xref: /openbmc/qemu/target/arm/ptw.c (revision 1274a47f)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "cpu-features.h"
17 #include "idau.h"
18 #ifdef CONFIG_TCG
19 # include "tcg/oversized-guest.h"
20 #endif
21 
22 typedef struct S1Translate {
23     /*
24      * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
25      * Together with in_space, specifies the architectural translation regime.
26      */
27     ARMMMUIdx in_mmu_idx;
28     /*
29      * in_ptw_idx: specifies which mmuidx to use for the actual
30      * page table descriptor load operations. This will be one of the
31      * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
32      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
33      * this field is updated accordingly.
34      */
35     ARMMMUIdx in_ptw_idx;
36     /*
37      * in_space: the security space for this walk. This plus
38      * the in_mmu_idx specify the architectural translation regime.
39      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
40      * this field is updated accordingly.
41      *
42      * Note that the security space for the in_ptw_idx may be different
43      * from that for the in_mmu_idx. We do not need to explicitly track
44      * the in_ptw_idx security space because:
45      *  - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
46      *    itself specifies the security space
47      *  - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
48      *    space used for ptw reads is the same as that of the security
49      *    space of the stage 1 translation for all cases except where
50      *    stage 1 is Secure; in that case the only possibilities for
51      *    the ptw read are Secure and NonSecure, and the in_ptw_idx
52      *    value being Stage2 vs Stage2_S distinguishes those.
53      */
54     ARMSecuritySpace in_space;
55     /*
56      * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
57      * accesses will not update the guest page table access flags
58      * and will not change the state of the softmmu TLBs.
59      */
60     bool in_debug;
61     /*
62      * If this is stage 2 of a stage 1+2 page table walk, then this must
63      * be true if stage 1 is an EL0 access; otherwise this is ignored.
64      * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
65      */
66     bool in_s1_is_el0;
67     bool out_rw;
68     bool out_be;
69     ARMSecuritySpace out_space;
70     hwaddr out_virt;
71     hwaddr out_phys;
72     void *out_host;
73 } S1Translate;
74 
75 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
76                                 target_ulong address,
77                                 MMUAccessType access_type,
78                                 GetPhysAddrResult *result,
79                                 ARMMMUFaultInfo *fi);
80 
81 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
82                               target_ulong address,
83                               MMUAccessType access_type,
84                               GetPhysAddrResult *result,
85                               ARMMMUFaultInfo *fi);
86 
87 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
88 static const uint8_t pamax_map[] = {
89     [0] = 32,
90     [1] = 36,
91     [2] = 40,
92     [3] = 42,
93     [4] = 44,
94     [5] = 48,
95     [6] = 52,
96 };
97 
98 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
99 unsigned int arm_pamax(ARMCPU *cpu)
100 {
101     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
102         unsigned int parange =
103             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
104 
105         /*
106          * id_aa64mmfr0 is a read-only register so values outside of the
107          * supported mappings can be considered an implementation error.
108          */
109         assert(parange < ARRAY_SIZE(pamax_map));
110         return pamax_map[parange];
111     }
112 
113     /*
114      * In machvirt_init, we call arm_pamax on a cpu that is not fully
115      * initialized, so we can't rely on the propagation done in realize.
116      */
117     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
118         arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
119         /* v7 with LPAE */
120         return 40;
121     }
122     /* Anything else */
123     return 32;
124 }
125 
126 /*
127  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
128  */
129 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
130 {
131     switch (mmu_idx) {
132     case ARMMMUIdx_E10_0:
133         return ARMMMUIdx_Stage1_E0;
134     case ARMMMUIdx_E10_1:
135         return ARMMMUIdx_Stage1_E1;
136     case ARMMMUIdx_E10_1_PAN:
137         return ARMMMUIdx_Stage1_E1_PAN;
138     default:
139         return mmu_idx;
140     }
141 }
142 
143 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
144 {
145     return stage_1_mmu_idx(arm_mmu_idx(env));
146 }
147 
148 /*
149  * Return where we should do ptw loads from for a stage 2 walk.
150  * This depends on whether the address we are looking up is a
151  * Secure IPA or a NonSecure IPA, which we know from whether this is
152  * Stage2 or Stage2_S.
153  * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
154  */
155 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
156 {
157     bool s2walk_secure;
158 
159     /*
160      * We're OK to check the current state of the CPU here because
161      * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit
162      * changes.
163      * (2) there's no way to do a lookup that cares about Stage 2 for a
164      * different security state to the current one for AArch64, and AArch32
165      * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
166      * an NS stage 1+2 lookup while the NS bit is 0.)
167      */
168     if (!arm_el_is_aa64(env, 3)) {
169         return ARMMMUIdx_Phys_NS;
170     }
171 
172     switch (arm_security_space_below_el3(env)) {
173     case ARMSS_NonSecure:
174         return ARMMMUIdx_Phys_NS;
175     case ARMSS_Realm:
176         return ARMMMUIdx_Phys_Realm;
177     case ARMSS_Secure:
178         if (stage2idx == ARMMMUIdx_Stage2_S) {
179             s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
180         } else {
181             s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
182         }
183         return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
184     default:
185         g_assert_not_reached();
186     }
187 }
188 
189 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
190 {
191     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
192 }
193 
194 /* Return the TTBR associated with this translation regime */
195 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
196 {
197     if (mmu_idx == ARMMMUIdx_Stage2) {
198         return env->cp15.vttbr_el2;
199     }
200     if (mmu_idx == ARMMMUIdx_Stage2_S) {
201         return env->cp15.vsttbr_el2;
202     }
203     if (ttbrn == 0) {
204         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
205     } else {
206         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
207     }
208 }
209 
210 /* Return true if the specified stage of address translation is disabled */
211 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
212                                         ARMSecuritySpace space)
213 {
214     uint64_t hcr_el2;
215 
216     if (arm_feature(env, ARM_FEATURE_M)) {
217         bool is_secure = arm_space_is_secure(space);
218         switch (env->v7m.mpu_ctrl[is_secure] &
219                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
220         case R_V7M_MPU_CTRL_ENABLE_MASK:
221             /* Enabled, but not for HardFault and NMI */
222             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
223         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
224             /* Enabled for all cases */
225             return false;
226         case 0:
227         default:
228             /*
229              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
230              * we warned about that in armv7m_nvic.c when the guest set it.
231              */
232             return true;
233         }
234     }
235 
236 
237     switch (mmu_idx) {
238     case ARMMMUIdx_Stage2:
239     case ARMMMUIdx_Stage2_S:
240         /* HCR.DC means HCR.VM behaves as 1 */
241         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
242         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
243 
244     case ARMMMUIdx_E10_0:
245     case ARMMMUIdx_E10_1:
246     case ARMMMUIdx_E10_1_PAN:
247         /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
248         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
249         if (hcr_el2 & HCR_TGE) {
250             return true;
251         }
252         break;
253 
254     case ARMMMUIdx_Stage1_E0:
255     case ARMMMUIdx_Stage1_E1:
256     case ARMMMUIdx_Stage1_E1_PAN:
257         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
258         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
259         if (hcr_el2 & HCR_DC) {
260             return true;
261         }
262         break;
263 
264     case ARMMMUIdx_E20_0:
265     case ARMMMUIdx_E20_2:
266     case ARMMMUIdx_E20_2_PAN:
267     case ARMMMUIdx_E2:
268     case ARMMMUIdx_E3:
269         break;
270 
271     case ARMMMUIdx_Phys_S:
272     case ARMMMUIdx_Phys_NS:
273     case ARMMMUIdx_Phys_Root:
274     case ARMMMUIdx_Phys_Realm:
275         /* No translation for physical address spaces. */
276         return true;
277 
278     default:
279         g_assert_not_reached();
280     }
281 
282     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
283 }
284 
285 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
286                                      ARMSecuritySpace pspace,
287                                      ARMMMUFaultInfo *fi)
288 {
289     MemTxAttrs attrs = {
290         .secure = true,
291         .space = ARMSS_Root,
292     };
293     ARMCPU *cpu = env_archcpu(env);
294     uint64_t gpccr = env->cp15.gpccr_el3;
295     unsigned pps, pgs, l0gptsz, level = 0;
296     uint64_t tableaddr, pps_mask, align, entry, index;
297     AddressSpace *as;
298     MemTxResult result;
299     int gpi;
300 
301     if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
302         return true;
303     }
304 
305     /*
306      * GPC Priority 1 (R_GMGRR):
307      * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
308      * the access fails as GPT walk fault at level 0.
309      */
310 
311     /*
312      * Configuration of PPS to a value exceeding the implemented
313      * physical address size is invalid.
314      */
315     pps = FIELD_EX64(gpccr, GPCCR, PPS);
316     if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
317         goto fault_walk;
318     }
319     pps = pamax_map[pps];
320     pps_mask = MAKE_64BIT_MASK(0, pps);
321 
322     switch (FIELD_EX64(gpccr, GPCCR, SH)) {
323     case 0b10: /* outer shareable */
324         break;
325     case 0b00: /* non-shareable */
326     case 0b11: /* inner shareable */
327         /* Inner and Outer non-cacheable requires Outer shareable. */
328         if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
329             FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
330             goto fault_walk;
331         }
332         break;
333     default:   /* reserved */
334         goto fault_walk;
335     }
336 
337     switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
338     case 0b00: /* 4KB */
339         pgs = 12;
340         break;
341     case 0b01: /* 64KB */
342         pgs = 16;
343         break;
344     case 0b10: /* 16KB */
345         pgs = 14;
346         break;
347     default: /* reserved */
348         goto fault_walk;
349     }
350 
351     /* Note this field is read-only and fixed at reset. */
352     l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
353 
354     /*
355      * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
356      * R_CPDSB: A NonSecure physical address input exceeding PPS
357      * does not experience any fault.
358      */
359     if (paddress & ~pps_mask) {
360         if (pspace == ARMSS_NonSecure) {
361             return true;
362         }
363         goto fault_size;
364     }
365 
366     /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
367     tableaddr = env->cp15.gptbr_el3 << 12;
368     if (tableaddr & ~pps_mask) {
369         goto fault_size;
370     }
371 
372     /*
373      * BADDR is aligned per a function of PPS and L0GPTSZ.
374      * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
375      * unlike the RES0 bits of the GPT entries (R_XNKFZ).
376      */
377     align = MAX(pps - l0gptsz + 3, 12);
378     align = MAKE_64BIT_MASK(0, align);
379     tableaddr &= ~align;
380 
381     as = arm_addressspace(env_cpu(env), attrs);
382 
383     /* Level 0 lookup. */
384     index = extract64(paddress, l0gptsz, pps - l0gptsz);
385     tableaddr += index * 8;
386     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
387     if (result != MEMTX_OK) {
388         goto fault_eabt;
389     }
390 
391     switch (extract32(entry, 0, 4)) {
392     case 1: /* block descriptor */
393         if (entry >> 8) {
394             goto fault_walk; /* RES0 bits not 0 */
395         }
396         gpi = extract32(entry, 4, 4);
397         goto found;
398     case 3: /* table descriptor */
399         tableaddr = entry & ~0xf;
400         align = MAX(l0gptsz - pgs - 1, 12);
401         align = MAKE_64BIT_MASK(0, align);
402         if (tableaddr & (~pps_mask | align)) {
403             goto fault_walk; /* RES0 bits not 0 */
404         }
405         break;
406     default: /* invalid */
407         goto fault_walk;
408     }
409 
410     /* Level 1 lookup */
411     level = 1;
412     index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
413     tableaddr += index * 8;
414     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
415     if (result != MEMTX_OK) {
416         goto fault_eabt;
417     }
418 
419     switch (extract32(entry, 0, 4)) {
420     case 1: /* contiguous descriptor */
421         if (entry >> 10) {
422             goto fault_walk; /* RES0 bits not 0 */
423         }
424         /*
425          * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
426          * and because we cannot invalidate by pa, and thus will always
427          * flush entire tlbs, we don't actually care about the range here
428          * and can simply extract the GPI as the result.
429          */
430         if (extract32(entry, 8, 2) == 0) {
431             goto fault_walk; /* reserved contig */
432         }
433         gpi = extract32(entry, 4, 4);
434         break;
435     default:
436         index = extract64(paddress, pgs, 4);
437         gpi = extract64(entry, index * 4, 4);
438         break;
439     }
440 
441  found:
442     switch (gpi) {
443     case 0b0000: /* no access */
444         break;
445     case 0b1111: /* all access */
446         return true;
447     case 0b1000:
448     case 0b1001:
449     case 0b1010:
450     case 0b1011:
451         if (pspace == (gpi & 3)) {
452             return true;
453         }
454         break;
455     default:
456         goto fault_walk; /* reserved */
457     }
458 
459     fi->gpcf = GPCF_Fail;
460     goto fault_common;
461  fault_eabt:
462     fi->gpcf = GPCF_EABT;
463     goto fault_common;
464  fault_size:
465     fi->gpcf = GPCF_AddressSize;
466     goto fault_common;
467  fault_walk:
468     fi->gpcf = GPCF_Walk;
469  fault_common:
470     fi->level = level;
471     fi->paddr = paddress;
472     fi->paddr_space = pspace;
473     return false;
474 }
475 
476 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
477 {
478     /*
479      * For an S1 page table walk, the stage 1 attributes are always
480      * some form of "this is Normal memory". The combined S1+S2
481      * attributes are therefore only Device if stage 2 specifies Device.
482      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
483      * ie when cacheattrs.attrs bits [3:2] are 0b00.
484      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
485      * when cacheattrs.attrs bit [2] is 0.
486      */
487     if (hcr & HCR_FWB) {
488         return (attrs & 0x4) == 0;
489     } else {
490         return (attrs & 0xc) == 0;
491     }
492 }
493 
494 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
495                                           ARMMMUIdx s2_mmu_idx)
496 {
497     /*
498      * Return the security space to use for stage 2 when doing
499      * the S1 page table descriptor load.
500      */
501     if (regime_is_stage2(s2_mmu_idx)) {
502         /*
503          * The security space for ptw reads is almost always the same
504          * as that of the security space of the stage 1 translation.
