1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "qemu/main-loop.h" 13 #include "exec/exec-all.h" 14 #include "exec/page-protection.h" 15 #include "cpu.h" 16 #include "internals.h" 17 #include "cpu-features.h" 18 #include "idau.h" 19 #ifdef CONFIG_TCG 20 # include "tcg/oversized-guest.h" 21 #endif 22 23 typedef struct S1Translate { 24 /* 25 * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk. 26 * Together with in_space, specifies the architectural translation regime. 27 */ 28 ARMMMUIdx in_mmu_idx; 29 /* 30 * in_ptw_idx: specifies which mmuidx to use for the actual 31 * page table descriptor load operations. This will be one of the 32 * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes. 33 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 34 * this field is updated accordingly. 35 */ 36 ARMMMUIdx in_ptw_idx; 37 /* 38 * in_space: the security space for this walk. This plus 39 * the in_mmu_idx specify the architectural translation regime. 40 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 41 * this field is updated accordingly. 42 * 43 * Note that the security space for the in_ptw_idx may be different 44 * from that for the in_mmu_idx. We do not need to explicitly track 45 * the in_ptw_idx security space because: 46 * - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx 47 * itself specifies the security space 48 * - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security 49 * space used for ptw reads is the same as that of the security 50 * space of the stage 1 translation for all cases except where 51 * stage 1 is Secure; in that case the only possibilities for 52 * the ptw read are Secure and NonSecure, and the in_ptw_idx 53 * value being Stage2 vs Stage2_S distinguishes those. 54 */ 55 ARMSecuritySpace in_space; 56 /* 57 * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug 58 * accesses will not update the guest page table access flags 59 * and will not change the state of the softmmu TLBs. 60 */ 61 bool in_debug; 62 /* 63 * If this is stage 2 of a stage 1+2 page table walk, then this must 64 * be true if stage 1 is an EL0 access; otherwise this is ignored. 65 * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}. 66 */ 67 bool in_s1_is_el0; 68 bool out_rw; 69 bool out_be; 70 ARMSecuritySpace out_space; 71 hwaddr out_virt; 72 hwaddr out_phys; 73 void *out_host; 74 } S1Translate; 75 76 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 77 vaddr address, 78 MMUAccessType access_type, MemOp memop, 79 GetPhysAddrResult *result, 80 ARMMMUFaultInfo *fi); 81 82 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 83 vaddr address, 84 MMUAccessType access_type, MemOp memop, 85 GetPhysAddrResult *result, 86 ARMMMUFaultInfo *fi); 87 88 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 89 static const uint8_t pamax_map[] = { 90 [0] = 32, 91 [1] = 36, 92 [2] = 40, 93 [3] = 42, 94 [4] = 44, 95 [5] = 48, 96 [6] = 52, 97 }; 98 99 uint8_t round_down_to_parange_index(uint8_t bit_size) 100 { 101 for (int i = ARRAY_SIZE(pamax_map) - 1; i >= 0; i--) { 102 if (pamax_map[i] <= bit_size) { 103 return i; 104 } 105 } 106 g_assert_not_reached(); 107 } 108 109 uint8_t round_down_to_parange_bit_size(uint8_t bit_size) 110 { 111 return pamax_map[round_down_to_parange_index(bit_size)]; 112 } 113 114 /* 115 * The cpu-specific constant value of PAMax; also used by hw/arm/virt. 116 * Note that machvirt_init calls this on a CPU that is inited but not realized! 117 */ 118 unsigned int arm_pamax(ARMCPU *cpu) 119 { 120 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 121 unsigned int parange = 122 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 123 124 /* 125 * id_aa64mmfr0 is a read-only register so values outside of the 126 * supported mappings can be considered an implementation error. 127 */ 128 assert(parange < ARRAY_SIZE(pamax_map)); 129 return pamax_map[parange]; 130 } 131 132 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 133 /* v7 or v8 with LPAE */ 134 return 40; 135 } 136 /* Anything else */ 137 return 32; 138 } 139 140 /* 141 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 142 */ 143 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 144 { 145 switch (mmu_idx) { 146 case ARMMMUIdx_E10_0: 147 return ARMMMUIdx_Stage1_E0; 148 case ARMMMUIdx_E10_1: 149 return ARMMMUIdx_Stage1_E1; 150 case ARMMMUIdx_E10_1_PAN: 151 return ARMMMUIdx_Stage1_E1_PAN; 152 default: 153 return mmu_idx; 154 } 155 } 156 157 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 158 { 159 return stage_1_mmu_idx(arm_mmu_idx(env)); 160 } 161 162 /* 163 * Return where we should do ptw loads from for a stage 2 walk. 164 * This depends on whether the address we are looking up is a 165 * Secure IPA or a NonSecure IPA, which we know from whether this is 166 * Stage2 or Stage2_S. 167 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits. 168 */ 169 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx) 170 { 171 bool s2walk_secure; 172 173 /* 174 * We're OK to check the current state of the CPU here because 175 * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit 176 * changes. 177 * (2) there's no way to do a lookup that cares about Stage 2 for a 178 * different security state to the current one for AArch64, and AArch32 179 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do 180 * an NS stage 1+2 lookup while the NS bit is 0.) 181 */ 182 if (!arm_el_is_aa64(env, 3)) { 183 return ARMMMUIdx_Phys_NS; 184 } 185 186 switch (arm_security_space_below_el3(env)) { 187 case ARMSS_NonSecure: 188 return ARMMMUIdx_Phys_NS; 189 case ARMSS_Realm: 190 return ARMMMUIdx_Phys_Realm; 191 case ARMSS_Secure: 192 if (stage2idx == ARMMMUIdx_Stage2_S) { 193 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW); 194 } else { 195 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW); 196 } 197 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 198 default: 199 g_assert_not_reached(); 200 } 201 } 202 203 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 204 { 205 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 206 } 207 208 /* Return the TTBR associated with this translation regime */ 209 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 210 { 211 if (mmu_idx == ARMMMUIdx_Stage2) { 212 return env->cp15.vttbr_el2; 213 } 214 if (mmu_idx == ARMMMUIdx_Stage2_S) { 215 return env->cp15.vsttbr_el2; 216 } 217 if (ttbrn == 0) { 218 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 219 } else { 220 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 221 } 222 } 223 224 /* Return true if the specified stage of address translation is disabled */ 225 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, 226 ARMSecuritySpace space) 227 { 228 uint64_t hcr_el2; 229 230 if (arm_feature(env, ARM_FEATURE_M)) { 231 bool is_secure = arm_space_is_secure(space); 232 switch (env->v7m.mpu_ctrl[is_secure] & 233 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 234 case R_V7M_MPU_CTRL_ENABLE_MASK: 235 /* Enabled, but not for HardFault and NMI */ 236 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 237 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 238 /* Enabled for all cases */ 239 return false; 240 case 0: 241 default: 242 /* 243 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 244 * we warned about that in armv7m_nvic.c when the guest set it. 245 */ 246 return true; 247 } 248 } 249 250 251 switch (mmu_idx) { 252 case ARMMMUIdx_Stage2: 253 case ARMMMUIdx_Stage2_S: 254 /* HCR.DC means HCR.VM behaves as 1 */ 255 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 256 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 257 258 case ARMMMUIdx_E10_0: 259 case ARMMMUIdx_E10_1: 260 case ARMMMUIdx_E10_1_PAN: 261 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ 262 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 263 if (hcr_el2 & HCR_TGE) { 264 return true; 265 } 266 break; 267 268 case ARMMMUIdx_Stage1_E0: 269 case ARMMMUIdx_Stage1_E1: 270 case ARMMMUIdx_Stage1_E1_PAN: 271 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 272 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 273 if (hcr_el2 & HCR_DC) { 274 return true; 275 } 276 break; 277 278 case ARMMMUIdx_E20_0: 279 case ARMMMUIdx_E20_2: 280 case ARMMMUIdx_E20_2_PAN: 281 case ARMMMUIdx_E2: 282 case ARMMMUIdx_E3: 283 break; 284 285 case ARMMMUIdx_Phys_S: 286 case ARMMMUIdx_Phys_NS: 287 case ARMMMUIdx_Phys_Root: 288 case ARMMMUIdx_Phys_Realm: 289 /* No translation for physical address spaces. */ 290 return true; 291 292 default: 293 g_assert_not_reached(); 294 } 295 296 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 297 } 298 299 static bool granule_protection_check(CPUARMState *env, uint64_t paddress, 300 ARMSecuritySpace pspace, 301 ARMMMUFaultInfo *fi) 302 { 303 MemTxAttrs attrs = { 304 .secure = true, 305 .space = ARMSS_Root, 306 }; 307 ARMCPU *cpu = env_archcpu(env); 308 uint64_t gpccr = env->cp15.gpccr_el3; 309 unsigned pps, pgs, l0gptsz, level = 0; 310 uint64_t tableaddr, pps_mask, align, entry, index; 311 AddressSpace *as; 312 MemTxResult result; 313 int gpi; 314 315 if (!FIELD_EX64(gpccr, GPCCR, GPC)) { 316 return true; 317 } 318 319 /* 320 * GPC Priority 1 (R_GMGRR): 321 * R_JWCSM: If the configuration of GPCCR_EL3 is invalid, 322 * the access fails as GPT walk fault at level 0. 323 */ 324 325 /* 326 * Configuration of PPS to a value exceeding the implemented 327 * physical address size is invalid. 328 */ 329 pps = FIELD_EX64(gpccr, GPCCR, PPS); 330 if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) { 331 goto fault_walk; 332 } 333 pps = pamax_map[pps]; 334 pps_mask = MAKE_64BIT_MASK(0, pps); 335 336 switch (FIELD_EX64(gpccr, GPCCR, SH)) { 337 case 0b10: /* outer shareable */ 338 break; 339 case 0b00: /* non-shareable */ 340 case 0b11: /* inner shareable */ 341 /* Inner and Outer non-cacheable requires Outer shareable. */ 342 if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 && 343 FIELD_EX64(gpccr, GPCCR, IRGN) == 0) { 344 goto fault_walk; 345 } 346 break; 347 default: /* reserved */ 348 goto fault_walk; 349 } 350 351 switch (FIELD_EX64(gpccr, GPCCR, PGS)) { 352 case 0b00: /* 4KB */ 353 pgs = 12; 354 break; 355 case 0b01: /* 64KB */ 356 pgs = 16; 357 break; 358 case 0b10: /* 16KB */ 359 pgs = 14; 360 break; 361 default: /* reserved */ 362 goto fault_walk; 363 } 364 365 /* Note this field is read-only and fixed at reset. */ 366 l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ); 367 368 /* 369 * GPC Priority 2: Secure, Realm or Root address exceeds PPS. 370 * R_CPDSB: A NonSecure physical address input exceeding PPS 371 * does not experience any fault. 372 */ 373 if (paddress & ~pps_mask) { 374 if (pspace == ARMSS_NonSecure) { 375 return true; 376 } 377 goto fault_size; 378 } 379 380 /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */ 381 tableaddr = env->cp15.gptbr_el3 << 12; 382 if (tableaddr & ~pps_mask) { 383 goto fault_size; 384 } 385 386 /* 387 * BADDR is aligned per a function of PPS and L0GPTSZ. 388 * These bits of GPTBR_EL3 are RES0, but are not a configuration error, 389 * unlike the RES0 bits of the GPT entries (R_XNKFZ). 390 */ 391 align = MAX(pps - l0gptsz + 3, 12); 392 align = MAKE_64BIT_MASK(0, align); 393 tableaddr &= ~align; 394 395 as = arm_addressspace(env_cpu(env), attrs); 396 397 /* Level 0 lookup. */ 398 index = extract64(paddress, l0gptsz, pps - l0gptsz); 399 tableaddr += index * 8; 400 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 401 if (result != MEMTX_OK) { 402 goto fault_eabt; 403 } 404 405 switch (extract32(entry, 0, 4)) { 406 case 1: /* block descriptor */ 407 if (entry >> 8) { 408 goto fault_walk; /* RES0 bits not 0 */ 409 } 410 gpi = extract32(entry, 4, 4); 411 goto found; 412 case 3: /* table descriptor */ 413 tableaddr = entry & ~0xf; 414 align = MAX(l0gptsz - pgs - 1, 12); 415 align = MAKE_64BIT_MASK(0, align); 416 if (tableaddr & (~pps_mask | align)) { 417 goto fault_walk; /* RES0 bits not 0 */ 418 } 419 break; 420 default: /* invalid */ 421 goto fault_walk; 422 } 423 424 /* Level 1 lookup */ 425 level = 1; 426 index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4); 427 tableaddr += index * 8; 428 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 429 if (result != MEMTX_OK) { 430 goto fault_eabt; 431 } 432 433 switch (extract32(entry, 0, 4)) { 434 case 1: /* contiguous descriptor */ 435 if (entry >> 10) { 436 goto fault_walk; /* RES0 bits not 0 */ 437 } 438 /* 439 * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE, 440 * and because we cannot invalidate by pa, and thus will always 441 * flush entire tlbs, we don't actually care about the range here 442 * and can simply extract the GPI as the result. 443 */ 444 if (extract32(entry, 8, 2) == 0) { 445 goto fault_walk; /* reserved contig */ 446 } 447 gpi = extract32(entry, 4, 4); 448 break; 449 default: 450 index = extract64(paddress, pgs, 4); 451 gpi = extract64(entry, index * 4, 4); 452 break; 453 } 454 455 found: 456 switch (gpi) { 457 case 0b0000: /* no access */ 458 break; 459 case 0b1111: /* all access */ 460 return true; 461 case 0b1000: 462 case 0b1001: 463 case 0b1010: 464 case 0b1011: 465 if (pspace == (gpi & 3)) { 466 return true; 467 } 468 break; 469 default: 470 goto fault_walk; /* reserved */ 471 } 472 473 fi->gpcf = GPCF_Fail; 474 goto fault_common; 475 fault_eabt: 476 fi->gpcf = GPCF_EABT; 477 goto fault_common; 478 fault_size: 479 fi->gpcf = GPCF_AddressSize; 480 goto fault_common; 481 fault_walk: 482 fi->gpcf = GPCF_Walk; 483 fault_common: 484 fi->level = level; 485 fi->paddr = paddress; 486 fi->paddr_space = pspace; 487 return false; 488 } 489 490 static bool S1_attrs_are_device(uint8_t attrs) 491 { 492 /* 493 * This slightly under-decodes the MAIR_ELx field: 494 * 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE; 495 * 0b0000dd1x is UNPREDICTABLE. 