xref: /openbmc/qemu/target/arm/ptw.c (revision 6f1e91f7)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "idau.h"
17 
18 
19 typedef struct S1Translate {
20     ARMMMUIdx in_mmu_idx;
21     ARMMMUIdx in_ptw_idx;
22     bool in_secure;
23     bool in_debug;
24     bool out_secure;
25     bool out_rw;
26     bool out_be;
27     hwaddr out_virt;
28     hwaddr out_phys;
29     void *out_host;
30 } S1Translate;
31 
32 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
33                                uint64_t address,
34                                MMUAccessType access_type, bool s1_is_el0,
35                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
36     __attribute__((nonnull));
37 
38 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
39                                       target_ulong address,
40                                       MMUAccessType access_type,
41                                       GetPhysAddrResult *result,
42                                       ARMMMUFaultInfo *fi)
43     __attribute__((nonnull));
44 
45 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
46 static const uint8_t pamax_map[] = {
47     [0] = 32,
48     [1] = 36,
49     [2] = 40,
50     [3] = 42,
51     [4] = 44,
52     [5] = 48,
53     [6] = 52,
54 };
55 
56 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
57 unsigned int arm_pamax(ARMCPU *cpu)
58 {
59     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
60         unsigned int parange =
61             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
62 
63         /*
64          * id_aa64mmfr0 is a read-only register so values outside of the
65          * supported mappings can be considered an implementation error.
66          */
67         assert(parange < ARRAY_SIZE(pamax_map));
68         return pamax_map[parange];
69     }
70 
71     /*
72      * In machvirt_init, we call arm_pamax on a cpu that is not fully
73      * initialized, so we can't rely on the propagation done in realize.
74      */
75     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
76         arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
77         /* v7 with LPAE */
78         return 40;
79     }
80     /* Anything else */
81     return 32;
82 }
83 
84 /*
85  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
86  */
87 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
88 {
89     switch (mmu_idx) {
90     case ARMMMUIdx_E10_0:
91         return ARMMMUIdx_Stage1_E0;
92     case ARMMMUIdx_E10_1:
93         return ARMMMUIdx_Stage1_E1;
94     case ARMMMUIdx_E10_1_PAN:
95         return ARMMMUIdx_Stage1_E1_PAN;
96     default:
97         return mmu_idx;
98     }
99 }
100 
101 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
102 {
103     return stage_1_mmu_idx(arm_mmu_idx(env));
104 }
105 
106 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
107 {
108     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
109 }
110 
111 /* Return the TTBR associated with this translation regime */
112 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
113 {
114     if (mmu_idx == ARMMMUIdx_Stage2) {
115         return env->cp15.vttbr_el2;
116     }
117     if (mmu_idx == ARMMMUIdx_Stage2_S) {
118         return env->cp15.vsttbr_el2;
119     }
120     if (ttbrn == 0) {
121         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
122     } else {
123         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
124     }
125 }
126 
127 /* Return true if the specified stage of address translation is disabled */
128 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
129                                         bool is_secure)
130 {
131     uint64_t hcr_el2;
132 
133     if (arm_feature(env, ARM_FEATURE_M)) {
134         switch (env->v7m.mpu_ctrl[is_secure] &
135                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
136         case R_V7M_MPU_CTRL_ENABLE_MASK:
137             /* Enabled, but not for HardFault and NMI */
138             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
139         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
140             /* Enabled for all cases */
141             return false;
142         case 0:
143         default:
144             /*
145              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
146              * we warned about that in armv7m_nvic.c when the guest set it.
147              */
148             return true;
149         }
150     }
151 
152     hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
153 
154     switch (mmu_idx) {
155     case ARMMMUIdx_Stage2:
156     case ARMMMUIdx_Stage2_S:
157         /* HCR.DC means HCR.VM behaves as 1 */
158         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
159 
160     case ARMMMUIdx_E10_0:
161     case ARMMMUIdx_E10_1:
162     case ARMMMUIdx_E10_1_PAN:
163         /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
164         if (hcr_el2 & HCR_TGE) {
165             return true;
166         }
167         break;
168 
169     case ARMMMUIdx_Stage1_E0:
170     case ARMMMUIdx_Stage1_E1:
171     case ARMMMUIdx_Stage1_E1_PAN:
172         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
173         if (hcr_el2 & HCR_DC) {
174             return true;
175         }
176         break;
177 
178     case ARMMMUIdx_E20_0:
179     case ARMMMUIdx_E20_2:
180     case ARMMMUIdx_E20_2_PAN:
181     case ARMMMUIdx_E2:
182     case ARMMMUIdx_E3:
183         break;
184 
185     case ARMMMUIdx_Phys_NS:
186     case ARMMMUIdx_Phys_S:
187         /* No translation for physical address spaces. */
188         return true;
189 
190     default:
191         g_assert_not_reached();
192     }
193 
194     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
195 }
196 
197 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
198 {
199     /*
200      * For an S1 page table walk, the stage 1 attributes are always
201      * some form of "this is Normal memory". The combined S1+S2
202      * attributes are therefore only Device if stage 2 specifies Device.
203      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
204      * ie when cacheattrs.attrs bits [3:2] are 0b00.
205      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
206      * when cacheattrs.attrs bit [2] is 0.
207      */
208     if (hcr & HCR_FWB) {
209         return (attrs & 0x4) == 0;
210     } else {
211         return (attrs & 0xc) == 0;
212     }
213 }
214 
215 /* Translate a S1 pagetable walk through S2 if needed.  */
216 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
217                              hwaddr addr, ARMMMUFaultInfo *fi)
218 {
219     bool is_secure = ptw->in_secure;
220     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
221     ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
222     uint8_t pte_attrs;
223     bool pte_secure;
224 
225     ptw->out_virt = addr;
226 
227     if (unlikely(ptw->in_debug)) {
228         /*
229          * From gdbstub, do not use softmmu so that we don't modify the
230          * state of the cpu at all, including softmmu tlb contents.
231          */
232         if (regime_is_stage2(s2_mmu_idx)) {
233             S1Translate s2ptw = {
234                 .in_mmu_idx = s2_mmu_idx,
235                 .in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS,
236                 .in_secure = is_secure,
237                 .in_debug = true,
238             };
239             GetPhysAddrResult s2 = { };
240 
241             if (get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
242                                    false, &s2, fi)) {
243                 goto fail;
244             }
245             ptw->out_phys = s2.f.phys_addr;
246             pte_attrs = s2.cacheattrs.attrs;
247             pte_secure = s2.f.attrs.secure;
248         } else {
249             /* Regime is physical. */
250             ptw->out_phys = addr;
251             pte_attrs = 0;
252             pte_secure = is_secure;
253         }
254         ptw->out_host = NULL;
255         ptw->out_rw = false;
256     } else {
257         CPUTLBEntryFull *full;
258         int flags;
259 
260         env->tlb_fi = fi;
261         flags = probe_access_full(env, addr, MMU_DATA_LOAD,
262                                   arm_to_core_mmu_idx(s2_mmu_idx),
263                                   true, &ptw->out_host, &full, 0);
264         env->tlb_fi = NULL;
265 
266         if (unlikely(flags & TLB_INVALID_MASK)) {
267             goto fail;
268         }
269         ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
270         ptw->out_rw = full->prot & PAGE_WRITE;
271         pte_attrs = full->pte_attrs;
272         pte_secure = full->attrs.secure;
273     }
274 
275     if (regime_is_stage2(s2_mmu_idx)) {
276         uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
277 
278         if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
279             /*
280              * PTW set and S1 walk touched S2 Device memory:
281              * generate Permission fault.
282              */
283             fi->type = ARMFault_Permission;
284             fi->s2addr = addr;
285             fi->stage2 = true;
286             fi->s1ptw = true;
287             fi->s1ns = !is_secure;
288             return false;
289         }
290     }
291 
292     /* Check if page table walk is to secure or non-secure PA space. */
293     ptw->out_secure = (is_secure
294                        && !(pte_secure
295                             ? env->cp15.vstcr_el2 & VSTCR_SW
296                             : env->cp15.vtcr_el2 & VTCR_NSW));
297     ptw->out_be = regime_translation_big_endian(env, mmu_idx);
298     return true;
299 
300  fail:
301     assert(fi->type != ARMFault_None);
302     fi->s2addr = addr;
303     fi->stage2 = true;
304     fi->s1ptw = true;
305     fi->s1ns = !is_secure;
306     return false;
307 }
308 
309 /* All loads done in the course of a page table walk go through here. */
310 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
311                             ARMMMUFaultInfo *fi)
312 {
313     CPUState *cs = env_cpu(env);
314     void *host = ptw->out_host;
315     uint32_t data;
316 
317     if (likely(host)) {
318         /* Page tables are in RAM, and we have the host address. */
319         data = qatomic_read((uint32_t *)host);
320         if (ptw->out_be) {
321             data = be32_to_cpu(data);
322         } else {
323             data = le32_to_cpu(data);
324         }
325     } else {
326         /* Page tables are in MMIO. */
327         MemTxAttrs attrs = { .secure = ptw->out_secure };
328         AddressSpace *as = arm_addressspace(cs, attrs);
329         MemTxResult result = MEMTX_OK;
330 
331         if (ptw->out_be) {
332             data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
333         } else {
334             data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
335         }
336         if (unlikely(result != MEMTX_OK)) {
337             fi->type = ARMFault_SyncExternalOnWalk;
338             fi->ea = arm_extabort_type(result);
339             return 0;
340         }
341     }
342     return data;
343 }
344 
345 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
346                             ARMMMUFaultInfo *fi)
347 {
348     CPUState *cs = env_cpu(env);
349     void *host = ptw->out_host;
350     uint64_t data;
351 
352     if (likely(host)) {
353         /* Page tables are in RAM, and we have the host address. */
354 #ifdef CONFIG_ATOMIC64
355         data = qatomic_read__nocheck((uint64_t *)host);
356         if (ptw->out_be) {
357             data = be64_to_cpu(data);
358         } else {
359             data = le64_to_cpu(data);
360         }
361 #else
362         if (ptw->out_be) {
363             data = ldq_be_p(host);
364         } else {
365             data = ldq_le_p(host);
366         }
367 #endif
368     } else {
369         /* Page tables are in MMIO. */
370         MemTxAttrs attrs = { .secure = ptw->out_secure };
371         AddressSpace *as = arm_addressspace(cs, attrs);
372         MemTxResult result = MEMTX_OK;
373 
374         if (ptw->out_be) {
375             data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
376         } else {
377             data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
378         }
379         if (unlikely(result != MEMTX_OK)) {
380             fi->type = ARMFault_SyncExternalOnWalk;
381             fi->ea = arm_extabort_type(result);
382             return 0;
383         }
384     }
385     return data;
386 }
387 
388 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
389                              uint64_t new_val, S1Translate *ptw,
390                              ARMMMUFaultInfo *fi)
391 {
392     uint64_t cur_val;
393     void *host = ptw->out_host;
394 
395     if (unlikely(!host)) {
396         fi->type = ARMFault_UnsuppAtomicUpdate;
397         fi->s1ptw = true;
398         return 0;
399     }
400 
401     /*
402      * Raising a stage2 Protection fault for an atomic update to a read-only
403      * page is delayed until it is certain that there is a change to make.