505          * The only exception is when stage 1 is Secure; in that case
506          * the ptw read might be to the Secure or the NonSecure space
507          * (but never Realm or Root), and the s2_mmu_idx tells us which.
508          * Root translations are always single-stage.
509          */
510         if (s1_space == ARMSS_Secure) {
511             return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
512         } else {
513             assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
514             assert(s1_space != ARMSS_Root);
515             return s1_space;
516         }
517     } else {
518         /* ptw loads are from phys: the mmu idx itself says which space */
519         return arm_phys_to_space(s2_mmu_idx);
520     }
521 }
522 
523 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx)
524 {
525     /*
526      * For stage 2 faults in Secure EL22, S1NS indicates
527      * whether the faulting IPA is in the Secure or NonSecure
528      * IPA space. For all other kinds of fault, it is false.
529      */
530     return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx)
531         && s2_mmu_idx == ARMMMUIdx_Stage2_S;
532 }
533 
534 /* Translate a S1 pagetable walk through S2 if needed.  */
535 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
536                              hwaddr addr, ARMMMUFaultInfo *fi)
537 {
538     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
539     ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
540     uint8_t pte_attrs;
541 
542     ptw->out_virt = addr;
543 
544     if (unlikely(ptw->in_debug)) {
545         /*
546          * From gdbstub, do not use softmmu so that we don't modify the
547          * state of the cpu at all, including softmmu tlb contents.
548          */
549         ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
550         S1Translate s2ptw = {
551             .in_mmu_idx = s2_mmu_idx,
552             .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
553             .in_space = s2_space,
554             .in_debug = true,
555         };
556         GetPhysAddrResult s2 = { };
557 
558         if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) {
559             goto fail;
560         }
561 
562         ptw->out_phys = s2.f.phys_addr;
563         pte_attrs = s2.cacheattrs.attrs;
564         ptw->out_host = NULL;
565         ptw->out_rw = false;
566         ptw->out_space = s2.f.attrs.space;
567     } else {
568 #ifdef CONFIG_TCG
569         CPUTLBEntryFull *full;
570         int flags;
571 
572         env->tlb_fi = fi;
573         flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
574                                       arm_to_core_mmu_idx(s2_mmu_idx),
575                                       &ptw->out_host, &full);
576         env->tlb_fi = NULL;
577 
578         if (unlikely(flags & TLB_INVALID_MASK)) {
579             goto fail;
580         }
581         ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
582         ptw->out_rw = full->prot & PAGE_WRITE;
583         pte_attrs = full->extra.arm.pte_attrs;
584         ptw->out_space = full->attrs.space;
585 #else
586         g_assert_not_reached();
587 #endif
588     }
589 
590     if (regime_is_stage2(s2_mmu_idx)) {
591         uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
592 
593         if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
594             /*
595              * PTW set and S1 walk touched S2 Device memory:
596              * generate Permission fault.
597              */
598             fi->type = ARMFault_Permission;
599             fi->s2addr = addr;
600             fi->stage2 = true;
601             fi->s1ptw = true;
602             fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
603             return false;
604         }
605     }
606 
607     ptw->out_be = regime_translation_big_endian(env, mmu_idx);
608     return true;
609 
610  fail:
611     assert(fi->type != ARMFault_None);
612     if (fi->type == ARMFault_GPCFOnOutput) {
613         fi->type = ARMFault_GPCFOnWalk;
614     }
615     fi->s2addr = addr;
616     fi->stage2 = regime_is_stage2(s2_mmu_idx);
617     fi->s1ptw = fi->stage2;
618     fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
619     return false;
620 }
621 
622 /* All loads done in the course of a page table walk go through here. */
623 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
624                             ARMMMUFaultInfo *fi)
625 {
626     CPUState *cs = env_cpu(env);
627     void *host = ptw->out_host;
628     uint32_t data;
629 
630     if (likely(host)) {
631         /* Page tables are in RAM, and we have the host address. */
632         data = qatomic_read((uint32_t *)host);
633         if (ptw->out_be) {
634             data = be32_to_cpu(data);
635         } else {
636             data = le32_to_cpu(data);
637         }
638     } else {
639         /* Page tables are in MMIO. */
640         MemTxAttrs attrs = {
641             .space = ptw->out_space,
642             .secure = arm_space_is_secure(ptw->out_space),
643         };
644         AddressSpace *as = arm_addressspace(cs, attrs);
645         MemTxResult result = MEMTX_OK;
646 
647         if (ptw->out_be) {
648             data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
649         } else {
650             data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
651         }
652         if (unlikely(result != MEMTX_OK)) {
653             fi->type = ARMFault_SyncExternalOnWalk;
654             fi->ea = arm_extabort_type(result);
655             return 0;
656         }
657     }
658     return data;
659 }
660 
661 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
662                             ARMMMUFaultInfo *fi)
663 {
664     CPUState *cs = env_cpu(env);
665     void *host = ptw->out_host;
666     uint64_t data;
667 
668     if (likely(host)) {
669         /* Page tables are in RAM, and we have the host address. */
670 #ifdef CONFIG_ATOMIC64
671         data = qatomic_read__nocheck((uint64_t *)host);
672         if (ptw->out_be) {
673             data = be64_to_cpu(data);
674         } else {
675             data = le64_to_cpu(data);
676         }
677 #else
678         if (ptw->out_be) {
679             data = ldq_be_p(host);
680         } else {
681             data = ldq_le_p(host);
682         }
683 #endif
684     } else {
685         /* Page tables are in MMIO. */
686         MemTxAttrs attrs = {
687             .space = ptw->out_space,
688             .secure = arm_space_is_secure(ptw->out_space),
689         };
690         AddressSpace *as = arm_addressspace(cs, attrs);
691         MemTxResult result = MEMTX_OK;
692 
693         if (ptw->out_be) {
694             data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
695         } else {
696             data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
697         }
698         if (unlikely(result != MEMTX_OK)) {
699             fi->type = ARMFault_SyncExternalOnWalk;
700             fi->ea = arm_extabort_type(result);
701             return 0;
702         }
703     }
704     return data;
705 }
706 
707 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
708                              uint64_t new_val, S1Translate *ptw,
709                              ARMMMUFaultInfo *fi)
710 {
711 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
712     uint64_t cur_val;
713     void *host = ptw->out_host;
714 
715     if (unlikely(!host)) {
716         fi->type = ARMFault_UnsuppAtomicUpdate;
717         return 0;
718     }
719 
720     /*
721      * Raising a stage2 Protection fault for an atomic update to a read-only
722      * page is delayed until it is certain that there is a change to make.
723      */
724     if (unlikely(!ptw->out_rw)) {
725         int flags;
726 
727         env->tlb_fi = fi;
728         flags = probe_access_full_mmu(env, ptw->out_virt, 0,
729                                       MMU_DATA_STORE,
730                                       arm_to_core_mmu_idx(ptw->in_ptw_idx),
731                                       NULL, NULL);
732         env->tlb_fi = NULL;
733 
734         if (unlikely(flags & TLB_INVALID_MASK)) {
735             /*
736              * We know this must be a stage 2 fault because the granule
737              * protection table does not separately track read and write
738              * permission, so all GPC faults are caught in S1_ptw_translate():
739              * we only get here for "readable but not writeable".
740              */
741             assert(fi->type != ARMFault_None);
742             fi->s2addr = ptw->out_virt;
743             fi->stage2 = true;
744             fi->s1ptw = true;
745             fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx);
746             return 0;
747         }
748 
749         /* In case CAS mismatches and we loop, remember writability. */
750         ptw->out_rw = true;
751     }
752 
753 #ifdef CONFIG_ATOMIC64
754     if (ptw->out_be) {
755         old_val = cpu_to_be64(old_val);
756         new_val = cpu_to_be64(new_val);
757         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
758         cur_val = be64_to_cpu(cur_val);
759     } else {
760         old_val = cpu_to_le64(old_val);
761         new_val = cpu_to_le64(new_val);
762         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
763         cur_val = le64_to_cpu(cur_val);
764     }
765 #else
766     /*
767      * We can't support the full 64-bit atomic cmpxchg on the host.
768      * Because this is only used for FEAT_HAFDBS, which is only for AA64,
769      * we know that TCG_OVERSIZED_GUEST is set, which means that we are
770      * running in round-robin mode and could only race with dma i/o.
771      */
772 #if !TCG_OVERSIZED_GUEST
773 # error "Unexpected configuration"
774 #endif
775     bool locked = bql_locked();
776     if (!locked) {
777         bql_lock();
778     }
779     if (ptw->out_be) {
780         cur_val = ldq_be_p(host);
781         if (cur_val == old_val) {
782             stq_be_p(host, new_val);
783         }
784     } else {
785         cur_val = ldq_le_p(host);
786         if (cur_val == old_val) {
787             stq_le_p(host, new_val);
788         }
789     }
790     if (!locked) {
791         bql_unlock();
792     }
793 #endif
794 
795     return cur_val;
796 #else
797     /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
798     g_assert_not_reached();
799 #endif
800 }
801 
802 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
803                                      uint32_t *table, uint32_t address)
804 {
805     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
806     uint64_t tcr = regime_tcr(env, mmu_idx);
807     int maskshift = extract32(tcr, 0, 3);
808     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
809     uint32_t base_mask;
810 
811     if (address & mask) {
812         if (tcr & TTBCR_PD1) {
813             /* Translation table walk disabled for TTBR1 */
814             return false;
815         }
816         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
817     } else {
818         if (tcr & TTBCR_PD0) {
819             /* Translation table walk disabled for TTBR0 */
820             return false;
821         }
822         base_mask = ~((uint32_t)0x3fffu >> maskshift);
823         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
824     }
825     *table |= (address >> 18) & 0x3ffc;
826     return true;
827 }
828 
829 /*
830  * Translate section/page access permissions to page R/W protection flags
831  * @env:         CPUARMState
832  * @mmu_idx:     MMU index indicating required translation regime
833  * @ap:          The 3-bit access permissions (AP[2:0])
834  * @domain_prot: The 2-bit domain access permissions
835  * @is_user: TRUE if accessing from PL0
836  */
837 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
838                          int ap, int domain_prot, bool is_user)
839 {
840     if (domain_prot == 3) {
841         return PAGE_READ | PAGE_WRITE;
842     }
843 
844     switch (ap) {
845     case 0:
846         if (arm_feature(env, ARM_FEATURE_V7)) {
847             return 0;
848         }
849         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
850         case SCTLR_S:
851             return is_user ? 0 : PAGE_READ;
852         case SCTLR_R:
853             return PAGE_READ;
854         default:
855             return 0;
856         }
857     case 1:
858         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
859     case 2:
860         if (is_user) {
861             return PAGE_READ;
862         } else {
863             return PAGE_READ | PAGE_WRITE;
864         }
865     case 3:
866         return PAGE_READ | PAGE_WRITE;
867     case 4: /* Reserved.  */
868         return 0;
869     case 5:
870         return is_user ? 0 : PAGE_READ;
871     case 6:
872         return PAGE_READ;
873     case 7:
874         if (!arm_feature(env, ARM_FEATURE_V6K)) {
875             return 0;
876         }
877         return PAGE_READ;
878     default:
879         g_assert_not_reached();
880     }
881 }
882 
883 /*
884  * Translate section/page access permissions to page R/W protection flags
885  * @env:         CPUARMState
886  * @mmu_idx:     MMU index indicating required translation regime
887  * @ap:          The 3-bit access permissions (AP[2:0])
888  * @domain_prot: The 2-bit domain access permissions
889  */
890 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
891                          int ap, int domain_prot)
892 {
893    return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
894                                 regime_is_user(env, mmu_idx));
895 }
896 
897 /*
898  * Translate section/page access permissions to page R/W protection flags.
899  * @ap:      The 2-bit simple AP (AP[2:1])
900  * @is_user: TRUE if accessing from PL0
901  */
902 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
903 {
904     switch (ap) {
905     case 0:
906         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
907     case 1:
908         return PAGE_READ | PAGE_WRITE;
909     case 2:
910         return is_user ? 0 : PAGE_READ;
911     case 3:
912         return PAGE_READ;
913     default:
914         g_assert_not_reached();
915     }
916 }
917 
918 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
919 {
920     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
921 }
922 
923 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
924                              uint32_t address, MMUAccessType access_type,
925                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
926 {
927     int level = 1;
928     uint32_t table;
929     uint32_t desc;
930     int type;
931     int ap;
932     int domain = 0;
933     int domain_prot;
934     hwaddr phys_addr;
935     uint32_t dacr;
936 
937     /* Pagetable walk.  */
938     /* Lookup l1 descriptor.  */
939     if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
940         /* Section translation fault if page walk is disabled by PD0 or PD1 */
941         fi->type = ARMFault_Translation;
942         goto do_fault;
943     }
944     if (!S1_ptw_translate(env, ptw, table, fi)) {
945         goto do_fault;
946     }
947     desc = arm_ldl_ptw(env, ptw, fi);
948     if (fi->type != ARMFault_None) {
949         goto do_fault;
950     }
951     type = (desc & 3);
952     domain = (desc >> 5) & 0x0f;
953     if (regime_el(env, ptw->in_mmu_idx) == 1) {
954         dacr = env->cp15.dacr_ns;
955     } else {
956         dacr = env->cp15.dacr_s;
957     }
958     domain_prot = (dacr >> (domain * 2)) & 3;
959     if (type == 0) {
960         /* Section translation fault.  */
961         fi->type = ARMFault_Translation;
962         goto do_fault;
963     }
964     if (type != 2) {
965         level = 2;
966     }
967     if (domain_prot == 0 || domain_prot == 2) {
968         fi->type = ARMFault_Domain;
969         goto do_fault;
970     }
971     if (type == 2) {
972         /* 1Mb section.  */
973         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
974         ap = (desc >> 10) & 3;
975         result->f.lg_page_size = 20; /* 1MB */
976     } else {
977         /* Lookup l2 entry.  */
978         if (type == 1) {
979             /* Coarse pagetable.  */
980             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
981         } else {
982             /* Fine pagetable.  */
983             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
984         }
985         if (!S1_ptw_translate(env, ptw, table, fi)) {
986             goto do_fault;
987         }
988         desc = arm_ldl_ptw(env, ptw, fi);
989         if (fi->type != ARMFault_None) {
990             goto do_fault;
991         }
992         switch (desc & 3) {
993         case 0: /* Page translation fault.  */
994             fi->type = ARMFault_Translation;
995             goto do_fault;
996         case 1: /* 64k page.  */
997             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
998             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
999             result->f.lg_page_size = 16;
1000             break;
1001         case 2: /* 4k page.  */
1002             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1003             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
1004             result->f.lg_page_size = 12;
1005             break;
1006         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
1007             if (type == 1) {
1008                 /* ARMv6/XScale extended small page format */
1009                 if (arm_feature(env, ARM_FEATURE_XSCALE)
1010                     || arm_feature(env, ARM_FEATURE_V6)) {
1011                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1012                     result->f.lg_page_size = 12;
1013                 } else {
1014                     /*
1015                      * UNPREDICTABLE in ARMv5; we choose to take a
1016                      * page translation fault.