496 */ 497 return (attrs & 0xf0) == 0; 498 } 499 500 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) 501 { 502 /* 503 * For an S1 page table walk, the stage 1 attributes are always 504 * some form of "this is Normal memory". The combined S1+S2 505 * attributes are therefore only Device if stage 2 specifies Device. 506 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 507 * ie when cacheattrs.attrs bits [3:2] are 0b00. 508 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 509 * when cacheattrs.attrs bit [2] is 0. 510 */ 511 if (hcr & HCR_FWB) { 512 return (attrs & 0x4) == 0; 513 } else { 514 return (attrs & 0xc) == 0; 515 } 516 } 517 518 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space, 519 ARMMMUIdx s2_mmu_idx) 520 { 521 /* 522 * Return the security space to use for stage 2 when doing 523 * the S1 page table descriptor load. 524 */ 525 if (regime_is_stage2(s2_mmu_idx)) { 526 /* 527 * The security space for ptw reads is almost always the same 528 * as that of the security space of the stage 1 translation. 529 * The only exception is when stage 1 is Secure; in that case 530 * the ptw read might be to the Secure or the NonSecure space 531 * (but never Realm or Root), and the s2_mmu_idx tells us which. 532 * Root translations are always single-stage. 533 */ 534 if (s1_space == ARMSS_Secure) { 535 return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S); 536 } else { 537 assert(s2_mmu_idx != ARMMMUIdx_Stage2_S); 538 assert(s1_space != ARMSS_Root); 539 return s1_space; 540 } 541 } else { 542 /* ptw loads are from phys: the mmu idx itself says which space */ 543 return arm_phys_to_space(s2_mmu_idx); 544 } 545 } 546 547 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx) 548 { 549 /* 550 * For stage 2 faults in Secure EL22, S1NS indicates 551 * whether the faulting IPA is in the Secure or NonSecure 552 * IPA space. For all other kinds of fault, it is false. 553 */ 554 return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx) 555 && s2_mmu_idx == ARMMMUIdx_Stage2_S; 556 } 557 558 /* Translate a S1 pagetable walk through S2 if needed. */ 559 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, 560 hwaddr addr, ARMMMUFaultInfo *fi) 561 { 562 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 563 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx; 564 uint8_t pte_attrs; 565 566 ptw->out_virt = addr; 567 568 if (unlikely(ptw->in_debug)) { 569 /* 570 * From gdbstub, do not use softmmu so that we don't modify the 571 * state of the cpu at all, including softmmu tlb contents. 572 */ 573 ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx); 574 S1Translate s2ptw = { 575 .in_mmu_idx = s2_mmu_idx, 576 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx), 577 .in_space = s2_space, 578 .in_debug = true, 579 }; 580 GetPhysAddrResult s2 = { }; 581 582 if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, 0, &s2, fi)) { 583 goto fail; 584 } 585 586 ptw->out_phys = s2.f.phys_addr; 587 pte_attrs = s2.cacheattrs.attrs; 588 ptw->out_host = NULL; 589 ptw->out_rw = false; 590 ptw->out_space = s2.f.attrs.space; 591 } else { 592 #ifdef CONFIG_TCG 593 CPUTLBEntryFull *full; 594 int flags; 595 596 env->tlb_fi = fi; 597 flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD, 598 arm_to_core_mmu_idx(s2_mmu_idx), 599 &ptw->out_host, &full); 600 env->tlb_fi = NULL; 601 602 if (unlikely(flags & TLB_INVALID_MASK)) { 603 goto fail; 604 } 605 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 606 ptw->out_rw = full->prot & PAGE_WRITE; 607 pte_attrs = full->extra.arm.pte_attrs; 608 ptw->out_space = full->attrs.space; 609 #else 610 g_assert_not_reached(); 611 #endif 612 } 613 614 if (regime_is_stage2(s2_mmu_idx)) { 615 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 616 617 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { 618 /* 619 * PTW set and S1 walk touched S2 Device memory: 620 * generate Permission fault. 621 */ 622 fi->type = ARMFault_Permission; 623 fi->s2addr = addr; 624 fi->stage2 = true; 625 fi->s1ptw = true; 626 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 627 return false; 628 } 629 } 630 631 ptw->out_be = regime_translation_big_endian(env, mmu_idx); 632 return true; 633 634 fail: 635 assert(fi->type != ARMFault_None); 636 if (fi->type == ARMFault_GPCFOnOutput) { 637 fi->type = ARMFault_GPCFOnWalk; 638 } 639 fi->s2addr = addr; 640 fi->stage2 = regime_is_stage2(s2_mmu_idx); 641 fi->s1ptw = fi->stage2; 642 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 643 return false; 644 } 645 646 /* All loads done in the course of a page table walk go through here. */ 647 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, 648 ARMMMUFaultInfo *fi) 649 { 650 CPUState *cs = env_cpu(env); 651 void *host = ptw->out_host; 652 uint32_t data; 653 654 if (likely(host)) { 655 /* Page tables are in RAM, and we have the host address. */ 656 data = qatomic_read((uint32_t *)host); 657 if (ptw->out_be) { 658 data = be32_to_cpu(data); 659 } else { 660 data = le32_to_cpu(data); 661 } 662 } else { 663 /* Page tables are in MMIO. */ 664 MemTxAttrs attrs = { 665 .space = ptw->out_space, 666 .secure = arm_space_is_secure(ptw->out_space), 667 }; 668 AddressSpace *as = arm_addressspace(cs, attrs); 669 MemTxResult result = MEMTX_OK; 670 671 if (ptw->out_be) { 672 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); 673 } else { 674 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); 675 } 676 if (unlikely(result != MEMTX_OK)) { 677 fi->type = ARMFault_SyncExternalOnWalk; 678 fi->ea = arm_extabort_type(result); 679 return 0; 680 } 681 } 682 return data; 683 } 684 685 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, 686 ARMMMUFaultInfo *fi) 687 { 688 CPUState *cs = env_cpu(env); 689 void *host = ptw->out_host; 690 uint64_t data; 691 692 if (likely(host)) { 693 /* Page tables are in RAM, and we have the host address. */ 694 #ifdef CONFIG_ATOMIC64 695 data = qatomic_read__nocheck((uint64_t *)host); 696 if (ptw->out_be) { 697 data = be64_to_cpu(data); 698 } else { 699 data = le64_to_cpu(data); 700 } 701 #else 702 if (ptw->out_be) { 703 data = ldq_be_p(host); 704 } else { 705 data = ldq_le_p(host); 706 } 707 #endif 708 } else { 709 /* Page tables are in MMIO. */ 710 MemTxAttrs attrs = { 711 .space = ptw->out_space, 712 .secure = arm_space_is_secure(ptw->out_space), 713 }; 714 AddressSpace *as = arm_addressspace(cs, attrs); 715 MemTxResult result = MEMTX_OK; 716 717 if (ptw->out_be) { 718 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 719 } else { 720 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 721 } 722 if (unlikely(result != MEMTX_OK)) { 723 fi->type = ARMFault_SyncExternalOnWalk; 724 fi->ea = arm_extabort_type(result); 725 return 0; 726 } 727 } 728 return data; 729 } 730 731 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val, 732 uint64_t new_val, S1Translate *ptw, 733 ARMMMUFaultInfo *fi) 734 { 735 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG) 736 uint64_t cur_val; 737 void *host = ptw->out_host; 738 739 if (unlikely(!host)) { 740 /* Page table in MMIO Memory Region */ 741 CPUState *cs = env_cpu(env); 742 MemTxAttrs attrs = { 743 .space = ptw->out_space, 744 .secure = arm_space_is_secure(ptw->out_space), 745 }; 746 AddressSpace *as = arm_addressspace(cs, attrs); 747 MemTxResult result = MEMTX_OK; 748 bool need_lock = !bql_locked(); 749 750 if (need_lock) { 751 bql_lock(); 752 } 753 if (ptw->out_be) { 754 cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 755 if (unlikely(result != MEMTX_OK)) { 756 fi->type = ARMFault_SyncExternalOnWalk; 757 fi->ea = arm_extabort_type(result); 758 if (need_lock) { 759 bql_unlock(); 760 } 761 return old_val; 762 } 763 if (cur_val == old_val) { 764 address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result); 765 if (unlikely(result != MEMTX_OK)) { 766 fi->type = ARMFault_SyncExternalOnWalk; 767 fi->ea = arm_extabort_type(result); 768 if (need_lock) { 769 bql_unlock(); 770 } 771 return old_val; 772 } 773 cur_val = new_val; 774 } 775 } else { 776 cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 777 if (unlikely(result != MEMTX_OK)) { 778 fi->type = ARMFault_SyncExternalOnWalk; 779 fi->ea = arm_extabort_type(result); 780 if (need_lock) { 781 bql_unlock(); 782 } 783 return old_val; 784 } 785 if (cur_val == old_val) { 786 address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result); 787 if (unlikely(result != MEMTX_OK)) { 788 fi->type = ARMFault_SyncExternalOnWalk; 789 fi->ea = arm_extabort_type(result); 790 if (need_lock) { 791 bql_unlock(); 792 } 793 return old_val; 794 } 795 cur_val = new_val; 796 } 797 } 798 if (need_lock) { 799 bql_unlock(); 800 } 801 return cur_val; 802 } 803 804 /* 805 * Raising a stage2 Protection fault for an atomic update to a read-only 806 * page is delayed until it is certain that there is a change to make. 807 */ 808 if (unlikely(!ptw->out_rw)) { 809 int flags; 810 811 env->tlb_fi = fi; 812 flags = probe_access_full_mmu(env, ptw->out_virt, 0, 813 MMU_DATA_STORE, 814 arm_to_core_mmu_idx(ptw->in_ptw_idx), 815 NULL, NULL); 816 env->tlb_fi = NULL; 817 818 if (unlikely(flags & TLB_INVALID_MASK)) { 819 /* 820 * We know this must be a stage 2 fault because the granule 821 * protection table does not separately track read and write 822 * permission, so all GPC faults are caught in S1_ptw_translate(): 823 * we only get here for "readable but not writeable". 824 */ 825 assert(fi->type != ARMFault_None); 826 fi->s2addr = ptw->out_virt; 827 fi->stage2 = true; 828 fi->s1ptw = true; 829 fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx); 830 return 0; 831 } 832 833 /* In case CAS mismatches and we loop, remember writability. */ 834 ptw->out_rw = true; 835 } 836 837 #ifdef CONFIG_ATOMIC64 838 if (ptw->out_be) { 839 old_val = cpu_to_be64(old_val); 840 new_val = cpu_to_be64(new_val); 841 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 842 cur_val = be64_to_cpu(cur_val); 843 } else { 844 old_val = cpu_to_le64(old_val); 845 new_val = cpu_to_le64(new_val); 846 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 847 cur_val = le64_to_cpu(cur_val); 848 } 849 #else 850 /* 851 * We can't support the full 64-bit atomic cmpxchg on the host. 852 * Because this is only used for FEAT_HAFDBS, which is only for AA64, 853 * we know that TCG_OVERSIZED_GUEST is set, which means that we are 854 * running in round-robin mode and could only race with dma i/o. 855 */ 856 #if !TCG_OVERSIZED_GUEST 857 # error "Unexpected configuration" 858 #endif 859 bool locked = bql_locked(); 860 if (!locked) { 861 bql_lock(); 862 } 863 if (ptw->out_be) { 864 cur_val = ldq_be_p(host); 865 if (cur_val == old_val) { 866 stq_be_p(host, new_val); 867 } 868 } else { 869 cur_val = ldq_le_p(host); 870 if (cur_val == old_val) { 871 stq_le_p(host, new_val); 872 } 873 } 874 if (!locked) { 875 bql_unlock(); 876 } 877 #endif 878 879 return cur_val; 880 #else 881 /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */ 882 g_assert_not_reached(); 883 #endif 884 } 885 886 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 887 uint32_t *table, uint32_t address) 888 { 889 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 890 uint64_t tcr = regime_tcr(env, mmu_idx); 891 int maskshift = extract32(tcr, 0, 3); 892 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 893 uint32_t base_mask; 894 895 if (address & mask) { 896 if (tcr & TTBCR_PD1) { 897 /* Translation table walk disabled for TTBR1 */ 898 return false; 899 } 900 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 901 } else { 902 if (tcr & TTBCR_PD0) { 903 /* Translation table walk disabled for TTBR0 */ 904 return false; 905 } 906 base_mask = ~((uint32_t)0x3fffu >> maskshift); 907 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 908 } 909 *table |= (address >> 18) & 0x3ffc; 910 return true; 911 } 912 913 /* 914 * Translate section/page access permissions to page R/W protection flags 915 * @env: CPUARMState 916 * @mmu_idx: MMU index indicating required translation regime 917 * @ap: The 3-bit access permissions (AP[2:0]) 918 * @domain_prot: The 2-bit domain access permissions 919 * @is_user: TRUE if accessing from PL0 920 */ 921 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx, 922 int ap, int domain_prot, bool is_user) 923 { 924 if (domain_prot == 3) { 925 return PAGE_READ | PAGE_WRITE; 926 } 927 928 switch (ap) { 929 case 0: 930 if (arm_feature(env, ARM_FEATURE_V7)) { 931 return 0; 932 } 933 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 934 case SCTLR_S: 935 return is_user ? 0 : PAGE_READ; 936 case SCTLR_R: 937 return PAGE_READ; 938 default: 939 return 0; 940 } 941 case 1: 942 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 943 case 2: 944 if (is_user) { 945 return PAGE_READ; 946 } else { 947 return PAGE_READ | PAGE_WRITE; 948 } 949 case 3: 950 return PAGE_READ | PAGE_WRITE; 951 case 4: /* Reserved. */ 952 return 0; 953 case 5: 954 return is_user ? 0 : PAGE_READ; 955 case 6: 956 return PAGE_READ; 957 case 7: 958 if (!arm_feature(env, ARM_FEATURE_V6K)) { 959 return 0; 960 } 961 return PAGE_READ; 962 default: 963 g_assert_not_reached(); 964 } 965 } 966 967 /* 968 * Translate section/page access permissions to page R/W protection flags 969 * @env: CPUARMState 970 * @mmu_idx: MMU index indicating required translation regime 971 * @ap: The 3-bit access permissions (AP[2:0]) 972 * @domain_prot: The 2-bit domain access permissions 973 */ 974 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 975 int ap, int domain_prot) 976 { 977 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 978 regime_is_user(env, mmu_idx)); 979 } 980 981 /* 982 * Translate section/page access permissions to page R/W protection flags. 