404      */
405     if (unlikely(!ptw->out_rw)) {
406         int flags;
407         void *discard;
408 
409         env->tlb_fi = fi;
410         flags = probe_access_flags(env, ptw->out_virt, MMU_DATA_STORE,
411                                    arm_to_core_mmu_idx(ptw->in_ptw_idx),
412                                    true, &discard, 0);
413         env->tlb_fi = NULL;
414 
415         if (unlikely(flags & TLB_INVALID_MASK)) {
416             assert(fi->type != ARMFault_None);
417             fi->s2addr = ptw->out_virt;
418             fi->stage2 = true;
419             fi->s1ptw = true;
420             fi->s1ns = !ptw->in_secure;
421             return 0;
422         }
423 
424         /* In case CAS mismatches and we loop, remember writability. */
425         ptw->out_rw = true;
426     }
427 
428 #ifdef CONFIG_ATOMIC64
429     if (ptw->out_be) {
430         old_val = cpu_to_be64(old_val);
431         new_val = cpu_to_be64(new_val);
432         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
433         cur_val = be64_to_cpu(cur_val);
434     } else {
435         old_val = cpu_to_le64(old_val);
436         new_val = cpu_to_le64(new_val);
437         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
438         cur_val = le64_to_cpu(cur_val);
439     }
440 #else
441     /*
442      * We can't support the full 64-bit atomic cmpxchg on the host.
443      * Because this is only used for FEAT_HAFDBS, which is only for AA64,
444      * we know that TCG_OVERSIZED_GUEST is set, which means that we are
445      * running in round-robin mode and could only race with dma i/o.
446      */
447 #ifndef TCG_OVERSIZED_GUEST
448 # error "Unexpected configuration"
449 #endif
450     bool locked = qemu_mutex_iothread_locked();
451     if (!locked) {
452        qemu_mutex_lock_iothread();
453     }
454     if (ptw->out_be) {
455         cur_val = ldq_be_p(host);
456         if (cur_val == old_val) {
457             stq_be_p(host, new_val);
458         }
459     } else {
460         cur_val = ldq_le_p(host);
461         if (cur_val == old_val) {
462             stq_le_p(host, new_val);
463         }
464     }
465     if (!locked) {
466         qemu_mutex_unlock_iothread();
467     }
468 #endif
469 
470     return cur_val;
471 }
472 
473 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
474                                      uint32_t *table, uint32_t address)
475 {
476     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
477     uint64_t tcr = regime_tcr(env, mmu_idx);
478     int maskshift = extract32(tcr, 0, 3);
479     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
480     uint32_t base_mask;
481 
482     if (address & mask) {
483         if (tcr & TTBCR_PD1) {
484             /* Translation table walk disabled for TTBR1 */
485             return false;
486         }
487         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
488     } else {
489         if (tcr & TTBCR_PD0) {
490             /* Translation table walk disabled for TTBR0 */
491             return false;
492         }
493         base_mask = ~((uint32_t)0x3fffu >> maskshift);
494         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
495     }
496     *table |= (address >> 18) & 0x3ffc;
497     return true;
498 }
499 
500 /*
501  * Translate section/page access permissions to page R/W protection flags
502  * @env:         CPUARMState
503  * @mmu_idx:     MMU index indicating required translation regime
504  * @ap:          The 3-bit access permissions (AP[2:0])
505  * @domain_prot: The 2-bit domain access permissions
506  * @is_user: TRUE if accessing from PL0
507  */
508 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
509                          int ap, int domain_prot, bool is_user)
510 {
511     if (domain_prot == 3) {
512         return PAGE_READ | PAGE_WRITE;
513     }
514 
515     switch (ap) {
516     case 0:
517         if (arm_feature(env, ARM_FEATURE_V7)) {
518             return 0;
519         }
520         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
521         case SCTLR_S:
522             return is_user ? 0 : PAGE_READ;
523         case SCTLR_R:
524             return PAGE_READ;
525         default:
526             return 0;
527         }
528     case 1:
529         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
530     case 2:
531         if (is_user) {
532             return PAGE_READ;
533         } else {
534             return PAGE_READ | PAGE_WRITE;
535         }
536     case 3:
537         return PAGE_READ | PAGE_WRITE;
538     case 4: /* Reserved.  */
539         return 0;
540     case 5:
541         return is_user ? 0 : PAGE_READ;
542     case 6:
543         return PAGE_READ;
544     case 7:
545         if (!arm_feature(env, ARM_FEATURE_V6K)) {
546             return 0;
547         }
548         return PAGE_READ;
549     default:
550         g_assert_not_reached();
551     }
552 }
553 
554 /*
555  * Translate section/page access permissions to page R/W protection flags
556  * @env:         CPUARMState
557  * @mmu_idx:     MMU index indicating required translation regime
558  * @ap:          The 3-bit access permissions (AP[2:0])
559  * @domain_prot: The 2-bit domain access permissions
560  */
561 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
562                          int ap, int domain_prot)
563 {
564    return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
565                                 regime_is_user(env, mmu_idx));
566 }
567 
568 /*
569  * Translate section/page access permissions to page R/W protection flags.
570  * @ap:      The 2-bit simple AP (AP[2:1])
571  * @is_user: TRUE if accessing from PL0
572  */
573 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
574 {
575     switch (ap) {
576     case 0:
577         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
578     case 1:
579         return PAGE_READ | PAGE_WRITE;
580     case 2:
581         return is_user ? 0 : PAGE_READ;
582     case 3:
583         return PAGE_READ;
584     default:
585         g_assert_not_reached();
586     }
587 }
588 
589 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
590 {
591     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
592 }
593 
594 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
595                              uint32_t address, MMUAccessType access_type,
596                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
597 {
598     int level = 1;
599     uint32_t table;
600     uint32_t desc;
601     int type;
602     int ap;
603     int domain = 0;
604     int domain_prot;
605     hwaddr phys_addr;
606     uint32_t dacr;
607 
608     /* Pagetable walk.  */
609     /* Lookup l1 descriptor.  */
610     if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
611         /* Section translation fault if page walk is disabled by PD0 or PD1 */
612         fi->type = ARMFault_Translation;
613         goto do_fault;
614     }
615     if (!S1_ptw_translate(env, ptw, table, fi)) {
616         goto do_fault;
617     }
618     desc = arm_ldl_ptw(env, ptw, fi);
619     if (fi->type != ARMFault_None) {
620         goto do_fault;
621     }
622     type = (desc & 3);
623     domain = (desc >> 5) & 0x0f;
624     if (regime_el(env, ptw->in_mmu_idx) == 1) {
625         dacr = env->cp15.dacr_ns;
626     } else {
627         dacr = env->cp15.dacr_s;
628     }
629     domain_prot = (dacr >> (domain * 2)) & 3;
630     if (type == 0) {
631         /* Section translation fault.  */
632         fi->type = ARMFault_Translation;
633         goto do_fault;
634     }
635     if (type != 2) {
636         level = 2;
637     }
638     if (domain_prot == 0 || domain_prot == 2) {
639         fi->type = ARMFault_Domain;
640         goto do_fault;
641     }
642     if (type == 2) {
643         /* 1Mb section.  */
644         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
645         ap = (desc >> 10) & 3;
646         result->f.lg_page_size = 20; /* 1MB */
647     } else {
648         /* Lookup l2 entry.  */
649         if (type == 1) {
650             /* Coarse pagetable.  */
651             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
652         } else {
653             /* Fine pagetable.  */
654             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
655         }
656         if (!S1_ptw_translate(env, ptw, table, fi)) {
657             goto do_fault;
658         }
659         desc = arm_ldl_ptw(env, ptw, fi);
660         if (fi->type != ARMFault_None) {
661             goto do_fault;
662         }
663         switch (desc & 3) {
664         case 0: /* Page translation fault.  */
665             fi->type = ARMFault_Translation;
666             goto do_fault;
667         case 1: /* 64k page.  */
668             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
669             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
670             result->f.lg_page_size = 16;
671             break;
672         case 2: /* 4k page.  */
673             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
674             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
675             result->f.lg_page_size = 12;
676             break;
677         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
678             if (type == 1) {
679                 /* ARMv6/XScale extended small page format */
680                 if (arm_feature(env, ARM_FEATURE_XSCALE)
681                     || arm_feature(env, ARM_FEATURE_V6)) {
682                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
683                     result->f.lg_page_size = 12;
684                 } else {
685                     /*
686                      * UNPREDICTABLE in ARMv5; we choose to take a
687                      * page translation fault.
688                      */
689                     fi->type = ARMFault_Translation;
690                     goto do_fault;
691                 }
692             } else {
693                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
694                 result->f.lg_page_size = 10;
695             }
696             ap = (desc >> 4) & 3;
697             break;
698         default:
699             /* Never happens, but compiler isn't smart enough to tell.  */
700             g_assert_not_reached();
701         }
702     }
703     result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
704     result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
705     if (!(result->f.prot & (1 << access_type))) {
706         /* Access permission fault.  */
707         fi->type = ARMFault_Permission;
708         goto do_fault;
709     }
710     result->f.phys_addr = phys_addr;
711     return false;
712 do_fault:
713     fi->domain = domain;
714     fi->level = level;
715     return true;
716 }
717 
718 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
719                              uint32_t address, MMUAccessType access_type,
720                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
721 {
722     ARMCPU *cpu = env_archcpu(env);
723     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
724     int level = 1;
725     uint32_t table;
726     uint32_t desc;
727     uint32_t xn;
728     uint32_t pxn = 0;
729     int type;
730     int ap;
731     int domain = 0;
732     int domain_prot;
733     hwaddr phys_addr;
734     uint32_t dacr;
735     bool ns;
736     int user_prot;
737 
738     /* Pagetable walk.  */
739     /* Lookup l1 descriptor.  */
740     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
741         /* Section translation fault if page walk is disabled by PD0 or PD1 */
742         fi->type = ARMFault_Translation;
743         goto do_fault;
744     }
745     if (!S1_ptw_translate(env, ptw, table, fi)) {
746         goto do_fault;
747     }
748     desc = arm_ldl_ptw(env, ptw, fi);
749     if (fi->type != ARMFault_None) {
750         goto do_fault;
751     }
752     type = (desc & 3);
753     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
754         /* Section translation fault, or attempt to use the encoding
755          * which is Reserved on implementations without PXN.
756          */
757         fi->type = ARMFault_Translation;
758         goto do_fault;
759     }
760     if ((type == 1) || !(desc & (1 << 18))) {
761         /* Page or Section.  */
762         domain = (desc >> 5) & 0x0f;
763     }
764     if (regime_el(env, mmu_idx) == 1) {
765         dacr = env->cp15.dacr_ns;
766     } else {
767         dacr = env->cp15.dacr_s;
768     }
769     if (type == 1) {
770         level = 2;
771     }
772     domain_prot = (dacr >> (domain * 2)) & 3;
773     if (domain_prot == 0 || domain_prot == 2) {
774         /* Section or Page domain fault */
775         fi->type = ARMFault_Domain;
776         goto do_fault;
777     }
778     if (type != 1) {
779         if (desc & (1 << 18)) {
780             /* Supersection.  */
781             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
782             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
783             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
784             result->f.lg_page_size = 24;  /* 16MB */
785         } else {
786             /* Section.  */
787             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
788             result->f.lg_page_size = 20;  /* 1MB */
789         }
790         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
791         xn = desc & (1 << 4);
792         pxn = desc & 1;
793         ns = extract32(desc, 19, 1);
794     } else {
795         if (cpu_isar_feature(aa32_pxn, cpu)) {
796             pxn = (desc >> 2) & 1;
797         }
798         ns = extract32(desc, 3, 1);
799         /* Lookup l2 entry.  */
800         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
801         if (!S1_ptw_translate(env, ptw, table, fi)) {
802             goto do_fault;
803         }
804         desc = arm_ldl_ptw(env, ptw, fi);
805         if (fi->type != ARMFault_None) {
806             goto do_fault;
807         }
808         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
809         switch (desc & 3) {
810         case 0: /* Page translation fault.  */
811             fi->type = ARMFault_Translation;
812             goto do_fault;
813         case 1: /* 64k page.  */
814             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
815             xn = desc & (1 << 15);
816             result->f.lg_page_size = 16;
817             break;
818         case 2: case 3: /* 4k page.  */
819             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
820             xn = desc & 1;
821             result->f.lg_page_size = 12;
822             break;
823         default:
824             /* Never happens, but compiler isn't smart enough to tell.  */
825             g_assert_not_reached();
826         }
827     }
828     if (domain_prot == 3) {
829         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
830     } else {
831         if (pxn && !regime_is_user(env, mmu_idx)) {
832             xn = 1;
833         }
834         if (xn && access_type == MMU_INST_FETCH) {
835             fi->type = ARMFault_Permission;
836             goto do_fault;
837         }
838 
839         if (arm_feature(env, ARM_FEATURE_V6K) &&
840                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
841             /* The simplified model uses AP[0] as an access control bit.  */
842             if ((ap & 1) == 0) {
843                 /* Access flag fault.  */
844                 fi->type = ARMFault_AccessFlag;
845                 goto do_fault;
846             }
847             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
848             user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
849         } else {
850             result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
851             user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
852         }
853         if (result->f.prot && !xn) {
854             result->f.prot |= PAGE_EXEC;
855         }
856         if (!(result->f.prot & (1 << access_type))) {
857             /* Access permission fault.  */
858             fi->type = ARMFault_Permission;
859             goto do_fault;
860         }
861         if (regime_is_pan(env, mmu_idx) &&
862             !regime_is_user(env, mmu_idx) &&
863             user_prot &&
864             access_type != MMU_INST_FETCH) {
865             /* Privileged Access Never fault */
866             fi->type = ARMFault_Permission;
867             goto do_fault;
868         }
869     }
870     if (ns) {
871         /* The NS bit will (as required by the architecture) have no effect if
872          * the CPU doesn't support TZ or this is a non-secure translation
873          * regime, because the attribute will already be non-secure.
