xref: /openbmc/qemu/target/arm/ptw.c (revision 5f88dd43)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "idau.h"
17 #ifdef CONFIG_TCG
18 # include "tcg/oversized-guest.h"
19 #endif
20 
21 typedef struct S1Translate {
22     /*
23      * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
24      * Together with in_space, specifies the architectural translation regime.
25      */
26     ARMMMUIdx in_mmu_idx;
27     /*
28      * in_ptw_idx: specifies which mmuidx to use for the actual
29      * page table descriptor load operations. This will be one of the
30      * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
31      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
32      * this field is updated accordingly.
33      */
34     ARMMMUIdx in_ptw_idx;
35     /*
36      * in_space: the security space for this walk. This plus
37      * the in_mmu_idx specify the architectural translation regime.
38      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
39      * this field is updated accordingly.
40      *
41      * Note that the security space for the in_ptw_idx may be different
42      * from that for the in_mmu_idx. We do not need to explicitly track
43      * the in_ptw_idx security space because:
44      *  - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
45      *    itself specifies the security space
46      *  - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
47      *    space used for ptw reads is the same as that of the security
48      *    space of the stage 1 translation for all cases except where
49      *    stage 1 is Secure; in that case the only possibilities for
50      *    the ptw read are Secure and NonSecure, and the in_ptw_idx
51      *    value being Stage2 vs Stage2_S distinguishes those.
52      */
53     ARMSecuritySpace in_space;
54     /*
55      * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
56      * accesses will not update the guest page table access flags
57      * and will not change the state of the softmmu TLBs.
58      */
59     bool in_debug;
60     /*
61      * If this is stage 2 of a stage 1+2 page table walk, then this must
62      * be true if stage 1 is an EL0 access; otherwise this is ignored.
63      * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
64      */
65     bool in_s1_is_el0;
66     bool out_rw;
67     bool out_be;
68     ARMSecuritySpace out_space;
69     hwaddr out_virt;
70     hwaddr out_phys;
71     void *out_host;
72 } S1Translate;
73 
74 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
75                                 target_ulong address,
76                                 MMUAccessType access_type,
77                                 GetPhysAddrResult *result,
78                                 ARMMMUFaultInfo *fi);
79 
80 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
81                               target_ulong address,
82                               MMUAccessType access_type,
83                               GetPhysAddrResult *result,
84                               ARMMMUFaultInfo *fi);
85 
86 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
87 static const uint8_t pamax_map[] = {
88     [0] = 32,
89     [1] = 36,
90     [2] = 40,
91     [3] = 42,
92     [4] = 44,
93     [5] = 48,
94     [6] = 52,
95 };
96 
97 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
98 unsigned int arm_pamax(ARMCPU *cpu)
99 {
100     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
101         unsigned int parange =
102             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
103 
104         /*
105          * id_aa64mmfr0 is a read-only register so values outside of the
106          * supported mappings can be considered an implementation error.
107          */
108         assert(parange < ARRAY_SIZE(pamax_map));
109         return pamax_map[parange];
110     }
111 
112     /*
113      * In machvirt_init, we call arm_pamax on a cpu that is not fully
114      * initialized, so we can't rely on the propagation done in realize.
115      */
116     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
117         arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
118         /* v7 with LPAE */
119         return 40;
120     }
121     /* Anything else */
122     return 32;
123 }
124 
125 /*
126  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
127  */
128 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
129 {
130     switch (mmu_idx) {
131     case ARMMMUIdx_E10_0:
132         return ARMMMUIdx_Stage1_E0;
133     case ARMMMUIdx_E10_1:
134         return ARMMMUIdx_Stage1_E1;
135     case ARMMMUIdx_E10_1_PAN:
136         return ARMMMUIdx_Stage1_E1_PAN;
137     default:
138         return mmu_idx;
139     }
140 }
141 
142 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
143 {
144     return stage_1_mmu_idx(arm_mmu_idx(env));
145 }
146 
147 /*
148  * Return where we should do ptw loads from for a stage 2 walk.
149  * This depends on whether the address we are looking up is a
150  * Secure IPA or a NonSecure IPA, which we know from whether this is
151  * Stage2 or Stage2_S.
152  * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
153  */
154 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
155 {
156     bool s2walk_secure;
157 
158     /*
159      * We're OK to check the current state of the CPU here because
160      * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit
161      * changes.
162      * (2) there's no way to do a lookup that cares about Stage 2 for a
163      * different security state to the current one for AArch64, and AArch32
164      * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
165      * an NS stage 1+2 lookup while the NS bit is 0.)
166      */
167     if (!arm_el_is_aa64(env, 3)) {
168         return ARMMMUIdx_Phys_NS;
169     }
170 
171     switch (arm_security_space_below_el3(env)) {
172     case ARMSS_NonSecure:
173         return ARMMMUIdx_Phys_NS;
174     case ARMSS_Realm:
175         return ARMMMUIdx_Phys_Realm;
176     case ARMSS_Secure:
177         if (stage2idx == ARMMMUIdx_Stage2_S) {
178             s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
179         } else {
180             s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
181         }
182         return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
183     default:
184         g_assert_not_reached();
185     }
186 }
187 
188 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
189 {
190     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
191 }
192 
193 /* Return the TTBR associated with this translation regime */
194 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
195 {
196     if (mmu_idx == ARMMMUIdx_Stage2) {
197         return env->cp15.vttbr_el2;
198     }
199     if (mmu_idx == ARMMMUIdx_Stage2_S) {
200         return env->cp15.vsttbr_el2;
201     }
202     if (ttbrn == 0) {
203         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
204     } else {
205         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
206     }
207 }
208 
209 /* Return true if the specified stage of address translation is disabled */
210 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
211                                         ARMSecuritySpace space)
212 {
213     uint64_t hcr_el2;
214 
215     if (arm_feature(env, ARM_FEATURE_M)) {
216         bool is_secure = arm_space_is_secure(space);
217         switch (env->v7m.mpu_ctrl[is_secure] &
218                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
219         case R_V7M_MPU_CTRL_ENABLE_MASK:
220             /* Enabled, but not for HardFault and NMI */
221             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
222         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
223             /* Enabled for all cases */
224             return false;
225         case 0:
226         default:
227             /*
228              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
229              * we warned about that in armv7m_nvic.c when the guest set it.
230              */
231             return true;
232         }
233     }
234 
235 
236     switch (mmu_idx) {
237     case ARMMMUIdx_Stage2:
238     case ARMMMUIdx_Stage2_S:
239         /* HCR.DC means HCR.VM behaves as 1 */
240         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
241         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
242 
243     case ARMMMUIdx_E10_0:
244     case ARMMMUIdx_E10_1:
245     case ARMMMUIdx_E10_1_PAN:
246         /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
247         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
248         if (hcr_el2 & HCR_TGE) {
249             return true;
250         }
251         break;
252 
253     case ARMMMUIdx_Stage1_E0:
254     case ARMMMUIdx_Stage1_E1:
255     case ARMMMUIdx_Stage1_E1_PAN:
256         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
257         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
258         if (hcr_el2 & HCR_DC) {
259             return true;
260         }
261         break;
262 
263     case ARMMMUIdx_E20_0:
264     case ARMMMUIdx_E20_2:
265     case ARMMMUIdx_E20_2_PAN:
266     case ARMMMUIdx_E2:
267     case ARMMMUIdx_E3:
268         break;
269 
270     case ARMMMUIdx_Phys_S:
271     case ARMMMUIdx_Phys_NS:
272     case ARMMMUIdx_Phys_Root:
273     case ARMMMUIdx_Phys_Realm:
274         /* No translation for physical address spaces. */
275         return true;
276 
277     default:
278         g_assert_not_reached();
279     }
280 
281     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
282 }
283 
284 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
285                                      ARMSecuritySpace pspace,
286                                      ARMMMUFaultInfo *fi)
287 {
288     MemTxAttrs attrs = {
289         .secure = true,
290         .space = ARMSS_Root,
291     };
292     ARMCPU *cpu = env_archcpu(env);
293     uint64_t gpccr = env->cp15.gpccr_el3;
294     unsigned pps, pgs, l0gptsz, level = 0;
295     uint64_t tableaddr, pps_mask, align, entry, index;
296     AddressSpace *as;
297     MemTxResult result;
298     int gpi;
299 
300     if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
301         return true;
302     }
303 
304     /*
305      * GPC Priority 1 (R_GMGRR):
306      * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
307      * the access fails as GPT walk fault at level 0.
308      */
309 
310     /*
311      * Configuration of PPS to a value exceeding the implemented
312      * physical address size is invalid.
313      */
314     pps = FIELD_EX64(gpccr, GPCCR, PPS);
315     if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
316         goto fault_walk;
317     }
318     pps = pamax_map[pps];
319     pps_mask = MAKE_64BIT_MASK(0, pps);
320 
321     switch (FIELD_EX64(gpccr, GPCCR, SH)) {
322     case 0b10: /* outer shareable */
323         break;
324     case 0b00: /* non-shareable */
325     case 0b11: /* inner shareable */
326         /* Inner and Outer non-cacheable requires Outer shareable. */
327         if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
328             FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
329             goto fault_walk;
330         }
331         break;
332     default:   /* reserved */
333         goto fault_walk;
334     }
335 
336     switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
337     case 0b00: /* 4KB */
338         pgs = 12;
339         break;
340     case 0b01: /* 64KB */
341         pgs = 16;
342         break;
343     case 0b10: /* 16KB */
344         pgs = 14;
345         break;
346     default: /* reserved */
347         goto fault_walk;
348     }
349 
350     /* Note this field is read-only and fixed at reset. */
351     l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
352 
353     /*
354      * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
355      * R_CPDSB: A NonSecure physical address input exceeding PPS
356      * does not experience any fault.
357      */
358     if (paddress & ~pps_mask) {
359         if (pspace == ARMSS_NonSecure) {
360             return true;
361         }
362         goto fault_size;
363     }
364 
365     /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
366     tableaddr = env->cp15.gptbr_el3 << 12;
367     if (tableaddr & ~pps_mask) {
368         goto fault_size;
369     }
370 
371     /*
372      * BADDR is aligned per a function of PPS and L0GPTSZ.
373      * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
374      * unlike the RES0 bits of the GPT entries (R_XNKFZ).
375      */
376     align = MAX(pps - l0gptsz + 3, 12);
377     align = MAKE_64BIT_MASK(0, align);
378     tableaddr &= ~align;
379 
380     as = arm_addressspace(env_cpu(env), attrs);
381 
382     /* Level 0 lookup. */
383     index = extract64(paddress, l0gptsz, pps - l0gptsz);
384     tableaddr += index * 8;
385     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
386     if (result != MEMTX_OK) {
387         goto fault_eabt;
388     }
389 
390     switch (extract32(entry, 0, 4)) {
391     case 1: /* block descriptor */
392         if (entry >> 8) {
393             goto fault_walk; /* RES0 bits not 0 */
394         }
395         gpi = extract32(entry, 4, 4);
396         goto found;
397     case 3: /* table descriptor */
398         tableaddr = entry & ~0xf;
399         align = MAX(l0gptsz - pgs - 1, 12);
400         align = MAKE_64BIT_MASK(0, align);
401         if (tableaddr & (~pps_mask | align)) {
402             goto fault_walk; /* RES0 bits not 0 */
403         }
404         break;
405     default: /* invalid */
406         goto fault_walk;
407     }
408 
409     /* Level 1 lookup */
410     level = 1;
411     index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
412     tableaddr += index * 8;
413     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
414     if (result != MEMTX_OK) {
415         goto fault_eabt;
416     }
417 
418     switch (extract32(entry, 0, 4)) {
419     case 1: /* contiguous descriptor */
420         if (entry >> 10) {
421             goto fault_walk; /* RES0 bits not 0 */
422         }
423         /*
424          * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
425          * and because we cannot invalidate by pa, and thus will always
426          * flush entire tlbs, we don't actually care about the range here
427          * and can simply extract the GPI as the result.
428          */
429         if (extract32(entry, 8, 2) == 0) {
430             goto fault_walk; /* reserved contig */
431         }
432         gpi = extract32(entry, 4, 4);
433         break;
434     default:
435         index = extract64(paddress, pgs, 4);
436         gpi = extract64(entry, index * 4, 4);
437         break;
438     }
439 
440  found:
441     switch (gpi) {
442     case 0b0000: /* no access */
443         break;
444     case 0b1111: /* all access */
445         return true;
446     case 0b1000:
447     case 0b1001:
448     case 0b1010:
449     case 0b1011:
450         if (pspace == (gpi & 3)) {
451             return true;
452         }
453         break;
454     default:
455         goto fault_walk; /* reserved */
456     }
457 
458     fi->gpcf = GPCF_Fail;
459     goto fault_common;
460  fault_eabt:
461     fi->gpcf = GPCF_EABT;
462     goto fault_common;
463  fault_size:
464     fi->gpcf = GPCF_AddressSize;
465     goto fault_common;
466  fault_walk:
467     fi->gpcf = GPCF_Walk;
468  fault_common:
469     fi->level = level;
470     fi->paddr = paddress;
471     fi->paddr_space = pspace;
472     return false;
473 }
474 
475 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
476 {
477     /*
478      * For an S1 page table walk, the stage 1 attributes are always
479      * some form of "this is Normal memory". The combined S1+S2
480      * attributes are therefore only Device if stage 2 specifies Device.
481      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
482      * ie when cacheattrs.attrs bits [3:2] are 0b00.
483      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
484      * when cacheattrs.attrs bit [2] is 0.
485      */
486     if (hcr & HCR_FWB) {
487         return (attrs & 0x4) == 0;
488     } else {
489         return (attrs & 0xc) == 0;
490     }
491 }
492 
493 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
494                                           ARMMMUIdx s2_mmu_idx)
495 {
496     /*
497      * Return the security space to use for stage 2 when doing
498      * the S1 page table descriptor load.