983 * @ap: The 2-bit simple AP (AP[2:1]) 984 * @is_user: TRUE if accessing from PL0 985 */ 986 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 987 { 988 switch (ap) { 989 case 0: 990 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 991 case 1: 992 return PAGE_READ | PAGE_WRITE; 993 case 2: 994 return is_user ? 0 : PAGE_READ; 995 case 3: 996 return PAGE_READ; 997 default: 998 g_assert_not_reached(); 999 } 1000 } 1001 1002 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 1003 { 1004 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 1005 } 1006 1007 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, 1008 uint32_t address, MMUAccessType access_type, 1009 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1010 { 1011 int level = 1; 1012 uint32_t table; 1013 uint32_t desc; 1014 int type; 1015 int ap; 1016 int domain = 0; 1017 int domain_prot; 1018 hwaddr phys_addr; 1019 uint32_t dacr; 1020 1021 /* Pagetable walk. */ 1022 /* Lookup l1 descriptor. */ 1023 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { 1024 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 1025 fi->type = ARMFault_Translation; 1026 goto do_fault; 1027 } 1028 if (!S1_ptw_translate(env, ptw, table, fi)) { 1029 goto do_fault; 1030 } 1031 desc = arm_ldl_ptw(env, ptw, fi); 1032 if (fi->type != ARMFault_None) { 1033 goto do_fault; 1034 } 1035 type = (desc & 3); 1036 domain = (desc >> 5) & 0x0f; 1037 if (regime_el(env, ptw->in_mmu_idx) == 1) { 1038 dacr = env->cp15.dacr_ns; 1039 } else { 1040 dacr = env->cp15.dacr_s; 1041 } 1042 domain_prot = (dacr >> (domain * 2)) & 3; 1043 if (type == 0) { 1044 /* Section translation fault. */ 1045 fi->type = ARMFault_Translation; 1046 goto do_fault; 1047 } 1048 if (type != 2) { 1049 level = 2; 1050 } 1051 if (domain_prot == 0 || domain_prot == 2) { 1052 fi->type = ARMFault_Domain; 1053 goto do_fault; 1054 } 1055 if (type == 2) { 1056 /* 1Mb section. */ 1057 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 1058 ap = (desc >> 10) & 3; 1059 result->f.lg_page_size = 20; /* 1MB */ 1060 } else { 1061 /* Lookup l2 entry. */ 1062 if (type == 1) { 1063 /* Coarse pagetable. */ 1064 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 1065 } else { 1066 /* Fine pagetable. */ 1067 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 1068 } 1069 if (!S1_ptw_translate(env, ptw, table, fi)) { 1070 goto do_fault; 1071 } 1072 desc = arm_ldl_ptw(env, ptw, fi); 1073 if (fi->type != ARMFault_None) { 1074 goto do_fault; 1075 } 1076 switch (desc & 3) { 1077 case 0: /* Page translation fault. */ 1078 fi->type = ARMFault_Translation; 1079 goto do_fault; 1080 case 1: /* 64k page. */ 1081 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 1082 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 1083 result->f.lg_page_size = 16; 1084 break; 1085 case 2: /* 4k page. */ 1086 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1087 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 1088 result->f.lg_page_size = 12; 1089 break; 1090 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 1091 if (type == 1) { 1092 /* ARMv6/XScale extended small page format */ 1093 if (arm_feature(env, ARM_FEATURE_XSCALE) 1094 || arm_feature(env, ARM_FEATURE_V6)) { 1095 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1096 result->f.lg_page_size = 12; 1097 } else { 1098 /* 1099 * UNPREDICTABLE in ARMv5; we choose to take a 1100 * page translation fault. 1101 */ 1102 fi->type = ARMFault_Translation; 1103 goto do_fault; 1104 } 1105 } else { 1106 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 1107 result->f.lg_page_size = 10; 1108 } 1109 ap = (desc >> 4) & 3; 1110 break; 1111 default: 1112 /* Never happens, but compiler isn't smart enough to tell. */ 1113 g_assert_not_reached(); 1114 } 1115 } 1116 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); 1117 result->f.prot |= result->f.prot ? PAGE_EXEC : 0; 1118 if (!(result->f.prot & (1 << access_type))) { 1119 /* Access permission fault. */ 1120 fi->type = ARMFault_Permission; 1121 goto do_fault; 1122 } 1123 result->f.phys_addr = phys_addr; 1124 return false; 1125 do_fault: 1126 fi->domain = domain; 1127 fi->level = level; 1128 return true; 1129 } 1130 1131 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, 1132 uint32_t address, MMUAccessType access_type, 1133 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1134 { 1135 ARMCPU *cpu = env_archcpu(env); 1136 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1137 int level = 1; 1138 uint32_t table; 1139 uint32_t desc; 1140 uint32_t xn; 1141 uint32_t pxn = 0; 1142 int type; 1143 int ap; 1144 int domain = 0; 1145 int domain_prot; 1146 hwaddr phys_addr; 1147 uint32_t dacr; 1148 bool ns; 1149 int user_prot; 1150 1151 /* Pagetable walk. */ 1152 /* Lookup l1 descriptor. */ 1153 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 1154 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 1155 fi->type = ARMFault_Translation; 1156 goto do_fault; 1157 } 1158 if (!S1_ptw_translate(env, ptw, table, fi)) { 1159 goto do_fault; 1160 } 1161 desc = arm_ldl_ptw(env, ptw, fi); 1162 if (fi->type != ARMFault_None) { 1163 goto do_fault; 1164 } 1165 type = (desc & 3); 1166 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 1167 /* Section translation fault, or attempt to use the encoding 1168 * which is Reserved on implementations without PXN. 1169 */ 1170 fi->type = ARMFault_Translation; 1171 goto do_fault; 1172 } 1173 if ((type == 1) || !(desc & (1 << 18))) { 1174 /* Page or Section. */ 1175 domain = (desc >> 5) & 0x0f; 1176 } 1177 if (regime_el(env, mmu_idx) == 1) { 1178 dacr = env->cp15.dacr_ns; 1179 } else { 1180 dacr = env->cp15.dacr_s; 1181 } 1182 if (type == 1) { 1183 level = 2; 1184 } 1185 domain_prot = (dacr >> (domain * 2)) & 3; 1186 if (domain_prot == 0 || domain_prot == 2) { 1187 /* Section or Page domain fault */ 1188 fi->type = ARMFault_Domain; 1189 goto do_fault; 1190 } 1191 if (type != 1) { 1192 if (desc & (1 << 18)) { 1193 /* Supersection. */ 1194 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 1195 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 1196 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 1197 result->f.lg_page_size = 24; /* 16MB */ 1198 } else { 1199 /* Section. */ 1200 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 1201 result->f.lg_page_size = 20; /* 1MB */ 1202 } 1203 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 1204 xn = desc & (1 << 4); 1205 pxn = desc & 1; 1206 ns = extract32(desc, 19, 1); 1207 } else { 1208 if (cpu_isar_feature(aa32_pxn, cpu)) { 1209 pxn = (desc >> 2) & 1; 1210 } 1211 ns = extract32(desc, 3, 1); 1212 /* Lookup l2 entry. */ 1213 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 1214 if (!S1_ptw_translate(env, ptw, table, fi)) { 1215 goto do_fault; 1216 } 1217 desc = arm_ldl_ptw(env, ptw, fi); 1218 if (fi->type != ARMFault_None) { 1219 goto do_fault; 1220 } 1221 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 1222 switch (desc & 3) { 1223 case 0: /* Page translation fault. */ 1224 fi->type = ARMFault_Translation; 1225 goto do_fault; 1226 case 1: /* 64k page. */ 1227 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 1228 xn = desc & (1 << 15); 1229 result->f.lg_page_size = 16; 1230 break; 1231 case 2: case 3: /* 4k page. */ 1232 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1233 xn = desc & 1; 1234 result->f.lg_page_size = 12; 1235 break; 1236 default: 1237 /* Never happens, but compiler isn't smart enough to tell. */ 1238 g_assert_not_reached(); 1239 } 1240 } 1241 if (domain_prot == 3) { 1242 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1243 } else { 1244 if (pxn && !regime_is_user(env, mmu_idx)) { 1245 xn = 1; 1246 } 1247 if (xn && access_type == MMU_INST_FETCH) { 1248 fi->type = ARMFault_Permission; 1249 goto do_fault; 1250 } 1251 1252 if (arm_feature(env, ARM_FEATURE_V6K) && 1253 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 1254 /* The simplified model uses AP[0] as an access control bit. */ 1255 if ((ap & 1) == 0) { 1256 /* Access flag fault. */ 1257 fi->type = ARMFault_AccessFlag; 1258 goto do_fault; 1259 } 1260 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 1261 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1); 1262 } else { 1263 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 1264 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1); 1265 } 1266 if (result->f.prot && !xn) { 1267 result->f.prot |= PAGE_EXEC; 1268 } 1269 if (!(result->f.prot & (1 << access_type))) { 1270 /* Access permission fault. */ 1271 fi->type = ARMFault_Permission; 1272 goto do_fault; 1273 } 1274 if (regime_is_pan(env, mmu_idx) && 1275 !regime_is_user(env, mmu_idx) && 1276 user_prot && 1277 access_type != MMU_INST_FETCH) { 1278 /* Privileged Access Never fault */ 1279 fi->type = ARMFault_Permission; 1280 goto do_fault; 1281 } 1282 } 1283 if (ns) { 1284 /* The NS bit will (as required by the architecture) have no effect if 1285 * the CPU doesn't support TZ or this is a non-secure translation 1286 * regime, because the attribute will already be non-secure. 1287 */ 1288 result->f.attrs.secure = false; 1289 result->f.attrs.space = ARMSS_NonSecure; 1290 } 1291 result->f.phys_addr = phys_addr; 1292 return false; 1293 do_fault: 1294 fi->domain = domain; 1295 fi->level = level; 1296 return true; 1297 } 1298 1299 /* 1300 * Translate S2 section/page access permissions to protection flags 1301 * @env: CPUARMState 1302 * @s2ap: The 2-bit stage2 access permissions (S2AP) 1303 * @xn: XN (execute-never) bits 1304 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 1305 */ 1306 static int get_S2prot_noexecute(int s2ap) 1307 { 1308 int prot = 0; 1309 1310 if (s2ap & 1) { 1311 prot |= PAGE_READ; 1312 } 1313 if (s2ap & 2) { 1314 prot |= PAGE_WRITE; 1315 } 1316 return prot; 1317 } 1318 1319 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 1320 { 1321 int prot = get_S2prot_noexecute(s2ap); 1322 1323 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 1324 switch (xn) { 1325 case 0: 1326 prot |= PAGE_EXEC; 1327 break; 1328 case 1: 1329 if (s1_is_el0) { 1330 prot |= PAGE_EXEC; 1331 } 1332 break; 1333 case 2: 1334 break; 1335 case 3: 1336 if (!s1_is_el0) { 1337 prot |= PAGE_EXEC; 1338 } 1339 break; 1340 default: 1341 g_assert_not_reached(); 1342 } 1343 } else { 1344 if (!extract32(xn, 1, 1)) { 1345 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 1346 prot |= PAGE_EXEC; 1347 } 1348 } 1349 } 1350 return prot; 1351 } 1352 1353 /* 1354 * Translate section/page access permissions to protection flags 1355 * @env: CPUARMState 1356 * @mmu_idx: MMU index indicating required translation regime 1357 * @is_aa64: TRUE if AArch64 1358 * @ap: The 2-bit simple AP (AP[2:1]) 1359 * @xn: XN (execute-never) bit 1360 * @pxn: PXN (privileged execute-never) bit 1361 * @in_pa: The original input pa space 1362 * @out_pa: The output pa space, modified by NSTable, NS, and NSE 1363 */ 1364 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 1365 int ap, int xn, int pxn, 1366 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa) 1367 { 1368 ARMCPU *cpu = env_archcpu(env); 1369 bool is_user = regime_is_user(env, mmu_idx); 1370 int prot_rw, user_rw; 1371 bool have_wxn; 1372 int wxn = 0; 1373 1374 assert(!regime_is_stage2(mmu_idx)); 1375 1376 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 1377 if (is_user) { 1378 prot_rw = user_rw; 1379 } else { 1380 /* 1381 * PAN controls can forbid data accesses but don't affect insn fetch. 1382 * Plain PAN forbids data accesses if EL0 has data permissions; 1383 * PAN3 forbids data accesses if EL0 has either data or exec perms. 1384 * Note that for AArch64 the 'user can exec' case is exactly !xn. 1385 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0 1386 * do not affect EPAN. 1387 */ 1388 if (user_rw && regime_is_pan(env, mmu_idx)) { 1389 prot_rw = 0; 1390 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 && 1391 regime_is_pan(env, mmu_idx) && 1392 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) { 1393 prot_rw = 0; 1394 } else { 1395 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 1396 } 1397 } 1398 1399 if (in_pa != out_pa) { 1400 switch (in_pa) { 1401 case ARMSS_Root: 1402 /* 1403 * R_ZWRVD: permission fault for insn fetched from non-Root, 1404 * I_WWBFB: SIF has no effect in EL3. 1405 */ 1406 return prot_rw; 1407 case ARMSS_Realm: 1408 /* 1409 * R_PKTDS: permission fault for insn fetched from non-Realm, 1410 * for Realm EL2 or EL2&0. The corresponding fault for EL1&0 1411 * happens during any stage2 translation. 1412 */ 1413 switch (mmu_idx) { 1414 case ARMMMUIdx_E2: 1415 case ARMMMUIdx_E20_0: 1416 case ARMMMUIdx_E20_2: 1417 case ARMMMUIdx_E20_2_PAN: 1418 return prot_rw; 1419 default: 1420 break; 1421 } 1422 break; 1423 case ARMSS_Secure: 1424 if (env->cp15.scr_el3 & SCR_SIF) { 1425 return prot_rw; 1426 } 1427 break; 1428 default: 1429 /* Input NonSecure must have output NonSecure. */ 1430 g_assert_not_reached(); 1431 } 1432 } 1433 1434 /* TODO have_wxn should be replaced with 1435 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 1436 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 1437 * compatible processors have EL2, which is required for [U]WXN. 1438 */ 1439 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 1440 1441 if (have_wxn) { 1442 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 1443 } 1444 1445 if (is_aa64) { 1446 if (regime_has_2_ranges(mmu_idx) && !is_user) { 1447 xn = pxn || (user_rw & PAGE_WRITE); 1448 } 1449 } else if (arm_feature(env, ARM_FEATURE_V7)) { 1450 switch (regime_el(env, mmu_idx)) { 1451 case 1: 1452 case 3: 1453 if (is_user) { 1454 xn = xn || !(user_rw & PAGE_READ); 1455 } else { 1456 int uwxn = 0; 1457 if (have_wxn) { 1458 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 1459 } 1460 xn = xn || !