1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "qemu/main-loop.h" 13 #include "exec/exec-all.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "idau.h" 17 #include "tcg/oversized-guest.h" 18 19 20 typedef struct S1Translate { 21 ARMMMUIdx in_mmu_idx; 22 ARMMMUIdx in_ptw_idx; 23 bool in_secure; 24 bool in_debug; 25 bool out_secure; 26 bool out_rw; 27 bool out_be; 28 hwaddr out_virt; 29 hwaddr out_phys; 30 void *out_host; 31 } S1Translate; 32 33 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 34 uint64_t address, 35 MMUAccessType access_type, bool s1_is_el0, 36 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 37 __attribute__((nonnull)); 38 39 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw, 40 target_ulong address, 41 MMUAccessType access_type, 42 GetPhysAddrResult *result, 43 ARMMMUFaultInfo *fi) 44 __attribute__((nonnull)); 45 46 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 47 static const uint8_t pamax_map[] = { 48 [0] = 32, 49 [1] = 36, 50 [2] = 40, 51 [3] = 42, 52 [4] = 44, 53 [5] = 48, 54 [6] = 52, 55 }; 56 57 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 58 unsigned int arm_pamax(ARMCPU *cpu) 59 { 60 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 61 unsigned int parange = 62 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 63 64 /* 65 * id_aa64mmfr0 is a read-only register so values outside of the 66 * supported mappings can be considered an implementation error. 67 */ 68 assert(parange < ARRAY_SIZE(pamax_map)); 69 return pamax_map[parange]; 70 } 71 72 /* 73 * In machvirt_init, we call arm_pamax on a cpu that is not fully 74 * initialized, so we can't rely on the propagation done in realize. 75 */ 76 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) || 77 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) { 78 /* v7 with LPAE */ 79 return 40; 80 } 81 /* Anything else */ 82 return 32; 83 } 84 85 /* 86 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 87 */ 88 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 89 { 90 switch (mmu_idx) { 91 case ARMMMUIdx_E10_0: 92 return ARMMMUIdx_Stage1_E0; 93 case ARMMMUIdx_E10_1: 94 return ARMMMUIdx_Stage1_E1; 95 case ARMMMUIdx_E10_1_PAN: 96 return ARMMMUIdx_Stage1_E1_PAN; 97 default: 98 return mmu_idx; 99 } 100 } 101 102 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 103 { 104 return stage_1_mmu_idx(arm_mmu_idx(env)); 105 } 106 107 /* 108 * Return where we should do ptw loads from for a stage 2 walk. 109 * This depends on whether the address we are looking up is a 110 * Secure IPA or a NonSecure IPA, which we know from whether this is 111 * Stage2 or Stage2_S. 112 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits. 113 */ 114 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx) 115 { 116 bool s2walk_secure; 117 118 /* 119 * We're OK to check the current state of the CPU here because 120 * (1) we always invalidate all TLBs when the SCR_EL3.NS bit changes 121 * (2) there's no way to do a lookup that cares about Stage 2 for a 122 * different security state to the current one for AArch64, and AArch32 123 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do 124 * an NS stage 1+2 lookup while the NS bit is 0.) 125 */ 126 if (!arm_is_secure_below_el3(env) || !arm_el_is_aa64(env, 3)) { 127 return ARMMMUIdx_Phys_NS; 128 } 129 if (stage2idx == ARMMMUIdx_Stage2_S) { 130 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW); 131 } else { 132 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW); 133 } 134 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 135 136 } 137 138 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 139 { 140 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 141 } 142 143 /* Return the TTBR associated with this translation regime */ 144 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 145 { 146 if (mmu_idx == ARMMMUIdx_Stage2) { 147 return env->cp15.vttbr_el2; 148 } 149 if (mmu_idx == ARMMMUIdx_Stage2_S) { 150 return env->cp15.vsttbr_el2; 151 } 152 if (ttbrn == 0) { 153 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 154 } else { 155 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 156 } 157 } 158 159 /* Return true if the specified stage of address translation is disabled */ 160 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, 161 bool is_secure) 162 { 163 uint64_t hcr_el2; 164 165 if (arm_feature(env, ARM_FEATURE_M)) { 166 switch (env->v7m.mpu_ctrl[is_secure] & 167 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 168 case R_V7M_MPU_CTRL_ENABLE_MASK: 169 /* Enabled, but not for HardFault and NMI */ 170 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 171 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 172 /* Enabled for all cases */ 173 return false; 174 case 0: 175 default: 176 /* 177 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 178 * we warned about that in armv7m_nvic.c when the guest set it. 179 */ 180 return true; 181 } 182 } 183 184 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure); 185 186 switch (mmu_idx) { 187 case ARMMMUIdx_Stage2: 188 case ARMMMUIdx_Stage2_S: 189 /* HCR.DC means HCR.VM behaves as 1 */ 190 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 191 192 case ARMMMUIdx_E10_0: 193 case ARMMMUIdx_E10_1: 194 case ARMMMUIdx_E10_1_PAN: 195 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ 196 if (hcr_el2 & HCR_TGE) { 197 return true; 198 } 199 break; 200 201 case ARMMMUIdx_Stage1_E0: 202 case ARMMMUIdx_Stage1_E1: 203 case ARMMMUIdx_Stage1_E1_PAN: 204 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 205 if (hcr_el2 & HCR_DC) { 206 return true; 207 } 208 break; 209 210 case ARMMMUIdx_E20_0: 211 case ARMMMUIdx_E20_2: 212 case ARMMMUIdx_E20_2_PAN: 213 case ARMMMUIdx_E2: 214 case ARMMMUIdx_E3: 215 break; 216 217 case ARMMMUIdx_Phys_NS: 218 case ARMMMUIdx_Phys_S: 219 /* No translation for physical address spaces. */ 220 return true; 221 222 default: 223 g_assert_not_reached(); 224 } 225 226 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 227 } 228 229 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) 230 { 231 /* 232 * For an S1 page table walk, the stage 1 attributes are always 233 * some form of "this is Normal memory". The combined S1+S2 234 * attributes are therefore only Device if stage 2 specifies Device. 235 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 236 * ie when cacheattrs.attrs bits [3:2] are 0b00. 237 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 238 * when cacheattrs.attrs bit [2] is 0. 239 */ 240 if (hcr & HCR_FWB) { 241 return (attrs & 0x4) == 0; 242 } else { 243 return (attrs & 0xc) == 0; 244 } 245 } 246 247 /* Translate a S1 pagetable walk through S2 if needed. */ 248 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, 249 hwaddr addr, ARMMMUFaultInfo *fi) 250 { 251 bool is_secure = ptw->in_secure; 252 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 253 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx; 254 uint8_t pte_attrs; 255 256 ptw->out_virt = addr; 257 258 if (unlikely(ptw->in_debug)) { 259 /* 260 * From gdbstub, do not use softmmu so that we don't modify the 261 * state of the cpu at all, including softmmu tlb contents. 262 */ 263 if (regime_is_stage2(s2_mmu_idx)) { 264 S1Translate s2ptw = { 265 .in_mmu_idx = s2_mmu_idx, 266 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx), 267 .in_secure = s2_mmu_idx == ARMMMUIdx_Stage2_S, 268 .in_debug = true, 269 }; 270 GetPhysAddrResult s2 = { }; 271 272 if (get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD, 273 false, &s2, fi)) { 274 goto fail; 275 } 276 ptw->out_phys = s2.f.phys_addr; 277 pte_attrs = s2.cacheattrs.attrs; 278 ptw->out_secure = s2.f.attrs.secure; 279 } else { 280 /* Regime is physical. */ 281 ptw->out_phys = addr; 282 pte_attrs = 0; 283 ptw->out_secure = s2_mmu_idx == ARMMMUIdx_Phys_S; 284 } 285 ptw->out_host = NULL; 286 ptw->out_rw = false; 287 } else { 288 #ifdef CONFIG_TCG 289 CPUTLBEntryFull *full; 290 int flags; 291 292 env->tlb_fi = fi; 293 flags = probe_access_full(env, addr, 0, MMU_DATA_LOAD, 294 arm_to_core_mmu_idx(s2_mmu_idx), 295 true, &ptw->out_host, &full, 0); 296 env->tlb_fi = NULL; 297 298 if (unlikely(flags & TLB_INVALID_MASK)) { 299 goto fail; 300 } 301 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 302 ptw->out_rw = full->prot & PAGE_WRITE; 303 pte_attrs = full->pte_attrs; 304 ptw->out_secure = full->attrs.secure; 305 #else 306 g_assert_not_reached(); 307 #endif 308 } 309 310 if (regime_is_stage2(s2_mmu_idx)) { 311 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure); 312 313 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { 314 /* 315 * PTW set and S1 walk touched S2 Device memory: 316 * generate Permission fault. 317 */ 318 fi->type = ARMFault_Permission; 319 fi->s2addr = addr; 320 fi->stage2 = true; 321 fi->s1ptw = true; 322 fi->s1ns = !is_secure; 323 return false; 324 } 325 } 326 327 ptw->out_be = regime_translation_big_endian(env, mmu_idx); 328 return true; 329 330 fail: 331 assert(fi->type != ARMFault_None); 332 fi->s2addr = addr; 333 fi->stage2 = true; 334 fi->s1ptw = true; 335 fi->s1ns = !is_secure; 336 return false; 337 } 338 339 /* All loads done in the course of a page table walk go through here. */ 340 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, 341 ARMMMUFaultInfo *fi) 342 { 343 CPUState *cs = env_cpu(env); 344 void *host = ptw->out_host; 345 uint32_t data; 346 347 if (likely(host)) { 348 /* Page tables are in RAM, and we have the host address. */ 349 data = qatomic_read((uint32_t *)host); 350 if (ptw->out_be) { 351 data = be32_to_cpu(data); 352 } else { 353 data = le32_to_cpu(data); 354 } 355 } else { 356 /* Page tables are in MMIO. */ 357 MemTxAttrs attrs = { .secure = ptw->out_secure }; 358 AddressSpace *as = arm_addressspace(cs, attrs); 359 MemTxResult result = MEMTX_OK; 360 361 if (ptw->out_be) { 362 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); 363 } else { 364 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); 365 } 366 if (unlikely(result != MEMTX_OK)) { 367 fi->type = ARMFault_SyncExternalOnWalk; 368 fi->ea = arm_extabort_type(result); 369 return 0; 370 } 371 } 372 return data; 373 } 374 375 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, 376 ARMMMUFaultInfo *fi) 377 { 378 CPUState *cs = env_cpu(env); 379 void *host = ptw->out_host; 380 uint64_t data; 381 382 if (likely(host)) { 383 /* Page tables are in RAM, and we have the host address. */ 384 #ifdef CONFIG_ATOMIC64 385 data = qatomic_read__nocheck((uint64_t *)host); 386 if (ptw->out_be) { 387 data = be64_to_cpu(data); 388 } else { 389 data = le64_to_cpu(data); 390 } 391 #else 392 if (ptw->out_be) { 393 data = ldq_be_p(host); 394 } else { 395 data = ldq_le_p(host); 396 } 397 #endif 398 } else { 399 /* Page tables are in MMIO. */ 400 MemTxAttrs attrs = { .secure = ptw->out_secure }; 401 AddressSpace *as = arm_addressspace(cs, attrs); 402 MemTxResult result = MEMTX_OK; 403 404 if (ptw->out_be) { 405 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 406 } else { 407 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 408 } 409 if (unlikely(result != MEMTX_OK)) { 410 fi->type = ARMFault_SyncExternalOnWalk; 411 fi->ea = arm_extabort_type(result); 412 return 0; 413 } 414 } 415 return data; 416 } 417 418 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val, 419 uint64_t new_val, S1Translate *ptw, 420 