*
1365          * PAN controls can forbid data accesses but don't affect insn fetch.
1366          * Plain PAN forbids data accesses if EL0 has data permissions;
1367          * PAN3 forbids data accesses if EL0 has either data or exec perms.
1368          * Note that for AArch64 the 'user can exec' case is exactly !xn.
1369          * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1370          * do not affect EPAN.
1371          */
1372         if (user_rw && regime_is_pan(env, mmu_idx)) {
1373             prot_rw = 0;
1374         } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1375                    regime_is_pan(env, mmu_idx) &&
1376                    (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1377             prot_rw = 0;
1378         } else {
1379             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
1380         }
1381     }
1382 
1383     if (in_pa != out_pa) {
1384         switch (in_pa) {
1385         case ARMSS_Root:
1386             /*
1387              * R_ZWRVD: permission fault for insn fetched from non-Root,
1388              * I_WWBFB: SIF has no effect in EL3.
1389              */
1390             return prot_rw;
1391         case ARMSS_Realm:
1392             /*
1393              * R_PKTDS: permission fault for insn fetched from non-Realm,
1394              * for Realm EL2 or EL2&0.  The corresponding fault for EL1&0
1395              * happens during any stage2 translation.
1396              */
1397             switch (mmu_idx) {
1398             case ARMMMUIdx_E2:
1399             case ARMMMUIdx_E20_0:
1400             case ARMMMUIdx_E20_2:
1401             case ARMMMUIdx_E20_2_PAN:
1402                 return prot_rw;
1403             default:
1404                 break;
1405             }
1406             break;
1407         case ARMSS_Secure:
1408             if (env->cp15.scr_el3 & SCR_SIF) {
1409                 return prot_rw;
1410             }
1411             break;
1412         default:
1413             /* Input NonSecure must have output NonSecure. */
1414             g_assert_not_reached();
1415         }
1416     }
1417 
1418     /* TODO have_wxn should be replaced with
1419      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1420      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1421      * compatible processors have EL2, which is required for [U]WXN.
1422      */
1423     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1424 
1425     if (have_wxn) {
1426         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1427     }
1428 
1429     if (is_aa64) {
1430         if (regime_has_2_ranges(mmu_idx) && !is_user) {
1431             xn = pxn || (user_rw & PAGE_WRITE);
1432         }
1433     } else if (arm_feature(env, ARM_FEATURE_V7)) {
1434         switch (regime_el(env, mmu_idx)) {
1435         case 1:
1436         case 3:
1437             if (is_user) {
1438                 xn = xn || !(user_rw & PAGE_READ);
1439             } else {
1440                 int uwxn = 0;
1441                 if (have_wxn) {
1442                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1443                 }
1444                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1445                      (uwxn && (user_rw & PAGE_WRITE));
1446             }
1447             break;
1448         case 2:
1449             break;
1450         }
1451     } else {
1452         xn = wxn = 0;
1453     }
1454 
1455     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1456         return prot_rw;
1457     }
1458     return prot_rw | PAGE_EXEC;
1459 }
1460 
1461 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1462                                           ARMMMUIdx mmu_idx)
1463 {
1464     uint64_t tcr = regime_tcr(env, mmu_idx);
1465     uint32_t el = regime_el(env, mmu_idx);
1466     int select, tsz;
1467     bool epd, hpd;
1468 
1469     assert(mmu_idx != ARMMMUIdx_Stage2_S);
1470 
1471     if (mmu_idx == ARMMMUIdx_Stage2) {
1472         /* VTCR */
1473         bool sext = extract32(tcr, 4, 1);
1474         bool sign = extract32(tcr, 3, 1);
1475 
1476         /*
1477          * If the sign-extend bit is not the same as t0sz[3], the result
1478          * is unpredictable. Flag this as a guest error.
1479          */
1480         if (sign != sext) {
1481             qemu_log_mask(LOG_GUEST_ERROR,
1482                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1483         }
1484         tsz = sextract32(tcr, 0, 4) + 8;
1485         select = 0;
1486         hpd = false;
1487         epd = false;
1488     } else if (el == 2) {
1489         /* HTCR */
1490         tsz = extract32(tcr, 0, 3);
1491         select = 0;
1492         hpd = extract64(tcr, 24, 1);
1493         epd = false;
1494     } else {
1495         int t0sz = extract32(tcr, 0, 3);
1496         int t1sz = extract32(tcr, 16, 3);
1497 
1498         if (t1sz == 0) {
1499             select = va > (0xffffffffu >> t0sz);
1500         } else {
1501             /* Note that we will detect errors later.  */
1502             select = va >= ~(0xffffffffu >> t1sz);
1503         }
1504         if (!select) {
1505             tsz = t0sz;
1506             epd = extract32(tcr, 7, 1);
1507             hpd = extract64(tcr, 41, 1);
1508         } else {
1509             tsz = t1sz;
1510             epd = extract32(tcr, 23, 1);
1511             hpd = extract64(tcr, 42, 1);
1512         }
1513         /* For aarch32, hpd0 is not enabled without t2e as well.  */
1514         hpd &= extract32(tcr, 6, 1);
1515     }
1516 
1517     return (ARMVAParameters) {
1518         .tsz = tsz,
1519         .select = select,
1520         .epd = epd,
1521         .hpd = hpd,
1522     };
1523 }
1524 
1525 /*
1526  * check_s2_mmu_setup
1527  * @cpu:        ARMCPU
1528  * @is_aa64:    True if the translation regime is in AArch64 state
1529  * @tcr:        VTCR_EL2 or VSTCR_EL2
1530  * @ds:         Effective value of TCR.DS.
1531  * @iasize:     Bitsize of IPAs
1532  * @stride:     Page-table stride (See the ARM ARM)
1533  *
1534  * Decode the starting level of the S2 lookup, returning INT_MIN if
1535  * the configuration is invalid.
1536  */
1537 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1538                               bool ds, int iasize, int stride)
1539 {
1540     int sl0, sl2, startlevel, granulebits, levels;
1541     int s1_min_iasize, s1_max_iasize;
1542 
1543     sl0 = extract32(tcr, 6, 2);
1544     if (is_aa64) {
1545         /*
1546          * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1547          * so interleave AArch64.S2StartLevel.
1548          */
1549         switch (stride) {
1550         case 9: /* 4KB */
1551             /* SL2 is RES0 unless DS=1 & 4KB granule. */
1552             sl2 = extract64(tcr, 33, 1);
1553             if (ds && sl2) {
1554                 if (sl0 != 0) {
1555                     goto fail;
1556                 }
1557                 startlevel = -1;
1558             } else {
1559                 startlevel = 2 - sl0;
1560                 switch (sl0) {
1561                 case 2:
1562                     if (arm_pamax(cpu) < 44) {
1563                         goto fail;
1564                     }
1565                     break;
1566                 case 3:
1567                     if (!cpu_isar_feature(aa64_st, cpu)) {
1568                         goto fail;
1569                     }
1570                     startlevel = 3;
1571                     break;
1572                 }
1573             }
1574             break;
1575         case 11: /* 16KB */
1576             switch (sl0) {
1577             case 2:
1578                 if (arm_pamax(cpu) < 42) {
1579                     goto fail;
1580                 }
1581                 break;
1582             case 3:
1583                 if (!ds) {
1584                     goto fail;
1585                 }
1586                 break;
1587             }
1588             startlevel = 3 - sl0;
1589             break;
1590         case 13: /* 64KB */
1591             switch (sl0) {
1592             case 2:
1593                 if (arm_pamax(cpu) < 44) {
1594                     goto fail;
1595                 }
1596                 break;
1597             case 3:
1598                 goto fail;
1599             }
1600             startlevel = 3 - sl0;
1601             break;
1602         default:
1603             g_assert_not_reached();
1604         }
1605     } else {
1606         /*
1607          * Things are simpler for AArch32 EL2, with only 4k pages.
1608          * There is no separate S2InvalidSL function, but AArch32.S2Walk
1609          * begins with walkparms.sl0 in {'1x'}.
1610          */
1611         assert(stride == 9);
1612         if (sl0 >= 2) {
1613             goto fail;
1614         }
1615         startlevel = 2 - sl0;
1616     }
1617 
1618     /* AArch{64,32}.S2InconsistentSL are functionally equivalent.  */
1619     levels = 3 - startlevel;
1620     granulebits = stride + 3;
1621 
1622     s1_min_iasize = levels * stride + granulebits + 1;
1623     s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1624 
1625     if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1626         return startlevel;
1627     }
1628 
1629  fail:
1630     return INT_MIN;
1631 }
1632 
1633 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
1634                                   ARMGranuleSize gran, int level)
1635 {
1636     /*
1637      * See pseudocode AArch46.BlockDescSupported(): block descriptors
1638      * are not valid at all levels, depending on the page size.
1639      */
1640     switch (gran) {
1641     case Gran4K:
1642         return (level == 0 && ds) || level == 1 || level == 2;
1643     case Gran16K:
1644         return (level == 1 && ds) || level == 2;
1645     case Gran64K:
1646         return (level == 1 && arm_pamax(cpu) == 52) || level == 2;
1647     default:
1648         g_assert_not_reached();
1649     }
1650 }
1651 
1652 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw)
1653 {
1654     uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
1655     return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1);
1656 }
1657 
1658 /**
1659  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1660  *
1661  * Returns false if the translation was successful. Otherwise, phys_ptr,
1662  * attrs, prot and page_size may not be filled in, and the populated fsr
1663  * value provides information on why the translation aborted, in the format
1664  * of a long-format DFSR/IFSR fault register, with the following caveat:
1665  * the WnR bit is never set (the caller must do this).