(prot_rw & PAGE_READ) || pxn || 1461 (uwxn && (user_rw & PAGE_WRITE)); 1462 } 1463 break; 1464 case 2: 1465 break; 1466 } 1467 } else { 1468 xn = wxn = 0; 1469 } 1470 1471 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 1472 return prot_rw; 1473 } 1474 return prot_rw | PAGE_EXEC; 1475 } 1476 1477 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 1478 ARMMMUIdx mmu_idx) 1479 { 1480 uint64_t tcr = regime_tcr(env, mmu_idx); 1481 uint32_t el = regime_el(env, mmu_idx); 1482 int select, tsz; 1483 bool epd, hpd; 1484 1485 assert(mmu_idx != ARMMMUIdx_Stage2_S); 1486 1487 if (mmu_idx == ARMMMUIdx_Stage2) { 1488 /* VTCR */ 1489 bool sext = extract32(tcr, 4, 1); 1490 bool sign = extract32(tcr, 3, 1); 1491 1492 /* 1493 * If the sign-extend bit is not the same as t0sz[3], the result 1494 * is unpredictable. Flag this as a guest error. 1495 */ 1496 if (sign != sext) { 1497 qemu_log_mask(LOG_GUEST_ERROR, 1498 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 1499 } 1500 tsz = sextract32(tcr, 0, 4) + 8; 1501 select = 0; 1502 hpd = false; 1503 epd = false; 1504 } else if (el == 2) { 1505 /* HTCR */ 1506 tsz = extract32(tcr, 0, 3); 1507 select = 0; 1508 hpd = extract64(tcr, 24, 1); 1509 epd = false; 1510 } else { 1511 int t0sz = extract32(tcr, 0, 3); 1512 int t1sz = extract32(tcr, 16, 3); 1513 1514 if (t1sz == 0) { 1515 select = va > (0xffffffffu >> t0sz); 1516 } else { 1517 /* Note that we will detect errors later. */ 1518 select = va >= ~(0xffffffffu >> t1sz); 1519 } 1520 if (!select) { 1521 tsz = t0sz; 1522 epd = extract32(tcr, 7, 1); 1523 hpd = extract64(tcr, 41, 1); 1524 } else { 1525 tsz = t1sz; 1526 epd = extract32(tcr, 23, 1); 1527 hpd = extract64(tcr, 42, 1); 1528 } 1529 /* For aarch32, hpd0 is not enabled without t2e as well. */ 1530 hpd &= extract32(tcr, 6, 1); 1531 } 1532 1533 return (ARMVAParameters) { 1534 .tsz = tsz, 1535 .select = select, 1536 .epd = epd, 1537 .hpd = hpd, 1538 }; 1539 } 1540 1541 /* 1542 * check_s2_mmu_setup 1543 * @cpu: ARMCPU 1544 * @is_aa64: True if the translation regime is in AArch64 state 1545 * @tcr: VTCR_EL2 or VSTCR_EL2 1546 * @ds: Effective value of TCR.DS. 1547 * @iasize: Bitsize of IPAs 1548 * @stride: Page-table stride (See the ARM ARM) 1549 * 1550 * Decode the starting level of the S2 lookup, returning INT_MIN if 1551 * the configuration is invalid. 1552 */ 1553 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr, 1554 bool ds, int iasize, int stride) 1555 { 1556 int sl0, sl2, startlevel, granulebits, levels; 1557 int s1_min_iasize, s1_max_iasize; 1558 1559 sl0 = extract32(tcr, 6, 2); 1560 if (is_aa64) { 1561 /* 1562 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size, 1563 * so interleave AArch64.S2StartLevel. 1564 */ 1565 switch (stride) { 1566 case 9: /* 4KB */ 1567 /* SL2 is RES0 unless DS=1 & 4KB granule. */ 1568 sl2 = extract64(tcr, 33, 1); 1569 if (ds && sl2) { 1570 if (sl0 != 0) { 1571 goto fail; 1572 } 1573 startlevel = -1; 1574 } else { 1575 startlevel = 2 - sl0; 1576 switch (sl0) { 1577 case 2: 1578 if (arm_pamax(cpu) < 44) { 1579 goto fail; 1580 } 1581 break; 1582 case 3: 1583 if (!cpu_isar_feature(aa64_st, cpu)) { 1584 goto fail; 1585 } 1586 startlevel = 3; 1587 break; 1588 } 1589 } 1590 break; 1591 case 11: /* 16KB */ 1592 switch (sl0) { 1593 case 2: 1594 if (arm_pamax(cpu) < 42) { 1595 goto fail; 1596 } 1597 break; 1598 case 3: 1599 if (!ds) { 1600 goto fail; 1601 } 1602 break; 1603 } 1604 startlevel = 3 - sl0; 1605 break; 1606 case 13: /* 64KB */ 1607 switch (sl0) { 1608 case 2: 1609 if (arm_pamax(cpu) < 44) { 1610 goto fail; 1611 } 1612 break; 1613 case 3: 1614 goto fail; 1615 } 1616 startlevel = 3 - sl0; 1617 break; 1618 default: 1619 g_assert_not_reached(); 1620 } 1621 } else { 1622 /* 1623 * Things are simpler for AArch32 EL2, with only 4k pages. 1624 * There is no separate S2InvalidSL function, but AArch32.S2Walk 1625 * begins with walkparms.sl0 in {'1x'}. 1626 */ 1627 assert(stride == 9); 1628 if (sl0 >= 2) { 1629 goto fail; 1630 } 1631 startlevel = 2 - sl0; 1632 } 1633 1634 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */ 1635 levels = 3 - startlevel; 1636 granulebits = stride + 3; 1637 1638 s1_min_iasize = levels * stride + granulebits + 1; 1639 s1_max_iasize = s1_min_iasize + (stride - 1) + 4; 1640 1641 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) { 1642 return startlevel; 1643 } 1644 1645 fail: 1646 return INT_MIN; 1647 } 1648 1649 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds, 1650 ARMGranuleSize gran, int level) 1651 { 1652 /* 1653 * See pseudocode AArch46.BlockDescSupported(): block descriptors 1654 * are not valid at all levels, depending on the page size. 1655 */ 1656 switch (gran) { 1657 case Gran4K: 1658 return (level == 0 && ds) || level == 1 || level == 2; 1659 case Gran16K: 1660 return (level == 1 && ds) || level == 2; 1661 case Gran64K: 1662 return (level == 1 && arm_pamax(cpu) == 52) || level == 2; 1663 default: 1664 g_assert_not_reached(); 1665 } 1666 } 1667 1668 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw) 1669 { 1670 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 1671 return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1); 1672 } 1673 1674 /** 1675 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 1676 * 1677 * Returns false if the translation was successful. Otherwise, phys_ptr, 1678 * attrs, prot and page_size may not be filled in, and the populated fsr 1679 * value provides information on why the translation aborted, in the format 1680 * of a long-format DFSR/IFSR fault register, with the following caveat: 1681 * the WnR bit is never set (the caller must do this). 1682 * 1683 * @env: CPUARMState 1684 * @ptw: Current and next stage parameters for the walk. 1685 * @address: virtual address to get physical address for 1686 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 1687 * @memop: memory operation feeding this access, or 0 for none 1688 * @result: set on translation success, 1689 * @fi: set to fault info if the translation fails 1690 */ 1691 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 1692 uint64_t address, 1693 MMUAccessType access_type, MemOp memop, 1694 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1695 { 1696 ARMCPU *cpu = env_archcpu(env); 1697 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1698 int32_t level; 1699 ARMVAParameters param; 1700 uint64_t ttbr; 1701 hwaddr descaddr, indexmask, indexmask_grainsize; 1702 uint32_t tableattrs; 1703 target_ulong page_size; 1704 uint64_t attrs; 1705 int32_t stride; 1706 int addrsize, inputsize, outputsize; 1707 uint64_t tcr = regime_tcr(env, mmu_idx); 1708 int ap, xn, pxn; 1709 uint32_t el = regime_el(env, mmu_idx); 1710 uint64_t descaddrmask; 1711 bool aarch64 = arm_el_is_aa64(env, el); 1712 uint64_t descriptor, new_descriptor; 1713 ARMSecuritySpace out_space; 1714 bool device; 1715 1716 /* TODO: This code does not support shareability levels. */ 1717 if (aarch64) { 1718 int ps; 1719 1720 param = aa64_va_parameters(env, address, mmu_idx, 1721 access_type != MMU_INST_FETCH, 1722 !arm_el_is_aa64(env, 1)); 1723 level = 0; 1724 1725 /* 1726 * If TxSZ is programmed to a value larger than the maximum, 1727 * or smaller than the effective minimum, it is IMPLEMENTATION 1728 * DEFINED whether we behave as if the field were programmed 1729 * within bounds, or if a level 0 Translation fault is generated. 1730 * 1731 * With FEAT_LVA, fault on less than minimum becomes required, 1732 * so our choice is to always raise the fault. 1733 */ 1734 if (param.tsz_oob) { 1735 goto do_translation_fault; 1736 } 1737 1738 addrsize = 64 - 8 * param.tbi; 1739 inputsize = 64 - param.tsz; 1740 1741 /* 1742 * Bound PS by PARANGE to find the effective output address size. 1743 * ID_AA64MMFR0 is a read-only register so values outside of the 1744 * supported mappings can be considered an implementation error. 1745 */ 1746 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1747 ps = MIN(ps, param.ps); 1748 assert(ps < ARRAY_SIZE(pamax_map)); 1749 outputsize = pamax_map[ps]; 1750 1751 /* 1752 * With LPA2, the effective output address (OA) size is at most 48 bits 1753 * unless TCR.DS == 1 1754 */ 1755 if (!param.ds && param.gran != Gran64K) { 1756 outputsize = MIN(outputsize, 48); 1757 } 1758 } else { 1759 param = aa32_va_parameters(env, address, mmu_idx); 1760 level = 1; 1761 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1762 inputsize = addrsize - param.tsz; 1763 outputsize = 40; 1764 } 1765 1766 /* 1767 * We determined the region when collecting the parameters, but we 1768 * have not yet validated that the address is valid for the region. 1769 * Extract the top bits and verify that they all match select. 1770 * 1771 * For aa32, if inputsize == addrsize, then we have selected the 1772 * region by exclusion in aa32_va_parameters and there is no more 1773 * validation to do here. 1774 */ 1775 if (inputsize < addrsize) { 1776 target_ulong top_bits = sextract64(address, inputsize, 1777 addrsize - inputsize); 1778 if (-top_bits != param.select) { 1779 /* The gap between the two regions is a Translation fault */ 1780 goto do_translation_fault; 1781 } 1782 } 1783 1784 stride = arm_granule_bits(param.gran) - 3; 1785 1786 /* 1787 * Note that QEMU ignores shareability and cacheability attributes, 1788 * so we don't need to do anything with the SH, ORGN, IRGN fields 1789 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1790 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1791 * implement any ASID-like capability so we can ignore it (instead 1792 * we will always flush the TLB any time the ASID is changed). 1793 */ 1794 ttbr = regime_ttbr(env, mmu_idx, param.select); 1795 1796 /* 1797 * Here we should have set up all the parameters for the translation: 1798 * inputsize, ttbr, epd, stride, tbi 1799 */ 1800 1801 if (param.epd) { 1802 /* 1803 * Translation table walk disabled => Translation fault on TLB miss 1804 * Note: This is always 0 on 64-bit EL2 and EL3. 1805 */ 1806 goto do_translation_fault; 1807 } 1808 1809 if (!regime_is_stage2(mmu_idx)) { 1810 /* 1811 * The starting level depends on the virtual address size (which can 1812 * be up to 48 bits) and the translation granule size. It indicates 1813 * the number of strides (stride bits at a time) needed to 1814 * consume the bits of the input address. In the pseudocode this is: 1815 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1816 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1817 * our 'stride + 3' and 'stride' is our 'stride'. 1818 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1819 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1820 * = 4 - (inputsize - 4) / stride; 1821 */ 1822 level = 4 - (inputsize - 4) / stride; 1823 } else { 1824 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds, 1825 inputsize, stride); 1826 if (startlevel == INT_MIN) { 1827 level = 0; 1828 goto do_translation_fault; 1829 } 1830 level = startlevel; 1831 } 1832 1833 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1834 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1835 1836 /* Now we can extract the actual base address from the TTBR */ 1837 descaddr = extract64(ttbr, 0, 48); 1838 1839 /* 1840 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1841 * 1842 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1843 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1844 * but we've just cleared the bits above 47, so simplify the test. 1845 */ 1846 if (outputsize > 48) { 1847 descaddr |= extract64(ttbr, 2, 4) << 48; 1848 } else if (descaddr >> outputsize) { 1849 level = 0; 1850 fi->type = ARMFault_AddressSize; 1851 goto do_fault; 1852 } 1853 1854 /* 1855 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1856 * and also to mask out CnP (bit 0) which could validly be non-zero. 1857 */ 1858 descaddr &= ~indexmask; 1859 1860 /* 1861 * For AArch32, the address field in the descriptor goes up to bit 39 1862 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1863 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1864 * bits as part of the address, which will be checked via outputsize. 1865 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1866 * the highest bits of a 52-bit output are placed elsewhere. 1867 */ 1868 if (param.ds) { 1869 descaddrmask = MAKE_64BIT_MASK(0, 50); 1870 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1871 descaddrmask = MAKE_64BIT_MASK(0, 48); 1872 } else { 1873 descaddrmask = MAKE_64BIT_MASK(0, 40); 1874 } 1875 descaddrmask &= ~indexmask_grainsize; 1876 tableattrs = 0; 1877 1878 next_level: 1879 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1880 descaddr &= ~7ULL; 1881 1882 /* 1883 * Process the NSTable bit from the previous level. This changes 1884 * the table address space and the output space from Secure to 1885 * NonSecure. With RME, the EL3 translation regime does not change 1886 * from Root to NonSecure. 1887 */ 1888 if (ptw->in_space == ARMSS_Secure 1889 && !regime_is_stage2(mmu_idx) 1890 && extract32(tableattrs, 4, 1)) { 1891 /* 1892 * Stage2_S -> Stage2 or Phys_S -> Phys_NS 1893 * Assert the relative order of the secure/non-secure indexes. 1894 */ 1895 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS); 1896 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2); 1897 ptw->in_ptw_idx += 1; 1898 ptw->in_space = ARMSS_NonSecure; 1899 } 1900 1901 if (!S1_ptw_translate(env, ptw, descaddr, fi)) { 1902 goto do_fault; 1903 } 1904 descriptor = arm_ldq_ptw(env, ptw, fi); 1905 if (fi->type != ARMFault_None) { 1906 goto do_fault; 1907 } 1908 new_descriptor = descriptor; 1909 1910 restart_atomic_update: 1911 if (!(descriptor & 1) || 1912 (!(descriptor & 2) && 1913 !