ARMMMUFaultInfo *fi) 421 { 422 #ifdef TARGET_AARCH64 423 uint64_t cur_val; 424 void *host = ptw->out_host; 425 426 if (unlikely(!host)) { 427 fi->type = ARMFault_UnsuppAtomicUpdate; 428 fi->s1ptw = true; 429 return 0; 430 } 431 432 /* 433 * Raising a stage2 Protection fault for an atomic update to a read-only 434 * page is delayed until it is certain that there is a change to make. 435 */ 436 if (unlikely(!ptw->out_rw)) { 437 int flags; 438 void *discard; 439 440 env->tlb_fi = fi; 441 flags = probe_access_flags(env, ptw->out_virt, 0, MMU_DATA_STORE, 442 arm_to_core_mmu_idx(ptw->in_ptw_idx), 443 true, &discard, 0); 444 env->tlb_fi = NULL; 445 446 if (unlikely(flags & TLB_INVALID_MASK)) { 447 assert(fi->type != ARMFault_None); 448 fi->s2addr = ptw->out_virt; 449 fi->stage2 = true; 450 fi->s1ptw = true; 451 fi->s1ns = !ptw->in_secure; 452 return 0; 453 } 454 455 /* In case CAS mismatches and we loop, remember writability. */ 456 ptw->out_rw = true; 457 } 458 459 #ifdef CONFIG_ATOMIC64 460 if (ptw->out_be) { 461 old_val = cpu_to_be64(old_val); 462 new_val = cpu_to_be64(new_val); 463 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 464 cur_val = be64_to_cpu(cur_val); 465 } else { 466 old_val = cpu_to_le64(old_val); 467 new_val = cpu_to_le64(new_val); 468 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 469 cur_val = le64_to_cpu(cur_val); 470 } 471 #else 472 /* 473 * We can't support the full 64-bit atomic cmpxchg on the host. 474 * Because this is only used for FEAT_HAFDBS, which is only for AA64, 475 * we know that TCG_OVERSIZED_GUEST is set, which means that we are 476 * running in round-robin mode and could only race with dma i/o. 477 */ 478 #if !TCG_OVERSIZED_GUEST 479 # error "Unexpected configuration" 480 #endif 481 bool locked = qemu_mutex_iothread_locked(); 482 if (!locked) { 483 qemu_mutex_lock_iothread(); 484 } 485 if (ptw->out_be) { 486 cur_val = ldq_be_p(host); 487 if (cur_val == old_val) { 488 stq_be_p(host, new_val); 489 } 490 } else { 491 cur_val = ldq_le_p(host); 492 if (cur_val == old_val) { 493 stq_le_p(host, new_val); 494 } 495 } 496 if (!locked) { 497 qemu_mutex_unlock_iothread(); 498 } 499 #endif 500 501 return cur_val; 502 #else 503 /* AArch32 does not have FEAT_HADFS. */ 504 g_assert_not_reached(); 505 #endif 506 } 507 508 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 509 uint32_t *table, uint32_t address) 510 { 511 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 512 uint64_t tcr = regime_tcr(env, mmu_idx); 513 int maskshift = extract32(tcr, 0, 3); 514 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 515 uint32_t base_mask; 516 517 if (address & mask) { 518 if (tcr & TTBCR_PD1) { 519 /* Translation table walk disabled for TTBR1 */ 520 return false; 521 } 522 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 523 } else { 524 if (tcr & TTBCR_PD0) { 525 /* Translation table walk disabled for TTBR0 */ 526 return false; 527 } 528 base_mask = ~((uint32_t)0x3fffu >> maskshift); 529 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 530 } 531 *table |= (address >> 18) & 0x3ffc; 532 return true; 533 } 534 535 /* 536 * Translate section/page access permissions to page R/W protection flags 537 * @env: CPUARMState 538 * @mmu_idx: MMU index indicating required translation regime 539 * @ap: The 3-bit access permissions (AP[2:0]) 540 * @domain_prot: The 2-bit domain access permissions 541 * @is_user: TRUE if accessing from PL0 542 */ 543 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx, 544 int ap, int domain_prot, bool is_user) 545 { 546 if (domain_prot == 3) { 547 return PAGE_READ | PAGE_WRITE; 548 } 549 550 switch (ap) { 551 case 0: 552 if (arm_feature(env, ARM_FEATURE_V7)) { 553 return 0; 554 } 555 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 556 case SCTLR_S: 557 return is_user ? 0 : PAGE_READ; 558 case SCTLR_R: 559 return PAGE_READ; 560 default: 561 return 0; 562 } 563 case 1: 564 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 565 case 2: 566 if (is_user) { 567 return PAGE_READ; 568 } else { 569 return PAGE_READ | PAGE_WRITE; 570 } 571 case 3: 572 return PAGE_READ | PAGE_WRITE; 573 case 4: /* Reserved. */ 574 return 0; 575 case 5: 576 return is_user ? 0 : PAGE_READ; 577 case 6: 578 return PAGE_READ; 579 case 7: 580 if (!arm_feature(env, ARM_FEATURE_V6K)) { 581 return 0; 582 } 583 return PAGE_READ; 584 default: 585 g_assert_not_reached(); 586 } 587 } 588 589 /* 590 * Translate section/page access permissions to page R/W protection flags 591 * @env: CPUARMState 592 * @mmu_idx: MMU index indicating required translation regime 593 * @ap: The 3-bit access permissions (AP[2:0]) 594 * @domain_prot: The 2-bit domain access permissions 595 */ 596 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 597 int ap, int domain_prot) 598 { 599 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 600 regime_is_user(env, mmu_idx)); 601 } 602 603 /* 604 * Translate section/page access permissions to page R/W protection flags. 605 * @ap: The 2-bit simple AP (AP[2:1]) 606 * @is_user: TRUE if accessing from PL0 607 */ 608 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 609 { 610 switch (ap) { 611 case 0: 612 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 613 case 1: 614 return PAGE_READ | PAGE_WRITE; 615 case 2: 616 return is_user ? 0 : PAGE_READ; 617 case 3: 618 return PAGE_READ; 619 default: 620 g_assert_not_reached(); 621 } 622 } 623 624 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 625 { 626 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 627 } 628 629 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, 630 uint32_t address, MMUAccessType access_type, 631 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 632 { 633 int level = 1; 634 uint32_t table; 635 uint32_t desc; 636 int type; 637 int ap; 638 int domain = 0; 639 int domain_prot; 640 hwaddr phys_addr; 641 uint32_t dacr; 642 643 /* Pagetable walk. */ 644 /* Lookup l1 descriptor. */ 645 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { 646 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 647 fi->type = ARMFault_Translation; 648 goto do_fault; 649 } 650 if (!S1_ptw_translate(env, ptw, table, fi)) { 651 goto do_fault; 652 } 653 desc = arm_ldl_ptw(env, ptw, fi); 654 if (fi->type != ARMFault_None) { 655 goto do_fault; 656 } 657 type = (desc & 3); 658 domain = (desc >> 5) & 0x0f; 659 if (regime_el(env, ptw->in_mmu_idx) == 1) { 660 dacr = env->cp15.dacr_ns; 661 } else { 662 dacr = env->cp15.dacr_s; 663 } 664 domain_prot = (dacr >> (domain * 2)) & 3; 665 if (type == 0) { 666 /* Section translation fault. */ 667 fi->type = ARMFault_Translation; 668 goto do_fault; 669 } 670 if (type != 2) { 671 level = 2; 672 } 673 if (domain_prot == 0 || domain_prot == 2) { 674 fi->type = ARMFault_Domain; 675 goto do_fault; 676 } 677 if (type == 2) { 678 /* 1Mb section. */ 679 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 680 ap = (desc >> 10) & 3; 681 result->f.lg_page_size = 20; /* 1MB */ 682 } else { 683 /* Lookup l2 entry. */ 684 if (type == 1) { 685 /* Coarse pagetable. */ 686 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 687 } else { 688 /* Fine pagetable. */ 689 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 690 } 691 if (!S1_ptw_translate(env, ptw, table, fi)) { 692 goto do_fault; 693 } 694 desc = arm_ldl_ptw(env, ptw, fi); 695 if (fi->type != ARMFault_None) { 696 goto do_fault; 697 } 698 switch (desc & 3) { 699 case 0: /* Page translation fault. */ 700 fi->type = ARMFault_Translation; 701 goto do_fault; 702 case 1: /* 64k page. */ 703 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 704 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 705 result->f.lg_page_size = 16; 706 break; 707 case 2: /* 4k page. */ 708 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 709 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 710 result->f.lg_page_size = 12; 711 break; 712 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 713 if (type == 1) { 714 /* ARMv6/XScale extended small page format */ 715 if (arm_feature(env, ARM_FEATURE_XSCALE) 716 || arm_feature(env, ARM_FEATURE_V6)) { 717 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 718 result->f.lg_page_size = 12; 719 } else { 720 /* 721 * UNPREDICTABLE in ARMv5; we choose to take a 722 * page translation fault. 723 */ 724 fi->type = ARMFault_Translation; 725 goto do_fault; 726 } 727 } else { 728 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 729 result->f.lg_page_size = 10; 730 } 731 ap = (desc >> 4) & 3; 732 break; 733 default: 734 /* Never happens, but compiler isn't smart enough to tell. */ 735 g_assert_not_reached(); 736 } 737 } 738 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); 739 result->f.prot |= result->f.prot ? PAGE_EXEC : 0; 740 if (!(result->f.prot & (1 << access_type))) { 741 /* Access permission fault. */ 742 fi->type = ARMFault_Permission; 743 goto do_fault; 744 } 745 result->f.phys_addr = phys_addr; 746 return false; 747 do_fault: 748 fi->domain = domain; 749 fi->level = level; 750 return true; 751 } 752 753 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, 754 uint32_t address, MMUAccessType access_type, 755 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 756 { 757 ARMCPU *cpu = env_archcpu(env); 758 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 759 int level = 1; 760 uint32_t table; 761 uint32_t desc; 762 uint32_t xn; 763 uint32_t pxn = 0; 764 int type; 765 int ap; 766 int domain = 0; 767 int domain_prot; 768 hwaddr phys_addr; 769 uint32_t dacr; 770 bool ns; 771 int user_prot; 772 773 /* Pagetable walk. */ 774 /* Lookup l1 descriptor. */ 775 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 776 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 777 fi->type = ARMFault_Translation; 778 goto do_fault; 779 } 780 if (!S1_ptw_translate(env, ptw, table, fi)) { 781 goto do_fault; 782 } 783 desc = arm_ldl_ptw(env, ptw, fi); 784 if (fi->type != ARMFault_None) { 785 goto do_fault; 786 } 787 type = (desc & 3); 788 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 789 /* Section translation fault, or attempt to use the encoding 790 * which is Reserved on implementations without PXN. 791 */ 792 fi->type = ARMFault_Translation; 793 goto do_fault; 794 } 795 if ((type == 1) || !