1666  *
1667  * @env: CPUARMState
1668  * @ptw: Current and next stage parameters for the walk.
1669  * @address: virtual address to get physical address for
1670  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1671  * @result: set on translation success,
1672  * @fi: set to fault info if the translation fails
1673  */
1674 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1675                                uint64_t address,
1676                                MMUAccessType access_type,
1677                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1678 {
1679     ARMCPU *cpu = env_archcpu(env);
1680     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1681     int32_t level;
1682     ARMVAParameters param;
1683     uint64_t ttbr;
1684     hwaddr descaddr, indexmask, indexmask_grainsize;
1685     uint32_t tableattrs;
1686     target_ulong page_size;
1687     uint64_t attrs;
1688     int32_t stride;
1689     int addrsize, inputsize, outputsize;
1690     uint64_t tcr = regime_tcr(env, mmu_idx);
1691     int ap, xn, pxn;
1692     uint32_t el = regime_el(env, mmu_idx);
1693     uint64_t descaddrmask;
1694     bool aarch64 = arm_el_is_aa64(env, el);
1695     uint64_t descriptor, new_descriptor;
1696     ARMSecuritySpace out_space;
1697     bool device;
1698 
1699     /* TODO: This code does not support shareability levels. */
1700     if (aarch64) {
1701         int ps;
1702 
1703         param = aa64_va_parameters(env, address, mmu_idx,
1704                                    access_type != MMU_INST_FETCH,
1705                                    !arm_el_is_aa64(env, 1));
1706         level = 0;
1707 
1708         /*
1709          * If TxSZ is programmed to a value larger than the maximum,
1710          * or smaller than the effective minimum, it is IMPLEMENTATION
1711          * DEFINED whether we behave as if the field were programmed
1712          * within bounds, or if a level 0 Translation fault is generated.
1713          *
1714          * With FEAT_LVA, fault on less than minimum becomes required,
1715          * so our choice is to always raise the fault.
1716          */
1717         if (param.tsz_oob) {
1718             goto do_translation_fault;
1719         }
1720 
1721         addrsize = 64 - 8 * param.tbi;
1722         inputsize = 64 - param.tsz;
1723 
1724         /*
1725          * Bound PS by PARANGE to find the effective output address size.
1726          * ID_AA64MMFR0 is a read-only register so values outside of the
1727          * supported mappings can be considered an implementation error.
1728          */
1729         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1730         ps = MIN(ps, param.ps);
1731         assert(ps < ARRAY_SIZE(pamax_map));
1732         outputsize = pamax_map[ps];
1733 
1734         /*
1735          * With LPA2, the effective output address (OA) size is at most 48 bits
1736          * unless TCR.DS == 1
1737          */
1738         if (!param.ds && param.gran != Gran64K) {
1739             outputsize = MIN(outputsize, 48);
1740         }
1741     } else {
1742         param = aa32_va_parameters(env, address, mmu_idx);
1743         level = 1;
1744         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1745         inputsize = addrsize - param.tsz;
1746         outputsize = 40;
1747     }
1748 
1749     /*
1750      * We determined the region when collecting the parameters, but we
1751      * have not yet validated that the address is valid for the region.
1752      * Extract the top bits and verify that they all match select.
1753      *
1754      * For aa32, if inputsize == addrsize, then we have selected the
1755      * region by exclusion in aa32_va_parameters and there is no more
1756      * validation to do here.
1757      */
1758     if (inputsize < addrsize) {
1759         target_ulong top_bits = sextract64(address, inputsize,
1760                                            addrsize - inputsize);
1761         if (-top_bits != param.select) {
1762             /* The gap between the two regions is a Translation fault */
1763             goto do_translation_fault;
1764         }
1765     }
1766 
1767     stride = arm_granule_bits(param.gran) - 3;
1768 
1769     /*
1770      * Note that QEMU ignores shareability and cacheability attributes,
1771      * so we don't need to do anything with the SH, ORGN, IRGN fields
1772      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1773      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1774      * implement any ASID-like capability so we can ignore it (instead
1775      * we will always flush the TLB any time the ASID is changed).
1776      */
1777     ttbr = regime_ttbr(env, mmu_idx, param.select);
1778 
1779     /*
1780      * Here we should have set up all the parameters for the translation:
1781      * inputsize, ttbr, epd, stride, tbi
1782      */
1783 
1784     if (param.epd) {
1785         /*
1786          * Translation table walk disabled => Translation fault on TLB miss
1787          * Note: This is always 0 on 64-bit EL2 and EL3.
1788          */
1789         goto do_translation_fault;
1790     }
1791 
1792     if (!regime_is_stage2(mmu_idx)) {
1793         /*
1794          * The starting level depends on the virtual address size (which can
1795          * be up to 48 bits) and the translation granule size. It indicates
1796          * the number of strides (stride bits at a time) needed to
1797          * consume the bits of the input address. In the pseudocode this is:
1798          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1799          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1800          * our 'stride + 3' and 'stride' is our 'stride'.
1801          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1802          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1803          * = 4 - (inputsize - 4) / stride;
1804          */
1805         level = 4 - (inputsize - 4) / stride;
1806     } else {
1807         int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1808                                             inputsize, stride);
1809         if (startlevel == INT_MIN) {
1810             level = 0;
1811             goto do_translation_fault;
1812         }
1813         level = startlevel;
1814     }
1815 
1816     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1817     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1818 
1819     /* Now we can extract the actual base address from the TTBR */
1820     descaddr = extract64(ttbr, 0, 48);
1821 
1822     /*
1823      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1824      *
1825      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1826      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1827      * but we've just cleared the bits above 47, so simplify the test.
1828      */
1829     if (outputsize > 48) {
1830         descaddr |= extract64(ttbr, 2, 4) << 48;
1831     } else if (descaddr >> outputsize) {
1832         level = 0;
1833         fi->type = ARMFault_AddressSize;
1834         goto do_fault;
1835     }
1836 
1837     /*
1838      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1839      * and also to mask out CnP (bit 0) which could validly be non-zero.
1840      */
1841     descaddr &= ~indexmask;
1842 
1843     /*
1844      * For AArch32, the address field in the descriptor goes up to bit 39
1845      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1846      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1847      * bits as part of the address, which will be checked via outputsize.
1848      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1849      * the highest bits of a 52-bit output are placed elsewhere.
1850      */
1851     if (param.ds) {
1852         descaddrmask = MAKE_64BIT_MASK(0, 50);
1853     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1854         descaddrmask = MAKE_64BIT_MASK(0, 48);
1855     } else {
1856         descaddrmask = MAKE_64BIT_MASK(0, 40);
1857     }
1858     descaddrmask &= ~indexmask_grainsize;
1859     tableattrs = 0;
1860 
1861  next_level:
1862     descaddr |= (address >> (stride * (4 - level))) & indexmask;
1863     descaddr &= ~7ULL;
1864 
1865     /*
1866      * Process the NSTable bit from the previous level.  This changes
1867      * the table address space and the output space from Secure to
1868      * NonSecure.  With RME, the EL3 translation regime does not change
1869      * from Root to NonSecure.
1870      */
1871     if (ptw->in_space == ARMSS_Secure
1872         && !regime_is_stage2(mmu_idx)
1873         && extract32(tableattrs, 4, 1)) {
1874         /*
1875          * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1876          * Assert the relative order of the secure/non-secure indexes.
1877          */
1878         QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1879         QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1880         ptw->in_ptw_idx += 1;
1881         ptw->in_space = ARMSS_NonSecure;
1882     }
1883 
1884     if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1885         goto do_fault;
1886     }
1887     descriptor = arm_ldq_ptw(env, ptw, fi);
1888     if (fi->type != ARMFault_None) {
1889         goto do_fault;
1890     }
1891     new_descriptor = descriptor;
1892 
1893  restart_atomic_update:
1894     if (!(descriptor & 1) ||
1895         (!(descriptor & 2) &&
1896          !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) {
1897         /* Invalid, or a block descriptor at an invalid level */
1898         goto do_translation_fault;
1899     }
1900 
1901     descaddr = descriptor & descaddrmask;
1902 
1903     /*
1904      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1905      * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1906      * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1907      * raise AddressSizeFault.
1908      */
1909     if (outputsize > 48) {
1910         if (param.ds) {
1911             descaddr |= extract64(descriptor, 8, 2) << 50;
1912         } else {
1913             descaddr |= extract64(descriptor, 12, 4) << 48;
1914         }
1915     } else if (descaddr >> outputsize) {
1916         fi->type = ARMFault_AddressSize;
1917         goto do_fault;
1918     }
1919 
1920     if ((descriptor & 2) && (level < 3)) {
1921         /*
1922          * Table entry. The top five bits are attributes which may
1923          * propagate down through lower levels of the table (and
1924          * which are all arranged so that 0 means "no effect", so
1925          * we can gather them up by ORing in the bits at each level).
1926          */
1927         tableattrs |= extract64(descriptor, 59, 5);
1928         level++;
1929         indexmask = indexmask_grainsize;
1930         goto next_level;
1931     }
1932 
1933     /*
1934      * Block entry at level 1 or 2, or page entry at level 3.
1935      * These are basically the same thing, although the number
1936      * of bits we pull in from the vaddr varies. Note that although
1937      * descaddrmask masks enough of the low bits of the descriptor
1938      * to give a correct page or table address, the address field
1939      * in a block descriptor is smaller; so we need to explicitly
1940      * clear the lower bits here before ORing in the low vaddr bits.