1017                      */
1018                     fi->type = ARMFault_Translation;
1019                     goto do_fault;
1020                 }
1021             } else {
1022                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1023                 result->f.lg_page_size = 10;
1024             }
1025             ap = (desc >> 4) & 3;
1026             break;
1027         default:
1028             /* Never happens, but compiler isn't smart enough to tell.  */
1029             g_assert_not_reached();
1030         }
1031     }
1032     result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
1033     result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
1034     if (!(result->f.prot & (1 << access_type))) {
1035         /* Access permission fault.  */
1036         fi->type = ARMFault_Permission;
1037         goto do_fault;
1038     }
1039     result->f.phys_addr = phys_addr;
1040     return false;
1041 do_fault:
1042     fi->domain = domain;
1043     fi->level = level;
1044     return true;
1045 }
1046 
1047 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
1048                              uint32_t address, MMUAccessType access_type,
1049                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1050 {
1051     ARMCPU *cpu = env_archcpu(env);
1052     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1053     int level = 1;
1054     uint32_t table;
1055     uint32_t desc;
1056     uint32_t xn;
1057     uint32_t pxn = 0;
1058     int type;
1059     int ap;
1060     int domain = 0;
1061     int domain_prot;
1062     hwaddr phys_addr;
1063     uint32_t dacr;
1064     bool ns;
1065     int user_prot;
1066 
1067     /* Pagetable walk.  */
1068     /* Lookup l1 descriptor.  */
1069     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
1070         /* Section translation fault if page walk is disabled by PD0 or PD1 */
1071         fi->type = ARMFault_Translation;
1072         goto do_fault;
1073     }
1074     if (!S1_ptw_translate(env, ptw, table, fi)) {
1075         goto do_fault;
1076     }
1077     desc = arm_ldl_ptw(env, ptw, fi);
1078     if (fi->type != ARMFault_None) {
1079         goto do_fault;
1080     }
1081     type = (desc & 3);
1082     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
1083         /* Section translation fault, or attempt to use the encoding
1084          * which is Reserved on implementations without PXN.
1085          */
1086         fi->type = ARMFault_Translation;
1087         goto do_fault;
1088     }
1089     if ((type == 1) || !(desc & (1 << 18))) {
1090         /* Page or Section.  */
1091         domain = (desc >> 5) & 0x0f;
1092     }
1093     if (regime_el(env, mmu_idx) == 1) {
1094         dacr = env->cp15.dacr_ns;
1095     } else {
1096         dacr = env->cp15.dacr_s;
1097     }
1098     if (type == 1) {
1099         level = 2;
1100     }
1101     domain_prot = (dacr >> (domain * 2)) & 3;
1102     if (domain_prot == 0 || domain_prot == 2) {
1103         /* Section or Page domain fault */
1104         fi->type = ARMFault_Domain;
1105         goto do_fault;
1106     }
1107     if (type != 1) {
1108         if (desc & (1 << 18)) {
1109             /* Supersection.  */
1110             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1111             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1112             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1113             result->f.lg_page_size = 24;  /* 16MB */
1114         } else {
1115             /* Section.  */
1116             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1117             result->f.lg_page_size = 20;  /* 1MB */
1118         }
1119         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1120         xn = desc & (1 << 4);
1121         pxn = desc & 1;
1122         ns = extract32(desc, 19, 1);
1123     } else {
1124         if (cpu_isar_feature(aa32_pxn, cpu)) {
1125             pxn = (desc >> 2) & 1;
1126         }
1127         ns = extract32(desc, 3, 1);
1128         /* Lookup l2 entry.  */
1129         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1130         if (!S1_ptw_translate(env, ptw, table, fi)) {
1131             goto do_fault;
1132         }
1133         desc = arm_ldl_ptw(env, ptw, fi);
1134         if (fi->type != ARMFault_None) {
1135             goto do_fault;
1136         }
1137         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1138         switch (desc & 3) {
1139         case 0: /* Page translation fault.  */
1140             fi->type = ARMFault_Translation;
1141             goto do_fault;
1142         case 1: /* 64k page.  */
1143             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1144             xn = desc & (1 << 15);
1145             result->f.lg_page_size = 16;
1146             break;
1147         case 2: case 3: /* 4k page.  */
1148             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1149             xn = desc & 1;
1150             result->f.lg_page_size = 12;
1151             break;
1152         default:
1153             /* Never happens, but compiler isn't smart enough to tell.  */
1154             g_assert_not_reached();
1155         }
1156     }
1157     if (domain_prot == 3) {
1158         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1159     } else {
1160         if (pxn && !regime_is_user(env, mmu_idx)) {
1161             xn = 1;
1162         }
1163         if (xn && access_type == MMU_INST_FETCH) {
1164             fi->type = ARMFault_Permission;
1165             goto do_fault;
1166         }
1167 
1168         if (arm_feature(env, ARM_FEATURE_V6K) &&
1169                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1170             /* The simplified model uses AP[0] as an access control bit.  */
1171             if ((ap & 1) == 0) {
1172                 /* Access flag fault.  */
1173                 fi->type = ARMFault_AccessFlag;
1174                 goto do_fault;
1175             }
1176             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1177             user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1178         } else {
1179             result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1180             user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1181         }
1182         if (result->f.prot && !xn) {
1183             result->f.prot |= PAGE_EXEC;
1184         }
1185         if (!(result->f.prot & (1 << access_type))) {
1186             /* Access permission fault.  */
1187             fi->type = ARMFault_Permission;
1188             goto do_fault;
1189         }
1190         if (regime_is_pan(env, mmu_idx) &&
1191             !regime_is_user(env, mmu_idx) &&
1192             user_prot &&
1193             access_type != MMU_INST_FETCH) {
1194             /* Privileged Access Never fault */
1195             fi->type = ARMFault_Permission;
1196             goto do_fault;
1197         }
1198     }
1199     if (ns) {
1200         /* The NS bit will (as required by the architecture) have no effect if
1201          * the CPU doesn't support TZ or this is a non-secure translation
1202          * regime, because the attribute will already be non-secure.
1203          */
1204         result->f.attrs.secure = false;
1205         result->f.attrs.space = ARMSS_NonSecure;
1206     }
1207     result->f.phys_addr = phys_addr;
1208     return false;
1209 do_fault:
1210     fi->domain = domain;
1211     fi->level = level;
1212     return true;
1213 }
1214 
1215 /*
1216  * Translate S2 section/page access permissions to protection flags
1217  * @env:     CPUARMState
1218  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
1219  * @xn:      XN (execute-never) bits
1220  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1221  */
1222 static int get_S2prot_noexecute(int s2ap)
1223 {
1224     int prot = 0;
1225 
1226     if (s2ap & 1) {
1227         prot |= PAGE_READ;
1228     }
1229     if (s2ap & 2) {
1230         prot |= PAGE_WRITE;
1231     }
1232     return prot;
1233 }
1234 
1235 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1236 {
1237     int prot = get_S2prot_noexecute(s2ap);
1238 
1239     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1240         switch (xn) {
1241         case 0:
1242             prot |= PAGE_EXEC;
1243             break;
1244         case 1:
1245             if (s1_is_el0) {
1246                 prot |= PAGE_EXEC;
1247             }
1248             break;
1249         case 2:
1250             break;
1251         case 3:
1252             if (!s1_is_el0) {
1253                 prot |= PAGE_EXEC;
1254             }
1255             break;
1256         default:
1257             g_assert_not_reached();
1258         }
1259     } else {
1260         if (!extract32(xn, 1, 1)) {
1261             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1262                 prot |= PAGE_EXEC;
1263             }
1264         }
1265     }
1266     return prot;
1267 }
1268 
1269 /*
1270  * Translate section/page access permissions to protection flags
1271  * @env:     CPUARMState
1272  * @mmu_idx: MMU index indicating required translation regime
1273  * @is_aa64: TRUE if AArch64
1274  * @ap:      The 2-bit simple AP (AP[2:1])
1275  * @xn:      XN (execute-never) bit
1276  * @pxn:     PXN (privileged execute-never) bit
1277  * @in_pa:   The original input pa space
1278  * @out_pa:  The output pa space, modified by NSTable, NS, and NSE
1279  */
1280 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1281                       int ap, int xn, int pxn,
1282                       ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1283 {
1284     ARMCPU *cpu = env_archcpu(env);
1285     bool is_user = regime_is_user(env, mmu_idx);
1286     int prot_rw, user_rw;
1287     bool have_wxn;
1288     int wxn = 0;
1289 
1290     assert(!regime_is_stage2(mmu_idx));
1291 
1292     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
1293     if (is_user) {
1294         prot_rw = user_rw;
1295     } else {
1296         /*
1297          * PAN controls can forbid data accesses but don't affect insn fetch.
1298          * Plain PAN forbids data accesses if EL0 has data permissions;
1299          * PAN3 forbids data accesses if EL0 has either data or exec perms.
1300          * Note that for AArch64 the 'user can exec' case is exactly !xn.
1301          * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1302          * do not affect EPAN.
1303          */
1304         if (user_rw && regime_is_pan(env, mmu_idx)) {
1305             prot_rw = 0;
1306         } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1307                    regime_is_pan(env, mmu_idx) &&
1308                    (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1309             prot_rw = 0;
1310         } else {
1311             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
1312         }
1313     }
1314 
1315     if (in_pa != out_pa) {
1316         switch (in_pa) {
1317         case ARMSS_Root:
1318             /*
1319              * R_ZWRVD: permission fault for insn fetched from non-Root,
1320              * I_WWBFB: SIF has no effect in EL3.
1321              */
1322             return prot_rw;
1323         case ARMSS_Realm:
1324             /*
1325              * R_PKTDS: permission fault for insn fetched from non-Realm,
1326              * for Realm EL2 or EL2&0.  The corresponding fault for EL1&0
1327              * happens during any stage2 translation.
1328              */
1329             switch (mmu_idx) {
1330             case ARMMMUIdx_E2:
1331             case ARMMMUIdx_E20_0:
1332             case ARMMMUIdx_E20_2:
1333             case ARMMMUIdx_E20_2_PAN:
1334                 return prot_rw;
1335             default:
1336                 break;
1337             }
1338             break;
1339         case ARMSS_Secure:
1340             if (env->cp15.scr_el3 & SCR_SIF) {
1341                 return prot_rw;
1342             }
1343             break;
1344         default:
1345             /* Input NonSecure must have output NonSecure. */
1346             g_assert_not_reached();
1347         }
1348     }
1349 
1350     /* TODO have_wxn should be replaced with
1351      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1352      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1353      * compatible processors have EL2, which is required for [U]WXN.
1354      */
1355     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1356 
1357     if (have_wxn) {
1358         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1359     }
1360 
1361     if (is_aa64) {
1362         if (regime_has_2_ranges(mmu_idx) && !is_user) {
1363             xn = pxn || (user_rw & PAGE_WRITE);
1364         }
1365     } else if (arm_feature(env, ARM_FEATURE_V7)) {
1366         switch (regime_el(env, mmu_idx)) {
1367         case 1:
1368         case 3:
1369             if (is_user) {
1370                 xn = xn || !(user_rw & PAGE_READ);
1371             } else {
1372                 int uwxn = 0;
1373                 if (have_wxn) {
1374                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1375                 }
1376                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1377                      (uwxn && (user_rw & PAGE_WRITE));
1378             }
1379             break;
1380         case 2:
1381             break;
1382         }
1383     } else {
1384         xn = wxn = 0;
1385     }
1386 
1387     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1388         return prot_rw;
1389     }
1390     return prot_rw | PAGE_EXEC;
1391 }
1392 
1393 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1394                                           ARMMMUIdx mmu_idx)
1395 {
1396     uint64_t tcr = regime_tcr(env, mmu_idx);
1397     uint32_t el = regime_el(env, mmu_idx);
1398     int select, tsz;
1399     bool epd, hpd;
1400 
1401     assert(mmu_idx != ARMMMUIdx_Stage2_S);
1402 
1403     if (mmu_idx == ARMMMUIdx_Stage2) {
1404         /* VTCR */
1405         bool sext = extract32(tcr, 4, 1);
1406         bool sign = extract32(tcr, 3, 1);
1407 
1408         /*
1409          * If the sign-extend bit is not the same as t0sz[3], the result
1410          * is unpredictable. Flag this as a guest error.