(desc & (1 << 18))) { 796 /* Page or Section. */ 797 domain = (desc >> 5) & 0x0f; 798 } 799 if (regime_el(env, mmu_idx) == 1) { 800 dacr = env->cp15.dacr_ns; 801 } else { 802 dacr = env->cp15.dacr_s; 803 } 804 if (type == 1) { 805 level = 2; 806 } 807 domain_prot = (dacr >> (domain * 2)) & 3; 808 if (domain_prot == 0 || domain_prot == 2) { 809 /* Section or Page domain fault */ 810 fi->type = ARMFault_Domain; 811 goto do_fault; 812 } 813 if (type != 1) { 814 if (desc & (1 << 18)) { 815 /* Supersection. */ 816 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 817 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 818 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 819 result->f.lg_page_size = 24; /* 16MB */ 820 } else { 821 /* Section. */ 822 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 823 result->f.lg_page_size = 20; /* 1MB */ 824 } 825 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 826 xn = desc & (1 << 4); 827 pxn = desc & 1; 828 ns = extract32(desc, 19, 1); 829 } else { 830 if (cpu_isar_feature(aa32_pxn, cpu)) { 831 pxn = (desc >> 2) & 1; 832 } 833 ns = extract32(desc, 3, 1); 834 /* Lookup l2 entry. */ 835 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 836 if (!S1_ptw_translate(env, ptw, table, fi)) { 837 goto do_fault; 838 } 839 desc = arm_ldl_ptw(env, ptw, fi); 840 if (fi->type != ARMFault_None) { 841 goto do_fault; 842 } 843 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 844 switch (desc & 3) { 845 case 0: /* Page translation fault. */ 846 fi->type = ARMFault_Translation; 847 goto do_fault; 848 case 1: /* 64k page. */ 849 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 850 xn = desc & (1 << 15); 851 result->f.lg_page_size = 16; 852 break; 853 case 2: case 3: /* 4k page. */ 854 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 855 xn = desc & 1; 856 result->f.lg_page_size = 12; 857 break; 858 default: 859 /* Never happens, but compiler isn't smart enough to tell. */ 860 g_assert_not_reached(); 861 } 862 } 863 if (domain_prot == 3) { 864 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 865 } else { 866 if (pxn && !regime_is_user(env, mmu_idx)) { 867 xn = 1; 868 } 869 if (xn && access_type == MMU_INST_FETCH) { 870 fi->type = ARMFault_Permission; 871 goto do_fault; 872 } 873 874 if (arm_feature(env, ARM_FEATURE_V6K) && 875 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 876 /* The simplified model uses AP[0] as an access control bit. */ 877 if ((ap & 1) == 0) { 878 /* Access flag fault. */ 879 fi->type = ARMFault_AccessFlag; 880 goto do_fault; 881 } 882 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 883 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1); 884 } else { 885 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 886 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1); 887 } 888 if (result->f.prot && !xn) { 889 result->f.prot |= PAGE_EXEC; 890 } 891 if (!(result->f.prot & (1 << access_type))) { 892 /* Access permission fault. */ 893 fi->type = ARMFault_Permission; 894 goto do_fault; 895 } 896 if (regime_is_pan(env, mmu_idx) && 897 !regime_is_user(env, mmu_idx) && 898 user_prot && 899 access_type != MMU_INST_FETCH) { 900 /* Privileged Access Never fault */ 901 fi->type = ARMFault_Permission; 902 goto do_fault; 903 } 904 } 905 if (ns) { 906 /* The NS bit will (as required by the architecture) have no effect if 907 * the CPU doesn't support TZ or this is a non-secure translation 908 * regime, because the attribute will already be non-secure. 909 */ 910 result->f.attrs.secure = false; 911 } 912 result->f.phys_addr = phys_addr; 913 return false; 914 do_fault: 915 fi->domain = domain; 916 fi->level = level; 917 return true; 918 } 919 920 /* 921 * Translate S2 section/page access permissions to protection flags 922 * @env: CPUARMState 923 * @s2ap: The 2-bit stage2 access permissions (S2AP) 924 * @xn: XN (execute-never) bits 925 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 926 */ 927 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 928 { 929 int prot = 0; 930 931 if (s2ap & 1) { 932 prot |= PAGE_READ; 933 } 934 if (s2ap & 2) { 935 prot |= PAGE_WRITE; 936 } 937 938 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 939 switch (xn) { 940 case 0: 941 prot |= PAGE_EXEC; 942 break; 943 case 1: 944 if (s1_is_el0) { 945 prot |= PAGE_EXEC; 946 } 947 break; 948 case 2: 949 break; 950 case 3: 951 if (!s1_is_el0) { 952 prot |= PAGE_EXEC; 953 } 954 break; 955 default: 956 g_assert_not_reached(); 957 } 958 } else { 959 if (!extract32(xn, 1, 1)) { 960 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 961 prot |= PAGE_EXEC; 962 } 963 } 964 } 965 return prot; 966 } 967 968 /* 969 * Translate section/page access permissions to protection flags 970 * @env: CPUARMState 971 * @mmu_idx: MMU index indicating required translation regime 972 * @is_aa64: TRUE if AArch64 973 * @ap: The 2-bit simple AP (AP[2:1]) 974 * @ns: NS (non-secure) bit 975 * @xn: XN (execute-never) bit 976 * @pxn: PXN (privileged execute-never) bit 977 */ 978 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 979 int ap, int ns, int xn, int pxn) 980 { 981 ARMCPU *cpu = env_archcpu(env); 982 bool is_user = regime_is_user(env, mmu_idx); 983 int prot_rw, user_rw; 984 bool have_wxn; 985 int wxn = 0; 986 987 assert(!regime_is_stage2(mmu_idx)); 988 989 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 990 if (is_user) { 991 prot_rw = user_rw; 992 } else { 993 /* 994 * PAN controls can forbid data accesses but don't affect insn fetch. 995 * Plain PAN forbids data accesses if EL0 has data permissions; 996 * PAN3 forbids data accesses if EL0 has either data or exec perms. 997 * Note that for AArch64 the 'user can exec' case is exactly !xn. 998 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0 999 * do not affect EPAN. 1000 */ 1001 if (user_rw && regime_is_pan(env, mmu_idx)) { 1002 prot_rw = 0; 1003 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 && 1004 regime_is_pan(env, mmu_idx) && 1005 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) { 1006 prot_rw = 0; 1007 } else { 1008 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 1009 } 1010 } 1011 1012 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 1013 return prot_rw; 1014 } 1015 1016 /* TODO have_wxn should be replaced with 1017 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 1018 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 1019 * compatible processors have EL2, which is required for [U]WXN. 1020 */ 1021 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 1022 1023 if (have_wxn) { 1024 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 1025 } 1026 1027 if (is_aa64) { 1028 if (regime_has_2_ranges(mmu_idx) && !is_user) { 1029 xn = pxn || (user_rw & PAGE_WRITE); 1030 } 1031 } else if (arm_feature(env, ARM_FEATURE_V7)) { 1032 switch (regime_el(env, mmu_idx)) { 1033 case 1: 1034 case 3: 1035 if (is_user) { 1036 xn = xn || !(user_rw & PAGE_READ); 1037 } else { 1038 int uwxn = 0; 1039 if (have_wxn) { 1040 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 1041 } 1042 xn = xn || !(prot_rw & PAGE_READ) || pxn || 1043 (uwxn && (user_rw & PAGE_WRITE)); 1044 } 1045 break; 1046 case 2: 1047 break; 1048 } 1049 } else { 1050 xn = wxn = 0; 1051 } 1052 1053 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 1054 return prot_rw; 1055 } 1056 return prot_rw | PAGE_EXEC; 1057 } 1058 1059 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 1060 ARMMMUIdx mmu_idx) 1061 { 1062 uint64_t tcr = regime_tcr(env, mmu_idx); 1063 uint32_t el = regime_el(env, mmu_idx); 1064 int select, tsz; 1065 bool epd, hpd; 1066 1067 assert(mmu_idx != ARMMMUIdx_Stage2_S); 1068 1069 if (mmu_idx == ARMMMUIdx_Stage2) { 1070 /* VTCR */ 1071 bool sext = extract32(tcr, 4, 1); 1072 bool sign = extract32(tcr, 3, 1); 1073 1074 /* 1075 * If the sign-extend bit is not the same as t0sz[3], the result 1076 * is unpredictable. Flag this as a guest error. 1077 */ 1078 if (sign != sext) { 1079 qemu_log_mask(LOG_GUEST_ERROR, 1080 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 1081 } 1082 tsz = sextract32(tcr, 0, 4) + 8; 1083 select = 0; 1084 hpd = false; 1085 epd = false; 1086 } else if (el == 2) { 1087 /* HTCR */ 1088 tsz = extract32(tcr, 0, 3); 1089 select = 0; 1090 hpd = extract64(tcr, 24, 1); 1091 epd = false; 1092 } else { 1093 int t0sz = extract32(tcr, 0, 3); 1094 int t1sz = extract32(tcr, 16, 3); 1095 1096 if (t1sz == 0) { 1097 select = va > (0xffffffffu >> t0sz); 1098 } else { 1099 /* Note that we will detect errors later. */ 1100 select = va >= ~(0xffffffffu >> t1sz); 1101 } 1102 if (!select) { 1103 tsz = t0sz; 1104 epd = extract32(tcr, 7, 1); 1105 hpd = extract64(tcr, 41, 1); 1106 } else { 1107 tsz = t1sz; 1108 epd = extract32(tcr, 23, 1); 1109 hpd = extract64(tcr, 42, 1); 1110 } 1111 /* For aarch32, hpd0 is not enabled without t2e as well. */ 1112 hpd &= extract32(tcr, 6, 1); 1113 } 1114 1115 return (ARMVAParameters) { 1116 .tsz = tsz, 1117 .select = select, 1118 .epd = epd, 1119 .hpd = hpd, 1120 }; 1121 } 1122 1123 /* 1124 * check_s2_mmu_setup 1125 * @cpu: ARMCPU 1126 * @is_aa64: True if the translation regime is in AArch64 state 1127 * @tcr: VTCR_EL2 or VSTCR_EL2 1128 * @ds: Effective value of TCR.DS. 1129 * @iasize: Bitsize of IPAs 1130 * @stride: Page-table stride (See the ARM ARM) 1131 * 1132 * Decode the starting level of the S2 lookup, returning INT_MIN if 1133 * the configuration is invalid. 1134 */ 1135 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr, 1136 bool ds, int iasize, int stride) 1137 { 1138 int sl0, sl2, startlevel, granulebits, levels; 1139 int s1_min_iasize, s1_max_iasize; 1140 1141 sl0 = extract32(tcr, 6, 2); 1142 if (is_aa64) { 1143 /* 1144 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size, 1145 * so interleave AArch64.S2StartLevel. 1146 */ 1147 switch (stride) { 1148 case 9: /* 4KB */ 1149 /* SL2 is RES0 unless DS=1 & 4KB granule. */ 1150 sl2 = extract64(tcr, 33, 1); 1151 if (ds && sl2) { 1152 if (sl0 != 0) { 1153 goto fail; 1154 } 1155 startlevel = -1; 1156 } else { 1157 startlevel = 2 - sl0; 1158 switch (sl0) { 1159 case 2: 1160 if (arm_pamax(cpu) < 44) { 1161 goto fail; 1162 } 1163 break; 1164 case 3: 1165 if (!cpu_isar_feature(aa64_st, cpu)) { 1166 goto fail; 1167 } 1168 startlevel = 3; 1169 break; 1170 } 1171 } 1172 break; 1173 case 11: /* 16KB */ 1174 switch (sl0) { 1175 case 2: 1176 if (arm_pamax(cpu) < 42) { 1177 goto fail; 1178 } 1179 break; 1180 case 3: 1181 if (!ds) { 1182 goto fail; 1183 } 1184 break; 1185 } 1186 startlevel = 3 - sl0; 1187 break; 1188 case 13: /* 64KB */ 1189 switch (sl0) { 1190 case 2: 1191 if (arm_pamax(cpu) < 44) { 1192 goto fail; 1193 } 1194 break; 1195 case 3: 1196 goto fail; 1197 } 1198 startlevel = 3 - sl0; 1199 break; 1200 default: 1201 g_assert_not_reached(); 1202 } 1203 } else { 1204 /* 1205 * Things are simpler for AArch32 EL2, with only 4k pages. 1206 * There is no separate S2InvalidSL function, but AArch32.S2Walk 1207 * begins with walkparms.sl0 in {'1x'}. 1208 */ 1209 assert(stride == 9); 1210 if (sl0 >= 2) { 1211 goto fail; 1212 } 1213 startlevel = 2 - sl0; 1214 } 1215 1216 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */ 1217 levels = 3 - startlevel; 1218 granulebits = stride + 3; 1219 1220 s1_min_iasize = levels * stride + granulebits + 1; 1221 s1_max_iasize = s1_min_iasize + (stride - 1) + 4; 1222 1223 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) { 1224 return startlevel; 1225 } 1226 1227 fail: 1228 return INT_MIN; 1229 } 1230 1231 /** 1232 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 1233 * 1234 * Returns false if the translation was successful. Otherwise, phys_ptr, 1235 * attrs, prot and page_size may not be filled in, and the populated fsr 1236 * value provides information on why the translation aborted, in the format 1237 * of a long-format DFSR/IFSR fault register, with the following caveat: 1238 * the WnR bit is never set (the caller must do this). 1239 * 1240 * @env: CPUARMState 1241 * @ptw: Current and next stage parameters for the walk. 1242 * @address: virtual address to get physical address for 1243 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 1244 * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2 1245 * (so this is a stage 2 page table walk), 1246 * must be true if this is stage 2 of a stage 1+2 1247 * walk for an EL0 access. If @mmu_idx is anything else, 1248 * @s1_is_el0 is ignored. 