xref: /openbmc/qemu/target/arm/ptw.c (revision 6e510855)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "idau.h"
17 #ifdef CONFIG_TCG
18 # include "tcg/oversized-guest.h"
19 #endif
20 
21 typedef struct S1Translate {
22     /*
23      * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
24      * Together with in_space, specifies the architectural translation regime.
25      */
26     ARMMMUIdx in_mmu_idx;
27     /*
28      * in_ptw_idx: specifies which mmuidx to use for the actual
29      * page table descriptor load operations. This will be one of the
30      * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
31      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
32      * this field is updated accordingly.
33      */
34     ARMMMUIdx in_ptw_idx;
35     /*
36      * in_space: the security space for this walk. This plus
37      * the in_mmu_idx specify the architectural translation regime.
38      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
39      * this field is updated accordingly.
40      *
41      * Note that the security space for the in_ptw_idx may be different
42      * from that for the in_mmu_idx. We do not need to explicitly track
43      * the in_ptw_idx security space because:
44      *  - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
45      *    itself specifies the security space
46      *  - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
47      *    space used for ptw reads is the same as that of the security
48      *    space of the stage 1 translation for all cases except where
49      *    stage 1 is Secure; in that case the only possibilities for
50      *    the ptw read are Secure and NonSecure, and the in_ptw_idx
51      *    value being Stage2 vs Stage2_S distinguishes those.
52      */
53     ARMSecuritySpace in_space;
54     /*
55      * in_secure: whether the translation regime is a Secure one.
56      * This is always equal to arm_space_is_secure(in_space).
57      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
58      * this field is updated accordingly.
59      */
60     bool in_secure;
61     /*
62      * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
63      * accesses will not update the guest page table access flags
64      * and will not change the state of the softmmu TLBs.
65      */
66     bool in_debug;
67     /*
68      * If this is stage 2 of a stage 1+2 page table walk, then this must
69      * be true if stage 1 is an EL0 access; otherwise this is ignored.
70      * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
71      */
72     bool in_s1_is_el0;
73     bool out_secure;
74     bool out_rw;
75     bool out_be;
76     ARMSecuritySpace out_space;
77     hwaddr out_virt;
78     hwaddr out_phys;
79     void *out_host;
80 } S1Translate;
81 
82 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
83                                 target_ulong address,
84                                 MMUAccessType access_type,
85                                 GetPhysAddrResult *result,
86                                 ARMMMUFaultInfo *fi);
87 
88 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
89                               target_ulong address,
90                               MMUAccessType access_type,
91                               GetPhysAddrResult *result,
92                               ARMMMUFaultInfo *fi);
93 
94 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
95 static const uint8_t pamax_map[] = {
96     [0] = 32,
97     [1] = 36,
98     [2] = 40,
99     [3] = 42,
100     [4] = 44,
101     [5] = 48,
102     [6] = 52,
103 };
104 
105 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
106 unsigned int arm_pamax(ARMCPU *cpu)
107 {
108     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
109         unsigned int parange =
110             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
111 
112         /*
113          * id_aa64mmfr0 is a read-only register so values outside of the
114          * supported mappings can be considered an implementation error.
115          */
116         assert(parange < ARRAY_SIZE(pamax_map));
117         return pamax_map[parange];
118     }
119 
120     /*
121      * In machvirt_init, we call arm_pamax on a cpu that is not fully
122      * initialized, so we can't rely on the propagation done in realize.
123      */
124     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
125         arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
126         /* v7 with LPAE */
127         return 40;
128     }
129     /* Anything else */
130     return 32;
131 }
132 
133 /*
134  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
135  */
136 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
137 {
138     switch (mmu_idx) {
139     case ARMMMUIdx_E10_0:
140         return ARMMMUIdx_Stage1_E0;
141     case ARMMMUIdx_E10_1:
142         return ARMMMUIdx_Stage1_E1;
143     case ARMMMUIdx_E10_1_PAN:
144         return ARMMMUIdx_Stage1_E1_PAN;
145     default:
146         return mmu_idx;
147     }
148 }
149 
150 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
151 {
152     return stage_1_mmu_idx(arm_mmu_idx(env));
153 }
154 
155 /*
156  * Return where we should do ptw loads from for a stage 2 walk.
157  * This depends on whether the address we are looking up is a
158  * Secure IPA or a NonSecure IPA, which we know from whether this is
159  * Stage2 or Stage2_S.
160  * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
161  */
162 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
163 {
164     bool s2walk_secure;
165 
166     /*
167      * We're OK to check the current state of the CPU here because
168      * (1) we always invalidate all TLBs when the SCR_EL3.NS bit changes
169      * (2) there's no way to do a lookup that cares about Stage 2 for a
170      * different security state to the current one for AArch64, and AArch32
171      * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
172      * an NS stage 1+2 lookup while the NS bit is 0.)
173      */
174     if (!arm_is_secure_below_el3(env) || !arm_el_is_aa64(env, 3)) {
175         return ARMMMUIdx_Phys_NS;
176     }
177     if (stage2idx == ARMMMUIdx_Stage2_S) {
178         s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
179     } else {
180         s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
181     }
182     return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
183 
184 }
185 
186 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
187 {
188     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
189 }
190 
191 /* Return the TTBR associated with this translation regime */
192 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
193 {
194     if (mmu_idx == ARMMMUIdx_Stage2) {
195         return env->cp15.vttbr_el2;
196     }
197     if (mmu_idx == ARMMMUIdx_Stage2_S) {
198         return env->cp15.vsttbr_el2;
199     }
200     if (ttbrn == 0) {
201         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
202     } else {
203         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
204     }
205 }
206 
207 /* Return true if the specified stage of address translation is disabled */
208 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
209                                         bool is_secure)
210 {
211     uint64_t hcr_el2;
212 
213     if (arm_feature(env, ARM_FEATURE_M)) {
214         switch (env->v7m.mpu_ctrl[is_secure] &
215                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
216         case R_V7M_MPU_CTRL_ENABLE_MASK:
217             /* Enabled, but not for HardFault and NMI */
218             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
219         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
220             /* Enabled for all cases */
221             return false;
222         case 0:
223         default:
224             /*
225              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
226              * we warned about that in armv7m_nvic.c when the guest set it.
227              */
228             return true;
229         }
230     }
231 
232     hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
233 
234     switch (mmu_idx) {
235     case ARMMMUIdx_Stage2:
236     case ARMMMUIdx_Stage2_S:
237         /* HCR.DC means HCR.VM behaves as 1 */
238         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
239 
240     case ARMMMUIdx_E10_0:
241     case ARMMMUIdx_E10_1:
242     case ARMMMUIdx_E10_1_PAN:
243         /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
244         if (hcr_el2 & HCR_TGE) {
245             return true;
246         }
247         break;
248 
249     case ARMMMUIdx_Stage1_E0:
250     case ARMMMUIdx_Stage1_E1:
251     case ARMMMUIdx_Stage1_E1_PAN:
252         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
253         if (hcr_el2 & HCR_DC) {
254             return true;
255         }
256         break;
257 
258     case ARMMMUIdx_E20_0:
259     case ARMMMUIdx_E20_2:
260     case ARMMMUIdx_E20_2_PAN:
261     case ARMMMUIdx_E2:
262     case ARMMMUIdx_E3:
263         break;
264 
265     case ARMMMUIdx_Phys_S:
266     case ARMMMUIdx_Phys_NS:
267     case ARMMMUIdx_Phys_Root:
268     case ARMMMUIdx_Phys_Realm:
269         /* No translation for physical address spaces. */
270         return true;
271 
272     default:
273         g_assert_not_reached();
274     }
275 
276     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
277 }
278 
279 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
280                                      ARMSecuritySpace pspace,
281                                      ARMMMUFaultInfo *fi)
282 {
283     MemTxAttrs attrs = {
284         .secure = true,
285         .space = ARMSS_Root,
286     };
287     ARMCPU *cpu = env_archcpu(env);
288     uint64_t gpccr = env->cp15.gpccr_el3;
289     unsigned pps, pgs, l0gptsz, level = 0;
290     uint64_t tableaddr, pps_mask, align, entry, index;
291     AddressSpace *as;
292     MemTxResult result;
293     int gpi;
294 
295     if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
296         return true;
297     }
298 
299     /*
300      * GPC Priority 1 (R_GMGRR):
301      * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
302      * the access fails as GPT walk fault at level 0.
303      */
304 
305     /*
306      * Configuration of PPS to a value exceeding the implemented
307      * physical address size is invalid.
308      */
309     pps = FIELD_EX64(gpccr, GPCCR, PPS);
310     if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
311         goto fault_walk;
312     }
313     pps = pamax_map[pps];
314     pps_mask = MAKE_64BIT_MASK(0, pps);
315 
316     switch (FIELD_EX64(gpccr, GPCCR, SH)) {
317     case 0b10: /* outer shareable */
318         break;
319     case 0b00: /* non-shareable */
320     case 0b11: /* inner shareable */
321         /* Inner and Outer non-cacheable requires Outer shareable. */
322         if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
323             FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
324             goto fault_walk;
325         }
326         break;
327     default:   /* reserved */
328         goto fault_walk;
329     }
330 
331     switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
332     case 0b00: /* 4KB */
333         pgs = 12;
334         break;
335     case 0b01: /* 64KB */
336         pgs = 16;
337         break;
338     case 0b10: /* 16KB */
339         pgs = 14;
340         break;
341     default: /* reserved */
342         goto fault_walk;
343     }
344 
345     /* Note this field is read-only and fixed at reset. */
346     l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
347 
348     /*
349      * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
350      * R_CPDSB: A NonSecure physical address input exceeding PPS
351      * does not experience any fault.
352      */
353     if (paddress & ~pps_mask) {
354         if (pspace == ARMSS_NonSecure) {
355             return true;
356         }
357         goto fault_size;
358     }
359 
360     /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
361     tableaddr = env->cp15.gptbr_el3 << 12;
362     if (tableaddr & ~pps_mask) {
363         goto fault_size;
364     }
365 
366     /*
367      * BADDR is aligned per a function of PPS and L0GPTSZ.
368      * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
369      * unlike the RES0 bits of the GPT entries (R_XNKFZ).
370      */
371     align = MAX(pps - l0gptsz + 3, 12);
372     align = MAKE_64BIT_MASK(0, align);
373     tableaddr &= ~align;
374 
375     as = arm_addressspace(env_cpu(env), attrs);
376 
377     /* Level 0 lookup. */
378     index = extract64(paddress, l0gptsz, pps - l0gptsz);
379     tableaddr += index * 8;
380     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
381     if (result != MEMTX_OK) {
382         goto fault_eabt;
383     }
384 
385     switch (extract32(entry, 0, 4)) {
386     case 1: /* block descriptor */
387         if (entry >> 8) {
388             goto fault_walk; /* RES0 bits not 0 */
389         }
390         gpi = extract32(entry, 4, 4);
391         goto found;
392     case 3: /* table descriptor */
393         tableaddr = entry & ~0xf;
394         align = MAX(l0gptsz - pgs - 1, 12);
395         align = MAKE_64BIT_MASK(0, align);
396         if (tableaddr & (~pps_mask | align)) {
397             goto fault_walk; /* RES0 bits not 0 */
398         }
399         break;
400     default: /* invalid */
401         goto fault_walk;
402     }
403 
404     /* Level 1 lookup */
405     level = 1;
406     index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
407     tableaddr += index * 8;
408     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
409     if (result != MEMTX_OK) {
410         goto fault_eabt;
411     }
412 
413     switch (extract32(entry, 0, 4)) {
414     case 1: /* contiguous descriptor */
415         if (entry >> 10) {
416             goto fault_walk; /* RES0 bits not 0 */
417         }
418         /*
419          * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
420          * and because we cannot invalidate by pa, and thus will always
421          * flush entire tlbs, we don't actually care about the range here
422          * and can simply extract the GPI as the result.
423          */
424         if (extract32(entry, 8, 2) == 0) {
425             goto fault_walk; /* reserved contig */
426         }
427         gpi = extract32(entry, 4, 4);
428         break;
429     default:
430         index = extract64(paddress, pgs, 4);
431         gpi = extract64(entry, index * 4, 4);
432         break;
433     }
434 
435  found:
436     switch (gpi) {
437     case 0b0000: /* no access */
438         break;
439     case 0b1111: /* all access */
440         return true;
441     case 0b1000:
442     case 0b1001:
443     case 0b1010:
444     case 0b1011:
445         if (pspace == (gpi & 3)) {
446             return true;
447         }
448         break;
449     default:
450         goto fault_walk; /* reserved */
451     }
452 
453     fi->gpcf = GPCF_Fail;
454     goto fault_common;
455  fault_eabt:
456     fi->gpcf = GPCF_EABT;
457     goto fault_common;
458  fault_size:
459     fi->gpcf = GPCF_AddressSize;
460     goto fault_common;
461  fault_walk:
462     fi->gpcf = GPCF_Walk;
463  fault_common:
464     fi->level = level;
465     fi->paddr = paddress;
466     fi->paddr_space = pspace;
467     return false;
468 }
469 
470 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
471 {
472     /*
473      * For an S1 page table walk, the stage 1 attributes are always
474      * some form of "this is Normal memory". The combined S1+S2
475      * attributes are therefore only Device if stage 2 specifies Device.
476      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
477      * ie when cacheattrs.attrs bits [3:2] are 0b00.
478      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
479      * when cacheattrs.attrs bit [2] is 0.
480      */
481     if (hcr & HCR_FWB) {
482         return (attrs & 0x4) == 0;
483     } else {
484         return (attrs & 0xc) == 0;
485     }
486 }
487 
488 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
489                                           ARMMMUIdx s2_mmu_idx)
490 {
491     /*
492      * Return the security space to use for stage 2 when doing
493      * the S1 page table descriptor load.
