1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "qemu/main-loop.h" 13 #include "exec/exec-all.h" 14 #include "exec/page-protection.h" 15 #include "cpu.h" 16 #include "internals.h" 17 #include "cpu-features.h" 18 #include "idau.h" 19 #ifdef CONFIG_TCG 20 # include "tcg/oversized-guest.h" 21 #endif 22 23 typedef struct S1Translate { 24 /* 25 * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk. 26 * Together with in_space, specifies the architectural translation regime. 27 */ 28 ARMMMUIdx in_mmu_idx; 29 /* 30 * in_ptw_idx: specifies which mmuidx to use for the actual 31 * page table descriptor load operations. This will be one of the 32 * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes. 33 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 34 * this field is updated accordingly. 35 */ 36 ARMMMUIdx in_ptw_idx; 37 /* 38 * in_space: the security space for this walk. This plus 39 * the in_mmu_idx specify the architectural translation regime. 40 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 41 * this field is updated accordingly. 42 * 43 * Note that the security space for the in_ptw_idx may be different 44 * from that for the in_mmu_idx. We do not need to explicitly track 45 * the in_ptw_idx security space because: 46 * - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx 47 * itself specifies the security space 48 * - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security 49 * space used for ptw reads is the same as that of the security 50 * space of the stage 1 translation for all cases except where 51 * stage 1 is Secure; in that case the only possibilities for 52 * the ptw read are Secure and NonSecure, and the in_ptw_idx 53 * value being Stage2 vs Stage2_S distinguishes those. 54 */ 55 ARMSecuritySpace in_space; 56 /* 57 * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug 58 * accesses will not update the guest page table access flags 59 * and will not change the state of the softmmu TLBs. 60 */ 61 bool in_debug; 62 /* 63 * If this is stage 2 of a stage 1+2 page table walk, then this must 64 * be true if stage 1 is an EL0 access; otherwise this is ignored. 65 * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}. 66 */ 67 bool in_s1_is_el0; 68 bool out_rw; 69 bool out_be; 70 ARMSecuritySpace out_space; 71 hwaddr out_virt; 72 hwaddr out_phys; 73 void *out_host; 74 } S1Translate; 75 76 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 77 vaddr address, 78 MMUAccessType access_type, 79 GetPhysAddrResult *result, 80 ARMMMUFaultInfo *fi); 81 82 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 83 vaddr address, 84 MMUAccessType access_type, 85 GetPhysAddrResult *result, 86 ARMMMUFaultInfo *fi); 87 88 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 89 static const uint8_t pamax_map[] = { 90 [0] = 32, 91 [1] = 36, 92 [2] = 40, 93 [3] = 42, 94 [4] = 44, 95 [5] = 48, 96 [6] = 52, 97 }; 98 99 /* 100 * The cpu-specific constant value of PAMax; also used by hw/arm/virt. 101 * Note that machvirt_init calls this on a CPU that is inited but not realized! 102 */ 103 unsigned int arm_pamax(ARMCPU *cpu) 104 { 105 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 106 unsigned int parange = 107 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 108 109 /* 110 * id_aa64mmfr0 is a read-only register so values outside of the 111 * supported mappings can be considered an implementation error. 112 */ 113 assert(parange < ARRAY_SIZE(pamax_map)); 114 return pamax_map[parange]; 115 } 116 117 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 118 /* v7 or v8 with LPAE */ 119 return 40; 120 } 121 /* Anything else */ 122 return 32; 123 } 124 125 /* 126 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 127 */ 128 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 129 { 130 switch (mmu_idx) { 131 case ARMMMUIdx_E10_0: 132 return ARMMMUIdx_Stage1_E0; 133 case ARMMMUIdx_E10_1: 134 return ARMMMUIdx_Stage1_E1; 135 case ARMMMUIdx_E10_1_PAN: 136 return ARMMMUIdx_Stage1_E1_PAN; 137 default: 138 return mmu_idx; 139 } 140 } 141 142 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 143 { 144 return stage_1_mmu_idx(arm_mmu_idx(env)); 145 } 146 147 /* 148 * Return where we should do ptw loads from for a stage 2 walk. 149 * This depends on whether the address we are looking up is a 150 * Secure IPA or a NonSecure IPA, which we know from whether this is 151 * Stage2 or Stage2_S. 152 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits. 153 */ 154 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx) 155 { 156 bool s2walk_secure; 157 158 /* 159 * We're OK to check the current state of the CPU here because 160 * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit 161 * changes. 162 * (2) there's no way to do a lookup that cares about Stage 2 for a 163 * different security state to the current one for AArch64, and AArch32 164 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do 165 * an NS stage 1+2 lookup while the NS bit is 0.) 166 */ 167 if (!arm_el_is_aa64(env, 3)) { 168 return ARMMMUIdx_Phys_NS; 169 } 170 171 switch (arm_security_space_below_el3(env)) { 172 case ARMSS_NonSecure: 173 return ARMMMUIdx_Phys_NS; 174 case ARMSS_Realm: 175 return ARMMMUIdx_Phys_Realm; 176 case ARMSS_Secure: 177 if (stage2idx == ARMMMUIdx_Stage2_S) { 178 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW); 179 } else { 180 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW); 181 } 182 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 183 default: 184 g_assert_not_reached(); 185 } 186 } 187 188 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 189 { 190 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 191 } 192 193 /* Return the TTBR associated with this translation regime */ 194 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 195 { 196 if (mmu_idx == ARMMMUIdx_Stage2) { 197 return env->cp15.vttbr_el2; 198 } 199 if (mmu_idx == ARMMMUIdx_Stage2_S) { 200 return env->cp15.vsttbr_el2; 201 } 202 if (ttbrn == 0) { 203 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 204 } else { 205 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 206 } 207 } 208 209 /* Return true if the specified stage of address translation is disabled */ 210 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, 211 ARMSecuritySpace space) 212 { 213 uint64_t hcr_el2; 214 215 if (arm_feature(env, ARM_FEATURE_M)) { 216 bool is_secure = arm_space_is_secure(space); 217 switch (env->v7m.mpu_ctrl[is_secure] & 218 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 219 case R_V7M_MPU_CTRL_ENABLE_MASK: 220 /* Enabled, but not for HardFault and NMI */ 221 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 222 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 223 /* Enabled for all cases */ 224 return false; 225 case 0: 226 default: 227 /* 228 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 229 * we warned about that in armv7m_nvic.c when the guest set it. 230 */ 231 return true; 232 } 233 } 234 235 236 switch (mmu_idx) { 237 case ARMMMUIdx_Stage2: 238 case ARMMMUIdx_Stage2_S: 239 /* HCR.DC means HCR.VM behaves as 1 */ 240 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 241 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 242 243 case ARMMMUIdx_E10_0: 244 case ARMMMUIdx_E10_1: 245 case ARMMMUIdx_E10_1_PAN: 246 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ 247 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 248 if (hcr_el2 & HCR_TGE) { 249 return true; 250 } 251 break; 252 253 case ARMMMUIdx_Stage1_E0: 254 case ARMMMUIdx_Stage1_E1: 255 case ARMMMUIdx_Stage1_E1_PAN: 256 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 257 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 258 if (hcr_el2 & HCR_DC) { 259 return true; 260 } 261 break; 262 263 case ARMMMUIdx_E20_0: 264 case ARMMMUIdx_E20_2: 265 case ARMMMUIdx_E20_2_PAN: 266 case ARMMMUIdx_E2: 267 case ARMMMUIdx_E3: 268 break; 269 270 case ARMMMUIdx_Phys_S: 271 case ARMMMUIdx_Phys_NS: 272 case ARMMMUIdx_Phys_Root: 273 case ARMMMUIdx_Phys_Realm: 274 /* No translation for physical address spaces. */ 275 return true; 276 277 default: 278 g_assert_not_reached(); 279 } 280 281 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 282 } 283 284 static bool granule_protection_check(CPUARMState *env, uint64_t paddress, 285 ARMSecuritySpace pspace, 286 ARMMMUFaultInfo *fi) 287 { 288 MemTxAttrs attrs = { 289 .secure = true, 290 .space = ARMSS_Root, 291 }; 292 ARMCPU *cpu = env_archcpu(env); 293 uint64_t gpccr = env->cp15.gpccr_el3; 294 unsigned pps, pgs, l0gptsz, level = 0; 295 uint64_t tableaddr, pps_mask, align, entry, index; 296 AddressSpace *as; 297 MemTxResult result; 298 int gpi; 299 300 if (!FIELD_EX64(gpccr, GPCCR, GPC)) { 301 return true; 302 } 303 304 /* 305 * GPC Priority 1 (R_GMGRR): 306 * R_JWCSM: If the configuration of GPCCR_EL3 is invalid, 307 * the access fails as GPT walk fault at level 0. 308 */ 309 310 /* 311 * Configuration of PPS to a value exceeding the implemented 312 * physical address size is invalid. 313 */ 314 pps = FIELD_EX64(gpccr, GPCCR, PPS); 315 if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) { 316 goto fault_walk; 317 } 318 pps = pamax_map[pps]; 319 pps_mask = MAKE_64BIT_MASK(0, pps); 320 321 switch (FIELD_EX64(gpccr, GPCCR, SH)) { 322 case 0b10: /* outer shareable */ 323 break; 324 case 0b00: /* non-shareable */ 325 case 0b11: /* inner shareable */ 326 /* Inner and Outer non-cacheable requires Outer shareable. */ 327 if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 && 328 FIELD_EX64(gpccr, GPCCR, IRGN) == 0) { 329 goto fault_walk; 330 } 331 break; 332 default: /* reserved */ 333 goto fault_walk; 334 } 335 336 switch (FIELD_EX64(gpccr, GPCCR, PGS)) { 337 case 0b00: /* 4KB */ 338 pgs = 12; 339 break; 340 case 0b01: /* 64KB */ 341 pgs = 16; 342 break; 343 case 0b10: /* 16KB */ 344 pgs = 14; 345 break; 346 default: /* reserved */ 347 goto fault_walk; 348 } 349 350 /* Note this field is read-only and fixed at reset. */ 351 l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ); 352 353 /* 354 * GPC Priority 2: Secure, Realm or Root address exceeds PPS. 355 * R_CPDSB: A NonSecure physical address input exceeding PPS 356 * does not experience any fault. 357 */ 358 if (paddress & ~pps_mask) { 359 if (pspace == ARMSS_NonSecure) { 360 return true; 361 } 362 goto fault_size; 363 } 364 365 /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */ 366 tableaddr = env->cp15.gptbr_el3 << 12; 367 if (tableaddr & ~pps_mask) { 368 goto fault_size; 369 } 370 371 /* 372 * BADDR is aligned per a function of PPS and L0GPTSZ. 373 * These bits of GPTBR_EL3 are RES0, but are not a configuration error, 374 * unlike the RES0 bits of the GPT entries (R_XNKFZ). 375 */ 376 align = MAX(pps - l0gptsz + 3, 12); 377 align = MAKE_64BIT_MASK(0, align); 378 tableaddr &= ~align; 379 380 as = arm_addressspace(env_cpu(env), attrs); 381 382 /* Level 0 lookup. */ 383 index = extract64(paddress, l0gptsz, pps - l0gptsz); 384 tableaddr += index * 8; 385 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 386 if (result != MEMTX_OK) { 387 goto fault_eabt; 388 } 389 390 switch (extract32(entry, 0, 4)) { 391 case 1: /* block descriptor */ 392 if (entry >> 8) { 393 goto fault_walk; /* RES0 bits not 0 */ 394 } 395 gpi = extract32(entry, 4, 4); 396 goto found; 397 case 3: /* table descriptor */ 398 tableaddr = entry & ~0xf; 399 align = MAX(l0gptsz - pgs - 1, 12); 400 align = MAKE_64BIT_MASK(0, align); 401 if (tableaddr & (~pps_mask | align)) { 402 goto fault_walk; /* RES0 bits not 0 */ 403 } 404 break; 405 default: /* invalid */ 406 goto fault_walk; 407 } 408 409 /* Level 1 lookup */ 410 level = 1; 411 index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4); 412 tableaddr += index * 8; 413 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 414 if (result != MEMTX_OK) { 415 goto fault_eabt; 416 } 417 418 switch (extract32(entry, 0, 4)) { 419 case 1: /* contiguous descriptor */ 420 if (entry >> 10) { 421 goto fault_walk; /* RES0 bits not 0 */ 422 } 423 /* 424 * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE, 425 * and because we cannot invalidate by pa, and thus will always 426 * flush entire tlbs, we don't actually care about the range here 427 * and can simply extract the GPI as the result. 428 */ 429 if (extract32(entry, 8, 2) == 0) { 430 goto fault_walk; /* reserved contig */ 431 } 432 gpi = extract32(entry, 4, 4); 433 break; 434 default: 435 index = extract64(paddress, pgs, 4); 436 gpi = extract64(entry, index * 4, 4); 437 break; 438 } 439 440 found: 441 switch (gpi) { 442 case 0b0000: /* no access */ 443 break; 444 case 0b1111: /* all access */ 445 return true; 446 case 0b1000: 447 case 0b1001: 448 case 0b1010: 449 case 0b1011: 450 if (pspace == (gpi & 3)) { 451 return true; 452 } 453 break; 454 default: 455 goto fault_walk; /* reserved */ 456 } 457 458 fi->gpcf = GPCF_Fail; 459 goto fault_common; 460 fault_eabt: 461 fi->gpcf = GPCF_EABT; 462 goto fault_common; 463 fault_size: 464 fi->gpcf = GPCF_AddressSize; 465 goto fault_common; 466 fault_walk: 467 fi->gpcf = GPCF_Walk; 468 fault_common: 469 fi->level = level; 470 fi->paddr = paddress; 471 fi->paddr_space = pspace; 472 return false; 473 } 474 475 static bool S1_attrs_are_device(uint8_t attrs) 476 { 477 /* 478 * This slightly under-decodes the MAIR_ELx field: 479 * 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE; 480 * 0b0000dd1x is UNPREDICTABLE. 481 */ 482 return (attrs & 0xf0) == 0; 483 } 484 485 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) 486 { 487 /* 488 * For an S1 page table walk, the stage 1 attributes are always 489 * some form of "this is Normal memory". The combined S1+S2 490 * attributes are therefore only Device if stage 2 specifies Device. 