874          */
875         result->f.attrs.secure = false;
876     }
877     result->f.phys_addr = phys_addr;
878     return false;
879 do_fault:
880     fi->domain = domain;
881     fi->level = level;
882     return true;
883 }
884 
885 /*
886  * Translate S2 section/page access permissions to protection flags
887  * @env:     CPUARMState
888  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
889  * @xn:      XN (execute-never) bits
890  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
891  */
892 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
893 {
894     int prot = 0;
895 
896     if (s2ap & 1) {
897         prot |= PAGE_READ;
898     }
899     if (s2ap & 2) {
900         prot |= PAGE_WRITE;
901     }
902 
903     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
904         switch (xn) {
905         case 0:
906             prot |= PAGE_EXEC;
907             break;
908         case 1:
909             if (s1_is_el0) {
910                 prot |= PAGE_EXEC;
911             }
912             break;
913         case 2:
914             break;
915         case 3:
916             if (!s1_is_el0) {
917                 prot |= PAGE_EXEC;
918             }
919             break;
920         default:
921             g_assert_not_reached();
922         }
923     } else {
924         if (!extract32(xn, 1, 1)) {
925             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
926                 prot |= PAGE_EXEC;
927             }
928         }
929     }
930     return prot;
931 }
932 
933 /*
934  * Translate section/page access permissions to protection flags
935  * @env:     CPUARMState
936  * @mmu_idx: MMU index indicating required translation regime
937  * @is_aa64: TRUE if AArch64
938  * @ap:      The 2-bit simple AP (AP[2:1])
939  * @ns:      NS (non-secure) bit
940  * @xn:      XN (execute-never) bit
941  * @pxn:     PXN (privileged execute-never) bit
942  */
943 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
944                       int ap, int ns, int xn, int pxn)
945 {
946     bool is_user = regime_is_user(env, mmu_idx);
947     int prot_rw, user_rw;
948     bool have_wxn;
949     int wxn = 0;
950 
951     assert(!regime_is_stage2(mmu_idx));
952 
953     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
954     if (is_user) {
955         prot_rw = user_rw;
956     } else {
957         if (user_rw && regime_is_pan(env, mmu_idx)) {
958             /* PAN forbids data accesses but doesn't affect insn fetch */
959             prot_rw = 0;
960         } else {
961             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
962         }
963     }
964 
965     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
966         return prot_rw;
967     }
968 
969     /* TODO have_wxn should be replaced with
970      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
971      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
972      * compatible processors have EL2, which is required for [U]WXN.
973      */
974     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
975 
976     if (have_wxn) {
977         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
978     }
979 
980     if (is_aa64) {
981         if (regime_has_2_ranges(mmu_idx) && !is_user) {
982             xn = pxn || (user_rw & PAGE_WRITE);
983         }
984     } else if (arm_feature(env, ARM_FEATURE_V7)) {
985         switch (regime_el(env, mmu_idx)) {
986         case 1:
987         case 3:
988             if (is_user) {
989                 xn = xn || !(user_rw & PAGE_READ);
990             } else {
991                 int uwxn = 0;
992                 if (have_wxn) {
993                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
994                 }
995                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
996                      (uwxn && (user_rw & PAGE_WRITE));
997             }
998             break;
999         case 2:
1000             break;
1001         }
1002     } else {
1003         xn = wxn = 0;
1004     }
1005 
1006     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1007         return prot_rw;
1008     }
1009     return prot_rw | PAGE_EXEC;
1010 }
1011 
1012 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1013                                           ARMMMUIdx mmu_idx)
1014 {
1015     uint64_t tcr = regime_tcr(env, mmu_idx);
1016     uint32_t el = regime_el(env, mmu_idx);
1017     int select, tsz;
1018     bool epd, hpd;
1019 
1020     assert(mmu_idx != ARMMMUIdx_Stage2_S);
1021 
1022     if (mmu_idx == ARMMMUIdx_Stage2) {
1023         /* VTCR */
1024         bool sext = extract32(tcr, 4, 1);
1025         bool sign = extract32(tcr, 3, 1);
1026 
1027         /*
1028          * If the sign-extend bit is not the same as t0sz[3], the result
1029          * is unpredictable. Flag this as a guest error.
1030          */
1031         if (sign != sext) {
1032             qemu_log_mask(LOG_GUEST_ERROR,
1033                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1034         }
1035         tsz = sextract32(tcr, 0, 4) + 8;
1036         select = 0;
1037         hpd = false;
1038         epd = false;
1039     } else if (el == 2) {
1040         /* HTCR */
1041         tsz = extract32(tcr, 0, 3);
1042         select = 0;
1043         hpd = extract64(tcr, 24, 1);
1044         epd = false;
1045     } else {
1046         int t0sz = extract32(tcr, 0, 3);
1047         int t1sz = extract32(tcr, 16, 3);
1048 
1049         if (t1sz == 0) {
1050             select = va > (0xffffffffu >> t0sz);
1051         } else {
1052             /* Note that we will detect errors later.  */
1053             select = va >= ~(0xffffffffu >> t1sz);
1054         }
1055         if (!select) {
1056             tsz = t0sz;
1057             epd = extract32(tcr, 7, 1);
1058             hpd = extract64(tcr, 41, 1);
1059         } else {
1060             tsz = t1sz;
1061             epd = extract32(tcr, 23, 1);
1062             hpd = extract64(tcr, 42, 1);
1063         }
1064         /* For aarch32, hpd0 is not enabled without t2e as well.  */
1065         hpd &= extract32(tcr, 6, 1);
1066     }
1067 
1068     return (ARMVAParameters) {
1069         .tsz = tsz,
1070         .select = select,
1071         .epd = epd,
1072         .hpd = hpd,
1073     };
1074 }
1075 
1076 /*
1077  * check_s2_mmu_setup
1078  * @cpu:        ARMCPU
1079  * @is_aa64:    True if the translation regime is in AArch64 state
1080  * @startlevel: Suggested starting level
1081  * @inputsize:  Bitsize of IPAs
1082  * @stride:     Page-table stride (See the ARM ARM)
1083  *
1084  * Returns true if the suggested S2 translation parameters are OK and
1085  * false otherwise.
1086  */
1087 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
1088                                int inputsize, int stride, int outputsize)
1089 {
1090     const int grainsize = stride + 3;
1091     int startsizecheck;
1092 
1093     /*
1094      * Negative levels are usually not allowed...
1095      * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
1096      * begins with level -1.  Note that previous feature tests will have
1097      * eliminated this combination if it is not enabled.
1098      */
1099     if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
1100         return false;
1101     }
1102 
1103     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
1104     if (startsizecheck < 1 || startsizecheck > stride + 4) {
1105         return false;
1106     }
1107 
1108     if (is_aa64) {
1109         switch (stride) {
1110         case 13: /* 64KB Pages.  */
1111             if (level == 0 || (level == 1 && outputsize <= 42)) {
1112                 return false;
1113             }
1114             break;
1115         case 11: /* 16KB Pages.  */
1116             if (level == 0 || (level == 1 && outputsize <= 40)) {
1117                 return false;
1118             }
1119             break;
1120         case 9: /* 4KB Pages.  */
1121             if (level == 0 && outputsize <= 42) {
1122                 return false;
1123             }
1124             break;
1125         default:
1126             g_assert_not_reached();
1127         }
1128 
1129         /* Inputsize checks.  */
1130         if (inputsize > outputsize &&
1131             (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
1132             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
1133             return false;
1134         }
1135     } else {
1136         /* AArch32 only supports 4KB pages. Assert on that.  */
1137         assert(stride == 9);
1138 
1139         if (level == 0) {
1140             return false;
1141         }
1142     }
1143     return true;
1144 }
1145 
1146 /**
1147  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1148  *
1149  * Returns false if the translation was successful. Otherwise, phys_ptr,
1150  * attrs, prot and page_size may not be filled in, and the populated fsr
1151  * value provides information on why the translation aborted, in the format
1152  * of a long-format DFSR/IFSR fault register, with the following caveat:
1153  * the WnR bit is never set (the caller must do this).
1154  *
1155  * @env: CPUARMState
1156  * @ptw: Current and next stage parameters for the walk.
1157  * @address: virtual address to get physical address for
1158  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1159  * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2
1160  *             (so this is a stage 2 page table walk),
1161  *             must be true if this is stage 2 of a stage 1+2
1162  *             walk for an EL0 access. If @mmu_idx is anything else,
1163  *             @s1_is_el0 is ignored.
1164  * @result: set on translation success,
1165  * @fi: set to fault info if the translation fails
1166  */
1167 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1168                                uint64_t address,
1169                                MMUAccessType access_type, bool s1_is_el0,
1170                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1171 {
1172     ARMCPU *cpu = env_archcpu(env);
1173     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1174     bool is_secure = ptw->in_secure;
1175     int32_t level;
1176     ARMVAParameters param;
1177     uint64_t ttbr;
1178     hwaddr descaddr, indexmask, indexmask_grainsize;
1179     uint32_t tableattrs;
1180     target_ulong page_size;
1181     uint64_t attrs;
1182     int32_t stride;
1183     int addrsize, inputsize, outputsize;
1184     uint64_t tcr = regime_tcr(env, mmu_idx);
1185     int ap, ns, xn, pxn;
1186     uint32_t el = regime_el(env, mmu_idx);
1187     uint64_t descaddrmask;
1188     bool aarch64 = arm_el_is_aa64(env, el);
1189     uint64_t descriptor, new_descriptor;
1190     bool nstable;
1191 
1192     /* TODO: This code does not support shareability levels. */
1193     if (aarch64) {
1194         int ps;
1195 
1196         param = aa64_va_parameters(env, address, mmu_idx,
1197                                    access_type != MMU_INST_FETCH);
1198         level = 0;
1199 
1200         /*
1201          * If TxSZ is programmed to a value larger than the maximum,
1202          * or smaller than the effective minimum, it is IMPLEMENTATION
1203          * DEFINED whether we behave as if the field were programmed
1204          * within bounds, or if a level 0 Translation fault is generated.
1205          *
1206          * With FEAT_LVA, fault on less than minimum becomes required,
1207          * so our choice is to always raise the fault.
1208          */
1209         if (param.tsz_oob) {
1210             goto do_translation_fault;
1211         }
1212 
1213         addrsize = 64 - 8 * param.tbi;
1214         inputsize = 64 - param.tsz;
1215 
1216         /*
1217          * Bound PS by PARANGE to find the effective output address size.