499      */
500     if (regime_is_stage2(s2_mmu_idx)) {
501         /*
502          * The security space for ptw reads is almost always the same
503          * as that of the security space of the stage 1 translation.
504          * The only exception is when stage 1 is Secure; in that case
505          * the ptw read might be to the Secure or the NonSecure space
506          * (but never Realm or Root), and the s2_mmu_idx tells us which.
507          * Root translations are always single-stage.
508          */
509         if (s1_space == ARMSS_Secure) {
510             return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
511         } else {
512             assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
513             assert(s1_space != ARMSS_Root);
514             return s1_space;
515         }
516     } else {
517         /* ptw loads are from phys: the mmu idx itself says which space */
518         return arm_phys_to_space(s2_mmu_idx);
519     }
520 }
521 
522 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx)
523 {
524     /*
525      * For stage 2 faults in Secure EL22, S1NS indicates
526      * whether the faulting IPA is in the Secure or NonSecure
527      * IPA space. For all other kinds of fault, it is false.
528      */
529     return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx)
530         && s2_mmu_idx == ARMMMUIdx_Stage2_S;
531 }
532 
533 /* Translate a S1 pagetable walk through S2 if needed.  */
534 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
535                              hwaddr addr, ARMMMUFaultInfo *fi)
536 {
537     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
538     ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
539     uint8_t pte_attrs;
540 
541     ptw->out_virt = addr;
542 
543     if (unlikely(ptw->in_debug)) {
544         /*
545          * From gdbstub, do not use softmmu so that we don't modify the
546          * state of the cpu at all, including softmmu tlb contents.
547          */
548         ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
549         S1Translate s2ptw = {
550             .in_mmu_idx = s2_mmu_idx,
551             .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
552             .in_space = s2_space,
553             .in_debug = true,
554         };
555         GetPhysAddrResult s2 = { };
556 
557         if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) {
558             goto fail;
559         }
560 
561         ptw->out_phys = s2.f.phys_addr;
562         pte_attrs = s2.cacheattrs.attrs;
563         ptw->out_host = NULL;
564         ptw->out_rw = false;
565         ptw->out_space = s2.f.attrs.space;
566     } else {
567 #ifdef CONFIG_TCG
568         CPUTLBEntryFull *full;
569         int flags;
570 
571         env->tlb_fi = fi;
572         flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
573                                       arm_to_core_mmu_idx(s2_mmu_idx),
574                                       &ptw->out_host, &full);
575         env->tlb_fi = NULL;
576 
577         if (unlikely(flags & TLB_INVALID_MASK)) {
578             goto fail;
579         }
580         ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
581         ptw->out_rw = full->prot & PAGE_WRITE;
582         pte_attrs = full->pte_attrs;
583         ptw->out_space = full->attrs.space;
584 #else
585         g_assert_not_reached();
586 #endif
587     }
588 
589     if (regime_is_stage2(s2_mmu_idx)) {
590         uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
591 
592         if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
593             /*
594              * PTW set and S1 walk touched S2 Device memory:
595              * generate Permission fault.
596              */
597             fi->type = ARMFault_Permission;
598             fi->s2addr = addr;
599             fi->stage2 = true;
600             fi->s1ptw = true;
601             fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
602             return false;
603         }
604     }
605 
606     ptw->out_be = regime_translation_big_endian(env, mmu_idx);
607     return true;
608 
609  fail:
610     assert(fi->type != ARMFault_None);
611     if (fi->type == ARMFault_GPCFOnOutput) {
612         fi->type = ARMFault_GPCFOnWalk;
613     }
614     fi->s2addr = addr;
615     fi->stage2 = regime_is_stage2(s2_mmu_idx);
616     fi->s1ptw = fi->stage2;
617     fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
618     return false;
619 }
620 
621 /* All loads done in the course of a page table walk go through here. */
622 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
623                             ARMMMUFaultInfo *fi)
624 {
625     CPUState *cs = env_cpu(env);
626     void *host = ptw->out_host;
627     uint32_t data;
628 
629     if (likely(host)) {
630         /* Page tables are in RAM, and we have the host address. */
631         data = qatomic_read((uint32_t *)host);
632         if (ptw->out_be) {
633             data = be32_to_cpu(data);
634         } else {
635             data = le32_to_cpu(data);
636         }
637     } else {
638         /* Page tables are in MMIO. */
639         MemTxAttrs attrs = {
640             .space = ptw->out_space,
641             .secure = arm_space_is_secure(ptw->out_space),
642         };
643         AddressSpace *as = arm_addressspace(cs, attrs);
644         MemTxResult result = MEMTX_OK;
645 
646         if (ptw->out_be) {
647             data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
648         } else {
649             data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
650         }
651         if (unlikely(result != MEMTX_OK)) {
652             fi->type = ARMFault_SyncExternalOnWalk;
653             fi->ea = arm_extabort_type(result);
654             return 0;
655         }
656     }
657     return data;
658 }
659 
660 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
661                             ARMMMUFaultInfo *fi)
662 {
663     CPUState *cs = env_cpu(env);
664     void *host = ptw->out_host;
665     uint64_t data;
666 
667     if (likely(host)) {
668         /* Page tables are in RAM, and we have the host address. */
669 #ifdef CONFIG_ATOMIC64
670         data = qatomic_read__nocheck((uint64_t *)host);
671         if (ptw->out_be) {
672             data = be64_to_cpu(data);
673         } else {
674             data = le64_to_cpu(data);
675         }
676 #else
677         if (ptw->out_be) {
678             data = ldq_be_p(host);
679         } else {
680             data = ldq_le_p(host);
681         }
682 #endif
683     } else {
684         /* Page tables are in MMIO. */
685         MemTxAttrs attrs = {
686             .space = ptw->out_space,
687             .secure = arm_space_is_secure(ptw->out_space),
688         };
689         AddressSpace *as = arm_addressspace(cs, attrs);
690         MemTxResult result = MEMTX_OK;
691 
692         if (ptw->out_be) {
693             data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
694         } else {
695             data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
696         }
697         if (unlikely(result != MEMTX_OK)) {
698             fi->type = ARMFault_SyncExternalOnWalk;
699             fi->ea = arm_extabort_type(result);
700             return 0;
701         }
702     }
703     return data;
704 }
705 
706 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
707                              uint64_t new_val, S1Translate *ptw,
708                              ARMMMUFaultInfo *fi)
709 {
710 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
711     uint64_t cur_val;
712     void *host = ptw->out_host;
713 
714     if (unlikely(!host)) {
715         fi->type = ARMFault_UnsuppAtomicUpdate;
716         return 0;
717     }
718 
719     /*
720      * Raising a stage2 Protection fault for an atomic update to a read-only
721      * page is delayed until it is certain that there is a change to make.
722      */
723     if (unlikely(!ptw->out_rw)) {
724         int flags;
725 
726         env->tlb_fi = fi;
727         flags = probe_access_full_mmu(env, ptw->out_virt, 0,
728                                       MMU_DATA_STORE,
729                                       arm_to_core_mmu_idx(ptw->in_ptw_idx),
730                                       NULL, NULL);
731         env->tlb_fi = NULL;
732 
733         if (unlikely(flags & TLB_INVALID_MASK)) {
734             /*
735              * We know this must be a stage 2 fault because the granule
736              * protection table does not separately track read and write
737              * permission, so all GPC faults are caught in S1_ptw_translate():
738              * we only get here for "readable but not writeable".
739              */
740             assert(fi->type != ARMFault_None);
741             fi->s2addr = ptw->out_virt;
742             fi->stage2 = true;
743             fi->s1ptw = true;
744             fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx);
745             return 0;
746         }
747 
748         /* In case CAS mismatches and we loop, remember writability. */
749         ptw->out_rw = true;
750     }
751 
752 #ifdef CONFIG_ATOMIC64
753     if (ptw->out_be) {
754         old_val = cpu_to_be64(old_val);
755         new_val = cpu_to_be64(new_val);
756         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
757         cur_val = be64_to_cpu(cur_val);
758     } else {
759         old_val = cpu_to_le64(old_val);
760         new_val = cpu_to_le64(new_val);
761         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
762         cur_val = le64_to_cpu(cur_val);
763     }
764 #else
765     /*
766      * We can't support the full 64-bit atomic cmpxchg on the host.
767      * Because this is only used for FEAT_HAFDBS, which is only for AA64,
768      * we know that TCG_OVERSIZED_GUEST is set, which means that we are
769      * running in round-robin mode and could only race with dma i/o.
770      */
771 #if !TCG_OVERSIZED_GUEST
772 # error "Unexpected configuration"
773 #endif
774     bool locked = qemu_mutex_iothread_locked();
775     if (!locked) {
776        qemu_mutex_lock_iothread();
777     }
778     if (ptw->out_be) {
779         cur_val = ldq_be_p(host);
780         if (cur_val == old_val) {
781             stq_be_p(host, new_val);
782         }
783     } else {
784         cur_val = ldq_le_p(host);
785         if (cur_val == old_val) {
786             stq_le_p(host, new_val);
787         }
788     }
789     if (!locked) {
790         qemu_mutex_unlock_iothread();
791     }
792 #endif
793 
794     return cur_val;
795 #else
796     /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
797     g_assert_not_reached();
798 #endif
799 }
800 
801 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
802                                      uint32_t *table, uint32_t address)
803 {
804     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
805     uint64_t tcr = regime_tcr(env, mmu_idx);
806     int maskshift = extract32(tcr, 0, 3);
807     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
808     uint32_t base_mask;
809 
810     if (address & mask) {
811         if (tcr & TTBCR_PD1) {
812             /* Translation table walk disabled for TTBR1 */
813             return false;
814         }
815         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
816     } else {
817         if (tcr & TTBCR_PD0) {
818             /* Translation table walk disabled for TTBR0 */
819             return false;
820         }
821         base_mask = ~((uint32_t)0x3fffu >> maskshift);
822         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
823     }
824     *table |= (address >> 18) & 0x3ffc;
825     return true;
826 }
827 
828 /*
829  * Translate section/page access permissions to page R/W protection flags
830  * @env:         CPUARMState
831  * @mmu_idx:     MMU index indicating required translation regime
832  * @ap:          The 3-bit access permissions (AP[2:0])
833  * @domain_prot: The 2-bit domain access permissions
834  * @is_user: TRUE if accessing from PL0
835  */
836 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
837                          int ap, int domain_prot, bool is_user)
838 {
839     if (domain_prot == 3) {
840         return PAGE_READ | PAGE_WRITE;
841     }
842 
843     switch (ap) {
844     case 0:
845         if (arm_feature(env, ARM_FEATURE_V7)) {
846             return 0;
847         }
848         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
849         case SCTLR_S:
850             return is_user ? 0 : PAGE_READ;
851         case SCTLR_R:
852             return PAGE_READ;
853         default:
854             return 0;
855         }
856     case 1:
857         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
858     case 2:
859         if (is_user) {
860             return PAGE_READ;
861         } else {
862             return PAGE_READ | PAGE_WRITE;
863         }
864     case 3:
865         return PAGE_READ | PAGE_WRITE;
866     case 4: /* Reserved.  */
867         return 0;
868     case 5:
869         return is_user ? 0 : PAGE_READ;
870     case 6:
871         return PAGE_READ;
872     case 7:
873         if (!arm_feature(env, ARM_FEATURE_V6K)) {
874             return 0;
875         }
876         return PAGE_READ;
877     default:
878         g_assert_not_reached();
879     }
880 }
881 
882 /*
883  * Translate section/page access permissions to page R/W protection flags
884  * @env:         CPUARMState
885  * @mmu_idx:     MMU index indicating required translation regime
886  * @ap:          The 3-bit access permissions (AP[2:0])
887  * @domain_prot: The 2-bit domain access permissions
888  */
889 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
890                          int ap, int domain_prot)
891 {
892    return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
893                                 regime_is_user(env, mmu_idx));
894 }
895 
896 /*
897  * Translate section/page access permissions to page R/W protection flags.
898  * @ap:      The 2-bit simple AP (AP[2:1])
899  * @is_user: TRUE if accessing from PL0
900  */
901 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
902 {
903     switch (ap) {
904     case 0:
905         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
906     case 1:
907         return PAGE_READ | PAGE_WRITE;
908     case 2:
909         return is_user ? 0 : PAGE_READ;
910     case 3:
911         return PAGE_READ;
912     default:
913         g_assert_not_reached();
914     }
915 }
916 
917 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
918 {
919     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
920 }
921 
922 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
923                              uint32_t address, MMUAccessType access_type,
924                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
925 {
926     int level = 1;
927     uint32_t table;
928     uint32_t desc;
929     int type;
930     int ap;
931     int domain = 0;
932     int domain_prot;
933     hwaddr phys_addr;
934     uint32_t dacr;
935 
936     /* Pagetable walk.  */
937     /* Lookup l1 descriptor.  */
938     if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
939         /* Section translation fault if page walk is disabled by PD0 or PD1 */
940         fi->type = ARMFault_Translation;
941         goto do_fault;
942     }
943     if (!S1_ptw_translate(env, ptw, table, fi)) {
944         goto do_fault;
945     }
946     desc = arm_ldl_ptw(env, ptw, fi);
947     if (fi->type != ARMFault_None) {
948         goto do_fault;
949     }
950     type = (desc & 3);
951     domain = (desc >> 5) & 0x0f;
952     if (regime_el(env, ptw->in_mmu_idx) == 1) {
953         dacr = env->cp15.dacr_ns;
954     } else {
955         dacr = env->cp15.dacr_s;
956     }
957     domain_prot = (dacr >> (domain * 2)) & 3;
958     if (type == 0) {
959         /* Section translation fault.  */
960         fi->type = ARMFault_Translation;
961         goto do_fault;
962     }
963     if (type != 2) {
964         level = 2;
965     }
966     if (domain_prot == 0 || domain_prot == 2) {
967         fi->type = ARMFault_Domain;
968         goto do_fault;
969     }
970     if (type == 2) {
971         /* 1Mb section.  */
972         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
973         ap = (desc >> 10) & 3;
974         result->f.lg_page_size = 20; /* 1MB */
975     } else {
976         /* Lookup l2 entry.  */
977         if (type == 1) {
978             /* Coarse pagetable.  */
979             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
980         } else {
981             /* Fine pagetable.  */
982             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
983         }
984         if (!S1_ptw_translate(env, ptw, table, fi)) {
985             goto do_fault;
986         }
987         desc = arm_ldl_ptw(env, ptw, fi);
988         if (fi->type != ARMFault_None) {
989             goto do_fault;
990         }
991         switch (desc & 3) {
992         case 0: /* Page translation fault.  */
993             fi->type = ARMFault_Translation;
994             goto do_fault;
995         case 1: /* 64k page.  */
996             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
997             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
998             result->f.lg_page_size = 16;
999             break;
1000         case 2: /* 4k page.  */
1001             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1002             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
1003             result->f.lg_page_size = 12;
1004             break;
1005         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
1006             if (type == 1) {
1007                 /* ARMv6/XScale extended small page format */
1008                 if (arm_feature(env, ARM_FEATURE_XSCALE)
1009                     || arm_feature(env, ARM_FEATURE_V6)) {
1010                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1011                     result->f.lg_page_size = 12;
1012                 } else {
1013                     /*
1014                      * UNPREDICTABLE in ARMv5; we choose to take a
1015                      * page translation fault.