1941      *
1942      * Afterward, descaddr is the final physical address.
1943      */
1944     page_size = (1ULL << ((stride * (4 - level)) + 3));
1945     descaddr &= ~(hwaddr)(page_size - 1);
1946     descaddr |= (address & (page_size - 1));
1947 
1948     if (likely(!ptw->in_debug)) {
1949         /*
1950          * Access flag.
1951          * If HA is enabled, prepare to update the descriptor below.
1952          * Otherwise, pass the access fault on to software.
1953          */
1954         if (!(descriptor & (1 << 10))) {
1955             if (param.ha) {
1956                 new_descriptor |= 1 << 10; /* AF */
1957             } else {
1958                 fi->type = ARMFault_AccessFlag;
1959                 goto do_fault;
1960             }
1961         }
1962 
1963         /*
1964          * Dirty Bit.
1965          * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1966          * bit for writeback. The actual write protection test may still be
1967          * overridden by tableattrs, to be merged below.
1968          */
1969         if (param.hd
1970             && extract64(descriptor, 51, 1)  /* DBM */
1971             && access_type == MMU_DATA_STORE) {
1972             if (regime_is_stage2(mmu_idx)) {
1973                 new_descriptor |= 1ull << 7;    /* set S2AP[1] */
1974             } else {
1975                 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1976             }
1977         }
1978     }
1979 
1980     /*
1981      * Extract attributes from the (modified) descriptor, and apply
1982      * table descriptors. Stage 2 table descriptors do not include
1983      * any attribute fields. HPD disables all the table attributes
1984      * except NSTable (which we have already handled).
1985      */
1986     attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1987     if (!regime_is_stage2(mmu_idx)) {
1988         if (!param.hpd) {
1989             attrs |= extract64(tableattrs, 0, 2) << 53;     /* XN, PXN */
1990             /*
1991              * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1992              * means "force PL1 access only", which means forcing AP[1] to 0.
1993              */
1994             attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1995             attrs |= extract32(tableattrs, 3, 1) << 7;    /* APT[1] => AP[2] */
1996         }
1997     }
1998 
1999     ap = extract32(attrs, 6, 2);
2000     out_space = ptw->in_space;
2001     if (regime_is_stage2(mmu_idx)) {
2002         /*
2003          * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
2004          * The bit remains ignored for other security states.
2005          * R_YMCSL: Executing an insn fetched from non-Realm causes
2006          * a stage2 permission fault.
2007          */
2008         if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
2009             out_space = ARMSS_NonSecure;
2010             result->f.prot = get_S2prot_noexecute(ap);
2011         } else {
2012             xn = extract64(attrs, 53, 2);
2013             result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
2014         }
2015     } else {
2016         int nse, ns = extract32(attrs, 5, 1);
2017         switch (out_space) {
2018         case ARMSS_Root:
2019             /*
2020              * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
2021              * R_XTYPW: NSE and NS together select the output pa space.
2022              */
2023             nse = extract32(attrs, 11, 1);
2024             out_space = (nse << 1) | ns;
2025             if (out_space == ARMSS_Secure &&
2026                 !cpu_isar_feature(aa64_sel2, cpu)) {
2027                 out_space = ARMSS_NonSecure;
2028             }
2029             break;
2030         case ARMSS_Secure:
2031             if (ns) {
2032                 out_space = ARMSS_NonSecure;
2033             }
2034             break;
2035         case ARMSS_Realm:
2036             switch (mmu_idx) {
2037             case ARMMMUIdx_Stage1_E0:
2038             case ARMMMUIdx_Stage1_E1:
2039             case ARMMMUIdx_Stage1_E1_PAN:
2040                 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
2041                 break;
2042             case ARMMMUIdx_E2:
2043             case ARMMMUIdx_E20_0:
2044             case ARMMMUIdx_E20_2:
2045             case ARMMMUIdx_E20_2_PAN:
2046                 /*
2047                  * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
2048                  * NS changes the output to non-secure space.
2049                  */
2050                 if (ns) {
2051                     out_space = ARMSS_NonSecure;
2052                 }
2053                 break;
2054             default:
2055                 g_assert_not_reached();
2056             }
2057             break;
2058         case ARMSS_NonSecure:
2059             /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
2060             break;
2061         default:
2062             g_assert_not_reached();
2063         }
2064         xn = extract64(attrs, 54, 1);
2065         pxn = extract64(attrs, 53, 1);
2066 
2067         if (el == 1 && nv_nv1_enabled(env, ptw)) {
2068             /*
2069              * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page
2070              * descriptor bit 54 holds PXN, 53 is RES0, and the effective value
2071              * of UXN is 0. Similarly for bits 59 and 60 in table descriptors
2072              * (which we have already folded into bits 53 and 54 of attrs).
2073              * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0.
2074              * Similarly, APTable[0] from the table descriptor is treated as 0;
2075              * we already folded this into AP[1] and squashing that to 0 does
2076              * the right thing.
2077              */
2078             pxn = xn;
2079             xn = 0;
2080             ap &= ~1;
2081         }
2082         /*
2083          * Note that we modified ptw->in_space earlier for NSTable, but
2084          * result->f.attrs retains a copy of the original security space.
2085          */
2086         result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn,
2087                                     result->f.attrs.space, out_space);
2088     }
2089 
2090     if (!(result->f.prot & (1 << access_type))) {
2091         fi->type = ARMFault_Permission;
2092         goto do_fault;
2093     }
2094 
2095     /* If FEAT_HAFDBS has made changes, update the PTE. */
2096     if (new_descriptor != descriptor) {
2097         new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
2098         if (fi->type != ARMFault_None) {
2099             goto do_fault;
2100         }
2101         /*
2102          * I_YZSVV says that if the in-memory descriptor has changed,
2103          * then we must use the information in that new value
2104          * (which might include a different output address, different
2105          * attributes, or generate a fault).
2106          * Restart the handling of the descriptor value from scratch.
2107          */
2108         if (new_descriptor != descriptor) {
2109             descriptor = new_descriptor;
2110             goto restart_atomic_update;
2111         }
2112     }
2113 
2114     result->f.attrs.space = out_space;
2115     result->f.attrs.secure = arm_space_is_secure(out_space);
2116 
2117     if (regime_is_stage2(mmu_idx)) {
2118         result->cacheattrs.is_s2_format = true;
2119         result->cacheattrs.attrs = extract32(attrs, 2, 4);
2120         /*
2121          * Security state does not really affect HCR_EL2.FWB;
2122          * we only need to filter FWB for aa32 or other FEAT.
2123          */
2124         device = S2_attrs_are_device(arm_hcr_el2_eff(env),
2125                                      result->cacheattrs.attrs);
2126     } else {
2127         /* Index into MAIR registers for cache attributes */
2128         uint8_t attrindx = extract32(attrs, 2, 3);
2129         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2130         assert(attrindx <= 7);
2131         result->cacheattrs.is_s2_format = false;
2132         result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2133 
2134         /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
2135         if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
2136             result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */
2137         }
2138         device = S1_attrs_are_device(result->cacheattrs.attrs);
2139     }
2140 
2141     /*
2142      * Enable alignment checks on Device memory.
2143      *
2144      * Per R_XCHFJ, this check is mis-ordered. The correct ordering
2145      * for alignment, permission, and stage 2 faults should be:
2146      *    - Alignment fault caused by the memory type
2147      *    - Permission fault
2148      *    - A stage 2 fault on the memory access
2149      * but due to the way the TCG softmmu TLB operates, we will have
2150      * implicitly done the permission check and the stage2 lookup in
2151      * finding the TLB entry, so the alignment check cannot be done sooner.
2152      *
2153      * In v7, for a CPU without the Virtualization Extensions this
2154      * access is UNPREDICTABLE; we choose to make it take the alignment
2155      * fault as is required for a v7VE CPU. (QEMU doesn't emulate any
2156      * CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.)
2157      */
2158     if (device) {
2159         result->f.tlb_fill_flags |= TLB_CHECK_ALIGNED;
2160     }
2161 
2162     /*
2163      * For FEAT_LPA2 and effective DS, the SH field in the attributes
2164      * was re-purposed for output address bits.  The SH attribute in
2165      * that case comes from TCR_ELx, which we extracted earlier.