1218          * ID_AA64MMFR0 is a read-only register so values outside of the
1219          * supported mappings can be considered an implementation error.
1220          */
1221         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1222         ps = MIN(ps, param.ps);
1223         assert(ps < ARRAY_SIZE(pamax_map));
1224         outputsize = pamax_map[ps];
1225 
1226         /*
1227          * With LPA2, the effective output address (OA) size is at most 48 bits
1228          * unless TCR.DS == 1
1229          */
1230         if (!param.ds && param.gran != Gran64K) {
1231             outputsize = MIN(outputsize, 48);
1232         }
1233     } else {
1234         param = aa32_va_parameters(env, address, mmu_idx);
1235         level = 1;
1236         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1237         inputsize = addrsize - param.tsz;
1238         outputsize = 40;
1239     }
1240 
1241     /*
1242      * We determined the region when collecting the parameters, but we
1243      * have not yet validated that the address is valid for the region.
1244      * Extract the top bits and verify that they all match select.
1245      *
1246      * For aa32, if inputsize == addrsize, then we have selected the
1247      * region by exclusion in aa32_va_parameters and there is no more
1248      * validation to do here.
1249      */
1250     if (inputsize < addrsize) {
1251         target_ulong top_bits = sextract64(address, inputsize,
1252                                            addrsize - inputsize);
1253         if (-top_bits != param.select) {
1254             /* The gap between the two regions is a Translation fault */
1255             goto do_translation_fault;
1256         }
1257     }
1258 
1259     stride = arm_granule_bits(param.gran) - 3;
1260 
1261     /*
1262      * Note that QEMU ignores shareability and cacheability attributes,
1263      * so we don't need to do anything with the SH, ORGN, IRGN fields
1264      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1265      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1266      * implement any ASID-like capability so we can ignore it (instead
1267      * we will always flush the TLB any time the ASID is changed).
1268      */
1269     ttbr = regime_ttbr(env, mmu_idx, param.select);
1270 
1271     /*
1272      * Here we should have set up all the parameters for the translation:
1273      * inputsize, ttbr, epd, stride, tbi
1274      */
1275 
1276     if (param.epd) {
1277         /*
1278          * Translation table walk disabled => Translation fault on TLB miss
1279          * Note: This is always 0 on 64-bit EL2 and EL3.
1280          */
1281         goto do_translation_fault;
1282     }
1283 
1284     if (!regime_is_stage2(mmu_idx)) {
1285         /*
1286          * The starting level depends on the virtual address size (which can
1287          * be up to 48 bits) and the translation granule size. It indicates
1288          * the number of strides (stride bits at a time) needed to
1289          * consume the bits of the input address. In the pseudocode this is:
1290          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1291          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1292          * our 'stride + 3' and 'stride' is our 'stride'.
1293          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1294          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1295          * = 4 - (inputsize - 4) / stride;
1296          */
1297         level = 4 - (inputsize - 4) / stride;
1298     } else {
1299         /*
1300          * For stage 2 translations the starting level is specified by the
1301          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
1302          */
1303         uint32_t sl0 = extract32(tcr, 6, 2);
1304         uint32_t sl2 = extract64(tcr, 33, 1);
1305         int32_t startlevel;
1306         bool ok;
1307 
1308         /* SL2 is RES0 unless DS=1 & 4kb granule. */
1309         if (param.ds && stride == 9 && sl2) {
1310             if (sl0 != 0) {
1311                 level = 0;
1312                 goto do_translation_fault;
1313             }
1314             startlevel = -1;
1315         } else if (!aarch64 || stride == 9) {
1316             /* AArch32 or 4KB pages */
1317             startlevel = 2 - sl0;
1318 
1319             if (cpu_isar_feature(aa64_st, cpu)) {
1320                 startlevel &= 3;
1321             }
1322         } else {
1323             /* 16KB or 64KB pages */
1324             startlevel = 3 - sl0;
1325         }
1326 
1327         /* Check that the starting level is valid. */
1328         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1329                                 inputsize, stride, outputsize);
1330         if (!ok) {
1331             goto do_translation_fault;
1332         }
1333         level = startlevel;
1334     }
1335 
1336     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1337     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1338 
1339     /* Now we can extract the actual base address from the TTBR */
1340     descaddr = extract64(ttbr, 0, 48);
1341 
1342     /*
1343      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1344      *
1345      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1346      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1347      * but we've just cleared the bits above 47, so simplify the test.
1348      */
1349     if (outputsize > 48) {
1350         descaddr |= extract64(ttbr, 2, 4) << 48;
1351     } else if (descaddr >> outputsize) {
1352         level = 0;
1353         fi->type = ARMFault_AddressSize;
1354         goto do_fault;
1355     }
1356 
1357     /*
1358      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1359      * and also to mask out CnP (bit 0) which could validly be non-zero.
1360      */
1361     descaddr &= ~indexmask;
1362 
1363     /*
1364      * For AArch32, the address field in the descriptor goes up to bit 39
1365      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1366      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1367      * bits as part of the address, which will be checked via outputsize.
1368      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1369      * the highest bits of a 52-bit output are placed elsewhere.
1370      */
1371     if (param.ds) {
1372         descaddrmask = MAKE_64BIT_MASK(0, 50);
1373     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1374         descaddrmask = MAKE_64BIT_MASK(0, 48);
1375     } else {
1376         descaddrmask = MAKE_64BIT_MASK(0, 40);
1377     }
1378     descaddrmask &= ~indexmask_grainsize;
1379 
1380     /*
1381      * Secure accesses start with the page table in secure memory and
1382      * can be downgraded to non-secure at any step. Non-secure accesses
1383      * remain non-secure. We implement this by just ORing in the NSTable/NS
1384      * bits at each step.
1385      */
1386     tableattrs = is_secure ? 0 : (1 << 4);
1387 
1388  next_level:
1389     descaddr |= (address >> (stride * (4 - level))) & indexmask;
1390     descaddr &= ~7ULL;
1391     nstable = extract32(tableattrs, 4, 1);
1392     if (nstable) {
1393         /*
1394          * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1395          * Assert that the non-secure idx are even, and relative order.
1396          */
1397         QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0);
1398         QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0);
1399         QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S);
1400         QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S);
1401         ptw->in_ptw_idx &= ~1;
1402         ptw->in_secure = false;
1403     }
1404     if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1405         goto do_fault;
1406     }
1407     descriptor = arm_ldq_ptw(env, ptw, fi);
1408     if (fi->type != ARMFault_None) {
1409         goto do_fault;
1410     }
1411     new_descriptor = descriptor;
1412 
1413  restart_atomic_update:
1414     if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) {
1415         /* Invalid, or the Reserved level 3 encoding */
1416         goto do_translation_fault;
1417     }
1418 
1419     descaddr = descriptor & descaddrmask;
1420 
1421     /*
1422      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1423      * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1424      * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1425      * raise AddressSizeFault.
1426      */
1427     if (outputsize > 48) {
1428         if (param.ds) {
1429             descaddr |= extract64(descriptor, 8, 2) << 50;
1430         } else {
1431             descaddr |= extract64(descriptor, 12, 4) << 48;
1432         }
1433     } else if (descaddr >> outputsize) {
1434         fi->type = ARMFault_AddressSize;
1435         goto do_fault;
1436     }
1437 
1438     if ((descriptor & 2) && (level < 3)) {
1439         /*
1440          * Table entry. The top five bits are attributes which may
1441          * propagate down through lower levels of the table (and
1442          * which are all arranged so that 0 means "no effect", so
1443          * we can gather them up by ORing in the bits at each level).
1444          */
1445         tableattrs |= extract64(descriptor, 59, 5);
1446         level++;
1447         indexmask = indexmask_grainsize;
1448         goto next_level;
1449     }
1450 
1451     /*
1452      * Block entry at level 1 or 2, or page entry at level 3.
1453      * These are basically the same thing, although the number
1454      * of bits we pull in from the vaddr varies. Note that although
1455      * descaddrmask masks enough of the low bits of the descriptor
1456      * to give a correct page or table address, the address field
1457      * in a block descriptor is smaller; so we need to explicitly
1458      * clear the lower bits here before ORing in the low vaddr bits.
1459      *
1460      * Afterward, descaddr is the final physical address.
1461      */
1462     page_size = (1ULL << ((stride * (4 - level)) + 3));
1463     descaddr &= ~(hwaddr)(page_size - 1);
1464     descaddr |= (address & (page_size - 1));
1465 
1466     if (likely(!ptw->in_debug)) {
1467         /*
1468          * Access flag.
1469          * If HA is enabled, prepare to update the descriptor below.
1470          * Otherwise, pass the access fault on to software.
1471          */
1472         if (!(descriptor & (1 << 10))) {
1473             if (param.ha) {
1474                 new_descriptor |= 1 << 10; /* AF */
1475             } else {
1476                 fi->type = ARMFault_AccessFlag;
1477                 goto do_fault;
1478             }
1479         }
1480 
1481         /*
1482          * Dirty Bit.
1483          * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1484          * bit for writeback. The actual write protection test may still be
1485          * overridden by tableattrs, to be merged below.
1486          */
1487         if (param.hd
1488             && extract64(descriptor, 51, 1)  /* DBM */
1489             && access_type == MMU_DATA_STORE) {
1490             if (regime_is_stage2(mmu_idx)) {
1491                 new_descriptor |= 1ull << 7;    /* set S2AP[1] */
1492             } else {
1493                 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1494             }
1495         }
1496     }
1497 
1498     /*
1499      * Extract attributes from the (modified) descriptor, and apply
1500      * table descriptors. Stage 2 table descriptors do not include
1501      * any attribute fields. HPD disables all the table attributes
1502      * except NSTable.
1503      */
1504     attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1505     if (!regime_is_stage2(mmu_idx)) {
1506         attrs |= nstable << 5; /* NS */
1507         if (!param.hpd) {
1508             attrs |= extract64(tableattrs, 0, 2) << 53;     /* XN, PXN */
1509             /*
1510              * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1511              * means "force PL1 access only", which means forcing AP[1] to 0.
1512              */
1513             attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1514             attrs |= extract32(tableattrs, 3, 1) << 7;    /* APT[1] => AP[2] */
1515         }
1516     }
1517 
1518     ap = extract32(attrs, 6, 2);
1519     if (regime_is_stage2(mmu_idx)) {
1520         ns = mmu_idx == ARMMMUIdx_Stage2;
1521         xn = extract64(attrs, 53, 2);
1522         result->f.prot = get_S2prot(env, ap, xn, s1_is_el0);
1523     } else {
1524         ns = extract32(attrs, 5, 1);
1525         xn = extract64(attrs, 54, 1);
1526         pxn = extract64(attrs, 53, 1);
1527         result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1528     }
1529 
1530     if (!(result->f.prot & (1 << access_type))) {
1531         fi->type = ARMFault_Permission;
1532         goto do_fault;
1533     }
1534 
1535     /* If FEAT_HAFDBS has made changes, update the PTE. */
1536     if (new_descriptor != descriptor) {
1537         new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
1538         if (fi->type != ARMFault_None) {
1539             goto do_fault;
1540         }
1541         /*
1542          * I_YZSVV says that if the in-memory descriptor has changed,
1543          * then we must use the information in that new value
1544          * (which might include a different output address, different
1545          * attributes, or generate a fault).
1546          * Restart the handling of the descriptor value from scratch.
1547          */
1548         if (new_descriptor != descriptor) {
1549             descriptor = new_descriptor;
1550             goto restart_atomic_update;
1551         }
1552     }
1553 
1554     if (ns) {
1555         /*
1556          * The NS bit will (as required by the architecture) have no effect if
1557          * the CPU doesn't support TZ or this is a non-secure translation
1558          * regime, because the attribute will already be non-secure.