494      */
495     if (regime_is_stage2(s2_mmu_idx)) {
496         /*
497          * The security space for ptw reads is almost always the same
498          * as that of the security space of the stage 1 translation.
499          * The only exception is when stage 1 is Secure; in that case
500          * the ptw read might be to the Secure or the NonSecure space
501          * (but never Realm or Root), and the s2_mmu_idx tells us which.
502          * Root translations are always single-stage.
503          */
504         if (s1_space == ARMSS_Secure) {
505             return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
506         } else {
507             assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
508             assert(s1_space != ARMSS_Root);
509             return s1_space;
510         }
511     } else {
512         /* ptw loads are from phys: the mmu idx itself says which space */
513         return arm_phys_to_space(s2_mmu_idx);
514     }
515 }
516 
517 /* Translate a S1 pagetable walk through S2 if needed.  */
518 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
519                              hwaddr addr, ARMMMUFaultInfo *fi)
520 {
521     bool is_secure = ptw->in_secure;
522     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
523     ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
524     uint8_t pte_attrs;
525 
526     ptw->out_virt = addr;
527 
528     if (unlikely(ptw->in_debug)) {
529         /*
530          * From gdbstub, do not use softmmu so that we don't modify the
531          * state of the cpu at all, including softmmu tlb contents.
532          */
533         ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
534         S1Translate s2ptw = {
535             .in_mmu_idx = s2_mmu_idx,
536             .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
537             .in_secure = arm_space_is_secure(s2_space),
538             .in_space = s2_space,
539             .in_debug = true,
540         };
541         GetPhysAddrResult s2 = { };
542 
543         if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) {
544             goto fail;
545         }
546 
547         ptw->out_phys = s2.f.phys_addr;
548         pte_attrs = s2.cacheattrs.attrs;
549         ptw->out_host = NULL;
550         ptw->out_rw = false;
551         ptw->out_secure = s2.f.attrs.secure;
552         ptw->out_space = s2.f.attrs.space;
553     } else {
554 #ifdef CONFIG_TCG
555         CPUTLBEntryFull *full;
556         int flags;
557 
558         env->tlb_fi = fi;
559         flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
560                                       arm_to_core_mmu_idx(s2_mmu_idx),
561                                       &ptw->out_host, &full);
562         env->tlb_fi = NULL;
563 
564         if (unlikely(flags & TLB_INVALID_MASK)) {
565             goto fail;
566         }
567         ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
568         ptw->out_rw = full->prot & PAGE_WRITE;
569         pte_attrs = full->pte_attrs;
570         ptw->out_secure = full->attrs.secure;
571         ptw->out_space = full->attrs.space;
572 #else
573         g_assert_not_reached();
574 #endif
575     }
576 
577     if (regime_is_stage2(s2_mmu_idx)) {
578         uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
579 
580         if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
581             /*
582              * PTW set and S1 walk touched S2 Device memory:
583              * generate Permission fault.
584              */
585             fi->type = ARMFault_Permission;
586             fi->s2addr = addr;
587             fi->stage2 = true;
588             fi->s1ptw = true;
589             fi->s1ns = !is_secure;
590             return false;
591         }
592     }
593 
594     ptw->out_be = regime_translation_big_endian(env, mmu_idx);
595     return true;
596 
597  fail:
598     assert(fi->type != ARMFault_None);
599     if (fi->type == ARMFault_GPCFOnOutput) {
600         fi->type = ARMFault_GPCFOnWalk;
601     }
602     fi->s2addr = addr;
603     fi->stage2 = true;
604     fi->s1ptw = true;
605     fi->s1ns = !is_secure;
606     return false;
607 }
608 
609 /* All loads done in the course of a page table walk go through here. */
610 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
611                             ARMMMUFaultInfo *fi)
612 {
613     CPUState *cs = env_cpu(env);
614     void *host = ptw->out_host;
615     uint32_t data;
616 
617     if (likely(host)) {
618         /* Page tables are in RAM, and we have the host address. */
619         data = qatomic_read((uint32_t *)host);
620         if (ptw->out_be) {
621             data = be32_to_cpu(data);
622         } else {
623             data = le32_to_cpu(data);
624         }
625     } else {
626         /* Page tables are in MMIO. */
627         MemTxAttrs attrs = {
628             .secure = ptw->out_secure,
629             .space = ptw->out_space,
630         };
631         AddressSpace *as = arm_addressspace(cs, attrs);
632         MemTxResult result = MEMTX_OK;
633 
634         if (ptw->out_be) {
635             data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
636         } else {
637             data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
638         }
639         if (unlikely(result != MEMTX_OK)) {
640             fi->type = ARMFault_SyncExternalOnWalk;
641             fi->ea = arm_extabort_type(result);
642             return 0;
643         }
644     }
645     return data;
646 }
647 
648 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
649                             ARMMMUFaultInfo *fi)
650 {
651     CPUState *cs = env_cpu(env);
652     void *host = ptw->out_host;
653     uint64_t data;
654 
655     if (likely(host)) {
656         /* Page tables are in RAM, and we have the host address. */
657 #ifdef CONFIG_ATOMIC64
658         data = qatomic_read__nocheck((uint64_t *)host);
659         if (ptw->out_be) {
660             data = be64_to_cpu(data);
661         } else {
662             data = le64_to_cpu(data);
663         }
664 #else
665         if (ptw->out_be) {
666             data = ldq_be_p(host);
667         } else {
668             data = ldq_le_p(host);
669         }
670 #endif
671     } else {
672         /* Page tables are in MMIO. */
673         MemTxAttrs attrs = {
674             .secure = ptw->out_secure,
675             .space = ptw->out_space,
676         };
677         AddressSpace *as = arm_addressspace(cs, attrs);
678         MemTxResult result = MEMTX_OK;
679 
680         if (ptw->out_be) {
681             data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
682         } else {
683             data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
684         }
685         if (unlikely(result != MEMTX_OK)) {
686             fi->type = ARMFault_SyncExternalOnWalk;
687             fi->ea = arm_extabort_type(result);
688             return 0;
689         }
690     }
691     return data;
692 }
693 
694 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
695                              uint64_t new_val, S1Translate *ptw,
696                              ARMMMUFaultInfo *fi)
697 {
698 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
699     uint64_t cur_val;
700     void *host = ptw->out_host;
701 
702     if (unlikely(!host)) {
703         fi->type = ARMFault_UnsuppAtomicUpdate;
704         fi->s1ptw = true;
705         return 0;
706     }
707 
708     /*
709      * Raising a stage2 Protection fault for an atomic update to a read-only
710      * page is delayed until it is certain that there is a change to make.
711      */
712     if (unlikely(!ptw->out_rw)) {
713         int flags;
714 
715         env->tlb_fi = fi;
716         flags = probe_access_full_mmu(env, ptw->out_virt, 0,
717                                       MMU_DATA_STORE,
718                                       arm_to_core_mmu_idx(ptw->in_ptw_idx),
719                                       NULL, NULL);
720         env->tlb_fi = NULL;
721 
722         if (unlikely(flags & TLB_INVALID_MASK)) {
723             assert(fi->type != ARMFault_None);
724             fi->s2addr = ptw->out_virt;
725             fi->stage2 = true;
726             fi->s1ptw = true;
727             fi->s1ns = !ptw->in_secure;
728             return 0;
729         }
730 
731         /* In case CAS mismatches and we loop, remember writability. */
732         ptw->out_rw = true;
733     }
734 
735 #ifdef CONFIG_ATOMIC64
736     if (ptw->out_be) {
737         old_val = cpu_to_be64(old_val);
738         new_val = cpu_to_be64(new_val);
739         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
740         cur_val = be64_to_cpu(cur_val);
741     } else {
742         old_val = cpu_to_le64(old_val);
743         new_val = cpu_to_le64(new_val);
744         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
745         cur_val = le64_to_cpu(cur_val);
746     }
747 #else
748     /*
749      * We can't support the full 64-bit atomic cmpxchg on the host.
750      * Because this is only used for FEAT_HAFDBS, which is only for AA64,
751      * we know that TCG_OVERSIZED_GUEST is set, which means that we are
752      * running in round-robin mode and could only race with dma i/o.
753      */
754 #if !TCG_OVERSIZED_GUEST
755 # error "Unexpected configuration"
756 #endif
757     bool locked = qemu_mutex_iothread_locked();
758     if (!locked) {
759        qemu_mutex_lock_iothread();
760     }
761     if (ptw->out_be) {
762         cur_val = ldq_be_p(host);
763         if (cur_val == old_val) {
764             stq_be_p(host, new_val);
765         }
766     } else {
767         cur_val = ldq_le_p(host);
768         if (cur_val == old_val) {
769             stq_le_p(host, new_val);
770         }
771     }
772     if (!locked) {
773         qemu_mutex_unlock_iothread();
774     }
775 #endif
776 
777     return cur_val;
778 #else
779     /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
780     g_assert_not_reached();
781 #endif
782 }
783 
784 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
785                                      uint32_t *table, uint32_t address)
786 {
787     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
788     uint64_t tcr = regime_tcr(env, mmu_idx);
789     int maskshift = extract32(tcr, 0, 3);
790     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
791     uint32_t base_mask;
792 
793     if (address & mask) {
794         if (tcr & TTBCR_PD1) {
795             /* Translation table walk disabled for TTBR1 */
796             return false;
797         }
798         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
799     } else {
800         if (tcr & TTBCR_PD0) {
801             /* Translation table walk disabled for TTBR0 */
802             return false;
803         }
804         base_mask = ~((uint32_t)0x3fffu >> maskshift);
805         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
806     }
807     *table |= (address >> 18) & 0x3ffc;
808     return true;
809 }
810 
811 /*
812  * Translate section/page access permissions to page R/W protection flags
813  * @env:         CPUARMState
814  * @mmu_idx:     MMU index indicating required translation regime
815  * @ap:          The 3-bit access permissions (AP[2:0])
816  * @domain_prot: The 2-bit domain access permissions
817  * @is_user: TRUE if accessing from PL0
818  */
819 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
820                          int ap, int domain_prot, bool is_user)
821 {
822     if (domain_prot == 3) {
823         return PAGE_READ | PAGE_WRITE;
824     }
825 
826     switch (ap) {
827     case 0:
828         if (arm_feature(env, ARM_FEATURE_V7)) {
829             return 0;
830         }
831         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
832         case SCTLR_S:
833             return is_user ? 0 : PAGE_READ;
834         case SCTLR_R:
835             return PAGE_READ;
836         default:
837             return 0;
838         }
839     case 1:
840         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
841     case 2:
842         if (is_user) {
843             return PAGE_READ;
844         } else {
845             return PAGE_READ | PAGE_WRITE;
846         }
847     case 3:
848         return PAGE_READ | PAGE_WRITE;
849     case 4: /* Reserved.  */
850         return 0;
851     case 5:
852         return is_user ? 0 : PAGE_READ;
853     case 6:
854         return PAGE_READ;
855     case 7:
856         if (!arm_feature(env, ARM_FEATURE_V6K)) {
857             return 0;
858         }
859         return PAGE_READ;
860     default:
861         g_assert_not_reached();
862     }
863 }
864 
865 /*
866  * Translate section/page access permissions to page R/W protection flags
867  * @env:         CPUARMState
868  * @mmu_idx:     MMU index indicating required translation regime
869  * @ap:          The 3-bit access permissions (AP[2:0])
870  * @domain_prot: The 2-bit domain access permissions
871  */
872 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
873                          int ap, int domain_prot)
874 {
875    return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
876                                 regime_is_user(env, mmu_idx));
877 }
878 
879 /*
880  * Translate section/page access permissions to page R/W protection flags.
881  * @ap:      The 2-bit simple AP (AP[2:1])
882  * @is_user: TRUE if accessing from PL0
883  */
884 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
885 {
886     switch (ap) {
887     case 0:
888         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
889     case 1:
890         return PAGE_READ | PAGE_WRITE;
891     case 2:
892         return is_user ? 0 : PAGE_READ;
893     case 3:
894         return PAGE_READ;
895     default:
896         g_assert_not_reached();
897     }
898 }
899 
900 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
901 {
902     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
903 }
904 
905 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
906                              uint32_t address, MMUAccessType access_type,
907                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
908 {
909     int level = 1;
910     uint32_t table;
911     uint32_t desc;
912     int type;
913     int ap;
914     int domain = 0;
915     int domain_prot;
916     hwaddr phys_addr;
917     uint32_t dacr;
918 
919     /* Pagetable walk.  */
920     /* Lookup l1 descriptor.  */
921     if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
922         /* Section translation fault if page walk is disabled by PD0 or PD1 */
923         fi->type = ARMFault_Translation;
924         goto do_fault;
925     }
926     if (!S1_ptw_translate(env, ptw, table, fi)) {
927         goto do_fault;
928     }
929     desc = arm_ldl_ptw(env, ptw, fi);
930     if (fi->type != ARMFault_None) {
931         goto do_fault;
932     }
933     type = (desc & 3);
934     domain = (desc >> 5) & 0x0f;
935     if (regime_el(env, ptw->in_mmu_idx) == 1) {
936         dacr = env->cp15.dacr_ns;
937     } else {
938         dacr = env->cp15.dacr_s;
939     }
940     domain_prot = (dacr >> (domain * 2)) & 3;
941     if (type == 0) {
942         /* Section translation fault.  */
943         fi->type = ARMFault_Translation;
944         goto do_fault;
945     }
946     if (type != 2) {
947         level = 2;
948     }
949     if (domain_prot == 0 || domain_prot == 2) {
950         fi->type = ARMFault_Domain;
951         goto do_fault;
952     }
953     if (type == 2) {
954         /* 1Mb section.  */
955         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
956         ap = (desc >> 10) & 3;
957         result->f.lg_page_size = 20; /* 1MB */
958     } else {
959         /* Lookup l2 entry.  */
960         if (type == 1) {
961             /* Coarse pagetable.  */
962             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
963         } else {
964             /* Fine pagetable.  */
965             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
966         }
967         if (!S1_ptw_translate(env, ptw, table, fi)) {
968             goto do_fault;
969         }
970         desc = arm_ldl_ptw(env, ptw, fi);
971         if (fi->type != ARMFault_None) {
972             goto do_fault;
973         }
974         switch (desc & 3) {
975         case 0: /* Page translation fault.  */
976             fi->type = ARMFault_Translation;
977             goto do_fault;
978         case 1: /* 64k page.  */
979             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
980             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
981             result->f.lg_page_size = 16;
982             break;
983         case 2: /* 4k page.  */
984             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
985             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
986             result->f.lg_page_size = 12;
987             break;
988         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
989             if (type == 1) {
990                 /* ARMv6/XScale extended small page format */
991                 if (arm_feature(env, ARM_FEATURE_XSCALE)
992                     || arm_feature(env, ARM_FEATURE_V6)) {
993                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
994                     result->f.lg_page_size = 12;
995                 } else {
996                     /*
997                      * UNPREDICTABLE in ARMv5; we choose to take a
998                      * page translation fault.
