1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "qemu/main-loop.h" 13 #include "exec/exec-all.h" 14 #include "exec/page-protection.h" 15 #include "cpu.h" 16 #include "internals.h" 17 #include "cpu-features.h" 18 #include "idau.h" 19 #ifdef CONFIG_TCG 20 # include "tcg/oversized-guest.h" 21 #endif 22 23 typedef struct S1Translate { 24 /* 25 * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk. 26 * Together with in_space, specifies the architectural translation regime. 27 */ 28 ARMMMUIdx in_mmu_idx; 29 /* 30 * in_ptw_idx: specifies which mmuidx to use for the actual 31 * page table descriptor load operations. This will be one of the 32 * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes. 33 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 34 * this field is updated accordingly. 35 */ 36 ARMMMUIdx in_ptw_idx; 37 /* 38 * in_space: the security space for this walk. This plus 39 * the in_mmu_idx specify the architectural translation regime. 40 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 41 * this field is updated accordingly. 42 * 43 * Note that the security space for the in_ptw_idx may be different 44 * from that for the in_mmu_idx. We do not need to explicitly track 45 * the in_ptw_idx security space because: 46 * - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx 47 * itself specifies the security space 48 * - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security 49 * space used for ptw reads is the same as that of the security 50 * space of the stage 1 translation for all cases except where 51 * stage 1 is Secure; in that case the only possibilities for 52 * the ptw read are Secure and NonSecure, and the in_ptw_idx 53 * value being Stage2 vs Stage2_S distinguishes those. 54 */ 55 ARMSecuritySpace in_space; 56 /* 57 * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug 58 * accesses will not update the guest page table access flags 59 * and will not change the state of the softmmu TLBs. 60 */ 61 bool in_debug; 62 /* 63 * If this is stage 2 of a stage 1+2 page table walk, then this must 64 * be true if stage 1 is an EL0 access; otherwise this is ignored. 65 * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}. 66 */ 67 bool in_s1_is_el0; 68 bool out_rw; 69 bool out_be; 70 ARMSecuritySpace out_space; 71 hwaddr out_virt; 72 hwaddr out_phys; 73 void *out_host; 74 } S1Translate; 75 76 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 77 vaddr address, 78 MMUAccessType access_type, MemOp memop, 79 GetPhysAddrResult *result, 80 ARMMMUFaultInfo *fi); 81 82 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 83 vaddr address, 84 MMUAccessType access_type, MemOp memop, 85 GetPhysAddrResult *result, 86 ARMMMUFaultInfo *fi); 87 88 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 89 static const uint8_t pamax_map[] = { 90 [0] = 32, 91 [1] = 36, 92 [2] = 40, 93 [3] = 42, 94 [4] = 44, 95 [5] = 48, 96 [6] = 52, 97 }; 98 99 uint8_t round_down_to_parange_index(uint8_t bit_size) 100 { 101 for (int i = ARRAY_SIZE(pamax_map) - 1; i >= 0; i--) { 102 if (pamax_map[i] <= bit_size) { 103 return i; 104 } 105 } 106 g_assert_not_reached(); 107 } 108 109 uint8_t round_down_to_parange_bit_size(uint8_t bit_size) 110 { 111 return pamax_map[round_down_to_parange_index(bit_size)]; 112 } 113 114 /* 115 * The cpu-specific constant value of PAMax; also used by hw/arm/virt. 116 * Note that machvirt_init calls this on a CPU that is inited but not realized! 117 */ 118 unsigned int arm_pamax(ARMCPU *cpu) 119 { 120 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 121 unsigned int parange = 122 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 123 124 /* 125 * id_aa64mmfr0 is a read-only register so values outside of the 126 * supported mappings can be considered an implementation error. 127 */ 128 assert(parange < ARRAY_SIZE(pamax_map)); 129 return pamax_map[parange]; 130 } 131 132 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 133 /* v7 or v8 with LPAE */ 134 return 40; 135 } 136 /* Anything else */ 137 return 32; 138 } 139 140 /* 141 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 142 */ 143 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 144 { 145 switch (mmu_idx) { 146 case ARMMMUIdx_E10_0: 147 return ARMMMUIdx_Stage1_E0; 148 case ARMMMUIdx_E10_1: 149 return ARMMMUIdx_Stage1_E1; 150 case ARMMMUIdx_E10_1_PAN: 151 return ARMMMUIdx_Stage1_E1_PAN; 152 default: 153 return mmu_idx; 154 } 155 } 156 157 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 158 { 159 return stage_1_mmu_idx(arm_mmu_idx(env)); 160 } 161 162 /* 163 * Return where we should do ptw loads from for a stage 2 walk. 164 * This depends on whether the address we are looking up is a 165 * Secure IPA or a NonSecure IPA, which we know from whether this is 166 * Stage2 or Stage2_S. 167 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits. 168 */ 169 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx) 170 { 171 bool s2walk_secure; 172 173 /* 174 * We're OK to check the current state of the CPU here because 175 * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit 176 * changes. 177 * (2) there's no way to do a lookup that cares about Stage 2 for a 178 * different security state to the current one for AArch64, and AArch32 179 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do 180 * an NS stage 1+2 lookup while the NS bit is 0.) 181 */ 182 if (!arm_el_is_aa64(env, 3)) { 183 return ARMMMUIdx_Phys_NS; 184 } 185 186 switch (arm_security_space_below_el3(env)) { 187 case ARMSS_NonSecure: 188 return ARMMMUIdx_Phys_NS; 189 case ARMSS_Realm: 190 return ARMMMUIdx_Phys_Realm; 191 case ARMSS_Secure: 192 if (stage2idx == ARMMMUIdx_Stage2_S) { 193 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW); 194 } else { 195 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW); 196 } 197 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 198 default: 199 g_assert_not_reached(); 200 } 201 } 202 203 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 204 { 205 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 206 } 207 208 /* Return the TTBR associated with this translation regime */ 209 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 210 { 211 if (mmu_idx == ARMMMUIdx_Stage2) { 212 return env->cp15.vttbr_el2; 213 } 214 if (mmu_idx == ARMMMUIdx_Stage2_S) { 215 return env->cp15.vsttbr_el2; 216 } 217 if (ttbrn == 0) { 218 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 219 } else { 220 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 221 } 222 } 223 224 /* Return true if the specified stage of address translation is disabled */ 225 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, 226 ARMSecuritySpace space) 227 { 228 uint64_t hcr_el2; 229 230 if (arm_feature(env, ARM_FEATURE_M)) { 231 bool is_secure = arm_space_is_secure(space); 232 switch (env->v7m.mpu_ctrl[is_secure] & 233 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 234 case R_V7M_MPU_CTRL_ENABLE_MASK: 235 /* Enabled, but not for HardFault and NMI */ 236 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 237 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 238 /* Enabled for all cases */ 239 return false; 240 case 0: 241 default: 242 /* 243 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 244 * we warned about that in armv7m_nvic.c when the guest set it. 245 */ 246 return true; 247 } 248 } 249 250 251 switch (mmu_idx) { 252 case ARMMMUIdx_Stage2: 253 case ARMMMUIdx_Stage2_S: 254 /* HCR.DC means HCR.VM behaves as 1 */ 255 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 256 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 257 258 case ARMMMUIdx_E10_0: 259 case ARMMMUIdx_E10_1: 260 case ARMMMUIdx_E10_1_PAN: 261 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ 262 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 263 if (hcr_el2 & HCR_TGE) { 264 return true; 265 } 266 break; 267 268 case ARMMMUIdx_Stage1_E0: 269 case ARMMMUIdx_Stage1_E1: 270 case ARMMMUIdx_Stage1_E1_PAN: 271 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 272 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 273 if (hcr_el2 & HCR_DC) { 274 return true; 275 } 276 break; 277 278 case ARMMMUIdx_E20_0: 279 case ARMMMUIdx_E20_2: 280 case ARMMMUIdx_E20_2_PAN: 281 case ARMMMUIdx_E2: 282 case ARMMMUIdx_E3: 283 case ARMMMUIdx_E30_0: 284 case ARMMMUIdx_E30_3_PAN: 285 break; 286 287 case ARMMMUIdx_Phys_S: 288 case ARMMMUIdx_Phys_NS: 289 case ARMMMUIdx_Phys_Root: 290 case ARMMMUIdx_Phys_Realm: 291 /* No translation for physical address spaces. */ 292 return true; 293 294 default: 295 g_assert_not_reached(); 296 } 297 298 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 299 } 300 301 static bool granule_protection_check(CPUARMState *env, uint64_t paddress, 302 ARMSecuritySpace pspace, 303 ARMMMUFaultInfo *fi) 304 { 305 MemTxAttrs attrs = { 306 .secure = true, 307 .space = ARMSS_Root, 308 }; 309 ARMCPU *cpu = env_archcpu(env); 310 uint64_t gpccr = env->cp15.gpccr_el3; 311 unsigned pps, pgs, l0gptsz, level = 0; 312 uint64_t tableaddr, pps_mask, align, entry, index; 313 AddressSpace *as; 314 MemTxResult result; 315 int gpi; 316 317 if (!FIELD_EX64(gpccr, GPCCR, GPC)) { 318 return true; 319 } 320 321 /* 322 * GPC Priority 1 (R_GMGRR): 323 * R_JWCSM: If the configuration of GPCCR_EL3 is invalid, 324 * the access fails as GPT walk fault at level 0. 325 */ 326 327 /* 328 * Configuration of PPS to a value exceeding the implemented 329 * physical address size is invalid. 330 */ 331 pps = FIELD_EX64(gpccr, GPCCR, PPS); 332 if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) { 333 goto fault_walk; 334 } 335 pps = pamax_map[pps]; 336 pps_mask = MAKE_64BIT_MASK(0, pps); 337 338 switch (FIELD_EX64(gpccr, GPCCR, SH)) { 339 case 0b10: /* outer shareable */ 340 break; 341 case 0b00: /* non-shareable */ 342 case 0b11: /* inner shareable */ 343 /* Inner and Outer non-cacheable requires Outer shareable. */ 344 if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 && 345 FIELD_EX64(gpccr, GPCCR, IRGN) == 0) { 346 goto fault_walk; 347 } 348 break; 349 default: /* reserved */ 350 goto fault_walk; 351 } 352 353 switch (FIELD_EX64(gpccr, GPCCR, PGS)) { 354 case 0b00: /* 4KB */ 355 pgs = 12; 356 break; 357 case 0b01: /* 64KB */ 358 pgs = 16; 359 break; 360 case 0b10: /* 16KB */ 361 pgs = 14; 362 break; 363 default: /* reserved */ 364 goto fault_walk; 365 } 366 367 /* Note this field is read-only and fixed at reset. */ 368 l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ); 369 370 /* 371 * GPC Priority 2: Secure, Realm or Root address exceeds PPS. 372 * R_CPDSB: A NonSecure physical address input exceeding PPS 373 * does not experience any fault. 374 */ 375 if (paddress & ~pps_mask) { 376 if (pspace == ARMSS_NonSecure) { 377 return true; 378 } 379 goto fault_size; 380 } 381 382 /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */ 383 tableaddr = env->cp15.gptbr_el3 << 12; 384 if (tableaddr & ~pps_mask) { 385 goto fault_size; 386 } 387 388 /* 389 * BADDR is aligned per a function of PPS and L0GPTSZ. 390 * These bits of GPTBR_EL3 are RES0, but are not a configuration error, 391 * unlike the RES0 bits of the GPT entries (R_XNKFZ). 392 */ 393 align = MAX(pps - l0gptsz + 3, 12); 394 align = MAKE_64BIT_MASK(0, align); 395 tableaddr &= ~align; 396 397 as = arm_addressspace(env_cpu(env), attrs); 398 399 /* Level 0 lookup. */ 400 index = extract64(paddress, l0gptsz, pps - l0gptsz); 401 tableaddr += index * 8; 402 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 403 if (result != MEMTX_OK) { 404 goto fault_eabt; 405 } 406 407 switch (extract32(entry, 0, 4)) { 408 case 1: /* block descriptor */ 409 if (entry >> 8) { 410 goto fault_walk; /* RES0 bits not 0 */ 411 } 412 gpi = extract32(entry, 4, 4); 413 goto found; 414 case 3: /* table descriptor */ 415 tableaddr = entry & ~0xf; 416 align = MAX(l0gptsz - pgs - 1, 12); 417 align = MAKE_64BIT_MASK(0, align); 418 if (tableaddr & (~pps_mask | align)) { 419 goto fault_walk; /* RES0 bits not 0 */ 420 } 421 break; 422 default: /* invalid */ 423 goto fault_walk; 424 } 425 426 /* Level 1 lookup */ 427 level = 1; 428 index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4); 429 tableaddr += index * 8; 430 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 431 if (result != MEMTX_OK) { 432 goto fault_eabt; 433 } 434 435 switch (extract32(entry, 0, 4)) { 436 case 1: /* contiguous descriptor */ 437 if (entry >> 10) { 438 goto fault_walk; /* RES0 bits not 0 */ 439 } 440 /* 441 * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE, 442 * and because we cannot invalidate by pa, and thus will always 443 * flush entire tlbs, we don't actually care about the range here 444 * and can simply extract the GPI as the result. 445 */ 446 if (extract32(entry, 8, 2) == 0) { 447 goto fault_walk; /* reserved contig */ 448 } 449 gpi = extract32(entry, 4, 4); 450 break; 451 default: 452 index = extract64(paddress, pgs, 4); 453 gpi = extract64(entry, index * 4, 4); 454 break; 455 } 456 457 found: 458 switch (gpi) { 459 case 0b0000: /* no access */ 460 break; 461 case 0b1111: /* all access */ 462 return true; 463 case 0b1000: 464 case 0b1001: 465 case 0b1010: 466 case 0b1011: 467 if (pspace == (gpi & 3)) { 468 return true; 469 } 470 break; 471 default: 472 goto fault_walk; /* reserved */ 473 } 474 475 fi->gpcf = GPCF_Fail; 476 goto fault_common; 477 fault_eabt: 478 fi->gpcf = GPCF_EABT; 479 goto fault_common; 480 fault_size: 481 fi->gpcf = GPCF_AddressSize; 482 goto fault_common; 483 fault_walk: 484 fi->gpcf = GPCF_Walk; 485 fault_common: 486 fi->level = level; 487 fi->paddr = paddress; 488 fi->paddr_space = pspace; 489 return false; 490 } 491 492 static bool S1_attrs_are_device(uint8_t attrs) 493 { 494 /* 495 * This slightly under-decodes the MAIR_ELx field: 496 * 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE; 497 * 0b0000dd1x is UNPREDICTABLE. 