1016                      */
1017                     fi->type = ARMFault_Translation;
1018                     goto do_fault;
1019                 }
1020             } else {
1021                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1022                 result->f.lg_page_size = 10;
1023             }
1024             ap = (desc >> 4) & 3;
1025             break;
1026         default:
1027             /* Never happens, but compiler isn't smart enough to tell.  */
1028             g_assert_not_reached();
1029         }
1030     }
1031     result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
1032     result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
1033     if (!(result->f.prot & (1 << access_type))) {
1034         /* Access permission fault.  */
1035         fi->type = ARMFault_Permission;
1036         goto do_fault;
1037     }
1038     result->f.phys_addr = phys_addr;
1039     return false;
1040 do_fault:
1041     fi->domain = domain;
1042     fi->level = level;
1043     return true;
1044 }
1045 
1046 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
1047                              uint32_t address, MMUAccessType access_type,
1048                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1049 {
1050     ARMCPU *cpu = env_archcpu(env);
1051     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1052     int level = 1;
1053     uint32_t table;
1054     uint32_t desc;
1055     uint32_t xn;
1056     uint32_t pxn = 0;
1057     int type;
1058     int ap;
1059     int domain = 0;
1060     int domain_prot;
1061     hwaddr phys_addr;
1062     uint32_t dacr;
1063     bool ns;
1064     int user_prot;
1065 
1066     /* Pagetable walk.  */
1067     /* Lookup l1 descriptor.  */
1068     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
1069         /* Section translation fault if page walk is disabled by PD0 or PD1 */
1070         fi->type = ARMFault_Translation;
1071         goto do_fault;
1072     }
1073     if (!S1_ptw_translate(env, ptw, table, fi)) {
1074         goto do_fault;
1075     }
1076     desc = arm_ldl_ptw(env, ptw, fi);
1077     if (fi->type != ARMFault_None) {
1078         goto do_fault;
1079     }
1080     type = (desc & 3);
1081     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
1082         /* Section translation fault, or attempt to use the encoding
1083          * which is Reserved on implementations without PXN.
1084          */
1085         fi->type = ARMFault_Translation;
1086         goto do_fault;
1087     }
1088     if ((type == 1) || !(desc & (1 << 18))) {
1089         /* Page or Section.  */
1090         domain = (desc >> 5) & 0x0f;
1091     }
1092     if (regime_el(env, mmu_idx) == 1) {
1093         dacr = env->cp15.dacr_ns;
1094     } else {
1095         dacr = env->cp15.dacr_s;
1096     }
1097     if (type == 1) {
1098         level = 2;
1099     }
1100     domain_prot = (dacr >> (domain * 2)) & 3;
1101     if (domain_prot == 0 || domain_prot == 2) {
1102         /* Section or Page domain fault */
1103         fi->type = ARMFault_Domain;
1104         goto do_fault;
1105     }
1106     if (type != 1) {
1107         if (desc & (1 << 18)) {
1108             /* Supersection.  */
1109             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1110             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1111             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1112             result->f.lg_page_size = 24;  /* 16MB */
1113         } else {
1114             /* Section.  */
1115             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1116             result->f.lg_page_size = 20;  /* 1MB */
1117         }
1118         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1119         xn = desc & (1 << 4);
1120         pxn = desc & 1;
1121         ns = extract32(desc, 19, 1);
1122     } else {
1123         if (cpu_isar_feature(aa32_pxn, cpu)) {
1124             pxn = (desc >> 2) & 1;
1125         }
1126         ns = extract32(desc, 3, 1);
1127         /* Lookup l2 entry.  */
1128         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1129         if (!S1_ptw_translate(env, ptw, table, fi)) {
1130             goto do_fault;
1131         }
1132         desc = arm_ldl_ptw(env, ptw, fi);
1133         if (fi->type != ARMFault_None) {
1134             goto do_fault;
1135         }
1136         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1137         switch (desc & 3) {
1138         case 0: /* Page translation fault.  */
1139             fi->type = ARMFault_Translation;
1140             goto do_fault;
1141         case 1: /* 64k page.  */
1142             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1143             xn = desc & (1 << 15);
1144             result->f.lg_page_size = 16;
1145             break;
1146         case 2: case 3: /* 4k page.  */
1147             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1148             xn = desc & 1;
1149             result->f.lg_page_size = 12;
1150             break;
1151         default:
1152             /* Never happens, but compiler isn't smart enough to tell.  */
1153             g_assert_not_reached();
1154         }
1155     }
1156     if (domain_prot == 3) {
1157         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1158     } else {
1159         if (pxn && !regime_is_user(env, mmu_idx)) {
1160             xn = 1;
1161         }
1162         if (xn && access_type == MMU_INST_FETCH) {
1163             fi->type = ARMFault_Permission;
1164             goto do_fault;
1165         }
1166 
1167         if (arm_feature(env, ARM_FEATURE_V6K) &&
1168                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1169             /* The simplified model uses AP[0] as an access control bit.  */
1170             if ((ap & 1) == 0) {
1171                 /* Access flag fault.  */
1172                 fi->type = ARMFault_AccessFlag;
1173                 goto do_fault;
1174             }
1175             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1176             user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1177         } else {
1178             result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1179             user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1180         }
1181         if (result->f.prot && !xn) {
1182             result->f.prot |= PAGE_EXEC;
1183         }
1184         if (!(result->f.prot & (1 << access_type))) {
1185             /* Access permission fault.  */
1186             fi->type = ARMFault_Permission;
1187             goto do_fault;
1188         }
1189         if (regime_is_pan(env, mmu_idx) &&
1190             !regime_is_user(env, mmu_idx) &&
1191             user_prot &&
1192             access_type != MMU_INST_FETCH) {
1193             /* Privileged Access Never fault */
1194             fi->type = ARMFault_Permission;
1195             goto do_fault;
1196         }
1197     }
1198     if (ns) {
1199         /* The NS bit will (as required by the architecture) have no effect if
1200          * the CPU doesn't support TZ or this is a non-secure translation
1201          * regime, because the attribute will already be non-secure.
1202          */
1203         result->f.attrs.secure = false;
1204         result->f.attrs.space = ARMSS_NonSecure;
1205     }
1206     result->f.phys_addr = phys_addr;
1207     return false;
1208 do_fault:
1209     fi->domain = domain;
1210     fi->level = level;
1211     return true;
1212 }
1213 
1214 /*
1215  * Translate S2 section/page access permissions to protection flags
1216  * @env:     CPUARMState
1217  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
1218  * @xn:      XN (execute-never) bits
1219  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1220  */
1221 static int get_S2prot_noexecute(int s2ap)
1222 {
1223     int prot = 0;
1224 
1225     if (s2ap & 1) {
1226         prot |= PAGE_READ;
1227     }
1228     if (s2ap & 2) {
1229         prot |= PAGE_WRITE;
1230     }
1231     return prot;
1232 }
1233 
1234 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1235 {
1236     int prot = get_S2prot_noexecute(s2ap);
1237 
1238     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1239         switch (xn) {
1240         case 0:
1241             prot |= PAGE_EXEC;
1242             break;
1243         case 1:
1244             if (s1_is_el0) {
1245                 prot |= PAGE_EXEC;
1246             }
1247             break;
1248         case 2:
1249             break;
1250         case 3:
1251             if (!s1_is_el0) {
1252                 prot |= PAGE_EXEC;
1253             }
1254             break;
1255         default:
1256             g_assert_not_reached();
1257         }
1258     } else {
1259         if (!extract32(xn, 1, 1)) {
1260             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1261                 prot |= PAGE_EXEC;
1262             }
1263         }
1264     }
1265     return prot;
1266 }
1267 
1268 /*
1269  * Translate section/page access permissions to protection flags
1270  * @env:     CPUARMState
1271  * @mmu_idx: MMU index indicating required translation regime
1272  * @is_aa64: TRUE if AArch64
1273  * @ap:      The 2-bit simple AP (AP[2:1])
1274  * @xn:      XN (execute-never) bit
1275  * @pxn:     PXN (privileged execute-never) bit
1276  * @in_pa:   The original input pa space
1277  * @out_pa:  The output pa space, modified by NSTable, NS, and NSE
1278  */
1279 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1280                       int ap, int xn, int pxn,
1281                       ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1282 {
1283     ARMCPU *cpu = env_archcpu(env);
1284     bool is_user = regime_is_user(env, mmu_idx);
1285     int prot_rw, user_rw;
1286     bool have_wxn;
1287     int wxn = 0;
1288 
1289     assert(!regime_is_stage2(mmu_idx));
1290 
1291     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
1292     if (is_user) {
1293         prot_rw = user_rw;
1294     } else {
1295         /*
1296          * PAN controls can forbid data accesses but don't affect insn fetch.
1297          * Plain PAN forbids data accesses if EL0 has data permissions;
1298          * PAN3 forbids data accesses if EL0 has either data or exec perms.
1299          * Note that for AArch64 the 'user can exec' case is exactly !xn.
1300          * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1301          * do not affect EPAN.
1302          */
1303         if (user_rw && regime_is_pan(env, mmu_idx)) {
1304             prot_rw = 0;
1305         } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1306                    regime_is_pan(env, mmu_idx) &&
1307                    (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1308             prot_rw = 0;
1309         } else {
1310             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
1311         }
1312     }
1313 
1314     if (in_pa != out_pa) {
1315         switch (in_pa) {
1316         case ARMSS_Root:
1317             /*
1318              * R_ZWRVD: permission fault for insn fetched from non-Root,
1319              * I_WWBFB: SIF has no effect in EL3.
1320              */
1321             return prot_rw;
1322         case ARMSS_Realm:
1323             /*
1324              * R_PKTDS: permission fault for insn fetched from non-Realm,
1325              * for Realm EL2 or EL2&0.  The corresponding fault for EL1&0
1326              * happens during any stage2 translation.
1327              */
1328             switch (mmu_idx) {
1329             case ARMMMUIdx_E2:
1330             case ARMMMUIdx_E20_0:
1331             case ARMMMUIdx_E20_2:
1332             case ARMMMUIdx_E20_2_PAN:
1333                 return prot_rw;
1334             default:
1335                 break;
1336             }
1337             break;
1338         case ARMSS_Secure:
1339             if (env->cp15.scr_el3 & SCR_SIF) {
1340                 return prot_rw;
1341             }
1342             break;
1343         default:
1344             /* Input NonSecure must have output NonSecure. */
1345             g_assert_not_reached();
1346         }
1347     }
1348 
1349     /* TODO have_wxn should be replaced with
1350      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1351      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1352      * compatible processors have EL2, which is required for [U]WXN.
1353      */
1354     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1355 
1356     if (have_wxn) {
1357         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1358     }
1359 
1360     if (is_aa64) {
1361         if (regime_has_2_ranges(mmu_idx) && !is_user) {
1362             xn = pxn || (user_rw & PAGE_WRITE);
1363         }
1364     } else if (arm_feature(env, ARM_FEATURE_V7)) {
1365         switch (regime_el(env, mmu_idx)) {
1366         case 1:
1367         case 3:
1368             if (is_user) {
1369                 xn = xn || !(user_rw & PAGE_READ);
1370             } else {
1371                 int uwxn = 0;
1372                 if (have_wxn) {
1373                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1374                 }
1375                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1376                      (uwxn && (user_rw & PAGE_WRITE));
1377             }
1378             break;
1379         case 2:
1380             break;
1381         }
1382     } else {
1383         xn = wxn = 0;
1384     }
1385 
1386     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1387         return prot_rw;
1388     }
1389     return prot_rw | PAGE_EXEC;
1390 }
1391 
1392 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1393                                           ARMMMUIdx mmu_idx)
1394 {
1395     uint64_t tcr = regime_tcr(env, mmu_idx);
1396     uint32_t el = regime_el(env, mmu_idx);
1397     int select, tsz;
1398     bool epd, hpd;
1399 
1400     assert(mmu_idx != ARMMMUIdx_Stage2_S);
1401 
1402     if (mmu_idx == ARMMMUIdx_Stage2) {
1403         /* VTCR */
1404         bool sext = extract32(tcr, 4, 1);
1405         bool sign = extract32(tcr, 3, 1);
1406 
1407         /*
1408          * If the sign-extend bit is not the same as t0sz[3], the result
1409          * is unpredictable. Flag this as a guest error.