1411          */
1412         if (sign != sext) {
1413             qemu_log_mask(LOG_GUEST_ERROR,
1414                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1415         }
1416         tsz = sextract32(tcr, 0, 4) + 8;
1417         select = 0;
1418         hpd = false;
1419         epd = false;
1420     } else if (el == 2) {
1421         /* HTCR */
1422         tsz = extract32(tcr, 0, 3);
1423         select = 0;
1424         hpd = extract64(tcr, 24, 1);
1425         epd = false;
1426     } else {
1427         int t0sz = extract32(tcr, 0, 3);
1428         int t1sz = extract32(tcr, 16, 3);
1429 
1430         if (t1sz == 0) {
1431             select = va > (0xffffffffu >> t0sz);
1432         } else {
1433             /* Note that we will detect errors later.  */
1434             select = va >= ~(0xffffffffu >> t1sz);
1435         }
1436         if (!select) {
1437             tsz = t0sz;
1438             epd = extract32(tcr, 7, 1);
1439             hpd = extract64(tcr, 41, 1);
1440         } else {
1441             tsz = t1sz;
1442             epd = extract32(tcr, 23, 1);
1443             hpd = extract64(tcr, 42, 1);
1444         }
1445         /* For aarch32, hpd0 is not enabled without t2e as well.  */
1446         hpd &= extract32(tcr, 6, 1);
1447     }
1448 
1449     return (ARMVAParameters) {
1450         .tsz = tsz,
1451         .select = select,
1452         .epd = epd,
1453         .hpd = hpd,
1454     };
1455 }
1456 
1457 /*
1458  * check_s2_mmu_setup
1459  * @cpu:        ARMCPU
1460  * @is_aa64:    True if the translation regime is in AArch64 state
1461  * @tcr:        VTCR_EL2 or VSTCR_EL2
1462  * @ds:         Effective value of TCR.DS.
1463  * @iasize:     Bitsize of IPAs
1464  * @stride:     Page-table stride (See the ARM ARM)
1465  *
1466  * Decode the starting level of the S2 lookup, returning INT_MIN if
1467  * the configuration is invalid.
1468  */
1469 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1470                               bool ds, int iasize, int stride)
1471 {
1472     int sl0, sl2, startlevel, granulebits, levels;
1473     int s1_min_iasize, s1_max_iasize;
1474 
1475     sl0 = extract32(tcr, 6, 2);
1476     if (is_aa64) {
1477         /*
1478          * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1479          * so interleave AArch64.S2StartLevel.
1480          */
1481         switch (stride) {
1482         case 9: /* 4KB */
1483             /* SL2 is RES0 unless DS=1 & 4KB granule. */
1484             sl2 = extract64(tcr, 33, 1);
1485             if (ds && sl2) {
1486                 if (sl0 != 0) {
1487                     goto fail;
1488                 }
1489                 startlevel = -1;
1490             } else {
1491                 startlevel = 2 - sl0;
1492                 switch (sl0) {
1493                 case 2:
1494                     if (arm_pamax(cpu) < 44) {
1495                         goto fail;
1496                     }
1497                     break;
1498                 case 3:
1499                     if (!cpu_isar_feature(aa64_st, cpu)) {
1500                         goto fail;
1501                     }
1502                     startlevel = 3;
1503                     break;
1504                 }
1505             }
1506             break;
1507         case 11: /* 16KB */
1508             switch (sl0) {
1509             case 2:
1510                 if (arm_pamax(cpu) < 42) {
1511                     goto fail;
1512                 }
1513                 break;
1514             case 3:
1515                 if (!ds) {
1516                     goto fail;
1517                 }
1518                 break;
1519             }
1520             startlevel = 3 - sl0;
1521             break;
1522         case 13: /* 64KB */
1523             switch (sl0) {
1524             case 2:
1525                 if (arm_pamax(cpu) < 44) {
1526                     goto fail;
1527                 }
1528                 break;
1529             case 3:
1530                 goto fail;
1531             }
1532             startlevel = 3 - sl0;
1533             break;
1534         default:
1535             g_assert_not_reached();
1536         }
1537     } else {
1538         /*
1539          * Things are simpler for AArch32 EL2, with only 4k pages.
1540          * There is no separate S2InvalidSL function, but AArch32.S2Walk
1541          * begins with walkparms.sl0 in {'1x'}.
1542          */
1543         assert(stride == 9);
1544         if (sl0 >= 2) {
1545             goto fail;
1546         }
1547         startlevel = 2 - sl0;
1548     }
1549 
1550     /* AArch{64,32}.S2InconsistentSL are functionally equivalent.  */
1551     levels = 3 - startlevel;
1552     granulebits = stride + 3;
1553 
1554     s1_min_iasize = levels * stride + granulebits + 1;
1555     s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1556 
1557     if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1558         return startlevel;
1559     }
1560 
1561  fail:
1562     return INT_MIN;
1563 }
1564 
1565 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
1566                                   ARMGranuleSize gran, int level)
1567 {
1568     /*
1569      * See pseudocode AArch46.BlockDescSupported(): block descriptors
1570      * are not valid at all levels, depending on the page size.
1571      */
1572     switch (gran) {
1573     case Gran4K:
1574         return (level == 0 && ds) || level == 1 || level == 2;
1575     case Gran16K:
1576         return (level == 1 && ds) || level == 2;
1577     case Gran64K:
1578         return (level == 1 && arm_pamax(cpu) == 52) || level == 2;
1579     default:
1580         g_assert_not_reached();
1581     }
1582 }
1583 
1584 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw)
1585 {
1586     uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
1587     return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1);
1588 }
1589 
1590 /**
1591  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1592  *
1593  * Returns false if the translation was successful. Otherwise, phys_ptr,
1594  * attrs, prot and page_size may not be filled in, and the populated fsr
1595  * value provides information on why the translation aborted, in the format
1596  * of a long-format DFSR/IFSR fault register, with the following caveat:
1597  * the WnR bit is never set (the caller must do this).
1598  *
1599  * @env: CPUARMState
1600  * @ptw: Current and next stage parameters for the walk.
1601  * @address: virtual address to get physical address for
1602  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1603  * @result: set on translation success,
1604  * @fi: set to fault info if the translation fails
1605  */
1606 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1607                                uint64_t address,
1608                                MMUAccessType access_type,
1609                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1610 {
1611     ARMCPU *cpu = env_archcpu(env);
1612     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1613     int32_t level;
1614     ARMVAParameters param;
1615     uint64_t ttbr;
1616     hwaddr descaddr, indexmask, indexmask_grainsize;
1617     uint32_t tableattrs;
1618     target_ulong page_size;
1619     uint64_t attrs;
1620     int32_t stride;
1621     int addrsize, inputsize, outputsize;
1622     uint64_t tcr = regime_tcr(env, mmu_idx);
1623     int ap, xn, pxn;
1624     uint32_t el = regime_el(env, mmu_idx);
1625     uint64_t descaddrmask;
1626     bool aarch64 = arm_el_is_aa64(env, el);
1627     uint64_t descriptor, new_descriptor;
1628     ARMSecuritySpace out_space;
1629 
1630     /* TODO: This code does not support shareability levels. */
1631     if (aarch64) {
1632         int ps;
1633 
1634         param = aa64_va_parameters(env, address, mmu_idx,
1635                                    access_type != MMU_INST_FETCH,
1636                                    !arm_el_is_aa64(env, 1));
1637         level = 0;
1638 
1639         /*
1640          * If TxSZ is programmed to a value larger than the maximum,
1641          * or smaller than the effective minimum, it is IMPLEMENTATION
1642          * DEFINED whether we behave as if the field were programmed
1643          * within bounds, or if a level 0 Translation fault is generated.
1644          *
1645          * With FEAT_LVA, fault on less than minimum becomes required,
1646          * so our choice is to always raise the fault.
1647          */
1648         if (param.tsz_oob) {
1649             goto do_translation_fault;
1650         }
1651 
1652         addrsize = 64 - 8 * param.tbi;
1653         inputsize = 64 - param.tsz;
1654 
1655         /*
1656          * Bound PS by PARANGE to find the effective output address size.
1657          * ID_AA64MMFR0 is a read-only register so values outside of the
1658          * supported mappings can be considered an implementation error.
1659          */
1660         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1661         ps = MIN(ps, param.ps);
1662         assert(ps < ARRAY_SIZE(pamax_map));
1663         outputsize = pamax_map[ps];
1664 
1665         /*
1666          * With LPA2, the effective output address (OA) size is at most 48 bits
1667          * unless TCR.DS == 1
1668          */
1669         if (!param.ds && param.gran != Gran64K) {
1670             outputsize = MIN(outputsize, 48);
1671         }
1672     } else {
1673         param = aa32_va_parameters(env, address, mmu_idx);
1674         level = 1;
1675         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1676         inputsize = addrsize - param.tsz;
1677         outputsize = 40;
1678     }
1679 
1680     /*
1681      * We determined the region when collecting the parameters, but we
1682      * have not yet validated that the address is valid for the region.
1683      * Extract the top bits and verify that they all match select.
1684      *
1685      * For aa32, if inputsize == addrsize, then we have selected the
1686      * region by exclusion in aa32_va_parameters and there is no more
1687      * validation to do here.
1688      */
1689     if (inputsize < addrsize) {
1690         target_ulong top_bits = sextract64(address, inputsize,
1691                                            addrsize - inputsize);
1692         if (-top_bits != param.select) {
1693             /* The gap between the two regions is a Translation fault */
1694             goto do_translation_fault;
1695         }
1696     }
1697 
1698     stride = arm_granule_bits(param.gran) - 3;
1699 
1700     /*
1701      * Note that QEMU ignores shareability and cacheability attributes,
1702      * so we don't need to do anything with the SH, ORGN, IRGN fields
1703      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1704      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1705      * implement any ASID-like capability so we can ignore it (instead
1706      * we will always flush the TLB any time the ASID is changed).
1707      */
1708     ttbr = regime_ttbr(env, mmu_idx, param.select);
1709 
1710     /*
1711      * Here we should have set up all the parameters for the translation:
1712      * inputsize, ttbr, epd, stride, tbi
1713      */
1714 
1715     if (param.epd) {
1716         /*
1717          * Translation table walk disabled => Translation fault on TLB miss
1718          * Note: This is always 0 on 64-bit EL2 and EL3.
1719          */
1720         goto do_translation_fault;
1721     }
1722 
1723     if (!regime_is_stage2(mmu_idx)) {
1724         /*
1725          * The starting level depends on the virtual address size (which can
1726          * be up to 48 bits) and the translation granule size. It indicates
1727          * the number of strides (stride bits at a time) needed to
1728          * consume the bits of the input address. In the pseudocode this is:
1729          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1730          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1731          * our 'stride + 3' and 'stride' is our 'stride'.
1732          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1733          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1734          * = 4 - (inputsize - 4) / stride;
1735          */
1736         level = 4 - (inputsize - 4) / stride;
1737     } else {
1738         int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1739                                             inputsize, stride);
1740         if (startlevel == INT_MIN) {
1741             level = 0;
1742             goto do_translation_fault;
1743         }
1744         level = startlevel;
1745     }
1746 
1747     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1748     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1749 
1750     /* Now we can extract the actual base address from the TTBR */
1751     descaddr = extract64(ttbr, 0, 48);
1752 
1753     /*
1754      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1755      *
1756      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1757      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1758      * but we've just cleared the bits above 47, so simplify the test.
1759      */
1760     if (outputsize > 48) {
1761         descaddr |= extract64(ttbr, 2, 4) << 48;
1762     } else if (descaddr >> outputsize) {
1763         level = 0;
1764         fi->type = ARMFault_AddressSize;
1765         goto do_fault;
1766     }
1767 
1768     /*
1769      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1770      * and also to mask out CnP (bit 0) which could validly be non-zero.
1771      */
1772     descaddr &= ~indexmask;
1773 
1774     /*
1775      * For AArch32, the address field in the descriptor goes up to bit 39
1776      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1777      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1778      * bits as part of the address, which will be checked via outputsize.
1779      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1780      * the highest bits of a 52-bit output are placed elsewhere.
1781      */
1782     if (param.ds) {
1783         descaddrmask = MAKE_64BIT_MASK(0, 50);
1784     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1785         descaddrmask = MAKE_64BIT_MASK(0, 48);
1786     } else {
1787         descaddrmask = MAKE_64BIT_MASK(0, 40);
1788     }
1789     descaddrmask &= ~indexmask_grainsize;
1790     tableattrs = 0;
1791 
1792  next_level:
1793     descaddr |= (address >> (stride * (4 - level))) & indexmask;
1794     descaddr &= ~7ULL;
1795 
1796     /*
1797      * Process the NSTable bit from the previous level.  This changes
1798      * the table address space and the output space from Secure to
1799      * NonSecure.  With RME, the EL3 translation regime does not change
1800      * from Root to NonSecure.
1801      */
1802     if (ptw->in_space == ARMSS_Secure
1803         && !regime_is_stage2(mmu_idx)
1804         && extract32(tableattrs, 4, 1)) {
1805         /*
1806          * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1807          * Assert the relative order of the secure/non-secure indexes.
1808          */
1809         QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1810         QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1811         ptw->in_ptw_idx += 1;
1812         ptw->in_space = ARMSS_NonSecure;
1813     }
1814 
1815     if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1816         goto do_fault;
1817     }
1818     descriptor = arm_ldq_ptw(env, ptw, fi);
1819     if (fi->type != ARMFault_None) {
1820         goto do_fault;
1821     }
1822     new_descriptor = descriptor;
1823 
1824  restart_atomic_update:
1825     if (!(descriptor & 1) ||
1826         (!(descriptor & 2) &&
1827          !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) {
1828         /* Invalid, or a block descriptor at an invalid level */
1829         goto do_translation_fault;
1830     }
1831 
1832     descaddr = descriptor & descaddrmask;
1833 
1834     /*
1835      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1836      * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1837      * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1838      * raise AddressSizeFault.
1839      */
1840     if (outputsize > 48) {
1841         if (param.ds) {
1842             descaddr |= extract64(descriptor, 8, 2) << 50;
1843         } else {
1844             descaddr |= extract64(descriptor, 12, 4) << 48;
1845         }
1846     } else if (descaddr >> outputsize) {
1847         fi->type = ARMFault_AddressSize;
1848         goto do_fault;
1849     }
1850 
1851     if ((descriptor & 2) && (level < 3)) {
1852         /*
1853          * Table entry. The top five bits are attributes which may
1854          * propagate down through lower levels of the table (and
1855          * which are all arranged so that 0 means "no effect", so
1856          * we can gather them up by ORing in the bits at each level).
