1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "qemu/main-loop.h" 13 #include "exec/exec-all.h" 14 #include "exec/page-protection.h" 15 #include "cpu.h" 16 #include "internals.h" 17 #include "cpu-features.h" 18 #include "idau.h" 19 #ifdef CONFIG_TCG 20 # include "tcg/oversized-guest.h" 21 #endif 22 23 typedef struct S1Translate { 24 /* 25 * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk. 26 * Together with in_space, specifies the architectural translation regime. 27 */ 28 ARMMMUIdx in_mmu_idx; 29 /* 30 * in_ptw_idx: specifies which mmuidx to use for the actual 31 * page table descriptor load operations. This will be one of the 32 * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes. 33 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 34 * this field is updated accordingly. 35 */ 36 ARMMMUIdx in_ptw_idx; 37 /* 38 * in_space: the security space for this walk. This plus 39 * the in_mmu_idx specify the architectural translation regime. 40 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 41 * this field is updated accordingly. 42 * 43 * Note that the security space for the in_ptw_idx may be different 44 * from that for the in_mmu_idx. We do not need to explicitly track 45 * the in_ptw_idx security space because: 46 * - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx 47 * itself specifies the security space 48 * - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security 49 * space used for ptw reads is the same as that of the security 50 * space of the stage 1 translation for all cases except where 51 * stage 1 is Secure; in that case the only possibilities for 52 * the ptw read are Secure and NonSecure, and the in_ptw_idx 53 * value being Stage2 vs Stage2_S distinguishes those. 54 */ 55 ARMSecuritySpace in_space; 56 /* 57 * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug 58 * accesses will not update the guest page table access flags 59 * and will not change the state of the softmmu TLBs. 60 */ 61 bool in_debug; 62 /* 63 * If this is stage 2 of a stage 1+2 page table walk, then this must 64 * be true if stage 1 is an EL0 access; otherwise this is ignored. 65 * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}. 66 */ 67 bool in_s1_is_el0; 68 bool out_rw; 69 bool out_be; 70 ARMSecuritySpace out_space; 71 hwaddr out_virt; 72 hwaddr out_phys; 73 void *out_host; 74 } S1Translate; 75 76 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 77 vaddr address, 78 MMUAccessType access_type, 79 GetPhysAddrResult *result, 80 ARMMMUFaultInfo *fi); 81 82 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 83 vaddr address, 84 MMUAccessType access_type, 85 GetPhysAddrResult *result, 86 ARMMMUFaultInfo *fi); 87 88 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 89 static const uint8_t pamax_map[] = { 90 [0] = 32, 91 [1] = 36, 92 [2] = 40, 93 [3] = 42, 94 [4] = 44, 95 [5] = 48, 96 [6] = 52, 97 }; 98 99 /* 100 * The cpu-specific constant value of PAMax; also used by hw/arm/virt. 101 * Note that machvirt_init calls this on a CPU that is inited but not realized! 102 */ 103 unsigned int arm_pamax(ARMCPU *cpu) 104 { 105 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 106 unsigned int parange = 107 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 108 109 /* 110 * id_aa64mmfr0 is a read-only register so values outside of the 111 * supported mappings can be considered an implementation error. 112 */ 113 assert(parange < ARRAY_SIZE(pamax_map)); 114 return pamax_map[parange]; 115 } 116 117 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 118 /* v7 or v8 with LPAE */ 119 return 40; 120 } 121 /* Anything else */ 122 return 32; 123 } 124 125 /* 126 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 127 */ 128 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 129 { 130 switch (mmu_idx) { 131 case ARMMMUIdx_E10_0: 132 return ARMMMUIdx_Stage1_E0; 133 case ARMMMUIdx_E10_1: 134 return ARMMMUIdx_Stage1_E1; 135 case ARMMMUIdx_E10_1_PAN: 136 return ARMMMUIdx_Stage1_E1_PAN; 137 default: 138 return mmu_idx; 139 } 140 } 141 142 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 143 { 144 return stage_1_mmu_idx(arm_mmu_idx(env)); 145 } 146 147 /* 148 * Return where we should do ptw loads from for a stage 2 walk. 149 * This depends on whether the address we are looking up is a 150 * Secure IPA or a NonSecure IPA, which we know from whether this is 151 * Stage2 or Stage2_S. 152 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits. 153 */ 154 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx) 155 { 156 bool s2walk_secure; 157 158 /* 159 * We're OK to check the current state of the CPU here because 160 * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit 161 * changes. 162 * (2) there's no way to do a lookup that cares about Stage 2 for a 163 * different security state to the current one for AArch64, and AArch32 164 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do 165 * an NS stage 1+2 lookup while the NS bit is 0.) 166 */ 167 if (!arm_el_is_aa64(env, 3)) { 168 return ARMMMUIdx_Phys_NS; 169 } 170 171 switch (arm_security_space_below_el3(env)) { 172 case ARMSS_NonSecure: 173 return ARMMMUIdx_Phys_NS; 174 case ARMSS_Realm: 175 return ARMMMUIdx_Phys_Realm; 176 case ARMSS_Secure: 177 if (stage2idx == ARMMMUIdx_Stage2_S) { 178 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW); 179 } else { 180 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW); 181 } 182 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 183 default: 184 g_assert_not_reached(); 185 } 186 } 187 188 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 189 { 190 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 191 } 192 193 /* Return the TTBR associated with this translation regime */ 194 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 195 { 196 if (mmu_idx == ARMMMUIdx_Stage2) { 197 return env->cp15.vttbr_el2; 198 } 199 if (mmu_idx == ARMMMUIdx_Stage2_S) { 200 return env->cp15.vsttbr_el2; 201 } 202 if (ttbrn == 0) { 203 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 204 } else { 205 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 206 } 207 } 208 209 /* Return true if the specified stage of address translation is disabled */ 210 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, 211 ARMSecuritySpace space) 212 { 213 uint64_t hcr_el2; 214 215 if (arm_feature(env, ARM_FEATURE_M)) { 216 bool is_secure = arm_space_is_secure(space); 217 switch (env->v7m.mpu_ctrl[is_secure] & 218 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 219 case R_V7M_MPU_CTRL_ENABLE_MASK: 220 /* Enabled, but not for HardFault and NMI */ 221 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 222 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 223 /* Enabled for all cases */ 224 return false; 225 case 0: 226 default: 227 /* 228 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 229 * we warned about that in armv7m_nvic.c when the guest set it. 230 */ 231 return true; 232 } 233 } 234 235 236 switch (mmu_idx) { 237 case ARMMMUIdx_Stage2: 238 case ARMMMUIdx_Stage2_S: 239 /* HCR.DC means HCR.VM behaves as 1 */ 240 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 241 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 242 243 case ARMMMUIdx_E10_0: 244 case ARMMMUIdx_E10_1: 245 case ARMMMUIdx_E10_1_PAN: 246 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ 247 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 248 if (hcr_el2 & HCR_TGE) { 249 return true; 250 } 251 break; 252 253 case ARMMMUIdx_Stage1_E0: 254 case ARMMMUIdx_Stage1_E1: 255 case ARMMMUIdx_Stage1_E1_PAN: 256 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 257 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 258 if (hcr_el2 & HCR_DC) { 259 return true; 260 } 261 break; 262 263 case ARMMMUIdx_E20_0: 264 case ARMMMUIdx_E20_2: 265 case ARMMMUIdx_E20_2_PAN: 266 case ARMMMUIdx_E2: 267 case ARMMMUIdx_E3: 268 case ARMMMUIdx_E30_0: 269 case ARMMMUIdx_E30_3_PAN: 270 break; 271 272 case ARMMMUIdx_Phys_S: 273 case ARMMMUIdx_Phys_NS: 274 case ARMMMUIdx_Phys_Root: 275 case ARMMMUIdx_Phys_Realm: 276 /* No translation for physical address spaces. */ 277 return true; 278 279 default: 280 g_assert_not_reached(); 281 } 282 283 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 284 } 285 286 static bool granule_protection_check(CPUARMState *env, uint64_t paddress, 287 ARMSecuritySpace pspace, 288 ARMMMUFaultInfo *fi) 289 { 290 MemTxAttrs attrs = { 291 .secure = true, 292 .space = ARMSS_Root, 293 }; 294 ARMCPU *cpu = env_archcpu(env); 295 uint64_t gpccr = env->cp15.gpccr_el3; 296 unsigned pps, pgs, l0gptsz, level = 0; 297 uint64_t tableaddr, pps_mask, align, entry, index; 298 AddressSpace *as; 299 MemTxResult result; 300 int gpi; 301 302 if (!FIELD_EX64(gpccr, GPCCR, GPC)) { 303 return true; 304 } 305 306 /* 307 * GPC Priority 1 (R_GMGRR): 308 * R_JWCSM: If the configuration of GPCCR_EL3 is invalid, 309 * the access fails as GPT walk fault at level 0. 310 */ 311 312 /* 313 * Configuration of PPS to a value exceeding the implemented 314 * physical address size is invalid. 315 */ 316 pps = FIELD_EX64(gpccr, GPCCR, PPS); 317 if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) { 318 goto fault_walk; 319 } 320 pps = pamax_map[pps]; 321 pps_mask = MAKE_64BIT_MASK(0, pps); 322 323 switch (FIELD_EX64(gpccr, GPCCR, SH)) { 324 case 0b10: /* outer shareable */ 325 break; 326 case 0b00: /* non-shareable */ 327 case 0b11: /* inner shareable */ 328 /* Inner and Outer non-cacheable requires Outer shareable. */ 329 if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 && 330 FIELD_EX64(gpccr, GPCCR, IRGN) == 0) { 331 goto fault_walk; 332 } 333 break; 334 default: /* reserved */ 335 goto fault_walk; 336 } 337 338 switch (FIELD_EX64(gpccr, GPCCR, PGS)) { 339 case 0b00: /* 4KB */ 340 pgs = 12; 341 break; 342 case 0b01: /* 64KB */ 343 pgs = 16; 344 break; 345 case 0b10: /* 16KB */ 346 pgs = 14; 347 break; 348 default: /* reserved */ 349 goto fault_walk; 350 } 351 352 /* Note this field is read-only and fixed at reset. */ 353 l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ); 354 355 /* 356 * GPC Priority 2: Secure, Realm or Root address exceeds PPS. 357 * R_CPDSB: A NonSecure physical address input exceeding PPS 358 * does not experience any fault. 359 */ 360 if (paddress & ~pps_mask) { 361 if (pspace == ARMSS_NonSecure) { 362 return true; 363 } 364 goto fault_size; 365 } 366 367 /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */ 368 tableaddr = env->cp15.gptbr_el3 << 12; 369 if (tableaddr & ~pps_mask) { 370 goto fault_size; 371 } 372 373 /* 374 * BADDR is aligned per a function of PPS and L0GPTSZ. 375 * These bits of GPTBR_EL3 are RES0, but are not a configuration error, 376 * unlike the RES0 bits of the GPT entries (R_XNKFZ). 377 */ 378 align = MAX(pps - l0gptsz + 3, 12); 379 align = MAKE_64BIT_MASK(0, align); 380 tableaddr &= ~align; 381 382 as = arm_addressspace(env_cpu(env), attrs); 383 384 /* Level 0 lookup. */ 385 index = extract64(paddress, l0gptsz, pps - l0gptsz); 386 tableaddr += index * 8; 387 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 388 if (result != MEMTX_OK) { 389 goto fault_eabt; 390 } 391 392 switch (extract32(entry, 0, 4)) { 393 case 1: /* block descriptor */ 394 if (entry >> 8) { 395 goto fault_walk; /* RES0 bits not 0 */ 396 } 397 gpi = extract32(entry, 4, 4); 398 goto found; 399 case 3: /* table descriptor */ 400 tableaddr = entry & ~0xf; 401 align = MAX(l0gptsz - pgs - 1, 12); 402 align = MAKE_64BIT_MASK(0, align); 403 if (tableaddr & (~pps_mask | align)) { 404 goto fault_walk; /* RES0 bits not 0 */ 405 } 406 break; 407 default: /* invalid */ 408 goto fault_walk; 409 } 410 411 /* Level 1 lookup */ 412 level = 1; 413 index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4); 414 tableaddr += index * 8; 415 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 416 if (result != MEMTX_OK) { 417 goto fault_eabt; 418 } 419 420 switch (extract32(entry, 0, 4)) { 421 case 1: /* contiguous descriptor */ 422 if (entry >> 10) { 423 goto fault_walk; /* RES0 bits not 0 */ 424 } 425 /* 426 * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE, 427 * and because we cannot invalidate by pa, and thus will always 428 * flush entire tlbs, we don't actually care about the range here 429 * and can simply extract the GPI as the result. 430 */ 431 if (extract32(entry, 8, 2) == 0) { 432 goto fault_walk; /* reserved contig */ 433 } 434 gpi = extract32(entry, 4, 4); 435 break; 436 default: 437 index = extract64(paddress, pgs, 4); 438 gpi = extract64(entry, index * 4, 4); 439 break; 440 } 441 442 found: 443 switch (gpi) { 444 case 0b0000: /* no access */ 445 break; 446 case 0b1111: /* all access */ 447 return true; 448 case 0b1000: 449 case 0b1001: 450 case 0b1010: 451 case 0b1011: 452 if (pspace == (gpi & 3)) { 453 return true; 454 } 455 break; 456 default: 457 goto fault_walk; /* reserved */ 458 } 459 460 fi->gpcf = GPCF_Fail; 461 goto fault_common; 462 fault_eabt: 463 fi->gpcf = GPCF_EABT; 464 goto fault_common; 465 fault_size: 466 fi->gpcf = GPCF_AddressSize; 467 goto fault_common; 468 fault_walk: 469 fi->gpcf = GPCF_Walk; 470 fault_common: 471 fi->level = level; 472 fi->paddr = paddress; 473 fi->paddr_space = pspace; 474 return false; 475 } 476 477 static bool S1_attrs_are_device(uint8_t attrs) 478 { 479 /* 480 * This slightly under-decodes the MAIR_ELx field: 481 * 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE; 482 * 0b0000dd1x is UNPREDICTABLE. 