1410          */
1411         if (sign != sext) {
1412             qemu_log_mask(LOG_GUEST_ERROR,
1413                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1414         }
1415         tsz = sextract32(tcr, 0, 4) + 8;
1416         select = 0;
1417         hpd = false;
1418         epd = false;
1419     } else if (el == 2) {
1420         /* HTCR */
1421         tsz = extract32(tcr, 0, 3);
1422         select = 0;
1423         hpd = extract64(tcr, 24, 1);
1424         epd = false;
1425     } else {
1426         int t0sz = extract32(tcr, 0, 3);
1427         int t1sz = extract32(tcr, 16, 3);
1428 
1429         if (t1sz == 0) {
1430             select = va > (0xffffffffu >> t0sz);
1431         } else {
1432             /* Note that we will detect errors later.  */
1433             select = va >= ~(0xffffffffu >> t1sz);
1434         }
1435         if (!select) {
1436             tsz = t0sz;
1437             epd = extract32(tcr, 7, 1);
1438             hpd = extract64(tcr, 41, 1);
1439         } else {
1440             tsz = t1sz;
1441             epd = extract32(tcr, 23, 1);
1442             hpd = extract64(tcr, 42, 1);
1443         }
1444         /* For aarch32, hpd0 is not enabled without t2e as well.  */
1445         hpd &= extract32(tcr, 6, 1);
1446     }
1447 
1448     return (ARMVAParameters) {
1449         .tsz = tsz,
1450         .select = select,
1451         .epd = epd,
1452         .hpd = hpd,
1453     };
1454 }
1455 
1456 /*
1457  * check_s2_mmu_setup
1458  * @cpu:        ARMCPU
1459  * @is_aa64:    True if the translation regime is in AArch64 state
1460  * @tcr:        VTCR_EL2 or VSTCR_EL2
1461  * @ds:         Effective value of TCR.DS.
1462  * @iasize:     Bitsize of IPAs
1463  * @stride:     Page-table stride (See the ARM ARM)
1464  *
1465  * Decode the starting level of the S2 lookup, returning INT_MIN if
1466  * the configuration is invalid.
1467  */
1468 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1469                               bool ds, int iasize, int stride)
1470 {
1471     int sl0, sl2, startlevel, granulebits, levels;
1472     int s1_min_iasize, s1_max_iasize;
1473 
1474     sl0 = extract32(tcr, 6, 2);
1475     if (is_aa64) {
1476         /*
1477          * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1478          * so interleave AArch64.S2StartLevel.
1479          */
1480         switch (stride) {
1481         case 9: /* 4KB */
1482             /* SL2 is RES0 unless DS=1 & 4KB granule. */
1483             sl2 = extract64(tcr, 33, 1);
1484             if (ds && sl2) {
1485                 if (sl0 != 0) {
1486                     goto fail;
1487                 }
1488                 startlevel = -1;
1489             } else {
1490                 startlevel = 2 - sl0;
1491                 switch (sl0) {
1492                 case 2:
1493                     if (arm_pamax(cpu) < 44) {
1494                         goto fail;
1495                     }
1496                     break;
1497                 case 3:
1498                     if (!cpu_isar_feature(aa64_st, cpu)) {
1499                         goto fail;
1500                     }
1501                     startlevel = 3;
1502                     break;
1503                 }
1504             }
1505             break;
1506         case 11: /* 16KB */
1507             switch (sl0) {
1508             case 2:
1509                 if (arm_pamax(cpu) < 42) {
1510                     goto fail;
1511                 }
1512                 break;
1513             case 3:
1514                 if (!ds) {
1515                     goto fail;
1516                 }
1517                 break;
1518             }
1519             startlevel = 3 - sl0;
1520             break;
1521         case 13: /* 64KB */
1522             switch (sl0) {
1523             case 2:
1524                 if (arm_pamax(cpu) < 44) {
1525                     goto fail;
1526                 }
1527                 break;
1528             case 3:
1529                 goto fail;
1530             }
1531             startlevel = 3 - sl0;
1532             break;
1533         default:
1534             g_assert_not_reached();
1535         }
1536     } else {
1537         /*
1538          * Things are simpler for AArch32 EL2, with only 4k pages.
1539          * There is no separate S2InvalidSL function, but AArch32.S2Walk
1540          * begins with walkparms.sl0 in {'1x'}.
1541          */
1542         assert(stride == 9);
1543         if (sl0 >= 2) {
1544             goto fail;
1545         }
1546         startlevel = 2 - sl0;
1547     }
1548 
1549     /* AArch{64,32}.S2InconsistentSL are functionally equivalent.  */
1550     levels = 3 - startlevel;
1551     granulebits = stride + 3;
1552 
1553     s1_min_iasize = levels * stride + granulebits + 1;
1554     s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1555 
1556     if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1557         return startlevel;
1558     }
1559 
1560  fail:
1561     return INT_MIN;
1562 }
1563 
1564 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
1565                                   ARMGranuleSize gran, int level)
1566 {
1567     /*
1568      * See pseudocode AArch46.BlockDescSupported(): block descriptors
1569      * are not valid at all levels, depending on the page size.
1570      */
1571     switch (gran) {
1572     case Gran4K:
1573         return (level == 0 && ds) || level == 1 || level == 2;
1574     case Gran16K:
1575         return (level == 1 && ds) || level == 2;
1576     case Gran64K:
1577         return (level == 1 && arm_pamax(cpu) == 52) || level == 2;
1578     default:
1579         g_assert_not_reached();
1580     }
1581 }
1582 
1583 /**
1584  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1585  *
1586  * Returns false if the translation was successful. Otherwise, phys_ptr,
1587  * attrs, prot and page_size may not be filled in, and the populated fsr
1588  * value provides information on why the translation aborted, in the format
1589  * of a long-format DFSR/IFSR fault register, with the following caveat:
1590  * the WnR bit is never set (the caller must do this).
1591  *
1592  * @env: CPUARMState
1593  * @ptw: Current and next stage parameters for the walk.
1594  * @address: virtual address to get physical address for
1595  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1596  * @result: set on translation success,
1597  * @fi: set to fault info if the translation fails
1598  */
1599 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1600                                uint64_t address,
1601                                MMUAccessType access_type,
1602                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1603 {
1604     ARMCPU *cpu = env_archcpu(env);
1605     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1606     int32_t level;
1607     ARMVAParameters param;
1608     uint64_t ttbr;
1609     hwaddr descaddr, indexmask, indexmask_grainsize;
1610     uint32_t tableattrs;
1611     target_ulong page_size;
1612     uint64_t attrs;
1613     int32_t stride;
1614     int addrsize, inputsize, outputsize;
1615     uint64_t tcr = regime_tcr(env, mmu_idx);
1616     int ap, xn, pxn;
1617     uint32_t el = regime_el(env, mmu_idx);
1618     uint64_t descaddrmask;
1619     bool aarch64 = arm_el_is_aa64(env, el);
1620     uint64_t descriptor, new_descriptor;
1621     ARMSecuritySpace out_space;
1622 
1623     /* TODO: This code does not support shareability levels. */
1624     if (aarch64) {
1625         int ps;
1626 
1627         param = aa64_va_parameters(env, address, mmu_idx,
1628                                    access_type != MMU_INST_FETCH,
1629                                    !arm_el_is_aa64(env, 1));
1630         level = 0;
1631 
1632         /*
1633          * If TxSZ is programmed to a value larger than the maximum,
1634          * or smaller than the effective minimum, it is IMPLEMENTATION
1635          * DEFINED whether we behave as if the field were programmed
1636          * within bounds, or if a level 0 Translation fault is generated.
1637          *
1638          * With FEAT_LVA, fault on less than minimum becomes required,
1639          * so our choice is to always raise the fault.
1640          */
1641         if (param.tsz_oob) {
1642             goto do_translation_fault;
1643         }
1644 
1645         addrsize = 64 - 8 * param.tbi;
1646         inputsize = 64 - param.tsz;
1647 
1648         /*
1649          * Bound PS by PARANGE to find the effective output address size.
1650          * ID_AA64MMFR0 is a read-only register so values outside of the
1651          * supported mappings can be considered an implementation error.
1652          */
1653         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1654         ps = MIN(ps, param.ps);
1655         assert(ps < ARRAY_SIZE(pamax_map));
1656         outputsize = pamax_map[ps];
1657 
1658         /*
1659          * With LPA2, the effective output address (OA) size is at most 48 bits
1660          * unless TCR.DS == 1
1661          */
1662         if (!param.ds && param.gran != Gran64K) {
1663             outputsize = MIN(outputsize, 48);
1664         }
1665     } else {
1666         param = aa32_va_parameters(env, address, mmu_idx);
1667         level = 1;
1668         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1669         inputsize = addrsize - param.tsz;
1670         outputsize = 40;
1671     }
1672 
1673     /*
1674      * We determined the region when collecting the parameters, but we
1675      * have not yet validated that the address is valid for the region.
1676      * Extract the top bits and verify that they all match select.
1677      *
1678      * For aa32, if inputsize == addrsize, then we have selected the
1679      * region by exclusion in aa32_va_parameters and there is no more
1680      * validation to do here.
1681      */
1682     if (inputsize < addrsize) {
1683         target_ulong top_bits = sextract64(address, inputsize,
1684                                            addrsize - inputsize);
1685         if (-top_bits != param.select) {
1686             /* The gap between the two regions is a Translation fault */
1687             goto do_translation_fault;
1688         }
1689     }
1690 
1691     stride = arm_granule_bits(param.gran) - 3;
1692 
1693     /*
1694      * Note that QEMU ignores shareability and cacheability attributes,
1695      * so we don't need to do anything with the SH, ORGN, IRGN fields
1696      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1697      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1698      * implement any ASID-like capability so we can ignore it (instead
1699      * we will always flush the TLB any time the ASID is changed).
1700      */
1701     ttbr = regime_ttbr(env, mmu_idx, param.select);
1702 
1703     /*
1704      * Here we should have set up all the parameters for the translation:
1705      * inputsize, ttbr, epd, stride, tbi
1706      */
1707 
1708     if (param.epd) {
1709         /*
1710          * Translation table walk disabled => Translation fault on TLB miss
1711          * Note: This is always 0 on 64-bit EL2 and EL3.
1712          */
1713         goto do_translation_fault;
1714     }
1715 
1716     if (!regime_is_stage2(mmu_idx)) {
1717         /*
1718          * The starting level depends on the virtual address size (which can
1719          * be up to 48 bits) and the translation granule size. It indicates
1720          * the number of strides (stride bits at a time) needed to
1721          * consume the bits of the input address. In the pseudocode this is:
1722          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1723          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1724          * our 'stride + 3' and 'stride' is our 'stride'.
1725          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1726          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1727          * = 4 - (inputsize - 4) / stride;
1728          */
1729         level = 4 - (inputsize - 4) / stride;
1730     } else {
1731         int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1732                                             inputsize, stride);
1733         if (startlevel == INT_MIN) {
1734             level = 0;
1735             goto do_translation_fault;
1736         }
1737         level = startlevel;
1738     }
1739 
1740     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1741     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1742 
1743     /* Now we can extract the actual base address from the TTBR */
1744     descaddr = extract64(ttbr, 0, 48);
1745 
1746     /*
1747      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1748      *
1749      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1750      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1751      * but we've just cleared the bits above 47, so simplify the test.
1752      */
1753     if (outputsize > 48) {
1754         descaddr |= extract64(ttbr, 2, 4) << 48;
1755     } else if (descaddr >> outputsize) {
1756         level = 0;
1757         fi->type = ARMFault_AddressSize;
1758         goto do_fault;
1759     }
1760 
1761     /*
1762      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1763      * and also to mask out CnP (bit 0) which could validly be non-zero.
1764      */
1765     descaddr &= ~indexmask;
1766 
1767     /*
1768      * For AArch32, the address field in the descriptor goes up to bit 39
1769      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1770      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1771      * bits as part of the address, which will be checked via outputsize.
1772      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1773      * the highest bits of a 52-bit output are placed elsewhere.
1774      */
1775     if (param.ds) {
1776         descaddrmask = MAKE_64BIT_MASK(0, 50);
1777     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1778         descaddrmask = MAKE_64BIT_MASK(0, 48);
1779     } else {
1780         descaddrmask = MAKE_64BIT_MASK(0, 40);
1781     }
1782     descaddrmask &= ~indexmask_grainsize;
1783     tableattrs = 0;
1784 
1785  next_level:
1786     descaddr |= (address >> (stride * (4 - level))) & indexmask;
1787     descaddr &= ~7ULL;
1788 
1789     /*
1790      * Process the NSTable bit from the previous level.  This changes
1791      * the table address space and the output space from Secure to
1792      * NonSecure.  With RME, the EL3 translation regime does not change
1793      * from Root to NonSecure.
1794      */
1795     if (ptw->in_space == ARMSS_Secure
1796         && !regime_is_stage2(mmu_idx)
1797         && extract32(tableattrs, 4, 1)) {
1798         /*
1799          * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1800          * Assert the relative order of the secure/non-secure indexes.
1801          */
1802         QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1803         QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1804         ptw->in_ptw_idx += 1;
1805         ptw->in_space = ARMSS_NonSecure;
1806     }
1807 
1808     if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1809         goto do_fault;
1810     }
1811     descriptor = arm_ldq_ptw(env, ptw, fi);
1812     if (fi->type != ARMFault_None) {
1813         goto do_fault;
1814     }
1815     new_descriptor = descriptor;
1816 
1817  restart_atomic_update:
1818     if (!(descriptor & 1) ||
1819         (!(descriptor & 2) &&
1820          !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) {
1821         /* Invalid, or a block descriptor at an invalid level */
1822         goto do_translation_fault;
1823     }
1824 
1825     descaddr = descriptor & descaddrmask;
1826 
1827     /*
1828      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1829      * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1830      * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1831      * raise AddressSizeFault.