491 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 492 * ie when cacheattrs.attrs bits [3:2] are 0b00. 493 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 494 * when cacheattrs.attrs bit [2] is 0. 495 */ 496 if (hcr & HCR_FWB) { 497 return (attrs & 0x4) == 0; 498 } else { 499 return (attrs & 0xc) == 0; 500 } 501 } 502 503 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space, 504 ARMMMUIdx s2_mmu_idx) 505 { 506 /* 507 * Return the security space to use for stage 2 when doing 508 * the S1 page table descriptor load. 509 */ 510 if (regime_is_stage2(s2_mmu_idx)) { 511 /* 512 * The security space for ptw reads is almost always the same 513 * as that of the security space of the stage 1 translation. 514 * The only exception is when stage 1 is Secure; in that case 515 * the ptw read might be to the Secure or the NonSecure space 516 * (but never Realm or Root), and the s2_mmu_idx tells us which. 517 * Root translations are always single-stage. 518 */ 519 if (s1_space == ARMSS_Secure) { 520 return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S); 521 } else { 522 assert(s2_mmu_idx != ARMMMUIdx_Stage2_S); 523 assert(s1_space != ARMSS_Root); 524 return s1_space; 525 } 526 } else { 527 /* ptw loads are from phys: the mmu idx itself says which space */ 528 return arm_phys_to_space(s2_mmu_idx); 529 } 530 } 531 532 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx) 533 { 534 /* 535 * For stage 2 faults in Secure EL22, S1NS indicates 536 * whether the faulting IPA is in the Secure or NonSecure 537 * IPA space. For all other kinds of fault, it is false. 538 */ 539 return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx) 540 && s2_mmu_idx == ARMMMUIdx_Stage2_S; 541 } 542 543 /* Translate a S1 pagetable walk through S2 if needed. */ 544 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, 545 hwaddr addr, ARMMMUFaultInfo *fi) 546 { 547 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 548 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx; 549 uint8_t pte_attrs; 550 551 ptw->out_virt = addr; 552 553 if (unlikely(ptw->in_debug)) { 554 /* 555 * From gdbstub, do not use softmmu so that we don't modify the 556 * state of the cpu at all, including softmmu tlb contents. 557 */ 558 ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx); 559 S1Translate s2ptw = { 560 .in_mmu_idx = s2_mmu_idx, 561 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx), 562 .in_space = s2_space, 563 .in_debug = true, 564 }; 565 GetPhysAddrResult s2 = { }; 566 567 if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) { 568 goto fail; 569 } 570 571 ptw->out_phys = s2.f.phys_addr; 572 pte_attrs = s2.cacheattrs.attrs; 573 ptw->out_host = NULL; 574 ptw->out_rw = false; 575 ptw->out_space = s2.f.attrs.space; 576 } else { 577 #ifdef CONFIG_TCG 578 CPUTLBEntryFull *full; 579 int flags; 580 581 env->tlb_fi = fi; 582 flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD, 583 arm_to_core_mmu_idx(s2_mmu_idx), 584 &ptw->out_host, &full); 585 env->tlb_fi = NULL; 586 587 if (unlikely(flags & TLB_INVALID_MASK)) { 588 goto fail; 589 } 590 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 591 ptw->out_rw = full->prot & PAGE_WRITE; 592 pte_attrs = full->extra.arm.pte_attrs; 593 ptw->out_space = full->attrs.space; 594 #else 595 g_assert_not_reached(); 596 #endif 597 } 598 599 if (regime_is_stage2(s2_mmu_idx)) { 600 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 601 602 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { 603 /* 604 * PTW set and S1 walk touched S2 Device memory: 605 * generate Permission fault. 606 */ 607 fi->type = ARMFault_Permission; 608 fi->s2addr = addr; 609 fi->stage2 = true; 610 fi->s1ptw = true; 611 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 612 return false; 613 } 614 } 615 616 ptw->out_be = regime_translation_big_endian(env, mmu_idx); 617 return true; 618 619 fail: 620 assert(fi->type != ARMFault_None); 621 if (fi->type == ARMFault_GPCFOnOutput) { 622 fi->type = ARMFault_GPCFOnWalk; 623 } 624 fi->s2addr = addr; 625 fi->stage2 = regime_is_stage2(s2_mmu_idx); 626 fi->s1ptw = fi->stage2; 627 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 628 return false; 629 } 630 631 /* All loads done in the course of a page table walk go through here. */ 632 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, 633 ARMMMUFaultInfo *fi) 634 { 635 CPUState *cs = env_cpu(env); 636 void *host = ptw->out_host; 637 uint32_t data; 638 639 if (likely(host)) { 640 /* Page tables are in RAM, and we have the host address. */ 641 data = qatomic_read((uint32_t *)host); 642 if (ptw->out_be) { 643 data = be32_to_cpu(data); 644 } else { 645 data = le32_to_cpu(data); 646 } 647 } else { 648 /* Page tables are in MMIO. */ 649 MemTxAttrs attrs = { 650 .space = ptw->out_space, 651 .secure = arm_space_is_secure(ptw->out_space), 652 }; 653 AddressSpace *as = arm_addressspace(cs, attrs); 654 MemTxResult result = MEMTX_OK; 655 656 if (ptw->out_be) { 657 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); 658 } else { 659 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); 660 } 661 if (unlikely(result != MEMTX_OK)) { 662 fi->type = ARMFault_SyncExternalOnWalk; 663 fi->ea = arm_extabort_type(result); 664 return 0; 665 } 666 } 667 return data; 668 } 669 670 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, 671 ARMMMUFaultInfo *fi) 672 { 673 CPUState *cs = env_cpu(env); 674 void *host = ptw->out_host; 675 uint64_t data; 676 677 if (likely(host)) { 678 /* Page tables are in RAM, and we have the host address. */ 679 #ifdef CONFIG_ATOMIC64 680 data = qatomic_read__nocheck((uint64_t *)host); 681 if (ptw->out_be) { 682 data = be64_to_cpu(data); 683 } else { 684 data = le64_to_cpu(data); 685 } 686 #else 687 if (ptw->out_be) { 688 data = ldq_be_p(host); 689 } else { 690 data = ldq_le_p(host); 691 } 692 #endif 693 } else { 694 /* Page tables are in MMIO. */ 695 MemTxAttrs attrs = { 696 .space = ptw->out_space, 697 .secure = arm_space_is_secure(ptw->out_space), 698 }; 699 AddressSpace *as = arm_addressspace(cs, attrs); 700 MemTxResult result = MEMTX_OK; 701 702 if (ptw->out_be) { 703 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 704 } else { 705 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 706 } 707 if (unlikely(result != MEMTX_OK)) { 708 fi->type = ARMFault_SyncExternalOnWalk; 709 fi->ea = arm_extabort_type(result); 710 return 0; 711 } 712 } 713 return data; 714 } 715 716 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val, 717 uint64_t new_val, S1Translate *ptw, 718 ARMMMUFaultInfo *fi) 719 { 720 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG) 721 uint64_t cur_val; 722 void *host = ptw->out_host; 723 724 if (unlikely(!host)) { 725 /* Page table in MMIO Memory Region */ 726 CPUState *cs = env_cpu(env); 727 MemTxAttrs attrs = { 728 .space = ptw->out_space, 729 .secure = arm_space_is_secure(ptw->out_space), 730 }; 731 AddressSpace *as = arm_addressspace(cs, attrs); 732 MemTxResult result = MEMTX_OK; 733 bool need_lock = !bql_locked(); 734 735 if (need_lock) { 736 bql_lock(); 737 } 738 if (ptw->out_be) { 739 cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 740 if (unlikely(result != MEMTX_OK)) { 741 fi->type = ARMFault_SyncExternalOnWalk; 742 fi->ea = arm_extabort_type(result); 743 if (need_lock) { 744 bql_unlock(); 745 } 746 return old_val; 747 } 748 if (cur_val == old_val) { 749 address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result); 750 if (unlikely(result != MEMTX_OK)) { 751 fi->type = ARMFault_SyncExternalOnWalk; 752 fi->ea = arm_extabort_type(result); 753 if (need_lock) { 754 bql_unlock(); 755 } 756 return old_val; 757 } 758 cur_val = new_val; 759 } 760 } else { 761 cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 762 if (unlikely(result != MEMTX_OK)) { 763 fi->type = ARMFault_SyncExternalOnWalk; 764 fi->ea = arm_extabort_type(result); 765 if (need_lock) { 766 bql_unlock(); 767 } 768 return old_val; 769 } 770 if (cur_val == old_val) { 771 address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result); 772 if (unlikely(result != MEMTX_OK)) { 773 fi->type = ARMFault_SyncExternalOnWalk; 774 fi->ea = arm_extabort_type(result); 775 if (need_lock) { 776 bql_unlock(); 777 } 778 return old_val; 779 } 780 cur_val = new_val; 781 } 782 } 783 if (need_lock) { 784 bql_unlock(); 785 } 786 return cur_val; 787 } 788 789 /* 790 * Raising a stage2 Protection fault for an atomic update to a read-only 791 * page is delayed until it is certain that there is a change to make. 792 */ 793 if (unlikely(!ptw->out_rw)) { 794 int flags; 795 796 env->tlb_fi = fi; 797 flags = probe_access_full_mmu(env, ptw->out_virt, 0, 798 MMU_DATA_STORE, 799 arm_to_core_mmu_idx(ptw->in_ptw_idx), 800 NULL, NULL); 801 env->tlb_fi = NULL; 802 803 if (unlikely(flags & TLB_INVALID_MASK)) { 804 /* 805 * We know this must be a stage 2 fault because the granule 806 * protection table does not separately track read and write 807 * permission, so all GPC faults are caught in S1_ptw_translate(): 808 * we only get here for "readable but not writeable". 809 */ 810 assert(fi->type != ARMFault_None); 811 fi->s2addr = ptw->out_virt; 812 fi->stage2 = true; 813 fi->s1ptw = true; 814 fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx); 815 return 0; 816 } 817 818 /* In case CAS mismatches and we loop, remember writability. */ 819 ptw->out_rw = true; 820 } 821 822 #ifdef CONFIG_ATOMIC64 823 if (ptw->out_be) { 824 old_val = cpu_to_be64(old_val); 825 new_val = cpu_to_be64(new_val); 826 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 827 cur_val = be64_to_cpu(cur_val); 828 } else { 829 old_val = cpu_to_le64(old_val); 830 new_val = cpu_to_le64(new_val); 831 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 832 cur_val = le64_to_cpu(cur_val); 833 } 834 #else 835 /* 836 * We can't support the full 64-bit atomic cmpxchg on the host. 837 * Because this is only used for FEAT_HAFDBS, which is only for AA64, 838 * we know that TCG_OVERSIZED_GUEST is set, which means that we are 839 * running in round-robin mode and could only race with dma i/o. 840 */ 841 #if !TCG_OVERSIZED_GUEST 842 # error "Unexpected configuration" 843 #endif 844 bool locked = bql_locked(); 845 if (!locked) { 846 bql_lock(); 847 } 848 if (ptw->out_be) { 849 cur_val = ldq_be_p(host); 850 if (cur_val == old_val) { 851 stq_be_p(host, new_val); 852 } 853 } else { 854 cur_val = ldq_le_p(host); 855 if (cur_val == old_val) { 856 stq_le_p(host, new_val); 857 } 858 } 859 if (!locked) { 860 bql_unlock(); 861 } 862 #endif 863 864 return cur_val; 865 #else 866 /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */ 867 g_assert_not_reached(); 868 #endif 869 } 870 871 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 872 uint32_t *table, uint32_t address) 873 { 874 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 875 uint64_t tcr = regime_tcr(env, mmu_idx); 876 int maskshift = extract32(tcr, 0, 3); 877 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 878 uint32_t base_mask; 879 880 if (address & mask) { 881 if (tcr & TTBCR_PD1) { 882 /* Translation table walk disabled for TTBR1 */ 883 return false; 884 } 885 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 886 } else { 887 if (tcr & TTBCR_PD0) { 888 /* Translation table walk disabled for TTBR0 */ 889 return false; 890 } 891 base_mask = ~((uint32_t)0x3fffu >> maskshift); 892 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 893 } 894 *table |= (address >> 18) & 0x3ffc; 895 return true; 896 } 897 898 /* 899 * Translate section/page access permissions to page R/W protection flags 900 * @env: CPUARMState 901 * @mmu_idx: MMU index indicating required translation regime 902 * @ap: The 3-bit access permissions (AP[2:0]) 903 * @domain_prot: The 2-bit domain access permissions 904 * @is_user: TRUE if accessing from PL0 905 */ 906 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx, 907 int ap, int domain_prot, bool is_user) 908 { 909 if (domain_prot == 3) { 910 return PAGE_READ | PAGE_WRITE; 911 } 912 913 switch (ap) { 914 case 0: 915 if (arm_feature(env, ARM_FEATURE_V7)) { 916 return 0; 917 } 918 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 919 case SCTLR_S: 920 return is_user ? 0 : PAGE_READ; 921 case SCTLR_R: 922 return PAGE_READ; 923 default: 924 return 0; 925 } 926 case 1: 927 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 928 case 2: 929 if (is_user) { 930 return PAGE_READ; 931 } else { 932 return PAGE_READ | PAGE_WRITE; 933 } 934 case 3: 935 return PAGE_READ | PAGE_WRITE; 936 case 4: /* Reserved. */ 937 return 0; 938 case 5: 939 return is_user ? 0 : PAGE_READ; 940 case 6: 941 return PAGE_READ; 942 case 7: 943 if (!arm_feature(env, ARM_FEATURE_V6K)) { 944 return 0; 945 } 946 return PAGE_READ; 947 default: 948 g_assert_not_reached(); 949 } 950 } 951 952 /* 953 * Translate section/page access permissions to page R/W protection flags 954 * @env: CPUARMState 955 * @mmu_idx: MMU index indicating required translation regime 956 * @ap: The 3-bit access permissions (AP[2:0]) 957 * @domain_prot: The 2-bit domain access permissions 958 */ 959 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 960 int ap, int domain_prot) 961 { 962 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 963 regime_is_user(env, mmu_idx)); 964 } 965 966 /* 967 * Translate section/page access permissions to page R/W protection flags. 968 * @ap: The 2-bit simple AP (AP[2:1]) 969 * @is_user: TRUE if accessing from PL0 970 */ 971 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 972 { 973 switch (ap) { 974 case 0: 975 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 976 case 1: 977 return PAGE_READ | PAGE_WRITE; 978 case 2: 979 return is_user ? 