1249 * @result: set on translation success, 1250 * @fi: set to fault info if the translation fails 1251 */ 1252 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 1253 uint64_t address, 1254 MMUAccessType access_type, bool s1_is_el0, 1255 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1256 { 1257 ARMCPU *cpu = env_archcpu(env); 1258 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1259 bool is_secure = ptw->in_secure; 1260 int32_t level; 1261 ARMVAParameters param; 1262 uint64_t ttbr; 1263 hwaddr descaddr, indexmask, indexmask_grainsize; 1264 uint32_t tableattrs; 1265 target_ulong page_size; 1266 uint64_t attrs; 1267 int32_t stride; 1268 int addrsize, inputsize, outputsize; 1269 uint64_t tcr = regime_tcr(env, mmu_idx); 1270 int ap, ns, xn, pxn; 1271 uint32_t el = regime_el(env, mmu_idx); 1272 uint64_t descaddrmask; 1273 bool aarch64 = arm_el_is_aa64(env, el); 1274 uint64_t descriptor, new_descriptor; 1275 bool nstable; 1276 1277 /* TODO: This code does not support shareability levels. */ 1278 if (aarch64) { 1279 int ps; 1280 1281 param = aa64_va_parameters(env, address, mmu_idx, 1282 access_type != MMU_INST_FETCH, 1283 !arm_el_is_aa64(env, 1)); 1284 level = 0; 1285 1286 /* 1287 * If TxSZ is programmed to a value larger than the maximum, 1288 * or smaller than the effective minimum, it is IMPLEMENTATION 1289 * DEFINED whether we behave as if the field were programmed 1290 * within bounds, or if a level 0 Translation fault is generated. 1291 * 1292 * With FEAT_LVA, fault on less than minimum becomes required, 1293 * so our choice is to always raise the fault. 1294 */ 1295 if (param.tsz_oob) { 1296 goto do_translation_fault; 1297 } 1298 1299 addrsize = 64 - 8 * param.tbi; 1300 inputsize = 64 - param.tsz; 1301 1302 /* 1303 * Bound PS by PARANGE to find the effective output address size. 1304 * ID_AA64MMFR0 is a read-only register so values outside of the 1305 * supported mappings can be considered an implementation error. 1306 */ 1307 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1308 ps = MIN(ps, param.ps); 1309 assert(ps < ARRAY_SIZE(pamax_map)); 1310 outputsize = pamax_map[ps]; 1311 1312 /* 1313 * With LPA2, the effective output address (OA) size is at most 48 bits 1314 * unless TCR.DS == 1 1315 */ 1316 if (!param.ds && param.gran != Gran64K) { 1317 outputsize = MIN(outputsize, 48); 1318 } 1319 } else { 1320 param = aa32_va_parameters(env, address, mmu_idx); 1321 level = 1; 1322 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1323 inputsize = addrsize - param.tsz; 1324 outputsize = 40; 1325 } 1326 1327 /* 1328 * We determined the region when collecting the parameters, but we 1329 * have not yet validated that the address is valid for the region. 1330 * Extract the top bits and verify that they all match select. 1331 * 1332 * For aa32, if inputsize == addrsize, then we have selected the 1333 * region by exclusion in aa32_va_parameters and there is no more 1334 * validation to do here. 1335 */ 1336 if (inputsize < addrsize) { 1337 target_ulong top_bits = sextract64(address, inputsize, 1338 addrsize - inputsize); 1339 if (-top_bits != param.select) { 1340 /* The gap between the two regions is a Translation fault */ 1341 goto do_translation_fault; 1342 } 1343 } 1344 1345 stride = arm_granule_bits(param.gran) - 3; 1346 1347 /* 1348 * Note that QEMU ignores shareability and cacheability attributes, 1349 * so we don't need to do anything with the SH, ORGN, IRGN fields 1350 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1351 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1352 * implement any ASID-like capability so we can ignore it (instead 1353 * we will always flush the TLB any time the ASID is changed). 1354 */ 1355 ttbr = regime_ttbr(env, mmu_idx, param.select); 1356 1357 /* 1358 * Here we should have set up all the parameters for the translation: 1359 * inputsize, ttbr, epd, stride, tbi 1360 */ 1361 1362 if (param.epd) { 1363 /* 1364 * Translation table walk disabled => Translation fault on TLB miss 1365 * Note: This is always 0 on 64-bit EL2 and EL3. 1366 */ 1367 goto do_translation_fault; 1368 } 1369 1370 if (!regime_is_stage2(mmu_idx)) { 1371 /* 1372 * The starting level depends on the virtual address size (which can 1373 * be up to 48 bits) and the translation granule size. It indicates 1374 * the number of strides (stride bits at a time) needed to 1375 * consume the bits of the input address. In the pseudocode this is: 1376 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1377 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1378 * our 'stride + 3' and 'stride' is our 'stride'. 1379 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1380 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1381 * = 4 - (inputsize - 4) / stride; 1382 */ 1383 level = 4 - (inputsize - 4) / stride; 1384 } else { 1385 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds, 1386 inputsize, stride); 1387 if (startlevel == INT_MIN) { 1388 level = 0; 1389 goto do_translation_fault; 1390 } 1391 level = startlevel; 1392 } 1393 1394 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1395 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1396 1397 /* Now we can extract the actual base address from the TTBR */ 1398 descaddr = extract64(ttbr, 0, 48); 1399 1400 /* 1401 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1402 * 1403 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1404 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1405 * but we've just cleared the bits above 47, so simplify the test. 1406 */ 1407 if (outputsize > 48) { 1408 descaddr |= extract64(ttbr, 2, 4) << 48; 1409 } else if (descaddr >> outputsize) { 1410 level = 0; 1411 fi->type = ARMFault_AddressSize; 1412 goto do_fault; 1413 } 1414 1415 /* 1416 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1417 * and also to mask out CnP (bit 0) which could validly be non-zero. 1418 */ 1419 descaddr &= ~indexmask; 1420 1421 /* 1422 * For AArch32, the address field in the descriptor goes up to bit 39 1423 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1424 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1425 * bits as part of the address, which will be checked via outputsize. 1426 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1427 * the highest bits of a 52-bit output are placed elsewhere. 1428 */ 1429 if (param.ds) { 1430 descaddrmask = MAKE_64BIT_MASK(0, 50); 1431 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1432 descaddrmask = MAKE_64BIT_MASK(0, 48); 1433 } else { 1434 descaddrmask = MAKE_64BIT_MASK(0, 40); 1435 } 1436 descaddrmask &= ~indexmask_grainsize; 1437 1438 /* 1439 * Secure stage 1 accesses start with the page table in secure memory and 1440 * can be downgraded to non-secure at any step. Non-secure accesses 1441 * remain non-secure. We implement this by just ORing in the NSTable/NS 1442 * bits at each step. 1443 * Stage 2 never gets this kind of downgrade. 1444 */ 1445 tableattrs = is_secure ? 0 : (1 << 4); 1446 1447 next_level: 1448 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1449 descaddr &= ~7ULL; 1450 nstable = !regime_is_stage2(mmu_idx) && extract32(tableattrs, 4, 1); 1451 if (nstable) { 1452 /* 1453 * Stage2_S -> Stage2 or Phys_S -> Phys_NS 1454 * Assert that the non-secure idx are even, and relative order. 1455 */ 1456 QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0); 1457 QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0); 1458 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S); 1459 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S); 1460 ptw->in_ptw_idx &= ~1; 1461 ptw->in_secure = false; 1462 } 1463 if (!S1_ptw_translate(env, ptw, descaddr, fi)) { 1464 goto do_fault; 1465 } 1466 descriptor = arm_ldq_ptw(env, ptw, fi); 1467 if (fi->type != ARMFault_None) { 1468 goto do_fault; 1469 } 1470 new_descriptor = descriptor; 1471 1472 restart_atomic_update: 1473 if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) { 1474 /* Invalid, or the Reserved level 3 encoding */ 1475 goto do_translation_fault; 1476 } 1477 1478 descaddr = descriptor & descaddrmask; 1479 1480 /* 1481 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1482 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1483 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1484 * raise AddressSizeFault. 1485 */ 1486 if (outputsize > 48) { 1487 if (param.ds) { 1488 descaddr |= extract64(descriptor, 8, 2) << 50; 1489 } else { 1490 descaddr |= extract64(descriptor, 12, 4) << 48; 1491 } 1492 } else if (descaddr >> outputsize) { 1493 fi->type = ARMFault_AddressSize; 1494 goto do_fault; 1495 } 1496 1497 if ((descriptor & 2) && (level < 3)) { 1498 /* 1499 * Table entry. The top five bits are attributes which may 1500 * propagate down through lower levels of the table (and 1501 * which are all arranged so that 0 means "no effect", so 1502 * we can gather them up by ORing in the bits at each level). 1503 */ 1504 tableattrs |= extract64(descriptor, 59, 5); 1505 level++; 1506 indexmask = indexmask_grainsize; 1507 goto next_level; 1508 } 1509 1510 /* 1511 * Block entry at level 1 or 2, or page entry at level 3. 1512 * These are basically the same thing, although the number 1513 * of bits we pull in from the vaddr varies. Note that although 1514 * descaddrmask masks enough of the low bits of the descriptor 1515 * to give a correct page or table address, the address field 1516 * in a block descriptor is smaller; so we need to explicitly 1517 * clear the lower bits here before ORing in the low vaddr bits. 1518 * 1519 * Afterward, descaddr is the final physical address. 1520 */ 1521 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1522 descaddr &= ~(hwaddr)(page_size - 1); 1523 descaddr |= (address & (page_size - 1)); 1524 1525 if (likely(!ptw->in_debug)) { 1526 /* 1527 * Access flag. 1528 * If HA is enabled, prepare to update the descriptor below. 1529 * Otherwise, pass the access fault on to software. 1530 */ 1531 if (!(descriptor & (1 << 10))) { 1532 if (param.ha) { 1533 new_descriptor |= 1 << 10; /* AF */ 1534 } else { 1535 fi->type = ARMFault_AccessFlag; 1536 goto do_fault; 1537 } 1538 } 1539 1540 /* 1541 * Dirty Bit. 1542 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP 1543 * bit for writeback. The actual write protection test may still be 1544 * overridden by tableattrs, to be merged below. 1545 */ 1546 if (param.hd 1547 && extract64(descriptor, 51, 1) /* DBM */ 1548 && access_type == MMU_DATA_STORE) { 1549 if (regime_is_stage2(mmu_idx)) { 1550 new_descriptor |= 1ull << 7; /* set S2AP[1] */ 1551 } else { 1552 new_descriptor &= ~(1ull << 7); /* clear AP[2] */ 1553 } 1554 } 1555 } 1556 1557 /* 1558 * Extract attributes from the (modified) descriptor, and apply 1559 * table descriptors. Stage 2 table descriptors do not include 1560 * any attribute fields. HPD disables all the table attributes 1561 * except NSTable. 1562 */ 1563 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14)); 1564 if (!regime_is_stage2(mmu_idx)) { 1565 attrs |= nstable << 5; /* NS */ 1566 if (!param.hpd) { 1567 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */ 1568 /* 1569 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 1570 * means "force PL1 access only", which means forcing AP[1] to 0. 