1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "qemu/main-loop.h" 13 #include "exec/exec-all.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "idau.h" 17 18 19 typedef struct S1Translate { 20 ARMMMUIdx in_mmu_idx; 21 ARMMMUIdx in_ptw_idx; 22 bool in_secure; 23 bool in_debug; 24 bool out_secure; 25 bool out_rw; 26 bool out_be; 27 hwaddr out_virt; 28 hwaddr out_phys; 29 void *out_host; 30 } S1Translate; 31 32 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 33 uint64_t address, 34 MMUAccessType access_type, bool s1_is_el0, 35 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 36 __attribute__((nonnull)); 37 38 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw, 39 target_ulong address, 40 MMUAccessType access_type, 41 GetPhysAddrResult *result, 42 ARMMMUFaultInfo *fi) 43 __attribute__((nonnull)); 44 45 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 46 static const uint8_t pamax_map[] = { 47 [0] = 32, 48 [1] = 36, 49 [2] = 40, 50 [3] = 42, 51 [4] = 44, 52 [5] = 48, 53 [6] = 52, 54 }; 55 56 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 57 unsigned int arm_pamax(ARMCPU *cpu) 58 { 59 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 60 unsigned int parange = 61 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 62 63 /* 64 * id_aa64mmfr0 is a read-only register so values outside of the 65 * supported mappings can be considered an implementation error. 66 */ 67 assert(parange < ARRAY_SIZE(pamax_map)); 68 return pamax_map[parange]; 69 } 70 71 /* 72 * In machvirt_init, we call arm_pamax on a cpu that is not fully 73 * initialized, so we can't rely on the propagation done in realize. 74 */ 75 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) || 76 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) { 77 /* v7 with LPAE */ 78 return 40; 79 } 80 /* Anything else */ 81 return 32; 82 } 83 84 /* 85 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 86 */ 87 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 88 { 89 switch (mmu_idx) { 90 case ARMMMUIdx_E10_0: 91 return ARMMMUIdx_Stage1_E0; 92 case ARMMMUIdx_E10_1: 93 return ARMMMUIdx_Stage1_E1; 94 case ARMMMUIdx_E10_1_PAN: 95 return ARMMMUIdx_Stage1_E1_PAN; 96 default: 97 return mmu_idx; 98 } 99 } 100 101 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 102 { 103 return stage_1_mmu_idx(arm_mmu_idx(env)); 104 } 105 106 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 107 { 108 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 109 } 110 111 /* Return the TTBR associated with this translation regime */ 112 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 113 { 114 if (mmu_idx == ARMMMUIdx_Stage2) { 115 return env->cp15.vttbr_el2; 116 } 117 if (mmu_idx == ARMMMUIdx_Stage2_S) { 118 return env->cp15.vsttbr_el2; 119 } 120 if (ttbrn == 0) { 121 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 122 } else { 123 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 124 } 125 } 126 127 /* Return true if the specified stage of address translation is disabled */ 128 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, 129 bool is_secure) 130 { 131 uint64_t hcr_el2; 132 133 if (arm_feature(env, ARM_FEATURE_M)) { 134 switch (env->v7m.mpu_ctrl[is_secure] & 135 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 136 case R_V7M_MPU_CTRL_ENABLE_MASK: 137 /* Enabled, but not for HardFault and NMI */ 138 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 139 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 140 /* Enabled for all cases */ 141 return false; 142 case 0: 143 default: 144 /* 145 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 146 * we warned about that in armv7m_nvic.c when the guest set it. 147 */ 148 return true; 149 } 150 } 151 152 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure); 153 154 switch (mmu_idx) { 155 case ARMMMUIdx_Stage2: 156 case ARMMMUIdx_Stage2_S: 157 /* HCR.DC means HCR.VM behaves as 1 */ 158 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 159 160 case ARMMMUIdx_E10_0: 161 case ARMMMUIdx_E10_1: 162 case ARMMMUIdx_E10_1_PAN: 163 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ 164 if (hcr_el2 & HCR_TGE) { 165 return true; 166 } 167 break; 168 169 case ARMMMUIdx_Stage1_E0: 170 case ARMMMUIdx_Stage1_E1: 171 case ARMMMUIdx_Stage1_E1_PAN: 172 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 173 if (hcr_el2 & HCR_DC) { 174 return true; 175 } 176 break; 177 178 case ARMMMUIdx_E20_0: 179 case ARMMMUIdx_E20_2: 180 case ARMMMUIdx_E20_2_PAN: 181 case ARMMMUIdx_E2: 182 case ARMMMUIdx_E3: 183 break; 184 185 case ARMMMUIdx_Phys_NS: 186 case ARMMMUIdx_Phys_S: 187 /* No translation for physical address spaces. */ 188 return true; 189 190 default: 191 g_assert_not_reached(); 192 } 193 194 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 195 } 196 197 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) 198 { 199 /* 200 * For an S1 page table walk, the stage 1 attributes are always 201 * some form of "this is Normal memory". The combined S1+S2 202 * attributes are therefore only Device if stage 2 specifies Device. 203 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 204 * ie when cacheattrs.attrs bits [3:2] are 0b00. 205 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 206 * when cacheattrs.attrs bit [2] is 0. 207 */ 208 if (hcr & HCR_FWB) { 209 return (attrs & 0x4) == 0; 210 } else { 211 return (attrs & 0xc) == 0; 212 } 213 } 214 215 /* Translate a S1 pagetable walk through S2 if needed. */ 216 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, 217 hwaddr addr, ARMMMUFaultInfo *fi) 218 { 219 bool is_secure = ptw->in_secure; 220 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 221 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx; 222 uint8_t pte_attrs; 223 bool pte_secure; 224 225 ptw->out_virt = addr; 226 227 if (unlikely(ptw->in_debug)) { 228 /* 229 * From gdbstub, do not use softmmu so that we don't modify the 230 * state of the cpu at all, including softmmu tlb contents. 231 */ 232 if (regime_is_stage2(s2_mmu_idx)) { 233 S1Translate s2ptw = { 234 .in_mmu_idx = s2_mmu_idx, 235 .in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS, 236 .in_secure = is_secure, 237 .in_debug = true, 238 }; 239 GetPhysAddrResult s2 = { }; 240 241 if (!get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD, 242 false, &s2, fi)) { 243 goto fail; 244 } 245 ptw->out_phys = s2.f.phys_addr; 246 pte_attrs = s2.cacheattrs.attrs; 247 pte_secure = s2.f.attrs.secure; 248 } else { 249 /* Regime is physical. */ 250 ptw->out_phys = addr; 251 pte_attrs = 0; 252 pte_secure = is_secure; 253 } 254 ptw->out_host = NULL; 255 ptw->out_rw = false; 256 } else { 257 CPUTLBEntryFull *full; 258 int flags; 259 260 env->tlb_fi = fi; 261 flags = probe_access_full(env, addr, MMU_DATA_LOAD, 262 arm_to_core_mmu_idx(s2_mmu_idx), 263 true, &ptw->out_host, &full, 0); 264 env->tlb_fi = NULL; 265 266 if (unlikely(flags & TLB_INVALID_MASK)) { 267 goto fail; 268 } 269 ptw->out_phys = full->phys_addr; 270 ptw->out_rw = full->prot & PAGE_WRITE; 271 pte_attrs = full->pte_attrs; 272 pte_secure = full->attrs.secure; 273 } 274 275 if (regime_is_stage2(s2_mmu_idx)) { 276 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure); 277 278 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { 279 /* 280 * PTW set and S1 walk touched S2 Device memory: 281 * generate Permission fault. 282 */ 283 fi->type = ARMFault_Permission; 284 fi->s2addr = addr; 285 fi->stage2 = true; 286 fi->s1ptw = true; 287 fi->s1ns = !is_secure; 288 return false; 289 } 290 } 291 292 /* Check if page table walk is to secure or non-secure PA space. */ 293 ptw->out_secure = (is_secure 294 && !(pte_secure 295 ? env->cp15.vstcr_el2 & VSTCR_SW 296 : env->cp15.vtcr_el2 & VTCR_NSW)); 297 ptw->out_be = regime_translation_big_endian(env, mmu_idx); 298 return true; 299 300 fail: 301 assert(fi->type != ARMFault_None); 302 fi->s2addr = addr; 303 fi->stage2 = true; 304 fi->s1ptw = true; 305 fi->s1ns = !is_secure; 306 return false; 307 } 308 309 /* All loads done in the course of a page table walk go through here. */ 310 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, 311 ARMMMUFaultInfo *fi) 312 { 313 CPUState *cs = env_cpu(env); 314 void *host = ptw->out_host; 315 uint32_t data; 316 317 if (likely(host)) { 318 /* Page tables are in RAM, and we have the host address. */ 319 data = qatomic_read((uint32_t *)host); 320 if (ptw->out_be) { 321 data = be32_to_cpu(data); 322 } else { 323 data = le32_to_cpu(data); 324 } 325 } else { 326 /* Page tables are in MMIO. */ 327 MemTxAttrs attrs = { .secure = ptw->out_secure }; 328 AddressSpace *as = arm_addressspace(cs, attrs); 329 MemTxResult result = MEMTX_OK; 330 331 if (ptw->out_be) { 332 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); 333 } else { 334 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); 335 } 336 if (unlikely(result != MEMTX_OK)) { 337 fi->type = ARMFault_SyncExternalOnWalk; 338 fi->ea = arm_extabort_type(result); 339 return 0; 340 } 341 } 342 return data; 343 } 344 345 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, 346 ARMMMUFaultInfo *fi) 347 { 348 CPUState *cs = env_cpu(env); 349 void *host = ptw->out_host; 350 uint64_t data; 351 352 if (likely(host)) { 353 /* Page tables are in RAM, and we have the host address. */ 354 #ifdef CONFIG_ATOMIC64 355 data = qatomic_read__nocheck((uint64_t *)host); 356 if (ptw->out_be) { 357 data = be64_to_cpu(data); 358 } else { 359 data = le64_to_cpu(data); 360 } 361 #else 362 if (ptw->out_be) { 363 data = ldq_be_p(host); 364 } else { 365 data = ldq_le_p(host); 366 } 367 #endif 368 } else { 369 /* Page tables are in MMIO. */ 370 MemTxAttrs attrs = { .secure = ptw->out_secure }; 371 AddressSpace *as = arm_addressspace(cs, attrs); 372 MemTxResult result = MEMTX_OK; 373 374 if (ptw->out_be) { 375 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 376 } else { 377 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 378 } 379 if (unlikely(result != MEMTX_OK)) { 380 fi->type = ARMFault_SyncExternalOnWalk; 381 fi->ea = arm_extabort_type(result); 382 return 0; 383 } 384 } 385 return data; 386 } 387 388 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val, 389 uint64_t new_val, S1Translate *ptw, 390 ARMMMUFaultInfo *fi) 391 { 392 uint64_t cur_val; 393 void *host = ptw->out_host; 394 395 if (unlikely(!host)) { 396 fi->type = ARMFault_UnsuppAtomicUpdate; 397 fi->s1ptw = true; 398 return 0; 399 } 400 401 /* 402 * Raising a stage2 Protection fault for an atomic update to a read-only 403 * page is delayed until it is certain