498 */ 499 return (attrs & 0xf0) == 0; 500 } 501 502 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) 503 { 504 /* 505 * For an S1 page table walk, the stage 1 attributes are always 506 * some form of "this is Normal memory". The combined S1+S2 507 * attributes are therefore only Device if stage 2 specifies Device. 508 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 509 * ie when cacheattrs.attrs bits [3:2] are 0b00. 510 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 511 * when cacheattrs.attrs bit [2] is 0. 512 */ 513 if (hcr & HCR_FWB) { 514 return (attrs & 0x4) == 0; 515 } else { 516 return (attrs & 0xc) == 0; 517 } 518 } 519 520 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space, 521 ARMMMUIdx s2_mmu_idx) 522 { 523 /* 524 * Return the security space to use for stage 2 when doing 525 * the S1 page table descriptor load. 526 */ 527 if (regime_is_stage2(s2_mmu_idx)) { 528 /* 529 * The security space for ptw reads is almost always the same 530 * as that of the security space of the stage 1 translation. 531 * The only exception is when stage 1 is Secure; in that case 532 * the ptw read might be to the Secure or the NonSecure space 533 * (but never Realm or Root), and the s2_mmu_idx tells us which. 534 * Root translations are always single-stage. 535 */ 536 if (s1_space == ARMSS_Secure) { 537 return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S); 538 } else { 539 assert(s2_mmu_idx != ARMMMUIdx_Stage2_S); 540 assert(s1_space != ARMSS_Root); 541 return s1_space; 542 } 543 } else { 544 /* ptw loads are from phys: the mmu idx itself says which space */ 545 return arm_phys_to_space(s2_mmu_idx); 546 } 547 } 548 549 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx) 550 { 551 /* 552 * For stage 2 faults in Secure EL22, S1NS indicates 553 * whether the faulting IPA is in the Secure or NonSecure 554 * IPA space. For all other kinds of fault, it is false. 555 */ 556 return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx) 557 && s2_mmu_idx == ARMMMUIdx_Stage2_S; 558 } 559 560 /* Translate a S1 pagetable walk through S2 if needed. */ 561 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, 562 hwaddr addr, ARMMMUFaultInfo *fi) 563 { 564 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 565 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx; 566 uint8_t pte_attrs; 567 568 ptw->out_virt = addr; 569 570 if (unlikely(ptw->in_debug)) { 571 /* 572 * From gdbstub, do not use softmmu so that we don't modify the 573 * state of the cpu at all, including softmmu tlb contents. 574 */ 575 ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx); 576 S1Translate s2ptw = { 577 .in_mmu_idx = s2_mmu_idx, 578 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx), 579 .in_space = s2_space, 580 .in_debug = true, 581 }; 582 GetPhysAddrResult s2 = { }; 583 584 if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, 0, &s2, fi)) { 585 goto fail; 586 } 587 588 ptw->out_phys = s2.f.phys_addr; 589 pte_attrs = s2.cacheattrs.attrs; 590 ptw->out_host = NULL; 591 ptw->out_rw = false; 592 ptw->out_space = s2.f.attrs.space; 593 } else { 594 #ifdef CONFIG_TCG 595 CPUTLBEntryFull *full; 596 int flags; 597 598 env->tlb_fi = fi; 599 flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD, 600 arm_to_core_mmu_idx(s2_mmu_idx), 601 &ptw->out_host, &full); 602 env->tlb_fi = NULL; 603 604 if (unlikely(flags & TLB_INVALID_MASK)) { 605 goto fail; 606 } 607 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 608 ptw->out_rw = full->prot & PAGE_WRITE; 609 pte_attrs = full->extra.arm.pte_attrs; 610 ptw->out_space = full->attrs.space; 611 #else 612 g_assert_not_reached(); 613 #endif 614 } 615 616 if (regime_is_stage2(s2_mmu_idx)) { 617 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 618 619 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { 620 /* 621 * PTW set and S1 walk touched S2 Device memory: 622 * generate Permission fault. 623 */ 624 fi->type = ARMFault_Permission; 625 fi->s2addr = addr; 626 fi->stage2 = true; 627 fi->s1ptw = true; 628 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 629 return false; 630 } 631 } 632 633 ptw->out_be = regime_translation_big_endian(env, mmu_idx); 634 return true; 635 636 fail: 637 assert(fi->type != ARMFault_None); 638 if (fi->type == ARMFault_GPCFOnOutput) { 639 fi->type = ARMFault_GPCFOnWalk; 640 } 641 fi->s2addr = addr; 642 fi->stage2 = regime_is_stage2(s2_mmu_idx); 643 fi->s1ptw = fi->stage2; 644 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 645 return false; 646 } 647 648 /* All loads done in the course of a page table walk go through here. */ 649 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, 650 ARMMMUFaultInfo *fi) 651 { 652 CPUState *cs = env_cpu(env); 653 void *host = ptw->out_host; 654 uint32_t data; 655 656 if (likely(host)) { 657 /* Page tables are in RAM, and we have the host address. */ 658 data = qatomic_read((uint32_t *)host); 659 if (ptw->out_be) { 660 data = be32_to_cpu(data); 661 } else { 662 data = le32_to_cpu(data); 663 } 664 } else { 665 /* Page tables are in MMIO. */ 666 MemTxAttrs attrs = { 667 .space = ptw->out_space, 668 .secure = arm_space_is_secure(ptw->out_space), 669 }; 670 AddressSpace *as = arm_addressspace(cs, attrs); 671 MemTxResult result = MEMTX_OK; 672 673 if (ptw->out_be) { 674 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); 675 } else { 676 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); 677 } 678 if (unlikely(result != MEMTX_OK)) { 679 fi->type = ARMFault_SyncExternalOnWalk; 680 fi->ea = arm_extabort_type(result); 681 return 0; 682 } 683 } 684 return data; 685 } 686 687 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, 688 ARMMMUFaultInfo *fi) 689 { 690 CPUState *cs = env_cpu(env); 691 void *host = ptw->out_host; 692 uint64_t data; 693 694 if (likely(host)) { 695 /* Page tables are in RAM, and we have the host address. */ 696 #ifdef CONFIG_ATOMIC64 697 data = qatomic_read__nocheck((uint64_t *)host); 698 if (ptw->out_be) { 699 data = be64_to_cpu(data); 700 } else { 701 data = le64_to_cpu(data); 702 } 703 #else 704 if (ptw->out_be) { 705 data = ldq_be_p(host); 706 } else { 707 data = ldq_le_p(host); 708 } 709 #endif 710 } else { 711 /* Page tables are in MMIO. */ 712 MemTxAttrs attrs = { 713 .space = ptw->out_space, 714 .secure = arm_space_is_secure(ptw->out_space), 715 }; 716 AddressSpace *as = arm_addressspace(cs, attrs); 717 MemTxResult result = MEMTX_OK; 718 719 if (ptw->out_be) { 720 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 721 } else { 722 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 723 } 724 if (unlikely(result != MEMTX_OK)) { 725 fi->type = ARMFault_SyncExternalOnWalk; 726 fi->ea = arm_extabort_type(result); 727 return 0; 728 } 729 } 730 return data; 731 } 732 733 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val, 734 uint64_t new_val, S1Translate *ptw, 735 ARMMMUFaultInfo *fi) 736 { 737 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG) 738 uint64_t cur_val; 739 void *host = ptw->out_host; 740 741 if (unlikely(!host)) { 742 /* Page table in MMIO Memory Region */ 743 CPUState *cs = env_cpu(env); 744 MemTxAttrs attrs = { 745 .space = ptw->out_space, 746 .secure = arm_space_is_secure(ptw->out_space), 747 }; 748 AddressSpace *as = arm_addressspace(cs, attrs); 749 MemTxResult result = MEMTX_OK; 750 bool need_lock = !bql_locked(); 751 752 if (need_lock) { 753 bql_lock(); 754 } 755 if (ptw->out_be) { 756 cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 757 if (unlikely(result != MEMTX_OK)) { 758 fi->type = ARMFault_SyncExternalOnWalk; 759 fi->ea = arm_extabort_type(result); 760 if (need_lock) { 761 bql_unlock(); 762 } 763 return old_val; 764 } 765 if (cur_val == old_val) { 766 address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result); 767 if (unlikely(result != MEMTX_OK)) { 768 fi->type = ARMFault_SyncExternalOnWalk; 769 fi->ea = arm_extabort_type(result); 770 if (need_lock) { 771 bql_unlock(); 772 } 773 return old_val; 774 } 775 cur_val = new_val; 776 } 777 } else { 778 cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 779 if (unlikely(result != MEMTX_OK)) { 780 fi->type = ARMFault_SyncExternalOnWalk; 781 fi->ea = arm_extabort_type(result); 782 if (need_lock) { 783 bql_unlock(); 784 } 785 return old_val; 786 } 787 if (cur_val == old_val) { 788 address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result); 789 if (unlikely(result != MEMTX_OK)) { 790 fi->type = ARMFault_SyncExternalOnWalk; 791 fi->ea = arm_extabort_type(result); 792 if (need_lock) { 793 bql_unlock(); 794 } 795 return old_val; 796 } 797 cur_val = new_val; 798 } 799 } 800 if (need_lock) { 801 bql_unlock(); 802 } 803 return cur_val; 804 } 805 806 /* 807 * Raising a stage2 Protection fault for an atomic update to a read-only 808 * page is delayed until it is certain that there is a change to make. 809 */ 810 if (unlikely(!ptw->out_rw)) { 811 int flags; 812 813 env->tlb_fi = fi; 814 flags = probe_access_full_mmu(env, ptw->out_virt, 0, 815 MMU_DATA_STORE, 816 arm_to_core_mmu_idx(ptw->in_ptw_idx), 817 NULL, NULL); 818 env->tlb_fi = NULL; 819 820 if (unlikely(flags & TLB_INVALID_MASK)) { 821 /* 822 * We know this must be a stage 2 fault because the granule 823 * protection table does not separately track read and write 824 * permission, so all GPC faults are caught in S1_ptw_translate(): 825 * we only get here for "readable but not writeable". 826 */ 827 assert(fi->type != ARMFault_None); 828 fi->s2addr = ptw->out_virt; 829 fi->stage2 = true; 830 fi->s1ptw = true; 831 fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx); 832 return 0; 833 } 834 835 /* In case CAS mismatches and we loop, remember writability. */ 836 ptw->out_rw = true; 837 } 838 839 #ifdef CONFIG_ATOMIC64 840 if (ptw->out_be) { 841 old_val = cpu_to_be64(old_val); 842 new_val = cpu_to_be64(new_val); 843 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 844 cur_val = be64_to_cpu(cur_val); 845 } else { 846 old_val = cpu_to_le64(old_val); 847 new_val = cpu_to_le64(new_val); 848 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 849 cur_val = le64_to_cpu(cur_val); 850 } 851 #else 852 /* 853 * We can't support the full 64-bit atomic cmpxchg on the host. 854 * Because this is only used for FEAT_HAFDBS, which is only for AA64, 855 * we know that TCG_OVERSIZED_GUEST is set, which means that we are 856 * running in round-robin mode and could only race with dma i/o. 857 */ 858 #if !TCG_OVERSIZED_GUEST 859 # error "Unexpected configuration" 860 #endif 861 bool locked = bql_locked(); 862 if (!locked) { 863 bql_lock(); 864 } 865 if (ptw->out_be) { 866 cur_val = ldq_be_p(host); 867 if (cur_val == old_val) { 868 stq_be_p(host, new_val); 869 } 870 } else { 871 cur_val = ldq_le_p(host); 872 if (cur_val == old_val) { 873 stq_le_p(host, new_val); 874 } 875 } 876 if (!locked) { 877 bql_unlock(); 878 } 879 #endif 880 881 return cur_val; 882 #else 883 /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */ 884 g_assert_not_reached(); 885 #endif 886 } 887 888 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 889 uint32_t *table, uint32_t address) 890 { 891 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 892 uint64_t tcr = regime_tcr(env, mmu_idx); 893 int maskshift = extract32(tcr, 0, 3); 894 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 895 uint32_t base_mask; 896 897 if (address & mask) { 898 if (tcr & TTBCR_PD1) { 899 /* Translation table walk disabled for TTBR1 */ 900 return false; 901 } 902 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 903 } else { 904 if (tcr & TTBCR_PD0) { 905 /* Translation table walk disabled for TTBR0 */ 906 return false; 907 } 908 base_mask = ~((uint32_t)0x3fffu >> maskshift); 909 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 910 } 911 *table |= (address >> 18) & 0x3ffc; 912 return true; 913 } 914 915 /* 916 * Translate section/page access permissions to page R/W protection flags 917 * @env: CPUARMState 918 * @mmu_idx: MMU index indicating required translation regime 919 * @ap: The 3-bit access permissions (AP[2:0]) 920 * @domain_prot: The 2-bit domain access permissions 921 * @is_user: TRUE if accessing from PL0 922 */ 923 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx, 924 int ap, int domain_prot, bool is_user) 925 { 926 if (domain_prot == 3) { 927 return PAGE_READ | PAGE_WRITE; 928 } 929 930 switch (ap) { 931 case 0: 932 if (arm_feature(env, ARM_FEATURE_V7)) { 933 return 0; 934 } 935 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 936 case SCTLR_S: 937 return is_user ? 0 : PAGE_READ; 938 case SCTLR_R: 939 return PAGE_READ; 940 default: 941 return 0; 942 } 943 case 1: 944 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 945 case 2: 946 if (is_user) { 947 return PAGE_READ; 948 } else { 949 return PAGE_READ | PAGE_WRITE; 950 } 951 case 3: 952 return PAGE_READ | PAGE_WRITE; 953 case 4: /* Reserved. */ 954 return 0; 955 case 5: 956 return is_user ? 0 : PAGE_READ; 957 case 6: 958 return PAGE_READ; 959 case 7: 960 if (!arm_feature(env, ARM_FEATURE_V6K)) { 961 return 0; 962 } 963 return PAGE_READ; 964 default: 965 g_assert_not_reached(); 966 } 967 } 968 969 /* 970 * Translate section/page access permissions to page R/W protection flags 971 * @env: CPUARMState 972 * @mmu_idx: MMU index indicating required translation regime 973 * @ap: The 3-bit access permissions (AP[2:0]) 974 * @domain_prot: The 2-bit domain access permissions 975 */ 976 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 977 int ap, int domain_prot) 978 { 979 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 980 regime_is_user(env, mmu_idx)); 981 } 982 983 /* 984 * Translate section/page access permissions to page R/W protection flags. 