1571 */ 1572 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */ 1573 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */ 1574 } 1575 } 1576 1577 ap = extract32(attrs, 6, 2); 1578 if (regime_is_stage2(mmu_idx)) { 1579 ns = mmu_idx == ARMMMUIdx_Stage2; 1580 xn = extract64(attrs, 53, 2); 1581 result->f.prot = get_S2prot(env, ap, xn, s1_is_el0); 1582 } else { 1583 ns = extract32(attrs, 5, 1); 1584 xn = extract64(attrs, 54, 1); 1585 pxn = extract64(attrs, 53, 1); 1586 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 1587 } 1588 1589 if (!(result->f.prot & (1 << access_type))) { 1590 fi->type = ARMFault_Permission; 1591 goto do_fault; 1592 } 1593 1594 /* If FEAT_HAFDBS has made changes, update the PTE. */ 1595 if (new_descriptor != descriptor) { 1596 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi); 1597 if (fi->type != ARMFault_None) { 1598 goto do_fault; 1599 } 1600 /* 1601 * I_YZSVV says that if the in-memory descriptor has changed, 1602 * then we must use the information in that new value 1603 * (which might include a different output address, different 1604 * attributes, or generate a fault). 1605 * Restart the handling of the descriptor value from scratch. 1606 */ 1607 if (new_descriptor != descriptor) { 1608 descriptor = new_descriptor; 1609 goto restart_atomic_update; 1610 } 1611 } 1612 1613 if (ns) { 1614 /* 1615 * The NS bit will (as required by the architecture) have no effect if 1616 * the CPU doesn't support TZ or this is a non-secure translation 1617 * regime, because the attribute will already be non-secure. 1618 */ 1619 result->f.attrs.secure = false; 1620 } 1621 1622 if (regime_is_stage2(mmu_idx)) { 1623 result->cacheattrs.is_s2_format = true; 1624 result->cacheattrs.attrs = extract32(attrs, 2, 4); 1625 } else { 1626 /* Index into MAIR registers for cache attributes */ 1627 uint8_t attrindx = extract32(attrs, 2, 3); 1628 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 1629 assert(attrindx <= 7); 1630 result->cacheattrs.is_s2_format = false; 1631 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 1632 1633 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ 1634 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { 1635 result->f.guarded = extract64(attrs, 50, 1); /* GP */ 1636 } 1637 } 1638 1639 /* 1640 * For FEAT_LPA2 and effective DS, the SH field in the attributes 1641 * was re-purposed for output address bits. The SH attribute in 1642 * that case comes from TCR_ELx, which we extracted earlier. 1643 */ 1644 if (param.ds) { 1645 result->cacheattrs.shareability = param.sh; 1646 } else { 1647 result->cacheattrs.shareability = extract32(attrs, 8, 2); 1648 } 1649 1650 result->f.phys_addr = descaddr; 1651 result->f.lg_page_size = ctz64(page_size); 1652 return false; 1653 1654 do_translation_fault: 1655 fi->type = ARMFault_Translation; 1656 do_fault: 1657 fi->level = level; 1658 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 1659 fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx); 1660 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 1661 return true; 1662 } 1663 1664 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 1665 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1666 bool is_secure, GetPhysAddrResult *result, 1667 ARMMMUFaultInfo *fi) 1668 { 1669 int n; 1670 uint32_t mask; 1671 uint32_t base; 1672 bool is_user = regime_is_user(env, mmu_idx); 1673 1674 if (regime_translation_disabled(env, mmu_idx, is_secure)) { 1675 /* MPU disabled. */ 1676 result->f.phys_addr = address; 1677 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1678 return false; 1679 } 1680 1681 result->f.phys_addr = address; 1682 for (n = 7; n >= 0; n--) { 1683 base = env->cp15.c6_region[n]; 1684 if ((base & 1) == 0) { 1685 continue; 1686 } 1687 mask = 1 << ((base >> 1) & 0x1f); 1688 /* Keep this shift separate from the above to avoid an 1689 (undefined) << 32. */ 1690 mask = (mask << 1) - 1; 1691 if (((base ^ address) & ~mask) == 0) { 1692 break; 1693 } 1694 } 1695 if (n < 0) { 1696 fi->type = ARMFault_Background; 1697 return true; 1698 } 1699 1700 if (access_type == MMU_INST_FETCH) { 1701 mask = env->cp15.pmsav5_insn_ap; 1702 } else { 1703 mask = env->cp15.pmsav5_data_ap; 1704 } 1705 mask = (mask >> (n * 4)) & 0xf; 1706 switch (mask) { 1707 case 0: 1708 fi->type = ARMFault_Permission; 1709 fi->level = 1; 1710 return true; 1711 case 1: 1712 if (is_user) { 1713 fi->type = ARMFault_Permission; 1714 fi->level = 1; 1715 return true; 1716 } 1717 result->f.prot = PAGE_READ | PAGE_WRITE; 1718 break; 1719 case 2: 1720 result->f.prot = PAGE_READ; 1721 if (!is_user) { 1722 result->f.prot |= PAGE_WRITE; 1723 } 1724 break; 1725 case 3: 1726 result->f.prot = PAGE_READ | PAGE_WRITE; 1727 break; 1728 case 5: 1729 if (is_user) { 1730 fi->type = ARMFault_Permission; 1731 fi->level = 1; 1732 return true; 1733 } 1734 result->f.prot = PAGE_READ; 1735 break; 1736 case 6: 1737 result->f.prot = PAGE_READ; 1738 break; 1739 default: 1740 /* Bad permission. */ 1741 fi->type = ARMFault_Permission; 1742 fi->level = 1; 1743 return true; 1744 } 1745 result->f.prot |= PAGE_EXEC; 1746 return false; 1747 } 1748 1749 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 1750 int32_t address, uint8_t *prot) 1751 { 1752 if (!arm_feature(env, ARM_FEATURE_M)) { 1753 *prot = PAGE_READ | PAGE_WRITE; 1754 switch (address) { 1755 case 0xF0000000 ... 0xFFFFFFFF: 1756 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 1757 /* hivecs execing is ok */ 1758 *prot |= PAGE_EXEC; 1759 } 1760 break; 1761 case 0x00000000 ... 0x7FFFFFFF: 1762 *prot |= PAGE_EXEC; 1763 break; 1764 } 1765 } else { 1766 /* Default system address map for M profile cores. 1767 * The architecture specifies which regions are execute-never; 1768 * at the MPU level no other checks are defined. 1769 */ 1770 switch (address) { 1771 case 0x00000000 ... 0x1fffffff: /* ROM */ 1772 case 0x20000000 ... 0x3fffffff: /* SRAM */ 1773 case 0x60000000 ... 0x7fffffff: /* RAM */ 1774 case 0x80000000 ... 0x9fffffff: /* RAM */ 1775 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1776 break; 1777 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 1778 case 0xa0000000 ... 0xbfffffff: /* Device */ 1779 case 0xc0000000 ... 0xdfffffff: /* Device */ 1780 case 0xe0000000 ... 0xffffffff: /* System */ 1781 *prot = PAGE_READ | PAGE_WRITE; 1782 break; 1783 default: 1784 g_assert_not_reached(); 1785 } 1786 } 1787 } 1788 1789 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 1790 { 1791 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 1792 return arm_feature(env, ARM_FEATURE_M) && 1793 extract32(address, 20, 12) == 0xe00; 1794 } 1795 1796 static bool m_is_system_region(CPUARMState *env, uint32_t address) 1797 { 1798 /* 1799 * True if address is in the M profile system region 1800 * 0xe0000000 - 0xffffffff 1801 */ 1802 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 1803 } 1804 1805 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 1806 bool is_secure, bool is_user) 1807 { 1808 /* 1809 * Return true if we should use the default memory map as a 1810 * "background" region if there are no hits against any MPU regions. 1811 */ 1812 CPUARMState *env = &cpu->env; 1813 1814 if (is_user) { 1815 return false; 1816 } 1817 1818 if (arm_feature(env, ARM_FEATURE_M)) { 1819 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 1820 } 1821 1822 if (mmu_idx == ARMMMUIdx_Stage2) { 1823 return false; 1824 } 1825 1826 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 1827 } 1828 1829 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 1830 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1831 bool secure, GetPhysAddrResult *result, 1832 ARMMMUFaultInfo *fi) 1833 { 1834 ARMCPU *cpu = env_archcpu(env); 1835 int n; 1836 bool is_user = regime_is_user(env, mmu_idx); 1837 1838 result->f.phys_addr = address; 1839 result->f.lg_page_size = TARGET_PAGE_BITS; 1840 result->f.prot = 0; 1841 1842 if (regime_translation_disabled(env, mmu_idx, secure) || 1843 m_is_ppb_region(env, address)) { 1844 /* 1845 * MPU disabled or M profile PPB access: use default memory map. 1846 * The other case which uses the default memory map in the 1847 * v7M ARM ARM pseudocode is exception vector reads from the vector 1848 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 1849 * which always does a direct read using address_space_ldl(), rather 1850 * than going via this function, so we don't need to check that here. 1851 */ 1852 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 1853 } else { /* MPU enabled */ 1854 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 1855 /* region search */ 1856 uint32_t base = env->pmsav7.drbar[n]; 1857 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 1858 uint32_t rmask; 1859 bool srdis = false; 1860 1861 if (!(env->pmsav7.drsr[n] & 0x1)) { 1862 continue; 1863 } 1864 1865 if (!rsize) { 1866 qemu_log_mask(LOG_GUEST_ERROR, 1867 "DRSR[%d]: Rsize field cannot be 0\n", n); 1868 continue; 1869 } 1870 rsize++; 1871 rmask = (1ull << rsize) - 1; 1872 1873 if (base & rmask) { 1874 qemu_log_mask(LOG_GUEST_ERROR, 1875 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 1876 "to DRSR region size, mask = 0x%" PRIx32 "\n", 1877 n, base, rmask); 1878 continue; 1879 } 1880 1881 if (address < base || address > base + rmask) { 1882 /* 1883 * Address not in this region. We must check whether the 1884 * region covers addresses in the same page as our address. 1885 * In that case we must not report a size that covers the 1886 * whole page for a subsequent hit against a different MPU 1887 * region or the background region, because it would result in 1888 * incorrect TLB hits for subsequent accesses to addresses that 1889 * are in this MPU region. 1890 */ 1891 if (ranges_overlap(base, rmask, 1892 address & TARGET_PAGE_MASK, 1893 TARGET_PAGE_SIZE)) { 1894 result->f.lg_page_size = 0; 1895 } 1896 continue; 1897 } 1898 1899 /* Region matched */ 1900 1901 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 1902 int i, snd; 1903 uint32_t srdis_mask; 1904 1905 rsize -= 3; /* sub region size (power of 2) */ 1906 snd = ((address - base) >> rsize) & 0x7; 1907 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 1908 1909 srdis_mask = srdis ? 