0 : PAGE_READ; 980 case 3: 981 return PAGE_READ; 982 default: 983 g_assert_not_reached(); 984 } 985 } 986 987 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 988 { 989 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 990 } 991 992 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, 993 uint32_t address, MMUAccessType access_type, 994 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 995 { 996 int level = 1; 997 uint32_t table; 998 uint32_t desc; 999 int type; 1000 int ap; 1001 int domain = 0; 1002 int domain_prot; 1003 hwaddr phys_addr; 1004 uint32_t dacr; 1005 1006 /* Pagetable walk. */ 1007 /* Lookup l1 descriptor. */ 1008 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { 1009 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 1010 fi->type = ARMFault_Translation; 1011 goto do_fault; 1012 } 1013 if (!S1_ptw_translate(env, ptw, table, fi)) { 1014 goto do_fault; 1015 } 1016 desc = arm_ldl_ptw(env, ptw, fi); 1017 if (fi->type != ARMFault_None) { 1018 goto do_fault; 1019 } 1020 type = (desc & 3); 1021 domain = (desc >> 5) & 0x0f; 1022 if (regime_el(env, ptw->in_mmu_idx) == 1) { 1023 dacr = env->cp15.dacr_ns; 1024 } else { 1025 dacr = env->cp15.dacr_s; 1026 } 1027 domain_prot = (dacr >> (domain * 2)) & 3; 1028 if (type == 0) { 1029 /* Section translation fault. */ 1030 fi->type = ARMFault_Translation; 1031 goto do_fault; 1032 } 1033 if (type != 2) { 1034 level = 2; 1035 } 1036 if (domain_prot == 0 || domain_prot == 2) { 1037 fi->type = ARMFault_Domain; 1038 goto do_fault; 1039 } 1040 if (type == 2) { 1041 /* 1Mb section. */ 1042 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 1043 ap = (desc >> 10) & 3; 1044 result->f.lg_page_size = 20; /* 1MB */ 1045 } else { 1046 /* Lookup l2 entry. */ 1047 if (type == 1) { 1048 /* Coarse pagetable. */ 1049 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 1050 } else { 1051 /* Fine pagetable. */ 1052 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 1053 } 1054 if (!S1_ptw_translate(env, ptw, table, fi)) { 1055 goto do_fault; 1056 } 1057 desc = arm_ldl_ptw(env, ptw, fi); 1058 if (fi->type != ARMFault_None) { 1059 goto do_fault; 1060 } 1061 switch (desc & 3) { 1062 case 0: /* Page translation fault. */ 1063 fi->type = ARMFault_Translation; 1064 goto do_fault; 1065 case 1: /* 64k page. */ 1066 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 1067 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 1068 result->f.lg_page_size = 16; 1069 break; 1070 case 2: /* 4k page. */ 1071 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1072 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 1073 result->f.lg_page_size = 12; 1074 break; 1075 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 1076 if (type == 1) { 1077 /* ARMv6/XScale extended small page format */ 1078 if (arm_feature(env, ARM_FEATURE_XSCALE) 1079 || arm_feature(env, ARM_FEATURE_V6)) { 1080 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1081 result->f.lg_page_size = 12; 1082 } else { 1083 /* 1084 * UNPREDICTABLE in ARMv5; we choose to take a 1085 * page translation fault. 1086 */ 1087 fi->type = ARMFault_Translation; 1088 goto do_fault; 1089 } 1090 } else { 1091 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 1092 result->f.lg_page_size = 10; 1093 } 1094 ap = (desc >> 4) & 3; 1095 break; 1096 default: 1097 /* Never happens, but compiler isn't smart enough to tell. */ 1098 g_assert_not_reached(); 1099 } 1100 } 1101 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); 1102 result->f.prot |= result->f.prot ? PAGE_EXEC : 0; 1103 if (!(result->f.prot & (1 << access_type))) { 1104 /* Access permission fault. */ 1105 fi->type = ARMFault_Permission; 1106 goto do_fault; 1107 } 1108 result->f.phys_addr = phys_addr; 1109 return false; 1110 do_fault: 1111 fi->domain = domain; 1112 fi->level = level; 1113 return true; 1114 } 1115 1116 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, 1117 uint32_t address, MMUAccessType access_type, 1118 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1119 { 1120 ARMCPU *cpu = env_archcpu(env); 1121 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1122 int level = 1; 1123 uint32_t table; 1124 uint32_t desc; 1125 uint32_t xn; 1126 uint32_t pxn = 0; 1127 int type; 1128 int ap; 1129 int domain = 0; 1130 int domain_prot; 1131 hwaddr phys_addr; 1132 uint32_t dacr; 1133 bool ns; 1134 int user_prot; 1135 1136 /* Pagetable walk. */ 1137 /* Lookup l1 descriptor. */ 1138 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 1139 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 1140 fi->type = ARMFault_Translation; 1141 goto do_fault; 1142 } 1143 if (!S1_ptw_translate(env, ptw, table, fi)) { 1144 goto do_fault; 1145 } 1146 desc = arm_ldl_ptw(env, ptw, fi); 1147 if (fi->type != ARMFault_None) { 1148 goto do_fault; 1149 } 1150 type = (desc & 3); 1151 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 1152 /* Section translation fault, or attempt to use the encoding 1153 * which is Reserved on implementations without PXN. 1154 */ 1155 fi->type = ARMFault_Translation; 1156 goto do_fault; 1157 } 1158 if ((type == 1) || !(desc & (1 << 18))) { 1159 /* Page or Section. */ 1160 domain = (desc >> 5) & 0x0f; 1161 } 1162 if (regime_el(env, mmu_idx) == 1) { 1163 dacr = env->cp15.dacr_ns; 1164 } else { 1165 dacr = env->cp15.dacr_s; 1166 } 1167 if (type == 1) { 1168 level = 2; 1169 } 1170 domain_prot = (dacr >> (domain * 2)) & 3; 1171 if (domain_prot == 0 || domain_prot == 2) { 1172 /* Section or Page domain fault */ 1173 fi->type = ARMFault_Domain; 1174 goto do_fault; 1175 } 1176 if (type != 1) { 1177 if (desc & (1 << 18)) { 1178 /* Supersection. */ 1179 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 1180 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 1181 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 1182 result->f.lg_page_size = 24; /* 16MB */ 1183 } else { 1184 /* Section. */ 1185 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 1186 result->f.lg_page_size = 20; /* 1MB */ 1187 } 1188 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 1189 xn = desc & (1 << 4); 1190 pxn = desc & 1; 1191 ns = extract32(desc, 19, 1); 1192 } else { 1193 if (cpu_isar_feature(aa32_pxn, cpu)) { 1194 pxn = (desc >> 2) & 1; 1195 } 1196 ns = extract32(desc, 3, 1); 1197 /* Lookup l2 entry. */ 1198 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 1199 if (!S1_ptw_translate(env, ptw, table, fi)) { 1200 goto do_fault; 1201 } 1202 desc = arm_ldl_ptw(env, ptw, fi); 1203 if (fi->type != ARMFault_None) { 1204 goto do_fault; 1205 } 1206 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 1207 switch (desc & 3) { 1208 case 0: /* Page translation fault. */ 1209 fi->type = ARMFault_Translation; 1210 goto do_fault; 1211 case 1: /* 64k page. */ 1212 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 1213 xn = desc & (1 << 15); 1214 result->f.lg_page_size = 16; 1215 break; 1216 case 2: case 3: /* 4k page. */ 1217 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1218 xn = desc & 1; 1219 result->f.lg_page_size = 12; 1220 break; 1221 default: 1222 /* Never happens, but compiler isn't smart enough to tell. */ 1223 g_assert_not_reached(); 1224 } 1225 } 1226 if (domain_prot == 3) { 1227 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1228 } else { 1229 if (pxn && !regime_is_user(env, mmu_idx)) { 1230 xn = 1; 1231 } 1232 if (xn && access_type == MMU_INST_FETCH) { 1233 fi->type = ARMFault_Permission; 1234 goto do_fault; 1235 } 1236 1237 if (arm_feature(env, ARM_FEATURE_V6K) && 1238 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 1239 /* The simplified model uses AP[0] as an access control bit. */ 1240 if ((ap & 1) == 0) { 1241 /* Access flag fault. */ 1242 fi->type = ARMFault_AccessFlag; 1243 goto do_fault; 1244 } 1245 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 1246 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1); 1247 } else { 1248 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 1249 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1); 1250 } 1251 if (result->f.prot && !xn) { 1252 result->f.prot |= PAGE_EXEC; 1253 } 1254 if (!(result->f.prot & (1 << access_type))) { 1255 /* Access permission fault. */ 1256 fi->type = ARMFault_Permission; 1257 goto do_fault; 1258 } 1259 if (regime_is_pan(env, mmu_idx) && 1260 !regime_is_user(env, mmu_idx) && 1261 user_prot && 1262 access_type != MMU_INST_FETCH) { 1263 /* Privileged Access Never fault */ 1264 fi->type = ARMFault_Permission; 1265 goto do_fault; 1266 } 1267 } 1268 if (ns) { 1269 /* The NS bit will (as required by the architecture) have no effect if 1270 * the CPU doesn't support TZ or this is a non-secure translation 1271 * regime, because the attribute will already be non-secure. 1272 */ 1273 result->f.attrs.secure = false; 1274 result->f.attrs.space = ARMSS_NonSecure; 1275 } 1276 result->f.phys_addr = phys_addr; 1277 return false; 1278 do_fault: 1279 fi->domain = domain; 1280 fi->level = level; 1281 return true; 1282 } 1283 1284 /* 1285 * Translate S2 section/page access permissions to protection flags 1286 * @env: CPUARMState 1287 * @s2ap: The 2-bit stage2 access permissions (S2AP) 1288 * @xn: XN (execute-never) bits 1289 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 1290 */ 1291 static int get_S2prot_noexecute(int s2ap) 1292 { 1293 int prot = 0; 1294 1295 if (s2ap & 1) { 1296 prot |= PAGE_READ; 1297 } 1298 if (s2ap & 2) { 1299 prot |= PAGE_WRITE; 1300 } 1301 return prot; 1302 } 1303 1304 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 1305 { 1306 int prot = get_S2prot_noexecute(s2ap); 1307 1308 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 1309 switch (xn) { 1310 case 0: 1311 prot |= PAGE_EXEC; 1312 break; 1313 case 1: 1314 if (s1_is_el0) { 1315 prot |= PAGE_EXEC; 1316 } 1317 break; 1318 case 2: 1319 break; 1320 case 3: 1321 if (!s1_is_el0) { 1322 prot |= PAGE_EXEC; 1323 } 1324 break; 1325 default: 1326 g_assert_not_reached(); 1327 } 1328 } else { 1329 if (!extract32(xn, 1, 1)) { 1330 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 1331 prot |= PAGE_EXEC; 1332 } 1333 } 1334 } 1335 return prot; 1336 } 1337 1338 /* 1339 * Translate section/page access permissions to protection flags 1340 * @env: CPUARMState 1341 * @mmu_idx: MMU index indicating required translation regime 1342 * @is_aa64: TRUE if AArch64 1343 * @ap: The 2-bit simple AP (AP[2:1]) 1344 * @xn: XN (execute-never) bit 1345 * @pxn: PXN (privileged execute-never) bit 1346 * @in_pa: The original input pa space 1347 * @out_pa: The output pa space, modified by NSTable, NS, and NSE 1348 */ 1349 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 1350 int ap, int xn, int pxn, 1351 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa) 1352 { 1353 ARMCPU *cpu = env_archcpu(env); 1354 bool is_user = regime_is_user(env, mmu_idx); 1355 int prot_rw, user_rw; 1356 bool have_wxn; 1357 int wxn = 0; 1358 1359 assert(!regime_is_stage2(mmu_idx)); 1360 1361 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 1362 if (is_user) { 1363 prot_rw = user_rw; 1364 } else { 1365 /* 1366 * PAN controls can forbid data accesses but don't affect insn fetch. 1367 * Plain PAN forbids data accesses if EL0 has data permissions; 1368 * PAN3 forbids data accesses if EL0 has either data or exec perms. 1369 * Note that for AArch64 the 'user can exec' case is exactly !xn. 1370 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0 1371 * do not affect EPAN. 1372 */ 1373 if (user_rw && regime_is_pan(env, mmu_idx)) { 1374 prot_rw = 0; 1375 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 && 1376 regime_is_pan(env, mmu_idx) && 1377 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) { 1378 prot_rw = 0; 1379 } else { 1380 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 1381 } 1382 } 1383 1384 if (in_pa != out_pa) { 1385 switch (in_pa) { 1386 case ARMSS_Root: 1387 /* 1388 * R_ZWRVD: permission fault for insn fetched from non-Root, 1389 * I_WWBFB: SIF has no effect in EL3. 1390 */ 1391 return prot_rw; 1392 case ARMSS_Realm: 1393 /* 1394 * R_PKTDS: permission fault for insn fetched from non-Realm, 1395 * for Realm EL2 or EL2&0. The corresponding fault for EL1&0 1396 * happens during any stage2 translation. 1397 */ 1398 switch (mmu_idx) { 1399 case ARMMMUIdx_E2: 1400 case ARMMMUIdx_E20_0: 1401 case ARMMMUIdx_E20_2: 1402 case ARMMMUIdx_E20_2_PAN: 1403 return prot_rw; 1404 default: 1405 break; 1406 } 1407 break; 1408 case ARMSS_Secure: 1409 if (env->cp15.scr_el3 & SCR_SIF) { 1410 return prot_rw; 1411 } 1412 break; 1413 default: 1414 /* Input NonSecure must have output NonSecure. */ 1415 g_assert_not_reached(); 1416 } 1417 } 1418 1419 /* TODO have_wxn should be replaced with 1420 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 1421 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 1422 * compatible processors have EL2, which is required for [U]WXN. 1423 */ 1424 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 1425 1426 if (have_wxn) { 1427 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 1428 } 1429 1430 if (is_aa64) { 1431 if (regime_has_2_ranges(mmu_idx) && !is_user) { 1432 xn = pxn || (user_rw & PAGE_WRITE); 1433 } 1434 } else if (arm_feature(env, ARM_FEATURE_V7)) { 1435 switch (regime_el(env, mmu_idx)) { 1436 case 1: 1437 case 3: 1438 if (is_user) { 1439 xn = xn || !(user_rw & PAGE_READ); 1440 } else { 1441 int uwxn = 0; 1442 if (have_wxn) { 1443 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 1444 } 1445 xn = xn || !