1559          */
1560         result->f.attrs.secure = false;
1561     }
1562 
1563     /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB.  */
1564     if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
1565         result->f.guarded = extract64(attrs, 50, 1); /* GP */
1566     }
1567 
1568     if (regime_is_stage2(mmu_idx)) {
1569         result->cacheattrs.is_s2_format = true;
1570         result->cacheattrs.attrs = extract32(attrs, 2, 4);
1571     } else {
1572         /* Index into MAIR registers for cache attributes */
1573         uint8_t attrindx = extract32(attrs, 2, 3);
1574         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1575         assert(attrindx <= 7);
1576         result->cacheattrs.is_s2_format = false;
1577         result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
1578     }
1579 
1580     /*
1581      * For FEAT_LPA2 and effective DS, the SH field in the attributes
1582      * was re-purposed for output address bits.  The SH attribute in
1583      * that case comes from TCR_ELx, which we extracted earlier.
1584      */
1585     if (param.ds) {
1586         result->cacheattrs.shareability = param.sh;
1587     } else {
1588         result->cacheattrs.shareability = extract32(attrs, 8, 2);
1589     }
1590 
1591     result->f.phys_addr = descaddr;
1592     result->f.lg_page_size = ctz64(page_size);
1593     return false;
1594 
1595  do_translation_fault:
1596     fi->type = ARMFault_Translation;
1597  do_fault:
1598     fi->level = level;
1599     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
1600     fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx);
1601     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1602     return true;
1603 }
1604 
1605 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1606                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
1607                                  bool is_secure, GetPhysAddrResult *result,
1608                                  ARMMMUFaultInfo *fi)
1609 {
1610     int n;
1611     uint32_t mask;
1612     uint32_t base;
1613     bool is_user = regime_is_user(env, mmu_idx);
1614 
1615     if (regime_translation_disabled(env, mmu_idx, is_secure)) {
1616         /* MPU disabled.  */
1617         result->f.phys_addr = address;
1618         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1619         return false;
1620     }
1621 
1622     result->f.phys_addr = address;
1623     for (n = 7; n >= 0; n--) {
1624         base = env->cp15.c6_region[n];
1625         if ((base & 1) == 0) {
1626             continue;
1627         }
1628         mask = 1 << ((base >> 1) & 0x1f);
1629         /* Keep this shift separate from the above to avoid an
1630            (undefined) << 32.  */
1631         mask = (mask << 1) - 1;
1632         if (((base ^ address) & ~mask) == 0) {
1633             break;
1634         }
1635     }
1636     if (n < 0) {
1637         fi->type = ARMFault_Background;
1638         return true;
1639     }
1640 
1641     if (access_type == MMU_INST_FETCH) {
1642         mask = env->cp15.pmsav5_insn_ap;
1643     } else {
1644         mask = env->cp15.pmsav5_data_ap;
1645     }
1646     mask = (mask >> (n * 4)) & 0xf;
1647     switch (mask) {
1648     case 0:
1649         fi->type = ARMFault_Permission;
1650         fi->level = 1;
1651         return true;
1652     case 1:
1653         if (is_user) {
1654             fi->type = ARMFault_Permission;
1655             fi->level = 1;
1656             return true;
1657         }
1658         result->f.prot = PAGE_READ | PAGE_WRITE;
1659         break;
1660     case 2:
1661         result->f.prot = PAGE_READ;
1662         if (!is_user) {
1663             result->f.prot |= PAGE_WRITE;
1664         }
1665         break;
1666     case 3:
1667         result->f.prot = PAGE_READ | PAGE_WRITE;
1668         break;
1669     case 5:
1670         if (is_user) {
1671             fi->type = ARMFault_Permission;
1672             fi->level = 1;
1673             return true;
1674         }
1675         result->f.prot = PAGE_READ;
1676         break;
1677     case 6:
1678         result->f.prot = PAGE_READ;
1679         break;
1680     default:
1681         /* Bad permission.  */
1682         fi->type = ARMFault_Permission;
1683         fi->level = 1;
1684         return true;
1685     }
1686     result->f.prot |= PAGE_EXEC;
1687     return false;
1688 }
1689 
1690 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1691                                          int32_t address, uint8_t *prot)
1692 {
1693     if (!arm_feature(env, ARM_FEATURE_M)) {
1694         *prot = PAGE_READ | PAGE_WRITE;
1695         switch (address) {
1696         case 0xF0000000 ... 0xFFFFFFFF:
1697             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1698                 /* hivecs execing is ok */
1699                 *prot |= PAGE_EXEC;
1700             }
1701             break;
1702         case 0x00000000 ... 0x7FFFFFFF:
1703             *prot |= PAGE_EXEC;
1704             break;
1705         }
1706     } else {
1707         /* Default system address map for M profile cores.
1708          * The architecture specifies which regions are execute-never;
1709          * at the MPU level no other checks are defined.
1710          */
1711         switch (address) {
1712         case 0x00000000 ... 0x1fffffff: /* ROM */
1713         case 0x20000000 ... 0x3fffffff: /* SRAM */
1714         case 0x60000000 ... 0x7fffffff: /* RAM */
1715         case 0x80000000 ... 0x9fffffff: /* RAM */
1716             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1717             break;
1718         case 0x40000000 ... 0x5fffffff: /* Peripheral */
1719         case 0xa0000000 ... 0xbfffffff: /* Device */
1720         case 0xc0000000 ... 0xdfffffff: /* Device */
1721         case 0xe0000000 ... 0xffffffff: /* System */
1722             *prot = PAGE_READ | PAGE_WRITE;
1723             break;
1724         default:
1725             g_assert_not_reached();
1726         }
1727     }
1728 }
1729 
1730 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1731 {
1732     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1733     return arm_feature(env, ARM_FEATURE_M) &&
1734         extract32(address, 20, 12) == 0xe00;
1735 }
1736 
1737 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1738 {
1739     /*
1740      * True if address is in the M profile system region
1741      * 0xe0000000 - 0xffffffff
1742      */
1743     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1744 }
1745 
1746 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1747                                          bool is_secure, bool is_user)
1748 {
1749     /*
1750      * Return true if we should use the default memory map as a
1751      * "background" region if there are no hits against any MPU regions.
1752      */
1753     CPUARMState *env = &cpu->env;
1754 
1755     if (is_user) {
1756         return false;
1757     }
1758 
1759     if (arm_feature(env, ARM_FEATURE_M)) {
1760         return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1761     }
1762 
1763     if (mmu_idx == ARMMMUIdx_Stage2) {
1764         return false;
1765     }
1766 
1767     return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1768 }
1769 
1770 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1771                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
1772                                  bool secure, GetPhysAddrResult *result,
1773                                  ARMMMUFaultInfo *fi)
1774 {
1775     ARMCPU *cpu = env_archcpu(env);
1776     int n;
1777     bool is_user = regime_is_user(env, mmu_idx);
1778 
1779     result->f.phys_addr = address;
1780     result->f.lg_page_size = TARGET_PAGE_BITS;
1781     result->f.prot = 0;
1782 
1783     if (regime_translation_disabled(env, mmu_idx, secure) ||
1784         m_is_ppb_region(env, address)) {
1785         /*
1786          * MPU disabled or M profile PPB access: use default memory map.
1787          * The other case which uses the default memory map in the
1788          * v7M ARM ARM pseudocode is exception vector reads from the vector
1789          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1790          * which always does a direct read using address_space_ldl(), rather
1791          * than going via this function, so we don't need to check that here.
1792          */
1793         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
1794     } else { /* MPU enabled */
1795         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1796             /* region search */
1797             uint32_t base = env->pmsav7.drbar[n];
1798             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1799             uint32_t rmask;
1800             bool srdis = false;
1801 
1802             if (!(env->pmsav7.drsr[n] & 0x1)) {
1803                 continue;
1804             }
1805 
1806             if (!rsize) {
1807                 qemu_log_mask(LOG_GUEST_ERROR,
1808                               "DRSR[%d]: Rsize field cannot be 0\n", n);
1809                 continue;
1810             }
1811             rsize++;
1812             rmask = (1ull << rsize) - 1;
1813 
1814             if (base & rmask) {
1815                 qemu_log_mask(LOG_GUEST_ERROR,
1816                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1817                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
1818                               n, base, rmask);
1819                 continue;
1820             }
1821 
1822             if (address < base || address > base + rmask) {
1823                 /*
1824                  * Address not in this region. We must check whether the
1825                  * region covers addresses in the same page as our address.
1826                  * In that case we must not report a size that covers the
1827                  * whole page for a subsequent hit against a different MPU
1828                  * region or the background region, because it would result in
1829                  * incorrect TLB hits for subsequent accesses to addresses that
1830                  * are in this MPU region.
1831                  */
1832                 if (ranges_overlap(base, rmask,
1833                                    address & TARGET_PAGE_MASK,
1834                                    TARGET_PAGE_SIZE)) {
1835                     result->f.lg_page_size = 0;
1836                 }
1837                 continue;
1838             }
1839 
1840             /* Region matched */
1841 
1842             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1843                 int i, snd;
1844                 uint32_t srdis_mask;
1845 
1846                 rsize -= 3; /* sub region size (power of 2) */
1847                 snd = ((address - base) >> rsize) & 0x7;
1848                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1849 
1850                 srdis_mask = srdis ? 0x3 : 0x0;
1851                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1852                     /*
1853                      * This will check in groups of 2, 4 and then 8, whether
1854                      * the subregion bits are consistent. rsize is incremented
1855                      * back up to give the region size, considering consistent
1856                      * adjacent subregions as one region. Stop testing if rsize
1857                      * is already big enough for an entire QEMU page.
1858                      */
1859                     int snd_rounded = snd & ~(i - 1);
1860                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1861                                                      snd_rounded + 8, i);
1862                     if (srdis_mask ^ srdis_multi) {
1863                         break;
1864                     }
1865                     srdis_mask = (srdis_mask << i) | srdis_mask;
1866                     rsize++;
1867                 }
1868             }
1869             if (srdis) {
1870                 continue;
1871             }
1872             if (rsize < TARGET_PAGE_BITS) {
1873                 result->f.lg_page_size = rsize;
1874             }
1875             break;
1876         }
1877 
1878         if (n == -1) { /* no hits */
1879             if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1880                 /* background fault */
1881                 fi->type = ARMFault_Background;
1882                 return true;
1883             }
1884             get_phys_addr_pmsav7_default(env, mmu_idx, address,
1885                                          &result->f.prot);
1886         } else { /* a MPU hit! */
1887             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1888             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1889 
1890             if (m_is_system_region(env, address)) {
1891                 /* System space is always execute never */
1892                 xn = 1;
1893             }
1894 
1895             if (is_user) { /* User mode AP bit decoding */
1896                 switch (ap) {
1897                 case 0:
1898                 case 1:
1899                 case 5:
1900                     break; /* no access */
1901                 case 3:
1902                     result->f.prot |= PAGE_WRITE;
1903                     /* fall through */
1904                 case 2:
1905                 case 6:
1906                     result->f.prot |= PAGE_READ | PAGE_EXEC;
1907                     break;
1908                 case 7:
1909                     /* for v7M, same as 6; for R profile a reserved value */
1910                     if (arm_feature(env, ARM_FEATURE_M)) {
1911                         result->f.prot |= PAGE_READ | PAGE_EXEC;
1912                         break;
1913                     }
1914                     /* fall through */
1915                 default:
1916                     qemu_log_mask(LOG_GUEST_ERROR,
1917                                   "DRACR[%d]: Bad value for AP bits: 0x%"
1918                                   PRIx32 "\n", n, ap);
1919                 }
1920             } else { /* Priv. mode AP bits decoding */
1921                 switch (ap) {
1922                 case 0:
1923                     break; /* no access */
1924                 case 1:
1925                 case 2:
1926                 case 3:
1927                     result->f.prot |= PAGE_WRITE;
1928                     /* fall through */
1929                 case 5:
1930                 case 6:
1931                     result->f.prot |= PAGE_READ | PAGE_EXEC;
1932                     break;
1933                 case 7:
1934                     /* for v7M, same as 6; for R profile a reserved value */
1935                     if (arm_feature(env, ARM_FEATURE_M)) {
1936                         result->f.prot |= PAGE_READ | PAGE_EXEC;
1937                         break;
1938                     }
1939                     /* fall through */
1940                 default:
1941                     qemu_log_mask(LOG_GUEST_ERROR,
1942                                   "DRACR[%d]: Bad value for AP bits: 0x%"
1943                                   PRIx32 "\n", n, ap);
1944                 }
1945             }
1946 
1947             /* execute never */
1948             if (xn) {
1949                 result->f.prot &= ~PAGE_EXEC;
1950             }
1951         }
1952     }
1953 
1954     fi->type = ARMFault_Permission;
1955     fi->level = 1;
1956     return !(result->f.prot & (1 << access_type));
1957 }
1958 
1959 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
1960                              uint32_t secure)
1961 {
1962     if (regime_el(env, mmu_idx) == 2) {
1963         return env->pmsav8.hprbar;
1964     } else {
1965         return env->pmsav8.rbar[secure];
1966     }
1967 }
1968 
1969 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
1970                              uint32_t secure)
1971 {
1972     if (regime_el(env, mmu_idx) == 2) {
1973         return env->pmsav8.hprlar;
1974     } else {
1975         return env->pmsav8.rlar[secure];
1976     }
1977 }
1978 
1979 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1980                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1981                        bool secure, GetPhysAddrResult *result,
1982                        ARMMMUFaultInfo *fi, uint32_t *mregion)
1983 {
1984     /*
1985      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
1986      * that a full phys-to-virt translation does).