1857          */
1858         tableattrs |= extract64(descriptor, 59, 5);
1859         level++;
1860         indexmask = indexmask_grainsize;
1861         goto next_level;
1862     }
1863 
1864     /*
1865      * Block entry at level 1 or 2, or page entry at level 3.
1866      * These are basically the same thing, although the number
1867      * of bits we pull in from the vaddr varies. Note that although
1868      * descaddrmask masks enough of the low bits of the descriptor
1869      * to give a correct page or table address, the address field
1870      * in a block descriptor is smaller; so we need to explicitly
1871      * clear the lower bits here before ORing in the low vaddr bits.
1872      *
1873      * Afterward, descaddr is the final physical address.
1874      */
1875     page_size = (1ULL << ((stride * (4 - level)) + 3));
1876     descaddr &= ~(hwaddr)(page_size - 1);
1877     descaddr |= (address & (page_size - 1));
1878 
1879     if (likely(!ptw->in_debug)) {
1880         /*
1881          * Access flag.
1882          * If HA is enabled, prepare to update the descriptor below.
1883          * Otherwise, pass the access fault on to software.
1884          */
1885         if (!(descriptor & (1 << 10))) {
1886             if (param.ha) {
1887                 new_descriptor |= 1 << 10; /* AF */
1888             } else {
1889                 fi->type = ARMFault_AccessFlag;
1890                 goto do_fault;
1891             }
1892         }
1893 
1894         /*
1895          * Dirty Bit.
1896          * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1897          * bit for writeback. The actual write protection test may still be
1898          * overridden by tableattrs, to be merged below.
1899          */
1900         if (param.hd
1901             && extract64(descriptor, 51, 1)  /* DBM */
1902             && access_type == MMU_DATA_STORE) {
1903             if (regime_is_stage2(mmu_idx)) {
1904                 new_descriptor |= 1ull << 7;    /* set S2AP[1] */
1905             } else {
1906                 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1907             }
1908         }
1909     }
1910 
1911     /*
1912      * Extract attributes from the (modified) descriptor, and apply
1913      * table descriptors. Stage 2 table descriptors do not include
1914      * any attribute fields. HPD disables all the table attributes
1915      * except NSTable (which we have already handled).
1916      */
1917     attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1918     if (!regime_is_stage2(mmu_idx)) {
1919         if (!param.hpd) {
1920             attrs |= extract64(tableattrs, 0, 2) << 53;     /* XN, PXN */
1921             /*
1922              * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1923              * means "force PL1 access only", which means forcing AP[1] to 0.
1924              */
1925             attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1926             attrs |= extract32(tableattrs, 3, 1) << 7;    /* APT[1] => AP[2] */
1927         }
1928     }
1929 
1930     ap = extract32(attrs, 6, 2);
1931     out_space = ptw->in_space;
1932     if (regime_is_stage2(mmu_idx)) {
1933         /*
1934          * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
1935          * The bit remains ignored for other security states.
1936          * R_YMCSL: Executing an insn fetched from non-Realm causes
1937          * a stage2 permission fault.
1938          */
1939         if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
1940             out_space = ARMSS_NonSecure;
1941             result->f.prot = get_S2prot_noexecute(ap);
1942         } else {
1943             xn = extract64(attrs, 53, 2);
1944             result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
1945         }
1946     } else {
1947         int nse, ns = extract32(attrs, 5, 1);
1948         switch (out_space) {
1949         case ARMSS_Root:
1950             /*
1951              * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
1952              * R_XTYPW: NSE and NS together select the output pa space.
1953              */
1954             nse = extract32(attrs, 11, 1);
1955             out_space = (nse << 1) | ns;
1956             if (out_space == ARMSS_Secure &&
1957                 !cpu_isar_feature(aa64_sel2, cpu)) {
1958                 out_space = ARMSS_NonSecure;
1959             }
1960             break;
1961         case ARMSS_Secure:
1962             if (ns) {
1963                 out_space = ARMSS_NonSecure;
1964             }
1965             break;
1966         case ARMSS_Realm:
1967             switch (mmu_idx) {
1968             case ARMMMUIdx_Stage1_E0:
1969             case ARMMMUIdx_Stage1_E1:
1970             case ARMMMUIdx_Stage1_E1_PAN:
1971                 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
1972                 break;
1973             case ARMMMUIdx_E2:
1974             case ARMMMUIdx_E20_0:
1975             case ARMMMUIdx_E20_2:
1976             case ARMMMUIdx_E20_2_PAN:
1977                 /*
1978                  * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
1979                  * NS changes the output to non-secure space.
1980                  */
1981                 if (ns) {
1982                     out_space = ARMSS_NonSecure;
1983                 }
1984                 break;
1985             default:
1986                 g_assert_not_reached();
1987             }
1988             break;
1989         case ARMSS_NonSecure:
1990             /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
1991             break;
1992         default:
1993             g_assert_not_reached();
1994         }
1995         xn = extract64(attrs, 54, 1);
1996         pxn = extract64(attrs, 53, 1);
1997 
1998         if (el == 1 && nv_nv1_enabled(env, ptw)) {
1999             /*
2000              * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page
2001              * descriptor bit 54 holds PXN, 53 is RES0, and the effective value
2002              * of UXN is 0. Similarly for bits 59 and 60 in table descriptors
2003              * (which we have already folded into bits 53 and 54 of attrs).
2004              * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0.
2005              * Similarly, APTable[0] from the table descriptor is treated as 0;
2006              * we already folded this into AP[1] and squashing that to 0 does
2007              * the right thing.
2008              */
2009             pxn = xn;
2010             xn = 0;
2011             ap &= ~1;
2012         }
2013         /*
2014          * Note that we modified ptw->in_space earlier for NSTable, but
2015          * result->f.attrs retains a copy of the original security space.
2016          */
2017         result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn,
2018                                     result->f.attrs.space, out_space);
2019     }
2020 
2021     if (!(result->f.prot & (1 << access_type))) {
2022         fi->type = ARMFault_Permission;
2023         goto do_fault;
2024     }
2025 
2026     /* If FEAT_HAFDBS has made changes, update the PTE. */
2027     if (new_descriptor != descriptor) {
2028         new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
2029         if (fi->type != ARMFault_None) {
2030             goto do_fault;
2031         }
2032         /*
2033          * I_YZSVV says that if the in-memory descriptor has changed,
2034          * then we must use the information in that new value
2035          * (which might include a different output address, different
2036          * attributes, or generate a fault).
2037          * Restart the handling of the descriptor value from scratch.
2038          */
2039         if (new_descriptor != descriptor) {
2040             descriptor = new_descriptor;
2041             goto restart_atomic_update;
2042         }
2043     }
2044 
2045     result->f.attrs.space = out_space;
2046     result->f.attrs.secure = arm_space_is_secure(out_space);
2047 
2048     if (regime_is_stage2(mmu_idx)) {
2049         result->cacheattrs.is_s2_format = true;
2050         result->cacheattrs.attrs = extract32(attrs, 2, 4);
2051     } else {
2052         /* Index into MAIR registers for cache attributes */
2053         uint8_t attrindx = extract32(attrs, 2, 3);
2054         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2055         assert(attrindx <= 7);
2056         result->cacheattrs.is_s2_format = false;
2057         result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2058 
2059         /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
2060         if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
2061             result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */
2062         }
2063     }
2064 
2065     /*
2066      * For FEAT_LPA2 and effective DS, the SH field in the attributes
2067      * was re-purposed for output address bits.  The SH attribute in
2068      * that case comes from TCR_ELx, which we extracted earlier.
2069      */
2070     if (param.ds) {
2071         result->cacheattrs.shareability = param.sh;
2072     } else {
2073         result->cacheattrs.shareability = extract32(attrs, 8, 2);
2074     }
2075 
2076     result->f.phys_addr = descaddr;
2077     result->f.lg_page_size = ctz64(page_size);
2078     return false;
2079 
2080  do_translation_fault:
2081     fi->type = ARMFault_Translation;
2082  do_fault:
2083     if (fi->s1ptw) {
2084         /* Retain the existing stage 2 fi->level */
2085         assert(fi->stage2);
2086     } else {
2087         fi->level = level;
2088         fi->stage2 = regime_is_stage2(mmu_idx);
2089     }
2090     fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx);
2091     return true;
2092 }
2093 
2094 static bool get_phys_addr_pmsav5(CPUARMState *env,
2095                                  S1Translate *ptw,
2096                                  uint32_t address,
2097                                  MMUAccessType access_type,
2098                                  GetPhysAddrResult *result,
2099                                  ARMMMUFaultInfo *fi)
2100 {
2101     int n;
2102     uint32_t mask;
2103     uint32_t base;
2104     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2105     bool is_user = regime_is_user(env, mmu_idx);
2106 
2107     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
2108         /* MPU disabled.  */
2109         result->f.phys_addr = address;
2110         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2111         return false;
2112     }
2113 
2114     result->f.phys_addr = address;
2115     for (n = 7; n >= 0; n--) {
2116         base = env->cp15.c6_region[n];
2117         if ((base & 1) == 0) {
2118             continue;
2119         }
2120         mask = 1 << ((base >> 1) & 0x1f);
2121         /* Keep this shift separate from the above to avoid an
2122            (undefined) << 32.  */
2123         mask = (mask << 1) - 1;
2124         if (((base ^ address) & ~mask) == 0) {
2125             break;
2126         }
2127     }
2128     if (n < 0) {
2129         fi->type = ARMFault_Background;
2130         return true;
2131     }
2132 
2133     if (access_type == MMU_INST_FETCH) {
2134         mask = env->cp15.pmsav5_insn_ap;
2135     } else {
2136         mask = env->cp15.pmsav5_data_ap;
2137     }
2138     mask = (mask >> (n * 4)) & 0xf;
2139     switch (mask) {
2140     case 0:
2141         fi->type = ARMFault_Permission;
2142         fi->level = 1;
2143         return true;
2144     case 1:
2145         if (is_user) {
2146             fi->type = ARMFault_Permission;
2147             fi->level = 1;
2148             return true;
2149         }
2150         result->f.prot = PAGE_READ | PAGE_WRITE;
2151         break;
2152     case 2:
2153         result->f.prot = PAGE_READ;
2154         if (!is_user) {
2155             result->f.prot |= PAGE_WRITE;
2156         }
2157         break;
2158     case 3:
2159         result->f.prot = PAGE_READ | PAGE_WRITE;
2160         break;
2161     case 5:
2162         if (is_user) {
2163             fi->type = ARMFault_Permission;
2164             fi->level = 1;
2165             return true;
2166         }
2167         result->f.prot = PAGE_READ;
2168         break;
2169     case 6:
2170         result->f.prot = PAGE_READ;
2171         break;
2172     default:
2173         /* Bad permission.  */
2174         fi->type = ARMFault_Permission;
2175         fi->level = 1;
2176         return true;
2177     }
2178     result->f.prot |= PAGE_EXEC;
2179     return false;
2180 }
2181 
2182 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2183                                          int32_t address, uint8_t *prot)
2184 {
2185     if (!arm_feature(env, ARM_FEATURE_M)) {
2186         *prot = PAGE_READ | PAGE_WRITE;
2187         switch (address) {
2188         case 0xF0000000 ... 0xFFFFFFFF:
2189             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2190                 /* hivecs execing is ok */
2191                 *prot |= PAGE_EXEC;
2192             }
2193             break;
2194         case 0x00000000 ... 0x7FFFFFFF:
2195             *prot |= PAGE_EXEC;
2196             break;
2197         }
2198     } else {
2199         /* Default system address map for M profile cores.
2200          * The architecture specifies which regions are execute-never;
2201          * at the MPU level no other checks are defined.
2202          */
2203         switch (address) {
2204         case 0x00000000 ... 0x1fffffff: /* ROM */
2205         case 0x20000000 ... 0x3fffffff: /* SRAM */
2206         case 0x60000000 ... 0x7fffffff: /* RAM */
2207         case 0x80000000 ... 0x9fffffff: /* RAM */
2208             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2209             break;
2210         case 0x40000000 ... 0x5fffffff: /* Peripheral */
2211         case 0xa0000000 ... 0xbfffffff: /* Device */
2212         case 0xc0000000 ... 0xdfffffff: /* Device */
2213         case 0xe0000000 ... 0xffffffff: /* System */
2214             *prot = PAGE_READ | PAGE_WRITE;
2215             break;
2216         default:
2217             g_assert_not_reached();
2218         }
2219     }
2220 }
2221 
2222 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2223 {
2224     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2225     return arm_feature(env, ARM_FEATURE_M) &&
2226         extract32(address, 20, 12) == 0xe00;
2227 }
2228 
2229 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2230 {
2231     /*
2232      * True if address is in the M profile system region
2233      * 0xe0000000 - 0xffffffff
2234      */
2235     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2236 }
2237 
2238 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2239                                          bool is_secure, bool is_user)
2240 {
2241     /*
2242      * Return true if we should use the default memory map as a
2243      * "background" region if there are no hits against any MPU regions.
2244      */
2245     CPUARMState *env = &cpu->env;
2246 
2247     if (is_user) {
2248         return false;
2249     }
2250 
2251     if (arm_feature(env, ARM_FEATURE_M)) {
2252         return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2253     }
2254 
2255     if (mmu_idx == ARMMMUIdx_Stage2) {
2256         return false;
2257     }
2258 
2259     return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2260 }
2261 
2262 static bool get_phys_addr_pmsav7(CPUARMState *env,
2263                                  S1Translate *ptw,
2264                                  uint32_t address,
2265                                  MMUAccessType access_type,
2266                                  GetPhysAddrResult *result,
2267                                  ARMMMUFaultInfo *fi)
2268 {
2269     ARMCPU *cpu = env_archcpu(env);
2270     int n;
2271     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2272     bool is_user = regime_is_user(env, mmu_idx);
2273     bool secure = arm_space_is_secure(ptw->in_space);
2274 
2275     result->f.phys_addr = address;
2276     result->f.lg_page_size = TARGET_PAGE_BITS;
2277     result->f.prot = 0;
2278 
2279     if (regime_translation_disabled(env, mmu_idx, ptw->in_space) ||
2280         m_is_ppb_region(env, address)) {
2281         /*
2282          * MPU disabled or M profile PPB access: use default memory map.