999                      */
1000                     fi->type = ARMFault_Translation;
1001                     goto do_fault;
1002                 }
1003             } else {
1004                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1005                 result->f.lg_page_size = 10;
1006             }
1007             ap = (desc >> 4) & 3;
1008             break;
1009         default:
1010             /* Never happens, but compiler isn't smart enough to tell.  */
1011             g_assert_not_reached();
1012         }
1013     }
1014     result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
1015     result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
1016     if (!(result->f.prot & (1 << access_type))) {
1017         /* Access permission fault.  */
1018         fi->type = ARMFault_Permission;
1019         goto do_fault;
1020     }
1021     result->f.phys_addr = phys_addr;
1022     return false;
1023 do_fault:
1024     fi->domain = domain;
1025     fi->level = level;
1026     return true;
1027 }
1028 
1029 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
1030                              uint32_t address, MMUAccessType access_type,
1031                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1032 {
1033     ARMCPU *cpu = env_archcpu(env);
1034     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1035     int level = 1;
1036     uint32_t table;
1037     uint32_t desc;
1038     uint32_t xn;
1039     uint32_t pxn = 0;
1040     int type;
1041     int ap;
1042     int domain = 0;
1043     int domain_prot;
1044     hwaddr phys_addr;
1045     uint32_t dacr;
1046     bool ns;
1047     int user_prot;
1048 
1049     /* Pagetable walk.  */
1050     /* Lookup l1 descriptor.  */
1051     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
1052         /* Section translation fault if page walk is disabled by PD0 or PD1 */
1053         fi->type = ARMFault_Translation;
1054         goto do_fault;
1055     }
1056     if (!S1_ptw_translate(env, ptw, table, fi)) {
1057         goto do_fault;
1058     }
1059     desc = arm_ldl_ptw(env, ptw, fi);
1060     if (fi->type != ARMFault_None) {
1061         goto do_fault;
1062     }
1063     type = (desc & 3);
1064     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
1065         /* Section translation fault, or attempt to use the encoding
1066          * which is Reserved on implementations without PXN.
1067          */
1068         fi->type = ARMFault_Translation;
1069         goto do_fault;
1070     }
1071     if ((type == 1) || !(desc & (1 << 18))) {
1072         /* Page or Section.  */
1073         domain = (desc >> 5) & 0x0f;
1074     }
1075     if (regime_el(env, mmu_idx) == 1) {
1076         dacr = env->cp15.dacr_ns;
1077     } else {
1078         dacr = env->cp15.dacr_s;
1079     }
1080     if (type == 1) {
1081         level = 2;
1082     }
1083     domain_prot = (dacr >> (domain * 2)) & 3;
1084     if (domain_prot == 0 || domain_prot == 2) {
1085         /* Section or Page domain fault */
1086         fi->type = ARMFault_Domain;
1087         goto do_fault;
1088     }
1089     if (type != 1) {
1090         if (desc & (1 << 18)) {
1091             /* Supersection.  */
1092             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1093             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1094             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1095             result->f.lg_page_size = 24;  /* 16MB */
1096         } else {
1097             /* Section.  */
1098             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1099             result->f.lg_page_size = 20;  /* 1MB */
1100         }
1101         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1102         xn = desc & (1 << 4);
1103         pxn = desc & 1;
1104         ns = extract32(desc, 19, 1);
1105     } else {
1106         if (cpu_isar_feature(aa32_pxn, cpu)) {
1107             pxn = (desc >> 2) & 1;
1108         }
1109         ns = extract32(desc, 3, 1);
1110         /* Lookup l2 entry.  */
1111         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1112         if (!S1_ptw_translate(env, ptw, table, fi)) {
1113             goto do_fault;
1114         }
1115         desc = arm_ldl_ptw(env, ptw, fi);
1116         if (fi->type != ARMFault_None) {
1117             goto do_fault;
1118         }
1119         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1120         switch (desc & 3) {
1121         case 0: /* Page translation fault.  */
1122             fi->type = ARMFault_Translation;
1123             goto do_fault;
1124         case 1: /* 64k page.  */
1125             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1126             xn = desc & (1 << 15);
1127             result->f.lg_page_size = 16;
1128             break;
1129         case 2: case 3: /* 4k page.  */
1130             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1131             xn = desc & 1;
1132             result->f.lg_page_size = 12;
1133             break;
1134         default:
1135             /* Never happens, but compiler isn't smart enough to tell.  */
1136             g_assert_not_reached();
1137         }
1138     }
1139     if (domain_prot == 3) {
1140         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1141     } else {
1142         if (pxn && !regime_is_user(env, mmu_idx)) {
1143             xn = 1;
1144         }
1145         if (xn && access_type == MMU_INST_FETCH) {
1146             fi->type = ARMFault_Permission;
1147             goto do_fault;
1148         }
1149 
1150         if (arm_feature(env, ARM_FEATURE_V6K) &&
1151                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1152             /* The simplified model uses AP[0] as an access control bit.  */
1153             if ((ap & 1) == 0) {
1154                 /* Access flag fault.  */
1155                 fi->type = ARMFault_AccessFlag;
1156                 goto do_fault;
1157             }
1158             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1159             user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1160         } else {
1161             result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1162             user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1163         }
1164         if (result->f.prot && !xn) {
1165             result->f.prot |= PAGE_EXEC;
1166         }
1167         if (!(result->f.prot & (1 << access_type))) {
1168             /* Access permission fault.  */
1169             fi->type = ARMFault_Permission;
1170             goto do_fault;
1171         }
1172         if (regime_is_pan(env, mmu_idx) &&
1173             !regime_is_user(env, mmu_idx) &&
1174             user_prot &&
1175             access_type != MMU_INST_FETCH) {
1176             /* Privileged Access Never fault */
1177             fi->type = ARMFault_Permission;
1178             goto do_fault;
1179         }
1180     }
1181     if (ns) {
1182         /* The NS bit will (as required by the architecture) have no effect if
1183          * the CPU doesn't support TZ or this is a non-secure translation
1184          * regime, because the attribute will already be non-secure.
1185          */
1186         result->f.attrs.secure = false;
1187         result->f.attrs.space = ARMSS_NonSecure;
1188     }
1189     result->f.phys_addr = phys_addr;
1190     return false;
1191 do_fault:
1192     fi->domain = domain;
1193     fi->level = level;
1194     return true;
1195 }
1196 
1197 /*
1198  * Translate S2 section/page access permissions to protection flags
1199  * @env:     CPUARMState
1200  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
1201  * @xn:      XN (execute-never) bits
1202  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1203  */
1204 static int get_S2prot_noexecute(int s2ap)
1205 {
1206     int prot = 0;
1207 
1208     if (s2ap & 1) {
1209         prot |= PAGE_READ;
1210     }
1211     if (s2ap & 2) {
1212         prot |= PAGE_WRITE;
1213     }
1214     return prot;
1215 }
1216 
1217 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1218 {
1219     int prot = get_S2prot_noexecute(s2ap);
1220 
1221     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1222         switch (xn) {
1223         case 0:
1224             prot |= PAGE_EXEC;
1225             break;
1226         case 1:
1227             if (s1_is_el0) {
1228                 prot |= PAGE_EXEC;
1229             }
1230             break;
1231         case 2:
1232             break;
1233         case 3:
1234             if (!s1_is_el0) {
1235                 prot |= PAGE_EXEC;
1236             }
1237             break;
1238         default:
1239             g_assert_not_reached();
1240         }
1241     } else {
1242         if (!extract32(xn, 1, 1)) {
1243             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1244                 prot |= PAGE_EXEC;
1245             }
1246         }
1247     }
1248     return prot;
1249 }
1250 
1251 /*
1252  * Translate section/page access permissions to protection flags
1253  * @env:     CPUARMState
1254  * @mmu_idx: MMU index indicating required translation regime
1255  * @is_aa64: TRUE if AArch64
1256  * @ap:      The 2-bit simple AP (AP[2:1])
1257  * @xn:      XN (execute-never) bit
1258  * @pxn:     PXN (privileged execute-never) bit
1259  * @in_pa:   The original input pa space
1260  * @out_pa:  The output pa space, modified by NSTable, NS, and NSE
1261  */
1262 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1263                       int ap, int xn, int pxn,
1264                       ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1265 {
1266     ARMCPU *cpu = env_archcpu(env);
1267     bool is_user = regime_is_user(env, mmu_idx);
1268     int prot_rw, user_rw;
1269     bool have_wxn;
1270     int wxn = 0;
1271 
1272     assert(!regime_is_stage2(mmu_idx));
1273 
1274     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
1275     if (is_user) {
1276         prot_rw = user_rw;
1277     } else {
1278         /*
1279          * PAN controls can forbid data accesses but don't affect insn fetch.
1280          * Plain PAN forbids data accesses if EL0 has data permissions;
1281          * PAN3 forbids data accesses if EL0 has either data or exec perms.
1282          * Note that for AArch64 the 'user can exec' case is exactly !xn.
1283          * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1284          * do not affect EPAN.
1285          */
1286         if (user_rw && regime_is_pan(env, mmu_idx)) {
1287             prot_rw = 0;
1288         } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1289                    regime_is_pan(env, mmu_idx) &&
1290                    (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1291             prot_rw = 0;
1292         } else {
1293             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
1294         }
1295     }
1296 
1297     if (in_pa != out_pa) {
1298         switch (in_pa) {
1299         case ARMSS_Root:
1300             /*
1301              * R_ZWRVD: permission fault for insn fetched from non-Root,
1302              * I_WWBFB: SIF has no effect in EL3.
1303              */
1304             return prot_rw;
1305         case ARMSS_Realm:
1306             /*
1307              * R_PKTDS: permission fault for insn fetched from non-Realm,
1308              * for Realm EL2 or EL2&0.  The corresponding fault for EL1&0
1309              * happens during any stage2 translation.
1310              */
1311             switch (mmu_idx) {
1312             case ARMMMUIdx_E2:
1313             case ARMMMUIdx_E20_0:
1314             case ARMMMUIdx_E20_2:
1315             case ARMMMUIdx_E20_2_PAN:
1316                 return prot_rw;
1317             default:
1318                 break;
1319             }
1320             break;
1321         case ARMSS_Secure:
1322             if (env->cp15.scr_el3 & SCR_SIF) {
1323                 return prot_rw;
1324             }
1325             break;
1326         default:
1327             /* Input NonSecure must have output NonSecure. */
1328             g_assert_not_reached();
1329         }
1330     }
1331 
1332     /* TODO have_wxn should be replaced with
1333      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1334      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1335      * compatible processors have EL2, which is required for [U]WXN.
1336      */
1337     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1338 
1339     if (have_wxn) {
1340         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1341     }
1342 
1343     if (is_aa64) {
1344         if (regime_has_2_ranges(mmu_idx) && !is_user) {
1345             xn = pxn || (user_rw & PAGE_WRITE);
1346         }
1347     } else if (arm_feature(env, ARM_FEATURE_V7)) {
1348         switch (regime_el(env, mmu_idx)) {
1349         case 1:
1350         case 3:
1351             if (is_user) {
1352                 xn = xn || !(user_rw & PAGE_READ);
1353             } else {
1354                 int uwxn = 0;
1355                 if (have_wxn) {
1356                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1357                 }
1358                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1359                      (uwxn && (user_rw & PAGE_WRITE));
1360             }
1361             break;
1362         case 2:
1363             break;
1364         }
1365     } else {
1366         xn = wxn = 0;
1367     }
1368 
1369     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1370         return prot_rw;
1371     }
1372     return prot_rw | PAGE_EXEC;
1373 }
1374 
1375 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1376                                           ARMMMUIdx mmu_idx)
1377 {
1378     uint64_t tcr = regime_tcr(env, mmu_idx);
1379     uint32_t el = regime_el(env, mmu_idx);
1380     int select, tsz;
1381     bool epd, hpd;
1382 
1383     assert(mmu_idx != ARMMMUIdx_Stage2_S);
1384 
1385     if (mmu_idx == ARMMMUIdx_Stage2) {
1386         /* VTCR */
1387         bool sext = extract32(tcr, 4, 1);
1388         bool sign = extract32(tcr, 3, 1);
1389 
1390         /*
1391          * If the sign-extend bit is not the same as t0sz[3], the result
1392          * is unpredictable. Flag this as a guest error.