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) { 1914 /* Invalid, or a block descriptor at an invalid level */ 1915 goto do_translation_fault; 1916 } 1917 1918 descaddr = descriptor & descaddrmask; 1919 1920 /* 1921 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1922 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1923 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1924 * raise AddressSizeFault. 1925 */ 1926 if (outputsize > 48) { 1927 if (param.ds) { 1928 descaddr |= extract64(descriptor, 8, 2) << 50; 1929 } else { 1930 descaddr |= extract64(descriptor, 12, 4) << 48; 1931 } 1932 } else if (descaddr >> outputsize) { 1933 fi->type = ARMFault_AddressSize; 1934 goto do_fault; 1935 } 1936 1937 if ((descriptor & 2) && (level < 3)) { 1938 /* 1939 * Table entry. The top five bits are attributes which may 1940 * propagate down through lower levels of the table (and 1941 * which are all arranged so that 0 means "no effect", so 1942 * we can gather them up by ORing in the bits at each level). 1943 */ 1944 tableattrs |= extract64(descriptor, 59, 5); 1945 level++; 1946 indexmask = indexmask_grainsize; 1947 goto next_level; 1948 } 1949 1950 /* 1951 * Block entry at level 1 or 2, or page entry at level 3. 1952 * These are basically the same thing, although the number 1953 * of bits we pull in from the vaddr varies. Note that although 1954 * descaddrmask masks enough of the low bits of the descriptor 1955 * to give a correct page or table address, the address field 1956 * in a block descriptor is smaller; so we need to explicitly 1957 * clear the lower bits here before ORing in the low vaddr bits. 1958 * 1959 * Afterward, descaddr is the final physical address. 1960 */ 1961 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1962 descaddr &= ~(hwaddr)(page_size - 1); 1963 descaddr |= (address & (page_size - 1)); 1964 1965 if (likely(!ptw->in_debug)) { 1966 /* 1967 * Access flag. 1968 * If HA is enabled, prepare to update the descriptor below. 1969 * Otherwise, pass the access fault on to software. 1970 */ 1971 if (!(descriptor & (1 << 10))) { 1972 if (param.ha) { 1973 new_descriptor |= 1 << 10; /* AF */ 1974 } else { 1975 fi->type = ARMFault_AccessFlag; 1976 goto do_fault; 1977 } 1978 } 1979 1980 /* 1981 * Dirty Bit. 1982 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP 1983 * bit for writeback. The actual write protection test may still be 1984 * overridden by tableattrs, to be merged below. 1985 */ 1986 if (param.hd 1987 && extract64(descriptor, 51, 1) /* DBM */ 1988 && access_type == MMU_DATA_STORE) { 1989 if (regime_is_stage2(mmu_idx)) { 1990 new_descriptor |= 1ull << 7; /* set S2AP[1] */ 1991 } else { 1992 new_descriptor &= ~(1ull << 7); /* clear AP[2] */ 1993 } 1994 } 1995 } 1996 1997 /* 1998 * Extract attributes from the (modified) descriptor, and apply 1999 * table descriptors. Stage 2 table descriptors do not include 2000 * any attribute fields. HPD disables all the table attributes 2001 * except NSTable (which we have already handled). 2002 */ 2003 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14)); 2004 if (!regime_is_stage2(mmu_idx)) { 2005 if (!param.hpd) { 2006 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */ 2007 /* 2008 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 2009 * means "force PL1 access only", which means forcing AP[1] to 0. 2010 */ 2011 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */ 2012 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */ 2013 } 2014 } 2015 2016 ap = extract32(attrs, 6, 2); 2017 out_space = ptw->in_space; 2018 if (regime_is_stage2(mmu_idx)) { 2019 /* 2020 * R_GYNXY: For stage2 in Realm security state, bit 55 is NS. 2021 * The bit remains ignored for other security states. 2022 * R_YMCSL: Executing an insn fetched from non-Realm causes 2023 * a stage2 permission fault. 2024 */ 2025 if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) { 2026 out_space = ARMSS_NonSecure; 2027 result->f.prot = get_S2prot_noexecute(ap); 2028 } else { 2029 xn = extract64(attrs, 53, 2); 2030 result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0); 2031 } 2032 2033 result->cacheattrs.is_s2_format = true; 2034 result->cacheattrs.attrs = extract32(attrs, 2, 4); 2035 /* 2036 * Security state does not really affect HCR_EL2.FWB; 2037 * we only need to filter FWB for aa32 or other FEAT. 2038 */ 2039 device = S2_attrs_are_device(arm_hcr_el2_eff(env), 2040 result->cacheattrs.attrs); 2041 } else { 2042 int nse, ns = extract32(attrs, 5, 1); 2043 uint8_t attrindx; 2044 uint64_t mair; 2045 2046 switch (out_space) { 2047 case ARMSS_Root: 2048 /* 2049 * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime. 2050 * R_XTYPW: NSE and NS together select the output pa space. 2051 */ 2052 nse = extract32(attrs, 11, 1); 2053 out_space = (nse << 1) | ns; 2054 if (out_space == ARMSS_Secure && 2055 !cpu_isar_feature(aa64_sel2, cpu)) { 2056 out_space = ARMSS_NonSecure; 2057 } 2058 break; 2059 case ARMSS_Secure: 2060 if (ns) { 2061 out_space = ARMSS_NonSecure; 2062 } 2063 break; 2064 case ARMSS_Realm: 2065 switch (mmu_idx) { 2066 case ARMMMUIdx_Stage1_E0: 2067 case ARMMMUIdx_Stage1_E1: 2068 case ARMMMUIdx_Stage1_E1_PAN: 2069 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */ 2070 break; 2071 case ARMMMUIdx_E2: 2072 case ARMMMUIdx_E20_0: 2073 case ARMMMUIdx_E20_2: 2074 case ARMMMUIdx_E20_2_PAN: 2075 /* 2076 * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1, 2077 * NS changes the output to non-secure space. 2078 */ 2079 if (ns) { 2080 out_space = ARMSS_NonSecure; 2081 } 2082 break; 2083 default: 2084 g_assert_not_reached(); 2085 } 2086 break; 2087 case ARMSS_NonSecure: 2088 /* R_QRMFF: For NonSecure state, the NS bit is RES0. */ 2089 break; 2090 default: 2091 g_assert_not_reached(); 2092 } 2093 xn = extract64(attrs, 54, 1); 2094 pxn = extract64(attrs, 53, 1); 2095 2096 if (el == 1 && nv_nv1_enabled(env, ptw)) { 2097 /* 2098 * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page 2099 * descriptor bit 54 holds PXN, 53 is RES0, and the effective value 2100 * of UXN is 0. Similarly for bits 59 and 60 in table descriptors 2101 * (which we have already folded into bits 53 and 54 of attrs). 2102 * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0. 2103 * Similarly, APTable[0] from the table descriptor is treated as 0; 2104 * we already folded this into AP[1] and squashing that to 0 does 2105 * the right thing. 2106 */ 2107 pxn = xn; 2108 xn = 0; 2109 ap &= ~1; 2110 } 2111 /* 2112 * Note that we modified ptw->in_space earlier for NSTable, but 2113 * result->f.attrs retains a copy of the original security space. 2114 */ 2115 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn, 2116 result->f.attrs.space, out_space); 2117 2118 /* Index into MAIR registers for cache attributes */ 2119 attrindx = extract32(attrs, 2, 3); 2120 mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2121 assert(attrindx <= 7); 2122 result->cacheattrs.is_s2_format = false; 2123 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2124 2125 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ 2126 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { 2127 result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */ 2128 } 2129 device = S1_attrs_are_device(result->cacheattrs.attrs); 2130 } 2131 2132 /* 2133 * Enable alignment checks on Device memory. 2134 * 2135 * Per R_XCHFJ, the correct ordering for alignment, permission, 2136 * and stage 2 faults is: 2137 * - Alignment fault caused by the memory type 2138 * - Permission fault 2139 * - A stage 2 fault on the memory access 2140 * Perform the alignment check now, so that we recognize it in 2141 * the correct order. Set TLB_CHECK_ALIGNED so that any subsequent 2142 * softmmu tlb hit will also check the alignment; clear along the 2143 * non-device path so that tlb_fill_flags is consistent in the 2144 * event of restart_atomic_update. 2145 * 2146 * In v7, for a CPU without the Virtualization Extensions this 2147 * access is UNPREDICTABLE; we choose to make it take the alignment 2148 * fault as is required for a v7VE CPU. (QEMU doesn't emulate any 2149 * CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.) 2150 */ 2151 if (device) { 2152 unsigned a_bits = memop_atomicity_bits(memop); 2153 if (address & ((1 << a_bits) - 1)) { 2154 fi->type = ARMFault_Alignment; 2155 goto do_fault; 2156 } 2157 result->f.tlb_fill_flags = TLB_CHECK_ALIGNED; 2158 } else { 2159 result->f.tlb_fill_flags = 0; 2160 } 2161 2162 if (!(result->f.prot & (1 << access_type))) { 2163 fi->type = ARMFault_Permission; 2164 goto do_fault; 2165 } 2166 2167 /* If FEAT_HAFDBS has made changes, update the PTE. */ 2168 if (new_descriptor != descriptor) { 2169 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi); 2170 if (fi->type != ARMFault_None) { 2171 goto do_fault; 2172 } 2173 /* 2174 * I_YZSVV says that if the in-memory descriptor has changed, 2175 * then we must use the information in that new value 2176 * (which might include a different output address, different 2177 * attributes, or generate a fault). 2178 * Restart the handling of the descriptor value from scratch. 2179 */ 2180 if (new_descriptor != descriptor) { 2181 descriptor = new_descriptor; 2182 goto restart_atomic_update; 2183 } 2184 } 2185 2186 result->f.attrs.space = out_space; 2187 result->f.attrs.secure = arm_space_is_secure(out_space); 2188 2189 /* 2190 * For FEAT_LPA2 and effective DS, the SH field in the attributes 2191 * was re-purposed for output address bits. The SH attribute in 2192 * that case comes from TCR_ELx, which we extracted earlier. 2193 */ 2194 if (param.ds) { 2195 result->cacheattrs.shareability = param.sh; 2196 } else { 2197 result->cacheattrs.shareability = extract32(attrs, 8, 2); 2198 } 2199 2200 result->f.phys_addr = descaddr; 2201 result->f.lg_page_size = ctz64(page_size); 2202 return false; 2203 2204 do_translation_fault: 2205 fi->type = ARMFault_Translation; 2206 do_fault: 2207 if (fi->s1ptw) { 2208 /* Retain the existing stage 2 fi->level */ 2209 assert(fi->stage2); 2210 } else { 2211 fi->level = level; 2212 fi->stage2 = regime_is_stage2(mmu_idx); 2213 } 2214 fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx); 2215 return true; 2216 } 2217 2218 static bool get_phys_addr_pmsav5(CPUARMState *env, 2219 S1Translate *ptw, 2220 uint32_t address, 2221 MMUAccessType access_type, 2222 GetPhysAddrResult *result, 2223 ARMMMUFaultInfo *fi) 2224 { 2225 int n; 2226 uint32_t mask; 2227 uint32_t base; 2228 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2229 bool is_user = regime_is_user(env, mmu_idx); 2230 2231 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 2232 /* MPU disabled. */ 2233 result->f.phys_addr = address; 2234 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2235 return false; 2236 } 2237 2238 result->f.phys_addr = address; 2239 for (n = 7; n >= 0; n--) { 2240 base = env->cp15.c6_region[n]; 2241 if ((base & 1) == 0) { 2242 continue; 2243 } 2244 mask = 1 << ((base >> 1) & 0x1f); 2245 /* Keep this shift separate from the above to avoid an 2246 (undefined) << 32. */ 2247 mask = (mask << 1) - 1; 2248 if (((base ^ address) & ~mask) == 0) { 2249 break; 2250 } 2251 } 2252 if (n < 0) { 2253 fi->type = ARMFault_Background; 2254 return true; 2255 } 2256 2257 if (access_type == MMU_INST_FETCH) { 2258 mask = env->cp15.pmsav5_insn_ap; 2259 } else { 2260 mask = env->cp15.pmsav5_data_ap; 2261 } 2262 mask = (mask >> (n * 4)) & 0xf; 2263 switch (mask) { 2264 case 0: 2265 fi->type = ARMFault_Permission; 2266 fi->level = 1; 2267 return true; 2268 case 1: 2269 if (is_user) { 2270 fi->type = ARMFault_Permission; 2271 fi->level = 1; 2272 return true; 2273 } 2274 result->f.prot = PAGE_READ | PAGE_WRITE; 2275 break; 2276 case 2: 2277 result->f.prot = PAGE_READ; 2278 if (!is_user) { 2279 result->f.prot |= PAGE_WRITE; 2280 } 2281 break; 2282 case 3: 2283 result->f.prot = PAGE_READ | PAGE_WRITE; 2284 break; 2285 case 5: 2286 if (is_user) { 2287 fi->type = ARMFault_Permission; 2288 fi->level = 1; 2289 return true; 2290 } 2291 result->f.prot = PAGE_READ; 2292 break; 2293 case 6: 2294 result->f.prot = PAGE_READ; 2295 break; 2296 default: 2297 /* Bad permission. */ 2298 fi->type = ARMFault_Permission; 2299 fi->level = 1; 2300 return true; 2301 } 2302 result->f.prot |= PAGE_EXEC; 2303 return false; 2304 } 2305 2306 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 2307 int32_t address, uint8_t *prot) 2308 { 2309 if (!arm_feature(env, ARM_FEATURE_M)) { 2310 *prot = PAGE_READ | PAGE_WRITE; 2311 switch (address) { 2312 case 0xF0000000 ... 0xFFFFFFFF: 2313 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 2314 /* hivecs execing is ok */ 2315 *prot |= PAGE_EXEC; 2316 } 2317 break; 2318 case 0x00000000 ... 0x7FFFFFFF: 2319 *prot |= PAGE_EXEC; 2320 break; 2321 } 2322 } else { 2323 /* Default system address map for M profile cores. 2324 * The architecture specifies which regions are execute-never; 2325 * at the MPU level no other checks are defined. 2326 */ 2327 switch (address) { 2328 case 0x00000000 ... 0x1fffffff: /* ROM */ 2329 case 0x20000000 ... 0x3fffffff: /* SRAM */ 2330 case 0x60000000 ... 0x7fffffff: /* RAM */ 2331 case 0x80000000 ... 0x9fffffff: /* RAM */ 2332 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2333 break; 2334 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 2335 case 0xa0000000 ... 0xbfffffff: /* Device */ 2336 case 0xc0000000 ... 0xdfffffff: /* Device */ 2337 case 0xe0000000 ... 