2283          * The other case which uses the default memory map in the
2284          * v7M ARM ARM pseudocode is exception vector reads from the vector
2285          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2286          * which always does a direct read using address_space_ldl(), rather
2287          * than going via this function, so we don't need to check that here.
2288          */
2289         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2290     } else { /* MPU enabled */
2291         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2292             /* region search */
2293             uint32_t base = env->pmsav7.drbar[n];
2294             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2295             uint32_t rmask;
2296             bool srdis = false;
2297 
2298             if (!(env->pmsav7.drsr[n] & 0x1)) {
2299                 continue;
2300             }
2301 
2302             if (!rsize) {
2303                 qemu_log_mask(LOG_GUEST_ERROR,
2304                               "DRSR[%d]: Rsize field cannot be 0\n", n);
2305                 continue;
2306             }
2307             rsize++;
2308             rmask = (1ull << rsize) - 1;
2309 
2310             if (base & rmask) {
2311                 qemu_log_mask(LOG_GUEST_ERROR,
2312                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2313                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
2314                               n, base, rmask);
2315                 continue;
2316             }
2317 
2318             if (address < base || address > base + rmask) {
2319                 /*
2320                  * Address not in this region. We must check whether the
2321                  * region covers addresses in the same page as our address.
2322                  * In that case we must not report a size that covers the
2323                  * whole page for a subsequent hit against a different MPU
2324                  * region or the background region, because it would result in
2325                  * incorrect TLB hits for subsequent accesses to addresses that
2326                  * are in this MPU region.
2327                  */
2328                 if (ranges_overlap(base, rmask,
2329                                    address & TARGET_PAGE_MASK,
2330                                    TARGET_PAGE_SIZE)) {
2331                     result->f.lg_page_size = 0;
2332                 }
2333                 continue;
2334             }
2335 
2336             /* Region matched */
2337 
2338             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2339                 int i, snd;
2340                 uint32_t srdis_mask;
2341 
2342                 rsize -= 3; /* sub region size (power of 2) */
2343                 snd = ((address - base) >> rsize) & 0x7;
2344                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2345 
2346                 srdis_mask = srdis ? 0x3 : 0x0;
2347                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2348                     /*
2349                      * This will check in groups of 2, 4 and then 8, whether
2350                      * the subregion bits are consistent. rsize is incremented
2351                      * back up to give the region size, considering consistent
2352                      * adjacent subregions as one region. Stop testing if rsize
2353                      * is already big enough for an entire QEMU page.
2354                      */
2355                     int snd_rounded = snd & ~(i - 1);
2356                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2357                                                      snd_rounded + 8, i);
2358                     if (srdis_mask ^ srdis_multi) {
2359                         break;
2360                     }
2361                     srdis_mask = (srdis_mask << i) | srdis_mask;
2362                     rsize++;
2363                 }
2364             }
2365             if (srdis) {
2366                 continue;
2367             }
2368             if (rsize < TARGET_PAGE_BITS) {
2369                 result->f.lg_page_size = rsize;
2370             }
2371             break;
2372         }
2373 
2374         if (n == -1) { /* no hits */
2375             if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2376                 /* background fault */
2377                 fi->type = ARMFault_Background;
2378                 return true;
2379             }
2380             get_phys_addr_pmsav7_default(env, mmu_idx, address,
2381                                          &result->f.prot);
2382         } else { /* a MPU hit! */
2383             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2384             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2385 
2386             if (m_is_system_region(env, address)) {
2387                 /* System space is always execute never */
2388                 xn = 1;
2389             }
2390 
2391             if (is_user) { /* User mode AP bit decoding */
2392                 switch (ap) {
2393                 case 0:
2394                 case 1:
2395                 case 5:
2396                     break; /* no access */
2397                 case 3:
2398                     result->f.prot |= PAGE_WRITE;
2399                     /* fall through */
2400                 case 2:
2401                 case 6:
2402                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2403                     break;
2404                 case 7:
2405                     /* for v7M, same as 6; for R profile a reserved value */
2406                     if (arm_feature(env, ARM_FEATURE_M)) {
2407                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2408                         break;
2409                     }
2410                     /* fall through */
2411                 default:
2412                     qemu_log_mask(LOG_GUEST_ERROR,
2413                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2414                                   PRIx32 "\n", n, ap);
2415                 }
2416             } else { /* Priv. mode AP bits decoding */
2417                 switch (ap) {
2418                 case 0:
2419                     break; /* no access */
2420                 case 1:
2421                 case 2:
2422                 case 3:
2423                     result->f.prot |= PAGE_WRITE;
2424                     /* fall through */
2425                 case 5:
2426                 case 6:
2427                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2428                     break;
2429                 case 7:
2430                     /* for v7M, same as 6; for R profile a reserved value */
2431                     if (arm_feature(env, ARM_FEATURE_M)) {
2432                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2433                         break;
2434                     }
2435                     /* fall through */
2436                 default:
2437                     qemu_log_mask(LOG_GUEST_ERROR,
2438                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2439                                   PRIx32 "\n", n, ap);
2440                 }
2441             }
2442 
2443             /* execute never */
2444             if (xn) {
2445                 result->f.prot &= ~PAGE_EXEC;
2446             }
2447         }
2448     }
2449 
2450     fi->type = ARMFault_Permission;
2451     fi->level = 1;
2452     return !(result->f.prot & (1 << access_type));
2453 }
2454 
2455 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2456                              uint32_t secure)
2457 {
2458     if (regime_el(env, mmu_idx) == 2) {
2459         return env->pmsav8.hprbar;
2460     } else {
2461         return env->pmsav8.rbar[secure];
2462     }
2463 }
2464 
2465 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2466                              uint32_t secure)
2467 {
2468     if (regime_el(env, mmu_idx) == 2) {
2469         return env->pmsav8.hprlar;
2470     } else {
2471         return env->pmsav8.rlar[secure];
2472     }
2473 }
2474 
2475 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2476                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
2477                        bool secure, GetPhysAddrResult *result,
2478                        ARMMMUFaultInfo *fi, uint32_t *mregion)
2479 {
2480     /*
2481      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2482      * that a full phys-to-virt translation does).
2483      * mregion is (if not NULL) set to the region number which matched,
2484      * or -1 if no region number is returned (MPU off, address did not
2485      * hit a region, address hit in multiple regions).
2486      * If the region hit doesn't cover the entire TARGET_PAGE the address
2487      * is within, then we set the result page_size to 1 to force the
2488      * memory system to use a subpage.
2489      */
2490     ARMCPU *cpu = env_archcpu(env);
2491     bool is_user = regime_is_user(env, mmu_idx);
2492     int n;
2493     int matchregion = -1;
2494     bool hit = false;
2495     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2496     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2497     int region_counter;
2498 
2499     if (regime_el(env, mmu_idx) == 2) {
2500         region_counter = cpu->pmsav8r_hdregion;
2501     } else {
2502         region_counter = cpu->pmsav7_dregion;
2503     }
2504 
2505     result->f.lg_page_size = TARGET_PAGE_BITS;
2506     result->f.phys_addr = address;
2507     result->f.prot = 0;
2508     if (mregion) {
2509         *mregion = -1;
2510     }
2511 
2512     if (mmu_idx == ARMMMUIdx_Stage2) {
2513         fi->stage2 = true;
2514     }
2515 
2516     /*
2517      * Unlike the ARM ARM pseudocode, we don't need to check whether this
2518      * was an exception vector read from the vector table (which is always
2519      * done using the default system address map), because those accesses
2520      * are done in arm_v7m_load_vector(), which always does a direct
2521      * read using address_space_ldl(), rather than going via this function.
2522      */
2523     if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) {
2524         /* MPU disabled */
2525         hit = true;
2526     } else if (m_is_ppb_region(env, address)) {
2527         hit = true;
2528     } else {
2529         if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2530             hit = true;
2531         }
2532 
2533         uint32_t bitmask;
2534         if (arm_feature(env, ARM_FEATURE_M)) {
2535             bitmask = 0x1f;
2536         } else {
2537             bitmask = 0x3f;
2538             fi->level = 0;
2539         }
2540 
2541         for (n = region_counter - 1; n >= 0; n--) {
2542             /* region search */
2543             /*
2544              * Note that the base address is bits [31:x] from the register
2545              * with bits [x-1:0] all zeroes, but the limit address is bits
2546              * [31:x] from the register with bits [x:0] all ones. Where x is
2547              * 5 for Cortex-M and 6 for Cortex-R
2548              */
2549             uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2550             uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2551 
2552             if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2553                 /* Region disabled */
2554                 continue;
2555             }
2556 
2557             if (address < base || address > limit) {
2558                 /*
2559                  * Address not in this region. We must check whether the
2560                  * region covers addresses in the same page as our address.
2561                  * In that case we must not report a size that covers the
2562                  * whole page for a subsequent hit against a different MPU
2563                  * region or the background region, because it would result in
2564                  * incorrect TLB hits for subsequent accesses to addresses that
2565                  * are in this MPU region.
2566                  */
2567                 if (limit >= base &&
2568                     ranges_overlap(base, limit - base + 1,
2569                                    addr_page_base,
2570                                    TARGET_PAGE_SIZE)) {
2571                     result->f.lg_page_size = 0;
2572                 }
2573                 continue;
2574             }
2575 
2576             if (base > addr_page_base || limit < addr_page_limit) {
2577                 result->f.lg_page_size = 0;
2578             }
2579 
2580             if (matchregion != -1) {
2581                 /*
2582                  * Multiple regions match -- always a failure (unlike
2583                  * PMSAv7 where highest-numbered-region wins)
2584                  */
2585                 fi->type = ARMFault_Permission;
2586                 if (arm_feature(env, ARM_FEATURE_M)) {
2587                     fi->level = 1;
2588                 }
2589                 return true;
2590             }
2591 
2592             matchregion = n;
2593             hit = true;
2594         }
2595     }
2596 
2597     if (!hit) {
2598         if (arm_feature(env, ARM_FEATURE_M)) {
2599             fi->type = ARMFault_Background;
2600         } else {
2601             fi->type = ARMFault_Permission;
2602         }
2603         return true;
2604     }
2605 
2606     if (matchregion == -1) {
2607         /* hit using the background region */
2608         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2609     } else {
2610         uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2611         uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2612         uint32_t ap = extract32(matched_rbar, 1, 2);
2613         uint32_t xn = extract32(matched_rbar, 0, 1);
2614         bool pxn = false;
2615 
2616         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2617             pxn = extract32(matched_rlar, 4, 1);
2618         }
2619 
2620         if (m_is_system_region(env, address)) {
2621             /* System space is always execute never */
2622             xn = 1;
2623         }
2624 
2625         if (regime_el(env, mmu_idx) == 2) {
2626             result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2627                                             mmu_idx != ARMMMUIdx_E2);
2628         } else {
2629             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2630         }
2631 
2632         if (!arm_feature(env, ARM_FEATURE_M)) {
2633             uint8_t attrindx = extract32(matched_rlar, 1, 3);
2634             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2635             uint8_t sh = extract32(matched_rlar, 3, 2);
2636 
2637             if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2638                 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2639                 xn = 0x1;
2640             }
2641 
2642             if ((regime_el(env, mmu_idx) == 1) &&
2643                 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2644                 pxn = 0x1;
2645             }
2646 
2647             result->cacheattrs.is_s2_format = false;
2648             result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2649             result->cacheattrs.shareability = sh;
2650         }
2651 
2652         if (result->f.prot && !xn && !(pxn && !is_user)) {
2653             result->f.prot |= PAGE_EXEC;
2654         }
2655 
2656         if (mregion) {
2657             *mregion = matchregion;
2658         }
2659     }
2660 
2661     fi->type = ARMFault_Permission;
2662     if (arm_feature(env, ARM_FEATURE_M)) {
2663         fi->level = 1;
2664     }
2665     return !(result->f.prot & (1 << access_type));
2666 }
2667 
2668 static bool v8m_is_sau_exempt(CPUARMState *env,
2669                               uint32_t address, MMUAccessType access_type)
2670 {
2671     /*
2672      * The architecture specifies that certain address ranges are
2673      * exempt from v8M SAU/IDAU checks.
2674      */
2675     return
2676         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2677         (address >= 0xe0000000 && address <= 0xe0002fff) ||
2678         (address >= 0xe000e000 && address <= 0xe000efff) ||
2679         (address >= 0xe002e000 && address <= 0xe002efff) ||
2680         (address >= 0xe0040000 && address <= 0xe0041fff) ||
2681         (address >= 0xe00ff000 && address <= 0xe00fffff);
2682 }
2683 
2684 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2685                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
2686                          bool is_secure, V8M_SAttributes *sattrs)
2687 {
2688     /*
2689      * Look up the security attributes for this address. Compare the
2690      * pseudocode SecurityCheck() function.
2691      * We assume the caller has zero-initialized *sattrs.
2692      */
2693     ARMCPU *cpu = env_archcpu(env);
2694     int r;
2695     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2696     int idau_region = IREGION_NOTVALID;
2697     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2698     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2699 
2700     if (cpu->idau) {
2701         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2702         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2703 
2704         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2705                    &idau_nsc);
2706     }
2707 
2708     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2709         /* 0xf0000000..0xffffffff is always S for insn fetches */
2710         return;
2711     }
2712 
2713     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2714         sattrs->ns = !is_secure;
2715         return;
2716     }
2717 
2718     if (idau_region != IREGION_NOTVALID) {
2719         sattrs->irvalid = true;
2720         sattrs->iregion = idau_region;
2721     }
2722 
2723     switch (env->sau.ctrl & 3) {
2724     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2725         break;
2726     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2727         sattrs->ns = true;
2728         break;
2729     default: /* SAU.ENABLE == 1 */
2730         for (r = 0; r < cpu->sau_sregion; r++) {
2731             if (env->sau.rlar[r] & 1) {
2732                 uint32_t base = env->sau.rbar[r] & ~0x1f;
2733                 uint32_t limit = env->sau.rlar[r] | 0x1f;
2734 
2735                 if (base <= address && limit >= address) {
2736                     if (base > addr_page_base || limit < addr_page_limit) {
2737                         sattrs->subpage = true;
2738                     }
2739                     if (sattrs->srvalid) {
2740                         /*
2741                          * If we hit in more than one region then we must report
2742                          * as Secure, not NS-Callable, with no valid region
2743                          * number info.