985 * @ap: The 2-bit simple AP (AP[2:1]) 986 * @is_user: TRUE if accessing from PL0 987 */ 988 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 989 { 990 switch (ap) { 991 case 0: 992 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 993 case 1: 994 return PAGE_READ | PAGE_WRITE; 995 case 2: 996 return is_user ? 0 : PAGE_READ; 997 case 3: 998 return PAGE_READ; 999 default: 1000 g_assert_not_reached(); 1001 } 1002 } 1003 1004 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 1005 { 1006 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 1007 } 1008 1009 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, 1010 uint32_t address, MMUAccessType access_type, 1011 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1012 { 1013 int level = 1; 1014 uint32_t table; 1015 uint32_t desc; 1016 int type; 1017 int ap; 1018 int domain = 0; 1019 int domain_prot; 1020 hwaddr phys_addr; 1021 uint32_t dacr; 1022 1023 /* Pagetable walk. */ 1024 /* Lookup l1 descriptor. */ 1025 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { 1026 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 1027 fi->type = ARMFault_Translation; 1028 goto do_fault; 1029 } 1030 if (!S1_ptw_translate(env, ptw, table, fi)) { 1031 goto do_fault; 1032 } 1033 desc = arm_ldl_ptw(env, ptw, fi); 1034 if (fi->type != ARMFault_None) { 1035 goto do_fault; 1036 } 1037 type = (desc & 3); 1038 domain = (desc >> 5) & 0x0f; 1039 if (regime_el(env, ptw->in_mmu_idx) == 1) { 1040 dacr = env->cp15.dacr_ns; 1041 } else { 1042 dacr = env->cp15.dacr_s; 1043 } 1044 domain_prot = (dacr >> (domain * 2)) & 3; 1045 if (type == 0) { 1046 /* Section translation fault. */ 1047 fi->type = ARMFault_Translation; 1048 goto do_fault; 1049 } 1050 if (type != 2) { 1051 level = 2; 1052 } 1053 if (domain_prot == 0 || domain_prot == 2) { 1054 fi->type = ARMFault_Domain; 1055 goto do_fault; 1056 } 1057 if (type == 2) { 1058 /* 1Mb section. */ 1059 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 1060 ap = (desc >> 10) & 3; 1061 result->f.lg_page_size = 20; /* 1MB */ 1062 } else { 1063 /* Lookup l2 entry. */ 1064 if (type == 1) { 1065 /* Coarse pagetable. */ 1066 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 1067 } else { 1068 /* Fine pagetable. */ 1069 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 1070 } 1071 if (!S1_ptw_translate(env, ptw, table, fi)) { 1072 goto do_fault; 1073 } 1074 desc = arm_ldl_ptw(env, ptw, fi); 1075 if (fi->type != ARMFault_None) { 1076 goto do_fault; 1077 } 1078 switch (desc & 3) { 1079 case 0: /* Page translation fault. */ 1080 fi->type = ARMFault_Translation; 1081 goto do_fault; 1082 case 1: /* 64k page. */ 1083 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 1084 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 1085 result->f.lg_page_size = 16; 1086 break; 1087 case 2: /* 4k page. */ 1088 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1089 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 1090 result->f.lg_page_size = 12; 1091 break; 1092 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 1093 if (type == 1) { 1094 /* ARMv6/XScale extended small page format */ 1095 if (arm_feature(env, ARM_FEATURE_XSCALE) 1096 || arm_feature(env, ARM_FEATURE_V6)) { 1097 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1098 result->f.lg_page_size = 12; 1099 } else { 1100 /* 1101 * UNPREDICTABLE in ARMv5; we choose to take a 1102 * page translation fault. 1103 */ 1104 fi->type = ARMFault_Translation; 1105 goto do_fault; 1106 } 1107 } else { 1108 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 1109 result->f.lg_page_size = 10; 1110 } 1111 ap = (desc >> 4) & 3; 1112 break; 1113 default: 1114 /* Never happens, but compiler isn't smart enough to tell. */ 1115 g_assert_not_reached(); 1116 } 1117 } 1118 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); 1119 result->f.prot |= result->f.prot ? PAGE_EXEC : 0; 1120 if (!(result->f.prot & (1 << access_type))) { 1121 /* Access permission fault. */ 1122 fi->type = ARMFault_Permission; 1123 goto do_fault; 1124 } 1125 result->f.phys_addr = phys_addr; 1126 return false; 1127 do_fault: 1128 fi->domain = domain; 1129 fi->level = level; 1130 return true; 1131 } 1132 1133 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, 1134 uint32_t address, MMUAccessType access_type, 1135 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1136 { 1137 ARMCPU *cpu = env_archcpu(env); 1138 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1139 int level = 1; 1140 uint32_t table; 1141 uint32_t desc; 1142 uint32_t xn; 1143 uint32_t pxn = 0; 1144 int type; 1145 int ap; 1146 int domain = 0; 1147 int domain_prot; 1148 hwaddr phys_addr; 1149 uint32_t dacr; 1150 bool ns; 1151 int user_prot; 1152 1153 /* Pagetable walk. */ 1154 /* Lookup l1 descriptor. */ 1155 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 1156 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 1157 fi->type = ARMFault_Translation; 1158 goto do_fault; 1159 } 1160 if (!S1_ptw_translate(env, ptw, table, fi)) { 1161 goto do_fault; 1162 } 1163 desc = arm_ldl_ptw(env, ptw, fi); 1164 if (fi->type != ARMFault_None) { 1165 goto do_fault; 1166 } 1167 type = (desc & 3); 1168 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 1169 /* Section translation fault, or attempt to use the encoding 1170 * which is Reserved on implementations without PXN. 1171 */ 1172 fi->type = ARMFault_Translation; 1173 goto do_fault; 1174 } 1175 if ((type == 1) || !(desc & (1 << 18))) { 1176 /* Page or Section. */ 1177 domain = (desc >> 5) & 0x0f; 1178 } 1179 if (regime_el(env, mmu_idx) == 1) { 1180 dacr = env->cp15.dacr_ns; 1181 } else { 1182 dacr = env->cp15.dacr_s; 1183 } 1184 if (type == 1) { 1185 level = 2; 1186 } 1187 domain_prot = (dacr >> (domain * 2)) & 3; 1188 if (domain_prot == 0 || domain_prot == 2) { 1189 /* Section or Page domain fault */ 1190 fi->type = ARMFault_Domain; 1191 goto do_fault; 1192 } 1193 if (type != 1) { 1194 if (desc & (1 << 18)) { 1195 /* Supersection. */ 1196 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 1197 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 1198 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 1199 result->f.lg_page_size = 24; /* 16MB */ 1200 } else { 1201 /* Section. */ 1202 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 1203 result->f.lg_page_size = 20; /* 1MB */ 1204 } 1205 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 1206 xn = desc & (1 << 4); 1207 pxn = desc & 1; 1208 ns = extract32(desc, 19, 1); 1209 } else { 1210 if (cpu_isar_feature(aa32_pxn, cpu)) { 1211 pxn = (desc >> 2) & 1; 1212 } 1213 ns = extract32(desc, 3, 1); 1214 /* Lookup l2 entry. */ 1215 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 1216 if (!S1_ptw_translate(env, ptw, table, fi)) { 1217 goto do_fault; 1218 } 1219 desc = arm_ldl_ptw(env, ptw, fi); 1220 if (fi->type != ARMFault_None) { 1221 goto do_fault; 1222 } 1223 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 1224 switch (desc & 3) { 1225 case 0: /* Page translation fault. */ 1226 fi->type = ARMFault_Translation; 1227 goto do_fault; 1228 case 1: /* 64k page. */ 1229 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 1230 xn = desc & (1 << 15); 1231 result->f.lg_page_size = 16; 1232 break; 1233 case 2: case 3: /* 4k page. */ 1234 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1235 xn = desc & 1; 1236 result->f.lg_page_size = 12; 1237 break; 1238 default: 1239 /* Never happens, but compiler isn't smart enough to tell. */ 1240 g_assert_not_reached(); 1241 } 1242 } 1243 if (domain_prot == 3) { 1244 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1245 } else { 1246 if (pxn && !regime_is_user(env, mmu_idx)) { 1247 xn = 1; 1248 } 1249 if (xn && access_type == MMU_INST_FETCH) { 1250 fi->type = ARMFault_Permission; 1251 goto do_fault; 1252 } 1253 1254 if (arm_feature(env, ARM_FEATURE_V6K) && 1255 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 1256 /* The simplified model uses AP[0] as an access control bit. */ 1257 if ((ap & 1) == 0) { 1258 /* Access flag fault. */ 1259 fi->type = ARMFault_AccessFlag; 1260 goto do_fault; 1261 } 1262 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 1263 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1); 1264 } else { 1265 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 1266 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1); 1267 } 1268 if (result->f.prot && !xn) { 1269 result->f.prot |= PAGE_EXEC; 1270 } 1271 if (!(result->f.prot & (1 << access_type))) { 1272 /* Access permission fault. */ 1273 fi->type = ARMFault_Permission; 1274 goto do_fault; 1275 } 1276 if (regime_is_pan(env, mmu_idx) && 1277 !regime_is_user(env, mmu_idx) && 1278 user_prot && 1279 access_type != MMU_INST_FETCH) { 1280 /* Privileged Access Never fault */ 1281 fi->type = ARMFault_Permission; 1282 goto do_fault; 1283 } 1284 } 1285 if (ns) { 1286 /* The NS bit will (as required by the architecture) have no effect if 1287 * the CPU doesn't support TZ or this is a non-secure translation 1288 * regime, because the attribute will already be non-secure. 1289 */ 1290 result->f.attrs.secure = false; 1291 result->f.attrs.space = ARMSS_NonSecure; 1292 } 1293 result->f.phys_addr = phys_addr; 1294 return false; 1295 do_fault: 1296 fi->domain = domain; 1297 fi->level = level; 1298 return true; 1299 } 1300 1301 /* 1302 * Translate S2 section/page access permissions to protection flags 1303 * @env: CPUARMState 1304 * @s2ap: The 2-bit stage2 access permissions (S2AP) 1305 * @xn: XN (execute-never) bits 1306 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 1307 */ 1308 static int get_S2prot_noexecute(int s2ap) 1309 { 1310 int prot = 0; 1311 1312 if (s2ap & 1) { 1313 prot |= PAGE_READ; 1314 } 1315 if (s2ap & 2) { 1316 prot |= PAGE_WRITE; 1317 } 1318 return prot; 1319 } 1320 1321 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 1322 { 1323 int prot = get_S2prot_noexecute(s2ap); 1324 1325 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 1326 switch (xn) { 1327 case 0: 1328 prot |= PAGE_EXEC; 1329 break; 1330 case 1: 1331 if (s1_is_el0) { 1332 prot |= PAGE_EXEC; 1333 } 1334 break; 1335 case 2: 1336 break; 1337 case 3: 1338 if (!s1_is_el0) { 1339 prot |= PAGE_EXEC; 1340 } 1341 break; 1342 default: 1343 g_assert_not_reached(); 1344 } 1345 } else { 1346 if (!extract32(xn, 1, 1)) { 1347 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 1348 prot |= PAGE_EXEC; 1349 } 1350 } 1351 } 1352 return prot; 1353 } 1354 1355 /* 1356 * Translate section/page access permissions to protection flags 1357 * @env: CPUARMState 1358 * @mmu_idx: MMU index indicating required translation regime 1359 * @is_aa64: TRUE if AArch64 1360 * @ap: The 2-bit simple AP (AP[2:1]) 1361 * @xn: XN (execute-never) bit 1362 * @pxn: PXN (privileged execute-never) bit 1363 * @in_pa: The original input pa space 1364 * @out_pa: The output pa space, modified by NSTable, NS, and NSE 1365 */ 1366 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 1367 int ap, int xn, int pxn, 1368 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa) 1369 { 1370 ARMCPU *cpu = env_archcpu(env); 1371 bool is_user = regime_is_user(env, mmu_idx); 1372 int prot_rw, user_rw; 1373 bool have_wxn; 1374 int wxn = 0; 1375 1376 assert(!regime_is_stage2(mmu_idx)); 1377 1378 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 1379 if (is_user) { 1380 prot_rw = user_rw; 1381 } else { 1382 /* 1383 * PAN controls can forbid data accesses but don't affect insn fetch. 1384 * Plain PAN forbids data accesses if EL0 has data permissions; 1385 * PAN3 forbids data accesses if EL0 has either data or exec perms. 1386 * Note that for AArch64 the 'user can exec' case is exactly !xn. 1387 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0 1388 * do not affect EPAN. 1389 */ 1390 if (user_rw && regime_is_pan(env, mmu_idx)) { 1391 prot_rw = 0; 1392 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 && 1393 regime_is_pan(env, mmu_idx) && 1394 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) { 1395 prot_rw = 0; 1396 } else { 1397 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 1398 } 1399 } 1400 1401 if (in_pa != out_pa) { 1402 switch (in_pa) { 1403 case ARMSS_Root: 1404 /* 1405 * R_ZWRVD: permission fault for insn fetched from non-Root, 1406 * I_WWBFB: SIF has no effect in EL3. 1407 */ 1408 return prot_rw; 1409 case ARMSS_Realm: 1410 /* 1411 * R_PKTDS: permission fault for insn fetched from non-Realm, 1412 * for Realm EL2 or EL2&0. The corresponding fault for EL1&0 1413 * happens during any stage2 translation. 1414 */ 1415 switch (mmu_idx) { 1416 case ARMMMUIdx_E2: 1417 case ARMMMUIdx_E20_0: 1418 case ARMMMUIdx_E20_2: 1419 case ARMMMUIdx_E20_2_PAN: 1420 return prot_rw; 1421 default: 1422 break; 1423 } 1424 break; 1425 case ARMSS_Secure: 1426 if (env->cp15.scr_el3 & SCR_SIF) { 1427 return prot_rw; 1428 } 1429 break; 1430 default: 1431 /* Input NonSecure must have output NonSecure. */ 1432 g_assert_not_reached(); 1433 } 1434 } 1435 1436 /* TODO have_wxn should be replaced with 1437 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 1438 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 1439 * compatible processors have EL2, which is required for [U]WXN. 1440 */ 1441 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 1442 1443 if (have_wxn) { 1444 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 1445 } 1446 1447 if (is_aa64) { 1448 if (regime_has_2_ranges(mmu_idx) && !is_user) { 1449 xn = pxn || (user_rw & PAGE_WRITE); 1450 } 1451 } else if (arm_feature(env, ARM_FEATURE_V7)) { 1452 switch (regime_el(env, mmu_idx)) { 1453 case 1: 1454 case 3: 1455 if (is_user) { 1456 xn = xn || !