(prot_rw & PAGE_READ) || pxn || 1446 (uwxn && (user_rw & PAGE_WRITE)); 1447 } 1448 break; 1449 case 2: 1450 break; 1451 } 1452 } else { 1453 xn = wxn = 0; 1454 } 1455 1456 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 1457 return prot_rw; 1458 } 1459 return prot_rw | PAGE_EXEC; 1460 } 1461 1462 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 1463 ARMMMUIdx mmu_idx) 1464 { 1465 uint64_t tcr = regime_tcr(env, mmu_idx); 1466 uint32_t el = regime_el(env, mmu_idx); 1467 int select, tsz; 1468 bool epd, hpd; 1469 1470 assert(mmu_idx != ARMMMUIdx_Stage2_S); 1471 1472 if (mmu_idx == ARMMMUIdx_Stage2) { 1473 /* VTCR */ 1474 bool sext = extract32(tcr, 4, 1); 1475 bool sign = extract32(tcr, 3, 1); 1476 1477 /* 1478 * If the sign-extend bit is not the same as t0sz[3], the result 1479 * is unpredictable. Flag this as a guest error. 1480 */ 1481 if (sign != sext) { 1482 qemu_log_mask(LOG_GUEST_ERROR, 1483 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 1484 } 1485 tsz = sextract32(tcr, 0, 4) + 8; 1486 select = 0; 1487 hpd = false; 1488 epd = false; 1489 } else if (el == 2) { 1490 /* HTCR */ 1491 tsz = extract32(tcr, 0, 3); 1492 select = 0; 1493 hpd = extract64(tcr, 24, 1); 1494 epd = false; 1495 } else { 1496 int t0sz = extract32(tcr, 0, 3); 1497 int t1sz = extract32(tcr, 16, 3); 1498 1499 if (t1sz == 0) { 1500 select = va > (0xffffffffu >> t0sz); 1501 } else { 1502 /* Note that we will detect errors later. */ 1503 select = va >= ~(0xffffffffu >> t1sz); 1504 } 1505 if (!select) { 1506 tsz = t0sz; 1507 epd = extract32(tcr, 7, 1); 1508 hpd = extract64(tcr, 41, 1); 1509 } else { 1510 tsz = t1sz; 1511 epd = extract32(tcr, 23, 1); 1512 hpd = extract64(tcr, 42, 1); 1513 } 1514 /* For aarch32, hpd0 is not enabled without t2e as well. */ 1515 hpd &= extract32(tcr, 6, 1); 1516 } 1517 1518 return (ARMVAParameters) { 1519 .tsz = tsz, 1520 .select = select, 1521 .epd = epd, 1522 .hpd = hpd, 1523 }; 1524 } 1525 1526 /* 1527 * check_s2_mmu_setup 1528 * @cpu: ARMCPU 1529 * @is_aa64: True if the translation regime is in AArch64 state 1530 * @tcr: VTCR_EL2 or VSTCR_EL2 1531 * @ds: Effective value of TCR.DS. 1532 * @iasize: Bitsize of IPAs 1533 * @stride: Page-table stride (See the ARM ARM) 1534 * 1535 * Decode the starting level of the S2 lookup, returning INT_MIN if 1536 * the configuration is invalid. 1537 */ 1538 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr, 1539 bool ds, int iasize, int stride) 1540 { 1541 int sl0, sl2, startlevel, granulebits, levels; 1542 int s1_min_iasize, s1_max_iasize; 1543 1544 sl0 = extract32(tcr, 6, 2); 1545 if (is_aa64) { 1546 /* 1547 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size, 1548 * so interleave AArch64.S2StartLevel. 1549 */ 1550 switch (stride) { 1551 case 9: /* 4KB */ 1552 /* SL2 is RES0 unless DS=1 & 4KB granule. */ 1553 sl2 = extract64(tcr, 33, 1); 1554 if (ds && sl2) { 1555 if (sl0 != 0) { 1556 goto fail; 1557 } 1558 startlevel = -1; 1559 } else { 1560 startlevel = 2 - sl0; 1561 switch (sl0) { 1562 case 2: 1563 if (arm_pamax(cpu) < 44) { 1564 goto fail; 1565 } 1566 break; 1567 case 3: 1568 if (!cpu_isar_feature(aa64_st, cpu)) { 1569 goto fail; 1570 } 1571 startlevel = 3; 1572 break; 1573 } 1574 } 1575 break; 1576 case 11: /* 16KB */ 1577 switch (sl0) { 1578 case 2: 1579 if (arm_pamax(cpu) < 42) { 1580 goto fail; 1581 } 1582 break; 1583 case 3: 1584 if (!ds) { 1585 goto fail; 1586 } 1587 break; 1588 } 1589 startlevel = 3 - sl0; 1590 break; 1591 case 13: /* 64KB */ 1592 switch (sl0) { 1593 case 2: 1594 if (arm_pamax(cpu) < 44) { 1595 goto fail; 1596 } 1597 break; 1598 case 3: 1599 goto fail; 1600 } 1601 startlevel = 3 - sl0; 1602 break; 1603 default: 1604 g_assert_not_reached(); 1605 } 1606 } else { 1607 /* 1608 * Things are simpler for AArch32 EL2, with only 4k pages. 1609 * There is no separate S2InvalidSL function, but AArch32.S2Walk 1610 * begins with walkparms.sl0 in {'1x'}. 1611 */ 1612 assert(stride == 9); 1613 if (sl0 >= 2) { 1614 goto fail; 1615 } 1616 startlevel = 2 - sl0; 1617 } 1618 1619 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */ 1620 levels = 3 - startlevel; 1621 granulebits = stride + 3; 1622 1623 s1_min_iasize = levels * stride + granulebits + 1; 1624 s1_max_iasize = s1_min_iasize + (stride - 1) + 4; 1625 1626 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) { 1627 return startlevel; 1628 } 1629 1630 fail: 1631 return INT_MIN; 1632 } 1633 1634 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds, 1635 ARMGranuleSize gran, int level) 1636 { 1637 /* 1638 * See pseudocode AArch46.BlockDescSupported(): block descriptors 1639 * are not valid at all levels, depending on the page size. 1640 */ 1641 switch (gran) { 1642 case Gran4K: 1643 return (level == 0 && ds) || level == 1 || level == 2; 1644 case Gran16K: 1645 return (level == 1 && ds) || level == 2; 1646 case Gran64K: 1647 return (level == 1 && arm_pamax(cpu) == 52) || level == 2; 1648 default: 1649 g_assert_not_reached(); 1650 } 1651 } 1652 1653 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw) 1654 { 1655 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 1656 return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1); 1657 } 1658 1659 /** 1660 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 1661 * 1662 * Returns false if the translation was successful. Otherwise, phys_ptr, 1663 * attrs, prot and page_size may not be filled in, and the populated fsr 1664 * value provides information on why the translation aborted, in the format 1665 * of a long-format DFSR/IFSR fault register, with the following caveat: 1666 * the WnR bit is never set (the caller must do this). 1667 * 1668 * @env: CPUARMState 1669 * @ptw: Current and next stage parameters for the walk. 1670 * @address: virtual address to get physical address for 1671 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 1672 * @result: set on translation success, 1673 * @fi: set to fault info if the translation fails 1674 */ 1675 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 1676 uint64_t address, 1677 MMUAccessType access_type, 1678 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1679 { 1680 ARMCPU *cpu = env_archcpu(env); 1681 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1682 int32_t level; 1683 ARMVAParameters param; 1684 uint64_t ttbr; 1685 hwaddr descaddr, indexmask, indexmask_grainsize; 1686 uint32_t tableattrs; 1687 target_ulong page_size; 1688 uint64_t attrs; 1689 int32_t stride; 1690 int addrsize, inputsize, outputsize; 1691 uint64_t tcr = regime_tcr(env, mmu_idx); 1692 int ap, xn, pxn; 1693 uint32_t el = regime_el(env, mmu_idx); 1694 uint64_t descaddrmask; 1695 bool aarch64 = arm_el_is_aa64(env, el); 1696 uint64_t descriptor, new_descriptor; 1697 ARMSecuritySpace out_space; 1698 bool device; 1699 1700 /* TODO: This code does not support shareability levels. */ 1701 if (aarch64) { 1702 int ps; 1703 1704 param = aa64_va_parameters(env, address, mmu_idx, 1705 access_type != MMU_INST_FETCH, 1706 !arm_el_is_aa64(env, 1)); 1707 level = 0; 1708 1709 /* 1710 * If TxSZ is programmed to a value larger than the maximum, 1711 * or smaller than the effective minimum, it is IMPLEMENTATION 1712 * DEFINED whether we behave as if the field were programmed 1713 * within bounds, or if a level 0 Translation fault is generated. 1714 * 1715 * With FEAT_LVA, fault on less than minimum becomes required, 1716 * so our choice is to always raise the fault. 1717 */ 1718 if (param.tsz_oob) { 1719 goto do_translation_fault; 1720 } 1721 1722 addrsize = 64 - 8 * param.tbi; 1723 inputsize = 64 - param.tsz; 1724 1725 /* 1726 * Bound PS by PARANGE to find the effective output address size. 1727 * ID_AA64MMFR0 is a read-only register so values outside of the 1728 * supported mappings can be considered an implementation error. 1729 */ 1730 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1731 ps = MIN(ps, param.ps); 1732 assert(ps < ARRAY_SIZE(pamax_map)); 1733 outputsize = pamax_map[ps]; 1734 1735 /* 1736 * With LPA2, the effective output address (OA) size is at most 48 bits 1737 * unless TCR.DS == 1 1738 */ 1739 if (!param.ds && param.gran != Gran64K) { 1740 outputsize = MIN(outputsize, 48); 1741 } 1742 } else { 1743 param = aa32_va_parameters(env, address, mmu_idx); 1744 level = 1; 1745 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1746 inputsize = addrsize - param.tsz; 1747 outputsize = 40; 1748 } 1749 1750 /* 1751 * We determined the region when collecting the parameters, but we 1752 * have not yet validated that the address is valid for the region. 1753 * Extract the top bits and verify that they all match select. 1754 * 1755 * For aa32, if inputsize == addrsize, then we have selected the 1756 * region by exclusion in aa32_va_parameters and there is no more 1757 * validation to do here. 1758 */ 1759 if (inputsize < addrsize) { 1760 target_ulong top_bits = sextract64(address, inputsize, 1761 addrsize - inputsize); 1762 if (-top_bits != param.select) { 1763 /* The gap between the two regions is a Translation fault */ 1764 goto do_translation_fault; 1765 } 1766 } 1767 1768 stride = arm_granule_bits(param.gran) - 3; 1769 1770 /* 1771 * Note that QEMU ignores shareability and cacheability attributes, 1772 * so we don't need to do anything with the SH, ORGN, IRGN fields 1773 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1774 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1775 * implement any ASID-like capability so we can ignore it (instead 1776 * we will always flush the TLB any time the ASID is changed). 1777 */ 1778 ttbr = regime_ttbr(env, mmu_idx, param.select); 1779 1780 /* 1781 * Here we should have set up all the parameters for the translation: 1782 * inputsize, ttbr, epd, stride, tbi 1783 */ 1784 1785 if (param.epd) { 1786 /* 1787 * Translation table walk disabled => Translation fault on TLB miss 1788 * Note: This is always 0 on 64-bit EL2 and EL3. 1789 */ 1790 goto do_translation_fault; 1791 } 1792 1793 if (!regime_is_stage2(mmu_idx)) { 1794 /* 1795 * The starting level depends on the virtual address size (which can 1796 * be up to 48 bits) and the translation granule size. It indicates 1797 * the number of strides (stride bits at a time) needed to 1798 * consume the bits of the input address. In the pseudocode this is: 1799 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1800 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1801 * our 'stride + 3' and 'stride' is our 'stride'. 1802 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1803 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1804 * = 4 - (inputsize - 4) / stride; 1805 */ 1806 level = 4 - (inputsize - 4) / stride; 1807 } else { 1808 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds, 1809 inputsize, stride); 1810 if (startlevel == INT_MIN) { 1811 level = 0; 1812 goto do_translation_fault; 1813 } 1814 level = startlevel; 1815 } 1816 1817 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1818 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1819 1820 /* Now we can extract the actual base address from the TTBR */ 1821 descaddr = extract64(ttbr, 0, 48); 1822 1823 /* 1824 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1825 * 1826 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1827 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1828 * but we've just cleared the bits above 47, so simplify the test. 1829 */ 1830 if (outputsize > 48) { 1831 descaddr |= extract64(ttbr, 2, 4) << 48; 1832 } else if (descaddr >> outputsize) { 1833 level = 0; 1834 fi->type = ARMFault_AddressSize; 1835 goto do_fault; 1836 } 1837 1838 /* 1839 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1840 * and also to mask out CnP (bit 0) which could validly be non-zero. 1841 */ 1842 descaddr &= ~indexmask; 1843 1844 /* 1845 * For AArch32, the address field in the descriptor goes up to bit 39 1846 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1847 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1848 * bits as part of the address, which will be checked via outputsize. 1849 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1850 * the highest bits of a 52-bit output are placed elsewhere. 1851 */ 1852 if (param.ds) { 1853 descaddrmask = MAKE_64BIT_MASK(0, 50); 1854 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1855 descaddrmask = MAKE_64BIT_MASK(0, 48); 1856 } else { 1857 descaddrmask = MAKE_64BIT_MASK(0, 40); 1858 } 1859 descaddrmask &= ~indexmask_grainsize; 1860 tableattrs = 0; 1861 1862 next_level: 1863 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1864 descaddr &= ~7ULL; 1865 1866 /* 1867 * Process the NSTable bit from the previous level. This changes 1868 * the table address space and the output space from Secure to 1869 * NonSecure. With RME, the EL3 translation regime does not change 1870 * from Root to NonSecure. 1871 */ 1872 if (ptw->in_space == ARMSS_Secure 1873 && !regime_is_stage2(mmu_idx) 1874 && extract32(tableattrs, 4, 1)) { 1875 /* 1876 * Stage2_S -> Stage2 or Phys_S -> Phys_NS 1877 * Assert the relative order of the secure/non-secure indexes. 1878 */ 1879 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS); 1880 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2); 1881 ptw->in_ptw_idx += 1; 1882 ptw->in_space = ARMSS_NonSecure; 1883 } 1884 1885 if (!S1_ptw_translate(env, ptw, descaddr, fi)) { 1886 goto do_fault; 1887 } 1888 descriptor = arm_ldq_ptw(env, ptw, fi); 1889 if (fi->type != ARMFault_None) { 1890 goto do_fault; 1891 } 1892 new_descriptor = descriptor; 1893 1894 restart_atomic_update: 1895 if (!(descriptor & 1) || 1896 (!(descriptor & 2) && 1897 !