that there is a change to make. 404 */ 405 if (unlikely(!ptw->out_rw)) { 406 int flags; 407 void *discard; 408 409 env->tlb_fi = fi; 410 flags = probe_access_flags(env, ptw->out_virt, MMU_DATA_STORE, 411 arm_to_core_mmu_idx(ptw->in_ptw_idx), 412 true, &discard, 0); 413 env->tlb_fi = NULL; 414 415 if (unlikely(flags & TLB_INVALID_MASK)) { 416 assert(fi->type != ARMFault_None); 417 fi->s2addr = ptw->out_virt; 418 fi->stage2 = true; 419 fi->s1ptw = true; 420 fi->s1ns = !ptw->in_secure; 421 return 0; 422 } 423 424 /* In case CAS mismatches and we loop, remember writability. */ 425 ptw->out_rw = true; 426 } 427 428 #ifdef CONFIG_ATOMIC64 429 if (ptw->out_be) { 430 old_val = cpu_to_be64(old_val); 431 new_val = cpu_to_be64(new_val); 432 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 433 cur_val = be64_to_cpu(cur_val); 434 } else { 435 old_val = cpu_to_le64(old_val); 436 new_val = cpu_to_le64(new_val); 437 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 438 cur_val = le64_to_cpu(cur_val); 439 } 440 #else 441 /* 442 * We can't support the full 64-bit atomic cmpxchg on the host. 443 * Because this is only used for FEAT_HAFDBS, which is only for AA64, 444 * we know that TCG_OVERSIZED_GUEST is set, which means that we are 445 * running in round-robin mode and could only race with dma i/o. 446 */ 447 #ifndef TCG_OVERSIZED_GUEST 448 # error "Unexpected configuration" 449 #endif 450 bool locked = qemu_mutex_iothread_locked(); 451 if (!locked) { 452 qemu_mutex_lock_iothread(); 453 } 454 if (ptw->out_be) { 455 cur_val = ldq_be_p(host); 456 if (cur_val == old_val) { 457 stq_be_p(host, new_val); 458 } 459 } else { 460 cur_val = ldq_le_p(host); 461 if (cur_val == old_val) { 462 stq_le_p(host, new_val); 463 } 464 } 465 if (!locked) { 466 qemu_mutex_unlock_iothread(); 467 } 468 #endif 469 470 return cur_val; 471 } 472 473 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 474 uint32_t *table, uint32_t address) 475 { 476 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 477 uint64_t tcr = regime_tcr(env, mmu_idx); 478 int maskshift = extract32(tcr, 0, 3); 479 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 480 uint32_t base_mask; 481 482 if (address & mask) { 483 if (tcr & TTBCR_PD1) { 484 /* Translation table walk disabled for TTBR1 */ 485 return false; 486 } 487 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 488 } else { 489 if (tcr & TTBCR_PD0) { 490 /* Translation table walk disabled for TTBR0 */ 491 return false; 492 } 493 base_mask = ~((uint32_t)0x3fffu >> maskshift); 494 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 495 } 496 *table |= (address >> 18) & 0x3ffc; 497 return true; 498 } 499 500 /* 501 * Translate section/page access permissions to page R/W protection flags 502 * @env: CPUARMState 503 * @mmu_idx: MMU index indicating required translation regime 504 * @ap: The 3-bit access permissions (AP[2:0]) 505 * @domain_prot: The 2-bit domain access permissions 506 */ 507 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 508 int ap, int domain_prot) 509 { 510 bool is_user = regime_is_user(env, mmu_idx); 511 512 if (domain_prot == 3) { 513 return PAGE_READ | PAGE_WRITE; 514 } 515 516 switch (ap) { 517 case 0: 518 if (arm_feature(env, ARM_FEATURE_V7)) { 519 return 0; 520 } 521 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 522 case SCTLR_S: 523 return is_user ? 0 : PAGE_READ; 524 case SCTLR_R: 525 return PAGE_READ; 526 default: 527 return 0; 528 } 529 case 1: 530 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 531 case 2: 532 if (is_user) { 533 return PAGE_READ; 534 } else { 535 return PAGE_READ | PAGE_WRITE; 536 } 537 case 3: 538 return PAGE_READ | PAGE_WRITE; 539 case 4: /* Reserved. */ 540 return 0; 541 case 5: 542 return is_user ? 0 : PAGE_READ; 543 case 6: 544 return PAGE_READ; 545 case 7: 546 if (!arm_feature(env, ARM_FEATURE_V6K)) { 547 return 0; 548 } 549 return PAGE_READ; 550 default: 551 g_assert_not_reached(); 552 } 553 } 554 555 /* 556 * Translate section/page access permissions to page R/W protection flags. 557 * @ap: The 2-bit simple AP (AP[2:1]) 558 * @is_user: TRUE if accessing from PL0 559 */ 560 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 561 { 562 switch (ap) { 563 case 0: 564 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 565 case 1: 566 return PAGE_READ | PAGE_WRITE; 567 case 2: 568 return is_user ? 0 : PAGE_READ; 569 case 3: 570 return PAGE_READ; 571 default: 572 g_assert_not_reached(); 573 } 574 } 575 576 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 577 { 578 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 579 } 580 581 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, 582 uint32_t address, MMUAccessType access_type, 583 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 584 { 585 int level = 1; 586 uint32_t table; 587 uint32_t desc; 588 int type; 589 int ap; 590 int domain = 0; 591 int domain_prot; 592 hwaddr phys_addr; 593 uint32_t dacr; 594 595 /* Pagetable walk. */ 596 /* Lookup l1 descriptor. */ 597 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { 598 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 599 fi->type = ARMFault_Translation; 600 goto do_fault; 601 } 602 if (!S1_ptw_translate(env, ptw, table, fi)) { 603 goto do_fault; 604 } 605 desc = arm_ldl_ptw(env, ptw, fi); 606 if (fi->type != ARMFault_None) { 607 goto do_fault; 608 } 609 type = (desc & 3); 610 domain = (desc >> 5) & 0x0f; 611 if (regime_el(env, ptw->in_mmu_idx) == 1) { 612 dacr = env->cp15.dacr_ns; 613 } else { 614 dacr = env->cp15.dacr_s; 615 } 616 domain_prot = (dacr >> (domain * 2)) & 3; 617 if (type == 0) { 618 /* Section translation fault. */ 619 fi->type = ARMFault_Translation; 620 goto do_fault; 621 } 622 if (type != 2) { 623 level = 2; 624 } 625 if (domain_prot == 0 || domain_prot == 2) { 626 fi->type = ARMFault_Domain; 627 goto do_fault; 628 } 629 if (type == 2) { 630 /* 1Mb section. */ 631 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 632 ap = (desc >> 10) & 3; 633 result->f.lg_page_size = 20; /* 1MB */ 634 } else { 635 /* Lookup l2 entry. */ 636 if (type == 1) { 637 /* Coarse pagetable. */ 638 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 639 } else { 640 /* Fine pagetable. */ 641 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 642 } 643 if (!S1_ptw_translate(env, ptw, table, fi)) { 644 goto do_fault; 645 } 646 desc = arm_ldl_ptw(env, ptw, fi); 647 if (fi->type != ARMFault_None) { 648 goto do_fault; 649 } 650 switch (desc & 3) { 651 case 0: /* Page translation fault. */ 652 fi->type = ARMFault_Translation; 653 goto do_fault; 654 case 1: /* 64k page. */ 655 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 656 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 657 result->f.lg_page_size = 16; 658 break; 659 case 2: /* 4k page. */ 660 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 661 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 662 result->f.lg_page_size = 12; 663 break; 664 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 665 if (type == 1) { 666 /* ARMv6/XScale extended small page format */ 667 if (arm_feature(env, ARM_FEATURE_XSCALE) 668 || arm_feature(env, ARM_FEATURE_V6)) { 669 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 670 result->f.lg_page_size = 12; 671 } else { 672 /* 673 * UNPREDICTABLE in ARMv5; we choose to take a 674 * page translation fault. 675 */ 676 fi->type = ARMFault_Translation; 677 goto do_fault; 678 } 679 } else { 680 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 681 result->f.lg_page_size = 10; 682 } 683 ap = (desc >> 4) & 3; 684 break; 685 default: 686 /* Never happens, but compiler isn't smart enough to tell. */ 687 g_assert_not_reached(); 688 } 689 } 690 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); 691 result->f.prot |= result->f.prot ? PAGE_EXEC : 0; 692 if (!(result->f.prot & (1 << access_type))) { 693 /* Access permission fault. */ 694 fi->type = ARMFault_Permission; 695 goto do_fault; 696 } 697 result->f.phys_addr = phys_addr; 698 return false; 699 do_fault: 700 fi->domain = domain; 701 fi->level = level; 702 return true; 703 } 704 705 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, 706 uint32_t address, MMUAccessType access_type, 707 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 708 { 709 ARMCPU *cpu = env_archcpu(env); 710 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 711 int level = 1; 712 uint32_t table; 713 uint32_t desc; 714 uint32_t xn; 715 uint32_t pxn = 0; 716 int type; 717 int ap; 718 int domain = 0; 719 int domain_prot; 720 hwaddr phys_addr; 721 uint32_t dacr; 722 bool ns; 723 724 /* Pagetable walk. */ 725 /* Lookup l1 descriptor. */ 726 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 727 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 728 fi->type = ARMFault_Translation; 729 goto do_fault; 730 } 731 if (!S1_ptw_translate(env, ptw, table, fi)) { 732 goto do_fault; 733 } 734 desc = arm_ldl_ptw(env, ptw, fi); 735 if (fi->type != ARMFault_None) { 736 goto do_fault; 737 } 738 type = (desc & 3); 739 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 740 /* Section translation fault, or attempt to use the encoding 741 * which is Reserved on implementations without PXN. 742 */ 743 fi->type = ARMFault_Translation; 744 goto do_fault; 745 } 746 if ((type == 1) || !