(user_rw & PAGE_READ); 1457 } else { 1458 int uwxn = 0; 1459 if (have_wxn) { 1460 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 1461 } 1462 xn = xn || !(prot_rw & PAGE_READ) || pxn || 1463 (uwxn && (user_rw & PAGE_WRITE)); 1464 } 1465 break; 1466 case 2: 1467 break; 1468 } 1469 } else { 1470 xn = wxn = 0; 1471 } 1472 1473 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 1474 return prot_rw; 1475 } 1476 return prot_rw | PAGE_EXEC; 1477 } 1478 1479 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 1480 ARMMMUIdx mmu_idx) 1481 { 1482 uint64_t tcr = regime_tcr(env, mmu_idx); 1483 uint32_t el = regime_el(env, mmu_idx); 1484 int select, tsz; 1485 bool epd, hpd; 1486 1487 assert(mmu_idx != ARMMMUIdx_Stage2_S); 1488 1489 if (mmu_idx == ARMMMUIdx_Stage2) { 1490 /* VTCR */ 1491 bool sext = extract32(tcr, 4, 1); 1492 bool sign = extract32(tcr, 3, 1); 1493 1494 /* 1495 * If the sign-extend bit is not the same as t0sz[3], the result 1496 * is unpredictable. Flag this as a guest error. 1497 */ 1498 if (sign != sext) { 1499 qemu_log_mask(LOG_GUEST_ERROR, 1500 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 1501 } 1502 tsz = sextract32(tcr, 0, 4) + 8; 1503 select = 0; 1504 hpd = false; 1505 epd = false; 1506 } else if (el == 2) { 1507 /* HTCR */ 1508 tsz = extract32(tcr, 0, 3); 1509 select = 0; 1510 hpd = extract64(tcr, 24, 1); 1511 epd = false; 1512 } else { 1513 int t0sz = extract32(tcr, 0, 3); 1514 int t1sz = extract32(tcr, 16, 3); 1515 1516 if (t1sz == 0) { 1517 select = va > (0xffffffffu >> t0sz); 1518 } else { 1519 /* Note that we will detect errors later. */ 1520 select = va >= ~(0xffffffffu >> t1sz); 1521 } 1522 if (!select) { 1523 tsz = t0sz; 1524 epd = extract32(tcr, 7, 1); 1525 hpd = extract64(tcr, 41, 1); 1526 } else { 1527 tsz = t1sz; 1528 epd = extract32(tcr, 23, 1); 1529 hpd = extract64(tcr, 42, 1); 1530 } 1531 /* For aarch32, hpd0 is not enabled without t2e as well. */ 1532 hpd &= extract32(tcr, 6, 1); 1533 } 1534 1535 return (ARMVAParameters) { 1536 .tsz = tsz, 1537 .select = select, 1538 .epd = epd, 1539 .hpd = hpd, 1540 }; 1541 } 1542 1543 /* 1544 * check_s2_mmu_setup 1545 * @cpu: ARMCPU 1546 * @is_aa64: True if the translation regime is in AArch64 state 1547 * @tcr: VTCR_EL2 or VSTCR_EL2 1548 * @ds: Effective value of TCR.DS. 1549 * @iasize: Bitsize of IPAs 1550 * @stride: Page-table stride (See the ARM ARM) 1551 * 1552 * Decode the starting level of the S2 lookup, returning INT_MIN if 1553 * the configuration is invalid. 1554 */ 1555 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr, 1556 bool ds, int iasize, int stride) 1557 { 1558 int sl0, sl2, startlevel, granulebits, levels; 1559 int s1_min_iasize, s1_max_iasize; 1560 1561 sl0 = extract32(tcr, 6, 2); 1562 if (is_aa64) { 1563 /* 1564 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size, 1565 * so interleave AArch64.S2StartLevel. 1566 */ 1567 switch (stride) { 1568 case 9: /* 4KB */ 1569 /* SL2 is RES0 unless DS=1 & 4KB granule. */ 1570 sl2 = extract64(tcr, 33, 1); 1571 if (ds && sl2) { 1572 if (sl0 != 0) { 1573 goto fail; 1574 } 1575 startlevel = -1; 1576 } else { 1577 startlevel = 2 - sl0; 1578 switch (sl0) { 1579 case 2: 1580 if (arm_pamax(cpu) < 44) { 1581 goto fail; 1582 } 1583 break; 1584 case 3: 1585 if (!cpu_isar_feature(aa64_st, cpu)) { 1586 goto fail; 1587 } 1588 startlevel = 3; 1589 break; 1590 } 1591 } 1592 break; 1593 case 11: /* 16KB */ 1594 switch (sl0) { 1595 case 2: 1596 if (arm_pamax(cpu) < 42) { 1597 goto fail; 1598 } 1599 break; 1600 case 3: 1601 if (!ds) { 1602 goto fail; 1603 } 1604 break; 1605 } 1606 startlevel = 3 - sl0; 1607 break; 1608 case 13: /* 64KB */ 1609 switch (sl0) { 1610 case 2: 1611 if (arm_pamax(cpu) < 44) { 1612 goto fail; 1613 } 1614 break; 1615 case 3: 1616 goto fail; 1617 } 1618 startlevel = 3 - sl0; 1619 break; 1620 default: 1621 g_assert_not_reached(); 1622 } 1623 } else { 1624 /* 1625 * Things are simpler for AArch32 EL2, with only 4k pages. 1626 * There is no separate S2InvalidSL function, but AArch32.S2Walk 1627 * begins with walkparms.sl0 in {'1x'}. 1628 */ 1629 assert(stride == 9); 1630 if (sl0 >= 2) { 1631 goto fail; 1632 } 1633 startlevel = 2 - sl0; 1634 } 1635 1636 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */ 1637 levels = 3 - startlevel; 1638 granulebits = stride + 3; 1639 1640 s1_min_iasize = levels * stride + granulebits + 1; 1641 s1_max_iasize = s1_min_iasize + (stride - 1) + 4; 1642 1643 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) { 1644 return startlevel; 1645 } 1646 1647 fail: 1648 return INT_MIN; 1649 } 1650 1651 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds, 1652 ARMGranuleSize gran, int level) 1653 { 1654 /* 1655 * See pseudocode AArch46.BlockDescSupported(): block descriptors 1656 * are not valid at all levels, depending on the page size. 1657 */ 1658 switch (gran) { 1659 case Gran4K: 1660 return (level == 0 && ds) || level == 1 || level == 2; 1661 case Gran16K: 1662 return (level == 1 && ds) || level == 2; 1663 case Gran64K: 1664 return (level == 1 && arm_pamax(cpu) == 52) || level == 2; 1665 default: 1666 g_assert_not_reached(); 1667 } 1668 } 1669 1670 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw) 1671 { 1672 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 1673 return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1); 1674 } 1675 1676 /** 1677 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 1678 * 1679 * Returns false if the translation was successful. Otherwise, phys_ptr, 1680 * attrs, prot and page_size may not be filled in, and the populated fsr 1681 * value provides information on why the translation aborted, in the format 1682 * of a long-format DFSR/IFSR fault register, with the following caveat: 1683 * the WnR bit is never set (the caller must do this). 1684 * 1685 * @env: CPUARMState 1686 * @ptw: Current and next stage parameters for the walk. 1687 * @address: virtual address to get physical address for 1688 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 1689 * @memop: memory operation feeding this access, or 0 for none 1690 * @result: set on translation success, 1691 * @fi: set to fault info if the translation fails 1692 */ 1693 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 1694 uint64_t address, 1695 MMUAccessType access_type, MemOp memop, 1696 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1697 { 1698 ARMCPU *cpu = env_archcpu(env); 1699 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1700 int32_t level; 1701 ARMVAParameters param; 1702 uint64_t ttbr; 1703 hwaddr descaddr, indexmask, indexmask_grainsize; 1704 uint32_t tableattrs; 1705 target_ulong page_size; 1706 uint64_t attrs; 1707 int32_t stride; 1708 int addrsize, inputsize, outputsize; 1709 uint64_t tcr = regime_tcr(env, mmu_idx); 1710 int ap, xn, pxn; 1711 uint32_t el = regime_el(env, mmu_idx); 1712 uint64_t descaddrmask; 1713 bool aarch64 = arm_el_is_aa64(env, el); 1714 uint64_t descriptor, new_descriptor; 1715 ARMSecuritySpace out_space; 1716 bool device; 1717 1718 /* TODO: This code does not support shareability levels. */ 1719 if (aarch64) { 1720 int ps; 1721 1722 param = aa64_va_parameters(env, address, mmu_idx, 1723 access_type != MMU_INST_FETCH, 1724 !arm_el_is_aa64(env, 1)); 1725 level = 0; 1726 1727 /* 1728 * If TxSZ is programmed to a value larger than the maximum, 1729 * or smaller than the effective minimum, it is IMPLEMENTATION 1730 * DEFINED whether we behave as if the field were programmed 1731 * within bounds, or if a level 0 Translation fault is generated. 1732 * 1733 * With FEAT_LVA, fault on less than minimum becomes required, 1734 * so our choice is to always raise the fault. 1735 */ 1736 if (param.tsz_oob) { 1737 goto do_translation_fault; 1738 } 1739 1740 addrsize = 64 - 8 * param.tbi; 1741 inputsize = 64 - param.tsz; 1742 1743 /* 1744 * Bound PS by PARANGE to find the effective output address size. 1745 * ID_AA64MMFR0 is a read-only register so values outside of the 1746 * supported mappings can be considered an implementation error. 1747 */ 1748 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1749 ps = MIN(ps, param.ps); 1750 assert(ps < ARRAY_SIZE(pamax_map)); 1751 outputsize = pamax_map[ps]; 1752 1753 /* 1754 * With LPA2, the effective output address (OA) size is at most 48 bits 1755 * unless TCR.DS == 1 1756 */ 1757 if (!param.ds && param.gran != Gran64K) { 1758 outputsize = MIN(outputsize, 48); 1759 } 1760 } else { 1761 param = aa32_va_parameters(env, address, mmu_idx); 1762 level = 1; 1763 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1764 inputsize = addrsize - param.tsz; 1765 outputsize = 40; 1766 } 1767 1768 /* 1769 * We determined the region when collecting the parameters, but we 1770 * have not yet validated that the address is valid for the region. 1771 * Extract the top bits and verify that they all match select. 1772 * 1773 * For aa32, if inputsize == addrsize, then we have selected the 1774 * region by exclusion in aa32_va_parameters and there is no more 1775 * validation to do here. 1776 */ 1777 if (inputsize < addrsize) { 1778 target_ulong top_bits = sextract64(address, inputsize, 1779 addrsize - inputsize); 1780 if (-top_bits != param.select) { 1781 /* The gap between the two regions is a Translation fault */ 1782 goto do_translation_fault; 1783 } 1784 } 1785 1786 stride = arm_granule_bits(param.gran) - 3; 1787 1788 /* 1789 * Note that QEMU ignores shareability and cacheability attributes, 1790 * so we don't need to do anything with the SH, ORGN, IRGN fields 1791 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1792 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1793 * implement any ASID-like capability so we can ignore it (instead 1794 * we will always flush the TLB any time the ASID is changed). 1795 */ 1796 ttbr = regime_ttbr(env, mmu_idx, param.select); 1797 1798 /* 1799 * Here we should have set up all the parameters for the translation: 1800 * inputsize, ttbr, epd, stride, tbi 1801 */ 1802 1803 if (param.epd) { 1804 /* 1805 * Translation table walk disabled => Translation fault on TLB miss 1806 * Note: This is always 0 on 64-bit EL2 and EL3. 1807 */ 1808 goto do_translation_fault; 1809 } 1810 1811 if (!regime_is_stage2(mmu_idx)) { 1812 /* 1813 * The starting level depends on the virtual address size (which can 1814 * be up to 48 bits) and the translation granule size. It indicates 1815 * the number of strides (stride bits at a time) needed to 1816 * consume the bits of the input address. In the pseudocode this is: 1817 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1818 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1819 * our 'stride + 3' and 'stride' is our 'stride'. 1820 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1821 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1822 * = 4 - (inputsize - 4) / stride; 1823 */ 1824 level = 4 - (inputsize - 4) / stride; 1825 } else { 1826 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds, 1827 inputsize, stride); 1828 if (startlevel == INT_MIN) { 1829 level = 0; 1830 goto do_translation_fault; 1831 } 1832 level = startlevel; 1833 } 1834 1835 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1836 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1837 1838 /* Now we can extract the actual base address from the TTBR */ 1839 descaddr = extract64(ttbr, 0, 48); 1840 1841 /* 1842 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1843 * 1844 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1845 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1846 * but we've just cleared the bits above 47, so simplify the test. 1847 */ 1848 if (outputsize > 48) { 1849 descaddr |= extract64(ttbr, 2, 4) << 48; 1850 } else if (descaddr >> outputsize) { 1851 level = 0; 1852 fi->type = ARMFault_AddressSize; 1853 goto do_fault; 1854 } 1855 1856 /* 1857 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1858 * and also to mask out CnP (bit 0) which could validly be non-zero. 1859 */ 1860 descaddr &= ~indexmask; 1861 1862 /* 1863 * For AArch32, the address field in the descriptor goes up to bit 39 1864 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1865 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1866 * bits as part of the address, which will be checked via outputsize. 1867 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1868 * the highest bits of a 52-bit output are placed elsewhere. 1869 */ 1870 if (param.ds) { 1871 descaddrmask = MAKE_64BIT_MASK(0, 50); 1872 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1873 descaddrmask = MAKE_64BIT_MASK(0, 48); 1874 } else { 1875 descaddrmask = MAKE_64BIT_MASK(0, 40); 1876 } 1877 descaddrmask &= ~indexmask_grainsize; 1878 tableattrs = 0; 1879 1880 next_level: 1881 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1882 descaddr &= ~7ULL; 1883 1884 /* 1885 * Process the NSTable bit from the previous level. This changes 1886 * the table address space and the output space from Secure to 1887 * NonSecure. With RME, the EL3 translation regime does not change 1888 * from Root to NonSecure. 1889 */ 1890 if (ptw->in_space == ARMSS_Secure 1891 && !regime_is_stage2(mmu_idx) 1892 && extract32(tableattrs, 4, 1)) { 1893 /* 1894 * Stage2_S -> Stage2 or Phys_S -> Phys_NS 1895 * Assert the relative order of the secure/non-secure indexes. 1896 */ 1897 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS); 1898 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2); 1899 ptw->in_ptw_idx += 1; 1900 ptw->in_space = ARMSS_NonSecure; 1901 } 1902 1903 if (!S1_ptw_translate(env, ptw, descaddr, fi)) { 1904 goto do_fault; 1905 } 1906 descriptor = arm_ldq_ptw(env, ptw, fi); 1907 if (fi->type != ARMFault_None) { 1908 goto do_fault; 1909 } 1910 new_descriptor = descriptor; 1911 1912 restart_atomic_update: 1913 if (!(descriptor & 1) || 1914 (!