2166      */
2167     if (param.ds) {
2168         result->cacheattrs.shareability = param.sh;
2169     } else {
2170         result->cacheattrs.shareability = extract32(attrs, 8, 2);
2171     }
2172 
2173     result->f.phys_addr = descaddr;
2174     result->f.lg_page_size = ctz64(page_size);
2175     return false;
2176 
2177  do_translation_fault:
2178     fi->type = ARMFault_Translation;
2179  do_fault:
2180     if (fi->s1ptw) {
2181         /* Retain the existing stage 2 fi->level */
2182         assert(fi->stage2);
2183     } else {
2184         fi->level = level;
2185         fi->stage2 = regime_is_stage2(mmu_idx);
2186     }
2187     fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx);
2188     return true;
2189 }
2190 
2191 static bool get_phys_addr_pmsav5(CPUARMState *env,
2192                                  S1Translate *ptw,
2193                                  uint32_t address,
2194                                  MMUAccessType access_type,
2195                                  GetPhysAddrResult *result,
2196                                  ARMMMUFaultInfo *fi)
2197 {
2198     int n;
2199     uint32_t mask;
2200     uint32_t base;
2201     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2202     bool is_user = regime_is_user(env, mmu_idx);
2203 
2204     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
2205         /* MPU disabled.  */
2206         result->f.phys_addr = address;
2207         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2208         return false;
2209     }
2210 
2211     result->f.phys_addr = address;
2212     for (n = 7; n >= 0; n--) {
2213         base = env->cp15.c6_region[n];
2214         if ((base & 1) == 0) {
2215             continue;
2216         }
2217         mask = 1 << ((base >> 1) & 0x1f);
2218         /* Keep this shift separate from the above to avoid an
2219            (undefined) << 32.  */
2220         mask = (mask << 1) - 1;
2221         if (((base ^ address) & ~mask) == 0) {
2222             break;
2223         }
2224     }
2225     if (n < 0) {
2226         fi->type = ARMFault_Background;
2227         return true;
2228     }
2229 
2230     if (access_type == MMU_INST_FETCH) {
2231         mask = env->cp15.pmsav5_insn_ap;
2232     } else {
2233         mask = env->cp15.pmsav5_data_ap;
2234     }
2235     mask = (mask >> (n * 4)) & 0xf;
2236     switch (mask) {
2237     case 0:
2238         fi->type = ARMFault_Permission;
2239         fi->level = 1;
2240         return true;
2241     case 1:
2242         if (is_user) {
2243             fi->type = ARMFault_Permission;
2244             fi->level = 1;
2245             return true;
2246         }
2247         result->f.prot = PAGE_READ | PAGE_WRITE;
2248         break;
2249     case 2:
2250         result->f.prot = PAGE_READ;
2251         if (!is_user) {
2252             result->f.prot |= PAGE_WRITE;
2253         }
2254         break;
2255     case 3:
2256         result->f.prot = PAGE_READ | PAGE_WRITE;
2257         break;
2258     case 5:
2259         if (is_user) {
2260             fi->type = ARMFault_Permission;
2261             fi->level = 1;
2262             return true;
2263         }
2264         result->f.prot = PAGE_READ;
2265         break;
2266     case 6:
2267         result->f.prot = PAGE_READ;
2268         break;
2269     default:
2270         /* Bad permission.  */
2271         fi->type = ARMFault_Permission;
2272         fi->level = 1;
2273         return true;
2274     }
2275     result->f.prot |= PAGE_EXEC;
2276     return false;
2277 }
2278 
2279 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2280                                          int32_t address, uint8_t *prot)
2281 {
2282     if (!arm_feature(env, ARM_FEATURE_M)) {
2283         *prot = PAGE_READ | PAGE_WRITE;
2284         switch (address) {
2285         case 0xF0000000 ... 0xFFFFFFFF:
2286             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2287                 /* hivecs execing is ok */
2288                 *prot |= PAGE_EXEC;
2289             }
2290             break;
2291         case 0x00000000 ... 0x7FFFFFFF:
2292             *prot |= PAGE_EXEC;
2293             break;
2294         }
2295     } else {
2296         /* Default system address map for M profile cores.
2297          * The architecture specifies which regions are execute-never;
2298          * at the MPU level no other checks are defined.
2299          */
2300         switch (address) {
2301         case 0x00000000 ... 0x1fffffff: /* ROM */
2302         case 0x20000000 ... 0x3fffffff: /* SRAM */
2303         case 0x60000000 ... 0x7fffffff: /* RAM */
2304         case 0x80000000 ... 0x9fffffff: /* RAM */
2305             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2306             break;
2307         case 0x40000000 ... 0x5fffffff: /* Peripheral */
2308         case 0xa0000000 ... 0xbfffffff: /* Device */
2309         case 0xc0000000 ... 0xdfffffff: /* Device */
2310         case 0xe0000000 ... 0xffffffff: /* System */
2311             *prot = PAGE_READ | PAGE_WRITE;
2312             break;
2313         default:
2314             g_assert_not_reached();
2315         }
2316     }
2317 }
2318 
2319 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2320 {
2321     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2322     return arm_feature(env, ARM_FEATURE_M) &&
2323         extract32(address, 20, 12) == 0xe00;
2324 }
2325 
2326 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2327 {
2328     /*
2329      * True if address is in the M profile system region
2330      * 0xe0000000 - 0xffffffff
2331      */
2332     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2333 }
2334 
2335 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2336                                          bool is_secure, bool is_user)
2337 {
2338     /*
2339      * Return true if we should use the default memory map as a
2340      * "background" region if there are no hits against any MPU regions.
2341      */
2342     CPUARMState *env = &cpu->env;
2343 
2344     if (is_user) {
2345         return false;
2346     }
2347 
2348     if (arm_feature(env, ARM_FEATURE_M)) {
2349         return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2350     }
2351 
2352     if (mmu_idx == ARMMMUIdx_Stage2) {
2353         return false;
2354     }
2355 
2356     return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2357 }
2358 
2359 static bool get_phys_addr_pmsav7(CPUARMState *env,
2360                                  S1Translate *ptw,
2361                                  uint32_t address,
2362                                  MMUAccessType access_type,
2363                                  GetPhysAddrResult *result,
2364                                  ARMMMUFaultInfo *fi)
2365 {
2366     ARMCPU *cpu = env_archcpu(env);
2367     int n;
2368     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2369     bool is_user = regime_is_user(env, mmu_idx);
2370     bool secure = arm_space_is_secure(ptw->in_space);
2371 
2372     result->f.phys_addr = address;
2373     result->f.lg_page_size = TARGET_PAGE_BITS;
2374     result->f.prot = 0;
2375 
2376     if (regime_translation_disabled(env, mmu_idx, ptw->in_space) ||
2377         m_is_ppb_region(env, address)) {
2378         /*
2379          * MPU disabled or M profile PPB access: use default memory map.
2380          * The other case which uses the default memory map in the
2381          * v7M ARM ARM pseudocode is exception vector reads from the vector
2382          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2383          * which always does a direct read using address_space_ldl(), rather
2384          * than going via this function, so we don't need to check that here.
2385          */
2386         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2387     } else { /* MPU enabled */
2388         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2389             /* region search */
2390             uint32_t base = env->pmsav7.drbar[n];
2391             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2392             uint32_t rmask;
2393             bool srdis = false;
2394 
2395             if (!(env->pmsav7.drsr[n] & 0x1)) {
2396                 continue;
2397             }
2398 
2399             if (!rsize) {
2400                 qemu_log_mask(LOG_GUEST_ERROR,
2401                               "DRSR[%d]: Rsize field cannot be 0\n", n);
2402                 continue;
2403             }
2404             rsize++;
2405             rmask = (1ull << rsize) - 1;
2406 
2407             if (base & rmask) {
2408                 qemu_log_mask(LOG_GUEST_ERROR,
2409                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2410                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
2411                               n, base, rmask);
2412                 continue;
2413             }
2414 
2415             if (address < base || address > base + rmask) {
2416                 /*
2417                  * Address not in this region. We must check whether the
2418                  * region covers addresses in the same page as our address.
2419                  * In that case we must not report a size that covers the
2420                  * whole page for a subsequent hit against a different MPU
2421                  * region or the background region, because it would result in
2422                  * incorrect TLB hits for subsequent accesses to addresses that
2423                  * are in this MPU region.
2424                  */
2425                 if (ranges_overlap(base, rmask,
2426                                    address & TARGET_PAGE_MASK,
2427                                    TARGET_PAGE_SIZE)) {
2428                     result->f.lg_page_size = 0;
2429                 }
2430                 continue;
2431             }
2432 
2433             /* Region matched */
2434 
2435             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2436                 int i, snd;
2437                 uint32_t srdis_mask;
2438 
2439                 rsize -= 3; /* sub region size (power of 2) */
2440                 snd = ((address - base) >> rsize) & 0x7;
2441                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2442 
2443                 srdis_mask = srdis ? 0x3 : 0x0;
2444                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2445                     /*
2446                      * This will check in groups of 2, 4 and then 8, whether
2447                      * the subregion bits are consistent. rsize is incremented
2448                      * back up to give the region size, considering consistent
2449                      * adjacent subregions as one region. Stop testing if rsize
2450                      * is already big enough for an entire QEMU page.