0x3 : 0x0; 1910 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 1911 /* 1912 * This will check in groups of 2, 4 and then 8, whether 1913 * the subregion bits are consistent. rsize is incremented 1914 * back up to give the region size, considering consistent 1915 * adjacent subregions as one region. Stop testing if rsize 1916 * is already big enough for an entire QEMU page. 1917 */ 1918 int snd_rounded = snd & ~(i - 1); 1919 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 1920 snd_rounded + 8, i); 1921 if (srdis_mask ^ srdis_multi) { 1922 break; 1923 } 1924 srdis_mask = (srdis_mask << i) | srdis_mask; 1925 rsize++; 1926 } 1927 } 1928 if (srdis) { 1929 continue; 1930 } 1931 if (rsize < TARGET_PAGE_BITS) { 1932 result->f.lg_page_size = rsize; 1933 } 1934 break; 1935 } 1936 1937 if (n == -1) { /* no hits */ 1938 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 1939 /* background fault */ 1940 fi->type = ARMFault_Background; 1941 return true; 1942 } 1943 get_phys_addr_pmsav7_default(env, mmu_idx, address, 1944 &result->f.prot); 1945 } else { /* a MPU hit! */ 1946 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 1947 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 1948 1949 if (m_is_system_region(env, address)) { 1950 /* System space is always execute never */ 1951 xn = 1; 1952 } 1953 1954 if (is_user) { /* User mode AP bit decoding */ 1955 switch (ap) { 1956 case 0: 1957 case 1: 1958 case 5: 1959 break; /* no access */ 1960 case 3: 1961 result->f.prot |= PAGE_WRITE; 1962 /* fall through */ 1963 case 2: 1964 case 6: 1965 result->f.prot |= PAGE_READ | PAGE_EXEC; 1966 break; 1967 case 7: 1968 /* for v7M, same as 6; for R profile a reserved value */ 1969 if (arm_feature(env, ARM_FEATURE_M)) { 1970 result->f.prot |= PAGE_READ | PAGE_EXEC; 1971 break; 1972 } 1973 /* fall through */ 1974 default: 1975 qemu_log_mask(LOG_GUEST_ERROR, 1976 "DRACR[%d]: Bad value for AP bits: 0x%" 1977 PRIx32 "\n", n, ap); 1978 } 1979 } else { /* Priv. mode AP bits decoding */ 1980 switch (ap) { 1981 case 0: 1982 break; /* no access */ 1983 case 1: 1984 case 2: 1985 case 3: 1986 result->f.prot |= PAGE_WRITE; 1987 /* fall through */ 1988 case 5: 1989 case 6: 1990 result->f.prot |= PAGE_READ | PAGE_EXEC; 1991 break; 1992 case 7: 1993 /* for v7M, same as 6; for R profile a reserved value */ 1994 if (arm_feature(env, ARM_FEATURE_M)) { 1995 result->f.prot |= PAGE_READ | PAGE_EXEC; 1996 break; 1997 } 1998 /* fall through */ 1999 default: 2000 qemu_log_mask(LOG_GUEST_ERROR, 2001 "DRACR[%d]: Bad value for AP bits: 0x%" 2002 PRIx32 "\n", n, ap); 2003 } 2004 } 2005 2006 /* execute never */ 2007 if (xn) { 2008 result->f.prot &= ~PAGE_EXEC; 2009 } 2010 } 2011 } 2012 2013 fi->type = ARMFault_Permission; 2014 fi->level = 1; 2015 return !(result->f.prot & (1 << access_type)); 2016 } 2017 2018 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx, 2019 uint32_t secure) 2020 { 2021 if (regime_el(env, mmu_idx) == 2) { 2022 return env->pmsav8.hprbar; 2023 } else { 2024 return env->pmsav8.rbar[secure]; 2025 } 2026 } 2027 2028 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx, 2029 uint32_t secure) 2030 { 2031 if (regime_el(env, mmu_idx) == 2) { 2032 return env->pmsav8.hprlar; 2033 } else { 2034 return env->pmsav8.rlar[secure]; 2035 } 2036 } 2037 2038 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 2039 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2040 bool secure, GetPhysAddrResult *result, 2041 ARMMMUFaultInfo *fi, uint32_t *mregion) 2042 { 2043 /* 2044 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 2045 * that a full phys-to-virt translation does). 2046 * mregion is (if not NULL) set to the region number which matched, 2047 * or -1 if no region number is returned (MPU off, address did not 2048 * hit a region, address hit in multiple regions). 2049 * If the region hit doesn't cover the entire TARGET_PAGE the address 2050 * is within, then we set the result page_size to 1 to force the 2051 * memory system to use a subpage. 2052 */ 2053 ARMCPU *cpu = env_archcpu(env); 2054 bool is_user = regime_is_user(env, mmu_idx); 2055 int n; 2056 int matchregion = -1; 2057 bool hit = false; 2058 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2059 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2060 int region_counter; 2061 2062 if (regime_el(env, mmu_idx) == 2) { 2063 region_counter = cpu->pmsav8r_hdregion; 2064 } else { 2065 region_counter = cpu->pmsav7_dregion; 2066 } 2067 2068 result->f.lg_page_size = TARGET_PAGE_BITS; 2069 result->f.phys_addr = address; 2070 result->f.prot = 0; 2071 if (mregion) { 2072 *mregion = -1; 2073 } 2074 2075 if (mmu_idx == ARMMMUIdx_Stage2) { 2076 fi->stage2 = true; 2077 } 2078 2079 /* 2080 * Unlike the ARM ARM pseudocode, we don't need to check whether this 2081 * was an exception vector read from the vector table (which is always 2082 * done using the default system address map), because those accesses 2083 * are done in arm_v7m_load_vector(), which always does a direct 2084 * read using address_space_ldl(), rather than going via this function. 2085 */ 2086 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */ 2087 hit = true; 2088 } else if (m_is_ppb_region(env, address)) { 2089 hit = true; 2090 } else { 2091 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2092 hit = true; 2093 } 2094 2095 uint32_t bitmask; 2096 if (arm_feature(env, ARM_FEATURE_M)) { 2097 bitmask = 0x1f; 2098 } else { 2099 bitmask = 0x3f; 2100 fi->level = 0; 2101 } 2102 2103 for (n = region_counter - 1; n >= 0; n--) { 2104 /* region search */ 2105 /* 2106 * Note that the base address is bits [31:x] from the register 2107 * with bits [x-1:0] all zeroes, but the limit address is bits 2108 * [31:x] from the register with bits [x:0] all ones. Where x is 2109 * 5 for Cortex-M and 6 for Cortex-R 2110 */ 2111 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask; 2112 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask; 2113 2114 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) { 2115 /* Region disabled */ 2116 continue; 2117 } 2118 2119 if (address < base || address > limit) { 2120 /* 2121 * Address not in this region. We must check whether the 2122 * region covers addresses in the same page as our address. 2123 * In that case we must not report a size that covers the 2124 * whole page for a subsequent hit against a different MPU 2125 * region or the background region, because it would result in 2126 * incorrect TLB hits for subsequent accesses to addresses that 2127 * are in this MPU region. 2128 */ 2129 if (limit >= base && 2130 ranges_overlap(base, limit - base + 1, 2131 addr_page_base, 2132 TARGET_PAGE_SIZE)) { 2133 result->f.lg_page_size = 0; 2134 } 2135 continue; 2136 } 2137 2138 if (base > addr_page_base || limit < addr_page_limit) { 2139 result->f.lg_page_size = 0; 2140 } 2141 2142 if (matchregion != -1) { 2143 /* 2144 * Multiple regions match -- always a failure (unlike 2145 * PMSAv7 where highest-numbered-region wins) 2146 */ 2147 fi->type = ARMFault_Permission; 2148 if (arm_feature(env, ARM_FEATURE_M)) { 2149 fi->level = 1; 2150 } 2151 return true; 2152 } 2153 2154 matchregion = n; 2155 hit = true; 2156 } 2157 } 2158 2159 if (!hit) { 2160 if (arm_feature(env, ARM_FEATURE_M)) { 2161 fi->type = ARMFault_Background; 2162 } else { 2163 fi->type = ARMFault_Permission; 2164 } 2165 return true; 2166 } 2167 2168 if (matchregion == -1) { 2169 /* hit using the background region */ 2170 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2171 } else { 2172 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion]; 2173 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion]; 2174 uint32_t ap = extract32(matched_rbar, 1, 2); 2175 uint32_t xn = extract32(matched_rbar, 0, 1); 2176 bool pxn = false; 2177 2178 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 2179 pxn = extract32(matched_rlar, 4, 1); 2180 } 2181 2182 if (m_is_system_region(env, address)) { 2183 /* System space is always execute never */ 2184 xn = 1; 2185 } 2186 2187 if (regime_el(env, mmu_idx) == 2) { 2188 result->f.prot = simple_ap_to_rw_prot_is_user(ap, 2189 mmu_idx != ARMMMUIdx_E2); 2190 } else { 2191 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 2192 } 2193 2194 if (!arm_feature(env, ARM_FEATURE_M)) { 2195 uint8_t attrindx = extract32(matched_rlar, 1, 3); 2196 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2197 uint8_t sh = extract32(matched_rlar, 3, 2); 2198 2199 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN && 2200 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) { 2201 xn = 0x1; 2202 } 2203 2204 if ((regime_el(env, mmu_idx) == 1) && 2205 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) { 2206 pxn = 0x1; 2207 } 2208 2209 result->cacheattrs.is_s2_format = false; 2210 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2211 result->cacheattrs.shareability = sh; 2212 } 2213 2214 if (result->f.prot && !xn && !(pxn && !is_user)) { 2215 result->f.prot |= PAGE_EXEC; 2216 } 2217 2218 if (mregion) { 2219 *mregion = matchregion; 2220 } 2221 } 2222 2223 fi->type = ARMFault_Permission; 2224 if (arm_feature(env, ARM_FEATURE_M)) { 2225 fi->level = 1; 2226 } 2227 return !(result->f.prot & (1 << access_type)); 2228 } 2229 2230 static bool v8m_is_sau_exempt(CPUARMState *env, 2231 uint32_t address, MMUAccessType access_type) 2232 { 2233 /* 2234 * The architecture specifies that certain address ranges are 2235 * exempt from v8M SAU/IDAU checks. 2236 */ 2237 return 2238 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 2239 (address >= 0xe0000000 && address <= 0xe0002fff) || 2240 (address >= 0xe000e000 && address <= 0xe000efff) || 2241 (address >= 0xe002e000 && address <= 0xe002efff) || 2242 (address >= 0xe0040000 && address <= 0xe0041fff) || 2243 (address >= 0xe00ff000 && address <= 0xe00fffff); 2244 } 2245 2246 void v8m_security_lookup(CPUARMState *env, uint32_t address, 2247 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2248 bool is_secure, V8M_SAttributes *sattrs) 2249 { 2250 /* 2251 * Look up the security attributes for this address. Compare the 2252 * pseudocode SecurityCheck() function. 2253 * We assume the caller has zero-initialized *sattrs. 2254 */ 2255 ARMCPU *cpu = env_archcpu(env); 2256 int r; 2257 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 2258 int idau_region = IREGION_NOTVALID; 2259 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2260 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2261 2262 if (cpu->idau) { 2263 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 2264 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 2265 2266 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 2267 &idau_nsc); 2268 } 2269 2270 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 2271 /* 0xf0000000..0xffffffff is always S for insn fetches */ 2272 return; 2273 } 2274 2275 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 2276 sattrs->ns = !is_secure; 2277 return; 2278 } 2279 2280 if (idau_region != IREGION_NOTVALID) { 2281 sattrs->irvalid = true; 2282 sattrs->iregion = idau_region; 2283 } 2284 2285 switch (env->sau.ctrl & 3) { 2286 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 2287 break; 2288 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 2289 sattrs->ns = true; 2290 break; 2291 default: /* SAU.ENABLE == 1 */ 2292 for (r = 0; r < cpu->sau_sregion; r++) { 2293 if (env->sau.rlar[r] & 1) { 2294 uint32_t base = env->sau.rbar[r] & ~0x1f; 2295 uint32_t limit = env->sau.rlar[r] | 0x1f; 2296 2297 if (base <= address && limit >= address) { 2298 if (base > addr_page_base || limit < addr_page_limit) { 2299 sattrs->subpage = true; 2300 } 2301 if (sattrs->srvalid) { 2302 /* 2303 * If we hit in more than one region then we must report 2304 * as Secure, not NS-Callable, with no valid region 2305 * number info. 2306 */ 2307 sattrs->ns = false; 2308 sattrs->nsc = false; 2309 sattrs->sregion = 0; 2310 sattrs->srvalid = false; 2311 break; 2312 } else { 2313 if (env->sau.rlar[r] & 2) { 2314 sattrs->nsc = true; 2315 } else { 2316 sattrs->ns = true; 2317 } 2318 sattrs->srvalid = true; 2319 sattrs->sregion = r; 2320 } 2321 } else { 2322 /* 2323 * Address not in this region. We must check whether the 2324 * region covers addresses in the same page as our address. 2325 * In that case we must not report a size that covers the 2326 * whole page for a subsequent hit against a different MPU 2327 * region or the background region, because it would result 2328 * in incorrect TLB hits for subsequent accesses to 2329 * addresses that are in this MPU region. 