(desc & (1 << 18))) { 747 /* Page or Section. */ 748 domain = (desc >> 5) & 0x0f; 749 } 750 if (regime_el(env, mmu_idx) == 1) { 751 dacr = env->cp15.dacr_ns; 752 } else { 753 dacr = env->cp15.dacr_s; 754 } 755 if (type == 1) { 756 level = 2; 757 } 758 domain_prot = (dacr >> (domain * 2)) & 3; 759 if (domain_prot == 0 || domain_prot == 2) { 760 /* Section or Page domain fault */ 761 fi->type = ARMFault_Domain; 762 goto do_fault; 763 } 764 if (type != 1) { 765 if (desc & (1 << 18)) { 766 /* Supersection. */ 767 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 768 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 769 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 770 result->f.lg_page_size = 24; /* 16MB */ 771 } else { 772 /* Section. */ 773 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 774 result->f.lg_page_size = 20; /* 1MB */ 775 } 776 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 777 xn = desc & (1 << 4); 778 pxn = desc & 1; 779 ns = extract32(desc, 19, 1); 780 } else { 781 if (cpu_isar_feature(aa32_pxn, cpu)) { 782 pxn = (desc >> 2) & 1; 783 } 784 ns = extract32(desc, 3, 1); 785 /* Lookup l2 entry. */ 786 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 787 if (!S1_ptw_translate(env, ptw, table, fi)) { 788 goto do_fault; 789 } 790 desc = arm_ldl_ptw(env, ptw, fi); 791 if (fi->type != ARMFault_None) { 792 goto do_fault; 793 } 794 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 795 switch (desc & 3) { 796 case 0: /* Page translation fault. */ 797 fi->type = ARMFault_Translation; 798 goto do_fault; 799 case 1: /* 64k page. */ 800 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 801 xn = desc & (1 << 15); 802 result->f.lg_page_size = 16; 803 break; 804 case 2: case 3: /* 4k page. */ 805 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 806 xn = desc & 1; 807 result->f.lg_page_size = 12; 808 break; 809 default: 810 /* Never happens, but compiler isn't smart enough to tell. */ 811 g_assert_not_reached(); 812 } 813 } 814 if (domain_prot == 3) { 815 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 816 } else { 817 if (pxn && !regime_is_user(env, mmu_idx)) { 818 xn = 1; 819 } 820 if (xn && access_type == MMU_INST_FETCH) { 821 fi->type = ARMFault_Permission; 822 goto do_fault; 823 } 824 825 if (arm_feature(env, ARM_FEATURE_V6K) && 826 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 827 /* The simplified model uses AP[0] as an access control bit. */ 828 if ((ap & 1) == 0) { 829 /* Access flag fault. */ 830 fi->type = ARMFault_AccessFlag; 831 goto do_fault; 832 } 833 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 834 } else { 835 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 836 } 837 if (result->f.prot && !xn) { 838 result->f.prot |= PAGE_EXEC; 839 } 840 if (!(result->f.prot & (1 << access_type))) { 841 /* Access permission fault. */ 842 fi->type = ARMFault_Permission; 843 goto do_fault; 844 } 845 } 846 if (ns) { 847 /* The NS bit will (as required by the architecture) have no effect if 848 * the CPU doesn't support TZ or this is a non-secure translation 849 * regime, because the attribute will already be non-secure. 850 */ 851 result->f.attrs.secure = false; 852 } 853 result->f.phys_addr = phys_addr; 854 return false; 855 do_fault: 856 fi->domain = domain; 857 fi->level = level; 858 return true; 859 } 860 861 /* 862 * Translate S2 section/page access permissions to protection flags 863 * @env: CPUARMState 864 * @s2ap: The 2-bit stage2 access permissions (S2AP) 865 * @xn: XN (execute-never) bits 866 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 867 */ 868 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 869 { 870 int prot = 0; 871 872 if (s2ap & 1) { 873 prot |= PAGE_READ; 874 } 875 if (s2ap & 2) { 876 prot |= PAGE_WRITE; 877 } 878 879 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 880 switch (xn) { 881 case 0: 882 prot |= PAGE_EXEC; 883 break; 884 case 1: 885 if (s1_is_el0) { 886 prot |= PAGE_EXEC; 887 } 888 break; 889 case 2: 890 break; 891 case 3: 892 if (!s1_is_el0) { 893 prot |= PAGE_EXEC; 894 } 895 break; 896 default: 897 g_assert_not_reached(); 898 } 899 } else { 900 if (!extract32(xn, 1, 1)) { 901 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 902 prot |= PAGE_EXEC; 903 } 904 } 905 } 906 return prot; 907 } 908 909 /* 910 * Translate section/page access permissions to protection flags 911 * @env: CPUARMState 912 * @mmu_idx: MMU index indicating required translation regime 913 * @is_aa64: TRUE if AArch64 914 * @ap: The 2-bit simple AP (AP[2:1]) 915 * @ns: NS (non-secure) bit 916 * @xn: XN (execute-never) bit 917 * @pxn: PXN (privileged execute-never) bit 918 */ 919 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 920 int ap, int ns, int xn, int pxn) 921 { 922 bool is_user = regime_is_user(env, mmu_idx); 923 int prot_rw, user_rw; 924 bool have_wxn; 925 int wxn = 0; 926 927 assert(!regime_is_stage2(mmu_idx)); 928 929 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 930 if (is_user) { 931 prot_rw = user_rw; 932 } else { 933 if (user_rw && regime_is_pan(env, mmu_idx)) { 934 /* PAN forbids data accesses but doesn't affect insn fetch */ 935 prot_rw = 0; 936 } else { 937 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 938 } 939 } 940 941 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 942 return prot_rw; 943 } 944 945 /* TODO have_wxn should be replaced with 946 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 947 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 948 * compatible processors have EL2, which is required for [U]WXN. 949 */ 950 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 951 952 if (have_wxn) { 953 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 954 } 955 956 if (is_aa64) { 957 if (regime_has_2_ranges(mmu_idx) && !is_user) { 958 xn = pxn || (user_rw & PAGE_WRITE); 959 } 960 } else if (arm_feature(env, ARM_FEATURE_V7)) { 961 switch (regime_el(env, mmu_idx)) { 962 case 1: 963 case 3: 964 if (is_user) { 965 xn = xn || !(user_rw & PAGE_READ); 966 } else { 967 int uwxn = 0; 968 if (have_wxn) { 969 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 970 } 971 xn = xn || !(prot_rw & PAGE_READ) || pxn || 972 (uwxn && (user_rw & PAGE_WRITE)); 973 } 974 break; 975 case 2: 976 break; 977 } 978 } else { 979 xn = wxn = 0; 980 } 981 982 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 983 return prot_rw; 984 } 985 return prot_rw | PAGE_EXEC; 986 } 987 988 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 989 ARMMMUIdx mmu_idx) 990 { 991 uint64_t tcr = regime_tcr(env, mmu_idx); 992 uint32_t el = regime_el(env, mmu_idx); 993 int select, tsz; 994 bool epd, hpd; 995 996 assert(mmu_idx != ARMMMUIdx_Stage2_S); 997 998 if (mmu_idx == ARMMMUIdx_Stage2) { 999 /* VTCR */ 1000 bool sext = extract32(tcr, 4, 1); 1001 bool sign = extract32(tcr, 3, 1); 1002 1003 /* 1004 * If the sign-extend bit is not the same as t0sz[3], the result 1005 * is unpredictable. Flag this as a guest error. 1006 */ 1007 if (sign != sext) { 1008 qemu_log_mask(LOG_GUEST_ERROR, 1009 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 1010 } 1011 tsz = sextract32(tcr, 0, 4) + 8; 1012 select = 0; 1013 hpd = false; 1014 epd = false; 1015 } else if (el == 2) { 1016 /* HTCR */ 1017 tsz = extract32(tcr, 0, 3); 1018 select = 0; 1019 hpd = extract64(tcr, 24, 1); 1020 epd = false; 1021 } else { 1022 int t0sz = extract32(tcr, 0, 3); 1023 int t1sz = extract32(tcr, 16, 3); 1024 1025 if (t1sz == 0) { 1026 select = va > (0xffffffffu >> t0sz); 1027 } else { 1028 /* Note that we will detect errors later. */ 1029 select = va >= ~(0xffffffffu >> t1sz); 1030 } 1031 if (!select) { 1032 tsz = t0sz; 1033 epd = extract32(tcr, 7, 1); 1034 hpd = extract64(tcr, 41, 1); 1035 } else { 1036 tsz = t1sz; 1037 epd = extract32(tcr, 23, 1); 1038 hpd = extract64(tcr, 42, 1); 1039 } 1040 /* For aarch32, hpd0 is not enabled without t2e as well. */ 1041 hpd &= extract32(tcr, 6, 1); 1042 } 1043 1044 return (ARMVAParameters) { 1045 .tsz = tsz, 1046 .select = select, 1047 .epd = epd, 1048 .hpd = hpd, 1049 }; 1050 } 1051 1052 /* 1053 * check_s2_mmu_setup 1054 * @cpu: ARMCPU 1055 * @is_aa64: True if the translation regime is in AArch64 state 1056 * @startlevel: Suggested starting level 1057 * @inputsize: Bitsize of IPAs 1058 * @stride: Page-table stride (See the ARM ARM) 1059 * 1060 * Returns true if the suggested S2 translation parameters are OK and 1061 * false otherwise. 1062 */ 1063 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 1064 int inputsize, int stride, int outputsize) 1065 { 1066 const int grainsize = stride + 3; 1067 int startsizecheck; 1068 1069 /* 1070 * Negative levels are usually not allowed... 1071 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which 1072 * begins with level -1. Note that previous feature tests will have 1073 * eliminated this combination if it is not enabled. 1074 */ 1075 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { 1076 return false; 1077 } 1078 1079 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 1080 if (startsizecheck < 1 || startsizecheck > stride + 4) { 1081 return false; 1082 } 1083 1084 if (is_aa64) { 1085 switch (stride) { 1086 case 13: /* 64KB Pages. */ 1087 if (level == 0 || (level == 1 && outputsize <= 42)) { 1088 return false; 1089 } 1090 break; 1091 case 11: /* 16KB Pages. */ 1092 if (level == 0 || (level == 1 && outputsize <= 40)) { 1093 return false; 1094 } 1095 break; 1096 case 9: /* 4KB Pages. */ 1097 if (level == 0 && outputsize <= 42) { 1098 return false; 1099 } 1100 break; 1101 default: 1102 g_assert_not_reached(); 1103 } 1104 1105 /* Inputsize checks. */ 1106 if (inputsize > outputsize && 1107 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 1108 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 1109 return false; 1110 } 1111 } else { 1112 /* AArch32 only supports 4KB pages. Assert on that. */ 1113 assert(stride == 9); 1114 1115 if (level == 0) { 1116 return false; 1117 } 1118 } 1119 return true; 1120 } 1121 1122 /** 1123 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 1124 * 1125 * Returns false if the translation was successful. Otherwise, phys_ptr, 1126 * attrs, prot and page_size may not be filled in, and the populated fsr 1127 * value provides information on why the translation aborted, in the format 1128 * of a long-format DFSR/IFSR fault register, with the following caveat: 1129 * the WnR bit is never set (the caller must do this). 1130 * 1131 * @env: CPUARMState 1132 * @ptw: Current and next stage parameters for the walk. 1133 * @address: virtual address to get physical address for 1134 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 1135 * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2 1136 * (so this is a stage 2 page table walk), 1137 * must be true if this is stage 2 of a stage 1+2 1138 * walk for an EL0 access. If @mmu_idx is anything else, 1139 * @s1_is_el0 is ignored. 1140 * @result: set on translation success, 1141 * @fi: set to fault info if the translation fails 1142 */ 1143 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 1144 uint64_t address, 1145 MMUAccessType access_type, bool s1_is_el0, 1146 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1147 { 1148 ARMCPU *cpu = env_archcpu(env); 1149 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1150 bool is_secure = ptw->in_secure; 1151 uint32_t level; 1152 ARMVAParameters param; 1153 uint64_t ttbr; 1154 hwaddr descaddr, indexmask, indexmask_grainsize; 1155 uint32_t tableattrs; 1156 target_ulong page_size; 1157 uint64_t attrs; 1158 int32_t stride; 1159 int addrsize, inputsize, outputsize; 1160 uint64_t tcr = regime_tcr(env, mmu_idx); 1161 int ap, ns, xn, pxn; 1162 uint32_t el = regime_el(env, mmu_idx); 1163 uint64_t descaddrmask; 1164 bool aarch64 = arm_el_is_aa64(env, el); 1165 uint64_t descriptor, new_descriptor; 1166 bool nstable; 1167 1168 /* TODO: This code does not support shareability levels. */ 1169 if (aarch64) { 1170 int ps; 1171 1172 param = aa64_va_parameters(env, address, mmu_idx, 1173 access_type != MMU_INST_FETCH); 1174 level = 0; 1175 1176 /* 1177 * If TxSZ is programmed to a value larger than the maximum, 1178 * or smaller than the effective minimum, it is IMPLEMENTATION 1179 * DEFINED whether we behave as if the field were programmed 1180 * within bounds, or if a level 0 Translation fault is generated. 