483 */ 484 return (attrs & 0xf0) == 0; 485 } 486 487 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) 488 { 489 /* 490 * For an S1 page table walk, the stage 1 attributes are always 491 * some form of "this is Normal memory". The combined S1+S2 492 * attributes are therefore only Device if stage 2 specifies Device. 493 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 494 * ie when cacheattrs.attrs bits [3:2] are 0b00. 495 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 496 * when cacheattrs.attrs bit [2] is 0. 497 */ 498 if (hcr & HCR_FWB) { 499 return (attrs & 0x4) == 0; 500 } else { 501 return (attrs & 0xc) == 0; 502 } 503 } 504 505 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space, 506 ARMMMUIdx s2_mmu_idx) 507 { 508 /* 509 * Return the security space to use for stage 2 when doing 510 * the S1 page table descriptor load. 511 */ 512 if (regime_is_stage2(s2_mmu_idx)) { 513 /* 514 * The security space for ptw reads is almost always the same 515 * as that of the security space of the stage 1 translation. 516 * The only exception is when stage 1 is Secure; in that case 517 * the ptw read might be to the Secure or the NonSecure space 518 * (but never Realm or Root), and the s2_mmu_idx tells us which. 519 * Root translations are always single-stage. 520 */ 521 if (s1_space == ARMSS_Secure) { 522 return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S); 523 } else { 524 assert(s2_mmu_idx != ARMMMUIdx_Stage2_S); 525 assert(s1_space != ARMSS_Root); 526 return s1_space; 527 } 528 } else { 529 /* ptw loads are from phys: the mmu idx itself says which space */ 530 return arm_phys_to_space(s2_mmu_idx); 531 } 532 } 533 534 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx) 535 { 536 /* 537 * For stage 2 faults in Secure EL22, S1NS indicates 538 * whether the faulting IPA is in the Secure or NonSecure 539 * IPA space. For all other kinds of fault, it is false. 540 */ 541 return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx) 542 && s2_mmu_idx == ARMMMUIdx_Stage2_S; 543 } 544 545 /* Translate a S1 pagetable walk through S2 if needed. */ 546 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, 547 hwaddr addr, ARMMMUFaultInfo *fi) 548 { 549 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 550 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx; 551 uint8_t pte_attrs; 552 553 ptw->out_virt = addr; 554 555 if (unlikely(ptw->in_debug)) { 556 /* 557 * From gdbstub, do not use softmmu so that we don't modify the 558 * state of the cpu at all, including softmmu tlb contents. 559 */ 560 ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx); 561 S1Translate s2ptw = { 562 .in_mmu_idx = s2_mmu_idx, 563 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx), 564 .in_space = s2_space, 565 .in_debug = true, 566 }; 567 GetPhysAddrResult s2 = { }; 568 569 if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) { 570 goto fail; 571 } 572 573 ptw->out_phys = s2.f.phys_addr; 574 pte_attrs = s2.cacheattrs.attrs; 575 ptw->out_host = NULL; 576 ptw->out_rw = false; 577 ptw->out_space = s2.f.attrs.space; 578 } else { 579 #ifdef CONFIG_TCG 580 CPUTLBEntryFull *full; 581 int flags; 582 583 env->tlb_fi = fi; 584 flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD, 585 arm_to_core_mmu_idx(s2_mmu_idx), 586 &ptw->out_host, &full); 587 env->tlb_fi = NULL; 588 589 if (unlikely(flags & TLB_INVALID_MASK)) { 590 goto fail; 591 } 592 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 593 ptw->out_rw = full->prot & PAGE_WRITE; 594 pte_attrs = full->extra.arm.pte_attrs; 595 ptw->out_space = full->attrs.space; 596 #else 597 g_assert_not_reached(); 598 #endif 599 } 600 601 if (regime_is_stage2(s2_mmu_idx)) { 602 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 603 604 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { 605 /* 606 * PTW set and S1 walk touched S2 Device memory: 607 * generate Permission fault. 608 */ 609 fi->type = ARMFault_Permission; 610 fi->s2addr = addr; 611 fi->stage2 = true; 612 fi->s1ptw = true; 613 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 614 return false; 615 } 616 } 617 618 ptw->out_be = regime_translation_big_endian(env, mmu_idx); 619 return true; 620 621 fail: 622 assert(fi->type != ARMFault_None); 623 if (fi->type == ARMFault_GPCFOnOutput) { 624 fi->type = ARMFault_GPCFOnWalk; 625 } 626 fi->s2addr = addr; 627 fi->stage2 = regime_is_stage2(s2_mmu_idx); 628 fi->s1ptw = fi->stage2; 629 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 630 return false; 631 } 632 633 /* All loads done in the course of a page table walk go through here. */ 634 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, 635 ARMMMUFaultInfo *fi) 636 { 637 CPUState *cs = env_cpu(env); 638 void *host = ptw->out_host; 639 uint32_t data; 640 641 if (likely(host)) { 642 /* Page tables are in RAM, and we have the host address. */ 643 data = qatomic_read((uint32_t *)host); 644 if (ptw->out_be) { 645 data = be32_to_cpu(data); 646 } else { 647 data = le32_to_cpu(data); 648 } 649 } else { 650 /* Page tables are in MMIO. */ 651 MemTxAttrs attrs = { 652 .space = ptw->out_space, 653 .secure = arm_space_is_secure(ptw->out_space), 654 }; 655 AddressSpace *as = arm_addressspace(cs, attrs); 656 MemTxResult result = MEMTX_OK; 657 658 if (ptw->out_be) { 659 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); 660 } else { 661 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); 662 } 663 if (unlikely(result != MEMTX_OK)) { 664 fi->type = ARMFault_SyncExternalOnWalk; 665 fi->ea = arm_extabort_type(result); 666 return 0; 667 } 668 } 669 return data; 670 } 671 672 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, 673 ARMMMUFaultInfo *fi) 674 { 675 CPUState *cs = env_cpu(env); 676 void *host = ptw->out_host; 677 uint64_t data; 678 679 if (likely(host)) { 680 /* Page tables are in RAM, and we have the host address. */ 681 #ifdef CONFIG_ATOMIC64 682 data = qatomic_read__nocheck((uint64_t *)host); 683 if (ptw->out_be) { 684 data = be64_to_cpu(data); 685 } else { 686 data = le64_to_cpu(data); 687 } 688 #else 689 if (ptw->out_be) { 690 data = ldq_be_p(host); 691 } else { 692 data = ldq_le_p(host); 693 } 694 #endif 695 } else { 696 /* Page tables are in MMIO. */ 697 MemTxAttrs attrs = { 698 .space = ptw->out_space, 699 .secure = arm_space_is_secure(ptw->out_space), 700 }; 701 AddressSpace *as = arm_addressspace(cs, attrs); 702 MemTxResult result = MEMTX_OK; 703 704 if (ptw->out_be) { 705 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 706 } else { 707 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 708 } 709 if (unlikely(result != MEMTX_OK)) { 710 fi->type = ARMFault_SyncExternalOnWalk; 711 fi->ea = arm_extabort_type(result); 712 return 0; 713 } 714 } 715 return data; 716 } 717 718 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val, 719 uint64_t new_val, S1Translate *ptw, 720 ARMMMUFaultInfo *fi) 721 { 722 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG) 723 uint64_t cur_val; 724 void *host = ptw->out_host; 725 726 if (unlikely(!host)) { 727 /* Page table in MMIO Memory Region */ 728 CPUState *cs = env_cpu(env); 729 MemTxAttrs attrs = { 730 .space = ptw->out_space, 731 .secure = arm_space_is_secure(ptw->out_space), 732 }; 733 AddressSpace *as = arm_addressspace(cs, attrs); 734 MemTxResult result = MEMTX_OK; 735 bool need_lock = !bql_locked(); 736 737 if (need_lock) { 738 bql_lock(); 739 } 740 if (ptw->out_be) { 741 cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 742 if (unlikely(result != MEMTX_OK)) { 743 fi->type = ARMFault_SyncExternalOnWalk; 744 fi->ea = arm_extabort_type(result); 745 if (need_lock) { 746 bql_unlock(); 747 } 748 return old_val; 749 } 750 if (cur_val == old_val) { 751 address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result); 752 if (unlikely(result != MEMTX_OK)) { 753 fi->type = ARMFault_SyncExternalOnWalk; 754 fi->ea = arm_extabort_type(result); 755 if (need_lock) { 756 bql_unlock(); 757 } 758 return old_val; 759 } 760 cur_val = new_val; 761 } 762 } else { 763 cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 764 if (unlikely(result != MEMTX_OK)) { 765 fi->type = ARMFault_SyncExternalOnWalk; 766 fi->ea = arm_extabort_type(result); 767 if (need_lock) { 768 bql_unlock(); 769 } 770 return old_val; 771 } 772 if (cur_val == old_val) { 773 address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result); 774 if (unlikely(result != MEMTX_OK)) { 775 fi->type = ARMFault_SyncExternalOnWalk; 776 fi->ea = arm_extabort_type(result); 777 if (need_lock) { 778 bql_unlock(); 779 } 780 return old_val; 781 } 782 cur_val = new_val; 783 } 784 } 785 if (need_lock) { 786 bql_unlock(); 787 } 788 return cur_val; 789 } 790 791 /* 792 * Raising a stage2 Protection fault for an atomic update to a read-only 793 * page is delayed until it is certain that there is a change to make. 794 */ 795 if (unlikely(!ptw->out_rw)) { 796 int flags; 797 798 env->tlb_fi = fi; 799 flags = probe_access_full_mmu(env, ptw->out_virt, 0, 800 MMU_DATA_STORE, 801 arm_to_core_mmu_idx(ptw->in_ptw_idx), 802 NULL, NULL); 803 env->tlb_fi = NULL; 804 805 if (unlikely(flags & TLB_INVALID_MASK)) { 806 /* 807 * We know this must be a stage 2 fault because the granule 808 * protection table does not separately track read and write 809 * permission, so all GPC faults are caught in S1_ptw_translate(): 810 * we only get here for "readable but not writeable". 811 */ 812 assert(fi->type != ARMFault_None); 813 fi->s2addr = ptw->out_virt; 814 fi->stage2 = true; 815 fi->s1ptw = true; 816 fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx); 817 return 0; 818 } 819 820 /* In case CAS mismatches and we loop, remember writability. */ 821 ptw->out_rw = true; 822 } 823 824 #ifdef CONFIG_ATOMIC64 825 if (ptw->out_be) { 826 old_val = cpu_to_be64(old_val); 827 new_val = cpu_to_be64(new_val); 828 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 829 cur_val = be64_to_cpu(cur_val); 830 } else { 831 old_val = cpu_to_le64(old_val); 832 new_val = cpu_to_le64(new_val); 833 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 834 cur_val = le64_to_cpu(cur_val); 835 } 836 #else 837 /* 838 * We can't support the full 64-bit atomic cmpxchg on the host. 839 * Because this is only used for FEAT_HAFDBS, which is only for AA64, 840 * we know that TCG_OVERSIZED_GUEST is set, which means that we are 841 * running in round-robin mode and could only race with dma i/o. 842 */ 843 #if !TCG_OVERSIZED_GUEST 844 # error "Unexpected configuration" 845 #endif 846 bool locked = bql_locked(); 847 if (!locked) { 848 bql_lock(); 849 } 850 if (ptw->out_be) { 851 cur_val = ldq_be_p(host); 852 if (cur_val == old_val) { 853 stq_be_p(host, new_val); 854 } 855 } else { 856 cur_val = ldq_le_p(host); 857 if (cur_val == old_val) { 858 stq_le_p(host, new_val); 859 } 860 } 861 if (!locked) { 862 bql_unlock(); 863 } 864 #endif 865 866 return cur_val; 867 #else 868 /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */ 869 g_assert_not_reached(); 870 #endif 871 } 872 873 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 874 uint32_t *table, uint32_t address) 875 { 876 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 877 uint64_t tcr = regime_tcr(env, mmu_idx); 878 int maskshift = extract32(tcr, 0, 3); 879 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 880 uint32_t base_mask; 881 882 if (address & mask) { 883 if (tcr & TTBCR_PD1) { 884 /* Translation table walk disabled for TTBR1 */ 885 return false; 886 } 887 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 888 } else { 889 if (tcr & TTBCR_PD0) { 890 /* Translation table walk disabled for TTBR0 */ 891 return false; 892 } 893 base_mask = ~((uint32_t)0x3fffu >> maskshift); 894 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 895 } 896 *table |= (address >> 18) & 0x3ffc; 897 return true; 898 } 899 900 /* 901 * Translate section/page access permissions to page R/W protection flags 902 * @env: CPUARMState 903 * @mmu_idx: MMU index indicating required translation regime 904 * @ap: The 3-bit access permissions (AP[2:0]) 905 * @domain_prot: The 2-bit domain access permissions 906 * @is_user: TRUE if accessing from PL0 907 */ 908 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx, 909 int ap, int domain_prot, bool is_user) 910 { 911 if (domain_prot == 3) { 912 return PAGE_READ | PAGE_WRITE; 913 } 914 915 switch (ap) { 916 case 0: 917 if (arm_feature(env, ARM_FEATURE_V7)) { 918 return 0; 919 } 920 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 921 case SCTLR_S: 922 return is_user ? 0 : PAGE_READ; 923 case SCTLR_R: 924 return PAGE_READ; 925 default: 926 return 0; 927 } 928 case 1: 929 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 930 case 2: 931 if (is_user) { 932 return PAGE_READ; 933 } else { 934 return PAGE_READ | PAGE_WRITE; 935 } 936 case 3: 937 return PAGE_READ | PAGE_WRITE; 938 case 4: /* Reserved. */ 939 return 0; 940 case 5: 941 return is_user ? 