1832      */
1833     if (outputsize > 48) {
1834         if (param.ds) {
1835             descaddr |= extract64(descriptor, 8, 2) << 50;
1836         } else {
1837             descaddr |= extract64(descriptor, 12, 4) << 48;
1838         }
1839     } else if (descaddr >> outputsize) {
1840         fi->type = ARMFault_AddressSize;
1841         goto do_fault;
1842     }
1843 
1844     if ((descriptor & 2) && (level < 3)) {
1845         /*
1846          * Table entry. The top five bits are attributes which may
1847          * propagate down through lower levels of the table (and
1848          * which are all arranged so that 0 means "no effect", so
1849          * we can gather them up by ORing in the bits at each level).
1850          */
1851         tableattrs |= extract64(descriptor, 59, 5);
1852         level++;
1853         indexmask = indexmask_grainsize;
1854         goto next_level;
1855     }
1856 
1857     /*
1858      * Block entry at level 1 or 2, or page entry at level 3.
1859      * These are basically the same thing, although the number
1860      * of bits we pull in from the vaddr varies. Note that although
1861      * descaddrmask masks enough of the low bits of the descriptor
1862      * to give a correct page or table address, the address field
1863      * in a block descriptor is smaller; so we need to explicitly
1864      * clear the lower bits here before ORing in the low vaddr bits.
1865      *
1866      * Afterward, descaddr is the final physical address.
1867      */
1868     page_size = (1ULL << ((stride * (4 - level)) + 3));
1869     descaddr &= ~(hwaddr)(page_size - 1);
1870     descaddr |= (address & (page_size - 1));
1871 
1872     if (likely(!ptw->in_debug)) {
1873         /*
1874          * Access flag.
1875          * If HA is enabled, prepare to update the descriptor below.
1876          * Otherwise, pass the access fault on to software.
1877          */
1878         if (!(descriptor & (1 << 10))) {
1879             if (param.ha) {
1880                 new_descriptor |= 1 << 10; /* AF */
1881             } else {
1882                 fi->type = ARMFault_AccessFlag;
1883                 goto do_fault;
1884             }
1885         }
1886 
1887         /*
1888          * Dirty Bit.
1889          * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1890          * bit for writeback. The actual write protection test may still be
1891          * overridden by tableattrs, to be merged below.
1892          */
1893         if (param.hd
1894             && extract64(descriptor, 51, 1)  /* DBM */
1895             && access_type == MMU_DATA_STORE) {
1896             if (regime_is_stage2(mmu_idx)) {
1897                 new_descriptor |= 1ull << 7;    /* set S2AP[1] */
1898             } else {
1899                 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1900             }
1901         }
1902     }
1903 
1904     /*
1905      * Extract attributes from the (modified) descriptor, and apply
1906      * table descriptors. Stage 2 table descriptors do not include
1907      * any attribute fields. HPD disables all the table attributes
1908      * except NSTable (which we have already handled).
1909      */
1910     attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1911     if (!regime_is_stage2(mmu_idx)) {
1912         if (!param.hpd) {
1913             attrs |= extract64(tableattrs, 0, 2) << 53;     /* XN, PXN */
1914             /*
1915              * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1916              * means "force PL1 access only", which means forcing AP[1] to 0.
1917              */
1918             attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1919             attrs |= extract32(tableattrs, 3, 1) << 7;    /* APT[1] => AP[2] */
1920         }
1921     }
1922 
1923     ap = extract32(attrs, 6, 2);
1924     out_space = ptw->in_space;
1925     if (regime_is_stage2(mmu_idx)) {
1926         /*
1927          * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
1928          * The bit remains ignored for other security states.
1929          * R_YMCSL: Executing an insn fetched from non-Realm causes
1930          * a stage2 permission fault.
1931          */
1932         if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
1933             out_space = ARMSS_NonSecure;
1934             result->f.prot = get_S2prot_noexecute(ap);
1935         } else {
1936             xn = extract64(attrs, 53, 2);
1937             result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
1938         }
1939     } else {
1940         int nse, ns = extract32(attrs, 5, 1);
1941         switch (out_space) {
1942         case ARMSS_Root:
1943             /*
1944              * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
1945              * R_XTYPW: NSE and NS together select the output pa space.
1946              */
1947             nse = extract32(attrs, 11, 1);
1948             out_space = (nse << 1) | ns;
1949             if (out_space == ARMSS_Secure &&
1950                 !cpu_isar_feature(aa64_sel2, cpu)) {
1951                 out_space = ARMSS_NonSecure;
1952             }
1953             break;
1954         case ARMSS_Secure:
1955             if (ns) {
1956                 out_space = ARMSS_NonSecure;
1957             }
1958             break;
1959         case ARMSS_Realm:
1960             switch (mmu_idx) {
1961             case ARMMMUIdx_Stage1_E0:
1962             case ARMMMUIdx_Stage1_E1:
1963             case ARMMMUIdx_Stage1_E1_PAN:
1964                 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
1965                 break;
1966             case ARMMMUIdx_E2:
1967             case ARMMMUIdx_E20_0:
1968             case ARMMMUIdx_E20_2:
1969             case ARMMMUIdx_E20_2_PAN:
1970                 /*
1971                  * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
1972                  * NS changes the output to non-secure space.
1973                  */
1974                 if (ns) {
1975                     out_space = ARMSS_NonSecure;
1976                 }
1977                 break;
1978             default:
1979                 g_assert_not_reached();
1980             }
1981             break;
1982         case ARMSS_NonSecure:
1983             /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
1984             break;
1985         default:
1986             g_assert_not_reached();
1987         }
1988         xn = extract64(attrs, 54, 1);
1989         pxn = extract64(attrs, 53, 1);
1990 
1991         /*
1992          * Note that we modified ptw->in_space earlier for NSTable, but
1993          * result->f.attrs retains a copy of the original security space.
1994          */
1995         result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn,
1996                                     result->f.attrs.space, out_space);
1997     }
1998 
1999     if (!(result->f.prot & (1 << access_type))) {
2000         fi->type = ARMFault_Permission;
2001         goto do_fault;
2002     }
2003 
2004     /* If FEAT_HAFDBS has made changes, update the PTE. */
2005     if (new_descriptor != descriptor) {
2006         new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
2007         if (fi->type != ARMFault_None) {
2008             goto do_fault;
2009         }
2010         /*
2011          * I_YZSVV says that if the in-memory descriptor has changed,
2012          * then we must use the information in that new value
2013          * (which might include a different output address, different
2014          * attributes, or generate a fault).
2015          * Restart the handling of the descriptor value from scratch.
2016          */
2017         if (new_descriptor != descriptor) {
2018             descriptor = new_descriptor;
2019             goto restart_atomic_update;
2020         }
2021     }
2022 
2023     result->f.attrs.space = out_space;
2024     result->f.attrs.secure = arm_space_is_secure(out_space);
2025 
2026     if (regime_is_stage2(mmu_idx)) {
2027         result->cacheattrs.is_s2_format = true;
2028         result->cacheattrs.attrs = extract32(attrs, 2, 4);
2029     } else {
2030         /* Index into MAIR registers for cache attributes */
2031         uint8_t attrindx = extract32(attrs, 2, 3);
2032         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2033         assert(attrindx <= 7);
2034         result->cacheattrs.is_s2_format = false;
2035         result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2036 
2037         /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
2038         if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
2039             result->f.guarded = extract64(attrs, 50, 1); /* GP */
2040         }
2041     }
2042 
2043     /*
2044      * For FEAT_LPA2 and effective DS, the SH field in the attributes
2045      * was re-purposed for output address bits.  The SH attribute in
2046      * that case comes from TCR_ELx, which we extracted earlier.
2047      */
2048     if (param.ds) {
2049         result->cacheattrs.shareability = param.sh;
2050     } else {
2051         result->cacheattrs.shareability = extract32(attrs, 8, 2);
2052     }
2053 
2054     result->f.phys_addr = descaddr;
2055     result->f.lg_page_size = ctz64(page_size);
2056     return false;
2057 
2058  do_translation_fault:
2059     fi->type = ARMFault_Translation;
2060  do_fault:
2061     if (fi->s1ptw) {
2062         /* Retain the existing stage 2 fi->level */
2063         assert(fi->stage2);
2064     } else {
2065         fi->level = level;
2066         fi->stage2 = regime_is_stage2(mmu_idx);
2067     }
2068     fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx);
2069     return true;
2070 }
2071 
2072 static bool get_phys_addr_pmsav5(CPUARMState *env,
2073                                  S1Translate *ptw,
2074                                  uint32_t address,
2075                                  MMUAccessType access_type,
2076                                  GetPhysAddrResult *result,
2077                                  ARMMMUFaultInfo *fi)
2078 {
2079     int n;
2080     uint32_t mask;
2081     uint32_t base;
2082     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2083     bool is_user = regime_is_user(env, mmu_idx);
2084 
2085     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
2086         /* MPU disabled.  */
2087         result->f.phys_addr = address;
2088         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2089         return false;
2090     }
2091 
2092     result->f.phys_addr = address;
2093     for (n = 7; n >= 0; n--) {
2094         base = env->cp15.c6_region[n];
2095         if ((base & 1) == 0) {
2096             continue;
2097         }
2098         mask = 1 << ((base >> 1) & 0x1f);
2099         /* Keep this shift separate from the above to avoid an
2100            (undefined) << 32.  */
2101         mask = (mask << 1) - 1;
2102         if (((base ^ address) & ~mask) == 0) {
2103             break;
2104         }
2105     }
2106     if (n < 0) {
2107         fi->type = ARMFault_Background;
2108         return true;
2109     }
2110 
2111     if (access_type == MMU_INST_FETCH) {
2112         mask = env->cp15.pmsav5_insn_ap;
2113     } else {
2114         mask = env->cp15.pmsav5_data_ap;
2115     }
2116     mask = (mask >> (n * 4)) & 0xf;
2117     switch (mask) {
2118     case 0:
2119         fi->type = ARMFault_Permission;
2120         fi->level = 1;
2121         return true;
2122     case 1:
2123         if (is_user) {
2124             fi->type = ARMFault_Permission;
2125             fi->level = 1;
2126             return true;
2127         }
2128         result->f.prot = PAGE_READ | PAGE_WRITE;
2129         break;
2130     case 2:
2131         result->f.prot = PAGE_READ;
2132         if (!is_user) {
2133             result->f.prot |= PAGE_WRITE;
2134         }
2135         break;
2136     case 3:
2137         result->f.prot = PAGE_READ | PAGE_WRITE;
2138         break;
2139     case 5:
2140         if (is_user) {
2141             fi->type = ARMFault_Permission;
2142             fi->level = 1;
2143             return true;
2144         }
2145         result->f.prot = PAGE_READ;
2146         break;
2147     case 6:
2148         result->f.prot = PAGE_READ;
2149         break;
2150     default:
2151         /* Bad permission.  */
2152         fi->type = ARMFault_Permission;
2153         fi->level = 1;
2154         return true;
2155     }
2156     result->f.prot |= PAGE_EXEC;
2157     return false;
2158 }
2159 
2160 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2161                                          int32_t address, uint8_t *prot)
2162 {
2163     if (!arm_feature(env, ARM_FEATURE_M)) {
2164         *prot = PAGE_READ | PAGE_WRITE;
2165         switch (address) {
2166         case 0xF0000000 ... 0xFFFFFFFF:
2167             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2168                 /* hivecs execing is ok */
2169                 *prot |= PAGE_EXEC;
2170             }
2171             break;
2172         case 0x00000000 ... 0x7FFFFFFF:
2173             *prot |= PAGE_EXEC;
2174             break;
2175         }
2176     } else {
2177         /* Default system address map for M profile cores.
2178          * The architecture specifies which regions are execute-never;
2179          * at the MPU level no other checks are defined.
2180          */
2181         switch (address) {
2182         case 0x00000000 ... 0x1fffffff: /* ROM */
2183         case 0x20000000 ... 0x3fffffff: /* SRAM */
2184         case 0x60000000 ... 0x7fffffff: /* RAM */
2185         case 0x80000000 ... 0x9fffffff: /* RAM */
2186             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2187             break;
2188         case 0x40000000 ... 0x5fffffff: /* Peripheral */
2189         case 0xa0000000 ... 0xbfffffff: /* Device */
2190         case 0xc0000000 ... 0xdfffffff: /* Device */
2191         case 0xe0000000 ... 0xffffffff: /* System */
2192             *prot = PAGE_READ | PAGE_WRITE;
2193             break;
2194         default:
2195             g_assert_not_reached();
2196         }
2197     }
2198 }
2199 
2200 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2201 {
2202     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2203     return arm_feature(env, ARM_FEATURE_M) &&
2204         extract32(address, 20, 12) == 0xe00;
2205 }
2206 
2207 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2208 {
2209     /*
2210      * True if address is in the M profile system region
2211      * 0xe0000000 - 0xffffffff
2212      */
2213     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2214 }
2215 
2216 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2217                                          bool is_secure, bool is_user)
2218 {
2219     /*
2220      * Return true if we should use the default memory map as a
2221      * "background" region if there are no hits against any MPU regions.
2222      */
2223     CPUARMState *env = &cpu->env;
2224 
2225     if (is_user) {
2226         return false;
2227     }
2228 
2229     if (arm_feature(env, ARM_FEATURE_M)) {
2230         return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2231     }
2232 
2233     if (mmu_idx == ARMMMUIdx_Stage2) {
2234         return false;
2235     }
2236 
2237     return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2238 }
2239 
2240 static bool get_phys_addr_pmsav7(CPUARMState *env,
2241                                  S1Translate *ptw,
2242                                  uint32_t address,
2243                                  MMUAccessType access_type,
2244                                  GetPhysAddrResult *result,
2245                                  ARMMMUFaultInfo *fi)
2246 {
2247     ARMCPU *cpu = env_archcpu(env);
2248     int n;
2249     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2250     bool is_user = regime_is_user(env, mmu_idx);
2251     bool secure = arm_space_is_secure(ptw->in_space);
2252 
2253     result->f.phys_addr = address;
2254     result->f.lg_page_size = TARGET_PAGE_BITS;
2255     result->f.prot = 0;
2256 
2257     if (regime_translation_disabled(env, mmu_idx, ptw->in_space) ||
2258         m_is_ppb_region(env, address)) {
2259         /*
2260          * MPU disabled or M profile PPB access: use default memory map.