2330 */ 2331 if (limit >= base && 2332 ranges_overlap(base, limit - base + 1, 2333 addr_page_base, 2334 TARGET_PAGE_SIZE)) { 2335 sattrs->subpage = true; 2336 } 2337 } 2338 } 2339 } 2340 break; 2341 } 2342 2343 /* 2344 * The IDAU will override the SAU lookup results if it specifies 2345 * higher security than the SAU does. 2346 */ 2347 if (!idau_ns) { 2348 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 2349 sattrs->ns = false; 2350 sattrs->nsc = idau_nsc; 2351 } 2352 } 2353 } 2354 2355 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 2356 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2357 bool secure, GetPhysAddrResult *result, 2358 ARMMMUFaultInfo *fi) 2359 { 2360 V8M_SAttributes sattrs = {}; 2361 bool ret; 2362 2363 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2364 v8m_security_lookup(env, address, access_type, mmu_idx, 2365 secure, &sattrs); 2366 if (access_type == MMU_INST_FETCH) { 2367 /* 2368 * Instruction fetches always use the MMU bank and the 2369 * transaction attribute determined by the fetch address, 2370 * regardless of CPU state. This is painful for QEMU 2371 * to handle, because it would mean we need to encode 2372 * into the mmu_idx not just the (user, negpri) information 2373 * for the current security state but also that for the 2374 * other security state, which would balloon the number 2375 * of mmu_idx values needed alarmingly. 2376 * Fortunately we can avoid this because it's not actually 2377 * possible to arbitrarily execute code from memory with 2378 * the wrong security attribute: it will always generate 2379 * an exception of some kind or another, apart from the 2380 * special case of an NS CPU executing an SG instruction 2381 * in S&NSC memory. So we always just fail the translation 2382 * here and sort things out in the exception handler 2383 * (including possibly emulating an SG instruction). 2384 */ 2385 if (sattrs.ns != !secure) { 2386 if (sattrs.nsc) { 2387 fi->type = ARMFault_QEMU_NSCExec; 2388 } else { 2389 fi->type = ARMFault_QEMU_SFault; 2390 } 2391 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2392 result->f.phys_addr = address; 2393 result->f.prot = 0; 2394 return true; 2395 } 2396 } else { 2397 /* 2398 * For data accesses we always use the MMU bank indicated 2399 * by the current CPU state, but the security attributes 2400 * might downgrade a secure access to nonsecure. 2401 */ 2402 if (sattrs.ns) { 2403 result->f.attrs.secure = false; 2404 } else if (!secure) { 2405 /* 2406 * NS access to S memory must fault. 2407 * Architecturally we should first check whether the 2408 * MPU information for this address indicates that we 2409 * are doing an unaligned access to Device memory, which 2410 * should generate a UsageFault instead. QEMU does not 2411 * currently check for that kind of unaligned access though. 2412 * If we added it we would need to do so as a special case 2413 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2414 */ 2415 fi->type = ARMFault_QEMU_SFault; 2416 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2417 result->f.phys_addr = address; 2418 result->f.prot = 0; 2419 return true; 2420 } 2421 } 2422 } 2423 2424 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, 2425 result, fi, NULL); 2426 if (sattrs.subpage) { 2427 result->f.lg_page_size = 0; 2428 } 2429 return ret; 2430 } 2431 2432 /* 2433 * Translate from the 4-bit stage 2 representation of 2434 * memory attributes (without cache-allocation hints) to 2435 * the 8-bit representation of the stage 1 MAIR registers 2436 * (which includes allocation hints). 2437 * 2438 * ref: shared/translation/attrs/S2AttrDecode() 2439 * .../S2ConvertAttrsHints() 2440 */ 2441 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) 2442 { 2443 uint8_t hiattr = extract32(s2attrs, 2, 2); 2444 uint8_t loattr = extract32(s2attrs, 0, 2); 2445 uint8_t hihint = 0, lohint = 0; 2446 2447 if (hiattr != 0) { /* normal memory */ 2448 if (hcr & HCR_CD) { /* cache disabled */ 2449 hiattr = loattr = 1; /* non-cacheable */ 2450 } else { 2451 if (hiattr != 1) { /* Write-through or write-back */ 2452 hihint = 3; /* RW allocate */ 2453 } 2454 if (loattr != 1) { /* Write-through or write-back */ 2455 lohint = 3; /* RW allocate */ 2456 } 2457 } 2458 } 2459 2460 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 2461 } 2462 2463 /* 2464 * Combine either inner or outer cacheability attributes for normal 2465 * memory, according to table D4-42 and pseudocode procedure 2466 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 2467 * 2468 * NB: only stage 1 includes allocation hints (RW bits), leading to 2469 * some asymmetry. 2470 */ 2471 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 2472 { 2473 if (s1 == 4 || s2 == 4) { 2474 /* non-cacheable has precedence */ 2475 return 4; 2476 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 2477 /* stage 1 write-through takes precedence */ 2478 return s1; 2479 } else if (extract32(s2, 2, 2) == 2) { 2480 /* stage 2 write-through takes precedence, but the allocation hint 2481 * is still taken from stage 1 2482 */ 2483 return (2 << 2) | extract32(s1, 0, 2); 2484 } else { /* write-back */ 2485 return s1; 2486 } 2487 } 2488 2489 /* 2490 * Combine the memory type and cacheability attributes of 2491 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 2492 * combined attributes in MAIR_EL1 format. 2493 */ 2494 static uint8_t combined_attrs_nofwb(uint64_t hcr, 2495 ARMCacheAttrs s1, ARMCacheAttrs s2) 2496 { 2497 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 2498 2499 if (s2.is_s2_format) { 2500 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); 2501 } else { 2502 s2_mair_attrs = s2.attrs; 2503 } 2504 2505 s1lo = extract32(s1.attrs, 0, 4); 2506 s2lo = extract32(s2_mair_attrs, 0, 4); 2507 s1hi = extract32(s1.attrs, 4, 4); 2508 s2hi = extract32(s2_mair_attrs, 4, 4); 2509 2510 /* Combine memory type and cacheability attributes */ 2511 if (s1hi == 0 || s2hi == 0) { 2512 /* Device has precedence over normal */ 2513 if (s1lo == 0 || s2lo == 0) { 2514 /* nGnRnE has precedence over anything */ 2515 ret_attrs = 0; 2516 } else if (s1lo == 4 || s2lo == 4) { 2517 /* non-Reordering has precedence over Reordering */ 2518 ret_attrs = 4; /* nGnRE */ 2519 } else if (s1lo == 8 || s2lo == 8) { 2520 /* non-Gathering has precedence over Gathering */ 2521 ret_attrs = 8; /* nGRE */ 2522 } else { 2523 ret_attrs = 0xc; /* GRE */ 2524 } 2525 } else { /* Normal memory */ 2526 /* Outer/inner cacheability combine independently */ 2527 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 2528 | combine_cacheattr_nibble(s1lo, s2lo); 2529 } 2530 return ret_attrs; 2531 } 2532 2533 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 2534 { 2535 /* 2536 * Given the 4 bits specifying the outer or inner cacheability 2537 * in MAIR format, return a value specifying Normal Write-Back, 2538 * with the allocation and transient hints taken from the input 2539 * if the input specified some kind of cacheable attribute. 2540 */ 2541 if (attr == 0 || attr == 4) { 2542 /* 2543 * 0 == an UNPREDICTABLE encoding 2544 * 4 == Non-cacheable 2545 * Either way, force Write-Back RW allocate non-transient 2546 */ 2547 return 0xf; 2548 } 2549 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 2550 return attr | 4; 2551 } 2552 2553 /* 2554 * Combine the memory type and cacheability attributes of 2555 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 2556 * combined attributes in MAIR_EL1 format. 2557 */ 2558 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) 2559 { 2560 assert(s2.is_s2_format && !s1.is_s2_format); 2561 2562 switch (s2.attrs) { 2563 case 7: 2564 /* Use stage 1 attributes */ 2565 return s1.attrs; 2566 case 6: 2567 /* 2568 * Force Normal Write-Back. Note that if S1 is Normal cacheable 2569 * then we take the allocation hints from it; otherwise it is 2570 * RW allocate, non-transient. 2571 */ 2572 if ((s1.attrs & 0xf0) == 0) { 2573 /* S1 is Device */ 2574 return 0xff; 2575 } 2576 /* Need to check the Inner and Outer nibbles separately */ 2577 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 2578 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 2579 case 5: 2580 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 2581 if ((s1.attrs & 0xf0) == 0) { 2582 return s1.attrs; 2583 } 2584 return 0x44; 2585 case 0 ... 3: 2586 /* Force Device, of subtype specified by S2 */ 2587 return s2.attrs << 2; 2588 default: 2589 /* 2590 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 2591 * arbitrarily force Device. 2592 */ 2593 return 0; 2594 } 2595 } 2596 2597 /* 2598 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 2599 * and CombineS1S2Desc() 2600 * 2601 * @env: CPUARMState 2602 * @s1: Attributes from stage 1 walk 2603 * @s2: Attributes from stage 2 walk 2604 */ 2605 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, 2606 ARMCacheAttrs s1, ARMCacheAttrs s2) 2607 { 2608 ARMCacheAttrs ret; 2609 bool tagged = false; 2610 2611 assert(!s1.is_s2_format); 2612 ret.is_s2_format = false; 2613 ret.guarded = s1.guarded; 2614 2615 if (s1.attrs == 0xf0) { 2616 tagged = true; 2617 s1.attrs = 0xff; 2618 } 2619 2620 /* Combine shareability attributes (table D4-43) */ 2621 if (s1.shareability == 2 || s2.shareability == 2) { 2622 /* if either are outer-shareable, the result is outer-shareable */ 2623 ret.shareability = 2; 2624 } else if (s1.shareability == 3 || s2.shareability == 3) { 2625 /* if either are inner-shareable, the result is inner-shareable */ 2626 ret.shareability = 3; 2627 } else { 2628 /* both non-shareable */ 2629 ret.shareability = 0; 2630 } 2631 2632 /* Combine memory type and cacheability attributes */ 2633 if (hcr & HCR_FWB) { 2634 ret.attrs = combined_attrs_fwb(s1, s2); 2635 } else { 2636 ret.attrs = combined_attrs_nofwb(hcr, s1, s2); 2637 } 2638 2639 /* 2640 * Any location for which the resultant memory type is any 2641 * type of Device memory is always treated as Outer Shareable. 2642 * Any location for which the resultant memory type is Normal 2643 * Inner Non-cacheable, Outer Non-cacheable is always treated 2644 * as Outer Shareable. 2645 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 2646 */ 2647 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 2648 ret.shareability = 2; 2649 } 2650 2651 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 2652 if (tagged && ret.attrs == 0xff) { 2653 ret.attrs = 0xf0; 2654 } 2655 2656 return ret; 2657 } 2658 2659 /* 2660 * MMU disabled. S1 addresses within aa64 translation regimes are 2661 * still checked for bounds -- see AArch64.S1DisabledOutput(). 2662 */ 2663 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address, 2664 MMUAccessType access_type, 2665 ARMMMUIdx mmu_idx, bool is_secure, 2666 GetPhysAddrResult *result, 2667 ARMMMUFaultInfo *fi) 2668 { 2669 uint8_t memattr = 0x00; /* Device nGnRnE */ 2670 uint8_t shareability = 0; /* non-sharable */ 2671 int r_el; 2672 2673 switch (mmu_idx) { 2674 case ARMMMUIdx_Stage2: 2675 case ARMMMUIdx_Stage2_S: 2676 case ARMMMUIdx_Phys_NS: 2677 case ARMMMUIdx_Phys_S: 2678 break; 2679 2680 default: 2681 r_el = regime_el(env, mmu_idx); 2682 if (arm_el_is_aa64(env, r_el)) { 2683 int pamax = arm_pamax(env_archcpu(env)); 2684 uint64_t tcr = env->cp15.tcr_el[r_el]; 2685 int addrtop, tbi; 2686 2687 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 2688 if (access_type == MMU_INST_FETCH) { 2689 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 2690 } 2691 tbi = (tbi >> extract64(address, 55, 1)) & 1; 2692 addrtop = (tbi ? 