1393          */
1394         if (sign != sext) {
1395             qemu_log_mask(LOG_GUEST_ERROR,
1396                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1397         }
1398         tsz = sextract32(tcr, 0, 4) + 8;
1399         select = 0;
1400         hpd = false;
1401         epd = false;
1402     } else if (el == 2) {
1403         /* HTCR */
1404         tsz = extract32(tcr, 0, 3);
1405         select = 0;
1406         hpd = extract64(tcr, 24, 1);
1407         epd = false;
1408     } else {
1409         int t0sz = extract32(tcr, 0, 3);
1410         int t1sz = extract32(tcr, 16, 3);
1411 
1412         if (t1sz == 0) {
1413             select = va > (0xffffffffu >> t0sz);
1414         } else {
1415             /* Note that we will detect errors later.  */
1416             select = va >= ~(0xffffffffu >> t1sz);
1417         }
1418         if (!select) {
1419             tsz = t0sz;
1420             epd = extract32(tcr, 7, 1);
1421             hpd = extract64(tcr, 41, 1);
1422         } else {
1423             tsz = t1sz;
1424             epd = extract32(tcr, 23, 1);
1425             hpd = extract64(tcr, 42, 1);
1426         }
1427         /* For aarch32, hpd0 is not enabled without t2e as well.  */
1428         hpd &= extract32(tcr, 6, 1);
1429     }
1430 
1431     return (ARMVAParameters) {
1432         .tsz = tsz,
1433         .select = select,
1434         .epd = epd,
1435         .hpd = hpd,
1436     };
1437 }
1438 
1439 /*
1440  * check_s2_mmu_setup
1441  * @cpu:        ARMCPU
1442  * @is_aa64:    True if the translation regime is in AArch64 state
1443  * @tcr:        VTCR_EL2 or VSTCR_EL2
1444  * @ds:         Effective value of TCR.DS.
1445  * @iasize:     Bitsize of IPAs
1446  * @stride:     Page-table stride (See the ARM ARM)
1447  *
1448  * Decode the starting level of the S2 lookup, returning INT_MIN if
1449  * the configuration is invalid.
1450  */
1451 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1452                               bool ds, int iasize, int stride)
1453 {
1454     int sl0, sl2, startlevel, granulebits, levels;
1455     int s1_min_iasize, s1_max_iasize;
1456 
1457     sl0 = extract32(tcr, 6, 2);
1458     if (is_aa64) {
1459         /*
1460          * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1461          * so interleave AArch64.S2StartLevel.
1462          */
1463         switch (stride) {
1464         case 9: /* 4KB */
1465             /* SL2 is RES0 unless DS=1 & 4KB granule. */
1466             sl2 = extract64(tcr, 33, 1);
1467             if (ds && sl2) {
1468                 if (sl0 != 0) {
1469                     goto fail;
1470                 }
1471                 startlevel = -1;
1472             } else {
1473                 startlevel = 2 - sl0;
1474                 switch (sl0) {
1475                 case 2:
1476                     if (arm_pamax(cpu) < 44) {
1477                         goto fail;
1478                     }
1479                     break;
1480                 case 3:
1481                     if (!cpu_isar_feature(aa64_st, cpu)) {
1482                         goto fail;
1483                     }
1484                     startlevel = 3;
1485                     break;
1486                 }
1487             }
1488             break;
1489         case 11: /* 16KB */
1490             switch (sl0) {
1491             case 2:
1492                 if (arm_pamax(cpu) < 42) {
1493                     goto fail;
1494                 }
1495                 break;
1496             case 3:
1497                 if (!ds) {
1498                     goto fail;
1499                 }
1500                 break;
1501             }
1502             startlevel = 3 - sl0;
1503             break;
1504         case 13: /* 64KB */
1505             switch (sl0) {
1506             case 2:
1507                 if (arm_pamax(cpu) < 44) {
1508                     goto fail;
1509                 }
1510                 break;
1511             case 3:
1512                 goto fail;
1513             }
1514             startlevel = 3 - sl0;
1515             break;
1516         default:
1517             g_assert_not_reached();
1518         }
1519     } else {
1520         /*
1521          * Things are simpler for AArch32 EL2, with only 4k pages.
1522          * There is no separate S2InvalidSL function, but AArch32.S2Walk
1523          * begins with walkparms.sl0 in {'1x'}.
1524          */
1525         assert(stride == 9);
1526         if (sl0 >= 2) {
1527             goto fail;
1528         }
1529         startlevel = 2 - sl0;
1530     }
1531 
1532     /* AArch{64,32}.S2InconsistentSL are functionally equivalent.  */
1533     levels = 3 - startlevel;
1534     granulebits = stride + 3;
1535 
1536     s1_min_iasize = levels * stride + granulebits + 1;
1537     s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1538 
1539     if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1540         return startlevel;
1541     }
1542 
1543  fail:
1544     return INT_MIN;
1545 }
1546 
1547 /**
1548  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1549  *
1550  * Returns false if the translation was successful. Otherwise, phys_ptr,
1551  * attrs, prot and page_size may not be filled in, and the populated fsr
1552  * value provides information on why the translation aborted, in the format
1553  * of a long-format DFSR/IFSR fault register, with the following caveat:
1554  * the WnR bit is never set (the caller must do this).
1555  *
1556  * @env: CPUARMState
1557  * @ptw: Current and next stage parameters for the walk.
1558  * @address: virtual address to get physical address for
1559  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1560  * @result: set on translation success,
1561  * @fi: set to fault info if the translation fails
1562  */
1563 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1564                                uint64_t address,
1565                                MMUAccessType access_type,
1566                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1567 {
1568     ARMCPU *cpu = env_archcpu(env);
1569     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1570     int32_t level;
1571     ARMVAParameters param;
1572     uint64_t ttbr;
1573     hwaddr descaddr, indexmask, indexmask_grainsize;
1574     uint32_t tableattrs;
1575     target_ulong page_size;
1576     uint64_t attrs;
1577     int32_t stride;
1578     int addrsize, inputsize, outputsize;
1579     uint64_t tcr = regime_tcr(env, mmu_idx);
1580     int ap, xn, pxn;
1581     uint32_t el = regime_el(env, mmu_idx);
1582     uint64_t descaddrmask;
1583     bool aarch64 = arm_el_is_aa64(env, el);
1584     uint64_t descriptor, new_descriptor;
1585     ARMSecuritySpace out_space;
1586 
1587     /* TODO: This code does not support shareability levels. */
1588     if (aarch64) {
1589         int ps;
1590 
1591         param = aa64_va_parameters(env, address, mmu_idx,
1592                                    access_type != MMU_INST_FETCH,
1593                                    !arm_el_is_aa64(env, 1));
1594         level = 0;
1595 
1596         /*
1597          * If TxSZ is programmed to a value larger than the maximum,
1598          * or smaller than the effective minimum, it is IMPLEMENTATION
1599          * DEFINED whether we behave as if the field were programmed
1600          * within bounds, or if a level 0 Translation fault is generated.
1601          *
1602          * With FEAT_LVA, fault on less than minimum becomes required,
1603          * so our choice is to always raise the fault.
1604          */
1605         if (param.tsz_oob) {
1606             goto do_translation_fault;
1607         }
1608 
1609         addrsize = 64 - 8 * param.tbi;
1610         inputsize = 64 - param.tsz;
1611 
1612         /*
1613          * Bound PS by PARANGE to find the effective output address size.
1614          * ID_AA64MMFR0 is a read-only register so values outside of the
1615          * supported mappings can be considered an implementation error.
1616          */
1617         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1618         ps = MIN(ps, param.ps);
1619         assert(ps < ARRAY_SIZE(pamax_map));
1620         outputsize = pamax_map[ps];
1621 
1622         /*
1623          * With LPA2, the effective output address (OA) size is at most 48 bits
1624          * unless TCR.DS == 1
1625          */
1626         if (!param.ds && param.gran != Gran64K) {
1627             outputsize = MIN(outputsize, 48);
1628         }
1629     } else {
1630         param = aa32_va_parameters(env, address, mmu_idx);
1631         level = 1;
1632         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1633         inputsize = addrsize - param.tsz;
1634         outputsize = 40;
1635     }
1636 
1637     /*
1638      * We determined the region when collecting the parameters, but we
1639      * have not yet validated that the address is valid for the region.
1640      * Extract the top bits and verify that they all match select.
1641      *
1642      * For aa32, if inputsize == addrsize, then we have selected the
1643      * region by exclusion in aa32_va_parameters and there is no more
1644      * validation to do here.
1645      */
1646     if (inputsize < addrsize) {
1647         target_ulong top_bits = sextract64(address, inputsize,
1648                                            addrsize - inputsize);
1649         if (-top_bits != param.select) {
1650             /* The gap between the two regions is a Translation fault */
1651             goto do_translation_fault;
1652         }
1653     }
1654 
1655     stride = arm_granule_bits(param.gran) - 3;
1656 
1657     /*
1658      * Note that QEMU ignores shareability and cacheability attributes,
1659      * so we don't need to do anything with the SH, ORGN, IRGN fields
1660      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1661      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1662      * implement any ASID-like capability so we can ignore it (instead
1663      * we will always flush the TLB any time the ASID is changed).
1664      */
1665     ttbr = regime_ttbr(env, mmu_idx, param.select);
1666 
1667     /*
1668      * Here we should have set up all the parameters for the translation:
1669      * inputsize, ttbr, epd, stride, tbi
1670      */
1671 
1672     if (param.epd) {
1673         /*
1674          * Translation table walk disabled => Translation fault on TLB miss
1675          * Note: This is always 0 on 64-bit EL2 and EL3.
1676          */
1677         goto do_translation_fault;
1678     }
1679 
1680     if (!regime_is_stage2(mmu_idx)) {
1681         /*
1682          * The starting level depends on the virtual address size (which can
1683          * be up to 48 bits) and the translation granule size. It indicates
1684          * the number of strides (stride bits at a time) needed to
1685          * consume the bits of the input address. In the pseudocode this is:
1686          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1687          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1688          * our 'stride + 3' and 'stride' is our 'stride'.
1689          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1690          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1691          * = 4 - (inputsize - 4) / stride;
1692          */
1693         level = 4 - (inputsize - 4) / stride;
1694     } else {
1695         int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1696                                             inputsize, stride);
1697         if (startlevel == INT_MIN) {
1698             level = 0;
1699             goto do_translation_fault;
1700         }
1701         level = startlevel;
1702     }
1703 
1704     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1705     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1706 
1707     /* Now we can extract the actual base address from the TTBR */
1708     descaddr = extract64(ttbr, 0, 48);
1709 
1710     /*
1711      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1712      *
1713      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1714      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1715      * but we've just cleared the bits above 47, so simplify the test.
1716      */
1717     if (outputsize > 48) {
1718         descaddr |= extract64(ttbr, 2, 4) << 48;
1719     } else if (descaddr >> outputsize) {
1720         level = 0;
1721         fi->type = ARMFault_AddressSize;
1722         goto do_fault;
1723     }
1724 
1725     /*
1726      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1727      * and also to mask out CnP (bit 0) which could validly be non-zero.
1728      */
1729     descaddr &= ~indexmask;
1730 
1731     /*
1732      * For AArch32, the address field in the descriptor goes up to bit 39
1733      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1734      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1735      * bits as part of the address, which will be checked via outputsize.
1736      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1737      * the highest bits of a 52-bit output are placed elsewhere.
1738      */
1739     if (param.ds) {
1740         descaddrmask = MAKE_64BIT_MASK(0, 50);
1741     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1742         descaddrmask = MAKE_64BIT_MASK(0, 48);
1743     } else {
1744         descaddrmask = MAKE_64BIT_MASK(0, 40);
1745     }
1746     descaddrmask &= ~indexmask_grainsize;
1747     tableattrs = 0;
1748 
1749  next_level:
1750     descaddr |= (address >> (stride * (4 - level))) & indexmask;
1751     descaddr &= ~7ULL;
1752 
1753     /*
1754      * Process the NSTable bit from the previous level.  This changes
1755      * the table address space and the output space from Secure to
1756      * NonSecure.  With RME, the EL3 translation regime does not change
1757      * from Root to NonSecure.
1758      */
1759     if (ptw->in_space == ARMSS_Secure
1760         && !regime_is_stage2(mmu_idx)
1761         && extract32(tableattrs, 4, 1)) {
1762         /*
1763          * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1764          * Assert the relative order of the secure/non-secure indexes.
1765          */
1766         QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1767         QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1768         ptw->in_ptw_idx += 1;
1769         ptw->in_secure = false;
1770         ptw->in_space = ARMSS_NonSecure;
1771     }
1772 
1773     if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1774         goto do_fault;
1775     }
1776     descriptor = arm_ldq_ptw(env, ptw, fi);
1777     if (fi->type != ARMFault_None) {
1778         goto do_fault;
1779     }
1780     new_descriptor = descriptor;
1781 
1782  restart_atomic_update:
1783     if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) {
1784         /* Invalid, or the Reserved level 3 encoding */
1785         goto do_translation_fault;
1786     }
1787 
1788     descaddr = descriptor & descaddrmask;
1789 
1790     /*
1791      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1792      * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1793      * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1794      * raise AddressSizeFault.
1795      */
1796     if (outputsize > 48) {
1797         if (param.ds) {
1798             descaddr |= extract64(descriptor, 8, 2) << 50;
1799         } else {
1800             descaddr |= extract64(descriptor, 12, 4) << 48;
1801         }
1802     } else if (descaddr >> outputsize) {
1803         fi->type = ARMFault_AddressSize;
1804         goto do_fault;
1805     }
1806 
1807     if ((descriptor & 2) && (level < 3)) {
1808         /*
1809          * Table entry. The top five bits are attributes which may
1810          * propagate down through lower levels of the table (and
1811          * which are all arranged so that 0 means "no effect", so
1812          * we can gather them up by ORing in the bits at each level).