2744                          */
2745                         sattrs->ns = false;
2746                         sattrs->nsc = false;
2747                         sattrs->sregion = 0;
2748                         sattrs->srvalid = false;
2749                         break;
2750                     } else {
2751                         if (env->sau.rlar[r] & 2) {
2752                             sattrs->nsc = true;
2753                         } else {
2754                             sattrs->ns = true;
2755                         }
2756                         sattrs->srvalid = true;
2757                         sattrs->sregion = r;
2758                     }
2759                 } else {
2760                     /*
2761                      * Address not in this region. We must check whether the
2762                      * region covers addresses in the same page as our address.
2763                      * In that case we must not report a size that covers the
2764                      * whole page for a subsequent hit against a different MPU
2765                      * region or the background region, because it would result
2766                      * in incorrect TLB hits for subsequent accesses to
2767                      * addresses that are in this MPU region.
2768                      */
2769                     if (limit >= base &&
2770                         ranges_overlap(base, limit - base + 1,
2771                                        addr_page_base,
2772                                        TARGET_PAGE_SIZE)) {
2773                         sattrs->subpage = true;
2774                     }
2775                 }
2776             }
2777         }
2778         break;
2779     }
2780 
2781     /*
2782      * The IDAU will override the SAU lookup results if it specifies
2783      * higher security than the SAU does.
2784      */
2785     if (!idau_ns) {
2786         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2787             sattrs->ns = false;
2788             sattrs->nsc = idau_nsc;
2789         }
2790     }
2791 }
2792 
2793 static bool get_phys_addr_pmsav8(CPUARMState *env,
2794                                  S1Translate *ptw,
2795                                  uint32_t address,
2796                                  MMUAccessType access_type,
2797                                  GetPhysAddrResult *result,
2798                                  ARMMMUFaultInfo *fi)
2799 {
2800     V8M_SAttributes sattrs = {};
2801     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2802     bool secure = arm_space_is_secure(ptw->in_space);
2803     bool ret;
2804 
2805     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2806         v8m_security_lookup(env, address, access_type, mmu_idx,
2807                             secure, &sattrs);
2808         if (access_type == MMU_INST_FETCH) {
2809             /*
2810              * Instruction fetches always use the MMU bank and the
2811              * transaction attribute determined by the fetch address,
2812              * regardless of CPU state. This is painful for QEMU
2813              * to handle, because it would mean we need to encode
2814              * into the mmu_idx not just the (user, negpri) information
2815              * for the current security state but also that for the
2816              * other security state, which would balloon the number
2817              * of mmu_idx values needed alarmingly.
2818              * Fortunately we can avoid this because it's not actually
2819              * possible to arbitrarily execute code from memory with
2820              * the wrong security attribute: it will always generate
2821              * an exception of some kind or another, apart from the
2822              * special case of an NS CPU executing an SG instruction
2823              * in S&NSC memory. So we always just fail the translation
2824              * here and sort things out in the exception handler
2825              * (including possibly emulating an SG instruction).
2826              */
2827             if (sattrs.ns != !secure) {
2828                 if (sattrs.nsc) {
2829                     fi->type = ARMFault_QEMU_NSCExec;
2830                 } else {
2831                     fi->type = ARMFault_QEMU_SFault;
2832                 }
2833                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2834                 result->f.phys_addr = address;
2835                 result->f.prot = 0;
2836                 return true;
2837             }
2838         } else {
2839             /*
2840              * For data accesses we always use the MMU bank indicated
2841              * by the current CPU state, but the security attributes
2842              * might downgrade a secure access to nonsecure.
2843              */
2844             if (sattrs.ns) {
2845                 result->f.attrs.secure = false;
2846                 result->f.attrs.space = ARMSS_NonSecure;
2847             } else if (!secure) {
2848                 /*
2849                  * NS access to S memory must fault.
2850                  * Architecturally we should first check whether the
2851                  * MPU information for this address indicates that we
2852                  * are doing an unaligned access to Device memory, which
2853                  * should generate a UsageFault instead. QEMU does not
2854                  * currently check for that kind of unaligned access though.
2855                  * If we added it we would need to do so as a special case
2856                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2857                  */
2858                 fi->type = ARMFault_QEMU_SFault;
2859                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2860                 result->f.phys_addr = address;
2861                 result->f.prot = 0;
2862                 return true;
2863             }
2864         }
2865     }
2866 
2867     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2868                             result, fi, NULL);
2869     if (sattrs.subpage) {
2870         result->f.lg_page_size = 0;
2871     }
2872     return ret;
2873 }
2874 
2875 /*
2876  * Translate from the 4-bit stage 2 representation of
2877  * memory attributes (without cache-allocation hints) to
2878  * the 8-bit representation of the stage 1 MAIR registers
2879  * (which includes allocation hints).
2880  *
2881  * ref: shared/translation/attrs/S2AttrDecode()
2882  *      .../S2ConvertAttrsHints()
2883  */
2884 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2885 {
2886     uint8_t hiattr = extract32(s2attrs, 2, 2);
2887     uint8_t loattr = extract32(s2attrs, 0, 2);
2888     uint8_t hihint = 0, lohint = 0;
2889 
2890     if (hiattr != 0) { /* normal memory */
2891         if (hcr & HCR_CD) { /* cache disabled */
2892             hiattr = loattr = 1; /* non-cacheable */
2893         } else {
2894             if (hiattr != 1) { /* Write-through or write-back */
2895                 hihint = 3; /* RW allocate */
2896             }
2897             if (loattr != 1) { /* Write-through or write-back */
2898                 lohint = 3; /* RW allocate */
2899             }
2900         }
2901     }
2902 
2903     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2904 }
2905 
2906 /*
2907  * Combine either inner or outer cacheability attributes for normal
2908  * memory, according to table D4-42 and pseudocode procedure
2909  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2910  *
2911  * NB: only stage 1 includes allocation hints (RW bits), leading to
2912  * some asymmetry.
2913  */
2914 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2915 {
2916     if (s1 == 4 || s2 == 4) {
2917         /* non-cacheable has precedence */
2918         return 4;
2919     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2920         /* stage 1 write-through takes precedence */
2921         return s1;
2922     } else if (extract32(s2, 2, 2) == 2) {
2923         /* stage 2 write-through takes precedence, but the allocation hint
2924          * is still taken from stage 1
2925          */
2926         return (2 << 2) | extract32(s1, 0, 2);
2927     } else { /* write-back */
2928         return s1;
2929     }
2930 }
2931 
2932 /*
2933  * Combine the memory type and cacheability attributes of
2934  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2935  * combined attributes in MAIR_EL1 format.
2936  */
2937 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2938                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
2939 {
2940     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2941 
2942     if (s2.is_s2_format) {
2943         s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2944     } else {
2945         s2_mair_attrs = s2.attrs;
2946     }
2947 
2948     s1lo = extract32(s1.attrs, 0, 4);
2949     s2lo = extract32(s2_mair_attrs, 0, 4);
2950     s1hi = extract32(s1.attrs, 4, 4);
2951     s2hi = extract32(s2_mair_attrs, 4, 4);
2952 
2953     /* Combine memory type and cacheability attributes */
2954     if (s1hi == 0 || s2hi == 0) {
2955         /* Device has precedence over normal */
2956         if (s1lo == 0 || s2lo == 0) {
2957             /* nGnRnE has precedence over anything */
2958             ret_attrs = 0;
2959         } else if (s1lo == 4 || s2lo == 4) {
2960             /* non-Reordering has precedence over Reordering */
2961             ret_attrs = 4;  /* nGnRE */
2962         } else if (s1lo == 8 || s2lo == 8) {
2963             /* non-Gathering has precedence over Gathering */
2964             ret_attrs = 8;  /* nGRE */
2965         } else {
2966             ret_attrs = 0xc; /* GRE */
2967         }
2968     } else { /* Normal memory */
2969         /* Outer/inner cacheability combine independently */
2970         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2971                   | combine_cacheattr_nibble(s1lo, s2lo);
2972     }
2973     return ret_attrs;
2974 }
2975 
2976 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2977 {
2978     /*
2979      * Given the 4 bits specifying the outer or inner cacheability
2980      * in MAIR format, return a value specifying Normal Write-Back,
2981      * with the allocation and transient hints taken from the input
2982      * if the input specified some kind of cacheable attribute.
2983      */
2984     if (attr == 0 || attr == 4) {
2985         /*
2986          * 0 == an UNPREDICTABLE encoding
2987          * 4 == Non-cacheable
2988          * Either way, force Write-Back RW allocate non-transient
2989          */
2990         return 0xf;
2991     }
2992     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2993     return attr | 4;
2994 }
2995 
2996 /*
2997  * Combine the memory type and cacheability attributes of
2998  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2999  * combined attributes in MAIR_EL1 format.
3000  */
3001 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
3002 {
3003     assert(s2.is_s2_format && !s1.is_s2_format);
3004 
3005     switch (s2.attrs) {
3006     case 7:
3007         /* Use stage 1 attributes */
3008         return s1.attrs;
3009     case 6:
3010         /*
3011          * Force Normal Write-Back. Note that if S1 is Normal cacheable
3012          * then we take the allocation hints from it; otherwise it is
3013          * RW allocate, non-transient.
3014          */
3015         if ((s1.attrs & 0xf0) == 0) {
3016             /* S1 is Device */
3017             return 0xff;
3018         }
3019         /* Need to check the Inner and Outer nibbles separately */
3020         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
3021             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
3022     case 5:
3023         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
3024         if ((s1.attrs & 0xf0) == 0) {
3025             return s1.attrs;
3026         }
3027         return 0x44;
3028     case 0 ... 3:
3029         /* Force Device, of subtype specified by S2 */
3030         return s2.attrs << 2;
3031     default:
3032         /*
3033          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
3034          * arbitrarily force Device.
3035          */
3036         return 0;
3037     }
3038 }
3039 
3040 /*
3041  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
3042  * and CombineS1S2Desc()
3043  *
3044  * @env:     CPUARMState
3045  * @s1:      Attributes from stage 1 walk
3046  * @s2:      Attributes from stage 2 walk
3047  */
3048 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
3049                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
3050 {
3051     ARMCacheAttrs ret;
3052     bool tagged = false;
3053 
3054     assert(!s1.is_s2_format);
3055     ret.is_s2_format = false;
3056 
3057     if (s1.attrs == 0xf0) {
3058         tagged = true;
3059         s1.attrs = 0xff;
3060     }
3061 
3062     /* Combine shareability attributes (table D4-43) */
3063     if (s1.shareability == 2 || s2.shareability == 2) {
3064         /* if either are outer-shareable, the result is outer-shareable */
3065         ret.shareability = 2;
3066     } else if (s1.shareability == 3 || s2.shareability == 3) {
3067         /* if either are inner-shareable, the result is inner-shareable */
3068         ret.shareability = 3;
3069     } else {
3070         /* both non-shareable */
3071         ret.shareability = 0;
3072     }
3073 
3074     /* Combine memory type and cacheability attributes */
3075     if (hcr & HCR_FWB) {
3076         ret.attrs = combined_attrs_fwb(s1, s2);
3077     } else {
3078         ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
3079     }
3080 
3081     /*
3082      * Any location for which the resultant memory type is any
3083      * type of Device memory is always treated as Outer Shareable.
3084      * Any location for which the resultant memory type is Normal
3085      * Inner Non-cacheable, Outer Non-cacheable is always treated
3086      * as Outer Shareable.
3087      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
3088      */
3089     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
3090         ret.shareability = 2;
3091     }
3092 
3093     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
3094     if (tagged && ret.attrs == 0xff) {
3095         ret.attrs = 0xf0;
3096     }
3097 
3098     return ret;
3099 }
3100 
3101 /*
3102  * MMU disabled.  S1 addresses within aa64 translation regimes are
3103  * still checked for bounds -- see AArch64.S1DisabledOutput().
3104  */
3105 static bool get_phys_addr_disabled(CPUARMState *env,
3106                                    S1Translate *ptw,
3107                                    target_ulong address,
3108                                    MMUAccessType access_type,
3109                                    GetPhysAddrResult *result,
3110                                    ARMMMUFaultInfo *fi)
3111 {
3112     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3113     uint8_t memattr = 0x00;    /* Device nGnRnE */
3114     uint8_t shareability = 0;  /* non-shareable */
3115     int r_el;
3116 
3117     switch (mmu_idx) {
3118     case ARMMMUIdx_Stage2:
3119     case ARMMMUIdx_Stage2_S:
3120     case ARMMMUIdx_Phys_S:
3121     case ARMMMUIdx_Phys_NS:
3122     case ARMMMUIdx_Phys_Root:
3123     case ARMMMUIdx_Phys_Realm:
3124         break;
3125 
3126     default:
3127         r_el = regime_el(env, mmu_idx);
3128         if (arm_el_is_aa64(env, r_el)) {
3129             int pamax = arm_pamax(env_archcpu(env));
3130             uint64_t tcr = env->cp15.tcr_el[r_el];
3131             int addrtop, tbi;
3132 
3133             tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
3134             if (access_type == MMU_INST_FETCH) {
3135                 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
3136             }
3137             tbi = (tbi >> extract64(address, 55, 1)) & 1;
3138             addrtop = (tbi ? 55 : 63);
3139 
3140             if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
3141                 fi->type = ARMFault_AddressSize;
3142                 fi->level = 0;
3143                 fi->stage2 = false;
3144                 return 1;
3145             }
3146 
3147             /*
3148              * When TBI is disabled, we've just validated that all of the
3149              * bits above PAMax are zero, so logically we only need to
3150              * clear the top byte for TBI.  But it's clearer to follow
3151              * the pseudocode set of addrdesc.paddress.