0xffffffff: /* System */ 2338 *prot = PAGE_READ | PAGE_WRITE; 2339 break; 2340 default: 2341 g_assert_not_reached(); 2342 } 2343 } 2344 } 2345 2346 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 2347 { 2348 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 2349 return arm_feature(env, ARM_FEATURE_M) && 2350 extract32(address, 20, 12) == 0xe00; 2351 } 2352 2353 static bool m_is_system_region(CPUARMState *env, uint32_t address) 2354 { 2355 /* 2356 * True if address is in the M profile system region 2357 * 0xe0000000 - 0xffffffff 2358 */ 2359 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 2360 } 2361 2362 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 2363 bool is_secure, bool is_user) 2364 { 2365 /* 2366 * Return true if we should use the default memory map as a 2367 * "background" region if there are no hits against any MPU regions. 2368 */ 2369 CPUARMState *env = &cpu->env; 2370 2371 if (is_user) { 2372 return false; 2373 } 2374 2375 if (arm_feature(env, ARM_FEATURE_M)) { 2376 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 2377 } 2378 2379 if (mmu_idx == ARMMMUIdx_Stage2) { 2380 return false; 2381 } 2382 2383 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 2384 } 2385 2386 static bool get_phys_addr_pmsav7(CPUARMState *env, 2387 S1Translate *ptw, 2388 uint32_t address, 2389 MMUAccessType access_type, 2390 GetPhysAddrResult *result, 2391 ARMMMUFaultInfo *fi) 2392 { 2393 ARMCPU *cpu = env_archcpu(env); 2394 int n; 2395 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2396 bool is_user = regime_is_user(env, mmu_idx); 2397 bool secure = arm_space_is_secure(ptw->in_space); 2398 2399 result->f.phys_addr = address; 2400 result->f.lg_page_size = TARGET_PAGE_BITS; 2401 result->f.prot = 0; 2402 2403 if (regime_translation_disabled(env, mmu_idx, ptw->in_space) || 2404 m_is_ppb_region(env, address)) { 2405 /* 2406 * MPU disabled or M profile PPB access: use default memory map. 2407 * The other case which uses the default memory map in the 2408 * v7M ARM ARM pseudocode is exception vector reads from the vector 2409 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 2410 * which always does a direct read using address_space_ldl(), rather 2411 * than going via this function, so we don't need to check that here. 2412 */ 2413 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2414 } else { /* MPU enabled */ 2415 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 2416 /* region search */ 2417 uint32_t base = env->pmsav7.drbar[n]; 2418 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 2419 uint32_t rmask; 2420 bool srdis = false; 2421 2422 if (!(env->pmsav7.drsr[n] & 0x1)) { 2423 continue; 2424 } 2425 2426 if (!rsize) { 2427 qemu_log_mask(LOG_GUEST_ERROR, 2428 "DRSR[%d]: Rsize field cannot be 0\n", n); 2429 continue; 2430 } 2431 rsize++; 2432 rmask = (1ull << rsize) - 1; 2433 2434 if (base & rmask) { 2435 qemu_log_mask(LOG_GUEST_ERROR, 2436 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 2437 "to DRSR region size, mask = 0x%" PRIx32 "\n", 2438 n, base, rmask); 2439 continue; 2440 } 2441 2442 if (address < base || address > base + rmask) { 2443 /* 2444 * Address not in this region. We must check whether the 2445 * region covers addresses in the same page as our address. 2446 * In that case we must not report a size that covers the 2447 * whole page for a subsequent hit against a different MPU 2448 * region or the background region, because it would result in 2449 * incorrect TLB hits for subsequent accesses to addresses that 2450 * are in this MPU region. 2451 */ 2452 if (ranges_overlap(base, rmask, 2453 address & TARGET_PAGE_MASK, 2454 TARGET_PAGE_SIZE)) { 2455 result->f.lg_page_size = 0; 2456 } 2457 continue; 2458 } 2459 2460 /* Region matched */ 2461 2462 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 2463 int i, snd; 2464 uint32_t srdis_mask; 2465 2466 rsize -= 3; /* sub region size (power of 2) */ 2467 snd = ((address - base) >> rsize) & 0x7; 2468 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 2469 2470 srdis_mask = srdis ? 0x3 : 0x0; 2471 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 2472 /* 2473 * This will check in groups of 2, 4 and then 8, whether 2474 * the subregion bits are consistent. rsize is incremented 2475 * back up to give the region size, considering consistent 2476 * adjacent subregions as one region. Stop testing if rsize 2477 * is already big enough for an entire QEMU page. 2478 */ 2479 int snd_rounded = snd & ~(i - 1); 2480 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 2481 snd_rounded + 8, i); 2482 if (srdis_mask ^ srdis_multi) { 2483 break; 2484 } 2485 srdis_mask = (srdis_mask << i) | srdis_mask; 2486 rsize++; 2487 } 2488 } 2489 if (srdis) { 2490 continue; 2491 } 2492 if (rsize < TARGET_PAGE_BITS) { 2493 result->f.lg_page_size = rsize; 2494 } 2495 break; 2496 } 2497 2498 if (n == -1) { /* no hits */ 2499 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2500 /* background fault */ 2501 fi->type = ARMFault_Background; 2502 return true; 2503 } 2504 get_phys_addr_pmsav7_default(env, mmu_idx, address, 2505 &result->f.prot); 2506 } else { /* a MPU hit! */ 2507 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 2508 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 2509 2510 if (m_is_system_region(env, address)) { 2511 /* System space is always execute never */ 2512 xn = 1; 2513 } 2514 2515 if (is_user) { /* User mode AP bit decoding */ 2516 switch (ap) { 2517 case 0: 2518 case 1: 2519 case 5: 2520 break; /* no access */ 2521 case 3: 2522 result->f.prot |= PAGE_WRITE; 2523 /* fall through */ 2524 case 2: 2525 case 6: 2526 result->f.prot |= PAGE_READ | PAGE_EXEC; 2527 break; 2528 case 7: 2529 /* for v7M, same as 6; for R profile a reserved value */ 2530 if (arm_feature(env, ARM_FEATURE_M)) { 2531 result->f.prot |= PAGE_READ | PAGE_EXEC; 2532 break; 2533 } 2534 /* fall through */ 2535 default: 2536 qemu_log_mask(LOG_GUEST_ERROR, 2537 "DRACR[%d]: Bad value for AP bits: 0x%" 2538 PRIx32 "\n", n, ap); 2539 } 2540 } else { /* Priv. mode AP bits decoding */ 2541 switch (ap) { 2542 case 0: 2543 break; /* no access */ 2544 case 1: 2545 case 2: 2546 case 3: 2547 result->f.prot |= PAGE_WRITE; 2548 /* fall through */ 2549 case 5: 2550 case 6: 2551 result->f.prot |= PAGE_READ | PAGE_EXEC; 2552 break; 2553 case 7: 2554 /* for v7M, same as 6; for R profile a reserved value */ 2555 if (arm_feature(env, ARM_FEATURE_M)) { 2556 result->f.prot |= PAGE_READ | PAGE_EXEC; 2557 break; 2558 } 2559 /* fall through */ 2560 default: 2561 qemu_log_mask(LOG_GUEST_ERROR, 2562 "DRACR[%d]: Bad value for AP bits: 0x%" 2563 PRIx32 "\n", n, ap); 2564 } 2565 } 2566 2567 /* execute never */ 2568 if (xn) { 2569 result->f.prot &= ~PAGE_EXEC; 2570 } 2571 } 2572 } 2573 2574 fi->type = ARMFault_Permission; 2575 fi->level = 1; 2576 return !(result->f.prot & (1 << access_type)); 2577 } 2578 2579 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx, 2580 uint32_t secure) 2581 { 2582 if (regime_el(env, mmu_idx) == 2) { 2583 return env->pmsav8.hprbar; 2584 } else { 2585 return env->pmsav8.rbar[secure]; 2586 } 2587 } 2588 2589 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx, 2590 uint32_t secure) 2591 { 2592 if (regime_el(env, mmu_idx) == 2) { 2593 return env->pmsav8.hprlar; 2594 } else { 2595 return env->pmsav8.rlar[secure]; 2596 } 2597 } 2598 2599 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 2600 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2601 bool secure, GetPhysAddrResult *result, 2602 ARMMMUFaultInfo *fi, uint32_t *mregion) 2603 { 2604 /* 2605 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 2606 * that a full phys-to-virt translation does). 2607 * mregion is (if not NULL) set to the region number which matched, 2608 * or -1 if no region number is returned (MPU off, address did not 2609 * hit a region, address hit in multiple regions). 2610 * If the region hit doesn't cover the entire TARGET_PAGE the address 2611 * is within, then we set the result page_size to 1 to force the 2612 * memory system to use a subpage. 2613 */ 2614 ARMCPU *cpu = env_archcpu(env); 2615 bool is_user = regime_is_user(env, mmu_idx); 2616 int n; 2617 int matchregion = -1; 2618 bool hit = false; 2619 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2620 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2621 int region_counter; 2622 2623 if (regime_el(env, mmu_idx) == 2) { 2624 region_counter = cpu->pmsav8r_hdregion; 2625 } else { 2626 region_counter = cpu->pmsav7_dregion; 2627 } 2628 2629 result->f.lg_page_size = TARGET_PAGE_BITS; 2630 result->f.phys_addr = address; 2631 result->f.prot = 0; 2632 if (mregion) { 2633 *mregion = -1; 2634 } 2635 2636 if (mmu_idx == ARMMMUIdx_Stage2) { 2637 fi->stage2 = true; 2638 } 2639 2640 /* 2641 * Unlike the ARM ARM pseudocode, we don't need to check whether this 2642 * was an exception vector read from the vector table (which is always 2643 * done using the default system address map), because those accesses 2644 * are done in arm_v7m_load_vector(), which always does a direct 2645 * read using address_space_ldl(), rather than going via this function. 2646 */ 2647 if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) { 2648 /* MPU disabled */ 2649 hit = true; 2650 } else if (m_is_ppb_region(env, address)) { 2651 hit = true; 2652 } else { 2653 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2654 hit = true; 2655 } 2656 2657 uint32_t bitmask; 2658 if (arm_feature(env, ARM_FEATURE_M)) { 2659 bitmask = 0x1f; 2660 } else { 2661 bitmask = 0x3f; 2662 fi->level = 0; 2663 } 2664 2665 for (n = region_counter - 1; n >= 0; n--) { 2666 /* region search */ 2667 /* 2668 * Note that the base address is bits [31:x] from the register 2669 * with bits [x-1:0] all zeroes, but the limit address is bits 2670 * [31:x] from the register with bits [x:0] all ones. Where x is 2671 * 5 for Cortex-M and 6 for Cortex-R 2672 */ 2673 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask; 2674 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask; 2675 2676 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) { 2677 /* Region disabled */ 2678 continue; 2679 } 2680 2681 if (address < base || address > limit) { 2682 /* 2683 * Address not in this region. We must check whether the 2684 * region covers addresses in the same page as our address. 2685 * In that case we must not report a size that covers the 2686 * whole page for a subsequent hit against a different MPU 2687 * region or the background region, because it would result in 2688 * incorrect TLB hits for subsequent accesses to addresses that 2689 * are in this MPU region. 2690 */ 2691 if (limit >= base && 2692 ranges_overlap(base, limit - base + 1, 2693 addr_page_base, 2694 TARGET_PAGE_SIZE)) { 2695 result->f.lg_page_size = 0; 2696 } 2697 continue; 2698 } 2699 2700 if (base > addr_page_base || limit < addr_page_limit) { 2701 result->f.lg_page_size = 0; 2702 } 2703 2704 if (matchregion != -1) { 2705 /* 2706 * Multiple regions match -- always a failure (unlike 2707 * PMSAv7 where highest-numbered-region wins) 2708 */ 2709 fi->type = ARMFault_Permission; 2710 if (arm_feature(env, ARM_FEATURE_M)) { 2711 fi->level = 1; 2712 } 2713 return true; 2714 } 2715 2716 matchregion = n; 2717 hit = true; 2718 } 2719 } 2720 2721 if (!hit) { 2722 if (arm_feature(env, ARM_FEATURE_M)) { 2723 fi->type = ARMFault_Background; 2724 } else { 2725 fi->type = ARMFault_Permission; 2726 } 2727 return true; 2728 } 2729 2730 if (matchregion == -1) { 2731 /* hit using the background region */ 2732 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2733 } else { 2734 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion]; 2735 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion]; 2736 uint32_t ap = extract32(matched_rbar, 1, 2); 2737 uint32_t xn = extract32(matched_rbar, 0, 1); 2738 bool pxn = false; 2739 2740 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 2741 pxn = extract32(matched_rlar, 4, 1); 2742 } 2743 2744 if (m_is_system_region(env, address)) { 2745 /* System space is always execute never */ 2746 xn = 1; 2747 } 2748 2749 if (regime_el(env, mmu_idx) == 2) { 2750 result->f.prot = simple_ap_to_rw_prot_is_user(ap, 2751 mmu_idx != ARMMMUIdx_E2); 2752 } else { 2753 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 2754 } 2755 2756 if (!arm_feature(env, ARM_FEATURE_M)) { 2757 uint8_t attrindx = extract32(matched_rlar, 1, 3); 2758 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2759 uint8_t sh = extract32(matched_rlar, 3, 2); 2760 2761 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN && 2762 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) { 2763 xn = 0x1; 2764 } 2765 2766 if ((regime_el(env, mmu_idx) == 1) && 2767 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) { 2768 pxn = 0x1; 2769 } 2770 2771 result->cacheattrs.is_s2_format = false; 2772 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2773 result->cacheattrs.shareability = sh; 2774 } 2775 2776 if (result->f.prot && !xn && !(pxn && !is_user)) { 2777 result->f.prot |= PAGE_EXEC; 2778 } 2779 2780 if (mregion) { 2781 *mregion = matchregion; 2782 } 2783 } 2784 2785 fi->type = ARMFault_Permission; 2786 if (arm_feature(env, ARM_FEATURE_M)) { 2787 fi->level = 1; 2788 } 2789 return !(result->f.prot & (1 << access_type)); 2790 } 2791 2792 static bool v8m_is_sau_exempt(CPUARMState *env, 2793 uint32_t address, MMUAccessType access_type) 2794 { 2795 /* 2796 * The architecture specifies that certain address ranges are 2797 * exempt from v8M SAU/IDAU checks. 2798 */ 2799 return 2800 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 2801 (address >= 0xe0000000 && address <= 0xe0002fff) || 2802 (address >= 0xe000e000 && address <= 0xe000efff) || 2803 (address >= 0xe002e000 && address <= 0xe002efff) || 2804 (address >= 0xe0040000 && address <= 0xe0041fff) || 2805 (address >= 0xe00ff000 && address <= 0xe00fffff); 2806 } 2807 2808 void v8m_security_lookup(CPUARMState *env, uint32_t address, 2809 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2810 bool is_secure, V8M_SAttributes *sattrs) 2811 { 2812 /* 2813 * Look up the security attributes for this address. Compare the 2814 * pseudocode SecurityCheck() function. 