1813          */
1814         tableattrs |= extract64(descriptor, 59, 5);
1815         level++;
1816         indexmask = indexmask_grainsize;
1817         goto next_level;
1818     }
1819 
1820     /*
1821      * Block entry at level 1 or 2, or page entry at level 3.
1822      * These are basically the same thing, although the number
1823      * of bits we pull in from the vaddr varies. Note that although
1824      * descaddrmask masks enough of the low bits of the descriptor
1825      * to give a correct page or table address, the address field
1826      * in a block descriptor is smaller; so we need to explicitly
1827      * clear the lower bits here before ORing in the low vaddr bits.
1828      *
1829      * Afterward, descaddr is the final physical address.
1830      */
1831     page_size = (1ULL << ((stride * (4 - level)) + 3));
1832     descaddr &= ~(hwaddr)(page_size - 1);
1833     descaddr |= (address & (page_size - 1));
1834 
1835     if (likely(!ptw->in_debug)) {
1836         /*
1837          * Access flag.
1838          * If HA is enabled, prepare to update the descriptor below.
1839          * Otherwise, pass the access fault on to software.
1840          */
1841         if (!(descriptor & (1 << 10))) {
1842             if (param.ha) {
1843                 new_descriptor |= 1 << 10; /* AF */
1844             } else {
1845                 fi->type = ARMFault_AccessFlag;
1846                 goto do_fault;
1847             }
1848         }
1849 
1850         /*
1851          * Dirty Bit.
1852          * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1853          * bit for writeback. The actual write protection test may still be
1854          * overridden by tableattrs, to be merged below.
1855          */
1856         if (param.hd
1857             && extract64(descriptor, 51, 1)  /* DBM */
1858             && access_type == MMU_DATA_STORE) {
1859             if (regime_is_stage2(mmu_idx)) {
1860                 new_descriptor |= 1ull << 7;    /* set S2AP[1] */
1861             } else {
1862                 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1863             }
1864         }
1865     }
1866 
1867     /*
1868      * Extract attributes from the (modified) descriptor, and apply
1869      * table descriptors. Stage 2 table descriptors do not include
1870      * any attribute fields. HPD disables all the table attributes
1871      * except NSTable.
1872      */
1873     attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1874     if (!regime_is_stage2(mmu_idx)) {
1875         attrs |= !ptw->in_secure << 5; /* NS */
1876         if (!param.hpd) {
1877             attrs |= extract64(tableattrs, 0, 2) << 53;     /* XN, PXN */
1878             /*
1879              * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1880              * means "force PL1 access only", which means forcing AP[1] to 0.
1881              */
1882             attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1883             attrs |= extract32(tableattrs, 3, 1) << 7;    /* APT[1] => AP[2] */
1884         }
1885     }
1886 
1887     ap = extract32(attrs, 6, 2);
1888     out_space = ptw->in_space;
1889     if (regime_is_stage2(mmu_idx)) {
1890         /*
1891          * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
1892          * The bit remains ignored for other security states.
1893          * R_YMCSL: Executing an insn fetched from non-Realm causes
1894          * a stage2 permission fault.
1895          */
1896         if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
1897             out_space = ARMSS_NonSecure;
1898             result->f.prot = get_S2prot_noexecute(ap);
1899         } else {
1900             xn = extract64(attrs, 53, 2);
1901             result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
1902         }
1903     } else {
1904         int nse, ns = extract32(attrs, 5, 1);
1905         switch (out_space) {
1906         case ARMSS_Root:
1907             /*
1908              * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
1909              * R_XTYPW: NSE and NS together select the output pa space.
1910              */
1911             nse = extract32(attrs, 11, 1);
1912             out_space = (nse << 1) | ns;
1913             if (out_space == ARMSS_Secure &&
1914                 !cpu_isar_feature(aa64_sel2, cpu)) {
1915                 out_space = ARMSS_NonSecure;
1916             }
1917             break;
1918         case ARMSS_Secure:
1919             if (ns) {
1920                 out_space = ARMSS_NonSecure;
1921             }
1922             break;
1923         case ARMSS_Realm:
1924             switch (mmu_idx) {
1925             case ARMMMUIdx_Stage1_E0:
1926             case ARMMMUIdx_Stage1_E1:
1927             case ARMMMUIdx_Stage1_E1_PAN:
1928                 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
1929                 break;
1930             case ARMMMUIdx_E2:
1931             case ARMMMUIdx_E20_0:
1932             case ARMMMUIdx_E20_2:
1933             case ARMMMUIdx_E20_2_PAN:
1934                 /*
1935                  * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
1936                  * NS changes the output to non-secure space.
1937                  */
1938                 if (ns) {
1939                     out_space = ARMSS_NonSecure;
1940                 }
1941                 break;
1942             default:
1943                 g_assert_not_reached();
1944             }
1945             break;
1946         case ARMSS_NonSecure:
1947             /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
1948             break;
1949         default:
1950             g_assert_not_reached();
1951         }
1952         xn = extract64(attrs, 54, 1);
1953         pxn = extract64(attrs, 53, 1);
1954 
1955         /*
1956          * Note that we modified ptw->in_space earlier for NSTable, but
1957          * result->f.attrs retains a copy of the original security space.
1958          */
1959         result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn,
1960                                     result->f.attrs.space, out_space);
1961     }
1962 
1963     if (!(result->f.prot & (1 << access_type))) {
1964         fi->type = ARMFault_Permission;
1965         goto do_fault;
1966     }
1967 
1968     /* If FEAT_HAFDBS has made changes, update the PTE. */
1969     if (new_descriptor != descriptor) {
1970         new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
1971         if (fi->type != ARMFault_None) {
1972             goto do_fault;
1973         }
1974         /*
1975          * I_YZSVV says that if the in-memory descriptor has changed,
1976          * then we must use the information in that new value
1977          * (which might include a different output address, different
1978          * attributes, or generate a fault).
1979          * Restart the handling of the descriptor value from scratch.
1980          */
1981         if (new_descriptor != descriptor) {
1982             descriptor = new_descriptor;
1983             goto restart_atomic_update;
1984         }
1985     }
1986 
1987     result->f.attrs.space = out_space;
1988     result->f.attrs.secure = arm_space_is_secure(out_space);
1989 
1990     if (regime_is_stage2(mmu_idx)) {
1991         result->cacheattrs.is_s2_format = true;
1992         result->cacheattrs.attrs = extract32(attrs, 2, 4);
1993     } else {
1994         /* Index into MAIR registers for cache attributes */
1995         uint8_t attrindx = extract32(attrs, 2, 3);
1996         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1997         assert(attrindx <= 7);
1998         result->cacheattrs.is_s2_format = false;
1999         result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2000 
2001         /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
2002         if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
2003             result->f.guarded = extract64(attrs, 50, 1); /* GP */
2004         }
2005     }
2006 
2007     /*
2008      * For FEAT_LPA2 and effective DS, the SH field in the attributes
2009      * was re-purposed for output address bits.  The SH attribute in
2010      * that case comes from TCR_ELx, which we extracted earlier.
2011      */
2012     if (param.ds) {
2013         result->cacheattrs.shareability = param.sh;
2014     } else {
2015         result->cacheattrs.shareability = extract32(attrs, 8, 2);
2016     }
2017 
2018     result->f.phys_addr = descaddr;
2019     result->f.lg_page_size = ctz64(page_size);
2020     return false;
2021 
2022  do_translation_fault:
2023     fi->type = ARMFault_Translation;
2024  do_fault:
2025     fi->level = level;
2026     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
2027     fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx);
2028     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
2029     return true;
2030 }
2031 
2032 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
2033                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
2034                                  bool is_secure, GetPhysAddrResult *result,
2035                                  ARMMMUFaultInfo *fi)
2036 {
2037     int n;
2038     uint32_t mask;
2039     uint32_t base;
2040     bool is_user = regime_is_user(env, mmu_idx);
2041 
2042     if (regime_translation_disabled(env, mmu_idx, is_secure)) {
2043         /* MPU disabled.  */
2044         result->f.phys_addr = address;
2045         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2046         return false;
2047     }
2048 
2049     result->f.phys_addr = address;
2050     for (n = 7; n >= 0; n--) {
2051         base = env->cp15.c6_region[n];
2052         if ((base & 1) == 0) {
2053             continue;
2054         }
2055         mask = 1 << ((base >> 1) & 0x1f);
2056         /* Keep this shift separate from the above to avoid an
2057            (undefined) << 32.  */
2058         mask = (mask << 1) - 1;
2059         if (((base ^ address) & ~mask) == 0) {
2060             break;
2061         }
2062     }
2063     if (n < 0) {
2064         fi->type = ARMFault_Background;
2065         return true;
2066     }
2067 
2068     if (access_type == MMU_INST_FETCH) {
2069         mask = env->cp15.pmsav5_insn_ap;
2070     } else {
2071         mask = env->cp15.pmsav5_data_ap;
2072     }
2073     mask = (mask >> (n * 4)) & 0xf;
2074     switch (mask) {
2075     case 0:
2076         fi->type = ARMFault_Permission;
2077         fi->level = 1;
2078         return true;
2079     case 1:
2080         if (is_user) {
2081             fi->type = ARMFault_Permission;
2082             fi->level = 1;
2083             return true;
2084         }
2085         result->f.prot = PAGE_READ | PAGE_WRITE;
2086         break;
2087     case 2:
2088         result->f.prot = PAGE_READ;
2089         if (!is_user) {
2090             result->f.prot |= PAGE_WRITE;
2091         }
2092         break;
2093     case 3:
2094         result->f.prot = PAGE_READ | PAGE_WRITE;
2095         break;
2096     case 5:
2097         if (is_user) {
2098             fi->type = ARMFault_Permission;
2099             fi->level = 1;
2100             return true;
2101         }
2102         result->f.prot = PAGE_READ;
2103         break;
2104     case 6:
2105         result->f.prot = PAGE_READ;
2106         break;
2107     default:
2108         /* Bad permission.  */
2109         fi->type = ARMFault_Permission;
2110         fi->level = 1;
2111         return true;
2112     }
2113     result->f.prot |= PAGE_EXEC;
2114     return false;
2115 }
2116 
2117 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2118                                          int32_t address, uint8_t *prot)
2119 {
2120     if (!arm_feature(env, ARM_FEATURE_M)) {
2121         *prot = PAGE_READ | PAGE_WRITE;
2122         switch (address) {
2123         case 0xF0000000 ... 0xFFFFFFFF:
2124             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2125                 /* hivecs execing is ok */
2126                 *prot |= PAGE_EXEC;
2127             }
2128             break;
2129         case 0x00000000 ... 0x7FFFFFFF:
2130             *prot |= PAGE_EXEC;
2131             break;
2132         }
2133     } else {
2134         /* Default system address map for M profile cores.
2135          * The architecture specifies which regions are execute-never;
2136          * at the MPU level no other checks are defined.
2137          */
2138         switch (address) {
2139         case 0x00000000 ... 0x1fffffff: /* ROM */
2140         case 0x20000000 ... 0x3fffffff: /* SRAM */
2141         case 0x60000000 ... 0x7fffffff: /* RAM */
2142         case 0x80000000 ... 0x9fffffff: /* RAM */
2143             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2144             break;
2145         case 0x40000000 ... 0x5fffffff: /* Peripheral */
2146         case 0xa0000000 ... 0xbfffffff: /* Device */
2147         case 0xc0000000 ... 0xdfffffff: /* Device */
2148         case 0xe0000000 ... 0xffffffff: /* System */
2149             *prot = PAGE_READ | PAGE_WRITE;
2150             break;
2151         default:
2152             g_assert_not_reached();
2153         }
2154     }
2155 }
2156 
2157 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2158 {
2159     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2160     return arm_feature(env, ARM_FEATURE_M) &&
2161         extract32(address, 20, 12) == 0xe00;
2162 }
2163 
2164 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2165 {
2166     /*
2167      * True if address is in the M profile system region
2168      * 0xe0000000 - 0xffffffff
2169      */
2170     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2171 }
2172 
2173 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2174                                          bool is_secure, bool is_user)
2175 {
2176     /*
2177      * Return true if we should use the default memory map as a
2178      * "background" region if there are no hits against any MPU regions.
2179      */
2180     CPUARMState *env = &cpu->env;
2181 
2182     if (is_user) {
2183         return false;
2184     }
2185 
2186     if (arm_feature(env, ARM_FEATURE_M)) {
2187         return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2188     }
2189 
2190     if (mmu_idx == ARMMMUIdx_Stage2) {
2191         return false;
2192     }
2193 
2194     return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2195 }
2196 
2197 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
2198                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
2199                                  bool secure, GetPhysAddrResult *result,
2200                                  ARMMMUFaultInfo *fi)
2201 {
2202     ARMCPU *cpu = env_archcpu(env);
2203     int n;
2204     bool is_user = regime_is_user(env, mmu_idx);
2205 
2206     result->f.phys_addr = address;
2207     result->f.lg_page_size = TARGET_PAGE_BITS;
2208     result->f.prot = 0;
2209 
2210     if (regime_translation_disabled(env, mmu_idx, secure) ||
2211         m_is_ppb_region(env, address)) {
2212         /*
2213          * MPU disabled or M profile PPB access: use default memory map.
2214          * The other case which uses the default memory map in the
2215          * v7M ARM ARM pseudocode is exception vector reads from the vector
2216          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2217          * which always does a direct read using address_space_ldl(), rather
2218          * than going via this function, so we don't need to check that here.