1181 * 1182 * With FEAT_LVA, fault on less than minimum becomes required, 1183 * so our choice is to always raise the fault. 1184 */ 1185 if (param.tsz_oob) { 1186 goto do_translation_fault; 1187 } 1188 1189 addrsize = 64 - 8 * param.tbi; 1190 inputsize = 64 - param.tsz; 1191 1192 /* 1193 * Bound PS by PARANGE to find the effective output address size. 1194 * ID_AA64MMFR0 is a read-only register so values outside of the 1195 * supported mappings can be considered an implementation error. 1196 */ 1197 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1198 ps = MIN(ps, param.ps); 1199 assert(ps < ARRAY_SIZE(pamax_map)); 1200 outputsize = pamax_map[ps]; 1201 } else { 1202 param = aa32_va_parameters(env, address, mmu_idx); 1203 level = 1; 1204 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1205 inputsize = addrsize - param.tsz; 1206 outputsize = 40; 1207 } 1208 1209 /* 1210 * We determined the region when collecting the parameters, but we 1211 * have not yet validated that the address is valid for the region. 1212 * Extract the top bits and verify that they all match select. 1213 * 1214 * For aa32, if inputsize == addrsize, then we have selected the 1215 * region by exclusion in aa32_va_parameters and there is no more 1216 * validation to do here. 1217 */ 1218 if (inputsize < addrsize) { 1219 target_ulong top_bits = sextract64(address, inputsize, 1220 addrsize - inputsize); 1221 if (-top_bits != param.select) { 1222 /* The gap between the two regions is a Translation fault */ 1223 goto do_translation_fault; 1224 } 1225 } 1226 1227 stride = arm_granule_bits(param.gran) - 3; 1228 1229 /* 1230 * Note that QEMU ignores shareability and cacheability attributes, 1231 * so we don't need to do anything with the SH, ORGN, IRGN fields 1232 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1233 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1234 * implement any ASID-like capability so we can ignore it (instead 1235 * we will always flush the TLB any time the ASID is changed). 1236 */ 1237 ttbr = regime_ttbr(env, mmu_idx, param.select); 1238 1239 /* 1240 * Here we should have set up all the parameters for the translation: 1241 * inputsize, ttbr, epd, stride, tbi 1242 */ 1243 1244 if (param.epd) { 1245 /* 1246 * Translation table walk disabled => Translation fault on TLB miss 1247 * Note: This is always 0 on 64-bit EL2 and EL3. 1248 */ 1249 goto do_translation_fault; 1250 } 1251 1252 if (!regime_is_stage2(mmu_idx)) { 1253 /* 1254 * The starting level depends on the virtual address size (which can 1255 * be up to 48 bits) and the translation granule size. It indicates 1256 * the number of strides (stride bits at a time) needed to 1257 * consume the bits of the input address. In the pseudocode this is: 1258 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1259 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1260 * our 'stride + 3' and 'stride' is our 'stride'. 1261 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1262 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1263 * = 4 - (inputsize - 4) / stride; 1264 */ 1265 level = 4 - (inputsize - 4) / stride; 1266 } else { 1267 /* 1268 * For stage 2 translations the starting level is specified by the 1269 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 1270 */ 1271 uint32_t sl0 = extract32(tcr, 6, 2); 1272 uint32_t sl2 = extract64(tcr, 33, 1); 1273 uint32_t startlevel; 1274 bool ok; 1275 1276 /* SL2 is RES0 unless DS=1 & 4kb granule. */ 1277 if (param.ds && stride == 9 && sl2) { 1278 if (sl0 != 0) { 1279 level = 0; 1280 goto do_translation_fault; 1281 } 1282 startlevel = -1; 1283 } else if (!aarch64 || stride == 9) { 1284 /* AArch32 or 4KB pages */ 1285 startlevel = 2 - sl0; 1286 1287 if (cpu_isar_feature(aa64_st, cpu)) { 1288 startlevel &= 3; 1289 } 1290 } else { 1291 /* 16KB or 64KB pages */ 1292 startlevel = 3 - sl0; 1293 } 1294 1295 /* Check that the starting level is valid. */ 1296 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 1297 inputsize, stride, outputsize); 1298 if (!ok) { 1299 goto do_translation_fault; 1300 } 1301 level = startlevel; 1302 } 1303 1304 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1305 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1306 1307 /* Now we can extract the actual base address from the TTBR */ 1308 descaddr = extract64(ttbr, 0, 48); 1309 1310 /* 1311 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1312 * 1313 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1314 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1315 * but we've just cleared the bits above 47, so simplify the test. 1316 */ 1317 if (outputsize > 48) { 1318 descaddr |= extract64(ttbr, 2, 4) << 48; 1319 } else if (descaddr >> outputsize) { 1320 level = 0; 1321 fi->type = ARMFault_AddressSize; 1322 goto do_fault; 1323 } 1324 1325 /* 1326 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1327 * and also to mask out CnP (bit 0) which could validly be non-zero. 1328 */ 1329 descaddr &= ~indexmask; 1330 1331 /* 1332 * For AArch32, the address field in the descriptor goes up to bit 39 1333 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1334 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1335 * bits as part of the address, which will be checked via outputsize. 1336 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1337 * the highest bits of a 52-bit output are placed elsewhere. 1338 */ 1339 if (param.ds) { 1340 descaddrmask = MAKE_64BIT_MASK(0, 50); 1341 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1342 descaddrmask = MAKE_64BIT_MASK(0, 48); 1343 } else { 1344 descaddrmask = MAKE_64BIT_MASK(0, 40); 1345 } 1346 descaddrmask &= ~indexmask_grainsize; 1347 1348 /* 1349 * Secure accesses start with the page table in secure memory and 1350 * can be downgraded to non-secure at any step. Non-secure accesses 1351 * remain non-secure. We implement this by just ORing in the NSTable/NS 1352 * bits at each step. 1353 */ 1354 tableattrs = is_secure ? 0 : (1 << 4); 1355 1356 next_level: 1357 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1358 descaddr &= ~7ULL; 1359 nstable = extract32(tableattrs, 4, 1); 1360 if (!nstable) { 1361 /* 1362 * Stage2_S -> Stage2 or Phys_S -> Phys_NS 1363 * Assert that the non-secure idx are even, and relative order. 1364 */ 1365 QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0); 1366 QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0); 1367 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S); 1368 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S); 1369 ptw->in_ptw_idx &= ~1; 1370 ptw->in_secure = false; 1371 } 1372 if (!S1_ptw_translate(env, ptw, descaddr, fi)) { 1373 goto do_fault; 1374 } 1375 descriptor = arm_ldq_ptw(env, ptw, fi); 1376 if (fi->type != ARMFault_None) { 1377 goto do_fault; 1378 } 1379 new_descriptor = descriptor; 1380 1381 restart_atomic_update: 1382 if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) { 1383 /* Invalid, or the Reserved level 3 encoding */ 1384 goto do_translation_fault; 1385 } 1386 1387 descaddr = descriptor & descaddrmask; 1388 1389 /* 1390 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1391 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1392 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1393 * raise AddressSizeFault. 1394 */ 1395 if (outputsize > 48) { 1396 if (param.ds) { 1397 descaddr |= extract64(descriptor, 8, 2) << 50; 1398 } else { 1399 descaddr |= extract64(descriptor, 12, 4) << 48; 1400 } 1401 } else if (descaddr >> outputsize) { 1402 fi->type = ARMFault_AddressSize; 1403 goto do_fault; 1404 } 1405 1406 if ((descriptor & 2) && (level < 3)) { 1407 /* 1408 * Table entry. The top five bits are attributes which may 1409 * propagate down through lower levels of the table (and 1410 * which are all arranged so that 0 means "no effect", so 1411 * we can gather them up by ORing in the bits at each level). 1412 */ 1413 tableattrs |= extract64(descriptor, 59, 5); 1414 level++; 1415 indexmask = indexmask_grainsize; 1416 goto next_level; 1417 } 1418 1419 /* 1420 * Block entry at level 1 or 2, or page entry at level 3. 1421 * These are basically the same thing, although the number 1422 * of bits we pull in from the vaddr varies. Note that although 1423 * descaddrmask masks enough of the low bits of the descriptor 1424 * to give a correct page or table address, the address field 1425 * in a block descriptor is smaller; so we need to explicitly 1426 * clear the lower bits here before ORing in the low vaddr bits. 1427 * 1428 * Afterward, descaddr is the final physical address. 1429 */ 1430 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1431 descaddr &= ~(hwaddr)(page_size - 1); 1432 descaddr |= (address & (page_size - 1)); 1433 1434 if (likely(!ptw->in_debug)) { 1435 /* 1436 * Access flag. 1437 * If HA is enabled, prepare to update the descriptor below. 1438 * Otherwise, pass the access fault on to software. 1439 */ 1440 if (!(descriptor & (1 << 10))) { 1441 if (param.ha) { 1442 new_descriptor |= 1 << 10; /* AF */ 1443 } else { 1444 fi->type = ARMFault_AccessFlag; 1445 goto do_fault; 1446 } 1447 } 1448 } 1449 1450 /* 1451 * Extract attributes from the (modified) descriptor, and apply 1452 * table descriptors. Stage 2 table descriptors do not include 1453 * any attribute fields. HPD disables all the table attributes 1454 * except NSTable. 1455 */ 1456 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14)); 1457 if (!regime_is_stage2(mmu_idx)) { 1458 attrs |= nstable << 5; /* NS */ 1459 if (!param.hpd) { 1460 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */ 1461 /* 1462 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 1463 * means "force PL1 access only", which means forcing AP[1] to 0. 