0 : PAGE_READ; 942 case 6: 943 return PAGE_READ; 944 case 7: 945 if (!arm_feature(env, ARM_FEATURE_V6K)) { 946 return 0; 947 } 948 return PAGE_READ; 949 default: 950 g_assert_not_reached(); 951 } 952 } 953 954 /* 955 * Translate section/page access permissions to page R/W protection flags 956 * @env: CPUARMState 957 * @mmu_idx: MMU index indicating required translation regime 958 * @ap: The 3-bit access permissions (AP[2:0]) 959 * @domain_prot: The 2-bit domain access permissions 960 */ 961 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 962 int ap, int domain_prot) 963 { 964 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 965 regime_is_user(env, mmu_idx)); 966 } 967 968 /* 969 * Translate section/page access permissions to page R/W protection flags. 970 * @ap: The 2-bit simple AP (AP[2:1]) 971 * @is_user: TRUE if accessing from PL0 972 */ 973 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 974 { 975 switch (ap) { 976 case 0: 977 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 978 case 1: 979 return PAGE_READ | PAGE_WRITE; 980 case 2: 981 return is_user ? 0 : PAGE_READ; 982 case 3: 983 return PAGE_READ; 984 default: 985 g_assert_not_reached(); 986 } 987 } 988 989 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 990 { 991 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 992 } 993 994 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, 995 uint32_t address, MMUAccessType access_type, 996 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 997 { 998 int level = 1; 999 uint32_t table; 1000 uint32_t desc; 1001 int type; 1002 int ap; 1003 int domain = 0; 1004 int domain_prot; 1005 hwaddr phys_addr; 1006 uint32_t dacr; 1007 1008 /* Pagetable walk. */ 1009 /* Lookup l1 descriptor. */ 1010 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { 1011 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 1012 fi->type = ARMFault_Translation; 1013 goto do_fault; 1014 } 1015 if (!S1_ptw_translate(env, ptw, table, fi)) { 1016 goto do_fault; 1017 } 1018 desc = arm_ldl_ptw(env, ptw, fi); 1019 if (fi->type != ARMFault_None) { 1020 goto do_fault; 1021 } 1022 type = (desc & 3); 1023 domain = (desc >> 5) & 0x0f; 1024 if (regime_el(env, ptw->in_mmu_idx) == 1) { 1025 dacr = env->cp15.dacr_ns; 1026 } else { 1027 dacr = env->cp15.dacr_s; 1028 } 1029 domain_prot = (dacr >> (domain * 2)) & 3; 1030 if (type == 0) { 1031 /* Section translation fault. */ 1032 fi->type = ARMFault_Translation; 1033 goto do_fault; 1034 } 1035 if (type != 2) { 1036 level = 2; 1037 } 1038 if (domain_prot == 0 || domain_prot == 2) { 1039 fi->type = ARMFault_Domain; 1040 goto do_fault; 1041 } 1042 if (type == 2) { 1043 /* 1Mb section. */ 1044 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 1045 ap = (desc >> 10) & 3; 1046 result->f.lg_page_size = 20; /* 1MB */ 1047 } else { 1048 /* Lookup l2 entry. */ 1049 if (type == 1) { 1050 /* Coarse pagetable. */ 1051 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 1052 } else { 1053 /* Fine pagetable. */ 1054 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 1055 } 1056 if (!S1_ptw_translate(env, ptw, table, fi)) { 1057 goto do_fault; 1058 } 1059 desc = arm_ldl_ptw(env, ptw, fi); 1060 if (fi->type != ARMFault_None) { 1061 goto do_fault; 1062 } 1063 switch (desc & 3) { 1064 case 0: /* Page translation fault. */ 1065 fi->type = ARMFault_Translation; 1066 goto do_fault; 1067 case 1: /* 64k page. */ 1068 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 1069 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 1070 result->f.lg_page_size = 16; 1071 break; 1072 case 2: /* 4k page. */ 1073 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1074 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 1075 result->f.lg_page_size = 12; 1076 break; 1077 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 1078 if (type == 1) { 1079 /* ARMv6/XScale extended small page format */ 1080 if (arm_feature(env, ARM_FEATURE_XSCALE) 1081 || arm_feature(env, ARM_FEATURE_V6)) { 1082 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1083 result->f.lg_page_size = 12; 1084 } else { 1085 /* 1086 * UNPREDICTABLE in ARMv5; we choose to take a 1087 * page translation fault. 1088 */ 1089 fi->type = ARMFault_Translation; 1090 goto do_fault; 1091 } 1092 } else { 1093 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 1094 result->f.lg_page_size = 10; 1095 } 1096 ap = (desc >> 4) & 3; 1097 break; 1098 default: 1099 /* Never happens, but compiler isn't smart enough to tell. */ 1100 g_assert_not_reached(); 1101 } 1102 } 1103 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); 1104 result->f.prot |= result->f.prot ? PAGE_EXEC : 0; 1105 if (!(result->f.prot & (1 << access_type))) { 1106 /* Access permission fault. */ 1107 fi->type = ARMFault_Permission; 1108 goto do_fault; 1109 } 1110 result->f.phys_addr = phys_addr; 1111 return false; 1112 do_fault: 1113 fi->domain = domain; 1114 fi->level = level; 1115 return true; 1116 } 1117 1118 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, 1119 uint32_t address, MMUAccessType access_type, 1120 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1121 { 1122 ARMCPU *cpu = env_archcpu(env); 1123 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1124 int level = 1; 1125 uint32_t table; 1126 uint32_t desc; 1127 uint32_t xn; 1128 uint32_t pxn = 0; 1129 int type; 1130 int ap; 1131 int domain = 0; 1132 int domain_prot; 1133 hwaddr phys_addr; 1134 uint32_t dacr; 1135 bool ns; 1136 int user_prot; 1137 1138 /* Pagetable walk. */ 1139 /* Lookup l1 descriptor. */ 1140 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 1141 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 1142 fi->type = ARMFault_Translation; 1143 goto do_fault; 1144 } 1145 if (!S1_ptw_translate(env, ptw, table, fi)) { 1146 goto do_fault; 1147 } 1148 desc = arm_ldl_ptw(env, ptw, fi); 1149 if (fi->type != ARMFault_None) { 1150 goto do_fault; 1151 } 1152 type = (desc & 3); 1153 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 1154 /* Section translation fault, or attempt to use the encoding 1155 * which is Reserved on implementations without PXN. 1156 */ 1157 fi->type = ARMFault_Translation; 1158 goto do_fault; 1159 } 1160 if ((type == 1) || !(desc & (1 << 18))) { 1161 /* Page or Section. */ 1162 domain = (desc >> 5) & 0x0f; 1163 } 1164 if (regime_el(env, mmu_idx) == 1) { 1165 dacr = env->cp15.dacr_ns; 1166 } else { 1167 dacr = env->cp15.dacr_s; 1168 } 1169 if (type == 1) { 1170 level = 2; 1171 } 1172 domain_prot = (dacr >> (domain * 2)) & 3; 1173 if (domain_prot == 0 || domain_prot == 2) { 1174 /* Section or Page domain fault */ 1175 fi->type = ARMFault_Domain; 1176 goto do_fault; 1177 } 1178 if (type != 1) { 1179 if (desc & (1 << 18)) { 1180 /* Supersection. */ 1181 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 1182 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 1183 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 1184 result->f.lg_page_size = 24; /* 16MB */ 1185 } else { 1186 /* Section. */ 1187 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 1188 result->f.lg_page_size = 20; /* 1MB */ 1189 } 1190 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 1191 xn = desc & (1 << 4); 1192 pxn = desc & 1; 1193 ns = extract32(desc, 19, 1); 1194 } else { 1195 if (cpu_isar_feature(aa32_pxn, cpu)) { 1196 pxn = (desc >> 2) & 1; 1197 } 1198 ns = extract32(desc, 3, 1); 1199 /* Lookup l2 entry. */ 1200 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 1201 if (!S1_ptw_translate(env, ptw, table, fi)) { 1202 goto do_fault; 1203 } 1204 desc = arm_ldl_ptw(env, ptw, fi); 1205 if (fi->type != ARMFault_None) { 1206 goto do_fault; 1207 } 1208 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 1209 switch (desc & 3) { 1210 case 0: /* Page translation fault. */ 1211 fi->type = ARMFault_Translation; 1212 goto do_fault; 1213 case 1: /* 64k page. */ 1214 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 1215 xn = desc & (1 << 15); 1216 result->f.lg_page_size = 16; 1217 break; 1218 case 2: case 3: /* 4k page. */ 1219 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1220 xn = desc & 1; 1221 result->f.lg_page_size = 12; 1222 break; 1223 default: 1224 /* Never happens, but compiler isn't smart enough to tell. */ 1225 g_assert_not_reached(); 1226 } 1227 } 1228 if (domain_prot == 3) { 1229 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1230 } else { 1231 if (pxn && !regime_is_user(env, mmu_idx)) { 1232 xn = 1; 1233 } 1234 if (xn && access_type == MMU_INST_FETCH) { 1235 fi->type = ARMFault_Permission; 1236 goto do_fault; 1237 } 1238 1239 if (arm_feature(env, ARM_FEATURE_V6K) && 1240 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 1241 /* The simplified model uses AP[0] as an access control bit. */ 1242 if ((ap & 1) == 0) { 1243 /* Access flag fault. */ 1244 fi->type = ARMFault_AccessFlag; 1245 goto do_fault; 1246 } 1247 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 1248 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1); 1249 } else { 1250 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 1251 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1); 1252 } 1253 if (result->f.prot && !xn) { 1254 result->f.prot |= PAGE_EXEC; 1255 } 1256 if (!(result->f.prot & (1 << access_type))) { 1257 /* Access permission fault. */ 1258 fi->type = ARMFault_Permission; 1259 goto do_fault; 1260 } 1261 if (regime_is_pan(env, mmu_idx) && 1262 !regime_is_user(env, mmu_idx) && 1263 user_prot && 1264 access_type != MMU_INST_FETCH) { 1265 /* Privileged Access Never fault */ 1266 fi->type = ARMFault_Permission; 1267 goto do_fault; 1268 } 1269 } 1270 if (ns) { 1271 /* The NS bit will (as required by the architecture) have no effect if 1272 * the CPU doesn't support TZ or this is a non-secure translation 1273 * regime, because the attribute will already be non-secure. 1274 */ 1275 result->f.attrs.secure = false; 1276 result->f.attrs.space = ARMSS_NonSecure; 1277 } 1278 result->f.phys_addr = phys_addr; 1279 return false; 1280 do_fault: 1281 fi->domain = domain; 1282 fi->level = level; 1283 return true; 1284 } 1285 1286 /* 1287 * Translate S2 section/page access permissions to protection flags 1288 * @env: CPUARMState 1289 * @s2ap: The 2-bit stage2 access permissions (S2AP) 1290 * @xn: XN (execute-never) bits 1291 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 1292 */ 1293 static int get_S2prot_noexecute(int s2ap) 1294 { 1295 int prot = 0; 1296 1297 if (s2ap & 1) { 1298 prot |= PAGE_READ; 1299 } 1300 if (s2ap & 2) { 1301 prot |= PAGE_WRITE; 1302 } 1303 return prot; 1304 } 1305 1306 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 1307 { 1308 int prot = get_S2prot_noexecute(s2ap); 1309 1310 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 1311 switch (xn) { 1312 case 0: 1313 prot |= PAGE_EXEC; 1314 break; 1315 case 1: 1316 if (s1_is_el0) { 1317 prot |= PAGE_EXEC; 1318 } 1319 break; 1320 case 2: 1321 break; 1322 case 3: 1323 if (!s1_is_el0) { 1324 prot |= PAGE_EXEC; 1325 } 1326 break; 1327 default: 1328 g_assert_not_reached(); 1329 } 1330 } else { 1331 if (!extract32(xn, 1, 1)) { 1332 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 1333 prot |= PAGE_EXEC; 1334 } 1335 } 1336 } 1337 return prot; 1338 } 1339 1340 /* 1341 * Translate section/page access permissions to protection flags 1342 * @env: CPUARMState 1343 * @mmu_idx: MMU index indicating required translation regime 1344 * @is_aa64: TRUE if AArch64 1345 * @ap: The 2-bit simple AP (AP[2:1]) 1346 * @xn: XN (execute-never) bit 1347 * @pxn: PXN (privileged execute-never) bit 1348 * @in_pa: The original input pa space 1349 * @out_pa: The output pa space, modified by NSTable, NS, and NSE 1350 */ 1351 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 1352 int ap, int xn, int pxn, 1353 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa) 1354 { 1355 ARMCPU *cpu = env_archcpu(env); 1356 bool is_user = regime_is_user(env, mmu_idx); 1357 int prot_rw, user_rw; 1358 bool have_wxn; 1359 int wxn = 0; 1360 1361 assert(!regime_is_stage2(mmu_idx)); 1362 1363 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 1364 if (is_user) { 1365 prot_rw = user_rw; 1366 } else { 1367 /* 1368 * PAN controls can forbid data accesses but don't affect insn fetch. 1369 * Plain PAN forbids data accesses if EL0 has data permissions; 1370 * PAN3 forbids data accesses if EL0 has either data or exec perms. 1371 * Note that for AArch64 the 'user can exec' case is exactly !xn. 1372 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0 1373 * do not affect EPAN. 1374 */ 1375 if (user_rw && regime_is_pan(env, mmu_idx)) { 1376 prot_rw = 0; 1377 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 && 1378 regime_is_pan(env, mmu_idx) && 1379 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) { 1380 prot_rw = 0; 1381 } else { 1382 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 1383 } 1384 } 1385 1386 if (in_pa != out_pa) { 1387 switch (in_pa) { 1388 case ARMSS_Root: 1389 /* 1390 * R_ZWRVD: permission fault for insn fetched from non-Root, 1391 * I_WWBFB: SIF has no effect in EL3. 1392 */ 1393 return prot_rw; 1394 case ARMSS_Realm: 1395 /* 1396 * R_PKTDS: permission fault for insn fetched from non-Realm, 1397 * for Realm EL2 or EL2&0. The corresponding fault for EL1&0 1398 * happens during any stage2 translation. 