2815 * We assume the caller has zero-initialized *sattrs. 2816 */ 2817 ARMCPU *cpu = env_archcpu(env); 2818 int r; 2819 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 2820 int idau_region = IREGION_NOTVALID; 2821 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2822 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2823 2824 if (cpu->idau) { 2825 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 2826 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 2827 2828 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 2829 &idau_nsc); 2830 } 2831 2832 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 2833 /* 0xf0000000..0xffffffff is always S for insn fetches */ 2834 return; 2835 } 2836 2837 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 2838 sattrs->ns = !is_secure; 2839 return; 2840 } 2841 2842 if (idau_region != IREGION_NOTVALID) { 2843 sattrs->irvalid = true; 2844 sattrs->iregion = idau_region; 2845 } 2846 2847 switch (env->sau.ctrl & 3) { 2848 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 2849 break; 2850 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 2851 sattrs->ns = true; 2852 break; 2853 default: /* SAU.ENABLE == 1 */ 2854 for (r = 0; r < cpu->sau_sregion; r++) { 2855 if (env->sau.rlar[r] & 1) { 2856 uint32_t base = env->sau.rbar[r] & ~0x1f; 2857 uint32_t limit = env->sau.rlar[r] | 0x1f; 2858 2859 if (base <= address && limit >= address) { 2860 if (base > addr_page_base || limit < addr_page_limit) { 2861 sattrs->subpage = true; 2862 } 2863 if (sattrs->srvalid) { 2864 /* 2865 * If we hit in more than one region then we must report 2866 * as Secure, not NS-Callable, with no valid region 2867 * number info. 2868 */ 2869 sattrs->ns = false; 2870 sattrs->nsc = false; 2871 sattrs->sregion = 0; 2872 sattrs->srvalid = false; 2873 break; 2874 } else { 2875 if (env->sau.rlar[r] & 2) { 2876 sattrs->nsc = true; 2877 } else { 2878 sattrs->ns = true; 2879 } 2880 sattrs->srvalid = true; 2881 sattrs->sregion = r; 2882 } 2883 } else { 2884 /* 2885 * Address not in this region. We must check whether the 2886 * region covers addresses in the same page as our address. 2887 * In that case we must not report a size that covers the 2888 * whole page for a subsequent hit against a different MPU 2889 * region or the background region, because it would result 2890 * in incorrect TLB hits for subsequent accesses to 2891 * addresses that are in this MPU region. 2892 */ 2893 if (limit >= base && 2894 ranges_overlap(base, limit - base + 1, 2895 addr_page_base, 2896 TARGET_PAGE_SIZE)) { 2897 sattrs->subpage = true; 2898 } 2899 } 2900 } 2901 } 2902 break; 2903 } 2904 2905 /* 2906 * The IDAU will override the SAU lookup results if it specifies 2907 * higher security than the SAU does. 2908 */ 2909 if (!idau_ns) { 2910 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 2911 sattrs->ns = false; 2912 sattrs->nsc = idau_nsc; 2913 } 2914 } 2915 } 2916 2917 static bool get_phys_addr_pmsav8(CPUARMState *env, 2918 S1Translate *ptw, 2919 uint32_t address, 2920 MMUAccessType access_type, 2921 GetPhysAddrResult *result, 2922 ARMMMUFaultInfo *fi) 2923 { 2924 V8M_SAttributes sattrs = {}; 2925 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2926 bool secure = arm_space_is_secure(ptw->in_space); 2927 bool ret; 2928 2929 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2930 v8m_security_lookup(env, address, access_type, mmu_idx, 2931 secure, &sattrs); 2932 if (access_type == MMU_INST_FETCH) { 2933 /* 2934 * Instruction fetches always use the MMU bank and the 2935 * transaction attribute determined by the fetch address, 2936 * regardless of CPU state. This is painful for QEMU 2937 * to handle, because it would mean we need to encode 2938 * into the mmu_idx not just the (user, negpri) information 2939 * for the current security state but also that for the 2940 * other security state, which would balloon the number 2941 * of mmu_idx values needed alarmingly. 2942 * Fortunately we can avoid this because it's not actually 2943 * possible to arbitrarily execute code from memory with 2944 * the wrong security attribute: it will always generate 2945 * an exception of some kind or another, apart from the 2946 * special case of an NS CPU executing an SG instruction 2947 * in S&NSC memory. So we always just fail the translation 2948 * here and sort things out in the exception handler 2949 * (including possibly emulating an SG instruction). 2950 */ 2951 if (sattrs.ns != !secure) { 2952 if (sattrs.nsc) { 2953 fi->type = ARMFault_QEMU_NSCExec; 2954 } else { 2955 fi->type = ARMFault_QEMU_SFault; 2956 } 2957 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2958 result->f.phys_addr = address; 2959 result->f.prot = 0; 2960 return true; 2961 } 2962 } else { 2963 /* 2964 * For data accesses we always use the MMU bank indicated 2965 * by the current CPU state, but the security attributes 2966 * might downgrade a secure access to nonsecure. 2967 */ 2968 if (sattrs.ns) { 2969 result->f.attrs.secure = false; 2970 result->f.attrs.space = ARMSS_NonSecure; 2971 } else if (!secure) { 2972 /* 2973 * NS access to S memory must fault. 2974 * Architecturally we should first check whether the 2975 * MPU information for this address indicates that we 2976 * are doing an unaligned access to Device memory, which 2977 * should generate a UsageFault instead. QEMU does not 2978 * currently check for that kind of unaligned access though. 2979 * If we added it we would need to do so as a special case 2980 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2981 */ 2982 fi->type = ARMFault_QEMU_SFault; 2983 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2984 result->f.phys_addr = address; 2985 result->f.prot = 0; 2986 return true; 2987 } 2988 } 2989 } 2990 2991 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, 2992 result, fi, NULL); 2993 if (sattrs.subpage) { 2994 result->f.lg_page_size = 0; 2995 } 2996 return ret; 2997 } 2998 2999 /* 3000 * Translate from the 4-bit stage 2 representation of 3001 * memory attributes (without cache-allocation hints) to 3002 * the 8-bit representation of the stage 1 MAIR registers 3003 * (which includes allocation hints). 3004 * 3005 * ref: shared/translation/attrs/S2AttrDecode() 3006 * .../S2ConvertAttrsHints() 3007 */ 3008 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) 3009 { 3010 uint8_t hiattr = extract32(s2attrs, 2, 2); 3011 uint8_t loattr = extract32(s2attrs, 0, 2); 3012 uint8_t hihint = 0, lohint = 0; 3013 3014 if (hiattr != 0) { /* normal memory */ 3015 if (hcr & HCR_CD) { /* cache disabled */ 3016 hiattr = loattr = 1; /* non-cacheable */ 3017 } else { 3018 if (hiattr != 1) { /* Write-through or write-back */ 3019 hihint = 3; /* RW allocate */ 3020 } 3021 if (loattr != 1) { /* Write-through or write-back */ 3022 lohint = 3; /* RW allocate */ 3023 } 3024 } 3025 } 3026 3027 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 3028 } 3029 3030 /* 3031 * Combine either inner or outer cacheability attributes for normal 3032 * memory, according to table D4-42 and pseudocode procedure 3033 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 3034 * 3035 * NB: only stage 1 includes allocation hints (RW bits), leading to 3036 * some asymmetry. 3037 */ 3038 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 3039 { 3040 if (s1 == 4 || s2 == 4) { 3041 /* non-cacheable has precedence */ 3042 return 4; 3043 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 3044 /* stage 1 write-through takes precedence */ 3045 return s1; 3046 } else if (extract32(s2, 2, 2) == 2) { 3047 /* stage 2 write-through takes precedence, but the allocation hint 3048 * is still taken from stage 1 3049 */ 3050 return (2 << 2) | extract32(s1, 0, 2); 3051 } else { /* write-back */ 3052 return s1; 3053 } 3054 } 3055 3056 /* 3057 * Combine the memory type and cacheability attributes of 3058 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 3059 * combined attributes in MAIR_EL1 format. 3060 */ 3061 static uint8_t combined_attrs_nofwb(uint64_t hcr, 3062 ARMCacheAttrs s1, ARMCacheAttrs s2) 3063 { 3064 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 3065 3066 if (s2.is_s2_format) { 3067 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); 3068 } else { 3069 s2_mair_attrs = s2.attrs; 3070 } 3071 3072 s1lo = extract32(s1.attrs, 0, 4); 3073 s2lo = extract32(s2_mair_attrs, 0, 4); 3074 s1hi = extract32(s1.attrs, 4, 4); 3075 s2hi = extract32(s2_mair_attrs, 4, 4); 3076 3077 /* Combine memory type and cacheability attributes */ 3078 if (s1hi == 0 || s2hi == 0) { 3079 /* Device has precedence over normal */ 3080 if (s1lo == 0 || s2lo == 0) { 3081 /* nGnRnE has precedence over anything */ 3082 ret_attrs = 0; 3083 } else if (s1lo == 4 || s2lo == 4) { 3084 /* non-Reordering has precedence over Reordering */ 3085 ret_attrs = 4; /* nGnRE */ 3086 } else if (s1lo == 8 || s2lo == 8) { 3087 /* non-Gathering has precedence over Gathering */ 3088 ret_attrs = 8; /* nGRE */ 3089 } else { 3090 ret_attrs = 0xc; /* GRE */ 3091 } 3092 } else { /* Normal memory */ 3093 /* Outer/inner cacheability combine independently */ 3094 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 3095 | combine_cacheattr_nibble(s1lo, s2lo); 3096 } 3097 return ret_attrs; 3098 } 3099 3100 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 3101 { 3102 /* 3103 * Given the 4 bits specifying the outer or inner cacheability 3104 * in MAIR format, return a value specifying Normal Write-Back, 3105 * with the allocation and transient hints taken from the input 3106 * if the input specified some kind of cacheable attribute. 3107 */ 3108 if (attr == 0 || attr == 4) { 3109 /* 3110 * 0 == an UNPREDICTABLE encoding 3111 * 4 == Non-cacheable 3112 * Either way, force Write-Back RW allocate non-transient 3113 */ 3114 return 0xf; 3115 } 3116 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 3117 return attr | 4; 3118 } 3119 3120 /* 3121 * Combine the memory type and cacheability attributes of 3122 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 3123 * combined attributes in MAIR_EL1 format. 3124 */ 3125 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) 3126 { 3127 assert(s2.is_s2_format && !s1.is_s2_format); 3128 3129 switch (s2.attrs) { 3130 case 7: 3131 /* Use stage 1 attributes */ 3132 return s1.attrs; 3133 case 6: 3134 /* 3135 * Force Normal Write-Back. Note that if S1 is Normal cacheable 3136 * then we take the allocation hints from it; otherwise it is 3137 * RW allocate, non-transient. 3138 */ 3139 if ((s1.attrs & 0xf0) == 0) { 3140 /* S1 is Device */ 3141 return 0xff; 3142 } 3143 /* Need to check the Inner and Outer nibbles separately */ 3144 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 3145 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 3146 case 5: 3147 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 3148 if ((s1.attrs & 0xf0) == 0) { 3149 return s1.attrs; 3150 } 3151 return 0x44; 3152 case 0 ... 3: 3153 /* Force Device, of subtype specified by S2 */ 3154 return s2.attrs << 2; 3155 default: 3156 /* 3157 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 3158 * arbitrarily force Device. 3159 */ 3160 return 0; 3161 } 3162 } 3163 3164 /* 3165 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 3166 * and CombineS1S2Desc() 3167 * 3168 * @env: CPUARMState 3169 * @s1: Attributes from stage 1 walk 3170 * @s2: Attributes from stage 2 walk 3171 */ 3172 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, 3173 ARMCacheAttrs s1, ARMCacheAttrs s2) 3174 { 3175 ARMCacheAttrs ret; 3176 bool tagged = false; 3177 3178 assert(!s1.is_s2_format); 3179 ret.is_s2_format = false; 3180 3181 if (s1.attrs == 0xf0) { 3182 tagged = true; 3183 s1.attrs = 0xff; 3184 } 3185 3186 /* Combine shareability attributes (table D4-43) */ 3187 if (s1.shareability == 2 || s2.shareability == 2) { 3188 /* if either are outer-shareable, the result is outer-shareable */ 3189 ret.shareability = 2; 3190 } else if (s1.shareability == 3 || s2.shareability == 3) { 3191 /* if either are inner-shareable, the result is inner-shareable */ 3192 ret.shareability = 3; 3193 } else { 3194 /* both non-shareable */ 3195 ret.shareability = 0; 3196 } 3197 3198 /* Combine memory type and cacheability attributes */ 3199 if (hcr & HCR_FWB) { 3200 ret.attrs = combined_attrs_fwb(s1, s2); 3201 } else { 3202 ret.attrs = combined_attrs_nofwb(hcr, s1, s2); 3203 } 3204 3205 /* 3206 * Any location for which the resultant memory type is any 3207 * type of Device memory is always treated as Outer Shareable. 3208 * Any location for which the resultant memory type is Normal 3209 * Inner Non-cacheable, Outer Non-cacheable is always treated 3210 * as Outer Shareable. 3211 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 3212 */ 3213 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 3214 ret.shareability = 2; 3215 } 3216 3217 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 3218 if (tagged && ret.attrs == 0xff) { 3219 ret.attrs = 0xf0; 3220 } 3221 3222 return ret; 3223 } 3224 3225 /* 3226 * MMU disabled. S1 addresses within aa64 translation regimes are 3227 * still checked for bounds -- see AArch64.S1DisabledOutput(). 