3152              */
3153             address = extract64(address, 0, 52);
3154         }
3155 
3156         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3157         if (r_el == 1) {
3158             uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
3159             if (hcr & HCR_DC) {
3160                 if (hcr & HCR_DCT) {
3161                     memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
3162                 } else {
3163                     memattr = 0xff;  /* Normal, WB, RWA */
3164                 }
3165             }
3166         }
3167         if (memattr == 0) {
3168             if (access_type == MMU_INST_FETCH) {
3169                 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3170                     memattr = 0xee;  /* Normal, WT, RA, NT */
3171                 } else {
3172                     memattr = 0x44;  /* Normal, NC, No */
3173                 }
3174             }
3175             shareability = 2; /* outer shareable */
3176         }
3177         result->cacheattrs.is_s2_format = false;
3178         break;
3179     }
3180 
3181     result->f.phys_addr = address;
3182     result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3183     result->f.lg_page_size = TARGET_PAGE_BITS;
3184     result->cacheattrs.shareability = shareability;
3185     result->cacheattrs.attrs = memattr;
3186     return false;
3187 }
3188 
3189 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3190                                    target_ulong address,
3191                                    MMUAccessType access_type,
3192                                    GetPhysAddrResult *result,
3193                                    ARMMMUFaultInfo *fi)
3194 {
3195     hwaddr ipa;
3196     int s1_prot, s1_lgpgsz;
3197     ARMSecuritySpace in_space = ptw->in_space;
3198     bool ret, ipa_secure, s1_guarded;
3199     ARMCacheAttrs cacheattrs1;
3200     ARMSecuritySpace ipa_space;
3201     uint64_t hcr;
3202 
3203     ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi);
3204 
3205     /* If S1 fails, return early.  */
3206     if (ret) {
3207         return ret;
3208     }
3209 
3210     ipa = result->f.phys_addr;
3211     ipa_secure = result->f.attrs.secure;
3212     ipa_space = result->f.attrs.space;
3213 
3214     ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3215     ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3216     ptw->in_space = ipa_space;
3217     ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3218 
3219     /*
3220      * S1 is done, now do S2 translation.
3221      * Save the stage1 results so that we may merge prot and cacheattrs later.
3222      */
3223     s1_prot = result->f.prot;
3224     s1_lgpgsz = result->f.lg_page_size;
3225     s1_guarded = result->f.extra.arm.guarded;
3226     cacheattrs1 = result->cacheattrs;
3227     memset(result, 0, sizeof(*result));
3228 
3229     ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi);
3230     fi->s2addr = ipa;
3231 
3232     /* Combine the S1 and S2 perms.  */
3233     result->f.prot &= s1_prot;
3234 
3235     /* If S2 fails, return early.  */
3236     if (ret) {
3237         return ret;
3238     }
3239 
3240     /*
3241      * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3242      * this means "don't put this in the TLB"; in this case, return a
3243      * result with lg_page_size == 0 to achieve that. Otherwise,
3244      * use the maximum of the S1 & S2 page size, so that invalidation
3245      * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3246      * we know the combined result permissions etc only cover the minimum
3247      * of the S1 and S2 page size, because we know that the common TLB code
3248      * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3249      * and passing a larger page size value only affects invalidations.)
3250      */
3251     if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3252         s1_lgpgsz < TARGET_PAGE_BITS) {
3253         result->f.lg_page_size = 0;
3254     } else if (result->f.lg_page_size < s1_lgpgsz) {
3255         result->f.lg_page_size = s1_lgpgsz;
3256     }
3257 
3258     /* Combine the S1 and S2 cache attributes. */
3259     hcr = arm_hcr_el2_eff_secstate(env, in_space);
3260     if (hcr & HCR_DC) {
3261         /*
3262          * HCR.DC forces the first stage attributes to
3263          *  Normal Non-Shareable,
3264          *  Inner Write-Back Read-Allocate Write-Allocate,
3265          *  Outer Write-Back Read-Allocate Write-Allocate.
3266          * Do not overwrite Tagged within attrs.
3267          */
3268         if (cacheattrs1.attrs != 0xf0) {
3269             cacheattrs1.attrs = 0xff;
3270         }
3271         cacheattrs1.shareability = 0;
3272     }
3273     result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3274                                             result->cacheattrs);
3275 
3276     /* No BTI GP information in stage 2, we just use the S1 value */
3277     result->f.extra.arm.guarded = s1_guarded;
3278 
3279     /*
3280      * Check if IPA translates to secure or non-secure PA space.
3281      * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3282      */
3283     if (in_space == ARMSS_Secure) {
3284         result->f.attrs.secure =
3285             !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3286             && (ipa_secure
3287                 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
3288         result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
3289     }
3290 
3291     return false;
3292 }
3293 
3294 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3295                                       target_ulong address,
3296                                       MMUAccessType access_type,
3297                                       GetPhysAddrResult *result,
3298                                       ARMMMUFaultInfo *fi)
3299 {
3300     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3301     ARMMMUIdx s1_mmu_idx;
3302 
3303     /*
3304      * The page table entries may downgrade Secure to NonSecure, but
3305      * cannot upgrade a NonSecure translation regime's attributes
3306      * to Secure or Realm.
3307      */
3308     result->f.attrs.space = ptw->in_space;
3309     result->f.attrs.secure = arm_space_is_secure(ptw->in_space);
3310 
3311     switch (mmu_idx) {
3312     case ARMMMUIdx_Phys_S:
3313     case ARMMMUIdx_Phys_NS:
3314     case ARMMMUIdx_Phys_Root:
3315     case ARMMMUIdx_Phys_Realm:
3316         /* Checking Phys early avoids special casing later vs regime_el. */
3317         return get_phys_addr_disabled(env, ptw, address, access_type,
3318                                       result, fi);
3319 
3320     case ARMMMUIdx_Stage1_E0:
3321     case ARMMMUIdx_Stage1_E1:
3322     case ARMMMUIdx_Stage1_E1_PAN:
3323         /*
3324          * First stage lookup uses second stage for ptw; only
3325          * Secure has both S and NS IPA and starts with Stage2_S.
3326          */
3327         ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ?
3328             ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3329         break;
3330 
3331     case ARMMMUIdx_Stage2:
3332     case ARMMMUIdx_Stage2_S:
3333         /*
3334          * Second stage lookup uses physical for ptw; whether this is S or
3335          * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3336          * the Secure EL2&0 regime.
3337          */
3338         ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3339         break;
3340 
3341     case ARMMMUIdx_E10_0:
3342         s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3343         goto do_twostage;
3344     case ARMMMUIdx_E10_1:
3345         s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3346         goto do_twostage;
3347     case ARMMMUIdx_E10_1_PAN:
3348         s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3349     do_twostage:
3350         /*
3351          * Call ourselves recursively to do the stage 1 and then stage 2
3352          * translations if mmu_idx is a two-stage regime, and EL2 present.
3353          * Otherwise, a stage1+stage2 translation is just stage 1.
3354          */
3355         ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3356         if (arm_feature(env, ARM_FEATURE_EL2) &&
3357             !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) {
3358             return get_phys_addr_twostage(env, ptw, address, access_type,
3359                                           result, fi);
3360         }
3361         /* fall through */
3362 
3363     default:
3364         /* Single stage uses physical for ptw. */
3365         ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3366         break;
3367     }
3368 
3369     result->f.attrs.user = regime_is_user(env, mmu_idx);
3370 
3371     /*
3372      * Fast Context Switch Extension. This doesn't exist at all in v8.
3373      * In v7 and earlier it affects all stage 1 translations.
3374      */
3375     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3376         && !arm_feature(env, ARM_FEATURE_V8)) {
3377         if (regime_el(env, mmu_idx) == 3) {
3378             address += env->cp15.fcseidr_s;
3379         } else {
3380             address += env->cp15.fcseidr_ns;
3381         }
3382     }
3383 
3384     if (arm_feature(env, ARM_FEATURE_PMSA)) {
3385         bool ret;
3386         result->f.lg_page_size = TARGET_PAGE_BITS;
3387 
3388         if (arm_feature(env, ARM_FEATURE_V8)) {
3389             /* PMSAv8 */
3390             ret = get_phys_addr_pmsav8(env, ptw, address, access_type,
3391                                        result, fi);
3392         } else if (arm_feature(env, ARM_FEATURE_V7)) {
3393             /* PMSAv7 */
3394             ret = get_phys_addr_pmsav7(env, ptw, address, access_type,
3395                                        result, fi);
3396         } else {
3397             /* Pre-v7 MPU */
3398             ret = get_phys_addr_pmsav5(env, ptw, address, access_type,
3399                                        result, fi);
3400         }
3401         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3402                       " mmu_idx %u -> %s (prot %c%c%c)\n",
3403                       access_type == MMU_DATA_LOAD ? "reading" :
3404                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3405                       (uint32_t)address, mmu_idx,
3406                       ret ? "Miss" : "Hit",
3407                       result->f.prot & PAGE_READ ? 'r' : '-',
3408                       result->f.prot & PAGE_WRITE ? 'w' : '-',
3409                       result->f.prot & PAGE_EXEC ? 'x' : '-');
3410 
3411         return ret;
3412     }
3413 
3414     /* Definitely a real MMU, not an MPU */
3415 
3416     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
3417         return get_phys_addr_disabled(env, ptw, address, access_type,
3418                                       result, fi);
3419     }
3420 
3421     if (regime_using_lpae_format(env, mmu_idx)) {
3422         return get_phys_addr_lpae(env, ptw, address, access_type, result, fi);
3423     } else if (arm_feature(env, ARM_FEATURE_V7) ||
3424                regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3425         return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3426     } else {
3427         return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3428     }
3429 }
3430 
3431 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3432                               target_ulong address,
3433                               MMUAccessType access_type,
3434                               GetPhysAddrResult *result,
3435                               ARMMMUFaultInfo *fi)
3436 {
3437     if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) {
3438         return true;
3439     }
3440     if (!granule_protection_check(env, result->f.phys_addr,
3441                                   result->f.attrs.space, fi)) {
3442         fi->type = ARMFault_GPCFOnOutput;
3443         return true;
3444     }
3445     return false;
3446 }
3447 
3448 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
3449                                     MMUAccessType access_type,
3450                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
3451                                     GetPhysAddrResult *result,
3452                                     ARMMMUFaultInfo *fi)
3453 {
3454     S1Translate ptw = {
3455         .in_mmu_idx = mmu_idx,
3456         .in_space = space,
3457     };
3458     return get_phys_addr_nogpc(env, &ptw, address, access_type, result, fi);
3459 }
3460 
3461 bool get_phys_addr(CPUARMState *env, target_ulong address,
3462                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
3463                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3464 {
3465     S1Translate ptw = {
3466         .in_mmu_idx = mmu_idx,
3467     };
3468     ARMSecuritySpace ss;
3469 
3470     switch (mmu_idx) {
3471     case ARMMMUIdx_E10_0:
3472     case ARMMMUIdx_E10_1:
3473     case ARMMMUIdx_E10_1_PAN:
3474     case ARMMMUIdx_E20_0:
3475     case ARMMMUIdx_E20_2:
3476     case ARMMMUIdx_E20_2_PAN:
3477     case ARMMMUIdx_Stage1_E0:
3478     case ARMMMUIdx_Stage1_E1:
3479     case ARMMMUIdx_Stage1_E1_PAN:
3480     case ARMMMUIdx_E2:
3481         ss = arm_security_space_below_el3(env);
3482         break;
3483     case ARMMMUIdx_Stage2:
3484         /*
3485          * For Secure EL2, we need this index to be NonSecure;
3486          * otherwise this will already be NonSecure or Realm.
3487          */
3488         ss = arm_security_space_below_el3(env);
3489         if (ss == ARMSS_Secure) {
3490             ss = ARMSS_NonSecure;
3491         }
3492         break;
3493     case ARMMMUIdx_Phys_NS:
3494     case ARMMMUIdx_MPrivNegPri:
3495     case ARMMMUIdx_MUserNegPri:
3496     case ARMMMUIdx_MPriv:
3497     case ARMMMUIdx_MUser:
3498         ss = ARMSS_NonSecure;
3499         break;
3500     case ARMMMUIdx_Stage2_S:
3501     case ARMMMUIdx_Phys_S:
3502     case ARMMMUIdx_MSPrivNegPri:
3503     case ARMMMUIdx_MSUserNegPri:
3504     case ARMMMUIdx_MSPriv:
3505     case ARMMMUIdx_MSUser:
3506         ss = ARMSS_Secure;
3507         break;
3508     case ARMMMUIdx_E3:
3509         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3510             cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3511             ss = ARMSS_Root;
3512         } else {
3513             ss = ARMSS_Secure;
3514         }
3515         break;
3516     case ARMMMUIdx_Phys_Root:
3517         ss = ARMSS_Root;
3518         break;
3519     case ARMMMUIdx_Phys_Realm:
3520         ss = ARMSS_Realm;
3521         break;
3522     default:
3523         g_assert_not_reached();
3524     }
3525 
3526     ptw.in_space = ss;
3527     return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi);
3528 }
3529 
3530 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3531                                          MemTxAttrs *attrs)
3532 {
3533     ARMCPU *cpu = ARM_CPU(cs);
3534     CPUARMState *env = &cpu->env;
3535     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3536     ARMSecuritySpace ss = arm_security_space(env);
3537     S1Translate ptw = {
3538         .in_mmu_idx = mmu_idx,
3539         .in_space = ss,
3540         .in_debug = true,
3541     };
3542     GetPhysAddrResult res = {};
3543     ARMMMUFaultInfo fi = {};
3544     bool ret;
3545 
3546     ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3547     *attrs = res.f.attrs;
3548 
3549     if (ret) {
3550         return -1;
3551     }
3552     return res.f.phys_addr;
3553 }
3554