1464 */ 1465 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */ 1466 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */ 1467 } 1468 } 1469 1470 ap = extract32(attrs, 6, 2); 1471 if (regime_is_stage2(mmu_idx)) { 1472 ns = mmu_idx == ARMMMUIdx_Stage2; 1473 xn = extract64(attrs, 53, 2); 1474 result->f.prot = get_S2prot(env, ap, xn, s1_is_el0); 1475 } else { 1476 ns = extract32(attrs, 5, 1); 1477 xn = extract64(attrs, 54, 1); 1478 pxn = extract64(attrs, 53, 1); 1479 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 1480 } 1481 1482 if (!(result->f.prot & (1 << access_type))) { 1483 fi->type = ARMFault_Permission; 1484 goto do_fault; 1485 } 1486 1487 /* If FEAT_HAFDBS has made changes, update the PTE. */ 1488 if (new_descriptor != descriptor) { 1489 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi); 1490 if (fi->type != ARMFault_None) { 1491 goto do_fault; 1492 } 1493 /* 1494 * I_YZSVV says that if the in-memory descriptor has changed, 1495 * then we must use the information in that new value 1496 * (which might include a different output address, different 1497 * attributes, or generate a fault). 1498 * Restart the handling of the descriptor value from scratch. 1499 */ 1500 if (new_descriptor != descriptor) { 1501 descriptor = new_descriptor; 1502 goto restart_atomic_update; 1503 } 1504 } 1505 1506 if (ns) { 1507 /* 1508 * The NS bit will (as required by the architecture) have no effect if 1509 * the CPU doesn't support TZ or this is a non-secure translation 1510 * regime, because the attribute will already be non-secure. 1511 */ 1512 result->f.attrs.secure = false; 1513 } 1514 1515 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ 1516 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { 1517 result->f.guarded = extract64(attrs, 50, 1); /* GP */ 1518 } 1519 1520 if (regime_is_stage2(mmu_idx)) { 1521 result->cacheattrs.is_s2_format = true; 1522 result->cacheattrs.attrs = extract32(attrs, 2, 4); 1523 } else { 1524 /* Index into MAIR registers for cache attributes */ 1525 uint8_t attrindx = extract32(attrs, 2, 3); 1526 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 1527 assert(attrindx <= 7); 1528 result->cacheattrs.is_s2_format = false; 1529 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 1530 } 1531 1532 /* 1533 * For FEAT_LPA2 and effective DS, the SH field in the attributes 1534 * was re-purposed for output address bits. The SH attribute in 1535 * that case comes from TCR_ELx, which we extracted earlier. 1536 */ 1537 if (param.ds) { 1538 result->cacheattrs.shareability = param.sh; 1539 } else { 1540 result->cacheattrs.shareability = extract32(attrs, 8, 2); 1541 } 1542 1543 result->f.phys_addr = descaddr; 1544 result->f.lg_page_size = ctz64(page_size); 1545 return false; 1546 1547 do_translation_fault: 1548 fi->type = ARMFault_Translation; 1549 do_fault: 1550 fi->level = level; 1551 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 1552 fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx); 1553 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 1554 return true; 1555 } 1556 1557 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 1558 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1559 bool is_secure, GetPhysAddrResult *result, 1560 ARMMMUFaultInfo *fi) 1561 { 1562 int n; 1563 uint32_t mask; 1564 uint32_t base; 1565 bool is_user = regime_is_user(env, mmu_idx); 1566 1567 if (regime_translation_disabled(env, mmu_idx, is_secure)) { 1568 /* MPU disabled. */ 1569 result->f.phys_addr = address; 1570 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1571 return false; 1572 } 1573 1574 result->f.phys_addr = address; 1575 for (n = 7; n >= 0; n--) { 1576 base = env->cp15.c6_region[n]; 1577 if ((base & 1) == 0) { 1578 continue; 1579 } 1580 mask = 1 << ((base >> 1) & 0x1f); 1581 /* Keep this shift separate from the above to avoid an 1582 (undefined) << 32. */ 1583 mask = (mask << 1) - 1; 1584 if (((base ^ address) & ~mask) == 0) { 1585 break; 1586 } 1587 } 1588 if (n < 0) { 1589 fi->type = ARMFault_Background; 1590 return true; 1591 } 1592 1593 if (access_type == MMU_INST_FETCH) { 1594 mask = env->cp15.pmsav5_insn_ap; 1595 } else { 1596 mask = env->cp15.pmsav5_data_ap; 1597 } 1598 mask = (mask >> (n * 4)) & 0xf; 1599 switch (mask) { 1600 case 0: 1601 fi->type = ARMFault_Permission; 1602 fi->level = 1; 1603 return true; 1604 case 1: 1605 if (is_user) { 1606 fi->type = ARMFault_Permission; 1607 fi->level = 1; 1608 return true; 1609 } 1610 result->f.prot = PAGE_READ | PAGE_WRITE; 1611 break; 1612 case 2: 1613 result->f.prot = PAGE_READ; 1614 if (!is_user) { 1615 result->f.prot |= PAGE_WRITE; 1616 } 1617 break; 1618 case 3: 1619 result->f.prot = PAGE_READ | PAGE_WRITE; 1620 break; 1621 case 5: 1622 if (is_user) { 1623 fi->type = ARMFault_Permission; 1624 fi->level = 1; 1625 return true; 1626 } 1627 result->f.prot = PAGE_READ; 1628 break; 1629 case 6: 1630 result->f.prot = PAGE_READ; 1631 break; 1632 default: 1633 /* Bad permission. */ 1634 fi->type = ARMFault_Permission; 1635 fi->level = 1; 1636 return true; 1637 } 1638 result->f.prot |= PAGE_EXEC; 1639 return false; 1640 } 1641 1642 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 1643 int32_t address, uint8_t *prot) 1644 { 1645 if (!arm_feature(env, ARM_FEATURE_M)) { 1646 *prot = PAGE_READ | PAGE_WRITE; 1647 switch (address) { 1648 case 0xF0000000 ... 0xFFFFFFFF: 1649 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 1650 /* hivecs execing is ok */ 1651 *prot |= PAGE_EXEC; 1652 } 1653 break; 1654 case 0x00000000 ... 0x7FFFFFFF: 1655 *prot |= PAGE_EXEC; 1656 break; 1657 } 1658 } else { 1659 /* Default system address map for M profile cores. 1660 * The architecture specifies which regions are execute-never; 1661 * at the MPU level no other checks are defined. 1662 */ 1663 switch (address) { 1664 case 0x00000000 ... 0x1fffffff: /* ROM */ 1665 case 0x20000000 ... 0x3fffffff: /* SRAM */ 1666 case 0x60000000 ... 0x7fffffff: /* RAM */ 1667 case 0x80000000 ... 0x9fffffff: /* RAM */ 1668 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1669 break; 1670 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 1671 case 0xa0000000 ... 0xbfffffff: /* Device */ 1672 case 0xc0000000 ... 0xdfffffff: /* Device */ 1673 case 0xe0000000 ... 0xffffffff: /* System */ 1674 *prot = PAGE_READ | PAGE_WRITE; 1675 break; 1676 default: 1677 g_assert_not_reached(); 1678 } 1679 } 1680 } 1681 1682 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 1683 { 1684 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 1685 return arm_feature(env, ARM_FEATURE_M) && 1686 extract32(address, 20, 12) == 0xe00; 1687 } 1688 1689 static bool m_is_system_region(CPUARMState *env, uint32_t address) 1690 { 1691 /* 1692 * True if address is in the M profile system region 1693 * 0xe0000000 - 0xffffffff 1694 */ 1695 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 1696 } 1697 1698 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 1699 bool is_secure, bool is_user) 1700 { 1701 /* 1702 * Return true if we should use the default memory map as a 1703 * "background" region if there are no hits against any MPU regions. 1704 */ 1705 CPUARMState *env = &cpu->env; 1706 1707 if (is_user) { 1708 return false; 1709 } 1710 1711 if (arm_feature(env, ARM_FEATURE_M)) { 1712 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 1713 } else { 1714 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 1715 } 1716 } 1717 1718 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 1719 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1720 bool secure, GetPhysAddrResult *result, 1721 ARMMMUFaultInfo *fi) 1722 { 1723 ARMCPU *cpu = env_archcpu(env); 1724 int n; 1725 bool is_user = regime_is_user(env, mmu_idx); 1726 1727 result->f.phys_addr = address; 1728 result->f.lg_page_size = TARGET_PAGE_BITS; 1729 result->f.prot = 0; 1730 1731 if (regime_translation_disabled(env, mmu_idx, secure) || 1732 m_is_ppb_region(env, address)) { 1733 /* 1734 * MPU disabled or M profile PPB access: use default memory map. 1735 * The other case which uses the default memory map in the 1736 * v7M ARM ARM pseudocode is exception vector reads from the vector 1737 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 1738 * which always does a direct read using address_space_ldl(), rather 1739 * than going via this function, so we don't need to check that here. 1740 */ 1741 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 1742 } else { /* MPU enabled */ 1743 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 1744 /* region search */ 1745 uint32_t base = env->pmsav7.drbar[n]; 1746 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 1747 uint32_t rmask; 1748 bool srdis = false; 1749 1750 if (!(env->pmsav7.drsr[n] & 0x1)) { 1751 continue; 1752 } 1753 1754 if (!rsize) { 1755 qemu_log_mask(LOG_GUEST_ERROR, 1756 "DRSR[%d]: Rsize field cannot be 0\n", n); 1757 continue; 1758 } 1759 rsize++; 1760 rmask = (1ull << rsize) - 1; 1761 1762 if (base & rmask) { 1763 qemu_log_mask(LOG_GUEST_ERROR, 1764 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 1765 "to DRSR region size, mask = 0x%" PRIx32 "\n", 1766 n, base, rmask); 1767 continue; 1768 } 1769 1770 if (address < base || address > base + rmask) { 1771 /* 1772 * Address not in this region. We must check whether the 1773 * region covers addresses in the same page as our address. 1774 * In that case we must not report a size that covers the 1775 * whole page for a subsequent hit against a different MPU 1776 * region or the background region, because it would result in 1777 * incorrect TLB hits for subsequent accesses to addresses that 1778 * are in this MPU region. 1779 */ 1780 if (ranges_overlap(base, rmask, 1781 address & TARGET_PAGE_MASK, 1782 TARGET_PAGE_SIZE)) { 1783 result->f.lg_page_size = 0; 1784 } 1785 continue; 1786 } 1787 1788 /* Region matched */ 1789 1790 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 1791 int i, snd; 1792 uint32_t srdis_mask; 1793 1794 rsize -= 3; /* sub region size (power of 2) */ 1795 snd = ((address - base) >> rsize) & 0x7; 1796 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 1797 1798 srdis_mask = srdis ? 