2219          */
2220         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2221     } else { /* MPU enabled */
2222         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2223             /* region search */
2224             uint32_t base = env->pmsav7.drbar[n];
2225             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2226             uint32_t rmask;
2227             bool srdis = false;
2228 
2229             if (!(env->pmsav7.drsr[n] & 0x1)) {
2230                 continue;
2231             }
2232 
2233             if (!rsize) {
2234                 qemu_log_mask(LOG_GUEST_ERROR,
2235                               "DRSR[%d]: Rsize field cannot be 0\n", n);
2236                 continue;
2237             }
2238             rsize++;
2239             rmask = (1ull << rsize) - 1;
2240 
2241             if (base & rmask) {
2242                 qemu_log_mask(LOG_GUEST_ERROR,
2243                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2244                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
2245                               n, base, rmask);
2246                 continue;
2247             }
2248 
2249             if (address < base || address > base + rmask) {
2250                 /*
2251                  * Address not in this region. We must check whether the
2252                  * region covers addresses in the same page as our address.
2253                  * In that case we must not report a size that covers the
2254                  * whole page for a subsequent hit against a different MPU
2255                  * region or the background region, because it would result in
2256                  * incorrect TLB hits for subsequent accesses to addresses that
2257                  * are in this MPU region.
2258                  */
2259                 if (ranges_overlap(base, rmask,
2260                                    address & TARGET_PAGE_MASK,
2261                                    TARGET_PAGE_SIZE)) {
2262                     result->f.lg_page_size = 0;
2263                 }
2264                 continue;
2265             }
2266 
2267             /* Region matched */
2268 
2269             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2270                 int i, snd;
2271                 uint32_t srdis_mask;
2272 
2273                 rsize -= 3; /* sub region size (power of 2) */
2274                 snd = ((address - base) >> rsize) & 0x7;
2275                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2276 
2277                 srdis_mask = srdis ? 0x3 : 0x0;
2278                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2279                     /*
2280                      * This will check in groups of 2, 4 and then 8, whether
2281                      * the subregion bits are consistent. rsize is incremented
2282                      * back up to give the region size, considering consistent
2283                      * adjacent subregions as one region. Stop testing if rsize
2284                      * is already big enough for an entire QEMU page.
2285                      */
2286                     int snd_rounded = snd & ~(i - 1);
2287                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2288                                                      snd_rounded + 8, i);
2289                     if (srdis_mask ^ srdis_multi) {
2290                         break;
2291                     }
2292                     srdis_mask = (srdis_mask << i) | srdis_mask;
2293                     rsize++;
2294                 }
2295             }
2296             if (srdis) {
2297                 continue;
2298             }
2299             if (rsize < TARGET_PAGE_BITS) {
2300                 result->f.lg_page_size = rsize;
2301             }
2302             break;
2303         }
2304 
2305         if (n == -1) { /* no hits */
2306             if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2307                 /* background fault */
2308                 fi->type = ARMFault_Background;
2309                 return true;
2310             }
2311             get_phys_addr_pmsav7_default(env, mmu_idx, address,
2312                                          &result->f.prot);
2313         } else { /* a MPU hit! */
2314             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2315             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2316 
2317             if (m_is_system_region(env, address)) {
2318                 /* System space is always execute never */
2319                 xn = 1;
2320             }
2321 
2322             if (is_user) { /* User mode AP bit decoding */
2323                 switch (ap) {
2324                 case 0:
2325                 case 1:
2326                 case 5:
2327                     break; /* no access */
2328                 case 3:
2329                     result->f.prot |= PAGE_WRITE;
2330                     /* fall through */
2331                 case 2:
2332                 case 6:
2333                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2334                     break;
2335                 case 7:
2336                     /* for v7M, same as 6; for R profile a reserved value */
2337                     if (arm_feature(env, ARM_FEATURE_M)) {
2338                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2339                         break;
2340                     }
2341                     /* fall through */
2342                 default:
2343                     qemu_log_mask(LOG_GUEST_ERROR,
2344                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2345                                   PRIx32 "\n", n, ap);
2346                 }
2347             } else { /* Priv. mode AP bits decoding */
2348                 switch (ap) {
2349                 case 0:
2350                     break; /* no access */
2351                 case 1:
2352                 case 2:
2353                 case 3:
2354                     result->f.prot |= PAGE_WRITE;
2355                     /* fall through */
2356                 case 5:
2357                 case 6:
2358                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2359                     break;
2360                 case 7:
2361                     /* for v7M, same as 6; for R profile a reserved value */
2362                     if (arm_feature(env, ARM_FEATURE_M)) {
2363                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2364                         break;
2365                     }
2366                     /* fall through */
2367                 default:
2368                     qemu_log_mask(LOG_GUEST_ERROR,
2369                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2370                                   PRIx32 "\n", n, ap);
2371                 }
2372             }
2373 
2374             /* execute never */
2375             if (xn) {
2376                 result->f.prot &= ~PAGE_EXEC;
2377             }
2378         }
2379     }
2380 
2381     fi->type = ARMFault_Permission;
2382     fi->level = 1;
2383     return !(result->f.prot & (1 << access_type));
2384 }
2385 
2386 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2387                              uint32_t secure)
2388 {
2389     if (regime_el(env, mmu_idx) == 2) {
2390         return env->pmsav8.hprbar;
2391     } else {
2392         return env->pmsav8.rbar[secure];
2393     }
2394 }
2395 
2396 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2397                              uint32_t secure)
2398 {
2399     if (regime_el(env, mmu_idx) == 2) {
2400         return env->pmsav8.hprlar;
2401     } else {
2402         return env->pmsav8.rlar[secure];
2403     }
2404 }
2405 
2406 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2407                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
2408                        bool secure, GetPhysAddrResult *result,
2409                        ARMMMUFaultInfo *fi, uint32_t *mregion)
2410 {
2411     /*
2412      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2413      * that a full phys-to-virt translation does).
2414      * mregion is (if not NULL) set to the region number which matched,
2415      * or -1 if no region number is returned (MPU off, address did not
2416      * hit a region, address hit in multiple regions).
2417      * If the region hit doesn't cover the entire TARGET_PAGE the address
2418      * is within, then we set the result page_size to 1 to force the
2419      * memory system to use a subpage.
2420      */
2421     ARMCPU *cpu = env_archcpu(env);
2422     bool is_user = regime_is_user(env, mmu_idx);
2423     int n;
2424     int matchregion = -1;
2425     bool hit = false;
2426     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2427     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2428     int region_counter;
2429 
2430     if (regime_el(env, mmu_idx) == 2) {
2431         region_counter = cpu->pmsav8r_hdregion;
2432     } else {
2433         region_counter = cpu->pmsav7_dregion;
2434     }
2435 
2436     result->f.lg_page_size = TARGET_PAGE_BITS;
2437     result->f.phys_addr = address;
2438     result->f.prot = 0;
2439     if (mregion) {
2440         *mregion = -1;
2441     }
2442 
2443     if (mmu_idx == ARMMMUIdx_Stage2) {
2444         fi->stage2 = true;
2445     }
2446 
2447     /*
2448      * Unlike the ARM ARM pseudocode, we don't need to check whether this
2449      * was an exception vector read from the vector table (which is always
2450      * done using the default system address map), because those accesses
2451      * are done in arm_v7m_load_vector(), which always does a direct
2452      * read using address_space_ldl(), rather than going via this function.
2453      */
2454     if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
2455         hit = true;
2456     } else if (m_is_ppb_region(env, address)) {
2457         hit = true;
2458     } else {
2459         if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2460             hit = true;
2461         }
2462 
2463         uint32_t bitmask;
2464         if (arm_feature(env, ARM_FEATURE_M)) {
2465             bitmask = 0x1f;
2466         } else {
2467             bitmask = 0x3f;
2468             fi->level = 0;
2469         }
2470 
2471         for (n = region_counter - 1; n >= 0; n--) {
2472             /* region search */
2473             /*
2474              * Note that the base address is bits [31:x] from the register
2475              * with bits [x-1:0] all zeroes, but the limit address is bits
2476              * [31:x] from the register with bits [x:0] all ones. Where x is
2477              * 5 for Cortex-M and 6 for Cortex-R
2478              */
2479             uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2480             uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2481 
2482             if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2483                 /* Region disabled */
2484                 continue;
2485             }
2486 
2487             if (address < base || address > limit) {
2488                 /*
2489                  * Address not in this region. We must check whether the
2490                  * region covers addresses in the same page as our address.
2491                  * In that case we must not report a size that covers the
2492                  * whole page for a subsequent hit against a different MPU
2493                  * region or the background region, because it would result in
2494                  * incorrect TLB hits for subsequent accesses to addresses that
2495                  * are in this MPU region.
2496                  */
2497                 if (limit >= base &&
2498                     ranges_overlap(base, limit - base + 1,
2499                                    addr_page_base,
2500                                    TARGET_PAGE_SIZE)) {
2501                     result->f.lg_page_size = 0;
2502                 }
2503                 continue;
2504             }
2505 
2506             if (base > addr_page_base || limit < addr_page_limit) {
2507                 result->f.lg_page_size = 0;
2508             }
2509 
2510             if (matchregion != -1) {
2511                 /*
2512                  * Multiple regions match -- always a failure (unlike
2513                  * PMSAv7 where highest-numbered-region wins)
2514                  */
2515                 fi->type = ARMFault_Permission;
2516                 if (arm_feature(env, ARM_FEATURE_M)) {
2517                     fi->level = 1;
2518                 }
2519                 return true;
2520             }
2521 
2522             matchregion = n;
2523             hit = true;
2524         }
2525     }
2526 
2527     if (!hit) {
2528         if (arm_feature(env, ARM_FEATURE_M)) {
2529             fi->type = ARMFault_Background;
2530         } else {
2531             fi->type = ARMFault_Permission;
2532         }
2533         return true;
2534     }
2535 
2536     if (matchregion == -1) {
2537         /* hit using the background region */
2538         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2539     } else {
2540         uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2541         uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2542         uint32_t ap = extract32(matched_rbar, 1, 2);
2543         uint32_t xn = extract32(matched_rbar, 0, 1);
2544         bool pxn = false;
2545 
2546         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2547             pxn = extract32(matched_rlar, 4, 1);
2548         }
2549 
2550         if (m_is_system_region(env, address)) {
2551             /* System space is always execute never */
2552             xn = 1;
2553         }
2554 
2555         if (regime_el(env, mmu_idx) == 2) {
2556             result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2557                                             mmu_idx != ARMMMUIdx_E2);
2558         } else {
2559             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2560         }
2561 
2562         if (!arm_feature(env, ARM_FEATURE_M)) {
2563             uint8_t attrindx = extract32(matched_rlar, 1, 3);
2564             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2565             uint8_t sh = extract32(matched_rlar, 3, 2);
2566 
2567             if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2568                 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2569                 xn = 0x1;
2570             }
2571 
2572             if ((regime_el(env, mmu_idx) == 1) &&
2573                 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2574                 pxn = 0x1;
2575             }
2576 
2577             result->cacheattrs.is_s2_format = false;
2578             result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2579             result->cacheattrs.shareability = sh;
2580         }
2581 
2582         if (result->f.prot && !xn && !(pxn && !is_user)) {
2583             result->f.prot |= PAGE_EXEC;
2584         }
2585 
2586         if (mregion) {
2587             *mregion = matchregion;
2588         }
2589     }
2590 
2591     fi->type = ARMFault_Permission;
2592     if (arm_feature(env, ARM_FEATURE_M)) {
2593         fi->level = 1;
2594     }
2595     return !(result->f.prot & (1 << access_type));
2596 }
2597 
2598 static bool v8m_is_sau_exempt(CPUARMState *env,
2599                               uint32_t address, MMUAccessType access_type)
2600 {
2601     /*
2602      * The architecture specifies that certain address ranges are
2603      * exempt from v8M SAU/IDAU checks.
2604      */
2605     return
2606         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2607         (address >= 0xe0000000 && address <= 0xe0002fff) ||
2608         (address >= 0xe000e000 && address <= 0xe000efff) ||
2609         (address >= 0xe002e000 && address <= 0xe002efff) ||
2610         (address >= 0xe0040000 && address <= 0xe0041fff) ||
2611         (address >= 0xe00ff000 && address <= 0xe00fffff);
2612 }
2613 
2614 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2615                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
2616                          bool is_secure, V8M_SAttributes *sattrs)
2617 {
2618     /*
2619      * Look up the security attributes for this address. Compare the
2620      * pseudocode SecurityCheck() function.
2621      * We assume the caller has zero-initialized *sattrs.
2622      */
2623     ARMCPU *cpu = env_archcpu(env);
2624     int r;
2625     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2626     int idau_region = IREGION_NOTVALID;
2627     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2628     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2629 
2630     if (cpu->idau) {
2631         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2632         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2633 
2634         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2635                    &idau_nsc);
2636     }
2637 
2638     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2639         /* 0xf0000000..0xffffffff is always S for insn fetches */
2640         return;
2641     }
2642 
2643     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2644         sattrs->ns = !is_secure;
2645         return;
2646     }
2647 
2648     if (idau_region != IREGION_NOTVALID) {
2649         sattrs->irvalid = true;
2650         sattrs->iregion = idau_region;
2651     }
2652 
2653     switch (env->sau.ctrl & 3) {
2654     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2655         break;
2656     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2657         sattrs->ns = true;
2658         break;
2659     default: /* SAU.ENABLE == 1 */
2660         for (r = 0; r < cpu->sau_sregion; r++) {
2661             if (env->sau.rlar[r] & 1) {
2662                 uint32_t base = env->sau.rbar[r] & ~0x1f;
2663                 uint32_t limit = env->sau.rlar[r] | 0x1f;
2664 
2665                 if (base <= address && limit >= address) {
2666                     if (base > addr_page_base || limit < addr_page_limit) {
2667                         sattrs->subpage = true;
2668                     }
2669                     if (sattrs->srvalid) {
2670                         /*
2671                          * If we hit in more than one region then we must report
2672                          * as Secure, not NS-Callable, with no valid region
2673                          * number info.