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) { 1898 /* Invalid, or a block descriptor at an invalid level */ 1899 goto do_translation_fault; 1900 } 1901 1902 descaddr = descriptor & descaddrmask; 1903 1904 /* 1905 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1906 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1907 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1908 * raise AddressSizeFault. 1909 */ 1910 if (outputsize > 48) { 1911 if (param.ds) { 1912 descaddr |= extract64(descriptor, 8, 2) << 50; 1913 } else { 1914 descaddr |= extract64(descriptor, 12, 4) << 48; 1915 } 1916 } else if (descaddr >> outputsize) { 1917 fi->type = ARMFault_AddressSize; 1918 goto do_fault; 1919 } 1920 1921 if ((descriptor & 2) && (level < 3)) { 1922 /* 1923 * Table entry. The top five bits are attributes which may 1924 * propagate down through lower levels of the table (and 1925 * which are all arranged so that 0 means "no effect", so 1926 * we can gather them up by ORing in the bits at each level). 1927 */ 1928 tableattrs |= extract64(descriptor, 59, 5); 1929 level++; 1930 indexmask = indexmask_grainsize; 1931 goto next_level; 1932 } 1933 1934 /* 1935 * Block entry at level 1 or 2, or page entry at level 3. 1936 * These are basically the same thing, although the number 1937 * of bits we pull in from the vaddr varies. Note that although 1938 * descaddrmask masks enough of the low bits of the descriptor 1939 * to give a correct page or table address, the address field 1940 * in a block descriptor is smaller; so we need to explicitly 1941 * clear the lower bits here before ORing in the low vaddr bits. 1942 * 1943 * Afterward, descaddr is the final physical address. 1944 */ 1945 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1946 descaddr &= ~(hwaddr)(page_size - 1); 1947 descaddr |= (address & (page_size - 1)); 1948 1949 if (likely(!ptw->in_debug)) { 1950 /* 1951 * Access flag. 1952 * If HA is enabled, prepare to update the descriptor below. 1953 * Otherwise, pass the access fault on to software. 1954 */ 1955 if (!(descriptor & (1 << 10))) { 1956 if (param.ha) { 1957 new_descriptor |= 1 << 10; /* AF */ 1958 } else { 1959 fi->type = ARMFault_AccessFlag; 1960 goto do_fault; 1961 } 1962 } 1963 1964 /* 1965 * Dirty Bit. 1966 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP 1967 * bit for writeback. The actual write protection test may still be 1968 * overridden by tableattrs, to be merged below. 1969 */ 1970 if (param.hd 1971 && extract64(descriptor, 51, 1) /* DBM */ 1972 && access_type == MMU_DATA_STORE) { 1973 if (regime_is_stage2(mmu_idx)) { 1974 new_descriptor |= 1ull << 7; /* set S2AP[1] */ 1975 } else { 1976 new_descriptor &= ~(1ull << 7); /* clear AP[2] */ 1977 } 1978 } 1979 } 1980 1981 /* 1982 * Extract attributes from the (modified) descriptor, and apply 1983 * table descriptors. Stage 2 table descriptors do not include 1984 * any attribute fields. HPD disables all the table attributes 1985 * except NSTable (which we have already handled). 1986 */ 1987 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14)); 1988 if (!regime_is_stage2(mmu_idx)) { 1989 if (!param.hpd) { 1990 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */ 1991 /* 1992 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 1993 * means "force PL1 access only", which means forcing AP[1] to 0. 1994 */ 1995 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */ 1996 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */ 1997 } 1998 } 1999 2000 ap = extract32(attrs, 6, 2); 2001 out_space = ptw->in_space; 2002 if (regime_is_stage2(mmu_idx)) { 2003 /* 2004 * R_GYNXY: For stage2 in Realm security state, bit 55 is NS. 2005 * The bit remains ignored for other security states. 2006 * R_YMCSL: Executing an insn fetched from non-Realm causes 2007 * a stage2 permission fault. 2008 */ 2009 if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) { 2010 out_space = ARMSS_NonSecure; 2011 result->f.prot = get_S2prot_noexecute(ap); 2012 } else { 2013 xn = extract64(attrs, 53, 2); 2014 result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0); 2015 } 2016 } else { 2017 int nse, ns = extract32(attrs, 5, 1); 2018 switch (out_space) { 2019 case ARMSS_Root: 2020 /* 2021 * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime. 2022 * R_XTYPW: NSE and NS together select the output pa space. 2023 */ 2024 nse = extract32(attrs, 11, 1); 2025 out_space = (nse << 1) | ns; 2026 if (out_space == ARMSS_Secure && 2027 !cpu_isar_feature(aa64_sel2, cpu)) { 2028 out_space = ARMSS_NonSecure; 2029 } 2030 break; 2031 case ARMSS_Secure: 2032 if (ns) { 2033 out_space = ARMSS_NonSecure; 2034 } 2035 break; 2036 case ARMSS_Realm: 2037 switch (mmu_idx) { 2038 case ARMMMUIdx_Stage1_E0: 2039 case ARMMMUIdx_Stage1_E1: 2040 case ARMMMUIdx_Stage1_E1_PAN: 2041 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */ 2042 break; 2043 case ARMMMUIdx_E2: 2044 case ARMMMUIdx_E20_0: 2045 case ARMMMUIdx_E20_2: 2046 case ARMMMUIdx_E20_2_PAN: 2047 /* 2048 * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1, 2049 * NS changes the output to non-secure space. 2050 */ 2051 if (ns) { 2052 out_space = ARMSS_NonSecure; 2053 } 2054 break; 2055 default: 2056 g_assert_not_reached(); 2057 } 2058 break; 2059 case ARMSS_NonSecure: 2060 /* R_QRMFF: For NonSecure state, the NS bit is RES0. */ 2061 break; 2062 default: 2063 g_assert_not_reached(); 2064 } 2065 xn = extract64(attrs, 54, 1); 2066 pxn = extract64(attrs, 53, 1); 2067 2068 if (el == 1 && nv_nv1_enabled(env, ptw)) { 2069 /* 2070 * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page 2071 * descriptor bit 54 holds PXN, 53 is RES0, and the effective value 2072 * of UXN is 0. Similarly for bits 59 and 60 in table descriptors 2073 * (which we have already folded into bits 53 and 54 of attrs). 2074 * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0. 2075 * Similarly, APTable[0] from the table descriptor is treated as 0; 2076 * we already folded this into AP[1] and squashing that to 0 does 2077 * the right thing. 2078 */ 2079 pxn = xn; 2080 xn = 0; 2081 ap &= ~1; 2082 } 2083 /* 2084 * Note that we modified ptw->in_space earlier for NSTable, but 2085 * result->f.attrs retains a copy of the original security space. 2086 */ 2087 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn, 2088 result->f.attrs.space, out_space); 2089 } 2090 2091 if (!(result->f.prot & (1 << access_type))) { 2092 fi->type = ARMFault_Permission; 2093 goto do_fault; 2094 } 2095 2096 /* If FEAT_HAFDBS has made changes, update the PTE. */ 2097 if (new_descriptor != descriptor) { 2098 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi); 2099 if (fi->type != ARMFault_None) { 2100 goto do_fault; 2101 } 2102 /* 2103 * I_YZSVV says that if the in-memory descriptor has changed, 2104 * then we must use the information in that new value 2105 * (which might include a different output address, different 2106 * attributes, or generate a fault). 2107 * Restart the handling of the descriptor value from scratch. 2108 */ 2109 if (new_descriptor != descriptor) { 2110 descriptor = new_descriptor; 2111 goto restart_atomic_update; 2112 } 2113 } 2114 2115 result->f.attrs.space = out_space; 2116 result->f.attrs.secure = arm_space_is_secure(out_space); 2117 2118 if (regime_is_stage2(mmu_idx)) { 2119 result->cacheattrs.is_s2_format = true; 2120 result->cacheattrs.attrs = extract32(attrs, 2, 4); 2121 /* 2122 * Security state does not really affect HCR_EL2.FWB; 2123 * we only need to filter FWB for aa32 or other FEAT. 2124 */ 2125 device = S2_attrs_are_device(arm_hcr_el2_eff(env), 2126 result->cacheattrs.attrs); 2127 } else { 2128 /* Index into MAIR registers for cache attributes */ 2129 uint8_t attrindx = extract32(attrs, 2, 3); 2130 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2131 assert(attrindx <= 7); 2132 result->cacheattrs.is_s2_format = false; 2133 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2134 2135 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ 2136 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { 2137 result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */ 2138 } 2139 device = S1_attrs_are_device(result->cacheattrs.attrs); 2140 } 2141 2142 /* 2143 * Enable alignment checks on Device memory. 2144 * 2145 * Per R_XCHFJ, this check is mis-ordered. The correct ordering 2146 * for alignment, permission, and stage 2 faults should be: 2147 * - Alignment fault caused by the memory type 2148 * - Permission fault 2149 * - A stage 2 fault on the memory access 2150 * but due to the way the TCG softmmu TLB operates, we will have 2151 * implicitly done the permission check and the stage2 lookup in 2152 * finding the TLB entry, so the alignment check cannot be done sooner. 2153 * 2154 * In v7, for a CPU without the Virtualization Extensions this 2155 * access is UNPREDICTABLE; we choose to make it take the alignment 2156 * fault as is required for a v7VE CPU. (QEMU doesn't emulate any 2157 * CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.) 2158 */ 2159 if (device) { 2160 result->f.tlb_fill_flags |= TLB_CHECK_ALIGNED; 2161 } 2162 2163 /* 2164 * For FEAT_LPA2 and effective DS, the SH field in the attributes 2165 * was re-purposed for output address bits. The SH attribute in 2166 * that case comes from TCR_ELx, which we extracted earlier. 2167 */ 2168 if (param.ds) { 2169 result->cacheattrs.shareability = param.sh; 2170 } else { 2171 result->cacheattrs.shareability = extract32(attrs, 8, 2); 2172 } 2173 2174 result->f.phys_addr = descaddr; 2175 result->f.lg_page_size = ctz64(page_size); 2176 return false; 2177 2178 do_translation_fault: 2179 fi->type = ARMFault_Translation; 2180 do_fault: 2181 if (fi->s1ptw) { 2182 /* Retain the existing stage 2 fi->level */ 2183 assert(fi->stage2); 2184 } else { 2185 fi->level = level; 2186 fi->stage2 = regime_is_stage2(mmu_idx); 2187 } 2188 fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx); 2189 return true; 2190 } 2191 2192 static bool get_phys_addr_pmsav5(CPUARMState *env, 2193 S1Translate *ptw, 2194 uint32_t address, 2195 MMUAccessType access_type, 2196 GetPhysAddrResult *result, 2197 ARMMMUFaultInfo *fi) 2198 { 2199 int n; 2200 uint32_t mask; 2201 uint32_t base; 2202 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2203 bool is_user = regime_is_user(env, mmu_idx); 2204 2205 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 2206 /* MPU disabled. */ 2207 result->f.phys_addr = address; 2208 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2209 return false; 2210 } 2211 2212 result->f.phys_addr = address; 2213 for (n = 7; n >= 0; n--) { 2214 base = env->cp15.c6_region[n]; 2215 if ((base & 1) == 0) { 2216 continue; 2217 } 2218 mask = 1 << ((base >> 1) & 0x1f); 2219 /* Keep this shift separate from the above to avoid an 2220 (undefined) << 32. */ 2221 mask = (mask << 1) - 1; 2222 if (((base ^ address) & ~mask) == 0) { 2223 break; 2224 } 2225 } 2226 if (n < 0) { 2227 fi->type = ARMFault_Background; 2228 return true; 2229 } 2230 2231 if (access_type == MMU_INST_FETCH) { 2232 mask = env->cp15.pmsav5_insn_ap; 2233 } else { 2234 mask = env->cp15.pmsav5_data_ap; 2235 } 2236 mask = (mask >> (n * 4)) & 0xf; 2237 switch (mask) { 2238 case 0: 2239 fi->type = ARMFault_Permission; 2240 fi->level = 1; 2241 return true; 2242 case 1: 2243 if (is_user) { 2244 fi->type = ARMFault_Permission; 2245 fi->level = 1; 2246 return true; 2247 } 2248 result->f.prot = PAGE_READ | PAGE_WRITE; 2249 break; 2250 case 2: 2251 result->f.prot = PAGE_READ; 2252 if (!is_user) { 2253 result->f.prot |= PAGE_WRITE; 2254 } 2255 break; 2256 case 3: 2257 result->f.prot = PAGE_READ | PAGE_WRITE; 2258 break; 2259 case 5: 2260 if (is_user) { 2261 fi->type = ARMFault_Permission; 2262 fi->level = 1; 2263 return true; 2264 } 2265 result->f.prot = PAGE_READ; 2266 break; 2267 case 6: 2268 result->f.prot = PAGE_READ; 2269 break; 2270 default: 2271 /* Bad permission. */ 2272 fi->type = ARMFault_Permission; 2273 fi->level = 1; 2274 return true; 2275 } 2276 result->f.prot |= PAGE_EXEC; 2277 return false; 2278 } 2279 2280 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 2281 int32_t address, uint8_t *prot) 2282 { 2283 if (!arm_feature(env, ARM_FEATURE_M)) { 2284 *prot = PAGE_READ | PAGE_WRITE; 2285 switch (address) { 2286 case 0xF0000000 ... 0xFFFFFFFF: 2287 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 2288 /* hivecs execing is ok */ 2289 *prot |= PAGE_EXEC; 2290 } 2291 break; 2292 case 0x00000000 ... 0x7FFFFFFF: 2293 *prot |= PAGE_EXEC; 2294 break; 2295 } 2296 } else { 2297 /* Default system address map for M profile cores. 2298 * The architecture specifies which regions are execute-never; 2299 * at the MPU level no other checks are defined. 2300 */ 2301 switch (address) { 2302 case 0x00000000 ... 0x1fffffff: /* ROM */ 2303 case 0x20000000 ... 0x3fffffff: /* SRAM */ 2304 case 0x60000000 ... 0x7fffffff: /* RAM */ 2305 case 0x80000000 ... 0x9fffffff: /* RAM */ 2306 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2307 break; 2308 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 2309 case 0xa0000000 ... 0xbfffffff: /* Device */ 2310 case 0xc0000000 ... 0xdfffffff: /* Device */ 2311 case 0xe0000000 ... 0xffffffff: /* System */ 2312 *prot = PAGE_READ | PAGE_WRITE; 2313 break; 2314 default: 2315 g_assert_not_reached(); 2316 } 2317 } 2318 } 2319 2320 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 2321 { 2322 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 2323 return arm_feature(env, ARM_FEATURE_M) && 2324 extract32(address, 20, 12) == 0xe00; 2325 } 2326 2327 static bool m_is_system_region(CPUARMState *env, uint32_t address) 2328 { 2329 /* 2330 * True if address is in the M profile system region 2331 * 0xe0000000 - 0xffffffff 2332 */ 2333 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 2334 } 2335 2336 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 2337 bool is_secure, bool is_user) 2338 { 2339 /* 2340 * Return true if we should use the default memory map as a 2341 * "background" region if there are no hits against any MPU regions. 