0x3 : 0x0; 1799 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 1800 /* 1801 * This will check in groups of 2, 4 and then 8, whether 1802 * the subregion bits are consistent. rsize is incremented 1803 * back up to give the region size, considering consistent 1804 * adjacent subregions as one region. Stop testing if rsize 1805 * is already big enough for an entire QEMU page. 1806 */ 1807 int snd_rounded = snd & ~(i - 1); 1808 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 1809 snd_rounded + 8, i); 1810 if (srdis_mask ^ srdis_multi) { 1811 break; 1812 } 1813 srdis_mask = (srdis_mask << i) | srdis_mask; 1814 rsize++; 1815 } 1816 } 1817 if (srdis) { 1818 continue; 1819 } 1820 if (rsize < TARGET_PAGE_BITS) { 1821 result->f.lg_page_size = rsize; 1822 } 1823 break; 1824 } 1825 1826 if (n == -1) { /* no hits */ 1827 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 1828 /* background fault */ 1829 fi->type = ARMFault_Background; 1830 return true; 1831 } 1832 get_phys_addr_pmsav7_default(env, mmu_idx, address, 1833 &result->f.prot); 1834 } else { /* a MPU hit! */ 1835 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 1836 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 1837 1838 if (m_is_system_region(env, address)) { 1839 /* System space is always execute never */ 1840 xn = 1; 1841 } 1842 1843 if (is_user) { /* User mode AP bit decoding */ 1844 switch (ap) { 1845 case 0: 1846 case 1: 1847 case 5: 1848 break; /* no access */ 1849 case 3: 1850 result->f.prot |= PAGE_WRITE; 1851 /* fall through */ 1852 case 2: 1853 case 6: 1854 result->f.prot |= PAGE_READ | PAGE_EXEC; 1855 break; 1856 case 7: 1857 /* for v7M, same as 6; for R profile a reserved value */ 1858 if (arm_feature(env, ARM_FEATURE_M)) { 1859 result->f.prot |= PAGE_READ | PAGE_EXEC; 1860 break; 1861 } 1862 /* fall through */ 1863 default: 1864 qemu_log_mask(LOG_GUEST_ERROR, 1865 "DRACR[%d]: Bad value for AP bits: 0x%" 1866 PRIx32 "\n", n, ap); 1867 } 1868 } else { /* Priv. mode AP bits decoding */ 1869 switch (ap) { 1870 case 0: 1871 break; /* no access */ 1872 case 1: 1873 case 2: 1874 case 3: 1875 result->f.prot |= PAGE_WRITE; 1876 /* fall through */ 1877 case 5: 1878 case 6: 1879 result->f.prot |= PAGE_READ | PAGE_EXEC; 1880 break; 1881 case 7: 1882 /* for v7M, same as 6; for R profile a reserved value */ 1883 if (arm_feature(env, ARM_FEATURE_M)) { 1884 result->f.prot |= PAGE_READ | PAGE_EXEC; 1885 break; 1886 } 1887 /* fall through */ 1888 default: 1889 qemu_log_mask(LOG_GUEST_ERROR, 1890 "DRACR[%d]: Bad value for AP bits: 0x%" 1891 PRIx32 "\n", n, ap); 1892 } 1893 } 1894 1895 /* execute never */ 1896 if (xn) { 1897 result->f.prot &= ~PAGE_EXEC; 1898 } 1899 } 1900 } 1901 1902 fi->type = ARMFault_Permission; 1903 fi->level = 1; 1904 return !(result->f.prot & (1 << access_type)); 1905 } 1906 1907 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 1908 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1909 bool secure, GetPhysAddrResult *result, 1910 ARMMMUFaultInfo *fi, uint32_t *mregion) 1911 { 1912 /* 1913 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 1914 * that a full phys-to-virt translation does). 1915 * mregion is (if not NULL) set to the region number which matched, 1916 * or -1 if no region number is returned (MPU off, address did not 1917 * hit a region, address hit in multiple regions). 1918 * If the region hit doesn't cover the entire TARGET_PAGE the address 1919 * is within, then we set the result page_size to 1 to force the 1920 * memory system to use a subpage. 1921 */ 1922 ARMCPU *cpu = env_archcpu(env); 1923 bool is_user = regime_is_user(env, mmu_idx); 1924 int n; 1925 int matchregion = -1; 1926 bool hit = false; 1927 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 1928 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 1929 1930 result->f.lg_page_size = TARGET_PAGE_BITS; 1931 result->f.phys_addr = address; 1932 result->f.prot = 0; 1933 if (mregion) { 1934 *mregion = -1; 1935 } 1936 1937 /* 1938 * Unlike the ARM ARM pseudocode, we don't need to check whether this 1939 * was an exception vector read from the vector table (which is always 1940 * done using the default system address map), because those accesses 1941 * are done in arm_v7m_load_vector(), which always does a direct 1942 * read using address_space_ldl(), rather than going via this function. 1943 */ 1944 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */ 1945 hit = true; 1946 } else if (m_is_ppb_region(env, address)) { 1947 hit = true; 1948 } else { 1949 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 1950 hit = true; 1951 } 1952 1953 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 1954 /* region search */ 1955 /* 1956 * Note that the base address is bits [31:5] from the register 1957 * with bits [4:0] all zeroes, but the limit address is bits 1958 * [31:5] from the register with bits [4:0] all ones. 1959 */ 1960 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 1961 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 1962 1963 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 1964 /* Region disabled */ 1965 continue; 1966 } 1967 1968 if (address < base || address > limit) { 1969 /* 1970 * Address not in this region. We must check whether the 1971 * region covers addresses in the same page as our address. 1972 * In that case we must not report a size that covers the 1973 * whole page for a subsequent hit against a different MPU 1974 * region or the background region, because it would result in 1975 * incorrect TLB hits for subsequent accesses to addresses that 1976 * are in this MPU region. 1977 */ 1978 if (limit >= base && 1979 ranges_overlap(base, limit - base + 1, 1980 addr_page_base, 1981 TARGET_PAGE_SIZE)) { 1982 result->f.lg_page_size = 0; 1983 } 1984 continue; 1985 } 1986 1987 if (base > addr_page_base || limit < addr_page_limit) { 1988 result->f.lg_page_size = 0; 1989 } 1990 1991 if (matchregion != -1) { 1992 /* 1993 * Multiple regions match -- always a failure (unlike 1994 * PMSAv7 where highest-numbered-region wins) 1995 */ 1996 fi->type = ARMFault_Permission; 1997 fi->level = 1; 1998 return true; 1999 } 2000 2001 matchregion = n; 2002 hit = true; 2003 } 2004 } 2005 2006 if (!hit) { 2007 /* background fault */ 2008 fi->type = ARMFault_Background; 2009 return true; 2010 } 2011 2012 if (matchregion == -1) { 2013 /* hit using the background region */ 2014 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2015 } else { 2016 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 2017 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 2018 bool pxn = false; 2019 2020 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 2021 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 2022 } 2023 2024 if (m_is_system_region(env, address)) { 2025 /* System space is always execute never */ 2026 xn = 1; 2027 } 2028 2029 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 2030 if (result->f.prot && !xn && !(pxn && !is_user)) { 2031 result->f.prot |= PAGE_EXEC; 2032 } 2033 /* 2034 * We don't need to look the attribute up in the MAIR0/MAIR1 2035 * registers because that only tells us about cacheability. 2036 */ 2037 if (mregion) { 2038 *mregion = matchregion; 2039 } 2040 } 2041 2042 fi->type = ARMFault_Permission; 2043 fi->level = 1; 2044 return !(result->f.prot & (1 << access_type)); 2045 } 2046 2047 static bool v8m_is_sau_exempt(CPUARMState *env, 2048 uint32_t address, MMUAccessType access_type) 2049 { 2050 /* 2051 * The architecture specifies that certain address ranges are 2052 * exempt from v8M SAU/IDAU checks. 2053 */ 2054 return 2055 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 2056 (address >= 0xe0000000 && address <= 0xe0002fff) || 2057 (address >= 0xe000e000 && address <= 0xe000efff) || 2058 (address >= 0xe002e000 && address <= 0xe002efff) || 2059 (address >= 0xe0040000 && address <= 0xe0041fff) || 2060 (address >= 0xe00ff000 && address <= 0xe00fffff); 2061 } 2062 2063 void v8m_security_lookup(CPUARMState *env, uint32_t address, 2064 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2065 bool is_secure, V8M_SAttributes *sattrs) 2066 { 2067 /* 2068 * Look up the security attributes for this address. Compare the 2069 * pseudocode SecurityCheck() function. 2070 * We assume the caller has zero-initialized *sattrs. 2071 */ 2072 ARMCPU *cpu = env_archcpu(env); 2073 int r; 2074 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 2075 int idau_region = IREGION_NOTVALID; 2076 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2077 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2078 2079 if (cpu->idau) { 2080 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 2081 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 2082 2083 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 2084 &idau_nsc); 2085 } 2086 2087 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 2088 /* 0xf0000000..0xffffffff is always S for insn fetches */ 2089 return; 2090 } 2091 2092 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 2093 sattrs->ns = !is_secure; 2094 return; 2095 } 2096 2097 if (idau_region != IREGION_NOTVALID) { 2098 sattrs->irvalid = true; 2099 sattrs->iregion = idau_region; 2100 } 2101 2102 switch (env->sau.ctrl & 3) { 2103 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 2104 break; 2105 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 2106 sattrs->ns = true; 2107 break; 2108 default: /* SAU.ENABLE == 1 */ 2109 for (r = 0; r < cpu->sau_sregion; r++) { 2110 if (env->sau.rlar[r] & 1) { 2111 uint32_t base = env->sau.rbar[r] & ~0x1f; 2112 uint32_t limit = env->sau.rlar[r] | 0x1f; 2113 2114 if (base <= address && limit >= address) { 2115 if (base > addr_page_base || limit < addr_page_limit) { 2116 sattrs->subpage = true; 2117 } 2118 if (sattrs->srvalid) { 2119 /* 2120 * If we hit in more than one region then we must report 2121 * as Secure, not NS-Callable, with no valid region 2122 * number info. 2123 */ 2124 sattrs->ns = false; 2125 sattrs->nsc = false; 2126 sattrs->sregion = 0; 2127 sattrs->srvalid = false; 2128 break; 2129 } else { 2130 if (env->sau.rlar[r] & 2) { 2131 sattrs->nsc = true; 2132 } else { 2133 sattrs->ns = true; 2134 } 2135 sattrs->srvalid = true; 2136 sattrs->sregion = r; 2137 } 2138 } else { 2139 /* 2140 * Address not in this region. We must check whether the 2141 * region covers addresses in the same page as our address. 2142 * In that case we must not report a size that covers the 2143 * whole page for a subsequent hit against a different MPU 2144 * region or the background region, because it would result 2145 * in incorrect TLB hits for subsequent accesses to 2146 * addresses that are in this MPU region. 