2261          * The other case which uses the default memory map in the
2262          * v7M ARM ARM pseudocode is exception vector reads from the vector
2263          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2264          * which always does a direct read using address_space_ldl(), rather
2265          * than going via this function, so we don't need to check that here.
2266          */
2267         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2268     } else { /* MPU enabled */
2269         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2270             /* region search */
2271             uint32_t base = env->pmsav7.drbar[n];
2272             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2273             uint32_t rmask;
2274             bool srdis = false;
2275 
2276             if (!(env->pmsav7.drsr[n] & 0x1)) {
2277                 continue;
2278             }
2279 
2280             if (!rsize) {
2281                 qemu_log_mask(LOG_GUEST_ERROR,
2282                               "DRSR[%d]: Rsize field cannot be 0\n", n);
2283                 continue;
2284             }
2285             rsize++;
2286             rmask = (1ull << rsize) - 1;
2287 
2288             if (base & rmask) {
2289                 qemu_log_mask(LOG_GUEST_ERROR,
2290                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2291                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
2292                               n, base, rmask);
2293                 continue;
2294             }
2295 
2296             if (address < base || address > base + rmask) {
2297                 /*
2298                  * Address not in this region. We must check whether the
2299                  * region covers addresses in the same page as our address.
2300                  * In that case we must not report a size that covers the
2301                  * whole page for a subsequent hit against a different MPU
2302                  * region or the background region, because it would result in
2303                  * incorrect TLB hits for subsequent accesses to addresses that
2304                  * are in this MPU region.
2305                  */
2306                 if (ranges_overlap(base, rmask,
2307                                    address & TARGET_PAGE_MASK,
2308                                    TARGET_PAGE_SIZE)) {
2309                     result->f.lg_page_size = 0;
2310                 }
2311                 continue;
2312             }
2313 
2314             /* Region matched */
2315 
2316             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2317                 int i, snd;
2318                 uint32_t srdis_mask;
2319 
2320                 rsize -= 3; /* sub region size (power of 2) */
2321                 snd = ((address - base) >> rsize) & 0x7;
2322                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2323 
2324                 srdis_mask = srdis ? 0x3 : 0x0;
2325                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2326                     /*
2327                      * This will check in groups of 2, 4 and then 8, whether
2328                      * the subregion bits are consistent. rsize is incremented
2329                      * back up to give the region size, considering consistent
2330                      * adjacent subregions as one region. Stop testing if rsize
2331                      * is already big enough for an entire QEMU page.
2332                      */
2333                     int snd_rounded = snd & ~(i - 1);
2334                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2335                                                      snd_rounded + 8, i);
2336                     if (srdis_mask ^ srdis_multi) {
2337                         break;
2338                     }
2339                     srdis_mask = (srdis_mask << i) | srdis_mask;
2340                     rsize++;
2341                 }
2342             }
2343             if (srdis) {
2344                 continue;
2345             }
2346             if (rsize < TARGET_PAGE_BITS) {
2347                 result->f.lg_page_size = rsize;
2348             }
2349             break;
2350         }
2351 
2352         if (n == -1) { /* no hits */
2353             if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2354                 /* background fault */
2355                 fi->type = ARMFault_Background;
2356                 return true;
2357             }
2358             get_phys_addr_pmsav7_default(env, mmu_idx, address,
2359                                          &result->f.prot);
2360         } else { /* a MPU hit! */
2361             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2362             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2363 
2364             if (m_is_system_region(env, address)) {
2365                 /* System space is always execute never */
2366                 xn = 1;
2367             }
2368 
2369             if (is_user) { /* User mode AP bit decoding */
2370                 switch (ap) {
2371                 case 0:
2372                 case 1:
2373                 case 5:
2374                     break; /* no access */
2375                 case 3:
2376                     result->f.prot |= PAGE_WRITE;
2377                     /* fall through */
2378                 case 2:
2379                 case 6:
2380                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2381                     break;
2382                 case 7:
2383                     /* for v7M, same as 6; for R profile a reserved value */
2384                     if (arm_feature(env, ARM_FEATURE_M)) {
2385                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2386                         break;
2387                     }
2388                     /* fall through */
2389                 default:
2390                     qemu_log_mask(LOG_GUEST_ERROR,
2391                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2392                                   PRIx32 "\n", n, ap);
2393                 }
2394             } else { /* Priv. mode AP bits decoding */
2395                 switch (ap) {
2396                 case 0:
2397                     break; /* no access */
2398                 case 1:
2399                 case 2:
2400                 case 3:
2401                     result->f.prot |= PAGE_WRITE;
2402                     /* fall through */
2403                 case 5:
2404                 case 6:
2405                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2406                     break;
2407                 case 7:
2408                     /* for v7M, same as 6; for R profile a reserved value */
2409                     if (arm_feature(env, ARM_FEATURE_M)) {
2410                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2411                         break;
2412                     }
2413                     /* fall through */
2414                 default:
2415                     qemu_log_mask(LOG_GUEST_ERROR,
2416                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2417                                   PRIx32 "\n", n, ap);
2418                 }
2419             }
2420 
2421             /* execute never */
2422             if (xn) {
2423                 result->f.prot &= ~PAGE_EXEC;
2424             }
2425         }
2426     }
2427 
2428     fi->type = ARMFault_Permission;
2429     fi->level = 1;
2430     return !(result->f.prot & (1 << access_type));
2431 }
2432 
2433 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2434                              uint32_t secure)
2435 {
2436     if (regime_el(env, mmu_idx) == 2) {
2437         return env->pmsav8.hprbar;
2438     } else {
2439         return env->pmsav8.rbar[secure];
2440     }
2441 }
2442 
2443 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2444                              uint32_t secure)
2445 {
2446     if (regime_el(env, mmu_idx) == 2) {
2447         return env->pmsav8.hprlar;
2448     } else {
2449         return env->pmsav8.rlar[secure];
2450     }
2451 }
2452 
2453 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2454                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
2455                        bool secure, GetPhysAddrResult *result,
2456                        ARMMMUFaultInfo *fi, uint32_t *mregion)
2457 {
2458     /*
2459      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2460      * that a full phys-to-virt translation does).
2461      * mregion is (if not NULL) set to the region number which matched,
2462      * or -1 if no region number is returned (MPU off, address did not
2463      * hit a region, address hit in multiple regions).
2464      * If the region hit doesn't cover the entire TARGET_PAGE the address
2465      * is within, then we set the result page_size to 1 to force the
2466      * memory system to use a subpage.
2467      */
2468     ARMCPU *cpu = env_archcpu(env);
2469     bool is_user = regime_is_user(env, mmu_idx);
2470     int n;
2471     int matchregion = -1;
2472     bool hit = false;
2473     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2474     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2475     int region_counter;
2476 
2477     if (regime_el(env, mmu_idx) == 2) {
2478         region_counter = cpu->pmsav8r_hdregion;
2479     } else {
2480         region_counter = cpu->pmsav7_dregion;
2481     }
2482 
2483     result->f.lg_page_size = TARGET_PAGE_BITS;
2484     result->f.phys_addr = address;
2485     result->f.prot = 0;
2486     if (mregion) {
2487         *mregion = -1;
2488     }
2489 
2490     if (mmu_idx == ARMMMUIdx_Stage2) {
2491         fi->stage2 = true;
2492     }
2493 
2494     /*
2495      * Unlike the ARM ARM pseudocode, we don't need to check whether this
2496      * was an exception vector read from the vector table (which is always
2497      * done using the default system address map), because those accesses
2498      * are done in arm_v7m_load_vector(), which always does a direct
2499      * read using address_space_ldl(), rather than going via this function.
2500      */
2501     if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) {
2502         /* MPU disabled */
2503         hit = true;
2504     } else if (m_is_ppb_region(env, address)) {
2505         hit = true;
2506     } else {
2507         if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2508             hit = true;
2509         }
2510 
2511         uint32_t bitmask;
2512         if (arm_feature(env, ARM_FEATURE_M)) {
2513             bitmask = 0x1f;
2514         } else {
2515             bitmask = 0x3f;
2516             fi->level = 0;
2517         }
2518 
2519         for (n = region_counter - 1; n >= 0; n--) {
2520             /* region search */
2521             /*
2522              * Note that the base address is bits [31:x] from the register
2523              * with bits [x-1:0] all zeroes, but the limit address is bits
2524              * [31:x] from the register with bits [x:0] all ones. Where x is
2525              * 5 for Cortex-M and 6 for Cortex-R
2526              */
2527             uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2528             uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2529 
2530             if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2531                 /* Region disabled */
2532                 continue;
2533             }
2534 
2535             if (address < base || address > limit) {
2536                 /*
2537                  * Address not in this region. We must check whether the
2538                  * region covers addresses in the same page as our address.
2539                  * In that case we must not report a size that covers the
2540                  * whole page for a subsequent hit against a different MPU
2541                  * region or the background region, because it would result in
2542                  * incorrect TLB hits for subsequent accesses to addresses that
2543                  * are in this MPU region.
2544                  */
2545                 if (limit >= base &&
2546                     ranges_overlap(base, limit - base + 1,
2547                                    addr_page_base,
2548                                    TARGET_PAGE_SIZE)) {
2549                     result->f.lg_page_size = 0;
2550                 }
2551                 continue;
2552             }
2553 
2554             if (base > addr_page_base || limit < addr_page_limit) {
2555                 result->f.lg_page_size = 0;
2556             }
2557 
2558             if (matchregion != -1) {
2559                 /*
2560                  * Multiple regions match -- always a failure (unlike
2561                  * PMSAv7 where highest-numbered-region wins)
2562                  */
2563                 fi->type = ARMFault_Permission;
2564                 if (arm_feature(env, ARM_FEATURE_M)) {
2565                     fi->level = 1;
2566                 }
2567                 return true;
2568             }
2569 
2570             matchregion = n;
2571             hit = true;
2572         }
2573     }
2574 
2575     if (!hit) {
2576         if (arm_feature(env, ARM_FEATURE_M)) {
2577             fi->type = ARMFault_Background;
2578         } else {
2579             fi->type = ARMFault_Permission;
2580         }
2581         return true;
2582     }
2583 
2584     if (matchregion == -1) {
2585         /* hit using the background region */
2586         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2587     } else {
2588         uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2589         uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2590         uint32_t ap = extract32(matched_rbar, 1, 2);
2591         uint32_t xn = extract32(matched_rbar, 0, 1);
2592         bool pxn = false;
2593 
2594         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2595             pxn = extract32(matched_rlar, 4, 1);
2596         }
2597 
2598         if (m_is_system_region(env, address)) {
2599             /* System space is always execute never */
2600             xn = 1;
2601         }
2602 
2603         if (regime_el(env, mmu_idx) == 2) {
2604             result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2605                                             mmu_idx != ARMMMUIdx_E2);
2606         } else {
2607             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2608         }
2609 
2610         if (!arm_feature(env, ARM_FEATURE_M)) {
2611             uint8_t attrindx = extract32(matched_rlar, 1, 3);
2612             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2613             uint8_t sh = extract32(matched_rlar, 3, 2);
2614 
2615             if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2616                 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2617                 xn = 0x1;
2618             }
2619 
2620             if ((regime_el(env, mmu_idx) == 1) &&
2621                 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2622                 pxn = 0x1;
2623             }
2624 
2625             result->cacheattrs.is_s2_format = false;
2626             result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2627             result->cacheattrs.shareability = sh;
2628         }
2629 
2630         if (result->f.prot && !xn && !(pxn && !is_user)) {
2631             result->f.prot |= PAGE_EXEC;
2632         }
2633 
2634         if (mregion) {
2635             *mregion = matchregion;
2636         }
2637     }
2638 
2639     fi->type = ARMFault_Permission;
2640     if (arm_feature(env, ARM_FEATURE_M)) {
2641         fi->level = 1;
2642     }
2643     return !(result->f.prot & (1 << access_type));
2644 }
2645 
2646 static bool v8m_is_sau_exempt(CPUARMState *env,
2647                               uint32_t address, MMUAccessType access_type)
2648 {
2649     /*
2650      * The architecture specifies that certain address ranges are
2651      * exempt from v8M SAU/IDAU checks.
2652      */
2653     return
2654         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2655         (address >= 0xe0000000 && address <= 0xe0002fff) ||
2656         (address >= 0xe000e000 && address <= 0xe000efff) ||
2657         (address >= 0xe002e000 && address <= 0xe002efff) ||
2658         (address >= 0xe0040000 && address <= 0xe0041fff) ||
2659         (address >= 0xe00ff000 && address <= 0xe00fffff);
2660 }
2661 
2662 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2663                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
2664                          bool is_secure, V8M_SAttributes *sattrs)
2665 {
2666     /*
2667      * Look up the security attributes for this address. Compare the
2668      * pseudocode SecurityCheck() function.
2669      * We assume the caller has zero-initialized *sattrs.
2670      */
2671     ARMCPU *cpu = env_archcpu(env);
2672     int r;
2673     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2674     int idau_region = IREGION_NOTVALID;
2675     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2676     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2677 
2678     if (cpu->idau) {
2679         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2680         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2681 
2682         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2683                    &idau_nsc);
2684     }
2685 
2686     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2687         /* 0xf0000000..0xffffffff is always S for insn fetches */
2688         return;
2689     }
2690 
2691     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2692         sattrs->ns = !is_secure;
2693         return;
2694     }
2695 
2696     if (idau_region != IREGION_NOTVALID) {
2697         sattrs->irvalid = true;
2698         sattrs->iregion = idau_region;
2699     }
2700 
2701     switch (env->sau.ctrl & 3) {
2702     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2703         break;
2704     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2705         sattrs->ns = true;
2706         break;
2707     default: /* SAU.ENABLE == 1 */
2708         for (r = 0; r < cpu->sau_sregion; r++) {
2709             if (env->sau.rlar[r] & 1) {
2710                 uint32_t base = env->sau.rbar[r] & ~0x1f;
2711                 uint32_t limit = env->sau.rlar[r] | 0x1f;
2712 
2713                 if (base <= address && limit >= address) {
2714                     if (base > addr_page_base || limit < addr_page_limit) {
2715                         sattrs->subpage = true;
2716                     }
2717                     if (sattrs->srvalid) {
2718                         /*
2719                          * If we hit in more than one region then we must report
2720                          * as Secure, not NS-Callable, with no valid region
2721                          * number info.