1399 */ 1400 switch (mmu_idx) { 1401 case ARMMMUIdx_E2: 1402 case ARMMMUIdx_E20_0: 1403 case ARMMMUIdx_E20_2: 1404 case ARMMMUIdx_E20_2_PAN: 1405 return prot_rw; 1406 default: 1407 break; 1408 } 1409 break; 1410 case ARMSS_Secure: 1411 if (env->cp15.scr_el3 & SCR_SIF) { 1412 return prot_rw; 1413 } 1414 break; 1415 default: 1416 /* Input NonSecure must have output NonSecure. */ 1417 g_assert_not_reached(); 1418 } 1419 } 1420 1421 /* TODO have_wxn should be replaced with 1422 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 1423 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 1424 * compatible processors have EL2, which is required for [U]WXN. 1425 */ 1426 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 1427 1428 if (have_wxn) { 1429 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 1430 } 1431 1432 if (is_aa64) { 1433 if (regime_has_2_ranges(mmu_idx) && !is_user) { 1434 xn = pxn || (user_rw & PAGE_WRITE); 1435 } 1436 } else if (arm_feature(env, ARM_FEATURE_V7)) { 1437 switch (regime_el(env, mmu_idx)) { 1438 case 1: 1439 case 3: 1440 if (is_user) { 1441 xn = xn || !(user_rw & PAGE_READ); 1442 } else { 1443 int uwxn = 0; 1444 if (have_wxn) { 1445 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 1446 } 1447 xn = xn || !(prot_rw & PAGE_READ) || pxn || 1448 (uwxn && (user_rw & PAGE_WRITE)); 1449 } 1450 break; 1451 case 2: 1452 break; 1453 } 1454 } else { 1455 xn = wxn = 0; 1456 } 1457 1458 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 1459 return prot_rw; 1460 } 1461 return prot_rw | PAGE_EXEC; 1462 } 1463 1464 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 1465 ARMMMUIdx mmu_idx) 1466 { 1467 uint64_t tcr = regime_tcr(env, mmu_idx); 1468 uint32_t el = regime_el(env, mmu_idx); 1469 int select, tsz; 1470 bool epd, hpd; 1471 1472 assert(mmu_idx != ARMMMUIdx_Stage2_S); 1473 1474 if (mmu_idx == ARMMMUIdx_Stage2) { 1475 /* VTCR */ 1476 bool sext = extract32(tcr, 4, 1); 1477 bool sign = extract32(tcr, 3, 1); 1478 1479 /* 1480 * If the sign-extend bit is not the same as t0sz[3], the result 1481 * is unpredictable. Flag this as a guest error. 1482 */ 1483 if (sign != sext) { 1484 qemu_log_mask(LOG_GUEST_ERROR, 1485 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 1486 } 1487 tsz = sextract32(tcr, 0, 4) + 8; 1488 select = 0; 1489 hpd = false; 1490 epd = false; 1491 } else if (el == 2) { 1492 /* HTCR */ 1493 tsz = extract32(tcr, 0, 3); 1494 select = 0; 1495 hpd = extract64(tcr, 24, 1); 1496 epd = false; 1497 } else { 1498 int t0sz = extract32(tcr, 0, 3); 1499 int t1sz = extract32(tcr, 16, 3); 1500 1501 if (t1sz == 0) { 1502 select = va > (0xffffffffu >> t0sz); 1503 } else { 1504 /* Note that we will detect errors later. */ 1505 select = va >= ~(0xffffffffu >> t1sz); 1506 } 1507 if (!select) { 1508 tsz = t0sz; 1509 epd = extract32(tcr, 7, 1); 1510 hpd = extract64(tcr, 41, 1); 1511 } else { 1512 tsz = t1sz; 1513 epd = extract32(tcr, 23, 1); 1514 hpd = extract64(tcr, 42, 1); 1515 } 1516 /* For aarch32, hpd0 is not enabled without t2e as well. */ 1517 hpd &= extract32(tcr, 6, 1); 1518 } 1519 1520 return (ARMVAParameters) { 1521 .tsz = tsz, 1522 .select = select, 1523 .epd = epd, 1524 .hpd = hpd, 1525 }; 1526 } 1527 1528 /* 1529 * check_s2_mmu_setup 1530 * @cpu: ARMCPU 1531 * @is_aa64: True if the translation regime is in AArch64 state 1532 * @tcr: VTCR_EL2 or VSTCR_EL2 1533 * @ds: Effective value of TCR.DS. 1534 * @iasize: Bitsize of IPAs 1535 * @stride: Page-table stride (See the ARM ARM) 1536 * 1537 * Decode the starting level of the S2 lookup, returning INT_MIN if 1538 * the configuration is invalid. 1539 */ 1540 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr, 1541 bool ds, int iasize, int stride) 1542 { 1543 int sl0, sl2, startlevel, granulebits, levels; 1544 int s1_min_iasize, s1_max_iasize; 1545 1546 sl0 = extract32(tcr, 6, 2); 1547 if (is_aa64) { 1548 /* 1549 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size, 1550 * so interleave AArch64.S2StartLevel. 1551 */ 1552 switch (stride) { 1553 case 9: /* 4KB */ 1554 /* SL2 is RES0 unless DS=1 & 4KB granule. */ 1555 sl2 = extract64(tcr, 33, 1); 1556 if (ds && sl2) { 1557 if (sl0 != 0) { 1558 goto fail; 1559 } 1560 startlevel = -1; 1561 } else { 1562 startlevel = 2 - sl0; 1563 switch (sl0) { 1564 case 2: 1565 if (arm_pamax(cpu) < 44) { 1566 goto fail; 1567 } 1568 break; 1569 case 3: 1570 if (!cpu_isar_feature(aa64_st, cpu)) { 1571 goto fail; 1572 } 1573 startlevel = 3; 1574 break; 1575 } 1576 } 1577 break; 1578 case 11: /* 16KB */ 1579 switch (sl0) { 1580 case 2: 1581 if (arm_pamax(cpu) < 42) { 1582 goto fail; 1583 } 1584 break; 1585 case 3: 1586 if (!ds) { 1587 goto fail; 1588 } 1589 break; 1590 } 1591 startlevel = 3 - sl0; 1592 break; 1593 case 13: /* 64KB */ 1594 switch (sl0) { 1595 case 2: 1596 if (arm_pamax(cpu) < 44) { 1597 goto fail; 1598 } 1599 break; 1600 case 3: 1601 goto fail; 1602 } 1603 startlevel = 3 - sl0; 1604 break; 1605 default: 1606 g_assert_not_reached(); 1607 } 1608 } else { 1609 /* 1610 * Things are simpler for AArch32 EL2, with only 4k pages. 1611 * There is no separate S2InvalidSL function, but AArch32.S2Walk 1612 * begins with walkparms.sl0 in {'1x'}. 1613 */ 1614 assert(stride == 9); 1615 if (sl0 >= 2) { 1616 goto fail; 1617 } 1618 startlevel = 2 - sl0; 1619 } 1620 1621 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */ 1622 levels = 3 - startlevel; 1623 granulebits = stride + 3; 1624 1625 s1_min_iasize = levels * stride + granulebits + 1; 1626 s1_max_iasize = s1_min_iasize + (stride - 1) + 4; 1627 1628 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) { 1629 return startlevel; 1630 } 1631 1632 fail: 1633 return INT_MIN; 1634 } 1635 1636 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds, 1637 ARMGranuleSize gran, int level) 1638 { 1639 /* 1640 * See pseudocode AArch46.BlockDescSupported(): block descriptors 1641 * are not valid at all levels, depending on the page size. 1642 */ 1643 switch (gran) { 1644 case Gran4K: 1645 return (level == 0 && ds) || level == 1 || level == 2; 1646 case Gran16K: 1647 return (level == 1 && ds) || level == 2; 1648 case Gran64K: 1649 return (level == 1 && arm_pamax(cpu) == 52) || level == 2; 1650 default: 1651 g_assert_not_reached(); 1652 } 1653 } 1654 1655 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw) 1656 { 1657 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 1658 return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1); 1659 } 1660 1661 /** 1662 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 1663 * 1664 * Returns false if the translation was successful. Otherwise, phys_ptr, 1665 * attrs, prot and page_size may not be filled in, and the populated fsr 1666 * value provides information on why the translation aborted, in the format 1667 * of a long-format DFSR/IFSR fault register, with the following caveat: 1668 * the WnR bit is never set (the caller must do this). 1669 * 1670 * @env: CPUARMState 1671 * @ptw: Current and next stage parameters for the walk. 1672 * @address: virtual address to get physical address for 1673 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 1674 * @result: set on translation success, 1675 * @fi: set to fault info if the translation fails 1676 */ 1677 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 1678 uint64_t address, 1679 MMUAccessType access_type, 1680 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1681 { 1682 ARMCPU *cpu = env_archcpu(env); 1683 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1684 int32_t level; 1685 ARMVAParameters param; 1686 uint64_t ttbr; 1687 hwaddr descaddr, indexmask, indexmask_grainsize; 1688 uint32_t tableattrs; 1689 target_ulong page_size; 1690 uint64_t attrs; 1691 int32_t stride; 1692 int addrsize, inputsize, outputsize; 1693 uint64_t tcr = regime_tcr(env, mmu_idx); 1694 int ap, xn, pxn; 1695 uint32_t el = regime_el(env, mmu_idx); 1696 uint64_t descaddrmask; 1697 bool aarch64 = arm_el_is_aa64(env, el); 1698 uint64_t descriptor, new_descriptor; 1699 ARMSecuritySpace out_space; 1700 bool device; 1701 1702 /* TODO: This code does not support shareability levels. */ 1703 if (aarch64) { 1704 int ps; 1705 1706 param = aa64_va_parameters(env, address, mmu_idx, 1707 access_type != MMU_INST_FETCH, 1708 !arm_el_is_aa64(env, 1)); 1709 level = 0; 1710 1711 /* 1712 * If TxSZ is programmed to a value larger than the maximum, 1713 * or smaller than the effective minimum, it is IMPLEMENTATION 1714 * DEFINED whether we behave as if the field were programmed 1715 * within bounds, or if a level 0 Translation fault is generated. 1716 * 1717 * With FEAT_LVA, fault on less than minimum becomes required, 1718 * so our choice is to always raise the fault. 1719 */ 1720 if (param.tsz_oob) { 1721 goto do_translation_fault; 1722 } 1723 1724 addrsize = 64 - 8 * param.tbi; 1725 inputsize = 64 - param.tsz; 1726 1727 /* 1728 * Bound PS by PARANGE to find the effective output address size. 1729 * ID_AA64MMFR0 is a read-only register so values outside of the 1730 * supported mappings can be considered an implementation error. 1731 */ 1732 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1733 ps = MIN(ps, param.ps); 1734 assert(ps < ARRAY_SIZE(pamax_map)); 1735 outputsize = pamax_map[ps]; 1736 1737 /* 1738 * With LPA2, the effective output address (OA) size is at most 48 bits 1739 * unless TCR.DS == 1 1740 */ 1741 if (!param.ds && param.gran != Gran64K) { 1742 outputsize = MIN(outputsize, 48); 1743 } 1744 } else { 1745 param = aa32_va_parameters(env, address, mmu_idx); 1746 level = 1; 1747 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1748 inputsize = addrsize - param.tsz; 1749 outputsize = 40; 1750 } 1751 1752 /* 1753 * We determined the region when collecting the parameters, but we 1754 * have not yet validated that the address is valid for the region. 1755 * Extract the top bits and verify that they all match select. 1756 * 1757 * For aa32, if inputsize == addrsize, then we have selected the 1758 * region by exclusion in aa32_va_parameters and there is no more 1759 * validation to do here. 1760 */ 1761 if (inputsize < addrsize) { 1762 target_ulong top_bits = sextract64(address, inputsize, 1763 addrsize - inputsize); 1764 if (-top_bits != param.select) { 1765 /* The gap between the two regions is a Translation fault */ 1766 goto do_translation_fault; 1767 } 1768 } 1769 1770 stride = arm_granule_bits(param.gran) - 3; 1771 1772 /* 1773 * Note that QEMU ignores shareability and cacheability attributes, 1774 * so we don't need to do anything with the SH, ORGN, IRGN fields 1775 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1776 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1777 * implement any ASID-like capability so we can ignore it (instead 1778 * we will always flush the TLB any time the ASID is changed). 1779 */ 1780 ttbr = regime_ttbr(env, mmu_idx, param.select); 1781 1782 /* 1783 * Here we should have set up all the parameters for the translation: 1784 * inputsize, ttbr, epd, stride, tbi 1785 */ 1786 1787 if (param.epd) { 1788 /* 1789 * Translation table walk disabled => Translation fault on TLB miss 1790 * Note: This is always 0 on 64-bit EL2 and EL3. 1791 */ 1792 goto do_translation_fault; 1793 } 1794 1795 if (!regime_is_stage2(mmu_idx)) { 1796 /* 1797 * The starting level depends on the virtual address size (which can 1798 * be up to 48 bits) and the translation granule size. It indicates 1799 * the number of strides (stride bits at a time) needed to 1800 * consume the bits of the input address. In the pseudocode this is: 1801 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1802 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1803 * our 'stride + 3' and 'stride' is our 'stride'. 1804 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1805 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1806 * = 4 - (inputsize - 4) / stride; 1807 */ 1808 level = 4 - (inputsize - 4) / stride; 1809 } else { 1810 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds, 1811 inputsize, stride); 1812 if (startlevel == INT_MIN) { 1813 level = 0; 1814 goto do_translation_fault; 1815 } 1816 level = startlevel; 1817 } 1818 1819 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1820 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1821 1822 /* Now we can extract the actual base address from the TTBR */ 1823 descaddr = extract64(ttbr, 0, 48); 1824 1825 /* 1826 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1827 * 1828 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1829 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1830 * but we've just cleared the bits above 47, so simplify the test. 1831 */ 1832 if (outputsize > 48) { 1833 descaddr |= extract64(ttbr, 2, 4) << 48; 1834 } else if (descaddr >> outputsize) { 1835 level = 0; 1836 fi->type = ARMFault_AddressSize; 1837 goto do_fault; 1838 } 1839 1840 /* 1841 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1842 * and also to mask out CnP (bit 0) which could validly be non-zero. 1843 */ 1844 descaddr &= ~indexmask; 1845 1846 /* 1847 * For AArch32, the address field in the descriptor goes up to bit 39 1848 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1849 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1850 * bits as part of the address, which will be checked via outputsize. 