(descriptor & 2) && 1915 !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) { 1916 /* Invalid, or a block descriptor at an invalid level */ 1917 goto do_translation_fault; 1918 } 1919 1920 descaddr = descriptor & descaddrmask; 1921 1922 /* 1923 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1924 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1925 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1926 * raise AddressSizeFault. 1927 */ 1928 if (outputsize > 48) { 1929 if (param.ds) { 1930 descaddr |= extract64(descriptor, 8, 2) << 50; 1931 } else { 1932 descaddr |= extract64(descriptor, 12, 4) << 48; 1933 } 1934 } else if (descaddr >> outputsize) { 1935 fi->type = ARMFault_AddressSize; 1936 goto do_fault; 1937 } 1938 1939 if ((descriptor & 2) && (level < 3)) { 1940 /* 1941 * Table entry. The top five bits are attributes which may 1942 * propagate down through lower levels of the table (and 1943 * which are all arranged so that 0 means "no effect", so 1944 * we can gather them up by ORing in the bits at each level). 1945 */ 1946 tableattrs |= extract64(descriptor, 59, 5); 1947 level++; 1948 indexmask = indexmask_grainsize; 1949 goto next_level; 1950 } 1951 1952 /* 1953 * Block entry at level 1 or 2, or page entry at level 3. 1954 * These are basically the same thing, although the number 1955 * of bits we pull in from the vaddr varies. Note that although 1956 * descaddrmask masks enough of the low bits of the descriptor 1957 * to give a correct page or table address, the address field 1958 * in a block descriptor is smaller; so we need to explicitly 1959 * clear the lower bits here before ORing in the low vaddr bits. 1960 * 1961 * Afterward, descaddr is the final physical address. 1962 */ 1963 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1964 descaddr &= ~(hwaddr)(page_size - 1); 1965 descaddr |= (address & (page_size - 1)); 1966 1967 if (likely(!ptw->in_debug)) { 1968 /* 1969 * Access flag. 1970 * If HA is enabled, prepare to update the descriptor below. 1971 * Otherwise, pass the access fault on to software. 1972 */ 1973 if (!(descriptor & (1 << 10))) { 1974 if (param.ha) { 1975 new_descriptor |= 1 << 10; /* AF */ 1976 } else { 1977 fi->type = ARMFault_AccessFlag; 1978 goto do_fault; 1979 } 1980 } 1981 1982 /* 1983 * Dirty Bit. 1984 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP 1985 * bit for writeback. The actual write protection test may still be 1986 * overridden by tableattrs, to be merged below. 1987 */ 1988 if (param.hd 1989 && extract64(descriptor, 51, 1) /* DBM */ 1990 && access_type == MMU_DATA_STORE) { 1991 if (regime_is_stage2(mmu_idx)) { 1992 new_descriptor |= 1ull << 7; /* set S2AP[1] */ 1993 } else { 1994 new_descriptor &= ~(1ull << 7); /* clear AP[2] */ 1995 } 1996 } 1997 } 1998 1999 /* 2000 * Extract attributes from the (modified) descriptor, and apply 2001 * table descriptors. Stage 2 table descriptors do not include 2002 * any attribute fields. HPD disables all the table attributes 2003 * except NSTable (which we have already handled). 2004 */ 2005 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14)); 2006 if (!regime_is_stage2(mmu_idx)) { 2007 if (!param.hpd) { 2008 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */ 2009 /* 2010 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 2011 * means "force PL1 access only", which means forcing AP[1] to 0. 2012 */ 2013 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */ 2014 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */ 2015 } 2016 } 2017 2018 ap = extract32(attrs, 6, 2); 2019 out_space = ptw->in_space; 2020 if (regime_is_stage2(mmu_idx)) { 2021 /* 2022 * R_GYNXY: For stage2 in Realm security state, bit 55 is NS. 2023 * The bit remains ignored for other security states. 2024 * R_YMCSL: Executing an insn fetched from non-Realm causes 2025 * a stage2 permission fault. 2026 */ 2027 if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) { 2028 out_space = ARMSS_NonSecure; 2029 result->f.prot = get_S2prot_noexecute(ap); 2030 } else { 2031 xn = extract64(attrs, 53, 2); 2032 result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0); 2033 } 2034 2035 result->cacheattrs.is_s2_format = true; 2036 result->cacheattrs.attrs = extract32(attrs, 2, 4); 2037 /* 2038 * Security state does not really affect HCR_EL2.FWB; 2039 * we only need to filter FWB for aa32 or other FEAT. 2040 */ 2041 device = S2_attrs_are_device(arm_hcr_el2_eff(env), 2042 result->cacheattrs.attrs); 2043 } else { 2044 int nse, ns = extract32(attrs, 5, 1); 2045 uint8_t attrindx; 2046 uint64_t mair; 2047 2048 switch (out_space) { 2049 case ARMSS_Root: 2050 /* 2051 * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime. 2052 * R_XTYPW: NSE and NS together select the output pa space. 2053 */ 2054 nse = extract32(attrs, 11, 1); 2055 out_space = (nse << 1) | ns; 2056 if (out_space == ARMSS_Secure && 2057 !cpu_isar_feature(aa64_sel2, cpu)) { 2058 out_space = ARMSS_NonSecure; 2059 } 2060 break; 2061 case ARMSS_Secure: 2062 if (ns) { 2063 out_space = ARMSS_NonSecure; 2064 } 2065 break; 2066 case ARMSS_Realm: 2067 switch (mmu_idx) { 2068 case ARMMMUIdx_Stage1_E0: 2069 case ARMMMUIdx_Stage1_E1: 2070 case ARMMMUIdx_Stage1_E1_PAN: 2071 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */ 2072 break; 2073 case ARMMMUIdx_E2: 2074 case ARMMMUIdx_E20_0: 2075 case ARMMMUIdx_E20_2: 2076 case ARMMMUIdx_E20_2_PAN: 2077 /* 2078 * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1, 2079 * NS changes the output to non-secure space. 2080 */ 2081 if (ns) { 2082 out_space = ARMSS_NonSecure; 2083 } 2084 break; 2085 default: 2086 g_assert_not_reached(); 2087 } 2088 break; 2089 case ARMSS_NonSecure: 2090 /* R_QRMFF: For NonSecure state, the NS bit is RES0. */ 2091 break; 2092 default: 2093 g_assert_not_reached(); 2094 } 2095 xn = extract64(attrs, 54, 1); 2096 pxn = extract64(attrs, 53, 1); 2097 2098 if (el == 1 && nv_nv1_enabled(env, ptw)) { 2099 /* 2100 * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page 2101 * descriptor bit 54 holds PXN, 53 is RES0, and the effective value 2102 * of UXN is 0. Similarly for bits 59 and 60 in table descriptors 2103 * (which we have already folded into bits 53 and 54 of attrs). 2104 * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0. 2105 * Similarly, APTable[0] from the table descriptor is treated as 0; 2106 * we already folded this into AP[1] and squashing that to 0 does 2107 * the right thing. 2108 */ 2109 pxn = xn; 2110 xn = 0; 2111 ap &= ~1; 2112 } 2113 /* 2114 * Note that we modified ptw->in_space earlier for NSTable, but 2115 * result->f.attrs retains a copy of the original security space. 2116 */ 2117 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn, 2118 result->f.attrs.space, out_space); 2119 2120 /* Index into MAIR registers for cache attributes */ 2121 attrindx = extract32(attrs, 2, 3); 2122 mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2123 assert(attrindx <= 7); 2124 result->cacheattrs.is_s2_format = false; 2125 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2126 2127 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ 2128 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { 2129 result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */ 2130 } 2131 device = S1_attrs_are_device(result->cacheattrs.attrs); 2132 } 2133 2134 /* 2135 * Enable alignment checks on Device memory. 2136 * 2137 * Per R_XCHFJ, the correct ordering for alignment, permission, 2138 * and stage 2 faults is: 2139 * - Alignment fault caused by the memory type 2140 * - Permission fault 2141 * - A stage 2 fault on the memory access 2142 * Perform the alignment check now, so that we recognize it in 2143 * the correct order. Set TLB_CHECK_ALIGNED so that any subsequent 2144 * softmmu tlb hit will also check the alignment; clear along the 2145 * non-device path so that tlb_fill_flags is consistent in the 2146 * event of restart_atomic_update. 2147 * 2148 * In v7, for a CPU without the Virtualization Extensions this 2149 * access is UNPREDICTABLE; we choose to make it take the alignment 2150 * fault as is required for a v7VE CPU. (QEMU doesn't emulate any 2151 * CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.) 2152 */ 2153 if (device) { 2154 unsigned a_bits = memop_atomicity_bits(memop); 2155 if (address & ((1 << a_bits) - 1)) { 2156 fi->type = ARMFault_Alignment; 2157 goto do_fault; 2158 } 2159 result->f.tlb_fill_flags = TLB_CHECK_ALIGNED; 2160 } else { 2161 result->f.tlb_fill_flags = 0; 2162 } 2163 2164 if (!(result->f.prot & (1 << access_type))) { 2165 fi->type = ARMFault_Permission; 2166 goto do_fault; 2167 } 2168 2169 /* If FEAT_HAFDBS has made changes, update the PTE. */ 2170 if (new_descriptor != descriptor) { 2171 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi); 2172 if (fi->type != ARMFault_None) { 2173 goto do_fault; 2174 } 2175 /* 2176 * I_YZSVV says that if the in-memory descriptor has changed, 2177 * then we must use the information in that new value 2178 * (which might include a different output address, different 2179 * attributes, or generate a fault). 2180 * Restart the handling of the descriptor value from scratch. 2181 */ 2182 if (new_descriptor != descriptor) { 2183 descriptor = new_descriptor; 2184 goto restart_atomic_update; 2185 } 2186 } 2187 2188 result->f.attrs.space = out_space; 2189 result->f.attrs.secure = arm_space_is_secure(out_space); 2190 2191 /* 2192 * For FEAT_LPA2 and effective DS, the SH field in the attributes 2193 * was re-purposed for output address bits. The SH attribute in 2194 * that case comes from TCR_ELx, which we extracted earlier. 2195 */ 2196 if (param.ds) { 2197 result->cacheattrs.shareability = param.sh; 2198 } else { 2199 result->cacheattrs.shareability = extract32(attrs, 8, 2); 2200 } 2201 2202 result->f.phys_addr = descaddr; 2203 result->f.lg_page_size = ctz64(page_size); 2204 return false; 2205 2206 do_translation_fault: 2207 fi->type = ARMFault_Translation; 2208 do_fault: 2209 if (fi->s1ptw) { 2210 /* Retain the existing stage 2 fi->level */ 2211 assert(fi->stage2); 2212 } else { 2213 fi->level = level; 2214 fi->stage2 = regime_is_stage2(mmu_idx); 2215 } 2216 fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx); 2217 return true; 2218 } 2219 2220 static bool get_phys_addr_pmsav5(CPUARMState *env, 2221 S1Translate *ptw, 2222 uint32_t address, 2223 MMUAccessType access_type, 2224 GetPhysAddrResult *result, 2225 ARMMMUFaultInfo *fi) 2226 { 2227 int n; 2228 uint32_t mask; 2229 uint32_t base; 2230 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2231 bool is_user = regime_is_user(env, mmu_idx); 2232 2233 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 2234 /* MPU disabled. */ 2235 result->f.phys_addr = address; 2236 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2237 return false; 2238 } 2239 2240 result->f.phys_addr = address; 2241 for (n = 7; n >= 0; n--) { 2242 base = env->cp15.c6_region[n]; 2243 if ((base & 1) == 0) { 2244 continue; 2245 } 2246 mask = 1 << ((base >> 1) & 0x1f); 2247 /* Keep this shift separate from the above to avoid an 2248 (undefined) << 32. */ 2249 mask = (mask << 1) - 1; 2250 if (((base ^ address) & ~mask) == 0) { 2251 break; 2252 } 2253 } 2254 if (n < 0) { 2255 fi->type = ARMFault_Background; 2256 return true; 2257 } 2258 2259 if (access_type == MMU_INST_FETCH) { 2260 mask = env->cp15.pmsav5_insn_ap; 2261 } else { 2262 mask = env->cp15.pmsav5_data_ap; 2263 } 2264 mask = (mask >> (n * 4)) & 0xf; 2265 switch (mask) { 2266 case 0: 2267 fi->type = ARMFault_Permission; 2268 fi->level = 1; 2269 return true; 2270 case 1: 2271 if (is_user) { 2272 fi->type = ARMFault_Permission; 2273 fi->level = 1; 2274 return true; 2275 } 2276 result->f.prot = PAGE_READ | PAGE_WRITE; 2277 break; 2278 case 2: 2279 result->f.prot = PAGE_READ; 2280 if (!is_user) { 2281 result->f.prot |= PAGE_WRITE; 2282 } 2283 break; 2284 case 3: 2285 result->f.prot = PAGE_READ | PAGE_WRITE; 2286 break; 2287 case 5: 2288 if (is_user) { 2289 fi->type = ARMFault_Permission; 2290 fi->level = 1; 2291 return true; 2292 } 2293 result->f.prot = PAGE_READ; 2294 break; 2295 case 6: 2296 result->f.prot = PAGE_READ; 2297 break; 2298 default: 2299 /* Bad permission. */ 2300 fi->type = ARMFault_Permission; 2301 fi->level = 1; 2302 return true; 2303 } 2304 result->f.prot |= PAGE_EXEC; 2305 return false; 2306 } 2307 2308 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 2309 int32_t address, uint8_t *prot) 2310 { 2311 if (!arm_feature(env, ARM_FEATURE_M)) { 2312 *prot = PAGE_READ | PAGE_WRITE; 2313 switch (address) { 2314 case 0xF0000000 ... 0xFFFFFFFF: 2315 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 2316 /* hivecs execing is ok */ 2317 *prot |= PAGE_EXEC; 2318 } 2319 break; 2320 case 0x00000000 ... 0x7FFFFFFF: 2321 *prot |= PAGE_EXEC; 2322 break; 2323 } 2324 } else { 2325 /* Default system address map for M profile cores. 2326 * The architecture specifies which regions are execute-never; 2327 * at the MPU level no other checks are defined. 2328 */ 2329 switch (address) { 2330 case 0x00000000 ... 0x1fffffff: /* ROM */ 2331 case 0x20000000 ... 0x3fffffff: /* SRAM */ 2332 case 0x60000000 ... 0x7fffffff: /* RAM */ 2333 case 0x80000000 ... 0x9fffffff: /* RAM */ 2334 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2335 break; 2336 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 2337 case 0xa0000000 ... 0xbfffffff: /* Device */ 2338 case 0xc0000000 ... 0xdfffffff: /* Device */ 2339 case 0xe0000000 ... 