2451                      */
2452                     int snd_rounded = snd & ~(i - 1);
2453                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2454                                                      snd_rounded + 8, i);
2455                     if (srdis_mask ^ srdis_multi) {
2456                         break;
2457                     }
2458                     srdis_mask = (srdis_mask << i) | srdis_mask;
2459                     rsize++;
2460                 }
2461             }
2462             if (srdis) {
2463                 continue;
2464             }
2465             if (rsize < TARGET_PAGE_BITS) {
2466                 result->f.lg_page_size = rsize;
2467             }
2468             break;
2469         }
2470 
2471         if (n == -1) { /* no hits */
2472             if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2473                 /* background fault */
2474                 fi->type = ARMFault_Background;
2475                 return true;
2476             }
2477             get_phys_addr_pmsav7_default(env, mmu_idx, address,
2478                                          &result->f.prot);
2479         } else { /* a MPU hit! */
2480             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2481             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2482 
2483             if (m_is_system_region(env, address)) {
2484                 /* System space is always execute never */
2485                 xn = 1;
2486             }
2487 
2488             if (is_user) { /* User mode AP bit decoding */
2489                 switch (ap) {
2490                 case 0:
2491                 case 1:
2492                 case 5:
2493                     break; /* no access */
2494                 case 3:
2495                     result->f.prot |= PAGE_WRITE;
2496                     /* fall through */
2497                 case 2:
2498                 case 6:
2499                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2500                     break;
2501                 case 7:
2502                     /* for v7M, same as 6; for R profile a reserved value */
2503                     if (arm_feature(env, ARM_FEATURE_M)) {
2504                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2505                         break;
2506                     }
2507                     /* fall through */
2508                 default:
2509                     qemu_log_mask(LOG_GUEST_ERROR,
2510                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2511                                   PRIx32 "\n", n, ap);
2512                 }
2513             } else { /* Priv. mode AP bits decoding */
2514                 switch (ap) {
2515                 case 0:
2516                     break; /* no access */
2517                 case 1:
2518                 case 2:
2519                 case 3:
2520                     result->f.prot |= PAGE_WRITE;
2521                     /* fall through */
2522                 case 5:
2523                 case 6:
2524                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2525                     break;
2526                 case 7:
2527                     /* for v7M, same as 6; for R profile a reserved value */
2528                     if (arm_feature(env, ARM_FEATURE_M)) {
2529                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2530                         break;
2531                     }
2532                     /* fall through */
2533                 default:
2534                     qemu_log_mask(LOG_GUEST_ERROR,
2535                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2536                                   PRIx32 "\n", n, ap);
2537                 }
2538             }
2539 
2540             /* execute never */
2541             if (xn) {
2542                 result->f.prot &= ~PAGE_EXEC;
2543             }
2544         }
2545     }
2546 
2547     fi->type = ARMFault_Permission;
2548     fi->level = 1;
2549     return !(result->f.prot & (1 << access_type));
2550 }
2551 
2552 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2553                              uint32_t secure)
2554 {
2555     if (regime_el(env, mmu_idx) == 2) {
2556         return env->pmsav8.hprbar;
2557     } else {
2558         return env->pmsav8.rbar[secure];
2559     }
2560 }
2561 
2562 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2563                              uint32_t secure)
2564 {
2565     if (regime_el(env, mmu_idx) == 2) {
2566         return env->pmsav8.hprlar;
2567     } else {
2568         return env->pmsav8.rlar[secure];
2569     }
2570 }
2571 
2572 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2573                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
2574                        bool secure, GetPhysAddrResult *result,
2575                        ARMMMUFaultInfo *fi, uint32_t *mregion)
2576 {
2577     /*
2578      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2579      * that a full phys-to-virt translation does).
2580      * mregion is (if not NULL) set to the region number which matched,
2581      * or -1 if no region number is returned (MPU off, address did not
2582      * hit a region, address hit in multiple regions).
2583      * If the region hit doesn't cover the entire TARGET_PAGE the address
2584      * is within, then we set the result page_size to 1 to force the
2585      * memory system to use a subpage.
2586      */
2587     ARMCPU *cpu = env_archcpu(env);
2588     bool is_user = regime_is_user(env, mmu_idx);
2589     int n;
2590     int matchregion = -1;
2591     bool hit = false;
2592     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2593     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2594     int region_counter;
2595 
2596     if (regime_el(env, mmu_idx) == 2) {
2597         region_counter = cpu->pmsav8r_hdregion;
2598     } else {
2599         region_counter = cpu->pmsav7_dregion;
2600     }
2601 
2602     result->f.lg_page_size = TARGET_PAGE_BITS;
2603     result->f.phys_addr = address;
2604     result->f.prot = 0;
2605     if (mregion) {
2606         *mregion = -1;
2607     }
2608 
2609     if (mmu_idx == ARMMMUIdx_Stage2) {
2610         fi->stage2 = true;
2611     }
2612 
2613     /*
2614      * Unlike the ARM ARM pseudocode, we don't need to check whether this
2615      * was an exception vector read from the vector table (which is always
2616      * done using the default system address map), because those accesses
2617      * are done in arm_v7m_load_vector(), which always does a direct
2618      * read using address_space_ldl(), rather than going via this function.
2619      */
2620     if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) {
2621         /* MPU disabled */
2622         hit = true;
2623     } else if (m_is_ppb_region(env, address)) {
2624         hit = true;
2625     } else {
2626         if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2627             hit = true;
2628         }
2629 
2630         uint32_t bitmask;
2631         if (arm_feature(env, ARM_FEATURE_M)) {
2632             bitmask = 0x1f;
2633         } else {
2634             bitmask = 0x3f;
2635             fi->level = 0;
2636         }
2637 
2638         for (n = region_counter - 1; n >= 0; n--) {
2639             /* region search */
2640             /*
2641              * Note that the base address is bits [31:x] from the register
2642              * with bits [x-1:0] all zeroes, but the limit address is bits
2643              * [31:x] from the register with bits [x:0] all ones. Where x is
2644              * 5 for Cortex-M and 6 for Cortex-R
2645              */
2646             uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2647             uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2648 
2649             if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2650                 /* Region disabled */
2651                 continue;
2652             }
2653 
2654             if (address < base || address > limit) {
2655                 /*
2656                  * Address not in this region. We must check whether the
2657                  * region covers addresses in the same page as our address.
2658                  * In that case we must not report a size that covers the
2659                  * whole page for a subsequent hit against a different MPU
2660                  * region or the background region, because it would result in
2661                  * incorrect TLB hits for subsequent accesses to addresses that
2662                  * are in this MPU region.
2663                  */
2664                 if (limit >= base &&
2665                     ranges_overlap(base, limit - base + 1,
2666                                    addr_page_base,
2667                                    TARGET_PAGE_SIZE)) {
2668                     result->f.lg_page_size = 0;
2669                 }
2670                 continue;
2671             }
2672 
2673             if (base > addr_page_base || limit < addr_page_limit) {
2674                 result->f.lg_page_size = 0;
2675             }
2676 
2677             if (matchregion != -1) {
2678                 /*
2679                  * Multiple regions match -- always a failure (unlike
2680                  * PMSAv7 where highest-numbered-region wins)
2681                  */
2682                 fi->type = ARMFault_Permission;
2683                 if (arm_feature(env, ARM_FEATURE_M)) {
2684                     fi->level = 1;
2685                 }
2686                 return true;
2687             }
2688 
2689             matchregion = n;
2690             hit = true;
2691         }
2692     }
2693 
2694     if (!hit) {
2695         if (arm_feature(env, ARM_FEATURE_M)) {
2696             fi->type = ARMFault_Background;
2697         } else {
2698             fi->type = ARMFault_Permission;
2699         }
2700         return true;
2701     }
2702 
2703     if (matchregion == -1) {
2704         /* hit using the background region */
2705         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2706     } else {
2707         uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2708         uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2709         uint32_t ap = extract32(matched_rbar, 1, 2);
2710         uint32_t xn = extract32(matched_rbar, 0, 1);
2711         bool pxn = false;
2712 
2713         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2714             pxn = extract32(matched_rlar, 4, 1);
2715         }
2716 
2717         if (m_is_system_region(env, address)) {
2718             /* System space is always execute never */
2719             xn = 1;
2720         }
2721 
2722         if (regime_el(env, mmu_idx) == 2) {
2723             result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2724                                             mmu_idx != ARMMMUIdx_E2);
2725         } else {
2726             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2727         }
2728 
2729         if (!arm_feature(env, ARM_FEATURE_M)) {
2730             uint8_t attrindx = extract32(matched_rlar, 1, 3);
2731             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2732             uint8_t sh = extract32(matched_rlar, 3, 2);
2733 
2734             if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2735                 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2736                 xn = 0x1;
2737             }
2738 
2739             if ((regime_el(env, mmu_idx) == 1) &&
2740                 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2741                 pxn = 0x1;
2742             }
2743 
2744             result->cacheattrs.is_s2_format = false;
2745             result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2746             result->cacheattrs.shareability = sh;
2747         }
2748 
2749         if (result->f.prot && !xn && !(pxn && !is_user)) {
2750             result->f.prot |= PAGE_EXEC;
2751         }
2752 
2753         if (mregion) {
2754             *mregion = matchregion;
2755         }
2756     }
2757 
2758     fi->type = ARMFault_Permission;
2759     if (arm_feature(env, ARM_FEATURE_M)) {
2760         fi->level = 1;
2761     }
2762     return !(result->f.prot & (1 << access_type));
2763 }
2764 
2765 static bool v8m_is_sau_exempt(CPUARMState *env,
2766                               uint32_t address, MMUAccessType access_type)
2767 {
2768     /*
2769      * The architecture specifies that certain address ranges are
2770      * exempt from v8M SAU/IDAU checks.
2771      */
2772     return
2773         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2774         (address >= 0xe0000000 && address <= 0xe0002fff) ||
2775         (address >= 0xe000e000 && address <= 0xe000efff) ||
2776         (address >= 0xe002e000 && address <= 0xe002efff) ||
2777         (address >= 0xe0040000 && address <= 0xe0041fff) ||
2778         (address >= 0xe00ff000 && address <= 0xe00fffff);
2779 }
2780 
2781 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2782                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
2783                          bool is_secure, V8M_SAttributes *sattrs)
2784 {
2785     /*
2786      * Look up the security attributes for this address. Compare the
2787      * pseudocode SecurityCheck() function.
2788      * We assume the caller has zero-initialized *sattrs.