1987      * mregion is (if not NULL) set to the region number which matched,
1988      * or -1 if no region number is returned (MPU off, address did not
1989      * hit a region, address hit in multiple regions).
1990      * If the region hit doesn't cover the entire TARGET_PAGE the address
1991      * is within, then we set the result page_size to 1 to force the
1992      * memory system to use a subpage.
1993      */
1994     ARMCPU *cpu = env_archcpu(env);
1995     bool is_user = regime_is_user(env, mmu_idx);
1996     int n;
1997     int matchregion = -1;
1998     bool hit = false;
1999     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2000     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2001     int region_counter;
2002 
2003     if (regime_el(env, mmu_idx) == 2) {
2004         region_counter = cpu->pmsav8r_hdregion;
2005     } else {
2006         region_counter = cpu->pmsav7_dregion;
2007     }
2008 
2009     result->f.lg_page_size = TARGET_PAGE_BITS;
2010     result->f.phys_addr = address;
2011     result->f.prot = 0;
2012     if (mregion) {
2013         *mregion = -1;
2014     }
2015 
2016     if (mmu_idx == ARMMMUIdx_Stage2) {
2017         fi->stage2 = true;
2018     }
2019 
2020     /*
2021      * Unlike the ARM ARM pseudocode, we don't need to check whether this
2022      * was an exception vector read from the vector table (which is always
2023      * done using the default system address map), because those accesses
2024      * are done in arm_v7m_load_vector(), which always does a direct
2025      * read using address_space_ldl(), rather than going via this function.
2026      */
2027     if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
2028         hit = true;
2029     } else if (m_is_ppb_region(env, address)) {
2030         hit = true;
2031     } else {
2032         if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2033             hit = true;
2034         }
2035 
2036         uint32_t bitmask;
2037         if (arm_feature(env, ARM_FEATURE_M)) {
2038             bitmask = 0x1f;
2039         } else {
2040             bitmask = 0x3f;
2041             fi->level = 0;
2042         }
2043 
2044         for (n = region_counter - 1; n >= 0; n--) {
2045             /* region search */
2046             /*
2047              * Note that the base address is bits [31:x] from the register
2048              * with bits [x-1:0] all zeroes, but the limit address is bits
2049              * [31:x] from the register with bits [x:0] all ones. Where x is
2050              * 5 for Cortex-M and 6 for Cortex-R
2051              */
2052             uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2053             uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2054 
2055             if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2056                 /* Region disabled */
2057                 continue;
2058             }
2059 
2060             if (address < base || address > limit) {
2061                 /*
2062                  * Address not in this region. We must check whether the
2063                  * region covers addresses in the same page as our address.
2064                  * In that case we must not report a size that covers the
2065                  * whole page for a subsequent hit against a different MPU
2066                  * region or the background region, because it would result in
2067                  * incorrect TLB hits for subsequent accesses to addresses that
2068                  * are in this MPU region.
2069                  */
2070                 if (limit >= base &&
2071                     ranges_overlap(base, limit - base + 1,
2072                                    addr_page_base,
2073                                    TARGET_PAGE_SIZE)) {
2074                     result->f.lg_page_size = 0;
2075                 }
2076                 continue;
2077             }
2078 
2079             if (base > addr_page_base || limit < addr_page_limit) {
2080                 result->f.lg_page_size = 0;
2081             }
2082 
2083             if (matchregion != -1) {
2084                 /*
2085                  * Multiple regions match -- always a failure (unlike
2086                  * PMSAv7 where highest-numbered-region wins)
2087                  */
2088                 fi->type = ARMFault_Permission;
2089                 if (arm_feature(env, ARM_FEATURE_M)) {
2090                     fi->level = 1;
2091                 }
2092                 return true;
2093             }
2094 
2095             matchregion = n;
2096             hit = true;
2097         }
2098     }
2099 
2100     if (!hit) {
2101         if (arm_feature(env, ARM_FEATURE_M)) {
2102             fi->type = ARMFault_Background;
2103         } else {
2104             fi->type = ARMFault_Permission;
2105         }
2106         return true;
2107     }
2108 
2109     if (matchregion == -1) {
2110         /* hit using the background region */
2111         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2112     } else {
2113         uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2114         uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2115         uint32_t ap = extract32(matched_rbar, 1, 2);
2116         uint32_t xn = extract32(matched_rbar, 0, 1);
2117         bool pxn = false;
2118 
2119         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2120             pxn = extract32(matched_rlar, 4, 1);
2121         }
2122 
2123         if (m_is_system_region(env, address)) {
2124             /* System space is always execute never */
2125             xn = 1;
2126         }
2127 
2128         if (regime_el(env, mmu_idx) == 2) {
2129             result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2130                                             mmu_idx != ARMMMUIdx_E2);
2131         } else {
2132             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2133         }
2134 
2135         if (!arm_feature(env, ARM_FEATURE_M)) {
2136             uint8_t attrindx = extract32(matched_rlar, 1, 3);
2137             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2138             uint8_t sh = extract32(matched_rlar, 3, 2);
2139 
2140             if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2141                 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2142                 xn = 0x1;
2143             }
2144 
2145             if ((regime_el(env, mmu_idx) == 1) &&
2146                 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2147                 pxn = 0x1;
2148             }
2149 
2150             result->cacheattrs.is_s2_format = false;
2151             result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2152             result->cacheattrs.shareability = sh;
2153         }
2154 
2155         if (result->f.prot && !xn && !(pxn && !is_user)) {
2156             result->f.prot |= PAGE_EXEC;
2157         }
2158 
2159         if (mregion) {
2160             *mregion = matchregion;
2161         }
2162     }
2163 
2164     fi->type = ARMFault_Permission;
2165     if (arm_feature(env, ARM_FEATURE_M)) {
2166         fi->level = 1;
2167     }
2168     return !(result->f.prot & (1 << access_type));
2169 }
2170 
2171 static bool v8m_is_sau_exempt(CPUARMState *env,
2172                               uint32_t address, MMUAccessType access_type)
2173 {
2174     /*
2175      * The architecture specifies that certain address ranges are
2176      * exempt from v8M SAU/IDAU checks.
2177      */
2178     return
2179         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2180         (address >= 0xe0000000 && address <= 0xe0002fff) ||
2181         (address >= 0xe000e000 && address <= 0xe000efff) ||
2182         (address >= 0xe002e000 && address <= 0xe002efff) ||
2183         (address >= 0xe0040000 && address <= 0xe0041fff) ||
2184         (address >= 0xe00ff000 && address <= 0xe00fffff);
2185 }
2186 
2187 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2188                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
2189                          bool is_secure, V8M_SAttributes *sattrs)
2190 {
2191     /*
2192      * Look up the security attributes for this address. Compare the
2193      * pseudocode SecurityCheck() function.
2194      * We assume the caller has zero-initialized *sattrs.
2195      */
2196     ARMCPU *cpu = env_archcpu(env);
2197     int r;
2198     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2199     int idau_region = IREGION_NOTVALID;
2200     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2201     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2202 
2203     if (cpu->idau) {
2204         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2205         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2206 
2207         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2208                    &idau_nsc);
2209     }
2210 
2211     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2212         /* 0xf0000000..0xffffffff is always S for insn fetches */
2213         return;
2214     }
2215 
2216     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2217         sattrs->ns = !is_secure;
2218         return;
2219     }
2220 
2221     if (idau_region != IREGION_NOTVALID) {
2222         sattrs->irvalid = true;
2223         sattrs->iregion = idau_region;
2224     }
2225 
2226     switch (env->sau.ctrl & 3) {
2227     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2228         break;
2229     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2230         sattrs->ns = true;
2231         break;
2232     default: /* SAU.ENABLE == 1 */
2233         for (r = 0; r < cpu->sau_sregion; r++) {
2234             if (env->sau.rlar[r] & 1) {
2235                 uint32_t base = env->sau.rbar[r] & ~0x1f;
2236                 uint32_t limit = env->sau.rlar[r] | 0x1f;
2237 
2238                 if (base <= address && limit >= address) {
2239                     if (base > addr_page_base || limit < addr_page_limit) {
2240                         sattrs->subpage = true;
2241                     }
2242                     if (sattrs->srvalid) {
2243                         /*
2244                          * If we hit in more than one region then we must report
2245                          * as Secure, not NS-Callable, with no valid region
2246                          * number info.
2247                          */
2248                         sattrs->ns = false;
2249                         sattrs->nsc = false;
2250                         sattrs->sregion = 0;
2251                         sattrs->srvalid = false;
2252                         break;
2253                     } else {
2254                         if (env->sau.rlar[r] & 2) {
2255                             sattrs->nsc = true;
2256                         } else {
2257                             sattrs->ns = true;
2258                         }
2259                         sattrs->srvalid = true;
2260                         sattrs->sregion = r;
2261                     }
2262                 } else {
2263                     /*
2264                      * Address not in this region. We must check whether the
2265                      * region covers addresses in the same page as our address.
2266                      * In that case we must not report a size that covers the
2267                      * whole page for a subsequent hit against a different MPU
2268                      * region or the background region, because it would result
2269                      * in incorrect TLB hits for subsequent accesses to
2270                      * addresses that are in this MPU region.
2271                      */
2272                     if (limit >= base &&
2273                         ranges_overlap(base, limit - base + 1,
2274                                        addr_page_base,
2275                                        TARGET_PAGE_SIZE)) {
2276                         sattrs->subpage = true;
2277                     }
2278                 }
2279             }
2280         }
2281         break;
2282     }
2283 
2284     /*
2285      * The IDAU will override the SAU lookup results if it specifies
2286      * higher security than the SAU does.
2287      */
2288     if (!idau_ns) {
2289         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2290             sattrs->ns = false;
2291             sattrs->nsc = idau_nsc;
2292         }
2293     }
2294 }
2295 
2296 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
2297                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
2298                                  bool secure, GetPhysAddrResult *result,
2299                                  ARMMMUFaultInfo *fi)
2300 {
2301     V8M_SAttributes sattrs = {};
2302     bool ret;
2303 
2304     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2305         v8m_security_lookup(env, address, access_type, mmu_idx,
2306                             secure, &sattrs);
2307         if (access_type == MMU_INST_FETCH) {
2308             /*
2309              * Instruction fetches always use the MMU bank and the
2310              * transaction attribute determined by the fetch address,
2311              * regardless of CPU state. This is painful for QEMU
2312              * to handle, because it would mean we need to encode
2313              * into the mmu_idx not just the (user, negpri) information
2314              * for the current security state but also that for the
2315              * other security state, which would balloon the number
2316              * of mmu_idx values needed alarmingly.