2674                          */
2675                         sattrs->ns = false;
2676                         sattrs->nsc = false;
2677                         sattrs->sregion = 0;
2678                         sattrs->srvalid = false;
2679                         break;
2680                     } else {
2681                         if (env->sau.rlar[r] & 2) {
2682                             sattrs->nsc = true;
2683                         } else {
2684                             sattrs->ns = true;
2685                         }
2686                         sattrs->srvalid = true;
2687                         sattrs->sregion = r;
2688                     }
2689                 } else {
2690                     /*
2691                      * Address not in this region. We must check whether the
2692                      * region covers addresses in the same page as our address.
2693                      * In that case we must not report a size that covers the
2694                      * whole page for a subsequent hit against a different MPU
2695                      * region or the background region, because it would result
2696                      * in incorrect TLB hits for subsequent accesses to
2697                      * addresses that are in this MPU region.
2698                      */
2699                     if (limit >= base &&
2700                         ranges_overlap(base, limit - base + 1,
2701                                        addr_page_base,
2702                                        TARGET_PAGE_SIZE)) {
2703                         sattrs->subpage = true;
2704                     }
2705                 }
2706             }
2707         }
2708         break;
2709     }
2710 
2711     /*
2712      * The IDAU will override the SAU lookup results if it specifies
2713      * higher security than the SAU does.
2714      */
2715     if (!idau_ns) {
2716         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2717             sattrs->ns = false;
2718             sattrs->nsc = idau_nsc;
2719         }
2720     }
2721 }
2722 
2723 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
2724                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
2725                                  bool secure, GetPhysAddrResult *result,
2726                                  ARMMMUFaultInfo *fi)
2727 {
2728     V8M_SAttributes sattrs = {};
2729     bool ret;
2730 
2731     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2732         v8m_security_lookup(env, address, access_type, mmu_idx,
2733                             secure, &sattrs);
2734         if (access_type == MMU_INST_FETCH) {
2735             /*
2736              * Instruction fetches always use the MMU bank and the
2737              * transaction attribute determined by the fetch address,
2738              * regardless of CPU state. This is painful for QEMU
2739              * to handle, because it would mean we need to encode
2740              * into the mmu_idx not just the (user, negpri) information
2741              * for the current security state but also that for the
2742              * other security state, which would balloon the number
2743              * of mmu_idx values needed alarmingly.
2744              * Fortunately we can avoid this because it's not actually
2745              * possible to arbitrarily execute code from memory with
2746              * the wrong security attribute: it will always generate
2747              * an exception of some kind or another, apart from the
2748              * special case of an NS CPU executing an SG instruction
2749              * in S&NSC memory. So we always just fail the translation
2750              * here and sort things out in the exception handler
2751              * (including possibly emulating an SG instruction).
2752              */
2753             if (sattrs.ns != !secure) {
2754                 if (sattrs.nsc) {
2755                     fi->type = ARMFault_QEMU_NSCExec;
2756                 } else {
2757                     fi->type = ARMFault_QEMU_SFault;
2758                 }
2759                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2760                 result->f.phys_addr = address;
2761                 result->f.prot = 0;
2762                 return true;
2763             }
2764         } else {
2765             /*
2766              * For data accesses we always use the MMU bank indicated
2767              * by the current CPU state, but the security attributes
2768              * might downgrade a secure access to nonsecure.
2769              */
2770             if (sattrs.ns) {
2771                 result->f.attrs.secure = false;
2772                 result->f.attrs.space = ARMSS_NonSecure;
2773             } else if (!secure) {
2774                 /*
2775                  * NS access to S memory must fault.
2776                  * Architecturally we should first check whether the
2777                  * MPU information for this address indicates that we
2778                  * are doing an unaligned access to Device memory, which
2779                  * should generate a UsageFault instead. QEMU does not
2780                  * currently check for that kind of unaligned access though.
2781                  * If we added it we would need to do so as a special case
2782                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2783                  */
2784                 fi->type = ARMFault_QEMU_SFault;
2785                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2786                 result->f.phys_addr = address;
2787                 result->f.prot = 0;
2788                 return true;
2789             }
2790         }
2791     }
2792 
2793     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2794                             result, fi, NULL);
2795     if (sattrs.subpage) {
2796         result->f.lg_page_size = 0;
2797     }
2798     return ret;
2799 }
2800 
2801 /*
2802  * Translate from the 4-bit stage 2 representation of
2803  * memory attributes (without cache-allocation hints) to
2804  * the 8-bit representation of the stage 1 MAIR registers
2805  * (which includes allocation hints).
2806  *
2807  * ref: shared/translation/attrs/S2AttrDecode()
2808  *      .../S2ConvertAttrsHints()
2809  */
2810 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2811 {
2812     uint8_t hiattr = extract32(s2attrs, 2, 2);
2813     uint8_t loattr = extract32(s2attrs, 0, 2);
2814     uint8_t hihint = 0, lohint = 0;
2815 
2816     if (hiattr != 0) { /* normal memory */
2817         if (hcr & HCR_CD) { /* cache disabled */
2818             hiattr = loattr = 1; /* non-cacheable */
2819         } else {
2820             if (hiattr != 1) { /* Write-through or write-back */
2821                 hihint = 3; /* RW allocate */
2822             }
2823             if (loattr != 1) { /* Write-through or write-back */
2824                 lohint = 3; /* RW allocate */
2825             }
2826         }
2827     }
2828 
2829     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2830 }
2831 
2832 /*
2833  * Combine either inner or outer cacheability attributes for normal
2834  * memory, according to table D4-42 and pseudocode procedure
2835  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2836  *
2837  * NB: only stage 1 includes allocation hints (RW bits), leading to
2838  * some asymmetry.
2839  */
2840 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2841 {
2842     if (s1 == 4 || s2 == 4) {
2843         /* non-cacheable has precedence */
2844         return 4;
2845     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2846         /* stage 1 write-through takes precedence */
2847         return s1;
2848     } else if (extract32(s2, 2, 2) == 2) {
2849         /* stage 2 write-through takes precedence, but the allocation hint
2850          * is still taken from stage 1
2851          */
2852         return (2 << 2) | extract32(s1, 0, 2);
2853     } else { /* write-back */
2854         return s1;
2855     }
2856 }
2857 
2858 /*
2859  * Combine the memory type and cacheability attributes of
2860  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2861  * combined attributes in MAIR_EL1 format.
2862  */
2863 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2864                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
2865 {
2866     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2867 
2868     if (s2.is_s2_format) {
2869         s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2870     } else {
2871         s2_mair_attrs = s2.attrs;
2872     }
2873 
2874     s1lo = extract32(s1.attrs, 0, 4);
2875     s2lo = extract32(s2_mair_attrs, 0, 4);
2876     s1hi = extract32(s1.attrs, 4, 4);
2877     s2hi = extract32(s2_mair_attrs, 4, 4);
2878 
2879     /* Combine memory type and cacheability attributes */
2880     if (s1hi == 0 || s2hi == 0) {
2881         /* Device has precedence over normal */
2882         if (s1lo == 0 || s2lo == 0) {
2883             /* nGnRnE has precedence over anything */
2884             ret_attrs = 0;
2885         } else if (s1lo == 4 || s2lo == 4) {
2886             /* non-Reordering has precedence over Reordering */
2887             ret_attrs = 4;  /* nGnRE */
2888         } else if (s1lo == 8 || s2lo == 8) {
2889             /* non-Gathering has precedence over Gathering */
2890             ret_attrs = 8;  /* nGRE */
2891         } else {
2892             ret_attrs = 0xc; /* GRE */
2893         }
2894     } else { /* Normal memory */
2895         /* Outer/inner cacheability combine independently */
2896         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2897                   | combine_cacheattr_nibble(s1lo, s2lo);
2898     }
2899     return ret_attrs;
2900 }
2901 
2902 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2903 {
2904     /*
2905      * Given the 4 bits specifying the outer or inner cacheability
2906      * in MAIR format, return a value specifying Normal Write-Back,
2907      * with the allocation and transient hints taken from the input
2908      * if the input specified some kind of cacheable attribute.
2909      */
2910     if (attr == 0 || attr == 4) {
2911         /*
2912          * 0 == an UNPREDICTABLE encoding
2913          * 4 == Non-cacheable
2914          * Either way, force Write-Back RW allocate non-transient
2915          */
2916         return 0xf;
2917     }
2918     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2919     return attr | 4;
2920 }
2921 
2922 /*
2923  * Combine the memory type and cacheability attributes of
2924  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2925  * combined attributes in MAIR_EL1 format.
2926  */
2927 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2928 {
2929     assert(s2.is_s2_format && !s1.is_s2_format);
2930 
2931     switch (s2.attrs) {
2932     case 7:
2933         /* Use stage 1 attributes */
2934         return s1.attrs;
2935     case 6:
2936         /*
2937          * Force Normal Write-Back. Note that if S1 is Normal cacheable
2938          * then we take the allocation hints from it; otherwise it is
2939          * RW allocate, non-transient.
2940          */
2941         if ((s1.attrs & 0xf0) == 0) {
2942             /* S1 is Device */
2943             return 0xff;
2944         }
2945         /* Need to check the Inner and Outer nibbles separately */
2946         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2947             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2948     case 5:
2949         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2950         if ((s1.attrs & 0xf0) == 0) {
2951             return s1.attrs;
2952         }
2953         return 0x44;
2954     case 0 ... 3:
2955         /* Force Device, of subtype specified by S2 */
2956         return s2.attrs << 2;
2957     default:
2958         /*
2959          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2960          * arbitrarily force Device.
2961          */
2962         return 0;
2963     }
2964 }
2965 
2966 /*
2967  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2968  * and CombineS1S2Desc()
2969  *
2970  * @env:     CPUARMState
2971  * @s1:      Attributes from stage 1 walk
2972  * @s2:      Attributes from stage 2 walk
2973  */
2974 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
2975                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
2976 {
2977     ARMCacheAttrs ret;
2978     bool tagged = false;
2979 
2980     assert(!s1.is_s2_format);
2981     ret.is_s2_format = false;
2982     ret.guarded = s1.guarded;
2983 
2984     if (s1.attrs == 0xf0) {
2985         tagged = true;
2986         s1.attrs = 0xff;
2987     }
2988 
2989     /* Combine shareability attributes (table D4-43) */
2990     if (s1.shareability == 2 || s2.shareability == 2) {
2991         /* if either are outer-shareable, the result is outer-shareable */
2992         ret.shareability = 2;
2993     } else if (s1.shareability == 3 || s2.shareability == 3) {
2994         /* if either are inner-shareable, the result is inner-shareable */
2995         ret.shareability = 3;
2996     } else {
2997         /* both non-shareable */
2998         ret.shareability = 0;
2999     }
3000 
3001     /* Combine memory type and cacheability attributes */
3002     if (hcr & HCR_FWB) {
3003         ret.attrs = combined_attrs_fwb(s1, s2);
3004     } else {
3005         ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
3006     }
3007 
3008     /*
3009      * Any location for which the resultant memory type is any
3010      * type of Device memory is always treated as Outer Shareable.
3011      * Any location for which the resultant memory type is Normal
3012      * Inner Non-cacheable, Outer Non-cacheable is always treated
3013      * as Outer Shareable.
3014      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
3015      */
3016     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
3017         ret.shareability = 2;
3018     }
3019 
3020     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
3021     if (tagged && ret.attrs == 0xff) {
3022         ret.attrs = 0xf0;
3023     }
3024 
3025     return ret;
3026 }
3027 
3028 /*
3029  * MMU disabled.  S1 addresses within aa64 translation regimes are
3030  * still checked for bounds -- see AArch64.S1DisabledOutput().
3031  */
3032 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
3033                                    MMUAccessType access_type,
3034                                    ARMMMUIdx mmu_idx, bool is_secure,
3035                                    GetPhysAddrResult *result,
3036                                    ARMMMUFaultInfo *fi)
3037 {
3038     uint8_t memattr = 0x00;    /* Device nGnRnE */
3039     uint8_t shareability = 0;  /* non-shareable */
3040     int r_el;
3041 
3042     switch (mmu_idx) {
3043     case ARMMMUIdx_Stage2:
3044     case ARMMMUIdx_Stage2_S:
3045     case ARMMMUIdx_Phys_S:
3046     case ARMMMUIdx_Phys_NS:
3047     case ARMMMUIdx_Phys_Root:
3048     case ARMMMUIdx_Phys_Realm:
3049         break;
3050 
3051     default:
3052         r_el = regime_el(env, mmu_idx);
3053         if (arm_el_is_aa64(env, r_el)) {
3054             int pamax = arm_pamax(env_archcpu(env));
3055             uint64_t tcr = env->cp15.tcr_el[r_el];
3056             int addrtop, tbi;
3057 
3058             tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
3059             if (access_type == MMU_INST_FETCH) {
3060                 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
3061             }
3062             tbi = (tbi >> extract64(address, 55, 1)) & 1;
3063             addrtop = (tbi ? 55 : 63);
3064 
3065             if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
3066                 fi->type = ARMFault_AddressSize;
3067                 fi->level = 0;
3068                 fi->stage2 = false;
3069                 return 1;
3070             }
3071 
3072             /*
3073              * When TBI is disabled, we've just validated that all of the
3074              * bits above PAMax are zero, so logically we only need to
3075              * clear the top byte for TBI.  But it's clearer to follow
3076              * the pseudocode set of addrdesc.paddress.