55 : 63); 2693 2694 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 2695 fi->type = ARMFault_AddressSize; 2696 fi->level = 0; 2697 fi->stage2 = false; 2698 return 1; 2699 } 2700 2701 /* 2702 * When TBI is disabled, we've just validated that all of the 2703 * bits above PAMax are zero, so logically we only need to 2704 * clear the top byte for TBI. But it's clearer to follow 2705 * the pseudocode set of addrdesc.paddress. 2706 */ 2707 address = extract64(address, 0, 52); 2708 } 2709 2710 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 2711 if (r_el == 1) { 2712 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure); 2713 if (hcr & HCR_DC) { 2714 if (hcr & HCR_DCT) { 2715 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 2716 } else { 2717 memattr = 0xff; /* Normal, WB, RWA */ 2718 } 2719 } 2720 } 2721 if (memattr == 0 && access_type == MMU_INST_FETCH) { 2722 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 2723 memattr = 0xee; /* Normal, WT, RA, NT */ 2724 } else { 2725 memattr = 0x44; /* Normal, NC, No */ 2726 } 2727 shareability = 2; /* outer sharable */ 2728 } 2729 result->cacheattrs.is_s2_format = false; 2730 break; 2731 } 2732 2733 result->f.phys_addr = address; 2734 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2735 result->f.lg_page_size = TARGET_PAGE_BITS; 2736 result->cacheattrs.shareability = shareability; 2737 result->cacheattrs.attrs = memattr; 2738 return false; 2739 } 2740 2741 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, 2742 target_ulong address, 2743 MMUAccessType access_type, 2744 GetPhysAddrResult *result, 2745 ARMMMUFaultInfo *fi) 2746 { 2747 hwaddr ipa; 2748 int s1_prot, s1_lgpgsz; 2749 bool is_secure = ptw->in_secure; 2750 bool ret, ipa_secure; 2751 ARMCacheAttrs cacheattrs1; 2752 bool is_el0; 2753 uint64_t hcr; 2754 2755 ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi); 2756 2757 /* If S1 fails, return early. */ 2758 if (ret) { 2759 return ret; 2760 } 2761 2762 ipa = result->f.phys_addr; 2763 ipa_secure = result->f.attrs.secure; 2764 2765 is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; 2766 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 2767 ptw->in_secure = ipa_secure; 2768 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx); 2769 2770 /* 2771 * S1 is done, now do S2 translation. 2772 * Save the stage1 results so that we may merge prot and cacheattrs later. 2773 */ 2774 s1_prot = result->f.prot; 2775 s1_lgpgsz = result->f.lg_page_size; 2776 cacheattrs1 = result->cacheattrs; 2777 memset(result, 0, sizeof(*result)); 2778 2779 if (arm_feature(env, ARM_FEATURE_PMSA)) { 2780 ret = get_phys_addr_pmsav8(env, ipa, access_type, 2781 ptw->in_mmu_idx, is_secure, result, fi); 2782 } else { 2783 ret = get_phys_addr_lpae(env, ptw, ipa, access_type, 2784 is_el0, result, fi); 2785 } 2786 fi->s2addr = ipa; 2787 2788 /* Combine the S1 and S2 perms. */ 2789 result->f.prot &= s1_prot; 2790 2791 /* If S2 fails, return early. */ 2792 if (ret) { 2793 return ret; 2794 } 2795 2796 /* 2797 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE, 2798 * this means "don't put this in the TLB"; in this case, return a 2799 * result with lg_page_size == 0 to achieve that. Otherwise, 2800 * use the maximum of the S1 & S2 page size, so that invalidation 2801 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though 2802 * we know the combined result permissions etc only cover the minimum 2803 * of the S1 and S2 page size, because we know that the common TLB code 2804 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE, 2805 * and passing a larger page size value only affects invalidations.) 2806 */ 2807 if (result->f.lg_page_size < TARGET_PAGE_BITS || 2808 s1_lgpgsz < TARGET_PAGE_BITS) { 2809 result->f.lg_page_size = 0; 2810 } else if (result->f.lg_page_size < s1_lgpgsz) { 2811 result->f.lg_page_size = s1_lgpgsz; 2812 } 2813 2814 /* Combine the S1 and S2 cache attributes. */ 2815 hcr = arm_hcr_el2_eff_secstate(env, is_secure); 2816 if (hcr & HCR_DC) { 2817 /* 2818 * HCR.DC forces the first stage attributes to 2819 * Normal Non-Shareable, 2820 * Inner Write-Back Read-Allocate Write-Allocate, 2821 * Outer Write-Back Read-Allocate Write-Allocate. 2822 * Do not overwrite Tagged within attrs. 2823 */ 2824 if (cacheattrs1.attrs != 0xf0) { 2825 cacheattrs1.attrs = 0xff; 2826 } 2827 cacheattrs1.shareability = 0; 2828 } 2829 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, 2830 result->cacheattrs); 2831 2832 /* 2833 * Check if IPA translates to secure or non-secure PA space. 2834 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. 2835 */ 2836 result->f.attrs.secure = 2837 (is_secure 2838 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) 2839 && (ipa_secure 2840 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)))); 2841 2842 return false; 2843 } 2844 2845 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw, 2846 target_ulong address, 2847 MMUAccessType access_type, 2848 GetPhysAddrResult *result, 2849 ARMMMUFaultInfo *fi) 2850 { 2851 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2852 bool is_secure = ptw->in_secure; 2853 ARMMMUIdx s1_mmu_idx; 2854 2855 /* 2856 * The page table entries may downgrade secure to non-secure, but 2857 * cannot upgrade an non-secure translation regime's attributes 2858 * to secure. 2859 */ 2860 result->f.attrs.secure = is_secure; 2861 2862 switch (mmu_idx) { 2863 case ARMMMUIdx_Phys_S: 2864 case ARMMMUIdx_Phys_NS: 2865 /* Checking Phys early avoids special casing later vs regime_el. */ 2866 return get_phys_addr_disabled(env, address, access_type, mmu_idx, 2867 is_secure, result, fi); 2868 2869 case ARMMMUIdx_Stage1_E0: 2870 case ARMMMUIdx_Stage1_E1: 2871 case ARMMMUIdx_Stage1_E1_PAN: 2872 /* First stage lookup uses second stage for ptw. */ 2873 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 2874 break; 2875 2876 case ARMMMUIdx_Stage2: 2877 case ARMMMUIdx_Stage2_S: 2878 /* 2879 * Second stage lookup uses physical for ptw; whether this is S or 2880 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for 2881 * the Secure EL2&0 regime. 2882 */ 2883 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx); 2884 break; 2885 2886 case ARMMMUIdx_E10_0: 2887 s1_mmu_idx = ARMMMUIdx_Stage1_E0; 2888 goto do_twostage; 2889 case ARMMMUIdx_E10_1: 2890 s1_mmu_idx = ARMMMUIdx_Stage1_E1; 2891 goto do_twostage; 2892 case ARMMMUIdx_E10_1_PAN: 2893 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 2894 do_twostage: 2895 /* 2896 * Call ourselves recursively to do the stage 1 and then stage 2 2897 * translations if mmu_idx is a two-stage regime, and EL2 present. 2898 * Otherwise, a stage1+stage2 translation is just stage 1. 2899 */ 2900 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; 2901 if (arm_feature(env, ARM_FEATURE_EL2) && 2902 !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) { 2903 return get_phys_addr_twostage(env, ptw, address, access_type, 2904 result, fi); 2905 } 2906 /* fall through */ 2907 2908 default: 2909 /* Single stage uses physical for ptw. */ 2910 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 2911 break; 2912 } 2913 2914 result->f.attrs.user = regime_is_user(env, mmu_idx); 2915 2916 /* 2917 * Fast Context Switch Extension. This doesn't exist at all in v8. 2918 * In v7 and earlier it affects all stage 1 translations. 2919 */ 2920 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 2921 && !arm_feature(env, ARM_FEATURE_V8)) { 2922 if (regime_el(env, mmu_idx) == 3) { 2923 address += env->cp15.fcseidr_s; 2924 } else { 2925 address += env->cp15.fcseidr_ns; 2926 } 2927 } 2928 2929 if (arm_feature(env, ARM_FEATURE_PMSA)) { 2930 bool ret; 2931 result->f.lg_page_size = TARGET_PAGE_BITS; 2932 2933 if (arm_feature(env, ARM_FEATURE_V8)) { 2934 /* PMSAv8 */ 2935 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 2936 is_secure, result, fi); 2937 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2938 /* PMSAv7 */ 2939 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 2940 is_secure, result, fi); 2941 } else { 2942 /* Pre-v7 MPU */ 2943 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 2944 is_secure, result, fi); 2945 } 2946 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 2947 " mmu_idx %u -> %s (prot %c%c%c)\n", 2948 access_type == MMU_DATA_LOAD ? "reading" : 2949 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 2950 (uint32_t)address, mmu_idx, 2951 ret ? "Miss" : "Hit", 2952 result->f.prot & PAGE_READ ? 'r' : '-', 2953 result->f.prot & PAGE_WRITE ? 'w' : '-', 2954 result->f.prot & PAGE_EXEC ? 'x' : '-'); 2955 2956 return ret; 2957 } 2958 2959 /* Definitely a real MMU, not an MPU */ 2960 2961 if (regime_translation_disabled(env, mmu_idx, is_secure)) { 2962 return get_phys_addr_disabled(env, address, access_type, mmu_idx, 2963 is_secure, result, fi); 2964 } 2965 2966 if (regime_using_lpae_format(env, mmu_idx)) { 2967 return get_phys_addr_lpae(env, ptw, address, access_type, false, 2968 result, fi); 2969 } else if (arm_feature(env, ARM_FEATURE_V7) || 2970 regime_sctlr(env, mmu_idx) & SCTLR_XP) { 2971 return get_phys_addr_v6(env, ptw, address, access_type, result, fi); 2972 } else { 2973 return get_phys_addr_v5(env, ptw, address, access_type, result, fi); 2974 } 2975 } 2976 2977 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address, 2978 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2979 bool is_secure, GetPhysAddrResult *result, 2980 ARMMMUFaultInfo *fi) 2981 { 2982 S1Translate ptw = { 2983 .in_mmu_idx = mmu_idx, 2984 .in_secure = is_secure, 2985 }; 2986 return get_phys_addr_with_struct(env, &ptw, address, access_type, 2987 result, fi); 2988 } 2989 2990 bool get_phys_addr(CPUARMState *env, target_ulong address, 2991 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2992 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 2993 { 2994 bool is_secure; 2995 2996 switch (mmu_idx) { 2997 case ARMMMUIdx_E10_0: 2998 case ARMMMUIdx_E10_1: 2999 case ARMMMUIdx_E10_1_PAN: 3000 case ARMMMUIdx_E20_0: 3001 case ARMMMUIdx_E20_2: 3002 case ARMMMUIdx_E20_2_PAN: 3003 case ARMMMUIdx_Stage1_E0: 3004 case ARMMMUIdx_Stage1_E1: 3005 case ARMMMUIdx_Stage1_E1_PAN: 3006 case ARMMMUIdx_E2: 3007 is_secure = arm_is_secure_below_el3(env); 3008 break; 3009 case ARMMMUIdx_Stage2: 3010 case ARMMMUIdx_Phys_NS: 3011 case ARMMMUIdx_MPrivNegPri: 3012 case ARMMMUIdx_MUserNegPri: 3013 case ARMMMUIdx_MPriv: 3014 case ARMMMUIdx_MUser: 3015 is_secure = false; 3016 break; 3017 case ARMMMUIdx_E3: 3018 case ARMMMUIdx_Stage2_S: 3019 case ARMMMUIdx_Phys_S: 3020 case ARMMMUIdx_MSPrivNegPri: 3021 case ARMMMUIdx_MSUserNegPri: 3022 case ARMMMUIdx_MSPriv: 3023 case ARMMMUIdx_MSUser: 3024 is_secure = true; 3025 break; 3026 default: 3027 g_assert_not_reached(); 3028 } 3029 return get_phys_addr_with_secure(env, address, access_type, mmu_idx, 3030 is_secure, result, fi); 3031 } 3032 3033 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 3034 MemTxAttrs *attrs) 3035 { 3036 ARMCPU *cpu = ARM_CPU(cs); 3037 CPUARMState *env = &cpu->env; 3038 S1Translate ptw = { 3039 .in_mmu_idx = arm_mmu_idx(env), 3040 .in_secure = arm_is_secure(env), 3041 .in_debug = true, 3042 }; 3043 GetPhysAddrResult res = {}; 3044 ARMMMUFaultInfo fi = {}; 3045 bool ret; 3046 3047 ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi); 3048 *attrs = res.f.attrs; 3049 3050 if (ret) { 3051 return -1; 3052 } 3053 return res.f.phys_addr; 3054 } 3055