1851 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1852 * the highest bits of a 52-bit output are placed elsewhere. 1853 */ 1854 if (param.ds) { 1855 descaddrmask = MAKE_64BIT_MASK(0, 50); 1856 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1857 descaddrmask = MAKE_64BIT_MASK(0, 48); 1858 } else { 1859 descaddrmask = MAKE_64BIT_MASK(0, 40); 1860 } 1861 descaddrmask &= ~indexmask_grainsize; 1862 tableattrs = 0; 1863 1864 next_level: 1865 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1866 descaddr &= ~7ULL; 1867 1868 /* 1869 * Process the NSTable bit from the previous level. This changes 1870 * the table address space and the output space from Secure to 1871 * NonSecure. With RME, the EL3 translation regime does not change 1872 * from Root to NonSecure. 1873 */ 1874 if (ptw->in_space == ARMSS_Secure 1875 && !regime_is_stage2(mmu_idx) 1876 && extract32(tableattrs, 4, 1)) { 1877 /* 1878 * Stage2_S -> Stage2 or Phys_S -> Phys_NS 1879 * Assert the relative order of the secure/non-secure indexes. 1880 */ 1881 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS); 1882 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2); 1883 ptw->in_ptw_idx += 1; 1884 ptw->in_space = ARMSS_NonSecure; 1885 } 1886 1887 if (!S1_ptw_translate(env, ptw, descaddr, fi)) { 1888 goto do_fault; 1889 } 1890 descriptor = arm_ldq_ptw(env, ptw, fi); 1891 if (fi->type != ARMFault_None) { 1892 goto do_fault; 1893 } 1894 new_descriptor = descriptor; 1895 1896 restart_atomic_update: 1897 if (!(descriptor & 1) || 1898 (!(descriptor & 2) && 1899 !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) { 1900 /* Invalid, or a block descriptor at an invalid level */ 1901 goto do_translation_fault; 1902 } 1903 1904 descaddr = descriptor & descaddrmask; 1905 1906 /* 1907 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1908 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1909 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1910 * raise AddressSizeFault. 1911 */ 1912 if (outputsize > 48) { 1913 if (param.ds) { 1914 descaddr |= extract64(descriptor, 8, 2) << 50; 1915 } else { 1916 descaddr |= extract64(descriptor, 12, 4) << 48; 1917 } 1918 } else if (descaddr >> outputsize) { 1919 fi->type = ARMFault_AddressSize; 1920 goto do_fault; 1921 } 1922 1923 if ((descriptor & 2) && (level < 3)) { 1924 /* 1925 * Table entry. The top five bits are attributes which may 1926 * propagate down through lower levels of the table (and 1927 * which are all arranged so that 0 means "no effect", so 1928 * we can gather them up by ORing in the bits at each level). 1929 */ 1930 tableattrs |= extract64(descriptor, 59, 5); 1931 level++; 1932 indexmask = indexmask_grainsize; 1933 goto next_level; 1934 } 1935 1936 /* 1937 * Block entry at level 1 or 2, or page entry at level 3. 1938 * These are basically the same thing, although the number 1939 * of bits we pull in from the vaddr varies. Note that although 1940 * descaddrmask masks enough of the low bits of the descriptor 1941 * to give a correct page or table address, the address field 1942 * in a block descriptor is smaller; so we need to explicitly 1943 * clear the lower bits here before ORing in the low vaddr bits. 1944 * 1945 * Afterward, descaddr is the final physical address. 1946 */ 1947 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1948 descaddr &= ~(hwaddr)(page_size - 1); 1949 descaddr |= (address & (page_size - 1)); 1950 1951 if (likely(!ptw->in_debug)) { 1952 /* 1953 * Access flag. 1954 * If HA is enabled, prepare to update the descriptor below. 1955 * Otherwise, pass the access fault on to software. 1956 */ 1957 if (!(descriptor & (1 << 10))) { 1958 if (param.ha) { 1959 new_descriptor |= 1 << 10; /* AF */ 1960 } else { 1961 fi->type = ARMFault_AccessFlag; 1962 goto do_fault; 1963 } 1964 } 1965 1966 /* 1967 * Dirty Bit. 1968 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP 1969 * bit for writeback. The actual write protection test may still be 1970 * overridden by tableattrs, to be merged below. 1971 */ 1972 if (param.hd 1973 && extract64(descriptor, 51, 1) /* DBM */ 1974 && access_type == MMU_DATA_STORE) { 1975 if (regime_is_stage2(mmu_idx)) { 1976 new_descriptor |= 1ull << 7; /* set S2AP[1] */ 1977 } else { 1978 new_descriptor &= ~(1ull << 7); /* clear AP[2] */ 1979 } 1980 } 1981 } 1982 1983 /* 1984 * Extract attributes from the (modified) descriptor, and apply 1985 * table descriptors. Stage 2 table descriptors do not include 1986 * any attribute fields. HPD disables all the table attributes 1987 * except NSTable (which we have already handled). 1988 */ 1989 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14)); 1990 if (!regime_is_stage2(mmu_idx)) { 1991 if (!param.hpd) { 1992 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */ 1993 /* 1994 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 1995 * means "force PL1 access only", which means forcing AP[1] to 0. 1996 */ 1997 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */ 1998 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */ 1999 } 2000 } 2001 2002 ap = extract32(attrs, 6, 2); 2003 out_space = ptw->in_space; 2004 if (regime_is_stage2(mmu_idx)) { 2005 /* 2006 * R_GYNXY: For stage2 in Realm security state, bit 55 is NS. 2007 * The bit remains ignored for other security states. 2008 * R_YMCSL: Executing an insn fetched from non-Realm causes 2009 * a stage2 permission fault. 2010 */ 2011 if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) { 2012 out_space = ARMSS_NonSecure; 2013 result->f.prot = get_S2prot_noexecute(ap); 2014 } else { 2015 xn = extract64(attrs, 53, 2); 2016 result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0); 2017 } 2018 } else { 2019 int nse, ns = extract32(attrs, 5, 1); 2020 switch (out_space) { 2021 case ARMSS_Root: 2022 /* 2023 * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime. 2024 * R_XTYPW: NSE and NS together select the output pa space. 2025 */ 2026 nse = extract32(attrs, 11, 1); 2027 out_space = (nse << 1) | ns; 2028 if (out_space == ARMSS_Secure && 2029 !cpu_isar_feature(aa64_sel2, cpu)) { 2030 out_space = ARMSS_NonSecure; 2031 } 2032 break; 2033 case ARMSS_Secure: 2034 if (ns) { 2035 out_space = ARMSS_NonSecure; 2036 } 2037 break; 2038 case ARMSS_Realm: 2039 switch (mmu_idx) { 2040 case ARMMMUIdx_Stage1_E0: 2041 case ARMMMUIdx_Stage1_E1: 2042 case ARMMMUIdx_Stage1_E1_PAN: 2043 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */ 2044 break; 2045 case ARMMMUIdx_E2: 2046 case ARMMMUIdx_E20_0: 2047 case ARMMMUIdx_E20_2: 2048 case ARMMMUIdx_E20_2_PAN: 2049 /* 2050 * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1, 2051 * NS changes the output to non-secure space. 2052 */ 2053 if (ns) { 2054 out_space = ARMSS_NonSecure; 2055 } 2056 break; 2057 default: 2058 g_assert_not_reached(); 2059 } 2060 break; 2061 case ARMSS_NonSecure: 2062 /* R_QRMFF: For NonSecure state, the NS bit is RES0. */ 2063 break; 2064 default: 2065 g_assert_not_reached(); 2066 } 2067 xn = extract64(attrs, 54, 1); 2068 pxn = extract64(attrs, 53, 1); 2069 2070 if (el == 1 && nv_nv1_enabled(env, ptw)) { 2071 /* 2072 * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page 2073 * descriptor bit 54 holds PXN, 53 is RES0, and the effective value 2074 * of UXN is 0. Similarly for bits 59 and 60 in table descriptors 2075 * (which we have already folded into bits 53 and 54 of attrs). 2076 * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0. 2077 * Similarly, APTable[0] from the table descriptor is treated as 0; 2078 * we already folded this into AP[1] and squashing that to 0 does 2079 * the right thing. 2080 */ 2081 pxn = xn; 2082 xn = 0; 2083 ap &= ~1; 2084 } 2085 /* 2086 * Note that we modified ptw->in_space earlier for NSTable, but 2087 * result->f.attrs retains a copy of the original security space. 2088 */ 2089 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn, 2090 result->f.attrs.space, out_space); 2091 } 2092 2093 if (!(result->f.prot & (1 << access_type))) { 2094 fi->type = ARMFault_Permission; 2095 goto do_fault; 2096 } 2097 2098 /* If FEAT_HAFDBS has made changes, update the PTE. */ 2099 if (new_descriptor != descriptor) { 2100 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi); 2101 if (fi->type != ARMFault_None) { 2102 goto do_fault; 2103 } 2104 /* 2105 * I_YZSVV says that if the in-memory descriptor has changed, 2106 * then we must use the information in that new value 2107 * (which might include a different output address, different 2108 * attributes, or generate a fault). 2109 * Restart the handling of the descriptor value from scratch. 2110 */ 2111 if (new_descriptor != descriptor) { 2112 descriptor = new_descriptor; 2113 goto restart_atomic_update; 2114 } 2115 } 2116 2117 result->f.attrs.space = out_space; 2118 result->f.attrs.secure = arm_space_is_secure(out_space); 2119 2120 if (regime_is_stage2(mmu_idx)) { 2121 result->cacheattrs.is_s2_format = true; 2122 result->cacheattrs.attrs = extract32(attrs, 2, 4); 2123 /* 2124 * Security state does not really affect HCR_EL2.FWB; 2125 * we only need to filter FWB for aa32 or other FEAT. 2126 */ 2127 device = S2_attrs_are_device(arm_hcr_el2_eff(env), 2128 result->cacheattrs.attrs); 2129 } else { 2130 /* Index into MAIR registers for cache attributes */ 2131 uint8_t attrindx = extract32(attrs, 2, 3); 2132 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2133 assert(attrindx <= 7); 2134 result->cacheattrs.is_s2_format = false; 2135 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2136 2137 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ 2138 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { 2139 result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */ 2140 } 2141 device = S1_attrs_are_device(result->cacheattrs.attrs); 2142 } 2143 2144 /* 2145 * Enable alignment checks on Device memory. 2146 * 2147 * Per R_XCHFJ, this check is mis-ordered. The correct ordering 2148 * for alignment, permission, and stage 2 faults should be: 2149 * - Alignment fault caused by the memory type 2150 * - Permission fault 2151 * - A stage 2 fault on the memory access 2152 * but due to the way the TCG softmmu TLB operates, we will have 2153 * implicitly done the permission check and the stage2 lookup in 2154 * finding the TLB entry, so the alignment check cannot be done sooner. 2155 * 2156 * In v7, for a CPU without the Virtualization Extensions this 2157 * access is UNPREDICTABLE; we choose to make it take the alignment 2158 * fault as is required for a v7VE CPU. (QEMU doesn't emulate any 2159 * CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.) 2160 */ 2161 if (device) { 2162 result->f.tlb_fill_flags |= TLB_CHECK_ALIGNED; 2163 } 2164 2165 /* 2166 * For FEAT_LPA2 and effective DS, the SH field in the attributes 2167 * was re-purposed for output address bits. The SH attribute in 2168 * that case comes from TCR_ELx, which we extracted earlier. 2169 */ 2170 if (param.ds) { 2171 result->cacheattrs.shareability = param.sh; 2172 } else { 2173 result->cacheattrs.shareability = extract32(attrs, 8, 2); 2174 } 2175 2176 result->f.phys_addr = descaddr; 2177 result->f.lg_page_size = ctz64(page_size); 2178 return false; 2179 2180 do_translation_fault: 2181 fi->type = ARMFault_Translation; 2182 do_fault: 2183 if (fi->s1ptw) { 2184 /* Retain the existing stage 2 fi->level */ 2185 assert(fi->stage2); 2186 } else { 2187 fi->level = level; 2188 fi->stage2 = regime_is_stage2(mmu_idx); 2189 } 2190 fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx); 2191 return true; 2192 } 2193 2194 static bool get_phys_addr_pmsav5(CPUARMState *env, 2195 S1Translate *ptw, 2196 uint32_t address, 2197 MMUAccessType access_type, 2198 GetPhysAddrResult *result, 2199 ARMMMUFaultInfo *fi) 2200 { 2201 int n; 2202 uint32_t mask; 2203 uint32_t base; 2204 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2205 bool is_user = regime_is_user(env, mmu_idx); 2206 2207 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 2208 /* MPU disabled. */ 2209 result->f.phys_addr = address; 2210 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2211 return false; 2212 } 2213 2214 result->f.phys_addr = address; 2215 for (n = 7; n >= 0; n--) { 2216 base = env->cp15.c6_region[n]; 2217 if ((base & 1) == 0) { 2218 continue; 2219 } 2220 mask = 1 << ((base >> 1) & 0x1f); 2221 /* Keep this shift separate from the above to avoid an 2222 (undefined) << 32. */ 2223 mask = (mask << 1) - 1; 2224 if (((base ^ address) & ~mask) == 0) { 2225 break; 2226 } 2227 } 2228 if (n < 0) { 2229 fi->type = ARMFault_Background; 2230 return true; 2231 } 2232 2233 if (access_type == MMU_INST_FETCH) { 2234 mask = env->cp15.pmsav5_insn_ap; 2235 } else { 2236 mask = env->cp15.pmsav5_data_ap; 2237 } 2238 mask = (mask >> (n * 4)) & 0xf; 2239 switch (mask) { 2240 case 0: 2241 fi->type = ARMFault_Permission; 2242 fi->level = 1; 2243 return true; 2244 case 1: 2245 if (is_user) { 2246 fi->type = ARMFault_Permission; 2247 fi->level = 1; 2248 return true; 2249 } 2250 result->f.prot = PAGE_READ | PAGE_WRITE; 2251 break; 2252 case 2: 2253 result->f.prot = PAGE_READ; 2254 if (!is_user) { 2255 result->f.prot |= PAGE_WRITE; 2256 } 2257 break; 2258 case 3: 2259 result->f.prot = PAGE_READ | PAGE_WRITE; 2260 break; 2261 case 5: 2262 if (is_user) { 2263 fi->type = ARMFault_Permission; 2264 fi->level = 1; 2265 return true; 2266 } 2267 result->f.prot = PAGE_READ; 2268 break; 2269 case 6: 2270 result->f.prot = PAGE_READ; 2271 break; 2272 default: 2273 /* Bad permission. */ 2274 fi->type = ARMFault_Permission; 2275 fi->level = 1; 2276 return true; 2277 } 2278 result->f.prot |= PAGE_EXEC; 2279 return false; 2280 } 2281 2282 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 2283 int32_t address, uint8_t *prot) 2284 { 2285 if (!arm_feature(env, ARM_FEATURE_M)) { 2286 *prot = PAGE_READ | PAGE_WRITE; 2287 switch (address) { 2288 case 0xF0000000 ... 