0xffffffff: /* System */ 2340 *prot = PAGE_READ | PAGE_WRITE; 2341 break; 2342 default: 2343 g_assert_not_reached(); 2344 } 2345 } 2346 } 2347 2348 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 2349 { 2350 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 2351 return arm_feature(env, ARM_FEATURE_M) && 2352 extract32(address, 20, 12) == 0xe00; 2353 } 2354 2355 static bool m_is_system_region(CPUARMState *env, uint32_t address) 2356 { 2357 /* 2358 * True if address is in the M profile system region 2359 * 0xe0000000 - 0xffffffff 2360 */ 2361 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 2362 } 2363 2364 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 2365 bool is_secure, bool is_user) 2366 { 2367 /* 2368 * Return true if we should use the default memory map as a 2369 * "background" region if there are no hits against any MPU regions. 2370 */ 2371 CPUARMState *env = &cpu->env; 2372 2373 if (is_user) { 2374 return false; 2375 } 2376 2377 if (arm_feature(env, ARM_FEATURE_M)) { 2378 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 2379 } 2380 2381 if (mmu_idx == ARMMMUIdx_Stage2) { 2382 return false; 2383 } 2384 2385 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 2386 } 2387 2388 static bool get_phys_addr_pmsav7(CPUARMState *env, 2389 S1Translate *ptw, 2390 uint32_t address, 2391 MMUAccessType access_type, 2392 GetPhysAddrResult *result, 2393 ARMMMUFaultInfo *fi) 2394 { 2395 ARMCPU *cpu = env_archcpu(env); 2396 int n; 2397 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2398 bool is_user = regime_is_user(env, mmu_idx); 2399 bool secure = arm_space_is_secure(ptw->in_space); 2400 2401 result->f.phys_addr = address; 2402 result->f.lg_page_size = TARGET_PAGE_BITS; 2403 result->f.prot = 0; 2404 2405 if (regime_translation_disabled(env, mmu_idx, ptw->in_space) || 2406 m_is_ppb_region(env, address)) { 2407 /* 2408 * MPU disabled or M profile PPB access: use default memory map. 2409 * The other case which uses the default memory map in the 2410 * v7M ARM ARM pseudocode is exception vector reads from the vector 2411 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 2412 * which always does a direct read using address_space_ldl(), rather 2413 * than going via this function, so we don't need to check that here. 2414 */ 2415 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2416 } else { /* MPU enabled */ 2417 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 2418 /* region search */ 2419 uint32_t base = env->pmsav7.drbar[n]; 2420 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 2421 uint32_t rmask; 2422 bool srdis = false; 2423 2424 if (!(env->pmsav7.drsr[n] & 0x1)) { 2425 continue; 2426 } 2427 2428 if (!rsize) { 2429 qemu_log_mask(LOG_GUEST_ERROR, 2430 "DRSR[%d]: Rsize field cannot be 0\n", n); 2431 continue; 2432 } 2433 rsize++; 2434 rmask = (1ull << rsize) - 1; 2435 2436 if (base & rmask) { 2437 qemu_log_mask(LOG_GUEST_ERROR, 2438 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 2439 "to DRSR region size, mask = 0x%" PRIx32 "\n", 2440 n, base, rmask); 2441 continue; 2442 } 2443 2444 if (address < base || address > base + rmask) { 2445 /* 2446 * Address not in this region. We must check whether the 2447 * region covers addresses in the same page as our address. 2448 * In that case we must not report a size that covers the 2449 * whole page for a subsequent hit against a different MPU 2450 * region or the background region, because it would result in 2451 * incorrect TLB hits for subsequent accesses to addresses that 2452 * are in this MPU region. 2453 */ 2454 if (ranges_overlap(base, rmask, 2455 address & TARGET_PAGE_MASK, 2456 TARGET_PAGE_SIZE)) { 2457 result->f.lg_page_size = 0; 2458 } 2459 continue; 2460 } 2461 2462 /* Region matched */ 2463 2464 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 2465 int i, snd; 2466 uint32_t srdis_mask; 2467 2468 rsize -= 3; /* sub region size (power of 2) */ 2469 snd = ((address - base) >> rsize) & 0x7; 2470 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 2471 2472 srdis_mask = srdis ? 0x3 : 0x0; 2473 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 2474 /* 2475 * This will check in groups of 2, 4 and then 8, whether 2476 * the subregion bits are consistent. rsize is incremented 2477 * back up to give the region size, considering consistent 2478 * adjacent subregions as one region. Stop testing if rsize 2479 * is already big enough for an entire QEMU page. 2480 */ 2481 int snd_rounded = snd & ~(i - 1); 2482 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 2483 snd_rounded + 8, i); 2484 if (srdis_mask ^ srdis_multi) { 2485 break; 2486 } 2487 srdis_mask = (srdis_mask << i) | srdis_mask; 2488 rsize++; 2489 } 2490 } 2491 if (srdis) { 2492 continue; 2493 } 2494 if (rsize < TARGET_PAGE_BITS) { 2495 result->f.lg_page_size = rsize; 2496 } 2497 break; 2498 } 2499 2500 if (n == -1) { /* no hits */ 2501 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2502 /* background fault */ 2503 fi->type = ARMFault_Background; 2504 return true; 2505 } 2506 get_phys_addr_pmsav7_default(env, mmu_idx, address, 2507 &result->f.prot); 2508 } else { /* a MPU hit! */ 2509 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 2510 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 2511 2512 if (m_is_system_region(env, address)) { 2513 /* System space is always execute never */ 2514 xn = 1; 2515 } 2516 2517 if (is_user) { /* User mode AP bit decoding */ 2518 switch (ap) { 2519 case 0: 2520 case 1: 2521 case 5: 2522 break; /* no access */ 2523 case 3: 2524 result->f.prot |= PAGE_WRITE; 2525 /* fall through */ 2526 case 2: 2527 case 6: 2528 result->f.prot |= PAGE_READ | PAGE_EXEC; 2529 break; 2530 case 7: 2531 /* for v7M, same as 6; for R profile a reserved value */ 2532 if (arm_feature(env, ARM_FEATURE_M)) { 2533 result->f.prot |= PAGE_READ | PAGE_EXEC; 2534 break; 2535 } 2536 /* fall through */ 2537 default: 2538 qemu_log_mask(LOG_GUEST_ERROR, 2539 "DRACR[%d]: Bad value for AP bits: 0x%" 2540 PRIx32 "\n", n, ap); 2541 } 2542 } else { /* Priv. mode AP bits decoding */ 2543 switch (ap) { 2544 case 0: 2545 break; /* no access */ 2546 case 1: 2547 case 2: 2548 case 3: 2549 result->f.prot |= PAGE_WRITE; 2550 /* fall through */ 2551 case 5: 2552 case 6: 2553 result->f.prot |= PAGE_READ | PAGE_EXEC; 2554 break; 2555 case 7: 2556 /* for v7M, same as 6; for R profile a reserved value */ 2557 if (arm_feature(env, ARM_FEATURE_M)) { 2558 result->f.prot |= PAGE_READ | PAGE_EXEC; 2559 break; 2560 } 2561 /* fall through */ 2562 default: 2563 qemu_log_mask(LOG_GUEST_ERROR, 2564 "DRACR[%d]: Bad value for AP bits: 0x%" 2565 PRIx32 "\n", n, ap); 2566 } 2567 } 2568 2569 /* execute never */ 2570 if (xn) { 2571 result->f.prot &= ~PAGE_EXEC; 2572 } 2573 } 2574 } 2575 2576 fi->type = ARMFault_Permission; 2577 fi->level = 1; 2578 return !(result->f.prot & (1 << access_type)); 2579 } 2580 2581 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx, 2582 uint32_t secure) 2583 { 2584 if (regime_el(env, mmu_idx) == 2) { 2585 return env->pmsav8.hprbar; 2586 } else { 2587 return env->pmsav8.rbar[secure]; 2588 } 2589 } 2590 2591 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx, 2592 uint32_t secure) 2593 { 2594 if (regime_el(env, mmu_idx) == 2) { 2595 return env->pmsav8.hprlar; 2596 } else { 2597 return env->pmsav8.rlar[secure]; 2598 } 2599 } 2600 2601 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 2602 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2603 bool secure, GetPhysAddrResult *result, 2604 ARMMMUFaultInfo *fi, uint32_t *mregion) 2605 { 2606 /* 2607 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 2608 * that a full phys-to-virt translation does). 2609 * mregion is (if not NULL) set to the region number which matched, 2610 * or -1 if no region number is returned (MPU off, address did not 2611 * hit a region, address hit in multiple regions). 2612 * If the region hit doesn't cover the entire TARGET_PAGE the address 2613 * is within, then we set the result page_size to 1 to force the 2614 * memory system to use a subpage. 2615 */ 2616 ARMCPU *cpu = env_archcpu(env); 2617 bool is_user = regime_is_user(env, mmu_idx); 2618 int n; 2619 int matchregion = -1; 2620 bool hit = false; 2621 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2622 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2623 int region_counter; 2624 2625 if (regime_el(env, mmu_idx) == 2) { 2626 region_counter = cpu->pmsav8r_hdregion; 2627 } else { 2628 region_counter = cpu->pmsav7_dregion; 2629 } 2630 2631 result->f.lg_page_size = TARGET_PAGE_BITS; 2632 result->f.phys_addr = address; 2633 result->f.prot = 0; 2634 if (mregion) { 2635 *mregion = -1; 2636 } 2637 2638 if (mmu_idx == ARMMMUIdx_Stage2) { 2639 fi->stage2 = true; 2640 } 2641 2642 /* 2643 * Unlike the ARM ARM pseudocode, we don't need to check whether this 2644 * was an exception vector read from the vector table (which is always 2645 * done using the default system address map), because those accesses 2646 * are done in arm_v7m_load_vector(), which always does a direct 2647 * read using address_space_ldl(), rather than going via this function. 2648 */ 2649 if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) { 2650 /* MPU disabled */ 2651 hit = true; 2652 } else if (m_is_ppb_region(env, address)) { 2653 hit = true; 2654 } else { 2655 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2656 hit = true; 2657 } 2658 2659 uint32_t bitmask; 2660 if (arm_feature(env, ARM_FEATURE_M)) { 2661 bitmask = 0x1f; 2662 } else { 2663 bitmask = 0x3f; 2664 fi->level = 0; 2665 } 2666 2667 for (n = region_counter - 1; n >= 0; n--) { 2668 /* region search */ 2669 /* 2670 * Note that the base address is bits [31:x] from the register 2671 * with bits [x-1:0] all zeroes, but the limit address is bits 2672 * [31:x] from the register with bits [x:0] all ones. Where x is 2673 * 5 for Cortex-M and 6 for Cortex-R 2674 */ 2675 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask; 2676 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask; 2677 2678 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) { 2679 /* Region disabled */ 2680 continue; 2681 } 2682 2683 if (address < base || address > limit) { 2684 /* 2685 * Address not in this region. We must check whether the 2686 * region covers addresses in the same page as our address. 2687 * In that case we must not report a size that covers the 2688 * whole page for a subsequent hit against a different MPU 2689 * region or the background region, because it would result in 2690 * incorrect TLB hits for subsequent accesses to addresses that 2691 * are in this MPU region. 2692 */ 2693 if (limit >= base && 2694 ranges_overlap(base, limit - base + 1, 2695 addr_page_base, 2696 TARGET_PAGE_SIZE)) { 2697 result->f.lg_page_size = 0; 2698 } 2699 continue; 2700 } 2701 2702 if (base > addr_page_base || limit < addr_page_limit) { 2703 result->f.lg_page_size = 0; 2704 } 2705 2706 if (matchregion != -1) { 2707 /* 2708 * Multiple regions match -- always a failure (unlike 2709 * PMSAv7 where highest-numbered-region wins) 2710 */ 2711 fi->type = ARMFault_Permission; 2712 if (arm_feature(env, ARM_FEATURE_M)) { 2713 fi->level = 1; 2714 } 2715 return true; 2716 } 2717 2718 matchregion = n; 2719 hit = true; 2720 } 2721 } 2722 2723 if (!hit) { 2724 if (arm_feature(env, ARM_FEATURE_M)) { 2725 fi->type = ARMFault_Background; 2726 } else { 2727 fi->type = ARMFault_Permission; 2728 } 2729 return true; 2730 } 2731 2732 if (matchregion == -1) { 2733 /* hit using the background region */ 2734 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2735 } else { 2736 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion]; 2737 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion]; 2738 uint32_t ap = extract32(matched_rbar, 1, 2); 2739 uint32_t xn = extract32(matched_rbar, 0, 1); 2740 bool pxn = false; 2741 2742 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 2743 pxn = extract32(matched_rlar, 4, 1); 2744 } 2745 2746 if (m_is_system_region(env, address)) { 2747 /* System space is always execute never */ 2748 xn = 1; 2749 } 2750 2751 if (regime_el(env, mmu_idx) == 2) { 2752 result->f.prot = simple_ap_to_rw_prot_is_user(ap, 2753 mmu_idx != ARMMMUIdx_E2); 2754 } else { 2755 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 2756 } 2757 2758 if (!arm_feature(env, ARM_FEATURE_M)) { 2759 uint8_t attrindx = extract32(matched_rlar, 1, 3); 2760 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2761 uint8_t sh = extract32(matched_rlar, 3, 2); 2762 2763 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN && 2764 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) { 2765 xn = 0x1; 2766 } 2767 2768 if ((regime_el(env, mmu_idx) == 1) && 2769 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) { 2770 pxn = 0x1; 2771 } 2772 2773 result->cacheattrs.is_s2_format = false; 2774 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2775 result->cacheattrs.shareability = sh; 2776 } 2777 2778 if (result->f.prot && !xn && !(pxn && !is_user)) { 2779 result->f.prot |= PAGE_EXEC; 2780 } 2781 2782 if (mregion) { 2783 *mregion = matchregion; 2784 } 2785 } 2786 2787 fi->type = ARMFault_Permission; 2788 if (arm_feature(env, ARM_FEATURE_M)) { 2789 fi->level = 1; 2790 } 2791 return !(result->f.prot & (1 << access_type)); 2792 } 2793 2794 static bool v8m_is_sau_exempt(CPUARMState *env, 2795 uint32_t address, MMUAccessType access_type) 2796 { 2797 /* 2798 * The architecture specifies that certain address ranges are 2799 * exempt from v8M SAU/IDAU checks. 2800 */ 2801 return 2802 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 2803 (address >= 0xe0000000 && address <= 0xe0002fff) || 2804 (address >= 0xe000e000 && address <= 0xe000efff) || 2805 (address >= 0xe002e000 && address <= 0xe002efff) || 2806 (address >= 0xe0040000 && address <= 0xe0041fff) || 2807 (address >= 0xe00ff000 && address <= 0xe00fffff); 2808 } 2809 2810 void v8m_security_lookup(CPUARMState *env, uint32_t address, 2811 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2812 bool is_secure, V8M_SAttributes *sattrs) 2813 { 2814 /* 2815 * Look up the security attributes for this address. Compare the 2816 * pseudocode SecurityCheck() function. 