3228 */ 3229 static bool get_phys_addr_disabled(CPUARMState *env, 3230 S1Translate *ptw, 3231 vaddr address, 3232 MMUAccessType access_type, 3233 GetPhysAddrResult *result, 3234 ARMMMUFaultInfo *fi) 3235 { 3236 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3237 uint8_t memattr = 0x00; /* Device nGnRnE */ 3238 uint8_t shareability = 0; /* non-shareable */ 3239 int r_el; 3240 3241 switch (mmu_idx) { 3242 case ARMMMUIdx_Stage2: 3243 case ARMMMUIdx_Stage2_S: 3244 case ARMMMUIdx_Phys_S: 3245 case ARMMMUIdx_Phys_NS: 3246 case ARMMMUIdx_Phys_Root: 3247 case ARMMMUIdx_Phys_Realm: 3248 break; 3249 3250 default: 3251 r_el = regime_el(env, mmu_idx); 3252 if (arm_el_is_aa64(env, r_el)) { 3253 int pamax = arm_pamax(env_archcpu(env)); 3254 uint64_t tcr = env->cp15.tcr_el[r_el]; 3255 int addrtop, tbi; 3256 3257 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 3258 if (access_type == MMU_INST_FETCH) { 3259 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 3260 } 3261 tbi = (tbi >> extract64(address, 55, 1)) & 1; 3262 addrtop = (tbi ? 55 : 63); 3263 3264 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 3265 fi->type = ARMFault_AddressSize; 3266 fi->level = 0; 3267 fi->stage2 = false; 3268 return 1; 3269 } 3270 3271 /* 3272 * When TBI is disabled, we've just validated that all of the 3273 * bits above PAMax are zero, so logically we only need to 3274 * clear the top byte for TBI. But it's clearer to follow 3275 * the pseudocode set of addrdesc.paddress. 3276 */ 3277 address = extract64(address, 0, 52); 3278 } 3279 3280 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 3281 if (r_el == 1) { 3282 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 3283 if (hcr & HCR_DC) { 3284 if (hcr & HCR_DCT) { 3285 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 3286 } else { 3287 memattr = 0xff; /* Normal, WB, RWA */ 3288 } 3289 } 3290 } 3291 if (memattr == 0) { 3292 if (access_type == MMU_INST_FETCH) { 3293 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 3294 memattr = 0xee; /* Normal, WT, RA, NT */ 3295 } else { 3296 memattr = 0x44; /* Normal, NC, No */ 3297 } 3298 } 3299 shareability = 2; /* outer shareable */ 3300 } 3301 result->cacheattrs.is_s2_format = false; 3302 break; 3303 } 3304 3305 result->f.phys_addr = address; 3306 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 3307 result->f.lg_page_size = TARGET_PAGE_BITS; 3308 result->cacheattrs.shareability = shareability; 3309 result->cacheattrs.attrs = memattr; 3310 return false; 3311 } 3312 3313 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, 3314 vaddr address, 3315 MMUAccessType access_type, MemOp memop, 3316 GetPhysAddrResult *result, 3317 ARMMMUFaultInfo *fi) 3318 { 3319 hwaddr ipa; 3320 int s1_prot, s1_lgpgsz; 3321 ARMSecuritySpace in_space = ptw->in_space; 3322 bool ret, ipa_secure, s1_guarded; 3323 ARMCacheAttrs cacheattrs1; 3324 ARMSecuritySpace ipa_space; 3325 uint64_t hcr; 3326 3327 ret = get_phys_addr_nogpc(env, ptw, address, access_type, 3328 memop, result, fi); 3329 3330 /* If S1 fails, return early. */ 3331 if (ret) { 3332 return ret; 3333 } 3334 3335 ipa = result->f.phys_addr; 3336 ipa_secure = result->f.attrs.secure; 3337 ipa_space = result->f.attrs.space; 3338 3339 ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; 3340 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3341 ptw->in_space = ipa_space; 3342 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx); 3343 3344 /* 3345 * S1 is done, now do S2 translation. 3346 * Save the stage1 results so that we may merge prot and cacheattrs later. 3347 */ 3348 s1_prot = result->f.prot; 3349 s1_lgpgsz = result->f.lg_page_size; 3350 s1_guarded = result->f.extra.arm.guarded; 3351 cacheattrs1 = result->cacheattrs; 3352 memset(result, 0, sizeof(*result)); 3353 3354 ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, 3355 memop, result, fi); 3356 fi->s2addr = ipa; 3357 3358 /* Combine the S1 and S2 perms. */ 3359 result->f.prot &= s1_prot; 3360 3361 /* If S2 fails, return early. */ 3362 if (ret) { 3363 return ret; 3364 } 3365 3366 /* 3367 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE, 3368 * this means "don't put this in the TLB"; in this case, return a 3369 * result with lg_page_size == 0 to achieve that. Otherwise, 3370 * use the maximum of the S1 & S2 page size, so that invalidation 3371 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though 3372 * we know the combined result permissions etc only cover the minimum 3373 * of the S1 and S2 page size, because we know that the common TLB code 3374 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE, 3375 * and passing a larger page size value only affects invalidations.) 3376 */ 3377 if (result->f.lg_page_size < TARGET_PAGE_BITS || 3378 s1_lgpgsz < TARGET_PAGE_BITS) { 3379 result->f.lg_page_size = 0; 3380 } else if (result->f.lg_page_size < s1_lgpgsz) { 3381 result->f.lg_page_size = s1_lgpgsz; 3382 } 3383 3384 /* Combine the S1 and S2 cache attributes. */ 3385 hcr = arm_hcr_el2_eff_secstate(env, in_space); 3386 if (hcr & HCR_DC) { 3387 /* 3388 * HCR.DC forces the first stage attributes to 3389 * Normal Non-Shareable, 3390 * Inner Write-Back Read-Allocate Write-Allocate, 3391 * Outer Write-Back Read-Allocate Write-Allocate. 3392 * Do not overwrite Tagged within attrs. 3393 */ 3394 if (cacheattrs1.attrs != 0xf0) { 3395 cacheattrs1.attrs = 0xff; 3396 } 3397 cacheattrs1.shareability = 0; 3398 } 3399 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, 3400 result->cacheattrs); 3401 3402 /* No BTI GP information in stage 2, we just use the S1 value */ 3403 result->f.extra.arm.guarded = s1_guarded; 3404 3405 /* 3406 * Check if IPA translates to secure or non-secure PA space. 3407 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. 3408 */ 3409 if (in_space == ARMSS_Secure) { 3410 result->f.attrs.secure = 3411 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) 3412 && (ipa_secure 3413 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))); 3414 result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure); 3415 } 3416 3417 return false; 3418 } 3419 3420 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 3421 vaddr address, 3422 MMUAccessType access_type, MemOp memop, 3423 GetPhysAddrResult *result, 3424 ARMMMUFaultInfo *fi) 3425 { 3426 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3427 ARMMMUIdx s1_mmu_idx; 3428 3429 /* 3430 * The page table entries may downgrade Secure to NonSecure, but 3431 * cannot upgrade a NonSecure translation regime's attributes 3432 * to Secure or Realm. 3433 */ 3434 result->f.attrs.space = ptw->in_space; 3435 result->f.attrs.secure = arm_space_is_secure(ptw->in_space); 3436 3437 switch (mmu_idx) { 3438 case ARMMMUIdx_Phys_S: 3439 case ARMMMUIdx_Phys_NS: 3440 case ARMMMUIdx_Phys_Root: 3441 case ARMMMUIdx_Phys_Realm: 3442 /* Checking Phys early avoids special casing later vs regime_el. */ 3443 return get_phys_addr_disabled(env, ptw, address, access_type, 3444 result, fi); 3445 3446 case ARMMMUIdx_Stage1_E0: 3447 case ARMMMUIdx_Stage1_E1: 3448 case ARMMMUIdx_Stage1_E1_PAN: 3449 /* 3450 * First stage lookup uses second stage for ptw; only 3451 * Secure has both S and NS IPA and starts with Stage2_S. 3452 */ 3453 ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ? 3454 ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3455 break; 3456 3457 case ARMMMUIdx_Stage2: 3458 case ARMMMUIdx_Stage2_S: 3459 /* 3460 * Second stage lookup uses physical for ptw; whether this is S or 3461 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for 3462 * the Secure EL2&0 regime. 3463 */ 3464 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx); 3465 break; 3466 3467 case ARMMMUIdx_E10_0: 3468 s1_mmu_idx = ARMMMUIdx_Stage1_E0; 3469 goto do_twostage; 3470 case ARMMMUIdx_E10_1: 3471 s1_mmu_idx = ARMMMUIdx_Stage1_E1; 3472 goto do_twostage; 3473 case ARMMMUIdx_E10_1_PAN: 3474 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3475 do_twostage: 3476 /* 3477 * Call ourselves recursively to do the stage 1 and then stage 2 3478 * translations if mmu_idx is a two-stage regime, and EL2 present. 3479 * Otherwise, a stage1+stage2 translation is just stage 1. 3480 */ 3481 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; 3482 if (arm_feature(env, ARM_FEATURE_EL2) && 3483 !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) { 3484 return get_phys_addr_twostage(env, ptw, address, access_type, 3485 memop, result, fi); 3486 } 3487 /* fall through */ 3488 3489 default: 3490 /* Single stage uses physical for ptw. */ 3491 ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space); 3492 break; 3493 } 3494 3495 result->f.attrs.user = regime_is_user(env, mmu_idx); 3496 3497 /* 3498 * Fast Context Switch Extension. This doesn't exist at all in v8. 3499 * In v7 and earlier it affects all stage 1 translations. 3500 */ 3501 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 3502 && !arm_feature(env, ARM_FEATURE_V8)) { 3503 if (regime_el(env, mmu_idx) == 3) { 3504 address += env->cp15.fcseidr_s; 3505 } else { 3506 address += env->cp15.fcseidr_ns; 3507 } 3508 } 3509 3510 if (arm_feature(env, ARM_FEATURE_PMSA)) { 3511 bool ret; 3512 result->f.lg_page_size = TARGET_PAGE_BITS; 3513 3514 if (arm_feature(env, ARM_FEATURE_V8)) { 3515 /* PMSAv8 */ 3516 ret = get_phys_addr_pmsav8(env, ptw, address, access_type, 3517 result, fi); 3518 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3519 /* PMSAv7 */ 3520 ret = get_phys_addr_pmsav7(env, ptw, address, access_type, 3521 result, fi); 3522 } else { 3523 /* Pre-v7 MPU */ 3524 ret = get_phys_addr_pmsav5(env, ptw, address, access_type, 3525 result, fi); 3526 } 3527 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 3528 " mmu_idx %u -> %s (prot %c%c%c)\n", 3529 access_type == MMU_DATA_LOAD ? "reading" : 3530 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 3531 (uint32_t)address, mmu_idx, 3532 ret ? "Miss" : "Hit", 3533 result->f.prot & PAGE_READ ? 'r' : '-', 3534 result->f.prot & PAGE_WRITE ? 'w' : '-', 3535 result->f.prot & PAGE_EXEC ? 'x' : '-'); 3536 3537 return ret; 3538 } 3539 3540 /* Definitely a real MMU, not an MPU */ 3541 3542 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 3543 return get_phys_addr_disabled(env, ptw, address, access_type, 3544 result, fi); 3545 } 3546 3547 if (regime_using_lpae_format(env, mmu_idx)) { 3548 return get_phys_addr_lpae(env, ptw, address, access_type, 3549 memop, result, fi); 3550 } else if (arm_feature(env, ARM_FEATURE_V7) || 3551 regime_sctlr(env, mmu_idx) & SCTLR_XP) { 3552 return get_phys_addr_v6(env, ptw, address, access_type, result, fi); 3553 } else { 3554 return get_phys_addr_v5(env, ptw, address, access_type, result, fi); 3555 } 3556 } 3557 3558 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 3559 vaddr address, 3560 MMUAccessType access_type, MemOp memop, 3561 GetPhysAddrResult *result, 3562 ARMMMUFaultInfo *fi) 3563 { 3564 if (get_phys_addr_nogpc(env, ptw, address, access_type, 3565 memop, result, fi)) { 3566 return true; 3567 } 3568 if (!granule_protection_check(env, result->f.phys_addr, 3569 result->f.attrs.space, fi)) { 3570 fi->type = ARMFault_GPCFOnOutput; 3571 return true; 3572 } 3573 return false; 3574 } 3575 3576 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address, 3577 MMUAccessType access_type, MemOp memop, 3578 ARMMMUIdx mmu_idx, ARMSecuritySpace space, 3579 GetPhysAddrResult *result, 3580 ARMMMUFaultInfo *fi) 3581 { 3582 S1Translate ptw = { 3583 .in_mmu_idx = mmu_idx, 3584 .in_space = space, 3585 }; 3586 return get_phys_addr_nogpc(env, &ptw, address, access_type, 3587 memop, result, fi); 3588 } 3589 3590 bool get_phys_addr(CPUARMState *env, vaddr address, 3591 MMUAccessType access_type, MemOp memop, ARMMMUIdx mmu_idx, 3592 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 3593 { 3594 S1Translate ptw = { 3595 .in_mmu_idx = mmu_idx, 3596 }; 3597 ARMSecuritySpace ss; 3598 3599 switch (mmu_idx) { 3600 case ARMMMUIdx_E10_0: 3601 case ARMMMUIdx_E10_1: 3602 case ARMMMUIdx_E10_1_PAN: 3603 case ARMMMUIdx_E20_0: 3604 case ARMMMUIdx_E20_2: 3605 case ARMMMUIdx_E20_2_PAN: 3606 case ARMMMUIdx_Stage1_E0: 3607 case ARMMMUIdx_Stage1_E1: 3608 case ARMMMUIdx_Stage1_E1_PAN: 3609 case ARMMMUIdx_E2: 3610 if (arm_aa32_secure_pl1_0(env)) { 3611 ss = ARMSS_Secure; 3612 } else { 3613 ss = arm_security_space_below_el3(env); 3614 } 3615 break; 3616 case ARMMMUIdx_Stage2: 3617 /* 3618 * For Secure EL2, we need this index to be NonSecure; 3619 * otherwise this will already be NonSecure or Realm. 3620 */ 3621 ss = arm_security_space_below_el3(env); 3622 if (ss == ARMSS_Secure) { 3623 ss = ARMSS_NonSecure; 3624 } 3625 break; 3626 case ARMMMUIdx_Phys_NS: 3627 case ARMMMUIdx_MPrivNegPri: 3628 case ARMMMUIdx_MUserNegPri: 3629 case ARMMMUIdx_MPriv: 3630 case ARMMMUIdx_MUser: 3631 ss = ARMSS_NonSecure; 3632 break; 3633 case ARMMMUIdx_Stage2_S: 3634 case ARMMMUIdx_Phys_S: 3635 case ARMMMUIdx_MSPrivNegPri: 3636 case ARMMMUIdx_MSUserNegPri: 3637 case ARMMMUIdx_MSPriv: 3638 case ARMMMUIdx_MSUser: 3639 ss = ARMSS_Secure; 3640 break; 3641 case ARMMMUIdx_E3: 3642 if (arm_feature(env, ARM_FEATURE_AARCH64) && 3643 cpu_isar_feature(aa64_rme, env_archcpu(env))) { 3644 ss = ARMSS_Root; 3645 } else { 3646 ss = ARMSS_Secure; 3647 } 3648 break; 3649 case ARMMMUIdx_Phys_Root: 3650 ss = ARMSS_Root; 3651 break; 3652 case ARMMMUIdx_Phys_Realm: 3653 ss = ARMSS_Realm; 3654 break; 3655 default: 3656 g_assert_not_reached(); 3657 } 3658 3659 ptw.in_space = ss; 3660 return get_phys_addr_gpc(env, &ptw, address, access_type, 3661 memop, result, fi); 3662 } 3663 3664 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 3665 MemTxAttrs *attrs) 3666 { 3667 ARMCPU *cpu = ARM_CPU(cs); 3668 CPUARMState *env = &cpu->env; 3669 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 3670 ARMSecuritySpace ss = arm_security_space(env); 3671 S1Translate ptw = { 3672 .in_mmu_idx = mmu_idx, 3673 .in_space = ss, 3674 .in_debug = true, 3675 }; 3676 GetPhysAddrResult res = {}; 3677 ARMMMUFaultInfo fi = {}; 3678 bool ret; 3679 3680 ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, 0, &res, &fi); 3681 *attrs = res.f.attrs; 3682 3683 if (ret) { 3684 return -1; 3685 } 3686 return res.f.phys_addr; 3687 } 3688