2317              * Fortunately we can avoid this because it's not actually
2318              * possible to arbitrarily execute code from memory with
2319              * the wrong security attribute: it will always generate
2320              * an exception of some kind or another, apart from the
2321              * special case of an NS CPU executing an SG instruction
2322              * in S&NSC memory. So we always just fail the translation
2323              * here and sort things out in the exception handler
2324              * (including possibly emulating an SG instruction).
2325              */
2326             if (sattrs.ns != !secure) {
2327                 if (sattrs.nsc) {
2328                     fi->type = ARMFault_QEMU_NSCExec;
2329                 } else {
2330                     fi->type = ARMFault_QEMU_SFault;
2331                 }
2332                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2333                 result->f.phys_addr = address;
2334                 result->f.prot = 0;
2335                 return true;
2336             }
2337         } else {
2338             /*
2339              * For data accesses we always use the MMU bank indicated
2340              * by the current CPU state, but the security attributes
2341              * might downgrade a secure access to nonsecure.
2342              */
2343             if (sattrs.ns) {
2344                 result->f.attrs.secure = false;
2345             } else if (!secure) {
2346                 /*
2347                  * NS access to S memory must fault.
2348                  * Architecturally we should first check whether the
2349                  * MPU information for this address indicates that we
2350                  * are doing an unaligned access to Device memory, which
2351                  * should generate a UsageFault instead. QEMU does not
2352                  * currently check for that kind of unaligned access though.
2353                  * If we added it we would need to do so as a special case
2354                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2355                  */
2356                 fi->type = ARMFault_QEMU_SFault;
2357                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2358                 result->f.phys_addr = address;
2359                 result->f.prot = 0;
2360                 return true;
2361             }
2362         }
2363     }
2364 
2365     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2366                             result, fi, NULL);
2367     if (sattrs.subpage) {
2368         result->f.lg_page_size = 0;
2369     }
2370     return ret;
2371 }
2372 
2373 /*
2374  * Translate from the 4-bit stage 2 representation of
2375  * memory attributes (without cache-allocation hints) to
2376  * the 8-bit representation of the stage 1 MAIR registers
2377  * (which includes allocation hints).
2378  *
2379  * ref: shared/translation/attrs/S2AttrDecode()
2380  *      .../S2ConvertAttrsHints()
2381  */
2382 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2383 {
2384     uint8_t hiattr = extract32(s2attrs, 2, 2);
2385     uint8_t loattr = extract32(s2attrs, 0, 2);
2386     uint8_t hihint = 0, lohint = 0;
2387 
2388     if (hiattr != 0) { /* normal memory */
2389         if (hcr & HCR_CD) { /* cache disabled */
2390             hiattr = loattr = 1; /* non-cacheable */
2391         } else {
2392             if (hiattr != 1) { /* Write-through or write-back */
2393                 hihint = 3; /* RW allocate */
2394             }
2395             if (loattr != 1) { /* Write-through or write-back */
2396                 lohint = 3; /* RW allocate */
2397             }
2398         }
2399     }
2400 
2401     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2402 }
2403 
2404 /*
2405  * Combine either inner or outer cacheability attributes for normal
2406  * memory, according to table D4-42 and pseudocode procedure
2407  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2408  *
2409  * NB: only stage 1 includes allocation hints (RW bits), leading to
2410  * some asymmetry.
2411  */
2412 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2413 {
2414     if (s1 == 4 || s2 == 4) {
2415         /* non-cacheable has precedence */
2416         return 4;
2417     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2418         /* stage 1 write-through takes precedence */
2419         return s1;
2420     } else if (extract32(s2, 2, 2) == 2) {
2421         /* stage 2 write-through takes precedence, but the allocation hint
2422          * is still taken from stage 1
2423          */
2424         return (2 << 2) | extract32(s1, 0, 2);
2425     } else { /* write-back */
2426         return s1;
2427     }
2428 }
2429 
2430 /*
2431  * Combine the memory type and cacheability attributes of
2432  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2433  * combined attributes in MAIR_EL1 format.
2434  */
2435 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2436                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
2437 {
2438     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2439 
2440     if (s2.is_s2_format) {
2441         s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2442     } else {
2443         s2_mair_attrs = s2.attrs;
2444     }
2445 
2446     s1lo = extract32(s1.attrs, 0, 4);
2447     s2lo = extract32(s2_mair_attrs, 0, 4);
2448     s1hi = extract32(s1.attrs, 4, 4);
2449     s2hi = extract32(s2_mair_attrs, 4, 4);
2450 
2451     /* Combine memory type and cacheability attributes */
2452     if (s1hi == 0 || s2hi == 0) {
2453         /* Device has precedence over normal */
2454         if (s1lo == 0 || s2lo == 0) {
2455             /* nGnRnE has precedence over anything */
2456             ret_attrs = 0;
2457         } else if (s1lo == 4 || s2lo == 4) {
2458             /* non-Reordering has precedence over Reordering */
2459             ret_attrs = 4;  /* nGnRE */
2460         } else if (s1lo == 8 || s2lo == 8) {
2461             /* non-Gathering has precedence over Gathering */
2462             ret_attrs = 8;  /* nGRE */
2463         } else {
2464             ret_attrs = 0xc; /* GRE */
2465         }
2466     } else { /* Normal memory */
2467         /* Outer/inner cacheability combine independently */
2468         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2469                   | combine_cacheattr_nibble(s1lo, s2lo);
2470     }
2471     return ret_attrs;
2472 }
2473 
2474 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2475 {
2476     /*
2477      * Given the 4 bits specifying the outer or inner cacheability
2478      * in MAIR format, return a value specifying Normal Write-Back,
2479      * with the allocation and transient hints taken from the input
2480      * if the input specified some kind of cacheable attribute.
2481      */
2482     if (attr == 0 || attr == 4) {
2483         /*
2484          * 0 == an UNPREDICTABLE encoding
2485          * 4 == Non-cacheable
2486          * Either way, force Write-Back RW allocate non-transient
2487          */
2488         return 0xf;
2489     }
2490     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2491     return attr | 4;
2492 }
2493 
2494 /*
2495  * Combine the memory type and cacheability attributes of
2496  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2497  * combined attributes in MAIR_EL1 format.
2498  */
2499 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2500 {
2501     assert(s2.is_s2_format && !s1.is_s2_format);
2502 
2503     switch (s2.attrs) {
2504     case 7:
2505         /* Use stage 1 attributes */
2506         return s1.attrs;
2507     case 6:
2508         /*
2509          * Force Normal Write-Back. Note that if S1 is Normal cacheable
2510          * then we take the allocation hints from it; otherwise it is
2511          * RW allocate, non-transient.
2512          */
2513         if ((s1.attrs & 0xf0) == 0) {
2514             /* S1 is Device */
2515             return 0xff;
2516         }
2517         /* Need to check the Inner and Outer nibbles separately */
2518         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2519             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2520     case 5:
2521         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2522         if ((s1.attrs & 0xf0) == 0) {
2523             return s1.attrs;
2524         }
2525         return 0x44;
2526     case 0 ... 3:
2527         /* Force Device, of subtype specified by S2 */
2528         return s2.attrs << 2;
2529     default:
2530         /*
2531          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2532          * arbitrarily force Device.
2533          */
2534         return 0;
2535     }
2536 }
2537 
2538 /*
2539  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2540  * and CombineS1S2Desc()
2541  *
2542  * @env:     CPUARMState
2543  * @s1:      Attributes from stage 1 walk
2544  * @s2:      Attributes from stage 2 walk
2545  */
2546 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
2547                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
2548 {
2549     ARMCacheAttrs ret;
2550     bool tagged = false;
2551 
2552     assert(!s1.is_s2_format);
2553     ret.is_s2_format = false;
2554 
2555     if (s1.attrs == 0xf0) {
2556         tagged = true;
2557         s1.attrs = 0xff;
2558     }
2559 
2560     /* Combine shareability attributes (table D4-43) */
2561     if (s1.shareability == 2 || s2.shareability == 2) {
2562         /* if either are outer-shareable, the result is outer-shareable */
2563         ret.shareability = 2;
2564     } else if (s1.shareability == 3 || s2.shareability == 3) {
2565         /* if either are inner-shareable, the result is inner-shareable */
2566         ret.shareability = 3;
2567     } else {
2568         /* both non-shareable */
2569         ret.shareability = 0;
2570     }
2571 
2572     /* Combine memory type and cacheability attributes */
2573     if (hcr & HCR_FWB) {
2574         ret.attrs = combined_attrs_fwb(s1, s2);
2575     } else {
2576         ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
2577     }
2578 
2579     /*
2580      * Any location for which the resultant memory type is any
2581      * type of Device memory is always treated as Outer Shareable.
2582      * Any location for which the resultant memory type is Normal
2583      * Inner Non-cacheable, Outer Non-cacheable is always treated
2584      * as Outer Shareable.
2585      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2586      */
2587     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2588         ret.shareability = 2;
2589     }
2590 
2591     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2592     if (tagged && ret.attrs == 0xff) {
2593         ret.attrs = 0xf0;
2594     }
2595 
2596     return ret;
2597 }
2598 
2599 /*
2600  * MMU disabled.  S1 addresses within aa64 translation regimes are
2601  * still checked for bounds -- see AArch64.S1DisabledOutput().
2602  */
2603 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
2604                                    MMUAccessType access_type,
2605                                    ARMMMUIdx mmu_idx, bool is_secure,
2606                                    GetPhysAddrResult *result,
2607                                    ARMMMUFaultInfo *fi)
2608 {
2609     uint8_t memattr = 0x00;    /* Device nGnRnE */
2610     uint8_t shareability = 0;  /* non-sharable */
2611     int r_el;
2612 
2613     switch (mmu_idx) {
2614     case ARMMMUIdx_Stage2:
2615     case ARMMMUIdx_Stage2_S:
2616     case ARMMMUIdx_Phys_NS:
2617     case ARMMMUIdx_Phys_S:
2618         break;
2619 
2620     default:
2621         r_el = regime_el(env, mmu_idx);
2622         if (arm_el_is_aa64(env, r_el)) {
2623             int pamax = arm_pamax(env_archcpu(env));
2624             uint64_t tcr = env->cp15.tcr_el[r_el];
2625             int addrtop, tbi;
2626 
2627             tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2628             if (access_type == MMU_INST_FETCH) {
2629                 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2630             }
2631             tbi = (tbi >> extract64(address, 55, 1)) & 1;
2632             addrtop = (tbi ? 55 : 63);
2633 
2634             if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2635                 fi->type = ARMFault_AddressSize;
2636                 fi->level = 0;
2637                 fi->stage2 = false;
2638                 return 1;
2639             }
2640 
2641             /*
2642              * When TBI is disabled, we've just validated that all of the
2643              * bits above PAMax are zero, so logically we only need to
2644              * clear the top byte for TBI.  But it's clearer to follow
2645              * the pseudocode set of addrdesc.paddress.