2342 */ 2343 CPUARMState *env = &cpu->env; 2344 2345 if (is_user) { 2346 return false; 2347 } 2348 2349 if (arm_feature(env, ARM_FEATURE_M)) { 2350 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 2351 } 2352 2353 if (mmu_idx == ARMMMUIdx_Stage2) { 2354 return false; 2355 } 2356 2357 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 2358 } 2359 2360 static bool get_phys_addr_pmsav7(CPUARMState *env, 2361 S1Translate *ptw, 2362 uint32_t address, 2363 MMUAccessType access_type, 2364 GetPhysAddrResult *result, 2365 ARMMMUFaultInfo *fi) 2366 { 2367 ARMCPU *cpu = env_archcpu(env); 2368 int n; 2369 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2370 bool is_user = regime_is_user(env, mmu_idx); 2371 bool secure = arm_space_is_secure(ptw->in_space); 2372 2373 result->f.phys_addr = address; 2374 result->f.lg_page_size = TARGET_PAGE_BITS; 2375 result->f.prot = 0; 2376 2377 if (regime_translation_disabled(env, mmu_idx, ptw->in_space) || 2378 m_is_ppb_region(env, address)) { 2379 /* 2380 * MPU disabled or M profile PPB access: use default memory map. 2381 * The other case which uses the default memory map in the 2382 * v7M ARM ARM pseudocode is exception vector reads from the vector 2383 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 2384 * which always does a direct read using address_space_ldl(), rather 2385 * than going via this function, so we don't need to check that here. 2386 */ 2387 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2388 } else { /* MPU enabled */ 2389 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 2390 /* region search */ 2391 uint32_t base = env->pmsav7.drbar[n]; 2392 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 2393 uint32_t rmask; 2394 bool srdis = false; 2395 2396 if (!(env->pmsav7.drsr[n] & 0x1)) { 2397 continue; 2398 } 2399 2400 if (!rsize) { 2401 qemu_log_mask(LOG_GUEST_ERROR, 2402 "DRSR[%d]: Rsize field cannot be 0\n", n); 2403 continue; 2404 } 2405 rsize++; 2406 rmask = (1ull << rsize) - 1; 2407 2408 if (base & rmask) { 2409 qemu_log_mask(LOG_GUEST_ERROR, 2410 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 2411 "to DRSR region size, mask = 0x%" PRIx32 "\n", 2412 n, base, rmask); 2413 continue; 2414 } 2415 2416 if (address < base || address > base + rmask) { 2417 /* 2418 * Address not in this region. We must check whether the 2419 * region covers addresses in the same page as our address. 2420 * In that case we must not report a size that covers the 2421 * whole page for a subsequent hit against a different MPU 2422 * region or the background region, because it would result in 2423 * incorrect TLB hits for subsequent accesses to addresses that 2424 * are in this MPU region. 2425 */ 2426 if (ranges_overlap(base, rmask, 2427 address & TARGET_PAGE_MASK, 2428 TARGET_PAGE_SIZE)) { 2429 result->f.lg_page_size = 0; 2430 } 2431 continue; 2432 } 2433 2434 /* Region matched */ 2435 2436 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 2437 int i, snd; 2438 uint32_t srdis_mask; 2439 2440 rsize -= 3; /* sub region size (power of 2) */ 2441 snd = ((address - base) >> rsize) & 0x7; 2442 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 2443 2444 srdis_mask = srdis ? 0x3 : 0x0; 2445 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 2446 /* 2447 * This will check in groups of 2, 4 and then 8, whether 2448 * the subregion bits are consistent. rsize is incremented 2449 * back up to give the region size, considering consistent 2450 * adjacent subregions as one region. Stop testing if rsize 2451 * is already big enough for an entire QEMU page. 2452 */ 2453 int snd_rounded = snd & ~(i - 1); 2454 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 2455 snd_rounded + 8, i); 2456 if (srdis_mask ^ srdis_multi) { 2457 break; 2458 } 2459 srdis_mask = (srdis_mask << i) | srdis_mask; 2460 rsize++; 2461 } 2462 } 2463 if (srdis) { 2464 continue; 2465 } 2466 if (rsize < TARGET_PAGE_BITS) { 2467 result->f.lg_page_size = rsize; 2468 } 2469 break; 2470 } 2471 2472 if (n == -1) { /* no hits */ 2473 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2474 /* background fault */ 2475 fi->type = ARMFault_Background; 2476 return true; 2477 } 2478 get_phys_addr_pmsav7_default(env, mmu_idx, address, 2479 &result->f.prot); 2480 } else { /* a MPU hit! */ 2481 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 2482 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 2483 2484 if (m_is_system_region(env, address)) { 2485 /* System space is always execute never */ 2486 xn = 1; 2487 } 2488 2489 if (is_user) { /* User mode AP bit decoding */ 2490 switch (ap) { 2491 case 0: 2492 case 1: 2493 case 5: 2494 break; /* no access */ 2495 case 3: 2496 result->f.prot |= PAGE_WRITE; 2497 /* fall through */ 2498 case 2: 2499 case 6: 2500 result->f.prot |= PAGE_READ | PAGE_EXEC; 2501 break; 2502 case 7: 2503 /* for v7M, same as 6; for R profile a reserved value */ 2504 if (arm_feature(env, ARM_FEATURE_M)) { 2505 result->f.prot |= PAGE_READ | PAGE_EXEC; 2506 break; 2507 } 2508 /* fall through */ 2509 default: 2510 qemu_log_mask(LOG_GUEST_ERROR, 2511 "DRACR[%d]: Bad value for AP bits: 0x%" 2512 PRIx32 "\n", n, ap); 2513 } 2514 } else { /* Priv. mode AP bits decoding */ 2515 switch (ap) { 2516 case 0: 2517 break; /* no access */ 2518 case 1: 2519 case 2: 2520 case 3: 2521 result->f.prot |= PAGE_WRITE; 2522 /* fall through */ 2523 case 5: 2524 case 6: 2525 result->f.prot |= PAGE_READ | PAGE_EXEC; 2526 break; 2527 case 7: 2528 /* for v7M, same as 6; for R profile a reserved value */ 2529 if (arm_feature(env, ARM_FEATURE_M)) { 2530 result->f.prot |= PAGE_READ | PAGE_EXEC; 2531 break; 2532 } 2533 /* fall through */ 2534 default: 2535 qemu_log_mask(LOG_GUEST_ERROR, 2536 "DRACR[%d]: Bad value for AP bits: 0x%" 2537 PRIx32 "\n", n, ap); 2538 } 2539 } 2540 2541 /* execute never */ 2542 if (xn) { 2543 result->f.prot &= ~PAGE_EXEC; 2544 } 2545 } 2546 } 2547 2548 fi->type = ARMFault_Permission; 2549 fi->level = 1; 2550 return !(result->f.prot & (1 << access_type)); 2551 } 2552 2553 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx, 2554 uint32_t secure) 2555 { 2556 if (regime_el(env, mmu_idx) == 2) { 2557 return env->pmsav8.hprbar; 2558 } else { 2559 return env->pmsav8.rbar[secure]; 2560 } 2561 } 2562 2563 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx, 2564 uint32_t secure) 2565 { 2566 if (regime_el(env, mmu_idx) == 2) { 2567 return env->pmsav8.hprlar; 2568 } else { 2569 return env->pmsav8.rlar[secure]; 2570 } 2571 } 2572 2573 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 2574 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2575 bool secure, GetPhysAddrResult *result, 2576 ARMMMUFaultInfo *fi, uint32_t *mregion) 2577 { 2578 /* 2579 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 2580 * that a full phys-to-virt translation does). 2581 * mregion is (if not NULL) set to the region number which matched, 2582 * or -1 if no region number is returned (MPU off, address did not 2583 * hit a region, address hit in multiple regions). 2584 * If the region hit doesn't cover the entire TARGET_PAGE the address 2585 * is within, then we set the result page_size to 1 to force the 2586 * memory system to use a subpage. 2587 */ 2588 ARMCPU *cpu = env_archcpu(env); 2589 bool is_user = regime_is_user(env, mmu_idx); 2590 int n; 2591 int matchregion = -1; 2592 bool hit = false; 2593 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2594 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2595 int region_counter; 2596 2597 if (regime_el(env, mmu_idx) == 2) { 2598 region_counter = cpu->pmsav8r_hdregion; 2599 } else { 2600 region_counter = cpu->pmsav7_dregion; 2601 } 2602 2603 result->f.lg_page_size = TARGET_PAGE_BITS; 2604 result->f.phys_addr = address; 2605 result->f.prot = 0; 2606 if (mregion) { 2607 *mregion = -1; 2608 } 2609 2610 if (mmu_idx == ARMMMUIdx_Stage2) { 2611 fi->stage2 = true; 2612 } 2613 2614 /* 2615 * Unlike the ARM ARM pseudocode, we don't need to check whether this 2616 * was an exception vector read from the vector table (which is always 2617 * done using the default system address map), because those accesses 2618 * are done in arm_v7m_load_vector(), which always does a direct 2619 * read using address_space_ldl(), rather than going via this function. 2620 */ 2621 if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) { 2622 /* MPU disabled */ 2623 hit = true; 2624 } else if (m_is_ppb_region(env, address)) { 2625 hit = true; 2626 } else { 2627 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2628 hit = true; 2629 } 2630 2631 uint32_t bitmask; 2632 if (arm_feature(env, ARM_FEATURE_M)) { 2633 bitmask = 0x1f; 2634 } else { 2635 bitmask = 0x3f; 2636 fi->level = 0; 2637 } 2638 2639 for (n = region_counter - 1; n >= 0; n--) { 2640 /* region search */ 2641 /* 2642 * Note that the base address is bits [31:x] from the register 2643 * with bits [x-1:0] all zeroes, but the limit address is bits 2644 * [31:x] from the register with bits [x:0] all ones. Where x is 2645 * 5 for Cortex-M and 6 for Cortex-R 2646 */ 2647 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask; 2648 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask; 2649 2650 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) { 2651 /* Region disabled */ 2652 continue; 2653 } 2654 2655 if (address < base || address > limit) { 2656 /* 2657 * Address not in this region. We must check whether the 2658 * region covers addresses in the same page as our address. 2659 * In that case we must not report a size that covers the 2660 * whole page for a subsequent hit against a different MPU 2661 * region or the background region, because it would result in 2662 * incorrect TLB hits for subsequent accesses to addresses that 2663 * are in this MPU region. 2664 */ 2665 if (limit >= base && 2666 ranges_overlap(base, limit - base + 1, 2667 addr_page_base, 2668 TARGET_PAGE_SIZE)) { 2669 result->f.lg_page_size = 0; 2670 } 2671 continue; 2672 } 2673 2674 if (base > addr_page_base || limit < addr_page_limit) { 2675 result->f.lg_page_size = 0; 2676 } 2677 2678 if (matchregion != -1) { 2679 /* 2680 * Multiple regions match -- always a failure (unlike 2681 * PMSAv7 where highest-numbered-region wins) 2682 */ 2683 fi->type = ARMFault_Permission; 2684 if (arm_feature(env, ARM_FEATURE_M)) { 2685 fi->level = 1; 2686 } 2687 return true; 2688 } 2689 2690 matchregion = n; 2691 hit = true; 2692 } 2693 } 2694 2695 if (!hit) { 2696 if (arm_feature(env, ARM_FEATURE_M)) { 2697 fi->type = ARMFault_Background; 2698 } else { 2699 fi->type = ARMFault_Permission; 2700 } 2701 return true; 2702 } 2703 2704 if (matchregion == -1) { 2705 /* hit using the background region */ 2706 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2707 } else { 2708 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion]; 2709 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion]; 2710 uint32_t ap = extract32(matched_rbar, 1, 2); 2711 uint32_t xn = extract32(matched_rbar, 0, 1); 2712 bool pxn = false; 2713 2714 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 2715 pxn = extract32(matched_rlar, 4, 1); 2716 } 2717 2718 if (m_is_system_region(env, address)) { 2719 /* System space is always execute never */ 2720 xn = 1; 2721 } 2722 2723 if (regime_el(env, mmu_idx) == 2) { 2724 result->f.prot = simple_ap_to_rw_prot_is_user(ap, 2725 mmu_idx != ARMMMUIdx_E2); 2726 } else { 2727 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 2728 } 2729 2730 if (!arm_feature(env, ARM_FEATURE_M)) { 2731 uint8_t attrindx = extract32(matched_rlar, 1, 3); 2732 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2733 uint8_t sh = extract32(matched_rlar, 3, 2); 2734 2735 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN && 2736 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) { 2737 xn = 0x1; 2738 } 2739 2740 if ((regime_el(env, mmu_idx) == 1) && 2741 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) { 2742 pxn = 0x1; 2743 } 2744 2745 result->cacheattrs.is_s2_format = false; 2746 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2747 result->cacheattrs.shareability = sh; 2748 } 2749 2750 if (result->f.prot && !xn && !(pxn && !is_user)) { 2751 result->f.prot |= PAGE_EXEC; 2752 } 2753 2754 if (mregion) { 2755 *mregion = matchregion; 2756 } 2757 } 2758 2759 fi->type = ARMFault_Permission; 2760 if (arm_feature(env, ARM_FEATURE_M)) { 2761 fi->level = 1; 2762 } 2763 return !(result->f.prot & (1 << access_type)); 2764 } 2765 2766 static bool v8m_is_sau_exempt(CPUARMState *env, 2767 uint32_t address, MMUAccessType access_type) 2768 { 2769 /* 2770 * The architecture specifies that certain address ranges are 2771 * exempt from v8M SAU/IDAU checks. 2772 */ 2773 return 2774 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 2775 (address >= 0xe0000000 && address <= 0xe0002fff) || 2776 (address >= 0xe000e000 && address <= 0xe000efff) || 2777 (address >= 0xe002e000 && address <= 0xe002efff) || 2778 (address >= 0xe0040000 && address <= 0xe0041fff) || 2779 (address >= 0xe00ff000 && address <= 0xe00fffff); 2780 } 2781 2782 void v8m_security_lookup(CPUARMState *env, uint32_t address, 2783 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2784 bool is_secure, V8M_SAttributes *sattrs) 2785 { 2786 /* 2787 * Look up the security attributes for this address. Compare the 2788 * pseudocode SecurityCheck() function. 