2817 * We assume the caller has zero-initialized *sattrs. 2818 */ 2819 ARMCPU *cpu = env_archcpu(env); 2820 int r; 2821 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 2822 int idau_region = IREGION_NOTVALID; 2823 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2824 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2825 2826 if (cpu->idau) { 2827 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 2828 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 2829 2830 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 2831 &idau_nsc); 2832 } 2833 2834 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 2835 /* 0xf0000000..0xffffffff is always S for insn fetches */ 2836 return; 2837 } 2838 2839 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 2840 sattrs->ns = !is_secure; 2841 return; 2842 } 2843 2844 if (idau_region != IREGION_NOTVALID) { 2845 sattrs->irvalid = true; 2846 sattrs->iregion = idau_region; 2847 } 2848 2849 switch (env->sau.ctrl & 3) { 2850 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 2851 break; 2852 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 2853 sattrs->ns = true; 2854 break; 2855 default: /* SAU.ENABLE == 1 */ 2856 for (r = 0; r < cpu->sau_sregion; r++) { 2857 if (env->sau.rlar[r] & 1) { 2858 uint32_t base = env->sau.rbar[r] & ~0x1f; 2859 uint32_t limit = env->sau.rlar[r] | 0x1f; 2860 2861 if (base <= address && limit >= address) { 2862 if (base > addr_page_base || limit < addr_page_limit) { 2863 sattrs->subpage = true; 2864 } 2865 if (sattrs->srvalid) { 2866 /* 2867 * If we hit in more than one region then we must report 2868 * as Secure, not NS-Callable, with no valid region 2869 * number info. 2870 */ 2871 sattrs->ns = false; 2872 sattrs->nsc = false; 2873 sattrs->sregion = 0; 2874 sattrs->srvalid = false; 2875 break; 2876 } else { 2877 if (env->sau.rlar[r] & 2) { 2878 sattrs->nsc = true; 2879 } else { 2880 sattrs->ns = true; 2881 } 2882 sattrs->srvalid = true; 2883 sattrs->sregion = r; 2884 } 2885 } else { 2886 /* 2887 * Address not in this region. We must check whether the 2888 * region covers addresses in the same page as our address. 2889 * In that case we must not report a size that covers the 2890 * whole page for a subsequent hit against a different MPU 2891 * region or the background region, because it would result 2892 * in incorrect TLB hits for subsequent accesses to 2893 * addresses that are in this MPU region. 2894 */ 2895 if (limit >= base && 2896 ranges_overlap(base, limit - base + 1, 2897 addr_page_base, 2898 TARGET_PAGE_SIZE)) { 2899 sattrs->subpage = true; 2900 } 2901 } 2902 } 2903 } 2904 break; 2905 } 2906 2907 /* 2908 * The IDAU will override the SAU lookup results if it specifies 2909 * higher security than the SAU does. 2910 */ 2911 if (!idau_ns) { 2912 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 2913 sattrs->ns = false; 2914 sattrs->nsc = idau_nsc; 2915 } 2916 } 2917 } 2918 2919 static bool get_phys_addr_pmsav8(CPUARMState *env, 2920 S1Translate *ptw, 2921 uint32_t address, 2922 MMUAccessType access_type, 2923 GetPhysAddrResult *result, 2924 ARMMMUFaultInfo *fi) 2925 { 2926 V8M_SAttributes sattrs = {}; 2927 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2928 bool secure = arm_space_is_secure(ptw->in_space); 2929 bool ret; 2930 2931 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2932 v8m_security_lookup(env, address, access_type, mmu_idx, 2933 secure, &sattrs); 2934 if (access_type == MMU_INST_FETCH) { 2935 /* 2936 * Instruction fetches always use the MMU bank and the 2937 * transaction attribute determined by the fetch address, 2938 * regardless of CPU state. This is painful for QEMU 2939 * to handle, because it would mean we need to encode 2940 * into the mmu_idx not just the (user, negpri) information 2941 * for the current security state but also that for the 2942 * other security state, which would balloon the number 2943 * of mmu_idx values needed alarmingly. 2944 * Fortunately we can avoid this because it's not actually 2945 * possible to arbitrarily execute code from memory with 2946 * the wrong security attribute: it will always generate 2947 * an exception of some kind or another, apart from the 2948 * special case of an NS CPU executing an SG instruction 2949 * in S&NSC memory. So we always just fail the translation 2950 * here and sort things out in the exception handler 2951 * (including possibly emulating an SG instruction). 2952 */ 2953 if (sattrs.ns != !secure) { 2954 if (sattrs.nsc) { 2955 fi->type = ARMFault_QEMU_NSCExec; 2956 } else { 2957 fi->type = ARMFault_QEMU_SFault; 2958 } 2959 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2960 result->f.phys_addr = address; 2961 result->f.prot = 0; 2962 return true; 2963 } 2964 } else { 2965 /* 2966 * For data accesses we always use the MMU bank indicated 2967 * by the current CPU state, but the security attributes 2968 * might downgrade a secure access to nonsecure. 2969 */ 2970 if (sattrs.ns) { 2971 result->f.attrs.secure = false; 2972 result->f.attrs.space = ARMSS_NonSecure; 2973 } else if (!secure) { 2974 /* 2975 * NS access to S memory must fault. 2976 * Architecturally we should first check whether the 2977 * MPU information for this address indicates that we 2978 * are doing an unaligned access to Device memory, which 2979 * should generate a UsageFault instead. QEMU does not 2980 * currently check for that kind of unaligned access though. 2981 * If we added it we would need to do so as a special case 2982 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2983 */ 2984 fi->type = ARMFault_QEMU_SFault; 2985 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2986 result->f.phys_addr = address; 2987 result->f.prot = 0; 2988 return true; 2989 } 2990 } 2991 } 2992 2993 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, 2994 result, fi, NULL); 2995 if (sattrs.subpage) { 2996 result->f.lg_page_size = 0; 2997 } 2998 return ret; 2999 } 3000 3001 /* 3002 * Translate from the 4-bit stage 2 representation of 3003 * memory attributes (without cache-allocation hints) to 3004 * the 8-bit representation of the stage 1 MAIR registers 3005 * (which includes allocation hints). 3006 * 3007 * ref: shared/translation/attrs/S2AttrDecode() 3008 * .../S2ConvertAttrsHints() 3009 */ 3010 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) 3011 { 3012 uint8_t hiattr = extract32(s2attrs, 2, 2); 3013 uint8_t loattr = extract32(s2attrs, 0, 2); 3014 uint8_t hihint = 0, lohint = 0; 3015 3016 if (hiattr != 0) { /* normal memory */ 3017 if (hcr & HCR_CD) { /* cache disabled */ 3018 hiattr = loattr = 1; /* non-cacheable */ 3019 } else { 3020 if (hiattr != 1) { /* Write-through or write-back */ 3021 hihint = 3; /* RW allocate */ 3022 } 3023 if (loattr != 1) { /* Write-through or write-back */ 3024 lohint = 3; /* RW allocate */ 3025 } 3026 } 3027 } 3028 3029 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 3030 } 3031 3032 /* 3033 * Combine either inner or outer cacheability attributes for normal 3034 * memory, according to table D4-42 and pseudocode procedure 3035 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 3036 * 3037 * NB: only stage 1 includes allocation hints (RW bits), leading to 3038 * some asymmetry. 3039 */ 3040 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 3041 { 3042 if (s1 == 4 || s2 == 4) { 3043 /* non-cacheable has precedence */ 3044 return 4; 3045 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 3046 /* stage 1 write-through takes precedence */ 3047 return s1; 3048 } else if (extract32(s2, 2, 2) == 2) { 3049 /* stage 2 write-through takes precedence, but the allocation hint 3050 * is still taken from stage 1 3051 */ 3052 return (2 << 2) | extract32(s1, 0, 2); 3053 } else { /* write-back */ 3054 return s1; 3055 } 3056 } 3057 3058 /* 3059 * Combine the memory type and cacheability attributes of 3060 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 3061 * combined attributes in MAIR_EL1 format. 3062 */ 3063 static uint8_t combined_attrs_nofwb(uint64_t hcr, 3064 ARMCacheAttrs s1, ARMCacheAttrs s2) 3065 { 3066 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 3067 3068 if (s2.is_s2_format) { 3069 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); 3070 } else { 3071 s2_mair_attrs = s2.attrs; 3072 } 3073 3074 s1lo = extract32(s1.attrs, 0, 4); 3075 s2lo = extract32(s2_mair_attrs, 0, 4); 3076 s1hi = extract32(s1.attrs, 4, 4); 3077 s2hi = extract32(s2_mair_attrs, 4, 4); 3078 3079 /* Combine memory type and cacheability attributes */ 3080 if (s1hi == 0 || s2hi == 0) { 3081 /* Device has precedence over normal */ 3082 if (s1lo == 0 || s2lo == 0) { 3083 /* nGnRnE has precedence over anything */ 3084 ret_attrs = 0; 3085 } else if (s1lo == 4 || s2lo == 4) { 3086 /* non-Reordering has precedence over Reordering */ 3087 ret_attrs = 4; /* nGnRE */ 3088 } else if (s1lo == 8 || s2lo == 8) { 3089 /* non-Gathering has precedence over Gathering */ 3090 ret_attrs = 8; /* nGRE */ 3091 } else { 3092 ret_attrs = 0xc; /* GRE */ 3093 } 3094 } else { /* Normal memory */ 3095 /* Outer/inner cacheability combine independently */ 3096 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 3097 | combine_cacheattr_nibble(s1lo, s2lo); 3098 } 3099 return ret_attrs; 3100 } 3101 3102 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 3103 { 3104 /* 3105 * Given the 4 bits specifying the outer or inner cacheability 3106 * in MAIR format, return a value specifying Normal Write-Back, 3107 * with the allocation and transient hints taken from the input 3108 * if the input specified some kind of cacheable attribute. 3109 */ 3110 if (attr == 0 || attr == 4) { 3111 /* 3112 * 0 == an UNPREDICTABLE encoding 3113 * 4 == Non-cacheable 3114 * Either way, force Write-Back RW allocate non-transient 3115 */ 3116 return 0xf; 3117 } 3118 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 3119 return attr | 4; 3120 } 3121 3122 /* 3123 * Combine the memory type and cacheability attributes of 3124 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 3125 * combined attributes in MAIR_EL1 format. 3126 */ 3127 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) 3128 { 3129 assert(s2.is_s2_format && !s1.is_s2_format); 3130 3131 switch (s2.attrs) { 3132 case 7: 3133 /* Use stage 1 attributes */ 3134 return s1.attrs; 3135 case 6: 3136 /* 3137 * Force Normal Write-Back. Note that if S1 is Normal cacheable 3138 * then we take the allocation hints from it; otherwise it is 3139 * RW allocate, non-transient. 3140 */ 3141 if ((s1.attrs & 0xf0) == 0) { 3142 /* S1 is Device */ 3143 return 0xff; 3144 } 3145 /* Need to check the Inner and Outer nibbles separately */ 3146 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 3147 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 3148 case 5: 3149 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 3150 if ((s1.attrs & 0xf0) == 0) { 3151 return s1.attrs; 3152 } 3153 return 0x44; 3154 case 0 ... 3: 3155 /* Force Device, of subtype specified by S2 */ 3156 return s2.attrs << 2; 3157 default: 3158 /* 3159 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 3160 * arbitrarily force Device. 3161 */ 3162 return 0; 3163 } 3164 } 3165 3166 /* 3167 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 3168 * and CombineS1S2Desc() 3169 * 3170 * @env: CPUARMState 3171 * @s1: Attributes from stage 1 walk 3172 * @s2: Attributes from stage 2 walk 3173 */ 3174 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, 3175 ARMCacheAttrs s1, ARMCacheAttrs s2) 3176 { 3177 ARMCacheAttrs ret; 3178 bool tagged = false; 3179 3180 assert(!s1.is_s2_format); 3181 ret.is_s2_format = false; 3182 3183 if (s1.attrs == 0xf0) { 3184 tagged = true; 3185 s1.attrs = 0xff; 3186 } 3187 3188 /* Combine shareability attributes (table D4-43) */ 3189 if (s1.shareability == 2 || s2.shareability == 2) { 3190 /* if either are outer-shareable, the result is outer-shareable */ 3191 ret.shareability = 2; 3192 } else if (s1.shareability == 3 || s2.shareability == 3) { 3193 /* if either are inner-shareable, the result is inner-shareable */ 3194 ret.shareability = 3; 3195 } else { 3196 /* both non-shareable */ 3197 ret.shareability = 0; 3198 } 3199 3200 /* Combine memory type and cacheability attributes */ 3201 if (hcr & HCR_FWB) { 3202 ret.attrs = combined_attrs_fwb(s1, s2); 3203 } else { 3204 ret.attrs = combined_attrs_nofwb(hcr, s1, s2); 3205 } 3206 3207 /* 3208 * Any location for which the resultant memory type is any 3209 * type of Device memory is always treated as Outer Shareable. 3210 * Any location for which the resultant memory type is Normal 3211 * Inner Non-cacheable, Outer Non-cacheable is always treated 3212 * as Outer Shareable. 3213 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 3214 */ 3215 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 3216 ret.shareability = 2; 3217 } 3218 3219 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 3220 if (tagged && ret.attrs == 0xff) { 3221 ret.attrs = 0xf0; 3222 } 3223 3224 return ret; 3225 } 3226 3227 /* 3228 * MMU disabled. S1 addresses within aa64 translation regimes are 3229 * still checked for bounds -- see AArch64.S1DisabledOutput(). 