2789      */
2790     ARMCPU *cpu = env_archcpu(env);
2791     int r;
2792     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2793     int idau_region = IREGION_NOTVALID;
2794     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2795     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2796 
2797     if (cpu->idau) {
2798         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2799         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2800 
2801         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2802                    &idau_nsc);
2803     }
2804 
2805     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2806         /* 0xf0000000..0xffffffff is always S for insn fetches */
2807         return;
2808     }
2809 
2810     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2811         sattrs->ns = !is_secure;
2812         return;
2813     }
2814 
2815     if (idau_region != IREGION_NOTVALID) {
2816         sattrs->irvalid = true;
2817         sattrs->iregion = idau_region;
2818     }
2819 
2820     switch (env->sau.ctrl & 3) {
2821     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2822         break;
2823     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2824         sattrs->ns = true;
2825         break;
2826     default: /* SAU.ENABLE == 1 */
2827         for (r = 0; r < cpu->sau_sregion; r++) {
2828             if (env->sau.rlar[r] & 1) {
2829                 uint32_t base = env->sau.rbar[r] & ~0x1f;
2830                 uint32_t limit = env->sau.rlar[r] | 0x1f;
2831 
2832                 if (base <= address && limit >= address) {
2833                     if (base > addr_page_base || limit < addr_page_limit) {
2834                         sattrs->subpage = true;
2835                     }
2836                     if (sattrs->srvalid) {
2837                         /*
2838                          * If we hit in more than one region then we must report
2839                          * as Secure, not NS-Callable, with no valid region
2840                          * number info.
2841                          */
2842                         sattrs->ns = false;
2843                         sattrs->nsc = false;
2844                         sattrs->sregion = 0;
2845                         sattrs->srvalid = false;
2846                         break;
2847                     } else {
2848                         if (env->sau.rlar[r] & 2) {
2849                             sattrs->nsc = true;
2850                         } else {
2851                             sattrs->ns = true;
2852                         }
2853                         sattrs->srvalid = true;
2854                         sattrs->sregion = r;
2855                     }
2856                 } else {
2857                     /*
2858                      * Address not in this region. We must check whether the
2859                      * region covers addresses in the same page as our address.
2860                      * In that case we must not report a size that covers the
2861                      * whole page for a subsequent hit against a different MPU
2862                      * region or the background region, because it would result
2863                      * in incorrect TLB hits for subsequent accesses to
2864                      * addresses that are in this MPU region.
2865                      */
2866                     if (limit >= base &&
2867                         ranges_overlap(base, limit - base + 1,
2868                                        addr_page_base,
2869                                        TARGET_PAGE_SIZE)) {
2870                         sattrs->subpage = true;
2871                     }
2872                 }
2873             }
2874         }
2875         break;
2876     }
2877 
2878     /*
2879      * The IDAU will override the SAU lookup results if it specifies
2880      * higher security than the SAU does.
2881      */
2882     if (!idau_ns) {
2883         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2884             sattrs->ns = false;
2885             sattrs->nsc = idau_nsc;
2886         }
2887     }
2888 }
2889 
2890 static bool get_phys_addr_pmsav8(CPUARMState *env,
2891                                  S1Translate *ptw,
2892                                  uint32_t address,
2893                                  MMUAccessType access_type,
2894                                  GetPhysAddrResult *result,
2895                                  ARMMMUFaultInfo *fi)
2896 {
2897     V8M_SAttributes sattrs = {};
2898     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2899     bool secure = arm_space_is_secure(ptw->in_space);
2900     bool ret;
2901 
2902     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2903         v8m_security_lookup(env, address, access_type, mmu_idx,
2904                             secure, &sattrs);
2905         if (access_type == MMU_INST_FETCH) {
2906             /*
2907              * Instruction fetches always use the MMU bank and the
2908              * transaction attribute determined by the fetch address,
2909              * regardless of CPU state. This is painful for QEMU
2910              * to handle, because it would mean we need to encode
2911              * into the mmu_idx not just the (user, negpri) information
2912              * for the current security state but also that for the
2913              * other security state, which would balloon the number
2914              * of mmu_idx values needed alarmingly.
2915              * Fortunately we can avoid this because it's not actually
2916              * possible to arbitrarily execute code from memory with
2917              * the wrong security attribute: it will always generate
2918              * an exception of some kind or another, apart from the
2919              * special case of an NS CPU executing an SG instruction
2920              * in S&NSC memory. So we always just fail the translation
2921              * here and sort things out in the exception handler
2922              * (including possibly emulating an SG instruction).
2923              */
2924             if (sattrs.ns != !secure) {
2925                 if (sattrs.nsc) {
2926                     fi->type = ARMFault_QEMU_NSCExec;
2927                 } else {
2928                     fi->type = ARMFault_QEMU_SFault;
2929                 }
2930                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2931                 result->f.phys_addr = address;
2932                 result->f.prot = 0;
2933                 return true;
2934             }
2935         } else {
2936             /*
2937              * For data accesses we always use the MMU bank indicated
2938              * by the current CPU state, but the security attributes
2939              * might downgrade a secure access to nonsecure.
2940              */
2941             if (sattrs.ns) {
2942                 result->f.attrs.secure = false;
2943                 result->f.attrs.space = ARMSS_NonSecure;
2944             } else if (!secure) {
2945                 /*
2946                  * NS access to S memory must fault.
2947                  * Architecturally we should first check whether the
2948                  * MPU information for this address indicates that we
2949                  * are doing an unaligned access to Device memory, which
2950                  * should generate a UsageFault instead. QEMU does not
2951                  * currently check for that kind of unaligned access though.
2952                  * If we added it we would need to do so as a special case
2953                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2954                  */
2955                 fi->type = ARMFault_QEMU_SFault;
2956                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2957                 result->f.phys_addr = address;
2958                 result->f.prot = 0;
2959                 return true;
2960             }
2961         }
2962     }
2963 
2964     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2965                             result, fi, NULL);
2966     if (sattrs.subpage) {
2967         result->f.lg_page_size = 0;
2968     }
2969     return ret;
2970 }
2971 
2972 /*
2973  * Translate from the 4-bit stage 2 representation of
2974  * memory attributes (without cache-allocation hints) to
2975  * the 8-bit representation of the stage 1 MAIR registers
2976  * (which includes allocation hints).
2977  *
2978  * ref: shared/translation/attrs/S2AttrDecode()
2979  *      .../S2ConvertAttrsHints()
2980  */
2981 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2982 {
2983     uint8_t hiattr = extract32(s2attrs, 2, 2);
2984     uint8_t loattr = extract32(s2attrs, 0, 2);
2985     uint8_t hihint = 0, lohint = 0;
2986 
2987     if (hiattr != 0) { /* normal memory */
2988         if (hcr & HCR_CD) { /* cache disabled */
2989             hiattr = loattr = 1; /* non-cacheable */
2990         } else {
2991             if (hiattr != 1) { /* Write-through or write-back */
2992                 hihint = 3; /* RW allocate */
2993             }
2994             if (loattr != 1) { /* Write-through or write-back */
2995                 lohint = 3; /* RW allocate */
2996             }
2997         }
2998     }
2999 
3000     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
3001 }
3002 
3003 /*
3004  * Combine either inner or outer cacheability attributes for normal
3005  * memory, according to table D4-42 and pseudocode procedure
3006  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
3007  *
3008  * NB: only stage 1 includes allocation hints (RW bits), leading to
3009  * some asymmetry.
3010  */
3011 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
3012 {
3013     if (s1 == 4 || s2 == 4) {
3014         /* non-cacheable has precedence */
3015         return 4;
3016     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
3017         /* stage 1 write-through takes precedence */
3018         return s1;
3019     } else if (extract32(s2, 2, 2) == 2) {
3020         /* stage 2 write-through takes precedence, but the allocation hint
3021          * is still taken from stage 1
3022          */
3023         return (2 << 2) | extract32(s1, 0, 2);
3024     } else { /* write-back */
3025         return s1;
3026     }
3027 }
3028 
3029 /*
3030  * Combine the memory type and cacheability attributes of
3031  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
3032  * combined attributes in MAIR_EL1 format.
3033  */
3034 static uint8_t combined_attrs_nofwb(uint64_t hcr,
3035                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
3036 {
3037     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
3038 
3039     if (s2.is_s2_format) {
3040         s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
3041     } else {
3042         s2_mair_attrs = s2.attrs;
3043     }
3044 
3045     s1lo = extract32(s1.attrs, 0, 4);
3046     s2lo = extract32(s2_mair_attrs, 0, 4);
3047     s1hi = extract32(s1.attrs, 4, 4);
3048     s2hi = extract32(s2_mair_attrs, 4, 4);
3049 
3050     /* Combine memory type and cacheability attributes */
3051     if (s1hi == 0 || s2hi == 0) {
3052         /* Device has precedence over normal */
3053         if (s1lo == 0 || s2lo == 0) {
3054             /* nGnRnE has precedence over anything */
3055             ret_attrs = 0;
3056         } else if (s1lo == 4 || s2lo == 4) {
3057             /* non-Reordering has precedence over Reordering */
3058             ret_attrs = 4;  /* nGnRE */
3059         } else if (s1lo == 8 || s2lo == 8) {
3060             /* non-Gathering has precedence over Gathering */
3061             ret_attrs = 8;  /* nGRE */
3062         } else {
3063             ret_attrs = 0xc; /* GRE */
3064         }
3065     } else { /* Normal memory */
3066         /* Outer/inner cacheability combine independently */
3067         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
3068                   | combine_cacheattr_nibble(s1lo, s2lo);
3069     }
3070     return ret_attrs;
3071 }
3072 
3073 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
3074 {
3075     /*
3076      * Given the 4 bits specifying the outer or inner cacheability
3077      * in MAIR format, return a value specifying Normal Write-Back,
3078      * with the allocation and transient hints taken from the input
3079      * if the input specified some kind of cacheable attribute.
3080      */
3081     if (attr == 0 || attr == 4) {
3082         /*
3083          * 0 == an UNPREDICTABLE encoding
3084          * 4 == Non-cacheable
3085          * Either way, force Write-Back RW allocate non-transient
3086          */
3087         return 0xf;
3088     }
3089     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
3090     return attr | 4;
3091 }
3092 
3093 /*
3094  * Combine the memory type and cacheability attributes of
3095  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
3096  * combined attributes in MAIR_EL1 format.