0xFFFFFFFF: 2289 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 2290 /* hivecs execing is ok */ 2291 *prot |= PAGE_EXEC; 2292 } 2293 break; 2294 case 0x00000000 ... 0x7FFFFFFF: 2295 *prot |= PAGE_EXEC; 2296 break; 2297 } 2298 } else { 2299 /* Default system address map for M profile cores. 2300 * The architecture specifies which regions are execute-never; 2301 * at the MPU level no other checks are defined. 2302 */ 2303 switch (address) { 2304 case 0x00000000 ... 0x1fffffff: /* ROM */ 2305 case 0x20000000 ... 0x3fffffff: /* SRAM */ 2306 case 0x60000000 ... 0x7fffffff: /* RAM */ 2307 case 0x80000000 ... 0x9fffffff: /* RAM */ 2308 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2309 break; 2310 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 2311 case 0xa0000000 ... 0xbfffffff: /* Device */ 2312 case 0xc0000000 ... 0xdfffffff: /* Device */ 2313 case 0xe0000000 ... 0xffffffff: /* System */ 2314 *prot = PAGE_READ | PAGE_WRITE; 2315 break; 2316 default: 2317 g_assert_not_reached(); 2318 } 2319 } 2320 } 2321 2322 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 2323 { 2324 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 2325 return arm_feature(env, ARM_FEATURE_M) && 2326 extract32(address, 20, 12) == 0xe00; 2327 } 2328 2329 static bool m_is_system_region(CPUARMState *env, uint32_t address) 2330 { 2331 /* 2332 * True if address is in the M profile system region 2333 * 0xe0000000 - 0xffffffff 2334 */ 2335 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 2336 } 2337 2338 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 2339 bool is_secure, bool is_user) 2340 { 2341 /* 2342 * Return true if we should use the default memory map as a 2343 * "background" region if there are no hits against any MPU regions. 2344 */ 2345 CPUARMState *env = &cpu->env; 2346 2347 if (is_user) { 2348 return false; 2349 } 2350 2351 if (arm_feature(env, ARM_FEATURE_M)) { 2352 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 2353 } 2354 2355 if (mmu_idx == ARMMMUIdx_Stage2) { 2356 return false; 2357 } 2358 2359 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 2360 } 2361 2362 static bool get_phys_addr_pmsav7(CPUARMState *env, 2363 S1Translate *ptw, 2364 uint32_t address, 2365 MMUAccessType access_type, 2366 GetPhysAddrResult *result, 2367 ARMMMUFaultInfo *fi) 2368 { 2369 ARMCPU *cpu = env_archcpu(env); 2370 int n; 2371 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2372 bool is_user = regime_is_user(env, mmu_idx); 2373 bool secure = arm_space_is_secure(ptw->in_space); 2374 2375 result->f.phys_addr = address; 2376 result->f.lg_page_size = TARGET_PAGE_BITS; 2377 result->f.prot = 0; 2378 2379 if (regime_translation_disabled(env, mmu_idx, ptw->in_space) || 2380 m_is_ppb_region(env, address)) { 2381 /* 2382 * MPU disabled or M profile PPB access: use default memory map. 2383 * The other case which uses the default memory map in the 2384 * v7M ARM ARM pseudocode is exception vector reads from the vector 2385 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 2386 * which always does a direct read using address_space_ldl(), rather 2387 * than going via this function, so we don't need to check that here. 2388 */ 2389 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2390 } else { /* MPU enabled */ 2391 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 2392 /* region search */ 2393 uint32_t base = env->pmsav7.drbar[n]; 2394 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 2395 uint32_t rmask; 2396 bool srdis = false; 2397 2398 if (!(env->pmsav7.drsr[n] & 0x1)) { 2399 continue; 2400 } 2401 2402 if (!rsize) { 2403 qemu_log_mask(LOG_GUEST_ERROR, 2404 "DRSR[%d]: Rsize field cannot be 0\n", n); 2405 continue; 2406 } 2407 rsize++; 2408 rmask = (1ull << rsize) - 1; 2409 2410 if (base & rmask) { 2411 qemu_log_mask(LOG_GUEST_ERROR, 2412 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 2413 "to DRSR region size, mask = 0x%" PRIx32 "\n", 2414 n, base, rmask); 2415 continue; 2416 } 2417 2418 if (address < base || address > base + rmask) { 2419 /* 2420 * Address not in this region. We must check whether the 2421 * region covers addresses in the same page as our address. 2422 * In that case we must not report a size that covers the 2423 * whole page for a subsequent hit against a different MPU 2424 * region or the background region, because it would result in 2425 * incorrect TLB hits for subsequent accesses to addresses that 2426 * are in this MPU region. 2427 */ 2428 if (ranges_overlap(base, rmask, 2429 address & TARGET_PAGE_MASK, 2430 TARGET_PAGE_SIZE)) { 2431 result->f.lg_page_size = 0; 2432 } 2433 continue; 2434 } 2435 2436 /* Region matched */ 2437 2438 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 2439 int i, snd; 2440 uint32_t srdis_mask; 2441 2442 rsize -= 3; /* sub region size (power of 2) */ 2443 snd = ((address - base) >> rsize) & 0x7; 2444 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 2445 2446 srdis_mask = srdis ? 0x3 : 0x0; 2447 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 2448 /* 2449 * This will check in groups of 2, 4 and then 8, whether 2450 * the subregion bits are consistent. rsize is incremented 2451 * back up to give the region size, considering consistent 2452 * adjacent subregions as one region. Stop testing if rsize 2453 * is already big enough for an entire QEMU page. 2454 */ 2455 int snd_rounded = snd & ~(i - 1); 2456 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 2457 snd_rounded + 8, i); 2458 if (srdis_mask ^ srdis_multi) { 2459 break; 2460 } 2461 srdis_mask = (srdis_mask << i) | srdis_mask; 2462 rsize++; 2463 } 2464 } 2465 if (srdis) { 2466 continue; 2467 } 2468 if (rsize < TARGET_PAGE_BITS) { 2469 result->f.lg_page_size = rsize; 2470 } 2471 break; 2472 } 2473 2474 if (n == -1) { /* no hits */ 2475 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2476 /* background fault */ 2477 fi->type = ARMFault_Background; 2478 return true; 2479 } 2480 get_phys_addr_pmsav7_default(env, mmu_idx, address, 2481 &result->f.prot); 2482 } else { /* a MPU hit! */ 2483 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 2484 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 2485 2486 if (m_is_system_region(env, address)) { 2487 /* System space is always execute never */ 2488 xn = 1; 2489 } 2490 2491 if (is_user) { /* User mode AP bit decoding */ 2492 switch (ap) { 2493 case 0: 2494 case 1: 2495 case 5: 2496 break; /* no access */ 2497 case 3: 2498 result->f.prot |= PAGE_WRITE; 2499 /* fall through */ 2500 case 2: 2501 case 6: 2502 result->f.prot |= PAGE_READ | PAGE_EXEC; 2503 break; 2504 case 7: 2505 /* for v7M, same as 6; for R profile a reserved value */ 2506 if (arm_feature(env, ARM_FEATURE_M)) { 2507 result->f.prot |= PAGE_READ | PAGE_EXEC; 2508 break; 2509 } 2510 /* fall through */ 2511 default: 2512 qemu_log_mask(LOG_GUEST_ERROR, 2513 "DRACR[%d]: Bad value for AP bits: 0x%" 2514 PRIx32 "\n", n, ap); 2515 } 2516 } else { /* Priv. mode AP bits decoding */ 2517 switch (ap) { 2518 case 0: 2519 break; /* no access */ 2520 case 1: 2521 case 2: 2522 case 3: 2523 result->f.prot |= PAGE_WRITE; 2524 /* fall through */ 2525 case 5: 2526 case 6: 2527 result->f.prot |= PAGE_READ | PAGE_EXEC; 2528 break; 2529 case 7: 2530 /* for v7M, same as 6; for R profile a reserved value */ 2531 if (arm_feature(env, ARM_FEATURE_M)) { 2532 result->f.prot |= PAGE_READ | PAGE_EXEC; 2533 break; 2534 } 2535 /* fall through */ 2536 default: 2537 qemu_log_mask(LOG_GUEST_ERROR, 2538 "DRACR[%d]: Bad value for AP bits: 0x%" 2539 PRIx32 "\n", n, ap); 2540 } 2541 } 2542 2543 /* execute never */ 2544 if (xn) { 2545 result->f.prot &= ~PAGE_EXEC; 2546 } 2547 } 2548 } 2549 2550 fi->type = ARMFault_Permission; 2551 fi->level = 1; 2552 return !(result->f.prot & (1 << access_type)); 2553 } 2554 2555 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx, 2556 uint32_t secure) 2557 { 2558 if (regime_el(env, mmu_idx) == 2) { 2559 return env->pmsav8.hprbar; 2560 } else { 2561 return env->pmsav8.rbar[secure]; 2562 } 2563 } 2564 2565 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx, 2566 uint32_t secure) 2567 { 2568 if (regime_el(env, mmu_idx) == 2) { 2569 return env->pmsav8.hprlar; 2570 } else { 2571 return env->pmsav8.rlar[secure]; 2572 } 2573 } 2574 2575 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 2576 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2577 bool secure, GetPhysAddrResult *result, 2578 ARMMMUFaultInfo *fi, uint32_t *mregion) 2579 { 2580 /* 2581 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 2582 * that a full phys-to-virt translation does). 2583 * mregion is (if not NULL) set to the region number which matched, 2584 * or -1 if no region number is returned (MPU off, address did not 2585 * hit a region, address hit in multiple regions). 2586 * If the region hit doesn't cover the entire TARGET_PAGE the address 2587 * is within, then we set the result page_size to 1 to force the 2588 * memory system to use a subpage. 2589 */ 2590 ARMCPU *cpu = env_archcpu(env); 2591 bool is_user = regime_is_user(env, mmu_idx); 2592 int n; 2593 int matchregion = -1; 2594 bool hit = false; 2595 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2596 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2597 int region_counter; 2598 2599 if (regime_el(env, mmu_idx) == 2) { 2600 region_counter = cpu->pmsav8r_hdregion; 2601 } else { 2602 region_counter = cpu->pmsav7_dregion; 2603 } 2604 2605 result->f.lg_page_size = TARGET_PAGE_BITS; 2606 result->f.phys_addr = address; 2607 result->f.prot = 0; 2608 if (mregion) { 2609 *mregion = -1; 2610 } 2611 2612 if (mmu_idx == ARMMMUIdx_Stage2) { 2613 fi->stage2 = true; 2614 } 2615 2616 /* 2617 * Unlike the ARM ARM pseudocode, we don't need to check whether this 2618 * was an exception vector read from the vector table (which is always 2619 * done using the default system address map), because those accesses 2620 * are done in arm_v7m_load_vector(), which always does a direct 2621 * read using address_space_ldl(), rather than going via this function. 2622 */ 2623 if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) { 2624 /* MPU disabled */ 2625 hit = true; 2626 } else if (m_is_ppb_region(env, address)) { 2627 hit = true; 2628 } else { 2629 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2630 hit = true; 2631 } 2632 2633 uint32_t bitmask; 2634 if (arm_feature(env, ARM_FEATURE_M)) { 2635 bitmask = 0x1f; 2636 } else { 2637 bitmask = 0x3f; 2638 fi->level = 0; 2639 } 2640 2641 for (n = region_counter - 1; n >= 0; n--) { 2642 /* region search */ 2643 /* 2644 * Note that the base address is bits [31:x] from the register 2645 * with bits [x-1:0] all zeroes, but the limit address is bits 2646 * [31:x] from the register with bits [x:0] all ones. Where x is 2647 * 5 for Cortex-M and 6 for Cortex-R 2648 */ 2649 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask; 2650 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask; 2651 2652 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) { 2653 /* Region disabled */ 2654 continue; 2655 } 2656 2657 if (address < base || address > limit) { 2658 /* 2659 * Address not in this region. We must check whether the 2660 * region covers addresses in the same page as our address. 2661 * In that case we must not report a size that covers the 2662 * whole page for a subsequent hit against a different MPU 2663 * region or the background region, because it would result in 2664 * incorrect TLB hits for subsequent accesses to addresses that 2665 * are in this MPU region. 