2147 */ 2148 if (limit >= base && 2149 ranges_overlap(base, limit - base + 1, 2150 addr_page_base, 2151 TARGET_PAGE_SIZE)) { 2152 sattrs->subpage = true; 2153 } 2154 } 2155 } 2156 } 2157 break; 2158 } 2159 2160 /* 2161 * The IDAU will override the SAU lookup results if it specifies 2162 * higher security than the SAU does. 2163 */ 2164 if (!idau_ns) { 2165 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 2166 sattrs->ns = false; 2167 sattrs->nsc = idau_nsc; 2168 } 2169 } 2170 } 2171 2172 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 2173 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2174 bool secure, GetPhysAddrResult *result, 2175 ARMMMUFaultInfo *fi) 2176 { 2177 V8M_SAttributes sattrs = {}; 2178 bool ret; 2179 2180 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2181 v8m_security_lookup(env, address, access_type, mmu_idx, 2182 secure, &sattrs); 2183 if (access_type == MMU_INST_FETCH) { 2184 /* 2185 * Instruction fetches always use the MMU bank and the 2186 * transaction attribute determined by the fetch address, 2187 * regardless of CPU state. This is painful for QEMU 2188 * to handle, because it would mean we need to encode 2189 * into the mmu_idx not just the (user, negpri) information 2190 * for the current security state but also that for the 2191 * other security state, which would balloon the number 2192 * of mmu_idx values needed alarmingly. 2193 * Fortunately we can avoid this because it's not actually 2194 * possible to arbitrarily execute code from memory with 2195 * the wrong security attribute: it will always generate 2196 * an exception of some kind or another, apart from the 2197 * special case of an NS CPU executing an SG instruction 2198 * in S&NSC memory. So we always just fail the translation 2199 * here and sort things out in the exception handler 2200 * (including possibly emulating an SG instruction). 2201 */ 2202 if (sattrs.ns != !secure) { 2203 if (sattrs.nsc) { 2204 fi->type = ARMFault_QEMU_NSCExec; 2205 } else { 2206 fi->type = ARMFault_QEMU_SFault; 2207 } 2208 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2209 result->f.phys_addr = address; 2210 result->f.prot = 0; 2211 return true; 2212 } 2213 } else { 2214 /* 2215 * For data accesses we always use the MMU bank indicated 2216 * by the current CPU state, but the security attributes 2217 * might downgrade a secure access to nonsecure. 2218 */ 2219 if (sattrs.ns) { 2220 result->f.attrs.secure = false; 2221 } else if (!secure) { 2222 /* 2223 * NS access to S memory must fault. 2224 * Architecturally we should first check whether the 2225 * MPU information for this address indicates that we 2226 * are doing an unaligned access to Device memory, which 2227 * should generate a UsageFault instead. QEMU does not 2228 * currently check for that kind of unaligned access though. 2229 * If we added it we would need to do so as a special case 2230 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2231 */ 2232 fi->type = ARMFault_QEMU_SFault; 2233 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2234 result->f.phys_addr = address; 2235 result->f.prot = 0; 2236 return true; 2237 } 2238 } 2239 } 2240 2241 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, 2242 result, fi, NULL); 2243 if (sattrs.subpage) { 2244 result->f.lg_page_size = 0; 2245 } 2246 return ret; 2247 } 2248 2249 /* 2250 * Translate from the 4-bit stage 2 representation of 2251 * memory attributes (without cache-allocation hints) to 2252 * the 8-bit representation of the stage 1 MAIR registers 2253 * (which includes allocation hints). 2254 * 2255 * ref: shared/translation/attrs/S2AttrDecode() 2256 * .../S2ConvertAttrsHints() 2257 */ 2258 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) 2259 { 2260 uint8_t hiattr = extract32(s2attrs, 2, 2); 2261 uint8_t loattr = extract32(s2attrs, 0, 2); 2262 uint8_t hihint = 0, lohint = 0; 2263 2264 if (hiattr != 0) { /* normal memory */ 2265 if (hcr & HCR_CD) { /* cache disabled */ 2266 hiattr = loattr = 1; /* non-cacheable */ 2267 } else { 2268 if (hiattr != 1) { /* Write-through or write-back */ 2269 hihint = 3; /* RW allocate */ 2270 } 2271 if (loattr != 1) { /* Write-through or write-back */ 2272 lohint = 3; /* RW allocate */ 2273 } 2274 } 2275 } 2276 2277 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 2278 } 2279 2280 /* 2281 * Combine either inner or outer cacheability attributes for normal 2282 * memory, according to table D4-42 and pseudocode procedure 2283 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 2284 * 2285 * NB: only stage 1 includes allocation hints (RW bits), leading to 2286 * some asymmetry. 2287 */ 2288 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 2289 { 2290 if (s1 == 4 || s2 == 4) { 2291 /* non-cacheable has precedence */ 2292 return 4; 2293 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 2294 /* stage 1 write-through takes precedence */ 2295 return s1; 2296 } else if (extract32(s2, 2, 2) == 2) { 2297 /* stage 2 write-through takes precedence, but the allocation hint 2298 * is still taken from stage 1 2299 */ 2300 return (2 << 2) | extract32(s1, 0, 2); 2301 } else { /* write-back */ 2302 return s1; 2303 } 2304 } 2305 2306 /* 2307 * Combine the memory type and cacheability attributes of 2308 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 2309 * combined attributes in MAIR_EL1 format. 2310 */ 2311 static uint8_t combined_attrs_nofwb(uint64_t hcr, 2312 ARMCacheAttrs s1, ARMCacheAttrs s2) 2313 { 2314 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 2315 2316 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); 2317 2318 s1lo = extract32(s1.attrs, 0, 4); 2319 s2lo = extract32(s2_mair_attrs, 0, 4); 2320 s1hi = extract32(s1.attrs, 4, 4); 2321 s2hi = extract32(s2_mair_attrs, 4, 4); 2322 2323 /* Combine memory type and cacheability attributes */ 2324 if (s1hi == 0 || s2hi == 0) { 2325 /* Device has precedence over normal */ 2326 if (s1lo == 0 || s2lo == 0) { 2327 /* nGnRnE has precedence over anything */ 2328 ret_attrs = 0; 2329 } else if (s1lo == 4 || s2lo == 4) { 2330 /* non-Reordering has precedence over Reordering */ 2331 ret_attrs = 4; /* nGnRE */ 2332 } else if (s1lo == 8 || s2lo == 8) { 2333 /* non-Gathering has precedence over Gathering */ 2334 ret_attrs = 8; /* nGRE */ 2335 } else { 2336 ret_attrs = 0xc; /* GRE */ 2337 } 2338 } else { /* Normal memory */ 2339 /* Outer/inner cacheability combine independently */ 2340 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 2341 | combine_cacheattr_nibble(s1lo, s2lo); 2342 } 2343 return ret_attrs; 2344 } 2345 2346 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 2347 { 2348 /* 2349 * Given the 4 bits specifying the outer or inner cacheability 2350 * in MAIR format, return a value specifying Normal Write-Back, 2351 * with the allocation and transient hints taken from the input 2352 * if the input specified some kind of cacheable attribute. 2353 */ 2354 if (attr == 0 || attr == 4) { 2355 /* 2356 * 0 == an UNPREDICTABLE encoding 2357 * 4 == Non-cacheable 2358 * Either way, force Write-Back RW allocate non-transient 2359 */ 2360 return 0xf; 2361 } 2362 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 2363 return attr | 4; 2364 } 2365 2366 /* 2367 * Combine the memory type and cacheability attributes of 2368 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 2369 * combined attributes in MAIR_EL1 format. 2370 */ 2371 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) 2372 { 2373 switch (s2.attrs) { 2374 case 7: 2375 /* Use stage 1 attributes */ 2376 return s1.attrs; 2377 case 6: 2378 /* 2379 * Force Normal Write-Back. Note that if S1 is Normal cacheable 2380 * then we take the allocation hints from it; otherwise it is 2381 * RW allocate, non-transient. 2382 */ 2383 if ((s1.attrs & 0xf0) == 0) { 2384 /* S1 is Device */ 2385 return 0xff; 2386 } 2387 /* Need to check the Inner and Outer nibbles separately */ 2388 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 2389 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 2390 case 5: 2391 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 2392 if ((s1.attrs & 0xf0) == 0) { 2393 return s1.attrs; 2394 } 2395 return 0x44; 2396 case 0 ... 3: 2397 /* Force Device, of subtype specified by S2 */ 2398 return s2.attrs << 2; 2399 default: 2400 /* 2401 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 2402 * arbitrarily force Device. 2403 */ 2404 return 0; 2405 } 2406 } 2407 2408 /* 2409 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 2410 * and CombineS1S2Desc() 2411 * 2412 * @env: CPUARMState 2413 * @s1: Attributes from stage 1 walk 2414 * @s2: Attributes from stage 2 walk 2415 */ 2416 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, 2417 ARMCacheAttrs s1, ARMCacheAttrs s2) 2418 { 2419 ARMCacheAttrs ret; 2420 bool tagged = false; 2421 2422 assert(s2.is_s2_format && !s1.is_s2_format); 2423 ret.is_s2_format = false; 2424 2425 if (s1.attrs == 0xf0) { 2426 tagged = true; 2427 s1.attrs = 0xff; 2428 } 2429 2430 /* Combine shareability attributes (table D4-43) */ 2431 if (s1.shareability == 2 || s2.shareability == 2) { 2432 /* if either are outer-shareable, the result is outer-shareable */ 2433 ret.shareability = 2; 2434 } else if (s1.shareability == 3 || s2.shareability == 3) { 2435 /* if either are inner-shareable, the result is inner-shareable */ 2436 ret.shareability = 3; 2437 } else { 2438 /* both non-shareable */ 2439 ret.shareability = 0; 2440 } 2441 2442 /* Combine memory type and cacheability attributes */ 2443 if (hcr & HCR_FWB) { 2444 ret.attrs = combined_attrs_fwb(s1, s2); 2445 } else { 2446 ret.attrs = combined_attrs_nofwb(hcr, s1, s2); 2447 } 2448 2449 /* 2450 * Any location for which the resultant memory type is any 2451 * type of Device memory is always treated as Outer Shareable. 2452 * Any location for which the resultant memory type is Normal 2453 * Inner Non-cacheable, Outer Non-cacheable is always treated 2454 * as Outer Shareable. 2455 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 2456 */ 2457 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 2458 ret.shareability = 2; 2459 } 2460 2461 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 2462 if (tagged && ret.attrs == 0xff) { 2463 ret.attrs = 0xf0; 2464 } 2465 2466 return ret; 2467 } 2468 2469 /* 2470 * MMU disabled. S1 addresses within aa64 translation regimes are 2471 * still checked for bounds -- see AArch64.S1DisabledOutput(). 2472 */ 2473 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address, 2474 MMUAccessType access_type, 2475 ARMMMUIdx mmu_idx, bool is_secure, 2476 GetPhysAddrResult *result, 2477 ARMMMUFaultInfo *fi) 2478 { 2479 uint8_t memattr = 0x00; /* Device nGnRnE */ 2480 uint8_t shareability = 0; /* non-sharable */ 2481 int r_el; 2482 2483 switch (mmu_idx) { 2484 case ARMMMUIdx_Stage2: 2485 case ARMMMUIdx_Stage2_S: 2486 case ARMMMUIdx_Phys_NS: 2487 case ARMMMUIdx_Phys_S: 2488 break; 2489 2490 default: 2491 r_el = regime_el(env, mmu_idx); 2492 if (arm_el_is_aa64(env, r_el)) { 2493 int pamax = arm_pamax(env_archcpu(env)); 2494 uint64_t tcr = env->cp15.tcr_el[r_el]; 2495 int addrtop, tbi; 2496 2497 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 2498 if (access_type == MMU_INST_FETCH) { 2499 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 2500 } 2501 tbi = (tbi >> extract64(address, 55, 1)) & 1; 2502 addrtop = (tbi ? 