3077              */
3078             address = extract64(address, 0, 52);
3079         }
3080 
3081         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3082         if (r_el == 1) {
3083             uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
3084             if (hcr & HCR_DC) {
3085                 if (hcr & HCR_DCT) {
3086                     memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
3087                 } else {
3088                     memattr = 0xff;  /* Normal, WB, RWA */
3089                 }
3090             }
3091         }
3092         if (memattr == 0 && access_type == MMU_INST_FETCH) {
3093             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3094                 memattr = 0xee;  /* Normal, WT, RA, NT */
3095             } else {
3096                 memattr = 0x44;  /* Normal, NC, No */
3097             }
3098             shareability = 2; /* outer shareable */
3099         }
3100         result->cacheattrs.is_s2_format = false;
3101         break;
3102     }
3103 
3104     result->f.phys_addr = address;
3105     result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3106     result->f.lg_page_size = TARGET_PAGE_BITS;
3107     result->cacheattrs.shareability = shareability;
3108     result->cacheattrs.attrs = memattr;
3109     return false;
3110 }
3111 
3112 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3113                                    target_ulong address,
3114                                    MMUAccessType access_type,
3115                                    GetPhysAddrResult *result,
3116                                    ARMMMUFaultInfo *fi)
3117 {
3118     hwaddr ipa;
3119     int s1_prot, s1_lgpgsz;
3120     bool is_secure = ptw->in_secure;
3121     ARMSecuritySpace in_space = ptw->in_space;
3122     bool ret, ipa_secure;
3123     ARMCacheAttrs cacheattrs1;
3124     ARMSecuritySpace ipa_space;
3125     uint64_t hcr;
3126 
3127     ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi);
3128 
3129     /* If S1 fails, return early.  */
3130     if (ret) {
3131         return ret;
3132     }
3133 
3134     ipa = result->f.phys_addr;
3135     ipa_secure = result->f.attrs.secure;
3136     ipa_space = result->f.attrs.space;
3137 
3138     ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3139     ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3140     ptw->in_secure = ipa_secure;
3141     ptw->in_space = ipa_space;
3142     ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3143 
3144     /*
3145      * S1 is done, now do S2 translation.
3146      * Save the stage1 results so that we may merge prot and cacheattrs later.
3147      */
3148     s1_prot = result->f.prot;
3149     s1_lgpgsz = result->f.lg_page_size;
3150     cacheattrs1 = result->cacheattrs;
3151     memset(result, 0, sizeof(*result));
3152 
3153     ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi);
3154     fi->s2addr = ipa;
3155 
3156     /* Combine the S1 and S2 perms.  */
3157     result->f.prot &= s1_prot;
3158 
3159     /* If S2 fails, return early.  */
3160     if (ret) {
3161         return ret;
3162     }
3163 
3164     /*
3165      * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3166      * this means "don't put this in the TLB"; in this case, return a
3167      * result with lg_page_size == 0 to achieve that. Otherwise,
3168      * use the maximum of the S1 & S2 page size, so that invalidation
3169      * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3170      * we know the combined result permissions etc only cover the minimum
3171      * of the S1 and S2 page size, because we know that the common TLB code
3172      * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3173      * and passing a larger page size value only affects invalidations.)
3174      */
3175     if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3176         s1_lgpgsz < TARGET_PAGE_BITS) {
3177         result->f.lg_page_size = 0;
3178     } else if (result->f.lg_page_size < s1_lgpgsz) {
3179         result->f.lg_page_size = s1_lgpgsz;
3180     }
3181 
3182     /* Combine the S1 and S2 cache attributes. */
3183     hcr = arm_hcr_el2_eff_secstate(env, is_secure);
3184     if (hcr & HCR_DC) {
3185         /*
3186          * HCR.DC forces the first stage attributes to
3187          *  Normal Non-Shareable,
3188          *  Inner Write-Back Read-Allocate Write-Allocate,
3189          *  Outer Write-Back Read-Allocate Write-Allocate.
3190          * Do not overwrite Tagged within attrs.
3191          */
3192         if (cacheattrs1.attrs != 0xf0) {
3193             cacheattrs1.attrs = 0xff;
3194         }
3195         cacheattrs1.shareability = 0;
3196     }
3197     result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3198                                             result->cacheattrs);
3199 
3200     /*
3201      * Check if IPA translates to secure or non-secure PA space.
3202      * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3203      */
3204     if (in_space == ARMSS_Secure) {
3205         result->f.attrs.secure =
3206             !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3207             && (ipa_secure
3208                 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
3209         result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
3210     }
3211 
3212     return false;
3213 }
3214 
3215 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3216                                       target_ulong address,
3217                                       MMUAccessType access_type,
3218                                       GetPhysAddrResult *result,
3219                                       ARMMMUFaultInfo *fi)
3220 {
3221     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3222     bool is_secure = ptw->in_secure;
3223     ARMMMUIdx s1_mmu_idx;
3224 
3225     /*
3226      * The page table entries may downgrade Secure to NonSecure, but
3227      * cannot upgrade a NonSecure translation regime's attributes
3228      * to Secure or Realm.
3229      */
3230     result->f.attrs.secure = is_secure;
3231     result->f.attrs.space = ptw->in_space;
3232 
3233     switch (mmu_idx) {
3234     case ARMMMUIdx_Phys_S:
3235     case ARMMMUIdx_Phys_NS:
3236     case ARMMMUIdx_Phys_Root:
3237     case ARMMMUIdx_Phys_Realm:
3238         /* Checking Phys early avoids special casing later vs regime_el. */
3239         return get_phys_addr_disabled(env, address, access_type, mmu_idx,
3240                                       is_secure, result, fi);
3241 
3242     case ARMMMUIdx_Stage1_E0:
3243     case ARMMMUIdx_Stage1_E1:
3244     case ARMMMUIdx_Stage1_E1_PAN:
3245         /* First stage lookup uses second stage for ptw. */
3246         ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3247         break;
3248 
3249     case ARMMMUIdx_Stage2:
3250     case ARMMMUIdx_Stage2_S:
3251         /*
3252          * Second stage lookup uses physical for ptw; whether this is S or
3253          * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3254          * the Secure EL2&0 regime.
3255          */
3256         ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3257         break;
3258 
3259     case ARMMMUIdx_E10_0:
3260         s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3261         goto do_twostage;
3262     case ARMMMUIdx_E10_1:
3263         s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3264         goto do_twostage;
3265     case ARMMMUIdx_E10_1_PAN:
3266         s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3267     do_twostage:
3268         /*
3269          * Call ourselves recursively to do the stage 1 and then stage 2
3270          * translations if mmu_idx is a two-stage regime, and EL2 present.
3271          * Otherwise, a stage1+stage2 translation is just stage 1.
3272          */
3273         ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3274         if (arm_feature(env, ARM_FEATURE_EL2) &&
3275             !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) {
3276             return get_phys_addr_twostage(env, ptw, address, access_type,
3277                                           result, fi);
3278         }
3279         /* fall through */
3280 
3281     default:
3282         /* Single stage uses physical for ptw. */
3283         ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3284         break;
3285     }
3286 
3287     result->f.attrs.user = regime_is_user(env, mmu_idx);
3288 
3289     /*
3290      * Fast Context Switch Extension. This doesn't exist at all in v8.
3291      * In v7 and earlier it affects all stage 1 translations.
3292      */
3293     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3294         && !arm_feature(env, ARM_FEATURE_V8)) {
3295         if (regime_el(env, mmu_idx) == 3) {
3296             address += env->cp15.fcseidr_s;
3297         } else {
3298             address += env->cp15.fcseidr_ns;
3299         }
3300     }
3301 
3302     if (arm_feature(env, ARM_FEATURE_PMSA)) {
3303         bool ret;
3304         result->f.lg_page_size = TARGET_PAGE_BITS;
3305 
3306         if (arm_feature(env, ARM_FEATURE_V8)) {
3307             /* PMSAv8 */
3308             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
3309                                        is_secure, result, fi);
3310         } else if (arm_feature(env, ARM_FEATURE_V7)) {
3311             /* PMSAv7 */
3312             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
3313                                        is_secure, result, fi);
3314         } else {
3315             /* Pre-v7 MPU */
3316             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
3317                                        is_secure, result, fi);
3318         }
3319         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3320                       " mmu_idx %u -> %s (prot %c%c%c)\n",
3321                       access_type == MMU_DATA_LOAD ? "reading" :
3322                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3323                       (uint32_t)address, mmu_idx,
3324                       ret ? "Miss" : "Hit",
3325                       result->f.prot & PAGE_READ ? 'r' : '-',
3326                       result->f.prot & PAGE_WRITE ? 'w' : '-',
3327                       result->f.prot & PAGE_EXEC ? 'x' : '-');
3328 
3329         return ret;
3330     }
3331 
3332     /* Definitely a real MMU, not an MPU */
3333 
3334     if (regime_translation_disabled(env, mmu_idx, is_secure)) {
3335         return get_phys_addr_disabled(env, address, access_type, mmu_idx,
3336                                       is_secure, result, fi);
3337     }
3338 
3339     if (regime_using_lpae_format(env, mmu_idx)) {
3340         return get_phys_addr_lpae(env, ptw, address, access_type, result, fi);
3341     } else if (arm_feature(env, ARM_FEATURE_V7) ||
3342                regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3343         return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3344     } else {
3345         return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3346     }
3347 }
3348 
3349 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3350                               target_ulong address,
3351                               MMUAccessType access_type,
3352                               GetPhysAddrResult *result,
3353                               ARMMMUFaultInfo *fi)
3354 {
3355     if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) {
3356         return true;
3357     }
3358     if (!granule_protection_check(env, result->f.phys_addr,
3359                                   result->f.attrs.space, fi)) {
3360         fi->type = ARMFault_GPCFOnOutput;
3361         return true;
3362     }
3363     return false;
3364 }
3365 
3366 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
3367                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
3368                                bool is_secure, GetPhysAddrResult *result,
3369                                ARMMMUFaultInfo *fi)
3370 {
3371     S1Translate ptw = {
3372         .in_mmu_idx = mmu_idx,
3373         .in_secure = is_secure,
3374         .in_space = arm_secure_to_space(is_secure),
3375     };
3376     return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi);
3377 }
3378 
3379 bool get_phys_addr(CPUARMState *env, target_ulong address,
3380                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
3381                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3382 {
3383     S1Translate ptw = {
3384         .in_mmu_idx = mmu_idx,
3385     };
3386     ARMSecuritySpace ss;
3387 
3388     switch (mmu_idx) {
3389     case ARMMMUIdx_E10_0:
3390     case ARMMMUIdx_E10_1:
3391     case ARMMMUIdx_E10_1_PAN:
3392     case ARMMMUIdx_E20_0:
3393     case ARMMMUIdx_E20_2:
3394     case ARMMMUIdx_E20_2_PAN:
3395     case ARMMMUIdx_Stage1_E0:
3396     case ARMMMUIdx_Stage1_E1:
3397     case ARMMMUIdx_Stage1_E1_PAN:
3398     case ARMMMUIdx_E2:
3399         ss = arm_security_space_below_el3(env);
3400         break;
3401     case ARMMMUIdx_Stage2:
3402         /*
3403          * For Secure EL2, we need this index to be NonSecure;
3404          * otherwise this will already be NonSecure or Realm.
3405          */
3406         ss = arm_security_space_below_el3(env);
3407         if (ss == ARMSS_Secure) {
3408             ss = ARMSS_NonSecure;
3409         }
3410         break;
3411     case ARMMMUIdx_Phys_NS:
3412     case ARMMMUIdx_MPrivNegPri:
3413     case ARMMMUIdx_MUserNegPri:
3414     case ARMMMUIdx_MPriv:
3415     case ARMMMUIdx_MUser:
3416         ss = ARMSS_NonSecure;
3417         break;
3418     case ARMMMUIdx_Stage2_S:
3419     case ARMMMUIdx_Phys_S:
3420     case ARMMMUIdx_MSPrivNegPri:
3421     case ARMMMUIdx_MSUserNegPri:
3422     case ARMMMUIdx_MSPriv:
3423     case ARMMMUIdx_MSUser:
3424         ss = ARMSS_Secure;
3425         break;
3426     case ARMMMUIdx_E3:
3427         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3428             cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3429             ss = ARMSS_Root;
3430         } else {
3431             ss = ARMSS_Secure;
3432         }
3433         break;
3434     case ARMMMUIdx_Phys_Root:
3435         ss = ARMSS_Root;
3436         break;
3437     case ARMMMUIdx_Phys_Realm:
3438         ss = ARMSS_Realm;
3439         break;
3440     default:
3441         g_assert_not_reached();
3442     }
3443 
3444     ptw.in_space = ss;
3445     ptw.in_secure = arm_space_is_secure(ss);
3446     return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi);
3447 }
3448 
3449 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3450                                          MemTxAttrs *attrs)
3451 {
3452     ARMCPU *cpu = ARM_CPU(cs);
3453     CPUARMState *env = &cpu->env;
3454     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3455     ARMSecuritySpace ss = arm_security_space(env);
3456     S1Translate ptw = {
3457         .in_mmu_idx = mmu_idx,
3458         .in_space = ss,
3459         .in_secure = arm_space_is_secure(ss),
3460         .in_debug = true,
3461     };
3462     GetPhysAddrResult res = {};
3463     ARMMMUFaultInfo fi = {};
3464     bool ret;
3465 
3466     ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3467     *attrs = res.f.attrs;
3468 
3469     if (ret) {
3470         return -1;
3471     }
3472     return res.f.phys_addr;
3473 }
3474