2666 */ 2667 if (limit >= base && 2668 ranges_overlap(base, limit - base + 1, 2669 addr_page_base, 2670 TARGET_PAGE_SIZE)) { 2671 result->f.lg_page_size = 0; 2672 } 2673 continue; 2674 } 2675 2676 if (base > addr_page_base || limit < addr_page_limit) { 2677 result->f.lg_page_size = 0; 2678 } 2679 2680 if (matchregion != -1) { 2681 /* 2682 * Multiple regions match -- always a failure (unlike 2683 * PMSAv7 where highest-numbered-region wins) 2684 */ 2685 fi->type = ARMFault_Permission; 2686 if (arm_feature(env, ARM_FEATURE_M)) { 2687 fi->level = 1; 2688 } 2689 return true; 2690 } 2691 2692 matchregion = n; 2693 hit = true; 2694 } 2695 } 2696 2697 if (!hit) { 2698 if (arm_feature(env, ARM_FEATURE_M)) { 2699 fi->type = ARMFault_Background; 2700 } else { 2701 fi->type = ARMFault_Permission; 2702 } 2703 return true; 2704 } 2705 2706 if (matchregion == -1) { 2707 /* hit using the background region */ 2708 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2709 } else { 2710 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion]; 2711 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion]; 2712 uint32_t ap = extract32(matched_rbar, 1, 2); 2713 uint32_t xn = extract32(matched_rbar, 0, 1); 2714 bool pxn = false; 2715 2716 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 2717 pxn = extract32(matched_rlar, 4, 1); 2718 } 2719 2720 if (m_is_system_region(env, address)) { 2721 /* System space is always execute never */ 2722 xn = 1; 2723 } 2724 2725 if (regime_el(env, mmu_idx) == 2) { 2726 result->f.prot = simple_ap_to_rw_prot_is_user(ap, 2727 mmu_idx != ARMMMUIdx_E2); 2728 } else { 2729 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 2730 } 2731 2732 if (!arm_feature(env, ARM_FEATURE_M)) { 2733 uint8_t attrindx = extract32(matched_rlar, 1, 3); 2734 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2735 uint8_t sh = extract32(matched_rlar, 3, 2); 2736 2737 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN && 2738 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) { 2739 xn = 0x1; 2740 } 2741 2742 if ((regime_el(env, mmu_idx) == 1) && 2743 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) { 2744 pxn = 0x1; 2745 } 2746 2747 result->cacheattrs.is_s2_format = false; 2748 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2749 result->cacheattrs.shareability = sh; 2750 } 2751 2752 if (result->f.prot && !xn && !(pxn && !is_user)) { 2753 result->f.prot |= PAGE_EXEC; 2754 } 2755 2756 if (mregion) { 2757 *mregion = matchregion; 2758 } 2759 } 2760 2761 fi->type = ARMFault_Permission; 2762 if (arm_feature(env, ARM_FEATURE_M)) { 2763 fi->level = 1; 2764 } 2765 return !(result->f.prot & (1 << access_type)); 2766 } 2767 2768 static bool v8m_is_sau_exempt(CPUARMState *env, 2769 uint32_t address, MMUAccessType access_type) 2770 { 2771 /* 2772 * The architecture specifies that certain address ranges are 2773 * exempt from v8M SAU/IDAU checks. 2774 */ 2775 return 2776 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 2777 (address >= 0xe0000000 && address <= 0xe0002fff) || 2778 (address >= 0xe000e000 && address <= 0xe000efff) || 2779 (address >= 0xe002e000 && address <= 0xe002efff) || 2780 (address >= 0xe0040000 && address <= 0xe0041fff) || 2781 (address >= 0xe00ff000 && address <= 0xe00fffff); 2782 } 2783 2784 void v8m_security_lookup(CPUARMState *env, uint32_t address, 2785 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2786 bool is_secure, V8M_SAttributes *sattrs) 2787 { 2788 /* 2789 * Look up the security attributes for this address. Compare the 2790 * pseudocode SecurityCheck() function. 2791 * We assume the caller has zero-initialized *sattrs. 2792 */ 2793 ARMCPU *cpu = env_archcpu(env); 2794 int r; 2795 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 2796 int idau_region = IREGION_NOTVALID; 2797 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2798 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2799 2800 if (cpu->idau) { 2801 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 2802 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 2803 2804 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 2805 &idau_nsc); 2806 } 2807 2808 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 2809 /* 0xf0000000..0xffffffff is always S for insn fetches */ 2810 return; 2811 } 2812 2813 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 2814 sattrs->ns = !is_secure; 2815 return; 2816 } 2817 2818 if (idau_region != IREGION_NOTVALID) { 2819 sattrs->irvalid = true; 2820 sattrs->iregion = idau_region; 2821 } 2822 2823 switch (env->sau.ctrl & 3) { 2824 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 2825 break; 2826 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 2827 sattrs->ns = true; 2828 break; 2829 default: /* SAU.ENABLE == 1 */ 2830 for (r = 0; r < cpu->sau_sregion; r++) { 2831 if (env->sau.rlar[r] & 1) { 2832 uint32_t base = env->sau.rbar[r] & ~0x1f; 2833 uint32_t limit = env->sau.rlar[r] | 0x1f; 2834 2835 if (base <= address && limit >= address) { 2836 if (base > addr_page_base || limit < addr_page_limit) { 2837 sattrs->subpage = true; 2838 } 2839 if (sattrs->srvalid) { 2840 /* 2841 * If we hit in more than one region then we must report 2842 * as Secure, not NS-Callable, with no valid region 2843 * number info. 2844 */ 2845 sattrs->ns = false; 2846 sattrs->nsc = false; 2847 sattrs->sregion = 0; 2848 sattrs->srvalid = false; 2849 break; 2850 } else { 2851 if (env->sau.rlar[r] & 2) { 2852 sattrs->nsc = true; 2853 } else { 2854 sattrs->ns = true; 2855 } 2856 sattrs->srvalid = true; 2857 sattrs->sregion = r; 2858 } 2859 } else { 2860 /* 2861 * Address not in this region. We must check whether the 2862 * region covers addresses in the same page as our address. 2863 * In that case we must not report a size that covers the 2864 * whole page for a subsequent hit against a different MPU 2865 * region or the background region, because it would result 2866 * in incorrect TLB hits for subsequent accesses to 2867 * addresses that are in this MPU region. 2868 */ 2869 if (limit >= base && 2870 ranges_overlap(base, limit - base + 1, 2871 addr_page_base, 2872 TARGET_PAGE_SIZE)) { 2873 sattrs->subpage = true; 2874 } 2875 } 2876 } 2877 } 2878 break; 2879 } 2880 2881 /* 2882 * The IDAU will override the SAU lookup results if it specifies 2883 * higher security than the SAU does. 2884 */ 2885 if (!idau_ns) { 2886 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 2887 sattrs->ns = false; 2888 sattrs->nsc = idau_nsc; 2889 } 2890 } 2891 } 2892 2893 static bool get_phys_addr_pmsav8(CPUARMState *env, 2894 S1Translate *ptw, 2895 uint32_t address, 2896 MMUAccessType access_type, 2897 GetPhysAddrResult *result, 2898 ARMMMUFaultInfo *fi) 2899 { 2900 V8M_SAttributes sattrs = {}; 2901 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2902 bool secure = arm_space_is_secure(ptw->in_space); 2903 bool ret; 2904 2905 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2906 v8m_security_lookup(env, address, access_type, mmu_idx, 2907 secure, &sattrs); 2908 if (access_type == MMU_INST_FETCH) { 2909 /* 2910 * Instruction fetches always use the MMU bank and the 2911 * transaction attribute determined by the fetch address, 2912 * regardless of CPU state. This is painful for QEMU 2913 * to handle, because it would mean we need to encode 2914 * into the mmu_idx not just the (user, negpri) information 2915 * for the current security state but also that for the 2916 * other security state, which would balloon the number 2917 * of mmu_idx values needed alarmingly. 2918 * Fortunately we can avoid this because it's not actually 2919 * possible to arbitrarily execute code from memory with 2920 * the wrong security attribute: it will always generate 2921 * an exception of some kind or another, apart from the 2922 * special case of an NS CPU executing an SG instruction 2923 * in S&NSC memory. So we always just fail the translation 2924 * here and sort things out in the exception handler 2925 * (including possibly emulating an SG instruction). 2926 */ 2927 if (sattrs.ns != !secure) { 2928 if (sattrs.nsc) { 2929 fi->type = ARMFault_QEMU_NSCExec; 2930 } else { 2931 fi->type = ARMFault_QEMU_SFault; 2932 } 2933 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2934 result->f.phys_addr = address; 2935 result->f.prot = 0; 2936 return true; 2937 } 2938 } else { 2939 /* 2940 * For data accesses we always use the MMU bank indicated 2941 * by the current CPU state, but the security attributes 2942 * might downgrade a secure access to nonsecure. 2943 */ 2944 if (sattrs.ns) { 2945 result->f.attrs.secure = false; 2946 result->f.attrs.space = ARMSS_NonSecure; 2947 } else if (!secure) { 2948 /* 2949 * NS access to S memory must fault. 2950 * Architecturally we should first check whether the 2951 * MPU information for this address indicates that we 2952 * are doing an unaligned access to Device memory, which 2953 * should generate a UsageFault instead. QEMU does not 2954 * currently check for that kind of unaligned access though. 2955 * If we added it we would need to do so as a special case 2956 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2957 */ 2958 fi->type = ARMFault_QEMU_SFault; 2959 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2960 result->f.phys_addr = address; 2961 result->f.prot = 0; 2962 return true; 2963 } 2964 } 2965 } 2966 2967 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, 2968 result, fi, NULL); 2969 if (sattrs.subpage) { 2970 result->f.lg_page_size = 0; 2971 } 2972 return ret; 2973 } 2974 2975 /* 2976 * Translate from the 4-bit stage 2 representation of 2977 * memory attributes (without cache-allocation hints) to 2978 * the 8-bit representation of the stage 1 MAIR registers 2979 * (which includes allocation hints). 2980 * 2981 * ref: shared/translation/attrs/S2AttrDecode() 2982 * .../S2ConvertAttrsHints() 2983 */ 2984 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) 2985 { 2986 uint8_t hiattr = extract32(s2attrs, 2, 2); 2987 uint8_t loattr = extract32(s2attrs, 0, 2); 2988 uint8_t hihint = 0, lohint = 0; 2989 2990 if (hiattr != 0) { /* normal memory */ 2991 if (hcr & HCR_CD) { /* cache disabled */ 2992 hiattr = loattr = 1; /* non-cacheable */ 2993 } else { 2994 if (hiattr != 1) { /* Write-through or write-back */ 2995 hihint = 3; /* RW allocate */ 2996 } 2997 if (loattr != 1) { /* Write-through or write-back */ 2998 lohint = 3; /* RW allocate */ 2999 } 3000 } 3001 } 3002 3003 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 3004 } 3005 3006 /* 3007 * Combine either inner or outer cacheability attributes for normal 3008 * memory, according to table D4-42 and pseudocode procedure 3009 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 3010 * 3011 * NB: only stage 1 includes allocation hints (RW bits), leading to 3012 * some asymmetry. 3013 */ 3014 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 3015 { 3016 if (s1 == 4 || s2 == 4) { 3017 /* non-cacheable has precedence */ 3018 return 4; 3019 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 3020 /* stage 1 write-through takes precedence */ 3021 return s1; 3022 } else if (extract32(s2, 2, 2) == 2) { 3023 /* stage 2 write-through takes precedence, but the allocation hint 3024 * is still taken from stage 1 3025 */ 3026 return (2 << 2) | extract32(s1, 0, 2); 3027 } else { /* write-back */ 3028 return s1; 3029 } 3030 } 3031 3032 /* 3033 * Combine the memory type and cacheability attributes of 3034 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 3035 * combined attributes in MAIR_EL1 format. 3036 */ 3037 static uint8_t combined_attrs_nofwb(uint64_t hcr, 3038 ARMCacheAttrs s1, ARMCacheAttrs s2) 3039 { 3040 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 3041 3042 if (s2.is_s2_format) { 3043 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); 3044 } else { 3045 s2_mair_attrs = s2.attrs; 3046 } 3047 3048 s1lo = extract32(s1.attrs, 0, 4); 3049 s2lo = extract32(s2_mair_attrs, 0, 4); 3050 s1hi = extract32(s1.attrs, 4, 4); 3051 s2hi = extract32(s2_mair_attrs, 4, 4); 3052 3053 /* Combine memory type and cacheability attributes */ 3054 if (s1hi == 0 || s2hi == 0) { 3055 /* Device has precedence over normal */ 3056 if (s1lo == 0 || s2lo == 0) { 3057 /* nGnRnE has precedence over anything */ 3058 ret_attrs = 0; 3059 } else if (s1lo == 4 || s2lo == 4) { 3060 /* non-Reordering has precedence over Reordering */ 3061 ret_attrs = 4; /* nGnRE */ 3062 } else if (s1lo == 8 || s2lo == 8) { 3063 /* non-Gathering has precedence over Gathering */ 3064 ret_attrs = 8; /* nGRE */ 3065 } else { 3066 ret_attrs = 0xc; /* GRE */ 3067 } 3068 } else { /* Normal memory */ 3069 /* Outer/inner cacheability combine independently */ 3070 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 3071 | combine_cacheattr_nibble(s1lo, s2lo); 3072 } 3073 return ret_attrs; 3074 } 3075 3076 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 3077 { 3078 /* 3079 * Given the 4 bits specifying the outer or inner cacheability 3080 * in MAIR format, return a value specifying Normal Write-Back, 3081 * with the allocation and transient hints taken from the input 3082 * if the input specified some kind of cacheable attribute. 3083 */ 3084 if (attr == 0 || attr == 4) { 3085 /* 3086 * 0 == an UNPREDICTABLE encoding 3087 * 4 == Non-cacheable 3088 * Either way, force Write-Back RW allocate non-transient 3089 */ 3090 return 0xf; 3091 } 3092 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 3093 return attr | 4; 3094 } 3095 3096 /* 3097 * Combine the memory type and cacheability attributes of 3098 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 3099 * combined attributes in MAIR_EL1 format. 3100 */ 3101 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) 3102 { 3103 assert(s2.is_s2_format && !s1.is_s2_format); 3104 3105 switch (s2.attrs) { 3106 case 7: 3107 /* Use stage 1 attributes */ 3108 return s1.attrs; 3109 case 6: 3110 /* 3111 * Force Normal Write-Back. Note that if S1 is Normal cacheable 3112 * then we take the allocation hints from it; otherwise it is 3113 * RW allocate, non-transient. 