2646              */
2647             address = extract64(address, 0, 52);
2648         }
2649 
2650         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2651         if (r_el == 1) {
2652             uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2653             if (hcr & HCR_DC) {
2654                 if (hcr & HCR_DCT) {
2655                     memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
2656                 } else {
2657                     memattr = 0xff;  /* Normal, WB, RWA */
2658                 }
2659             }
2660         }
2661         if (memattr == 0 && access_type == MMU_INST_FETCH) {
2662             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2663                 memattr = 0xee;  /* Normal, WT, RA, NT */
2664             } else {
2665                 memattr = 0x44;  /* Normal, NC, No */
2666             }
2667             shareability = 2; /* outer sharable */
2668         }
2669         result->cacheattrs.is_s2_format = false;
2670         break;
2671     }
2672 
2673     result->f.phys_addr = address;
2674     result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2675     result->f.lg_page_size = TARGET_PAGE_BITS;
2676     result->cacheattrs.shareability = shareability;
2677     result->cacheattrs.attrs = memattr;
2678     return false;
2679 }
2680 
2681 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
2682                                    target_ulong address,
2683                                    MMUAccessType access_type,
2684                                    GetPhysAddrResult *result,
2685                                    ARMMMUFaultInfo *fi)
2686 {
2687     hwaddr ipa;
2688     int s1_prot, s1_lgpgsz;
2689     bool is_secure = ptw->in_secure;
2690     bool ret, ipa_secure, s2walk_secure;
2691     ARMCacheAttrs cacheattrs1;
2692     bool is_el0;
2693     uint64_t hcr;
2694 
2695     ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi);
2696 
2697     /* If S1 fails, return early.  */
2698     if (ret) {
2699         return ret;
2700     }
2701 
2702     ipa = result->f.phys_addr;
2703     ipa_secure = result->f.attrs.secure;
2704     if (is_secure) {
2705         /* Select TCR based on the NS bit from the S1 walk. */
2706         s2walk_secure = !(ipa_secure
2707                           ? env->cp15.vstcr_el2 & VSTCR_SW
2708                           : env->cp15.vtcr_el2 & VTCR_NSW);
2709     } else {
2710         assert(!ipa_secure);
2711         s2walk_secure = false;
2712     }
2713 
2714     is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
2715     ptw->in_mmu_idx = s2walk_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2716     ptw->in_ptw_idx = s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2717     ptw->in_secure = s2walk_secure;
2718 
2719     /*
2720      * S1 is done, now do S2 translation.
2721      * Save the stage1 results so that we may merge prot and cacheattrs later.
2722      */
2723     s1_prot = result->f.prot;
2724     s1_lgpgsz = result->f.lg_page_size;
2725     cacheattrs1 = result->cacheattrs;
2726     memset(result, 0, sizeof(*result));
2727 
2728     if (arm_feature(env, ARM_FEATURE_PMSA)) {
2729         ret = get_phys_addr_pmsav8(env, ipa, access_type,
2730                                    ptw->in_mmu_idx, is_secure, result, fi);
2731     } else {
2732         ret = get_phys_addr_lpae(env, ptw, ipa, access_type,
2733                                  is_el0, result, fi);
2734     }
2735     fi->s2addr = ipa;
2736 
2737     /* Combine the S1 and S2 perms.  */
2738     result->f.prot &= s1_prot;
2739 
2740     /* If S2 fails, return early.  */
2741     if (ret) {
2742         return ret;
2743     }
2744 
2745     /*
2746      * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
2747      * this means "don't put this in the TLB"; in this case, return a
2748      * result with lg_page_size == 0 to achieve that. Otherwise,
2749      * use the maximum of the S1 & S2 page size, so that invalidation
2750      * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
2751      * we know the combined result permissions etc only cover the minimum
2752      * of the S1 and S2 page size, because we know that the common TLB code
2753      * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
2754      * and passing a larger page size value only affects invalidations.)
2755      */
2756     if (result->f.lg_page_size < TARGET_PAGE_BITS ||
2757         s1_lgpgsz < TARGET_PAGE_BITS) {
2758         result->f.lg_page_size = 0;
2759     } else if (result->f.lg_page_size < s1_lgpgsz) {
2760         result->f.lg_page_size = s1_lgpgsz;
2761     }
2762 
2763     /* Combine the S1 and S2 cache attributes. */
2764     hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2765     if (hcr & HCR_DC) {
2766         /*
2767          * HCR.DC forces the first stage attributes to
2768          *  Normal Non-Shareable,
2769          *  Inner Write-Back Read-Allocate Write-Allocate,
2770          *  Outer Write-Back Read-Allocate Write-Allocate.
2771          * Do not overwrite Tagged within attrs.
2772          */
2773         if (cacheattrs1.attrs != 0xf0) {
2774             cacheattrs1.attrs = 0xff;
2775         }
2776         cacheattrs1.shareability = 0;
2777     }
2778     result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
2779                                             result->cacheattrs);
2780 
2781     /*
2782      * Check if IPA translates to secure or non-secure PA space.
2783      * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
2784      */
2785     result->f.attrs.secure =
2786         (is_secure
2787          && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
2788          && (ipa_secure
2789              || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))));
2790 
2791     return false;
2792 }
2793 
2794 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
2795                                       target_ulong address,
2796                                       MMUAccessType access_type,
2797                                       GetPhysAddrResult *result,
2798                                       ARMMMUFaultInfo *fi)
2799 {
2800     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2801     bool is_secure = ptw->in_secure;
2802     ARMMMUIdx s1_mmu_idx;
2803 
2804     /*
2805      * The page table entries may downgrade secure to non-secure, but
2806      * cannot upgrade an non-secure translation regime's attributes
2807      * to secure.
2808      */
2809     result->f.attrs.secure = is_secure;
2810 
2811     switch (mmu_idx) {
2812     case ARMMMUIdx_Phys_S:
2813     case ARMMMUIdx_Phys_NS:
2814         /* Checking Phys early avoids special casing later vs regime_el. */
2815         return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2816                                       is_secure, result, fi);
2817 
2818     case ARMMMUIdx_Stage1_E0:
2819     case ARMMMUIdx_Stage1_E1:
2820     case ARMMMUIdx_Stage1_E1_PAN:
2821         /* First stage lookup uses second stage for ptw. */
2822         ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2823         break;
2824 
2825     case ARMMMUIdx_E10_0:
2826         s1_mmu_idx = ARMMMUIdx_Stage1_E0;
2827         goto do_twostage;
2828     case ARMMMUIdx_E10_1:
2829         s1_mmu_idx = ARMMMUIdx_Stage1_E1;
2830         goto do_twostage;
2831     case ARMMMUIdx_E10_1_PAN:
2832         s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
2833     do_twostage:
2834         /*
2835          * Call ourselves recursively to do the stage 1 and then stage 2
2836          * translations if mmu_idx is a two-stage regime, and EL2 present.
2837          * Otherwise, a stage1+stage2 translation is just stage 1.
2838          */
2839         ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
2840         if (arm_feature(env, ARM_FEATURE_EL2) &&
2841             !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) {
2842             return get_phys_addr_twostage(env, ptw, address, access_type,
2843                                           result, fi);
2844         }
2845         /* fall through */
2846 
2847     default:
2848         /* Single stage and second stage uses physical for ptw. */
2849         ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2850         break;
2851     }
2852 
2853     result->f.attrs.user = regime_is_user(env, mmu_idx);
2854 
2855     /*
2856      * Fast Context Switch Extension. This doesn't exist at all in v8.
2857      * In v7 and earlier it affects all stage 1 translations.
2858      */
2859     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2860         && !arm_feature(env, ARM_FEATURE_V8)) {
2861         if (regime_el(env, mmu_idx) == 3) {
2862             address += env->cp15.fcseidr_s;
2863         } else {
2864             address += env->cp15.fcseidr_ns;
2865         }
2866     }
2867 
2868     if (arm_feature(env, ARM_FEATURE_PMSA)) {
2869         bool ret;
2870         result->f.lg_page_size = TARGET_PAGE_BITS;
2871 
2872         if (arm_feature(env, ARM_FEATURE_V8)) {
2873             /* PMSAv8 */
2874             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2875                                        is_secure, result, fi);
2876         } else if (arm_feature(env, ARM_FEATURE_V7)) {
2877             /* PMSAv7 */
2878             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2879                                        is_secure, result, fi);
2880         } else {
2881             /* Pre-v7 MPU */
2882             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2883                                        is_secure, result, fi);
2884         }
2885         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2886                       " mmu_idx %u -> %s (prot %c%c%c)\n",
2887                       access_type == MMU_DATA_LOAD ? "reading" :
2888                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2889                       (uint32_t)address, mmu_idx,
2890                       ret ? "Miss" : "Hit",
2891                       result->f.prot & PAGE_READ ? 'r' : '-',
2892                       result->f.prot & PAGE_WRITE ? 'w' : '-',
2893                       result->f.prot & PAGE_EXEC ? 'x' : '-');
2894 
2895         return ret;
2896     }
2897 
2898     /* Definitely a real MMU, not an MPU */
2899 
2900     if (regime_translation_disabled(env, mmu_idx, is_secure)) {
2901         return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2902                                       is_secure, result, fi);
2903     }
2904 
2905     if (regime_using_lpae_format(env, mmu_idx)) {
2906         return get_phys_addr_lpae(env, ptw, address, access_type, false,
2907                                   result, fi);
2908     } else if (arm_feature(env, ARM_FEATURE_V7) ||
2909                regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2910         return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
2911     } else {
2912         return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
2913     }
2914 }
2915 
2916 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
2917                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
2918                                bool is_secure, GetPhysAddrResult *result,
2919                                ARMMMUFaultInfo *fi)
2920 {
2921     S1Translate ptw = {
2922         .in_mmu_idx = mmu_idx,
2923         .in_secure = is_secure,
2924     };
2925     return get_phys_addr_with_struct(env, &ptw, address, access_type,
2926                                      result, fi);
2927 }
2928 
2929 bool get_phys_addr(CPUARMState *env, target_ulong address,
2930                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
2931                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
2932 {
2933     bool is_secure;
2934 
2935     switch (mmu_idx) {
2936     case ARMMMUIdx_E10_0:
2937     case ARMMMUIdx_E10_1:
2938     case ARMMMUIdx_E10_1_PAN:
2939     case ARMMMUIdx_E20_0:
2940     case ARMMMUIdx_E20_2:
2941     case ARMMMUIdx_E20_2_PAN:
2942     case ARMMMUIdx_Stage1_E0:
2943     case ARMMMUIdx_Stage1_E1:
2944     case ARMMMUIdx_Stage1_E1_PAN:
2945     case ARMMMUIdx_E2:
2946         is_secure = arm_is_secure_below_el3(env);
2947         break;
2948     case ARMMMUIdx_Stage2:
2949     case ARMMMUIdx_Phys_NS:
2950     case ARMMMUIdx_MPrivNegPri:
2951     case ARMMMUIdx_MUserNegPri:
2952     case ARMMMUIdx_MPriv:
2953     case ARMMMUIdx_MUser:
2954         is_secure = false;
2955         break;
2956     case ARMMMUIdx_E3:
2957     case ARMMMUIdx_Stage2_S:
2958     case ARMMMUIdx_Phys_S:
2959     case ARMMMUIdx_MSPrivNegPri:
2960     case ARMMMUIdx_MSUserNegPri:
2961     case ARMMMUIdx_MSPriv:
2962     case ARMMMUIdx_MSUser:
2963         is_secure = true;
2964         break;
2965     default:
2966         g_assert_not_reached();
2967     }
2968     return get_phys_addr_with_secure(env, address, access_type, mmu_idx,
2969                                      is_secure, result, fi);
2970 }
2971 
2972 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
2973                                          MemTxAttrs *attrs)
2974 {
2975     ARMCPU *cpu = ARM_CPU(cs);
2976     CPUARMState *env = &cpu->env;
2977     S1Translate ptw = {
2978         .in_mmu_idx = arm_mmu_idx(env),
2979         .in_secure = arm_is_secure(env),
2980         .in_debug = true,
2981     };
2982     GetPhysAddrResult res = {};
2983     ARMMMUFaultInfo fi = {};
2984     bool ret;
2985 
2986     ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
2987     *attrs = res.f.attrs;
2988 
2989     if (ret) {
2990         return -1;
2991     }
2992     return res.f.phys_addr;
2993 }
2994