2722                          */
2723                         sattrs->ns = false;
2724                         sattrs->nsc = false;
2725                         sattrs->sregion = 0;
2726                         sattrs->srvalid = false;
2727                         break;
2728                     } else {
2729                         if (env->sau.rlar[r] & 2) {
2730                             sattrs->nsc = true;
2731                         } else {
2732                             sattrs->ns = true;
2733                         }
2734                         sattrs->srvalid = true;
2735                         sattrs->sregion = r;
2736                     }
2737                 } else {
2738                     /*
2739                      * Address not in this region. We must check whether the
2740                      * region covers addresses in the same page as our address.
2741                      * In that case we must not report a size that covers the
2742                      * whole page for a subsequent hit against a different MPU
2743                      * region or the background region, because it would result
2744                      * in incorrect TLB hits for subsequent accesses to
2745                      * addresses that are in this MPU region.
2746                      */
2747                     if (limit >= base &&
2748                         ranges_overlap(base, limit - base + 1,
2749                                        addr_page_base,
2750                                        TARGET_PAGE_SIZE)) {
2751                         sattrs->subpage = true;
2752                     }
2753                 }
2754             }
2755         }
2756         break;
2757     }
2758 
2759     /*
2760      * The IDAU will override the SAU lookup results if it specifies
2761      * higher security than the SAU does.
2762      */
2763     if (!idau_ns) {
2764         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2765             sattrs->ns = false;
2766             sattrs->nsc = idau_nsc;
2767         }
2768     }
2769 }
2770 
2771 static bool get_phys_addr_pmsav8(CPUARMState *env,
2772                                  S1Translate *ptw,
2773                                  uint32_t address,
2774                                  MMUAccessType access_type,
2775                                  GetPhysAddrResult *result,
2776                                  ARMMMUFaultInfo *fi)
2777 {
2778     V8M_SAttributes sattrs = {};
2779     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2780     bool secure = arm_space_is_secure(ptw->in_space);
2781     bool ret;
2782 
2783     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2784         v8m_security_lookup(env, address, access_type, mmu_idx,
2785                             secure, &sattrs);
2786         if (access_type == MMU_INST_FETCH) {
2787             /*
2788              * Instruction fetches always use the MMU bank and the
2789              * transaction attribute determined by the fetch address,
2790              * regardless of CPU state. This is painful for QEMU
2791              * to handle, because it would mean we need to encode
2792              * into the mmu_idx not just the (user, negpri) information
2793              * for the current security state but also that for the
2794              * other security state, which would balloon the number
2795              * of mmu_idx values needed alarmingly.
2796              * Fortunately we can avoid this because it's not actually
2797              * possible to arbitrarily execute code from memory with
2798              * the wrong security attribute: it will always generate
2799              * an exception of some kind or another, apart from the
2800              * special case of an NS CPU executing an SG instruction
2801              * in S&NSC memory. So we always just fail the translation
2802              * here and sort things out in the exception handler
2803              * (including possibly emulating an SG instruction).
2804              */
2805             if (sattrs.ns != !secure) {
2806                 if (sattrs.nsc) {
2807                     fi->type = ARMFault_QEMU_NSCExec;
2808                 } else {
2809                     fi->type = ARMFault_QEMU_SFault;
2810                 }
2811                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2812                 result->f.phys_addr = address;
2813                 result->f.prot = 0;
2814                 return true;
2815             }
2816         } else {
2817             /*
2818              * For data accesses we always use the MMU bank indicated
2819              * by the current CPU state, but the security attributes
2820              * might downgrade a secure access to nonsecure.
2821              */
2822             if (sattrs.ns) {
2823                 result->f.attrs.secure = false;
2824                 result->f.attrs.space = ARMSS_NonSecure;
2825             } else if (!secure) {
2826                 /*
2827                  * NS access to S memory must fault.
2828                  * Architecturally we should first check whether the
2829                  * MPU information for this address indicates that we
2830                  * are doing an unaligned access to Device memory, which
2831                  * should generate a UsageFault instead. QEMU does not
2832                  * currently check for that kind of unaligned access though.
2833                  * If we added it we would need to do so as a special case
2834                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2835                  */
2836                 fi->type = ARMFault_QEMU_SFault;
2837                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2838                 result->f.phys_addr = address;
2839                 result->f.prot = 0;
2840                 return true;
2841             }
2842         }
2843     }
2844 
2845     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2846                             result, fi, NULL);
2847     if (sattrs.subpage) {
2848         result->f.lg_page_size = 0;
2849     }
2850     return ret;
2851 }
2852 
2853 /*
2854  * Translate from the 4-bit stage 2 representation of
2855  * memory attributes (without cache-allocation hints) to
2856  * the 8-bit representation of the stage 1 MAIR registers
2857  * (which includes allocation hints).
2858  *
2859  * ref: shared/translation/attrs/S2AttrDecode()
2860  *      .../S2ConvertAttrsHints()
2861  */
2862 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2863 {
2864     uint8_t hiattr = extract32(s2attrs, 2, 2);
2865     uint8_t loattr = extract32(s2attrs, 0, 2);
2866     uint8_t hihint = 0, lohint = 0;
2867 
2868     if (hiattr != 0) { /* normal memory */
2869         if (hcr & HCR_CD) { /* cache disabled */
2870             hiattr = loattr = 1; /* non-cacheable */
2871         } else {
2872             if (hiattr != 1) { /* Write-through or write-back */
2873                 hihint = 3; /* RW allocate */
2874             }
2875             if (loattr != 1) { /* Write-through or write-back */
2876                 lohint = 3; /* RW allocate */
2877             }
2878         }
2879     }
2880 
2881     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2882 }
2883 
2884 /*
2885  * Combine either inner or outer cacheability attributes for normal
2886  * memory, according to table D4-42 and pseudocode procedure
2887  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2888  *
2889  * NB: only stage 1 includes allocation hints (RW bits), leading to
2890  * some asymmetry.
2891  */
2892 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2893 {
2894     if (s1 == 4 || s2 == 4) {
2895         /* non-cacheable has precedence */
2896         return 4;
2897     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2898         /* stage 1 write-through takes precedence */
2899         return s1;
2900     } else if (extract32(s2, 2, 2) == 2) {
2901         /* stage 2 write-through takes precedence, but the allocation hint
2902          * is still taken from stage 1
2903          */
2904         return (2 << 2) | extract32(s1, 0, 2);
2905     } else { /* write-back */
2906         return s1;
2907     }
2908 }
2909 
2910 /*
2911  * Combine the memory type and cacheability attributes of
2912  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2913  * combined attributes in MAIR_EL1 format.
2914  */
2915 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2916                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
2917 {
2918     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2919 
2920     if (s2.is_s2_format) {
2921         s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2922     } else {
2923         s2_mair_attrs = s2.attrs;
2924     }
2925 
2926     s1lo = extract32(s1.attrs, 0, 4);
2927     s2lo = extract32(s2_mair_attrs, 0, 4);
2928     s1hi = extract32(s1.attrs, 4, 4);
2929     s2hi = extract32(s2_mair_attrs, 4, 4);
2930 
2931     /* Combine memory type and cacheability attributes */
2932     if (s1hi == 0 || s2hi == 0) {
2933         /* Device has precedence over normal */
2934         if (s1lo == 0 || s2lo == 0) {
2935             /* nGnRnE has precedence over anything */
2936             ret_attrs = 0;
2937         } else if (s1lo == 4 || s2lo == 4) {
2938             /* non-Reordering has precedence over Reordering */
2939             ret_attrs = 4;  /* nGnRE */
2940         } else if (s1lo == 8 || s2lo == 8) {
2941             /* non-Gathering has precedence over Gathering */
2942             ret_attrs = 8;  /* nGRE */
2943         } else {
2944             ret_attrs = 0xc; /* GRE */
2945         }
2946     } else { /* Normal memory */
2947         /* Outer/inner cacheability combine independently */
2948         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2949                   | combine_cacheattr_nibble(s1lo, s2lo);
2950     }
2951     return ret_attrs;
2952 }
2953 
2954 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2955 {
2956     /*
2957      * Given the 4 bits specifying the outer or inner cacheability
2958      * in MAIR format, return a value specifying Normal Write-Back,
2959      * with the allocation and transient hints taken from the input
2960      * if the input specified some kind of cacheable attribute.
2961      */
2962     if (attr == 0 || attr == 4) {
2963         /*
2964          * 0 == an UNPREDICTABLE encoding
2965          * 4 == Non-cacheable
2966          * Either way, force Write-Back RW allocate non-transient
2967          */
2968         return 0xf;
2969     }
2970     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2971     return attr | 4;
2972 }
2973 
2974 /*
2975  * Combine the memory type and cacheability attributes of
2976  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2977  * combined attributes in MAIR_EL1 format.
2978  */
2979 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2980 {
2981     assert(s2.is_s2_format && !s1.is_s2_format);
2982 
2983     switch (s2.attrs) {
2984     case 7:
2985         /* Use stage 1 attributes */
2986         return s1.attrs;
2987     case 6:
2988         /*
2989          * Force Normal Write-Back. Note that if S1 is Normal cacheable
2990          * then we take the allocation hints from it; otherwise it is
2991          * RW allocate, non-transient.
2992          */
2993         if ((s1.attrs & 0xf0) == 0) {
2994             /* S1 is Device */
2995             return 0xff;
2996         }
2997         /* Need to check the Inner and Outer nibbles separately */
2998         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2999             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
3000     case 5:
3001         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
3002         if ((s1.attrs & 0xf0) == 0) {
3003             return s1.attrs;
3004         }
3005         return 0x44;
3006     case 0 ... 3:
3007         /* Force Device, of subtype specified by S2 */
3008         return s2.attrs << 2;
3009     default:
3010         /*
3011          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
3012          * arbitrarily force Device.
3013          */
3014         return 0;
3015     }
3016 }
3017 
3018 /*
3019  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
3020  * and CombineS1S2Desc()
3021  *
3022  * @env:     CPUARMState
3023  * @s1:      Attributes from stage 1 walk
3024  * @s2:      Attributes from stage 2 walk
3025  */
3026 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
3027                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
3028 {
3029     ARMCacheAttrs ret;
3030     bool tagged = false;
3031 
3032     assert(!s1.is_s2_format);
3033     ret.is_s2_format = false;
3034     ret.guarded = s1.guarded;
3035 
3036     if (s1.attrs == 0xf0) {
3037         tagged = true;
3038         s1.attrs = 0xff;
3039     }
3040 
3041     /* Combine shareability attributes (table D4-43) */
3042     if (s1.shareability == 2 || s2.shareability == 2) {
3043         /* if either are outer-shareable, the result is outer-shareable */
3044         ret.shareability = 2;
3045     } else if (s1.shareability == 3 || s2.shareability == 3) {
3046         /* if either are inner-shareable, the result is inner-shareable */
3047         ret.shareability = 3;
3048     } else {
3049         /* both non-shareable */
3050         ret.shareability = 0;
3051     }
3052 
3053     /* Combine memory type and cacheability attributes */
3054     if (hcr & HCR_FWB) {
3055         ret.attrs = combined_attrs_fwb(s1, s2);
3056     } else {
3057         ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
3058     }
3059 
3060     /*
3061      * Any location for which the resultant memory type is any
3062      * type of Device memory is always treated as Outer Shareable.
3063      * Any location for which the resultant memory type is Normal
3064      * Inner Non-cacheable, Outer Non-cacheable is always treated
3065      * as Outer Shareable.
3066      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
3067      */
3068     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
3069         ret.shareability = 2;
3070     }
3071 
3072     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
3073     if (tagged && ret.attrs == 0xff) {
3074         ret.attrs = 0xf0;
3075     }
3076 
3077     return ret;
3078 }
3079 
3080 /*
3081  * MMU disabled.  S1 addresses within aa64 translation regimes are
3082  * still checked for bounds -- see AArch64.S1DisabledOutput().
3083  */
3084 static bool get_phys_addr_disabled(CPUARMState *env,
3085                                    S1Translate *ptw,
3086                                    target_ulong address,
3087                                    MMUAccessType access_type,
3088                                    GetPhysAddrResult *result,
3089                                    ARMMMUFaultInfo *fi)
3090 {
3091     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3092     uint8_t memattr = 0x00;    /* Device nGnRnE */
3093     uint8_t shareability = 0;  /* non-shareable */
3094     int r_el;
3095 
3096     switch (mmu_idx) {
3097     case ARMMMUIdx_Stage2:
3098     case ARMMMUIdx_Stage2_S:
3099     case ARMMMUIdx_Phys_S:
3100     case ARMMMUIdx_Phys_NS:
3101     case ARMMMUIdx_Phys_Root:
3102     case ARMMMUIdx_Phys_Realm:
3103         break;
3104 
3105     default:
3106         r_el = regime_el(env, mmu_idx);
3107         if (arm_el_is_aa64(env, r_el)) {
3108             int pamax = arm_pamax(env_archcpu(env));
3109             uint64_t tcr = env->cp15.tcr_el[r_el];
3110             int addrtop, tbi;
3111 
3112             tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
3113             if (access_type == MMU_INST_FETCH) {
3114                 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
3115             }
3116             tbi = (tbi >> extract64(address, 55, 1)) & 1;
3117             addrtop = (tbi ? 55 : 63);
3118 
3119             if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
3120                 fi->type = ARMFault_AddressSize;
3121                 fi->level = 0;
3122                 fi->stage2 = false;
3123                 return 1;
3124             }
3125 
3126             /*
3127              * When TBI is disabled, we've just validated that all of the
3128              * bits above PAMax are zero, so logically we only need to
3129              * clear the top byte for TBI.  But it's clearer to follow
3130              * the pseudocode set of addrdesc.paddress.