55 : 63); 2503 2504 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 2505 fi->type = ARMFault_AddressSize; 2506 fi->level = 0; 2507 fi->stage2 = false; 2508 return 1; 2509 } 2510 2511 /* 2512 * When TBI is disabled, we've just validated that all of the 2513 * bits above PAMax are zero, so logically we only need to 2514 * clear the top byte for TBI. But it's clearer to follow 2515 * the pseudocode set of addrdesc.paddress. 2516 */ 2517 address = extract64(address, 0, 52); 2518 } 2519 2520 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 2521 if (r_el == 1) { 2522 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure); 2523 if (hcr & HCR_DC) { 2524 if (hcr & HCR_DCT) { 2525 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 2526 } else { 2527 memattr = 0xff; /* Normal, WB, RWA */ 2528 } 2529 } 2530 } 2531 if (memattr == 0 && access_type == MMU_INST_FETCH) { 2532 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 2533 memattr = 0xee; /* Normal, WT, RA, NT */ 2534 } else { 2535 memattr = 0x44; /* Normal, NC, No */ 2536 } 2537 shareability = 2; /* outer sharable */ 2538 } 2539 result->cacheattrs.is_s2_format = false; 2540 break; 2541 } 2542 2543 result->f.phys_addr = address; 2544 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2545 result->f.lg_page_size = TARGET_PAGE_BITS; 2546 result->cacheattrs.shareability = shareability; 2547 result->cacheattrs.attrs = memattr; 2548 return false; 2549 } 2550 2551 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, 2552 target_ulong address, 2553 MMUAccessType access_type, 2554 GetPhysAddrResult *result, 2555 ARMMMUFaultInfo *fi) 2556 { 2557 hwaddr ipa; 2558 int s1_prot; 2559 bool is_secure = ptw->in_secure; 2560 bool ret, ipa_secure, s2walk_secure; 2561 ARMCacheAttrs cacheattrs1; 2562 bool is_el0; 2563 uint64_t hcr; 2564 2565 ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi); 2566 2567 /* If S1 fails or S2 is disabled, return early. */ 2568 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) { 2569 return ret; 2570 } 2571 2572 ipa = result->f.phys_addr; 2573 ipa_secure = result->f.attrs.secure; 2574 if (is_secure) { 2575 /* Select TCR based on the NS bit from the S1 walk. */ 2576 s2walk_secure = !(ipa_secure 2577 ? env->cp15.vstcr_el2 & VSTCR_SW 2578 : env->cp15.vtcr_el2 & VTCR_NSW); 2579 } else { 2580 assert(!ipa_secure); 2581 s2walk_secure = false; 2582 } 2583 2584 is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; 2585 ptw->in_mmu_idx = s2walk_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 2586 ptw->in_ptw_idx = s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 2587 ptw->in_secure = s2walk_secure; 2588 2589 /* 2590 * S1 is done, now do S2 translation. 2591 * Save the stage1 results so that we may merge prot and cacheattrs later. 2592 */ 2593 s1_prot = result->f.prot; 2594 cacheattrs1 = result->cacheattrs; 2595 memset(result, 0, sizeof(*result)); 2596 2597 ret = get_phys_addr_lpae(env, ptw, ipa, access_type, is_el0, result, fi); 2598 fi->s2addr = ipa; 2599 2600 /* Combine the S1 and S2 perms. */ 2601 result->f.prot &= s1_prot; 2602 2603 /* If S2 fails, return early. */ 2604 if (ret) { 2605 return ret; 2606 } 2607 2608 /* Combine the S1 and S2 cache attributes. */ 2609 hcr = arm_hcr_el2_eff_secstate(env, is_secure); 2610 if (hcr & HCR_DC) { 2611 /* 2612 * HCR.DC forces the first stage attributes to 2613 * Normal Non-Shareable, 2614 * Inner Write-Back Read-Allocate Write-Allocate, 2615 * Outer Write-Back Read-Allocate Write-Allocate. 2616 * Do not overwrite Tagged within attrs. 2617 */ 2618 if (cacheattrs1.attrs != 0xf0) { 2619 cacheattrs1.attrs = 0xff; 2620 } 2621 cacheattrs1.shareability = 0; 2622 } 2623 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, 2624 result->cacheattrs); 2625 2626 /* 2627 * Check if IPA translates to secure or non-secure PA space. 2628 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. 2629 */ 2630 result->f.attrs.secure = 2631 (is_secure 2632 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) 2633 && (ipa_secure 2634 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)))); 2635 2636 return false; 2637 } 2638 2639 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw, 2640 target_ulong address, 2641 MMUAccessType access_type, 2642 GetPhysAddrResult *result, 2643 ARMMMUFaultInfo *fi) 2644 { 2645 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2646 bool is_secure = ptw->in_secure; 2647 ARMMMUIdx s1_mmu_idx; 2648 2649 switch (mmu_idx) { 2650 case ARMMMUIdx_Phys_S: 2651 case ARMMMUIdx_Phys_NS: 2652 /* Checking Phys early avoids special casing later vs regime_el. */ 2653 return get_phys_addr_disabled(env, address, access_type, mmu_idx, 2654 is_secure, result, fi); 2655 2656 case ARMMMUIdx_Stage1_E0: 2657 case ARMMMUIdx_Stage1_E1: 2658 case ARMMMUIdx_Stage1_E1_PAN: 2659 /* First stage lookup uses second stage for ptw. */ 2660 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 2661 break; 2662 2663 case ARMMMUIdx_E10_0: 2664 s1_mmu_idx = ARMMMUIdx_Stage1_E0; 2665 goto do_twostage; 2666 case ARMMMUIdx_E10_1: 2667 s1_mmu_idx = ARMMMUIdx_Stage1_E1; 2668 goto do_twostage; 2669 case ARMMMUIdx_E10_1_PAN: 2670 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 2671 do_twostage: 2672 /* 2673 * Call ourselves recursively to do the stage 1 and then stage 2 2674 * translations if mmu_idx is a two-stage regime, and EL2 present. 2675 * Otherwise, a stage1+stage2 translation is just stage 1. 2676 */ 2677 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; 2678 if (arm_feature(env, ARM_FEATURE_EL2)) { 2679 return get_phys_addr_twostage(env, ptw, address, access_type, 2680 result, fi); 2681 } 2682 /* fall through */ 2683 2684 default: 2685 /* Single stage and second stage uses physical for ptw. */ 2686 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 2687 break; 2688 } 2689 2690 /* 2691 * The page table entries may downgrade secure to non-secure, but 2692 * cannot upgrade an non-secure translation regime's attributes 2693 * to secure. 2694 */ 2695 result->f.attrs.secure = is_secure; 2696 result->f.attrs.user = regime_is_user(env, mmu_idx); 2697 2698 /* 2699 * Fast Context Switch Extension. This doesn't exist at all in v8. 2700 * In v7 and earlier it affects all stage 1 translations. 2701 */ 2702 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 2703 && !arm_feature(env, ARM_FEATURE_V8)) { 2704 if (regime_el(env, mmu_idx) == 3) { 2705 address += env->cp15.fcseidr_s; 2706 } else { 2707 address += env->cp15.fcseidr_ns; 2708 } 2709 } 2710 2711 if (arm_feature(env, ARM_FEATURE_PMSA)) { 2712 bool ret; 2713 result->f.lg_page_size = TARGET_PAGE_BITS; 2714 2715 if (arm_feature(env, ARM_FEATURE_V8)) { 2716 /* PMSAv8 */ 2717 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 2718 is_secure, result, fi); 2719 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2720 /* PMSAv7 */ 2721 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 2722 is_secure, result, fi); 2723 } else { 2724 /* Pre-v7 MPU */ 2725 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 2726 is_secure, result, fi); 2727 } 2728 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 2729 " mmu_idx %u -> %s (prot %c%c%c)\n", 2730 access_type == MMU_DATA_LOAD ? "reading" : 2731 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 2732 (uint32_t)address, mmu_idx, 2733 ret ? "Miss" : "Hit", 2734 result->f.prot & PAGE_READ ? 'r' : '-', 2735 result->f.prot & PAGE_WRITE ? 'w' : '-', 2736 result->f.prot & PAGE_EXEC ? 'x' : '-'); 2737 2738 return ret; 2739 } 2740 2741 /* Definitely a real MMU, not an MPU */ 2742 2743 if (regime_translation_disabled(env, mmu_idx, is_secure)) { 2744 return get_phys_addr_disabled(env, address, access_type, mmu_idx, 2745 is_secure, result, fi); 2746 } 2747 2748 if (regime_using_lpae_format(env, mmu_idx)) { 2749 return get_phys_addr_lpae(env, ptw, address, access_type, false, 2750 result, fi); 2751 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 2752 return get_phys_addr_v6(env, ptw, address, access_type, result, fi); 2753 } else { 2754 return get_phys_addr_v5(env, ptw, address, access_type, result, fi); 2755 } 2756 } 2757 2758 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address, 2759 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2760 bool is_secure, GetPhysAddrResult *result, 2761 ARMMMUFaultInfo *fi) 2762 { 2763 S1Translate ptw = { 2764 .in_mmu_idx = mmu_idx, 2765 .in_secure = is_secure, 2766 }; 2767 return get_phys_addr_with_struct(env, &ptw, address, access_type, 2768 result, fi); 2769 } 2770 2771 bool get_phys_addr(CPUARMState *env, target_ulong address, 2772 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2773 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 2774 { 2775 bool is_secure; 2776 2777 switch (mmu_idx) { 2778 case ARMMMUIdx_E10_0: 2779 case ARMMMUIdx_E10_1: 2780 case ARMMMUIdx_E10_1_PAN: 2781 case ARMMMUIdx_E20_0: 2782 case ARMMMUIdx_E20_2: 2783 case ARMMMUIdx_E20_2_PAN: 2784 case ARMMMUIdx_Stage1_E0: 2785 case ARMMMUIdx_Stage1_E1: 2786 case ARMMMUIdx_Stage1_E1_PAN: 2787 case ARMMMUIdx_E2: 2788 is_secure = arm_is_secure_below_el3(env); 2789 break; 2790 case ARMMMUIdx_Stage2: 2791 case ARMMMUIdx_Phys_NS: 2792 case ARMMMUIdx_MPrivNegPri: 2793 case ARMMMUIdx_MUserNegPri: 2794 case ARMMMUIdx_MPriv: 2795 case ARMMMUIdx_MUser: 2796 is_secure = false; 2797 break; 2798 case ARMMMUIdx_E3: 2799 case ARMMMUIdx_Stage2_S: 2800 case ARMMMUIdx_Phys_S: 2801 case ARMMMUIdx_MSPrivNegPri: 2802 case ARMMMUIdx_MSUserNegPri: 2803 case ARMMMUIdx_MSPriv: 2804 case ARMMMUIdx_MSUser: 2805 is_secure = true; 2806 break; 2807 default: 2808 g_assert_not_reached(); 2809 } 2810 return get_phys_addr_with_secure(env, address, access_type, mmu_idx, 2811 is_secure, result, fi); 2812 } 2813 2814 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 2815 MemTxAttrs *attrs) 2816 { 2817 ARMCPU *cpu = ARM_CPU(cs); 2818 CPUARMState *env = &cpu->env; 2819 S1Translate ptw = { 2820 .in_mmu_idx = arm_mmu_idx(env), 2821 .in_secure = arm_is_secure(env), 2822 .in_debug = true, 2823 }; 2824 GetPhysAddrResult res = {}; 2825 ARMMMUFaultInfo fi = {}; 2826 bool ret; 2827 2828 ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi); 2829 *attrs = res.f.attrs; 2830 2831 if (ret) { 2832 return -1; 2833 } 2834 return res.f.phys_addr; 2835 } 2836