3230 */ 3231 static bool get_phys_addr_disabled(CPUARMState *env, 3232 S1Translate *ptw, 3233 vaddr address, 3234 MMUAccessType access_type, 3235 GetPhysAddrResult *result, 3236 ARMMMUFaultInfo *fi) 3237 { 3238 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3239 uint8_t memattr = 0x00; /* Device nGnRnE */ 3240 uint8_t shareability = 0; /* non-shareable */ 3241 int r_el; 3242 3243 switch (mmu_idx) { 3244 case ARMMMUIdx_Stage2: 3245 case ARMMMUIdx_Stage2_S: 3246 case ARMMMUIdx_Phys_S: 3247 case ARMMMUIdx_Phys_NS: 3248 case ARMMMUIdx_Phys_Root: 3249 case ARMMMUIdx_Phys_Realm: 3250 break; 3251 3252 default: 3253 r_el = regime_el(env, mmu_idx); 3254 if (arm_el_is_aa64(env, r_el)) { 3255 int pamax = arm_pamax(env_archcpu(env)); 3256 uint64_t tcr = env->cp15.tcr_el[r_el]; 3257 int addrtop, tbi; 3258 3259 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 3260 if (access_type == MMU_INST_FETCH) { 3261 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 3262 } 3263 tbi = (tbi >> extract64(address, 55, 1)) & 1; 3264 addrtop = (tbi ? 55 : 63); 3265 3266 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 3267 fi->type = ARMFault_AddressSize; 3268 fi->level = 0; 3269 fi->stage2 = false; 3270 return 1; 3271 } 3272 3273 /* 3274 * When TBI is disabled, we've just validated that all of the 3275 * bits above PAMax are zero, so logically we only need to 3276 * clear the top byte for TBI. But it's clearer to follow 3277 * the pseudocode set of addrdesc.paddress. 3278 */ 3279 address = extract64(address, 0, 52); 3280 } 3281 3282 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 3283 if (r_el == 1) { 3284 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 3285 if (hcr & HCR_DC) { 3286 if (hcr & HCR_DCT) { 3287 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 3288 } else { 3289 memattr = 0xff; /* Normal, WB, RWA */ 3290 } 3291 } 3292 } 3293 if (memattr == 0) { 3294 if (access_type == MMU_INST_FETCH) { 3295 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 3296 memattr = 0xee; /* Normal, WT, RA, NT */ 3297 } else { 3298 memattr = 0x44; /* Normal, NC, No */ 3299 } 3300 } 3301 shareability = 2; /* outer shareable */ 3302 } 3303 result->cacheattrs.is_s2_format = false; 3304 break; 3305 } 3306 3307 result->f.phys_addr = address; 3308 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 3309 result->f.lg_page_size = TARGET_PAGE_BITS; 3310 result->cacheattrs.shareability = shareability; 3311 result->cacheattrs.attrs = memattr; 3312 return false; 3313 } 3314 3315 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, 3316 vaddr address, 3317 MMUAccessType access_type, MemOp memop, 3318 GetPhysAddrResult *result, 3319 ARMMMUFaultInfo *fi) 3320 { 3321 hwaddr ipa; 3322 int s1_prot, s1_lgpgsz; 3323 ARMSecuritySpace in_space = ptw->in_space; 3324 bool ret, ipa_secure, s1_guarded; 3325 ARMCacheAttrs cacheattrs1; 3326 ARMSecuritySpace ipa_space; 3327 uint64_t hcr; 3328 3329 ret = get_phys_addr_nogpc(env, ptw, address, access_type, 3330 memop, result, fi); 3331 3332 /* If S1 fails, return early. */ 3333 if (ret) { 3334 return ret; 3335 } 3336 3337 ipa = result->f.phys_addr; 3338 ipa_secure = result->f.attrs.secure; 3339 ipa_space = result->f.attrs.space; 3340 3341 ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; 3342 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3343 ptw->in_space = ipa_space; 3344 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx); 3345 3346 /* 3347 * S1 is done, now do S2 translation. 3348 * Save the stage1 results so that we may merge prot and cacheattrs later. 3349 */ 3350 s1_prot = result->f.prot; 3351 s1_lgpgsz = result->f.lg_page_size; 3352 s1_guarded = result->f.extra.arm.guarded; 3353 cacheattrs1 = result->cacheattrs; 3354 memset(result, 0, sizeof(*result)); 3355 3356 ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, 3357 memop, result, fi); 3358 fi->s2addr = ipa; 3359 3360 /* Combine the S1 and S2 perms. */ 3361 result->f.prot &= s1_prot; 3362 3363 /* If S2 fails, return early. */ 3364 if (ret) { 3365 return ret; 3366 } 3367 3368 /* 3369 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE, 3370 * this means "don't put this in the TLB"; in this case, return a 3371 * result with lg_page_size == 0 to achieve that. Otherwise, 3372 * use the maximum of the S1 & S2 page size, so that invalidation 3373 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though 3374 * we know the combined result permissions etc only cover the minimum 3375 * of the S1 and S2 page size, because we know that the common TLB code 3376 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE, 3377 * and passing a larger page size value only affects invalidations.) 3378 */ 3379 if (result->f.lg_page_size < TARGET_PAGE_BITS || 3380 s1_lgpgsz < TARGET_PAGE_BITS) { 3381 result->f.lg_page_size = 0; 3382 } else if (result->f.lg_page_size < s1_lgpgsz) { 3383 result->f.lg_page_size = s1_lgpgsz; 3384 } 3385 3386 /* Combine the S1 and S2 cache attributes. */ 3387 hcr = arm_hcr_el2_eff_secstate(env, in_space); 3388 if (hcr & HCR_DC) { 3389 /* 3390 * HCR.DC forces the first stage attributes to 3391 * Normal Non-Shareable, 3392 * Inner Write-Back Read-Allocate Write-Allocate, 3393 * Outer Write-Back Read-Allocate Write-Allocate. 3394 * Do not overwrite Tagged within attrs. 3395 */ 3396 if (cacheattrs1.attrs != 0xf0) { 3397 cacheattrs1.attrs = 0xff; 3398 } 3399 cacheattrs1.shareability = 0; 3400 } 3401 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, 3402 result->cacheattrs); 3403 3404 /* No BTI GP information in stage 2, we just use the S1 value */ 3405 result->f.extra.arm.guarded = s1_guarded; 3406 3407 /* 3408 * Check if IPA translates to secure or non-secure PA space. 3409 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. 3410 */ 3411 if (in_space == ARMSS_Secure) { 3412 result->f.attrs.secure = 3413 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) 3414 && (ipa_secure 3415 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))); 3416 result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure); 3417 } 3418 3419 return false; 3420 } 3421 3422 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 3423 vaddr address, 3424 MMUAccessType access_type, MemOp memop, 3425 GetPhysAddrResult *result, 3426 ARMMMUFaultInfo *fi) 3427 { 3428 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3429 ARMMMUIdx s1_mmu_idx; 3430 3431 /* 3432 * The page table entries may downgrade Secure to NonSecure, but 3433 * cannot upgrade a NonSecure translation regime's attributes 3434 * to Secure or Realm. 3435 */ 3436 result->f.attrs.space = ptw->in_space; 3437 result->f.attrs.secure = arm_space_is_secure(ptw->in_space); 3438 3439 switch (mmu_idx) { 3440 case ARMMMUIdx_Phys_S: 3441 case ARMMMUIdx_Phys_NS: 3442 case ARMMMUIdx_Phys_Root: 3443 case ARMMMUIdx_Phys_Realm: 3444 /* Checking Phys early avoids special casing later vs regime_el. */ 3445 return get_phys_addr_disabled(env, ptw, address, access_type, 3446 result, fi); 3447 3448 case ARMMMUIdx_Stage1_E0: 3449 case ARMMMUIdx_Stage1_E1: 3450 case ARMMMUIdx_Stage1_E1_PAN: 3451 /* 3452 * First stage lookup uses second stage for ptw; only 3453 * Secure has both S and NS IPA and starts with Stage2_S. 3454 */ 3455 ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ? 3456 ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3457 break; 3458 3459 case ARMMMUIdx_Stage2: 3460 case ARMMMUIdx_Stage2_S: 3461 /* 3462 * Second stage lookup uses physical for ptw; whether this is S or 3463 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for 3464 * the Secure EL2&0 regime. 3465 */ 3466 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx); 3467 break; 3468 3469 case ARMMMUIdx_E10_0: 3470 s1_mmu_idx = ARMMMUIdx_Stage1_E0; 3471 goto do_twostage; 3472 case ARMMMUIdx_E10_1: 3473 s1_mmu_idx = ARMMMUIdx_Stage1_E1; 3474 goto do_twostage; 3475 case ARMMMUIdx_E10_1_PAN: 3476 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3477 do_twostage: 3478 /* 3479 * Call ourselves recursively to do the stage 1 and then stage 2 3480 * translations if mmu_idx is a two-stage regime, and EL2 present. 3481 * Otherwise, a stage1+stage2 translation is just stage 1. 3482 */ 3483 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; 3484 if (arm_feature(env, ARM_FEATURE_EL2) && 3485 !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) { 3486 return get_phys_addr_twostage(env, ptw, address, access_type, 3487 memop, result, fi); 3488 } 3489 /* fall through */ 3490 3491 default: 3492 /* Single stage uses physical for ptw. */ 3493 ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space); 3494 break; 3495 } 3496 3497 result->f.attrs.user = regime_is_user(env, mmu_idx); 3498 3499 /* 3500 * Fast Context Switch Extension. This doesn't exist at all in v8. 3501 * In v7 and earlier it affects all stage 1 translations. 3502 */ 3503 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 3504 && !arm_feature(env, ARM_FEATURE_V8)) { 3505 if (regime_el(env, mmu_idx) == 3) { 3506 address += env->cp15.fcseidr_s; 3507 } else { 3508 address += env->cp15.fcseidr_ns; 3509 } 3510 } 3511 3512 if (arm_feature(env, ARM_FEATURE_PMSA)) { 3513 bool ret; 3514 result->f.lg_page_size = TARGET_PAGE_BITS; 3515 3516 if (arm_feature(env, ARM_FEATURE_V8)) { 3517 /* PMSAv8 */ 3518 ret = get_phys_addr_pmsav8(env, ptw, address, access_type, 3519 result, fi); 3520 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3521 /* PMSAv7 */ 3522 ret = get_phys_addr_pmsav7(env, ptw, address, access_type, 3523 result, fi); 3524 } else { 3525 /* Pre-v7 MPU */ 3526 ret = get_phys_addr_pmsav5(env, ptw, address, access_type, 3527 result, fi); 3528 } 3529 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 3530 " mmu_idx %u -> %s (prot %c%c%c)\n", 3531 access_type == MMU_DATA_LOAD ? "reading" : 3532 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 3533 (uint32_t)address, mmu_idx, 3534 ret ? "Miss" : "Hit", 3535 result->f.prot & PAGE_READ ? 'r' : '-', 3536 result->f.prot & PAGE_WRITE ? 'w' : '-', 3537 result->f.prot & PAGE_EXEC ? 'x' : '-'); 3538 3539 return ret; 3540 } 3541 3542 /* Definitely a real MMU, not an MPU */ 3543 3544 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 3545 return get_phys_addr_disabled(env, ptw, address, access_type, 3546 result, fi); 3547 } 3548 3549 if (regime_using_lpae_format(env, mmu_idx)) { 3550 return get_phys_addr_lpae(env, ptw, address, access_type, 3551 memop, result, fi); 3552 } else if (arm_feature(env, ARM_FEATURE_V7) || 3553 regime_sctlr(env, mmu_idx) & SCTLR_XP) { 3554 return get_phys_addr_v6(env, ptw, address, access_type, result, fi); 3555 } else { 3556 return get_phys_addr_v5(env, ptw, address, access_type, result, fi); 3557 } 3558 } 3559 3560 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 3561 vaddr address, 3562 MMUAccessType access_type, MemOp memop, 3563 GetPhysAddrResult *result, 3564 ARMMMUFaultInfo *fi) 3565 { 3566 if (get_phys_addr_nogpc(env, ptw, address, access_type, 3567 memop, result, fi)) { 3568 return true; 3569 } 3570 if (!granule_protection_check(env, result->f.phys_addr, 3571 result->f.attrs.space, fi)) { 3572 fi->type = ARMFault_GPCFOnOutput; 3573 return true; 3574 } 3575 return false; 3576 } 3577 3578 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address, 3579 MMUAccessType access_type, MemOp memop, 3580 ARMMMUIdx mmu_idx, ARMSecuritySpace space, 3581 GetPhysAddrResult *result, 3582 ARMMMUFaultInfo *fi) 3583 { 3584 S1Translate ptw = { 3585 .in_mmu_idx = mmu_idx, 3586 .in_space = space, 3587 }; 3588 return get_phys_addr_nogpc(env, &ptw, address, access_type, 3589 memop, result, fi); 3590 } 3591 3592 bool get_phys_addr(CPUARMState *env, vaddr address, 3593 MMUAccessType access_type, MemOp memop, ARMMMUIdx mmu_idx, 3594 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 3595 { 3596 S1Translate ptw = { 3597 .in_mmu_idx = mmu_idx, 3598 }; 3599 ARMSecuritySpace ss; 3600 3601 switch (mmu_idx) { 3602 case ARMMMUIdx_E10_0: 3603 case ARMMMUIdx_E10_1: 3604 case ARMMMUIdx_E10_1_PAN: 3605 case ARMMMUIdx_E20_0: 3606 case ARMMMUIdx_E20_2: 3607 case ARMMMUIdx_E20_2_PAN: 3608 case ARMMMUIdx_Stage1_E0: 3609 case ARMMMUIdx_Stage1_E1: 3610 case ARMMMUIdx_Stage1_E1_PAN: 3611 case ARMMMUIdx_E2: 3612 ss = arm_security_space_below_el3(env); 3613 break; 3614 case ARMMMUIdx_Stage2: 3615 /* 3616 * For Secure EL2, we need this index to be NonSecure; 3617 * otherwise this will already be NonSecure or Realm. 3618 */ 3619 ss = arm_security_space_below_el3(env); 3620 if (ss == ARMSS_Secure) { 3621 ss = ARMSS_NonSecure; 3622 } 3623 break; 3624 case ARMMMUIdx_Phys_NS: 3625 case ARMMMUIdx_MPrivNegPri: 3626 case ARMMMUIdx_MUserNegPri: 3627 case ARMMMUIdx_MPriv: 3628 case ARMMMUIdx_MUser: 3629 ss = ARMSS_NonSecure; 3630 break; 3631 case ARMMMUIdx_Stage2_S: 3632 case ARMMMUIdx_Phys_S: 3633 case ARMMMUIdx_MSPrivNegPri: 3634 case ARMMMUIdx_MSUserNegPri: 3635 case ARMMMUIdx_MSPriv: 3636 case ARMMMUIdx_MSUser: 3637 ss = ARMSS_Secure; 3638 break; 3639 case ARMMMUIdx_E3: 3640 case ARMMMUIdx_E30_0: 3641 case ARMMMUIdx_E30_3_PAN: 3642 if (arm_feature(env, ARM_FEATURE_AARCH64) && 3643 cpu_isar_feature(aa64_rme, env_archcpu(env))) { 3644 ss = ARMSS_Root; 3645 } else { 3646 ss = ARMSS_Secure; 3647 } 3648 break; 3649 case ARMMMUIdx_Phys_Root: 3650 ss = ARMSS_Root; 3651 break; 3652 case ARMMMUIdx_Phys_Realm: 3653 ss = ARMSS_Realm; 3654 break; 3655 default: 3656 g_assert_not_reached(); 3657 } 3658 3659 ptw.in_space = ss; 3660 return get_phys_addr_gpc(env, &ptw, address, access_type, 3661 memop, result, fi); 3662 } 3663 3664 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 3665 MemTxAttrs *attrs) 3666 { 3667 ARMCPU *cpu = ARM_CPU(cs); 3668 CPUARMState *env = &cpu->env; 3669 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 3670 ARMSecuritySpace ss = arm_security_space(env); 3671 S1Translate ptw = { 3672 .in_mmu_idx = mmu_idx, 3673 .in_space = ss, 3674 .in_debug = true, 3675 }; 3676 GetPhysAddrResult res = {}; 3677 ARMMMUFaultInfo fi = {}; 3678 bool ret; 3679 3680 ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, 0, &res, &fi); 3681 *attrs = res.f.attrs; 3682 3683 if (ret) { 3684 return -1; 3685 } 3686 return res.f.phys_addr; 3687 } 3688