2789 * We assume the caller has zero-initialized *sattrs. 2790 */ 2791 ARMCPU *cpu = env_archcpu(env); 2792 int r; 2793 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 2794 int idau_region = IREGION_NOTVALID; 2795 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2796 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2797 2798 if (cpu->idau) { 2799 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 2800 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 2801 2802 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 2803 &idau_nsc); 2804 } 2805 2806 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 2807 /* 0xf0000000..0xffffffff is always S for insn fetches */ 2808 return; 2809 } 2810 2811 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 2812 sattrs->ns = !is_secure; 2813 return; 2814 } 2815 2816 if (idau_region != IREGION_NOTVALID) { 2817 sattrs->irvalid = true; 2818 sattrs->iregion = idau_region; 2819 } 2820 2821 switch (env->sau.ctrl & 3) { 2822 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 2823 break; 2824 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 2825 sattrs->ns = true; 2826 break; 2827 default: /* SAU.ENABLE == 1 */ 2828 for (r = 0; r < cpu->sau_sregion; r++) { 2829 if (env->sau.rlar[r] & 1) { 2830 uint32_t base = env->sau.rbar[r] & ~0x1f; 2831 uint32_t limit = env->sau.rlar[r] | 0x1f; 2832 2833 if (base <= address && limit >= address) { 2834 if (base > addr_page_base || limit < addr_page_limit) { 2835 sattrs->subpage = true; 2836 } 2837 if (sattrs->srvalid) { 2838 /* 2839 * If we hit in more than one region then we must report 2840 * as Secure, not NS-Callable, with no valid region 2841 * number info. 2842 */ 2843 sattrs->ns = false; 2844 sattrs->nsc = false; 2845 sattrs->sregion = 0; 2846 sattrs->srvalid = false; 2847 break; 2848 } else { 2849 if (env->sau.rlar[r] & 2) { 2850 sattrs->nsc = true; 2851 } else { 2852 sattrs->ns = true; 2853 } 2854 sattrs->srvalid = true; 2855 sattrs->sregion = r; 2856 } 2857 } else { 2858 /* 2859 * Address not in this region. We must check whether the 2860 * region covers addresses in the same page as our address. 2861 * In that case we must not report a size that covers the 2862 * whole page for a subsequent hit against a different MPU 2863 * region or the background region, because it would result 2864 * in incorrect TLB hits for subsequent accesses to 2865 * addresses that are in this MPU region. 2866 */ 2867 if (limit >= base && 2868 ranges_overlap(base, limit - base + 1, 2869 addr_page_base, 2870 TARGET_PAGE_SIZE)) { 2871 sattrs->subpage = true; 2872 } 2873 } 2874 } 2875 } 2876 break; 2877 } 2878 2879 /* 2880 * The IDAU will override the SAU lookup results if it specifies 2881 * higher security than the SAU does. 2882 */ 2883 if (!idau_ns) { 2884 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 2885 sattrs->ns = false; 2886 sattrs->nsc = idau_nsc; 2887 } 2888 } 2889 } 2890 2891 static bool get_phys_addr_pmsav8(CPUARMState *env, 2892 S1Translate *ptw, 2893 uint32_t address, 2894 MMUAccessType access_type, 2895 GetPhysAddrResult *result, 2896 ARMMMUFaultInfo *fi) 2897 { 2898 V8M_SAttributes sattrs = {}; 2899 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2900 bool secure = arm_space_is_secure(ptw->in_space); 2901 bool ret; 2902 2903 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2904 v8m_security_lookup(env, address, access_type, mmu_idx, 2905 secure, &sattrs); 2906 if (access_type == MMU_INST_FETCH) { 2907 /* 2908 * Instruction fetches always use the MMU bank and the 2909 * transaction attribute determined by the fetch address, 2910 * regardless of CPU state. This is painful for QEMU 2911 * to handle, because it would mean we need to encode 2912 * into the mmu_idx not just the (user, negpri) information 2913 * for the current security state but also that for the 2914 * other security state, which would balloon the number 2915 * of mmu_idx values needed alarmingly. 2916 * Fortunately we can avoid this because it's not actually 2917 * possible to arbitrarily execute code from memory with 2918 * the wrong security attribute: it will always generate 2919 * an exception of some kind or another, apart from the 2920 * special case of an NS CPU executing an SG instruction 2921 * in S&NSC memory. So we always just fail the translation 2922 * here and sort things out in the exception handler 2923 * (including possibly emulating an SG instruction). 2924 */ 2925 if (sattrs.ns != !secure) { 2926 if (sattrs.nsc) { 2927 fi->type = ARMFault_QEMU_NSCExec; 2928 } else { 2929 fi->type = ARMFault_QEMU_SFault; 2930 } 2931 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2932 result->f.phys_addr = address; 2933 result->f.prot = 0; 2934 return true; 2935 } 2936 } else { 2937 /* 2938 * For data accesses we always use the MMU bank indicated 2939 * by the current CPU state, but the security attributes 2940 * might downgrade a secure access to nonsecure. 2941 */ 2942 if (sattrs.ns) { 2943 result->f.attrs.secure = false; 2944 result->f.attrs.space = ARMSS_NonSecure; 2945 } else if (!secure) { 2946 /* 2947 * NS access to S memory must fault. 2948 * Architecturally we should first check whether the 2949 * MPU information for this address indicates that we 2950 * are doing an unaligned access to Device memory, which 2951 * should generate a UsageFault instead. QEMU does not 2952 * currently check for that kind of unaligned access though. 2953 * If we added it we would need to do so as a special case 2954 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2955 */ 2956 fi->type = ARMFault_QEMU_SFault; 2957 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2958 result->f.phys_addr = address; 2959 result->f.prot = 0; 2960 return true; 2961 } 2962 } 2963 } 2964 2965 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, 2966 result, fi, NULL); 2967 if (sattrs.subpage) { 2968 result->f.lg_page_size = 0; 2969 } 2970 return ret; 2971 } 2972 2973 /* 2974 * Translate from the 4-bit stage 2 representation of 2975 * memory attributes (without cache-allocation hints) to 2976 * the 8-bit representation of the stage 1 MAIR registers 2977 * (which includes allocation hints). 2978 * 2979 * ref: shared/translation/attrs/S2AttrDecode() 2980 * .../S2ConvertAttrsHints() 2981 */ 2982 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) 2983 { 2984 uint8_t hiattr = extract32(s2attrs, 2, 2); 2985 uint8_t loattr = extract32(s2attrs, 0, 2); 2986 uint8_t hihint = 0, lohint = 0; 2987 2988 if (hiattr != 0) { /* normal memory */ 2989 if (hcr & HCR_CD) { /* cache disabled */ 2990 hiattr = loattr = 1; /* non-cacheable */ 2991 } else { 2992 if (hiattr != 1) { /* Write-through or write-back */ 2993 hihint = 3; /* RW allocate */ 2994 } 2995 if (loattr != 1) { /* Write-through or write-back */ 2996 lohint = 3; /* RW allocate */ 2997 } 2998 } 2999 } 3000 3001 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 3002 } 3003 3004 /* 3005 * Combine either inner or outer cacheability attributes for normal 3006 * memory, according to table D4-42 and pseudocode procedure 3007 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 3008 * 3009 * NB: only stage 1 includes allocation hints (RW bits), leading to 3010 * some asymmetry. 3011 */ 3012 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 3013 { 3014 if (s1 == 4 || s2 == 4) { 3015 /* non-cacheable has precedence */ 3016 return 4; 3017 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 3018 /* stage 1 write-through takes precedence */ 3019 return s1; 3020 } else if (extract32(s2, 2, 2) == 2) { 3021 /* stage 2 write-through takes precedence, but the allocation hint 3022 * is still taken from stage 1 3023 */ 3024 return (2 << 2) | extract32(s1, 0, 2); 3025 } else { /* write-back */ 3026 return s1; 3027 } 3028 } 3029 3030 /* 3031 * Combine the memory type and cacheability attributes of 3032 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 3033 * combined attributes in MAIR_EL1 format. 3034 */ 3035 static uint8_t combined_attrs_nofwb(uint64_t hcr, 3036 ARMCacheAttrs s1, ARMCacheAttrs s2) 3037 { 3038 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 3039 3040 if (s2.is_s2_format) { 3041 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); 3042 } else { 3043 s2_mair_attrs = s2.attrs; 3044 } 3045 3046 s1lo = extract32(s1.attrs, 0, 4); 3047 s2lo = extract32(s2_mair_attrs, 0, 4); 3048 s1hi = extract32(s1.attrs, 4, 4); 3049 s2hi = extract32(s2_mair_attrs, 4, 4); 3050 3051 /* Combine memory type and cacheability attributes */ 3052 if (s1hi == 0 || s2hi == 0) { 3053 /* Device has precedence over normal */ 3054 if (s1lo == 0 || s2lo == 0) { 3055 /* nGnRnE has precedence over anything */ 3056 ret_attrs = 0; 3057 } else if (s1lo == 4 || s2lo == 4) { 3058 /* non-Reordering has precedence over Reordering */ 3059 ret_attrs = 4; /* nGnRE */ 3060 } else if (s1lo == 8 || s2lo == 8) { 3061 /* non-Gathering has precedence over Gathering */ 3062 ret_attrs = 8; /* nGRE */ 3063 } else { 3064 ret_attrs = 0xc; /* GRE */ 3065 } 3066 } else { /* Normal memory */ 3067 /* Outer/inner cacheability combine independently */ 3068 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 3069 | combine_cacheattr_nibble(s1lo, s2lo); 3070 } 3071 return ret_attrs; 3072 } 3073 3074 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 3075 { 3076 /* 3077 * Given the 4 bits specifying the outer or inner cacheability 3078 * in MAIR format, return a value specifying Normal Write-Back, 3079 * with the allocation and transient hints taken from the input 3080 * if the input specified some kind of cacheable attribute. 3081 */ 3082 if (attr == 0 || attr == 4) { 3083 /* 3084 * 0 == an UNPREDICTABLE encoding 3085 * 4 == Non-cacheable 3086 * Either way, force Write-Back RW allocate non-transient 3087 */ 3088 return 0xf; 3089 } 3090 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 3091 return attr | 4; 3092 } 3093 3094 /* 3095 * Combine the memory type and cacheability attributes of 3096 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 3097 * combined attributes in MAIR_EL1 format. 3098 */ 3099 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) 3100 { 3101 assert(s2.is_s2_format && !s1.is_s2_format); 3102 3103 switch (s2.attrs) { 3104 case 7: 3105 /* Use stage 1 attributes */ 3106 return s1.attrs; 3107 case 6: 3108 /* 3109 * Force Normal Write-Back. Note that if S1 is Normal cacheable 3110 * then we take the allocation hints from it; otherwise it is 3111 * RW allocate, non-transient. 3112 */ 3113 if ((s1.attrs & 0xf0) == 0) { 3114 /* S1 is Device */ 3115 return 0xff; 3116 } 3117 /* Need to check the Inner and Outer nibbles separately */ 3118 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 3119 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 3120 case 5: 3121 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 3122 if ((s1.attrs & 0xf0) == 0) { 3123 return s1.attrs; 3124 } 3125 return 0x44; 3126 case 0 ... 3: 3127 /* Force Device, of subtype specified by S2 */ 3128 return s2.attrs << 2; 3129 default: 3130 /* 3131 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 3132 * arbitrarily force Device. 3133 */ 3134 return 0; 3135 } 3136 } 3137 3138 /* 3139 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 3140 * and CombineS1S2Desc() 3141 * 3142 * @env: CPUARMState 3143 * @s1: Attributes from stage 1 walk 3144 * @s2: Attributes from stage 2 walk 3145 */ 3146 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, 3147 ARMCacheAttrs s1, ARMCacheAttrs s2) 3148 { 3149 ARMCacheAttrs ret; 3150 bool tagged = false; 3151 3152 assert(!s1.is_s2_format); 3153 ret.is_s2_format = false; 3154 3155 if (s1.attrs == 0xf0) { 3156 tagged = true; 3157 s1.attrs = 0xff; 3158 } 3159 3160 /* Combine shareability attributes (table D4-43) */ 3161 if (s1.shareability == 2 || s2.shareability == 2) { 3162 /* if either are outer-shareable, the result is outer-shareable */ 3163 ret.shareability = 2; 3164 } else if (s1.shareability == 3 || s2.shareability == 3) { 3165 /* if either are inner-shareable, the result is inner-shareable */ 3166 ret.shareability = 3; 3167 } else { 3168 /* both non-shareable */ 3169 ret.shareability = 0; 3170 } 3171 3172 /* Combine memory type and cacheability attributes */ 3173 if (hcr & HCR_FWB) { 3174 ret.attrs = combined_attrs_fwb(s1, s2); 3175 } else { 3176 ret.attrs = combined_attrs_nofwb(hcr, s1, s2); 3177 } 3178 3179 /* 3180 * Any location for which the resultant memory type is any 3181 * type of Device memory is always treated as Outer Shareable. 3182 * Any location for which the resultant memory type is Normal 3183 * Inner Non-cacheable, Outer Non-cacheable is always treated 3184 * as Outer Shareable. 3185 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 3186 */ 3187 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 3188 ret.shareability = 2; 3189 } 3190 3191 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 3192 if (tagged && ret.attrs == 0xff) { 3193 ret.attrs = 0xf0; 3194 } 3195 3196 return ret; 3197 } 3198 3199 /* 3200 * MMU disabled. S1 addresses within aa64 translation regimes are 3201 * still checked for bounds -- see AArch64.S1DisabledOutput(). 