3097  */
3098 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
3099 {
3100     assert(s2.is_s2_format && !s1.is_s2_format);
3101 
3102     switch (s2.attrs) {
3103     case 7:
3104         /* Use stage 1 attributes */
3105         return s1.attrs;
3106     case 6:
3107         /*
3108          * Force Normal Write-Back. Note that if S1 is Normal cacheable
3109          * then we take the allocation hints from it; otherwise it is
3110          * RW allocate, non-transient.
3111          */
3112         if ((s1.attrs & 0xf0) == 0) {
3113             /* S1 is Device */
3114             return 0xff;
3115         }
3116         /* Need to check the Inner and Outer nibbles separately */
3117         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
3118             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
3119     case 5:
3120         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
3121         if ((s1.attrs & 0xf0) == 0) {
3122             return s1.attrs;
3123         }
3124         return 0x44;
3125     case 0 ... 3:
3126         /* Force Device, of subtype specified by S2 */
3127         return s2.attrs << 2;
3128     default:
3129         /*
3130          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
3131          * arbitrarily force Device.
3132          */
3133         return 0;
3134     }
3135 }
3136 
3137 /*
3138  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
3139  * and CombineS1S2Desc()
3140  *
3141  * @env:     CPUARMState
3142  * @s1:      Attributes from stage 1 walk
3143  * @s2:      Attributes from stage 2 walk
3144  */
3145 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
3146                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
3147 {
3148     ARMCacheAttrs ret;
3149     bool tagged = false;
3150 
3151     assert(!s1.is_s2_format);
3152     ret.is_s2_format = false;
3153 
3154     if (s1.attrs == 0xf0) {
3155         tagged = true;
3156         s1.attrs = 0xff;
3157     }
3158 
3159     /* Combine shareability attributes (table D4-43) */
3160     if (s1.shareability == 2 || s2.shareability == 2) {
3161         /* if either are outer-shareable, the result is outer-shareable */
3162         ret.shareability = 2;
3163     } else if (s1.shareability == 3 || s2.shareability == 3) {
3164         /* if either are inner-shareable, the result is inner-shareable */
3165         ret.shareability = 3;
3166     } else {
3167         /* both non-shareable */
3168         ret.shareability = 0;
3169     }
3170 
3171     /* Combine memory type and cacheability attributes */
3172     if (hcr & HCR_FWB) {
3173         ret.attrs = combined_attrs_fwb(s1, s2);
3174     } else {
3175         ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
3176     }
3177 
3178     /*
3179      * Any location for which the resultant memory type is any
3180      * type of Device memory is always treated as Outer Shareable.
3181      * Any location for which the resultant memory type is Normal
3182      * Inner Non-cacheable, Outer Non-cacheable is always treated
3183      * as Outer Shareable.
3184      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
3185      */
3186     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
3187         ret.shareability = 2;
3188     }
3189 
3190     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
3191     if (tagged && ret.attrs == 0xff) {
3192         ret.attrs = 0xf0;
3193     }
3194 
3195     return ret;
3196 }
3197 
3198 /*
3199  * MMU disabled.  S1 addresses within aa64 translation regimes are
3200  * still checked for bounds -- see AArch64.S1DisabledOutput().
3201  */
3202 static bool get_phys_addr_disabled(CPUARMState *env,
3203                                    S1Translate *ptw,
3204                                    target_ulong address,
3205                                    MMUAccessType access_type,
3206                                    GetPhysAddrResult *result,
3207                                    ARMMMUFaultInfo *fi)
3208 {
3209     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3210     uint8_t memattr = 0x00;    /* Device nGnRnE */
3211     uint8_t shareability = 0;  /* non-shareable */
3212     int r_el;
3213 
3214     switch (mmu_idx) {
3215     case ARMMMUIdx_Stage2:
3216     case ARMMMUIdx_Stage2_S:
3217     case ARMMMUIdx_Phys_S:
3218     case ARMMMUIdx_Phys_NS:
3219     case ARMMMUIdx_Phys_Root:
3220     case ARMMMUIdx_Phys_Realm:
3221         break;
3222 
3223     default:
3224         r_el = regime_el(env, mmu_idx);
3225         if (arm_el_is_aa64(env, r_el)) {
3226             int pamax = arm_pamax(env_archcpu(env));
3227             uint64_t tcr = env->cp15.tcr_el[r_el];
3228             int addrtop, tbi;
3229 
3230             tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
3231             if (access_type == MMU_INST_FETCH) {
3232                 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
3233             }
3234             tbi = (tbi >> extract64(address, 55, 1)) & 1;
3235             addrtop = (tbi ? 55 : 63);
3236 
3237             if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
3238                 fi->type = ARMFault_AddressSize;
3239                 fi->level = 0;
3240                 fi->stage2 = false;
3241                 return 1;
3242             }
3243 
3244             /*
3245              * When TBI is disabled, we've just validated that all of the
3246              * bits above PAMax are zero, so logically we only need to
3247              * clear the top byte for TBI.  But it's clearer to follow
3248              * the pseudocode set of addrdesc.paddress.
3249              */
3250             address = extract64(address, 0, 52);
3251         }
3252 
3253         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3254         if (r_el == 1) {
3255             uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
3256             if (hcr & HCR_DC) {
3257                 if (hcr & HCR_DCT) {
3258                     memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
3259                 } else {
3260                     memattr = 0xff;  /* Normal, WB, RWA */
3261                 }
3262             }
3263         }
3264         if (memattr == 0) {
3265             if (access_type == MMU_INST_FETCH) {
3266                 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3267                     memattr = 0xee;  /* Normal, WT, RA, NT */
3268                 } else {
3269                     memattr = 0x44;  /* Normal, NC, No */
3270                 }
3271             }
3272             shareability = 2; /* outer shareable */
3273         }
3274         result->cacheattrs.is_s2_format = false;
3275         break;
3276     }
3277 
3278     result->f.phys_addr = address;
3279     result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3280     result->f.lg_page_size = TARGET_PAGE_BITS;
3281     result->cacheattrs.shareability = shareability;
3282     result->cacheattrs.attrs = memattr;
3283     return false;
3284 }
3285 
3286 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3287                                    target_ulong address,
3288                                    MMUAccessType access_type,
3289                                    GetPhysAddrResult *result,
3290                                    ARMMMUFaultInfo *fi)
3291 {
3292     hwaddr ipa;
3293     int s1_prot, s1_lgpgsz;
3294     ARMSecuritySpace in_space = ptw->in_space;
3295     bool ret, ipa_secure, s1_guarded;
3296     ARMCacheAttrs cacheattrs1;
3297     ARMSecuritySpace ipa_space;
3298     uint64_t hcr;
3299 
3300     ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi);
3301 
3302     /* If S1 fails, return early.  */
3303     if (ret) {
3304         return ret;
3305     }
3306 
3307     ipa = result->f.phys_addr;
3308     ipa_secure = result->f.attrs.secure;
3309     ipa_space = result->f.attrs.space;
3310 
3311     ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3312     ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3313     ptw->in_space = ipa_space;
3314     ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3315 
3316     /*
3317      * S1 is done, now do S2 translation.
3318      * Save the stage1 results so that we may merge prot and cacheattrs later.
3319      */
3320     s1_prot = result->f.prot;
3321     s1_lgpgsz = result->f.lg_page_size;
3322     s1_guarded = result->f.extra.arm.guarded;
3323     cacheattrs1 = result->cacheattrs;
3324     memset(result, 0, sizeof(*result));
3325 
3326     ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi);
3327     fi->s2addr = ipa;
3328 
3329     /* Combine the S1 and S2 perms.  */
3330     result->f.prot &= s1_prot;
3331 
3332     /* If S2 fails, return early.  */
3333     if (ret) {
3334         return ret;
3335     }
3336 
3337     /*
3338      * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3339      * this means "don't put this in the TLB"; in this case, return a
3340      * result with lg_page_size == 0 to achieve that. Otherwise,
3341      * use the maximum of the S1 & S2 page size, so that invalidation
3342      * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3343      * we know the combined result permissions etc only cover the minimum
3344      * of the S1 and S2 page size, because we know that the common TLB code
3345      * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3346      * and passing a larger page size value only affects invalidations.)
3347      */
3348     if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3349         s1_lgpgsz < TARGET_PAGE_BITS) {
3350         result->f.lg_page_size = 0;
3351     } else if (result->f.lg_page_size < s1_lgpgsz) {
3352         result->f.lg_page_size = s1_lgpgsz;
3353     }
3354 
3355     /* Combine the S1 and S2 cache attributes. */
3356     hcr = arm_hcr_el2_eff_secstate(env, in_space);
3357     if (hcr & HCR_DC) {
3358         /*
3359          * HCR.DC forces the first stage attributes to
3360          *  Normal Non-Shareable,
3361          *  Inner Write-Back Read-Allocate Write-Allocate,
3362          *  Outer Write-Back Read-Allocate Write-Allocate.
3363          * Do not overwrite Tagged within attrs.
3364          */
3365         if (cacheattrs1.attrs != 0xf0) {
3366             cacheattrs1.attrs = 0xff;
3367         }
3368         cacheattrs1.shareability = 0;
3369     }
3370     result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3371                                             result->cacheattrs);
3372 
3373     /* No BTI GP information in stage 2, we just use the S1 value */
3374     result->f.extra.arm.guarded = s1_guarded;
3375 
3376     /*
3377      * Check if IPA translates to secure or non-secure PA space.