3131              */
3132             address = extract64(address, 0, 52);
3133         }
3134 
3135         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3136         if (r_el == 1) {
3137             uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
3138             if (hcr & HCR_DC) {
3139                 if (hcr & HCR_DCT) {
3140                     memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
3141                 } else {
3142                     memattr = 0xff;  /* Normal, WB, RWA */
3143                 }
3144             }
3145         }
3146         if (memattr == 0) {
3147             if (access_type == MMU_INST_FETCH) {
3148                 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3149                     memattr = 0xee;  /* Normal, WT, RA, NT */
3150                 } else {
3151                     memattr = 0x44;  /* Normal, NC, No */
3152                 }
3153             }
3154             shareability = 2; /* outer shareable */
3155         }
3156         result->cacheattrs.is_s2_format = false;
3157         break;
3158     }
3159 
3160     result->f.phys_addr = address;
3161     result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3162     result->f.lg_page_size = TARGET_PAGE_BITS;
3163     result->cacheattrs.shareability = shareability;
3164     result->cacheattrs.attrs = memattr;
3165     return false;
3166 }
3167 
3168 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3169                                    target_ulong address,
3170                                    MMUAccessType access_type,
3171                                    GetPhysAddrResult *result,
3172                                    ARMMMUFaultInfo *fi)
3173 {
3174     hwaddr ipa;
3175     int s1_prot, s1_lgpgsz;
3176     ARMSecuritySpace in_space = ptw->in_space;
3177     bool ret, ipa_secure;
3178     ARMCacheAttrs cacheattrs1;
3179     ARMSecuritySpace ipa_space;
3180     uint64_t hcr;
3181 
3182     ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi);
3183 
3184     /* If S1 fails, return early.  */
3185     if (ret) {
3186         return ret;
3187     }
3188 
3189     ipa = result->f.phys_addr;
3190     ipa_secure = result->f.attrs.secure;
3191     ipa_space = result->f.attrs.space;
3192 
3193     ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3194     ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3195     ptw->in_space = ipa_space;
3196     ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3197 
3198     /*
3199      * S1 is done, now do S2 translation.
3200      * Save the stage1 results so that we may merge prot and cacheattrs later.
3201      */
3202     s1_prot = result->f.prot;
3203     s1_lgpgsz = result->f.lg_page_size;
3204     cacheattrs1 = result->cacheattrs;
3205     memset(result, 0, sizeof(*result));
3206 
3207     ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi);
3208     fi->s2addr = ipa;
3209 
3210     /* Combine the S1 and S2 perms.  */
3211     result->f.prot &= s1_prot;
3212 
3213     /* If S2 fails, return early.  */
3214     if (ret) {
3215         return ret;
3216     }
3217 
3218     /*
3219      * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3220      * this means "don't put this in the TLB"; in this case, return a
3221      * result with lg_page_size == 0 to achieve that. Otherwise,
3222      * use the maximum of the S1 & S2 page size, so that invalidation
3223      * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3224      * we know the combined result permissions etc only cover the minimum
3225      * of the S1 and S2 page size, because we know that the common TLB code
3226      * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3227      * and passing a larger page size value only affects invalidations.)
3228      */
3229     if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3230         s1_lgpgsz < TARGET_PAGE_BITS) {
3231         result->f.lg_page_size = 0;
3232     } else if (result->f.lg_page_size < s1_lgpgsz) {
3233         result->f.lg_page_size = s1_lgpgsz;
3234     }
3235 
3236     /* Combine the S1 and S2 cache attributes. */
3237     hcr = arm_hcr_el2_eff_secstate(env, in_space);
3238     if (hcr & HCR_DC) {
3239         /*
3240          * HCR.DC forces the first stage attributes to
3241          *  Normal Non-Shareable,
3242          *  Inner Write-Back Read-Allocate Write-Allocate,
3243          *  Outer Write-Back Read-Allocate Write-Allocate.
3244          * Do not overwrite Tagged within attrs.
3245          */
3246         if (cacheattrs1.attrs != 0xf0) {
3247             cacheattrs1.attrs = 0xff;
3248         }
3249         cacheattrs1.shareability = 0;
3250     }
3251     result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3252                                             result->cacheattrs);
3253 
3254     /*
3255      * Check if IPA translates to secure or non-secure PA space.
3256      * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3257      */
3258     if (in_space == ARMSS_Secure) {
3259         result->f.attrs.secure =
3260             !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3261             && (ipa_secure
3262                 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
3263         result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
3264     }
3265 
3266     return false;
3267 }
3268 
3269 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3270                                       target_ulong address,
3271                                       MMUAccessType access_type,
3272                                       GetPhysAddrResult *result,
3273                                       ARMMMUFaultInfo *fi)
3274 {
3275     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3276     ARMMMUIdx s1_mmu_idx;
3277 
3278     /*
3279      * The page table entries may downgrade Secure to NonSecure, but
3280      * cannot upgrade a NonSecure translation regime's attributes
3281      * to Secure or Realm.
3282      */
3283     result->f.attrs.space = ptw->in_space;
3284     result->f.attrs.secure = arm_space_is_secure(ptw->in_space);
3285 
3286     switch (mmu_idx) {
3287     case ARMMMUIdx_Phys_S:
3288     case ARMMMUIdx_Phys_NS:
3289     case ARMMMUIdx_Phys_Root:
3290     case ARMMMUIdx_Phys_Realm:
3291         /* Checking Phys early avoids special casing later vs regime_el. */
3292         return get_phys_addr_disabled(env, ptw, address, access_type,
3293                                       result, fi);
3294 
3295     case ARMMMUIdx_Stage1_E0:
3296     case ARMMMUIdx_Stage1_E1:
3297     case ARMMMUIdx_Stage1_E1_PAN:
3298         /*
3299          * First stage lookup uses second stage for ptw; only
3300          * Secure has both S and NS IPA and starts with Stage2_S.
3301          */
3302         ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ?
3303             ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3304         break;
3305 
3306     case ARMMMUIdx_Stage2:
3307     case ARMMMUIdx_Stage2_S:
3308         /*
3309          * Second stage lookup uses physical for ptw; whether this is S or
3310          * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3311          * the Secure EL2&0 regime.
3312          */
3313         ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3314         break;
3315 
3316     case ARMMMUIdx_E10_0:
3317         s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3318         goto do_twostage;
3319     case ARMMMUIdx_E10_1:
3320         s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3321         goto do_twostage;
3322     case ARMMMUIdx_E10_1_PAN:
3323         s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3324     do_twostage:
3325         /*
3326          * Call ourselves recursively to do the stage 1 and then stage 2
3327          * translations if mmu_idx is a two-stage regime, and EL2 present.
3328          * Otherwise, a stage1+stage2 translation is just stage 1.
3329          */
3330         ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3331         if (arm_feature(env, ARM_FEATURE_EL2) &&
3332             !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) {
3333             return get_phys_addr_twostage(env, ptw, address, access_type,
3334                                           result, fi);
3335         }
3336         /* fall through */
3337 
3338     default:
3339         /* Single stage uses physical for ptw. */
3340         ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3341         break;
3342     }
3343 
3344     result->f.attrs.user = regime_is_user(env, mmu_idx);
3345 
3346     /*
3347      * Fast Context Switch Extension. This doesn't exist at all in v8.
3348      * In v7 and earlier it affects all stage 1 translations.
3349      */
3350     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3351         && !arm_feature(env, ARM_FEATURE_V8)) {
3352         if (regime_el(env, mmu_idx) == 3) {
3353             address += env->cp15.fcseidr_s;
3354         } else {
3355             address += env->cp15.fcseidr_ns;
3356         }
3357     }
3358 
3359     if (arm_feature(env, ARM_FEATURE_PMSA)) {
3360         bool ret;
3361         result->f.lg_page_size = TARGET_PAGE_BITS;
3362 
3363         if (arm_feature(env, ARM_FEATURE_V8)) {
3364             /* PMSAv8 */
3365             ret = get_phys_addr_pmsav8(env, ptw, address, access_type,
3366                                        result, fi);
3367         } else if (arm_feature(env, ARM_FEATURE_V7)) {
3368             /* PMSAv7 */
3369             ret = get_phys_addr_pmsav7(env, ptw, address, access_type,
3370                                        result, fi);
3371         } else {
3372             /* Pre-v7 MPU */
3373             ret = get_phys_addr_pmsav5(env, ptw, address, access_type,
3374                                        result, fi);
3375         }
3376         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3377                       " mmu_idx %u -> %s (prot %c%c%c)\n",
3378                       access_type == MMU_DATA_LOAD ? "reading" :
3379                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3380                       (uint32_t)address, mmu_idx,
3381                       ret ? "Miss" : "Hit",
3382                       result->f.prot & PAGE_READ ? 'r' : '-',
3383                       result->f.prot & PAGE_WRITE ? 'w' : '-',
3384                       result->f.prot & PAGE_EXEC ? 'x' : '-');
3385 
3386         return ret;
3387     }
3388 
3389     /* Definitely a real MMU, not an MPU */
3390 
3391     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
3392         return get_phys_addr_disabled(env, ptw, address, access_type,
3393                                       result, fi);
3394     }
3395 
3396     if (regime_using_lpae_format(env, mmu_idx)) {
3397         return get_phys_addr_lpae(env, ptw, address, access_type, result, fi);
3398     } else if (arm_feature(env, ARM_FEATURE_V7) ||
3399                regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3400         return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3401     } else {
3402         return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3403     }
3404 }
3405 
3406 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3407                               target_ulong address,
3408                               MMUAccessType access_type,
3409                               GetPhysAddrResult *result,
3410                               ARMMMUFaultInfo *fi)
3411 {
3412     if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) {
3413         return true;
3414     }
3415     if (!granule_protection_check(env, result->f.phys_addr,
3416                                   result->f.attrs.space, fi)) {
3417         fi->type = ARMFault_GPCFOnOutput;
3418         return true;
3419     }
3420     return false;
3421 }
3422 
3423 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
3424                                     MMUAccessType access_type,
3425                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
3426                                     GetPhysAddrResult *result,
3427                                     ARMMMUFaultInfo *fi)
3428 {
3429     S1Translate ptw = {
3430         .in_mmu_idx = mmu_idx,
3431         .in_space = space,
3432     };
3433     return get_phys_addr_nogpc(env, &ptw, address, access_type, result, fi);
3434 }
3435 
3436 bool get_phys_addr(CPUARMState *env, target_ulong address,
3437                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
3438                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3439 {
3440     S1Translate ptw = {
3441         .in_mmu_idx = mmu_idx,
3442     };
3443     ARMSecuritySpace ss;
3444 
3445     switch (mmu_idx) {
3446     case ARMMMUIdx_E10_0:
3447     case ARMMMUIdx_E10_1:
3448     case ARMMMUIdx_E10_1_PAN:
3449     case ARMMMUIdx_E20_0:
3450     case ARMMMUIdx_E20_2:
3451     case ARMMMUIdx_E20_2_PAN:
3452     case ARMMMUIdx_Stage1_E0:
3453     case ARMMMUIdx_Stage1_E1:
3454     case ARMMMUIdx_Stage1_E1_PAN:
3455     case ARMMMUIdx_E2:
3456         ss = arm_security_space_below_el3(env);
3457         break;
3458     case ARMMMUIdx_Stage2:
3459         /*
3460          * For Secure EL2, we need this index to be NonSecure;
3461          * otherwise this will already be NonSecure or Realm.
3462          */
3463         ss = arm_security_space_below_el3(env);
3464         if (ss == ARMSS_Secure) {
3465             ss = ARMSS_NonSecure;
3466         }
3467         break;
3468     case ARMMMUIdx_Phys_NS:
3469     case ARMMMUIdx_MPrivNegPri:
3470     case ARMMMUIdx_MUserNegPri:
3471     case ARMMMUIdx_MPriv:
3472     case ARMMMUIdx_MUser:
3473         ss = ARMSS_NonSecure;
3474         break;
3475     case ARMMMUIdx_Stage2_S:
3476     case ARMMMUIdx_Phys_S:
3477     case ARMMMUIdx_MSPrivNegPri:
3478     case ARMMMUIdx_MSUserNegPri:
3479     case ARMMMUIdx_MSPriv:
3480     case ARMMMUIdx_MSUser:
3481         ss = ARMSS_Secure;
3482         break;
3483     case ARMMMUIdx_E3:
3484         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3485             cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3486             ss = ARMSS_Root;
3487         } else {
3488             ss = ARMSS_Secure;
3489         }
3490         break;
3491     case ARMMMUIdx_Phys_Root:
3492         ss = ARMSS_Root;
3493         break;
3494     case ARMMMUIdx_Phys_Realm:
3495         ss = ARMSS_Realm;
3496         break;
3497     default:
3498         g_assert_not_reached();
3499     }
3500 
3501     ptw.in_space = ss;
3502     return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi);
3503 }
3504 
3505 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3506                                          MemTxAttrs *attrs)
3507 {
3508     ARMCPU *cpu = ARM_CPU(cs);
3509     CPUARMState *env = &cpu->env;
3510     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3511     ARMSecuritySpace ss = arm_security_space(env);
3512     S1Translate ptw = {
3513         .in_mmu_idx = mmu_idx,
3514         .in_space = ss,
3515         .in_debug = true,
3516     };
3517     GetPhysAddrResult res = {};
3518     ARMMMUFaultInfo fi = {};
3519     bool ret;
3520 
3521     ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3522     *attrs = res.f.attrs;
3523 
3524     if (ret) {
3525         return -1;
3526     }
3527     return res.f.phys_addr;
3528 }
3529