3202 */ 3203 static bool get_phys_addr_disabled(CPUARMState *env, 3204 S1Translate *ptw, 3205 vaddr address, 3206 MMUAccessType access_type, 3207 GetPhysAddrResult *result, 3208 ARMMMUFaultInfo *fi) 3209 { 3210 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3211 uint8_t memattr = 0x00; /* Device nGnRnE */ 3212 uint8_t shareability = 0; /* non-shareable */ 3213 int r_el; 3214 3215 switch (mmu_idx) { 3216 case ARMMMUIdx_Stage2: 3217 case ARMMMUIdx_Stage2_S: 3218 case ARMMMUIdx_Phys_S: 3219 case ARMMMUIdx_Phys_NS: 3220 case ARMMMUIdx_Phys_Root: 3221 case ARMMMUIdx_Phys_Realm: 3222 break; 3223 3224 default: 3225 r_el = regime_el(env, mmu_idx); 3226 if (arm_el_is_aa64(env, r_el)) { 3227 int pamax = arm_pamax(env_archcpu(env)); 3228 uint64_t tcr = env->cp15.tcr_el[r_el]; 3229 int addrtop, tbi; 3230 3231 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 3232 if (access_type == MMU_INST_FETCH) { 3233 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 3234 } 3235 tbi = (tbi >> extract64(address, 55, 1)) & 1; 3236 addrtop = (tbi ? 55 : 63); 3237 3238 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 3239 fi->type = ARMFault_AddressSize; 3240 fi->level = 0; 3241 fi->stage2 = false; 3242 return 1; 3243 } 3244 3245 /* 3246 * When TBI is disabled, we've just validated that all of the 3247 * bits above PAMax are zero, so logically we only need to 3248 * clear the top byte for TBI. But it's clearer to follow 3249 * the pseudocode set of addrdesc.paddress. 3250 */ 3251 address = extract64(address, 0, 52); 3252 } 3253 3254 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 3255 if (r_el == 1) { 3256 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 3257 if (hcr & HCR_DC) { 3258 if (hcr & HCR_DCT) { 3259 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 3260 } else { 3261 memattr = 0xff; /* Normal, WB, RWA */ 3262 } 3263 } 3264 } 3265 if (memattr == 0) { 3266 if (access_type == MMU_INST_FETCH) { 3267 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 3268 memattr = 0xee; /* Normal, WT, RA, NT */ 3269 } else { 3270 memattr = 0x44; /* Normal, NC, No */ 3271 } 3272 } 3273 shareability = 2; /* outer shareable */ 3274 } 3275 result->cacheattrs.is_s2_format = false; 3276 break; 3277 } 3278 3279 result->f.phys_addr = address; 3280 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 3281 result->f.lg_page_size = TARGET_PAGE_BITS; 3282 result->cacheattrs.shareability = shareability; 3283 result->cacheattrs.attrs = memattr; 3284 return false; 3285 } 3286 3287 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, 3288 vaddr address, 3289 MMUAccessType access_type, 3290 GetPhysAddrResult *result, 3291 ARMMMUFaultInfo *fi) 3292 { 3293 hwaddr ipa; 3294 int s1_prot, s1_lgpgsz; 3295 ARMSecuritySpace in_space = ptw->in_space; 3296 bool ret, ipa_secure, s1_guarded; 3297 ARMCacheAttrs cacheattrs1; 3298 ARMSecuritySpace ipa_space; 3299 uint64_t hcr; 3300 3301 ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi); 3302 3303 /* If S1 fails, return early. */ 3304 if (ret) { 3305 return ret; 3306 } 3307 3308 ipa = result->f.phys_addr; 3309 ipa_secure = result->f.attrs.secure; 3310 ipa_space = result->f.attrs.space; 3311 3312 ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; 3313 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3314 ptw->in_space = ipa_space; 3315 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx); 3316 3317 /* 3318 * S1 is done, now do S2 translation. 3319 * Save the stage1 results so that we may merge prot and cacheattrs later. 3320 */ 3321 s1_prot = result->f.prot; 3322 s1_lgpgsz = result->f.lg_page_size; 3323 s1_guarded = result->f.extra.arm.guarded; 3324 cacheattrs1 = result->cacheattrs; 3325 memset(result, 0, sizeof(*result)); 3326 3327 ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi); 3328 fi->s2addr = ipa; 3329 3330 /* Combine the S1 and S2 perms. */ 3331 result->f.prot &= s1_prot; 3332 3333 /* If S2 fails, return early. */ 3334 if (ret) { 3335 return ret; 3336 } 3337 3338 /* 3339 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE, 3340 * this means "don't put this in the TLB"; in this case, return a 3341 * result with lg_page_size == 0 to achieve that. Otherwise, 3342 * use the maximum of the S1 & S2 page size, so that invalidation 3343 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though 3344 * we know the combined result permissions etc only cover the minimum 3345 * of the S1 and S2 page size, because we know that the common TLB code 3346 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE, 3347 * and passing a larger page size value only affects invalidations.) 3348 */ 3349 if (result->f.lg_page_size < TARGET_PAGE_BITS || 3350 s1_lgpgsz < TARGET_PAGE_BITS) { 3351 result->f.lg_page_size = 0; 3352 } else if (result->f.lg_page_size < s1_lgpgsz) { 3353 result->f.lg_page_size = s1_lgpgsz; 3354 } 3355 3356 /* Combine the S1 and S2 cache attributes. */ 3357 hcr = arm_hcr_el2_eff_secstate(env, in_space); 3358 if (hcr & HCR_DC) { 3359 /* 3360 * HCR.DC forces the first stage attributes to 3361 * Normal Non-Shareable, 3362 * Inner Write-Back Read-Allocate Write-Allocate, 3363 * Outer Write-Back Read-Allocate Write-Allocate. 3364 * Do not overwrite Tagged within attrs. 3365 */ 3366 if (cacheattrs1.attrs != 0xf0) { 3367 cacheattrs1.attrs = 0xff; 3368 } 3369 cacheattrs1.shareability = 0; 3370 } 3371 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, 3372 result->cacheattrs); 3373 3374 /* No BTI GP information in stage 2, we just use the S1 value */ 3375 result->f.extra.arm.guarded = s1_guarded; 3376 3377 /* 3378 * Check if IPA translates to secure or non-secure PA space. 3379 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. 3380 */ 3381 if (in_space == ARMSS_Secure) { 3382 result->f.attrs.secure = 3383 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) 3384 && (ipa_secure 3385 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))); 3386 result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure); 3387 } 3388 3389 return false; 3390 } 3391 3392 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 3393 vaddr address, 3394 MMUAccessType access_type, 3395 GetPhysAddrResult *result, 3396 ARMMMUFaultInfo *fi) 3397 { 3398 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3399 ARMMMUIdx s1_mmu_idx; 3400 3401 /* 3402 * The page table entries may downgrade Secure to NonSecure, but 3403 * cannot upgrade a NonSecure translation regime's attributes 3404 * to Secure or Realm. 3405 */ 3406 result->f.attrs.space = ptw->in_space; 3407 result->f.attrs.secure = arm_space_is_secure(ptw->in_space); 3408 3409 switch (mmu_idx) { 3410 case ARMMMUIdx_Phys_S: 3411 case ARMMMUIdx_Phys_NS: 3412 case ARMMMUIdx_Phys_Root: 3413 case ARMMMUIdx_Phys_Realm: 3414 /* Checking Phys early avoids special casing later vs regime_el. */ 3415 return get_phys_addr_disabled(env, ptw, address, access_type, 3416 result, fi); 3417 3418 case ARMMMUIdx_Stage1_E0: 3419 case ARMMMUIdx_Stage1_E1: 3420 case ARMMMUIdx_Stage1_E1_PAN: 3421 /* 3422 * First stage lookup uses second stage for ptw; only 3423 * Secure has both S and NS IPA and starts with Stage2_S. 3424 */ 3425 ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ? 3426 ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3427 break; 3428 3429 case ARMMMUIdx_Stage2: 3430 case ARMMMUIdx_Stage2_S: 3431 /* 3432 * Second stage lookup uses physical for ptw; whether this is S or 3433 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for 3434 * the Secure EL2&0 regime. 3435 */ 3436 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx); 3437 break; 3438 3439 case ARMMMUIdx_E10_0: 3440 s1_mmu_idx = ARMMMUIdx_Stage1_E0; 3441 goto do_twostage; 3442 case ARMMMUIdx_E10_1: 3443 s1_mmu_idx = ARMMMUIdx_Stage1_E1; 3444 goto do_twostage; 3445 case ARMMMUIdx_E10_1_PAN: 3446 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3447 do_twostage: 3448 /* 3449 * Call ourselves recursively to do the stage 1 and then stage 2 3450 * translations if mmu_idx is a two-stage regime, and EL2 present. 3451 * Otherwise, a stage1+stage2 translation is just stage 1. 3452 */ 3453 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; 3454 if (arm_feature(env, ARM_FEATURE_EL2) && 3455 !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) { 3456 return get_phys_addr_twostage(env, ptw, address, access_type, 3457 result, fi); 3458 } 3459 /* fall through */ 3460 3461 default: 3462 /* Single stage uses physical for ptw. */ 3463 ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space); 3464 break; 3465 } 3466 3467 result->f.attrs.user = regime_is_user(env, mmu_idx); 3468 3469 /* 3470 * Fast Context Switch Extension. This doesn't exist at all in v8. 3471 * In v7 and earlier it affects all stage 1 translations. 3472 */ 3473 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 3474 && !arm_feature(env, ARM_FEATURE_V8)) { 3475 if (regime_el(env, mmu_idx) == 3) { 3476 address += env->cp15.fcseidr_s; 3477 } else { 3478 address += env->cp15.fcseidr_ns; 3479 } 3480 } 3481 3482 if (arm_feature(env, ARM_FEATURE_PMSA)) { 3483 bool ret; 3484 result->f.lg_page_size = TARGET_PAGE_BITS; 3485 3486 if (arm_feature(env, ARM_FEATURE_V8)) { 3487 /* PMSAv8 */ 3488 ret = get_phys_addr_pmsav8(env, ptw, address, access_type, 3489 result, fi); 3490 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3491 /* PMSAv7 */ 3492 ret = get_phys_addr_pmsav7(env, ptw, address, access_type, 3493 result, fi); 3494 } else { 3495 /* Pre-v7 MPU */ 3496 ret = get_phys_addr_pmsav5(env, ptw, address, access_type, 3497 result, fi); 3498 } 3499 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 3500 " mmu_idx %u -> %s (prot %c%c%c)\n", 3501 access_type == MMU_DATA_LOAD ? "reading" : 3502 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 3503 (uint32_t)address, mmu_idx, 3504 ret ? "Miss" : "Hit", 3505 result->f.prot & PAGE_READ ? 'r' : '-', 3506 result->f.prot & PAGE_WRITE ? 'w' : '-', 3507 result->f.prot & PAGE_EXEC ? 'x' : '-'); 3508 3509 return ret; 3510 } 3511 3512 /* Definitely a real MMU, not an MPU */ 3513 3514 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 3515 return get_phys_addr_disabled(env, ptw, address, access_type, 3516 result, fi); 3517 } 3518 3519 if (regime_using_lpae_format(env, mmu_idx)) { 3520 return get_phys_addr_lpae(env, ptw, address, access_type, result, fi); 3521 } else if (arm_feature(env, ARM_FEATURE_V7) || 3522 regime_sctlr(env, mmu_idx) & SCTLR_XP) { 3523 return get_phys_addr_v6(env, ptw, address, access_type, result, fi); 3524 } else { 3525 return get_phys_addr_v5(env, ptw, address, access_type, result, fi); 3526 } 3527 } 3528 3529 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 3530 vaddr address, 3531 MMUAccessType access_type, 3532 GetPhysAddrResult *result, 3533 ARMMMUFaultInfo *fi) 3534 { 3535 if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) { 3536 return true; 3537 } 3538 if (!granule_protection_check(env, result->f.phys_addr, 3539 result->f.attrs.space, fi)) { 3540 fi->type = ARMFault_GPCFOnOutput; 3541 return true; 3542 } 3543 return false; 3544 } 3545 3546 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address, 3547 MMUAccessType access_type, 3548 ARMMMUIdx mmu_idx, ARMSecuritySpace space, 3549 GetPhysAddrResult *result, 3550 ARMMMUFaultInfo *fi) 3551 { 3552 S1Translate ptw = { 3553 .in_mmu_idx = mmu_idx, 3554 .in_space = space, 3555 }; 3556 return get_phys_addr_nogpc(env, &ptw, address, access_type, result, fi); 3557 } 3558 3559 bool get_phys_addr(CPUARMState *env, vaddr address, 3560 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3561 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 3562 { 3563 S1Translate ptw = { 3564 .in_mmu_idx = mmu_idx, 3565 }; 3566 ARMSecuritySpace ss; 3567 3568 switch (mmu_idx) { 3569 case ARMMMUIdx_E10_0: 3570 case ARMMMUIdx_E10_1: 3571 case ARMMMUIdx_E10_1_PAN: 3572 case ARMMMUIdx_E20_0: 3573 case ARMMMUIdx_E20_2: 3574 case ARMMMUIdx_E20_2_PAN: 3575 case ARMMMUIdx_Stage1_E0: 3576 case ARMMMUIdx_Stage1_E1: 3577 case ARMMMUIdx_Stage1_E1_PAN: 3578 case ARMMMUIdx_E2: 3579 if (arm_aa32_secure_pl1_0(env)) { 3580 ss = ARMSS_Secure; 3581 } else { 3582 ss = arm_security_space_below_el3(env); 3583 } 3584 break; 3585 case ARMMMUIdx_Stage2: 3586 /* 3587 * For Secure EL2, we need this index to be NonSecure; 3588 * otherwise this will already be NonSecure or Realm. 3589 */ 3590 ss = arm_security_space_below_el3(env); 3591 if (ss == ARMSS_Secure) { 3592 ss = ARMSS_NonSecure; 3593 } 3594 break; 3595 case ARMMMUIdx_Phys_NS: 3596 case ARMMMUIdx_MPrivNegPri: 3597 case ARMMMUIdx_MUserNegPri: 3598 case ARMMMUIdx_MPriv: 3599 case ARMMMUIdx_MUser: 3600 ss = ARMSS_NonSecure; 3601 break; 3602 case ARMMMUIdx_Stage2_S: 3603 case ARMMMUIdx_Phys_S: 3604 case ARMMMUIdx_MSPrivNegPri: 3605 case ARMMMUIdx_MSUserNegPri: 3606 case ARMMMUIdx_MSPriv: 3607 case ARMMMUIdx_MSUser: 3608 ss = ARMSS_Secure; 3609 break; 3610 case ARMMMUIdx_E3: 3611 if (arm_feature(env, ARM_FEATURE_AARCH64) && 3612 cpu_isar_feature(aa64_rme, env_archcpu(env))) { 3613 ss = ARMSS_Root; 3614 } else { 3615 ss = ARMSS_Secure; 3616 } 3617 break; 3618 case ARMMMUIdx_Phys_Root: 3619 ss = ARMSS_Root; 3620 break; 3621 case ARMMMUIdx_Phys_Realm: 3622 ss = ARMSS_Realm; 3623 break; 3624 default: 3625 g_assert_not_reached(); 3626 } 3627 3628 ptw.in_space = ss; 3629 return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi); 3630 } 3631 3632 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 3633 MemTxAttrs *attrs) 3634 { 3635 ARMCPU *cpu = ARM_CPU(cs); 3636 CPUARMState *env = &cpu->env; 3637 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 3638 ARMSecuritySpace ss = arm_security_space(env); 3639 S1Translate ptw = { 3640 .in_mmu_idx = mmu_idx, 3641 .in_space = ss, 3642 .in_debug = true, 3643 }; 3644 GetPhysAddrResult res = {}; 3645 ARMMMUFaultInfo fi = {}; 3646 bool ret; 3647 3648 ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi); 3649 *attrs = res.f.attrs; 3650 3651 if (ret) { 3652 return -1; 3653 } 3654 return res.f.phys_addr; 3655 } 3656