3378      * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3379      */
3380     if (in_space == ARMSS_Secure) {
3381         result->f.attrs.secure =
3382             !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3383             && (ipa_secure
3384                 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
3385         result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
3386     }
3387 
3388     return false;
3389 }
3390 
3391 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3392                                       target_ulong address,
3393                                       MMUAccessType access_type,
3394                                       GetPhysAddrResult *result,
3395                                       ARMMMUFaultInfo *fi)
3396 {
3397     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3398     ARMMMUIdx s1_mmu_idx;
3399 
3400     /*
3401      * The page table entries may downgrade Secure to NonSecure, but
3402      * cannot upgrade a NonSecure translation regime's attributes
3403      * to Secure or Realm.
3404      */
3405     result->f.attrs.space = ptw->in_space;
3406     result->f.attrs.secure = arm_space_is_secure(ptw->in_space);
3407 
3408     switch (mmu_idx) {
3409     case ARMMMUIdx_Phys_S:
3410     case ARMMMUIdx_Phys_NS:
3411     case ARMMMUIdx_Phys_Root:
3412     case ARMMMUIdx_Phys_Realm:
3413         /* Checking Phys early avoids special casing later vs regime_el. */
3414         return get_phys_addr_disabled(env, ptw, address, access_type,
3415                                       result, fi);
3416 
3417     case ARMMMUIdx_Stage1_E0:
3418     case ARMMMUIdx_Stage1_E1:
3419     case ARMMMUIdx_Stage1_E1_PAN:
3420         /*
3421          * First stage lookup uses second stage for ptw; only
3422          * Secure has both S and NS IPA and starts with Stage2_S.
3423          */
3424         ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ?
3425             ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3426         break;
3427 
3428     case ARMMMUIdx_Stage2:
3429     case ARMMMUIdx_Stage2_S:
3430         /*
3431          * Second stage lookup uses physical for ptw; whether this is S or
3432          * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3433          * the Secure EL2&0 regime.
3434          */
3435         ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3436         break;
3437 
3438     case ARMMMUIdx_E10_0:
3439         s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3440         goto do_twostage;
3441     case ARMMMUIdx_E10_1:
3442         s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3443         goto do_twostage;
3444     case ARMMMUIdx_E10_1_PAN:
3445         s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3446     do_twostage:
3447         /*
3448          * Call ourselves recursively to do the stage 1 and then stage 2
3449          * translations if mmu_idx is a two-stage regime, and EL2 present.
3450          * Otherwise, a stage1+stage2 translation is just stage 1.
3451          */
3452         ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3453         if (arm_feature(env, ARM_FEATURE_EL2) &&
3454             !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) {
3455             return get_phys_addr_twostage(env, ptw, address, access_type,
3456                                           result, fi);
3457         }
3458         /* fall through */
3459 
3460     default:
3461         /* Single stage uses physical for ptw. */
3462         ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3463         break;
3464     }
3465 
3466     result->f.attrs.user = regime_is_user(env, mmu_idx);
3467 
3468     /*
3469      * Fast Context Switch Extension. This doesn't exist at all in v8.
3470      * In v7 and earlier it affects all stage 1 translations.
3471      */
3472     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3473         && !arm_feature(env, ARM_FEATURE_V8)) {
3474         if (regime_el(env, mmu_idx) == 3) {
3475             address += env->cp15.fcseidr_s;
3476         } else {
3477             address += env->cp15.fcseidr_ns;
3478         }
3479     }
3480 
3481     if (arm_feature(env, ARM_FEATURE_PMSA)) {
3482         bool ret;
3483         result->f.lg_page_size = TARGET_PAGE_BITS;
3484 
3485         if (arm_feature(env, ARM_FEATURE_V8)) {
3486             /* PMSAv8 */
3487             ret = get_phys_addr_pmsav8(env, ptw, address, access_type,
3488                                        result, fi);
3489         } else if (arm_feature(env, ARM_FEATURE_V7)) {
3490             /* PMSAv7 */
3491             ret = get_phys_addr_pmsav7(env, ptw, address, access_type,
3492                                        result, fi);
3493         } else {
3494             /* Pre-v7 MPU */
3495             ret = get_phys_addr_pmsav5(env, ptw, address, access_type,
3496                                        result, fi);
3497         }
3498         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3499                       " mmu_idx %u -> %s (prot %c%c%c)\n",
3500                       access_type == MMU_DATA_LOAD ? "reading" :
3501                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3502                       (uint32_t)address, mmu_idx,
3503                       ret ? "Miss" : "Hit",
3504                       result->f.prot & PAGE_READ ? 'r' : '-',
3505                       result->f.prot & PAGE_WRITE ? 'w' : '-',
3506                       result->f.prot & PAGE_EXEC ? 'x' : '-');
3507 
3508         return ret;
3509     }
3510 
3511     /* Definitely a real MMU, not an MPU */
3512 
3513     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
3514         return get_phys_addr_disabled(env, ptw, address, access_type,
3515                                       result, fi);
3516     }
3517 
3518     if (regime_using_lpae_format(env, mmu_idx)) {
3519         return get_phys_addr_lpae(env, ptw, address, access_type, result, fi);
3520     } else if (arm_feature(env, ARM_FEATURE_V7) ||
3521                regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3522         return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3523     } else {
3524         return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3525     }
3526 }
3527 
3528 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3529                               target_ulong address,
3530                               MMUAccessType access_type,
3531                               GetPhysAddrResult *result,
3532                               ARMMMUFaultInfo *fi)
3533 {
3534     if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) {
3535         return true;
3536     }
3537     if (!granule_protection_check(env, result->f.phys_addr,
3538                                   result->f.attrs.space, fi)) {
3539         fi->type = ARMFault_GPCFOnOutput;
3540         return true;
3541     }
3542     return false;
3543 }
3544 
3545 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
3546                                     MMUAccessType access_type,
3547                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
3548                                     GetPhysAddrResult *result,
3549                                     ARMMMUFaultInfo *fi)
3550 {
3551     S1Translate ptw = {
3552         .in_mmu_idx = mmu_idx,
3553         .in_space = space,
3554     };
3555     return get_phys_addr_nogpc(env, &ptw, address, access_type, result, fi);
3556 }
3557 
3558 bool get_phys_addr(CPUARMState *env, target_ulong address,
3559                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
3560                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3561 {
3562     S1Translate ptw = {
3563         .in_mmu_idx = mmu_idx,
3564     };
3565     ARMSecuritySpace ss;
3566 
3567     switch (mmu_idx) {
3568     case ARMMMUIdx_E10_0:
3569     case ARMMMUIdx_E10_1:
3570     case ARMMMUIdx_E10_1_PAN:
3571     case ARMMMUIdx_E20_0:
3572     case ARMMMUIdx_E20_2:
3573     case ARMMMUIdx_E20_2_PAN:
3574     case ARMMMUIdx_Stage1_E0:
3575     case ARMMMUIdx_Stage1_E1:
3576     case ARMMMUIdx_Stage1_E1_PAN:
3577     case ARMMMUIdx_E2:
3578         ss = arm_security_space_below_el3(env);
3579         break;
3580     case ARMMMUIdx_Stage2:
3581         /*
3582          * For Secure EL2, we need this index to be NonSecure;
3583          * otherwise this will already be NonSecure or Realm.
3584          */
3585         ss = arm_security_space_below_el3(env);
3586         if (ss == ARMSS_Secure) {
3587             ss = ARMSS_NonSecure;
3588         }
3589         break;
3590     case ARMMMUIdx_Phys_NS:
3591     case ARMMMUIdx_MPrivNegPri:
3592     case ARMMMUIdx_MUserNegPri:
3593     case ARMMMUIdx_MPriv:
3594     case ARMMMUIdx_MUser:
3595         ss = ARMSS_NonSecure;
3596         break;
3597     case ARMMMUIdx_Stage2_S:
3598     case ARMMMUIdx_Phys_S:
3599     case ARMMMUIdx_MSPrivNegPri:
3600     case ARMMMUIdx_MSUserNegPri:
3601     case ARMMMUIdx_MSPriv:
3602     case ARMMMUIdx_MSUser:
3603         ss = ARMSS_Secure;
3604         break;
3605     case ARMMMUIdx_E3:
3606         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3607             cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3608             ss = ARMSS_Root;
3609         } else {
3610             ss = ARMSS_Secure;
3611         }
3612         break;
3613     case ARMMMUIdx_Phys_Root:
3614         ss = ARMSS_Root;
3615         break;
3616     case ARMMMUIdx_Phys_Realm:
3617         ss = ARMSS_Realm;
3618         break;
3619     default:
3620         g_assert_not_reached();
3621     }
3622 
3623     ptw.in_space = ss;
3624     return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi);
3625 }
3626 
3627 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3628                                          MemTxAttrs *attrs)
3629 {
3630     ARMCPU *cpu = ARM_CPU(cs);
3631     CPUARMState *env = &cpu->env;
3632     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3633     ARMSecuritySpace ss = arm_security_space(env);
3634     S1Translate ptw = {
3635         .in_mmu_idx = mmu_idx,
3636         .in_space = ss,
3637         .in_debug = true,
3638     };
3639     GetPhysAddrResult res = {};
3640     ARMMMUFaultInfo fi = {};
3641     bool ret;
3642 
3643     ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3644     *attrs = res.f.attrs;
3645 
3646     if (ret) {
3647         return -1;
3648     }
3649     return res.f.phys_addr;
3650 }
3651