3114 */ 3115 if ((s1.attrs & 0xf0) == 0) { 3116 /* S1 is Device */ 3117 return 0xff; 3118 } 3119 /* Need to check the Inner and Outer nibbles separately */ 3120 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 3121 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 3122 case 5: 3123 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 3124 if ((s1.attrs & 0xf0) == 0) { 3125 return s1.attrs; 3126 } 3127 return 0x44; 3128 case 0 ... 3: 3129 /* Force Device, of subtype specified by S2 */ 3130 return s2.attrs << 2; 3131 default: 3132 /* 3133 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 3134 * arbitrarily force Device. 3135 */ 3136 return 0; 3137 } 3138 } 3139 3140 /* 3141 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 3142 * and CombineS1S2Desc() 3143 * 3144 * @env: CPUARMState 3145 * @s1: Attributes from stage 1 walk 3146 * @s2: Attributes from stage 2 walk 3147 */ 3148 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, 3149 ARMCacheAttrs s1, ARMCacheAttrs s2) 3150 { 3151 ARMCacheAttrs ret; 3152 bool tagged = false; 3153 3154 assert(!s1.is_s2_format); 3155 ret.is_s2_format = false; 3156 3157 if (s1.attrs == 0xf0) { 3158 tagged = true; 3159 s1.attrs = 0xff; 3160 } 3161 3162 /* Combine shareability attributes (table D4-43) */ 3163 if (s1.shareability == 2 || s2.shareability == 2) { 3164 /* if either are outer-shareable, the result is outer-shareable */ 3165 ret.shareability = 2; 3166 } else if (s1.shareability == 3 || s2.shareability == 3) { 3167 /* if either are inner-shareable, the result is inner-shareable */ 3168 ret.shareability = 3; 3169 } else { 3170 /* both non-shareable */ 3171 ret.shareability = 0; 3172 } 3173 3174 /* Combine memory type and cacheability attributes */ 3175 if (hcr & HCR_FWB) { 3176 ret.attrs = combined_attrs_fwb(s1, s2); 3177 } else { 3178 ret.attrs = combined_attrs_nofwb(hcr, s1, s2); 3179 } 3180 3181 /* 3182 * Any location for which the resultant memory type is any 3183 * type of Device memory is always treated as Outer Shareable. 3184 * Any location for which the resultant memory type is Normal 3185 * Inner Non-cacheable, Outer Non-cacheable is always treated 3186 * as Outer Shareable. 3187 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 3188 */ 3189 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 3190 ret.shareability = 2; 3191 } 3192 3193 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 3194 if (tagged && ret.attrs == 0xff) { 3195 ret.attrs = 0xf0; 3196 } 3197 3198 return ret; 3199 } 3200 3201 /* 3202 * MMU disabled. S1 addresses within aa64 translation regimes are 3203 * still checked for bounds -- see AArch64.S1DisabledOutput(). 3204 */ 3205 static bool get_phys_addr_disabled(CPUARMState *env, 3206 S1Translate *ptw, 3207 vaddr address, 3208 MMUAccessType access_type, 3209 GetPhysAddrResult *result, 3210 ARMMMUFaultInfo *fi) 3211 { 3212 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3213 uint8_t memattr = 0x00; /* Device nGnRnE */ 3214 uint8_t shareability = 0; /* non-shareable */ 3215 int r_el; 3216 3217 switch (mmu_idx) { 3218 case ARMMMUIdx_Stage2: 3219 case ARMMMUIdx_Stage2_S: 3220 case ARMMMUIdx_Phys_S: 3221 case ARMMMUIdx_Phys_NS: 3222 case ARMMMUIdx_Phys_Root: 3223 case ARMMMUIdx_Phys_Realm: 3224 break; 3225 3226 default: 3227 r_el = regime_el(env, mmu_idx); 3228 if (arm_el_is_aa64(env, r_el)) { 3229 int pamax = arm_pamax(env_archcpu(env)); 3230 uint64_t tcr = env->cp15.tcr_el[r_el]; 3231 int addrtop, tbi; 3232 3233 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 3234 if (access_type == MMU_INST_FETCH) { 3235 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 3236 } 3237 tbi = (tbi >> extract64(address, 55, 1)) & 1; 3238 addrtop = (tbi ? 55 : 63); 3239 3240 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 3241 fi->type = ARMFault_AddressSize; 3242 fi->level = 0; 3243 fi->stage2 = false; 3244 return 1; 3245 } 3246 3247 /* 3248 * When TBI is disabled, we've just validated that all of the 3249 * bits above PAMax are zero, so logically we only need to 3250 * clear the top byte for TBI. But it's clearer to follow 3251 * the pseudocode set of addrdesc.paddress. 3252 */ 3253 address = extract64(address, 0, 52); 3254 } 3255 3256 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 3257 if (r_el == 1) { 3258 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 3259 if (hcr & HCR_DC) { 3260 if (hcr & HCR_DCT) { 3261 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 3262 } else { 3263 memattr = 0xff; /* Normal, WB, RWA */ 3264 } 3265 } 3266 } 3267 if (memattr == 0) { 3268 if (access_type == MMU_INST_FETCH) { 3269 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 3270 memattr = 0xee; /* Normal, WT, RA, NT */ 3271 } else { 3272 memattr = 0x44; /* Normal, NC, No */ 3273 } 3274 } 3275 shareability = 2; /* outer shareable */ 3276 } 3277 result->cacheattrs.is_s2_format = false; 3278 break; 3279 } 3280 3281 result->f.phys_addr = address; 3282 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 3283 result->f.lg_page_size = TARGET_PAGE_BITS; 3284 result->cacheattrs.shareability = shareability; 3285 result->cacheattrs.attrs = memattr; 3286 return false; 3287 } 3288 3289 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, 3290 vaddr address, 3291 MMUAccessType access_type, 3292 GetPhysAddrResult *result, 3293 ARMMMUFaultInfo *fi) 3294 { 3295 hwaddr ipa; 3296 int s1_prot, s1_lgpgsz; 3297 ARMSecuritySpace in_space = ptw->in_space; 3298 bool ret, ipa_secure, s1_guarded; 3299 ARMCacheAttrs cacheattrs1; 3300 ARMSecuritySpace ipa_space; 3301 uint64_t hcr; 3302 3303 ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi); 3304 3305 /* If S1 fails, return early. */ 3306 if (ret) { 3307 return ret; 3308 } 3309 3310 ipa = result->f.phys_addr; 3311 ipa_secure = result->f.attrs.secure; 3312 ipa_space = result->f.attrs.space; 3313 3314 ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; 3315 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3316 ptw->in_space = ipa_space; 3317 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx); 3318 3319 /* 3320 * S1 is done, now do S2 translation. 3321 * Save the stage1 results so that we may merge prot and cacheattrs later. 3322 */ 3323 s1_prot = result->f.prot; 3324 s1_lgpgsz = result->f.lg_page_size; 3325 s1_guarded = result->f.extra.arm.guarded; 3326 cacheattrs1 = result->cacheattrs; 3327 memset(result, 0, sizeof(*result)); 3328 3329 ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi); 3330 fi->s2addr = ipa; 3331 3332 /* Combine the S1 and S2 perms. */ 3333 result->f.prot &= s1_prot; 3334 3335 /* If S2 fails, return early. */ 3336 if (ret) { 3337 return ret; 3338 } 3339 3340 /* 3341 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE, 3342 * this means "don't put this in the TLB"; in this case, return a 3343 * result with lg_page_size == 0 to achieve that. Otherwise, 3344 * use the maximum of the S1 & S2 page size, so that invalidation 3345 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though 3346 * we know the combined result permissions etc only cover the minimum 3347 * of the S1 and S2 page size, because we know that the common TLB code 3348 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE, 3349 * and passing a larger page size value only affects invalidations.) 3350 */ 3351 if (result->f.lg_page_size < TARGET_PAGE_BITS || 3352 s1_lgpgsz < TARGET_PAGE_BITS) { 3353 result->f.lg_page_size = 0; 3354 } else if (result->f.lg_page_size < s1_lgpgsz) { 3355 result->f.lg_page_size = s1_lgpgsz; 3356 } 3357 3358 /* Combine the S1 and S2 cache attributes. */ 3359 hcr = arm_hcr_el2_eff_secstate(env, in_space); 3360 if (hcr & HCR_DC) { 3361 /* 3362 * HCR.DC forces the first stage attributes to 3363 * Normal Non-Shareable, 3364 * Inner Write-Back Read-Allocate Write-Allocate, 3365 * Outer Write-Back Read-Allocate Write-Allocate. 3366 * Do not overwrite Tagged within attrs. 3367 */ 3368 if (cacheattrs1.attrs != 0xf0) { 3369 cacheattrs1.attrs = 0xff; 3370 } 3371 cacheattrs1.shareability = 0; 3372 } 3373 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, 3374 result->cacheattrs); 3375 3376 /* No BTI GP information in stage 2, we just use the S1 value */ 3377 result->f.extra.arm.guarded = s1_guarded; 3378 3379 /* 3380 * Check if IPA translates to secure or non-secure PA space. 3381 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. 3382 */ 3383 if (in_space == ARMSS_Secure) { 3384 result->f.attrs.secure = 3385 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) 3386 && (ipa_secure 3387 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))); 3388 result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure); 3389 } 3390 3391 return false; 3392 } 3393 3394 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 3395 vaddr address, 3396 MMUAccessType access_type, 3397 GetPhysAddrResult *result, 3398 ARMMMUFaultInfo *fi) 3399 { 3400 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3401 ARMMMUIdx s1_mmu_idx; 3402 3403 /* 3404 * The page table entries may downgrade Secure to NonSecure, but 3405 * cannot upgrade a NonSecure translation regime's attributes 3406 * to Secure or Realm. 3407 */ 3408 result->f.attrs.space = ptw->in_space; 3409 result->f.attrs.secure = arm_space_is_secure(ptw->in_space); 3410 3411 switch (mmu_idx) { 3412 case ARMMMUIdx_Phys_S: 3413 case ARMMMUIdx_Phys_NS: 3414 case ARMMMUIdx_Phys_Root: 3415 case ARMMMUIdx_Phys_Realm: 3416 /* Checking Phys early avoids special casing later vs regime_el. */ 3417 return get_phys_addr_disabled(env, ptw, address, access_type, 3418 result, fi); 3419 3420 case ARMMMUIdx_Stage1_E0: 3421 case ARMMMUIdx_Stage1_E1: 3422 case ARMMMUIdx_Stage1_E1_PAN: 3423 /* 3424 * First stage lookup uses second stage for ptw; only 3425 * Secure has both S and NS IPA and starts with Stage2_S. 3426 */ 3427 ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ? 3428 ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3429 break; 3430 3431 case ARMMMUIdx_Stage2: 3432 case ARMMMUIdx_Stage2_S: 3433 /* 3434 * Second stage lookup uses physical for ptw; whether this is S or 3435 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for 3436 * the Secure EL2&0 regime. 3437 */ 3438 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx); 3439 break; 3440 3441 case ARMMMUIdx_E10_0: 3442 s1_mmu_idx = ARMMMUIdx_Stage1_E0; 3443 goto do_twostage; 3444 case ARMMMUIdx_E10_1: 3445 s1_mmu_idx = ARMMMUIdx_Stage1_E1; 3446 goto do_twostage; 3447 case ARMMMUIdx_E10_1_PAN: 3448 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3449 do_twostage: 3450 /* 3451 * Call ourselves recursively to do the stage 1 and then stage 2 3452 * translations if mmu_idx is a two-stage regime, and EL2 present. 3453 * Otherwise, a stage1+stage2 translation is just stage 1. 3454 */ 3455 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; 3456 if (arm_feature(env, ARM_FEATURE_EL2) && 3457 !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) { 3458 return get_phys_addr_twostage(env, ptw, address, access_type, 3459 result, fi); 3460 } 3461 /* fall through */ 3462 3463 default: 3464 /* Single stage uses physical for ptw. */ 3465 ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space); 3466 break; 3467 } 3468 3469 result->f.attrs.user = regime_is_user(env, mmu_idx); 3470 3471 /* 3472 * Fast Context Switch Extension. This doesn't exist at all in v8. 3473 * In v7 and earlier it affects all stage 1 translations. 3474 */ 3475 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 3476 && !arm_feature(env, ARM_FEATURE_V8)) { 3477 if (regime_el(env, mmu_idx) == 3) { 3478 address += env->cp15.fcseidr_s; 3479 } else { 3480 address += env->cp15.fcseidr_ns; 3481 } 3482 } 3483 3484 if (arm_feature(env, ARM_FEATURE_PMSA)) { 3485 bool ret; 3486 result->f.lg_page_size = TARGET_PAGE_BITS; 3487 3488 if (arm_feature(env, ARM_FEATURE_V8)) { 3489 /* PMSAv8 */ 3490 ret = get_phys_addr_pmsav8(env, ptw, address, access_type, 3491 result, fi); 3492 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3493 /* PMSAv7 */ 3494 ret = get_phys_addr_pmsav7(env, ptw, address, access_type, 3495 result, fi); 3496 } else { 3497 /* Pre-v7 MPU */ 3498 ret = get_phys_addr_pmsav5(env, ptw, address, access_type, 3499 result, fi); 3500 } 3501 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 3502 " mmu_idx %u -> %s (prot %c%c%c)\n", 3503 access_type == MMU_DATA_LOAD ? "reading" : 3504 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 3505 (uint32_t)address, mmu_idx, 3506 ret ? "Miss" : "Hit", 3507 result->f.prot & PAGE_READ ? 'r' : '-', 3508 result->f.prot & PAGE_WRITE ? 'w' : '-', 3509 result->f.prot & PAGE_EXEC ? 'x' : '-'); 3510 3511 return ret; 3512 } 3513 3514 /* Definitely a real MMU, not an MPU */ 3515 3516 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 3517 return get_phys_addr_disabled(env, ptw, address, access_type, 3518 result, fi); 3519 } 3520 3521 if (regime_using_lpae_format(env, mmu_idx)) { 3522 return get_phys_addr_lpae(env, ptw, address, access_type, result, fi); 3523 } else if (arm_feature(env, ARM_FEATURE_V7) || 3524 regime_sctlr(env, mmu_idx) & SCTLR_XP) { 3525 return get_phys_addr_v6(env, ptw, address, access_type, result, fi); 3526 } else { 3527 return get_phys_addr_v5(env, ptw, address, access_type, result, fi); 3528 } 3529 } 3530 3531 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 3532 vaddr address, 3533 MMUAccessType access_type, 3534 GetPhysAddrResult *result, 3535 ARMMMUFaultInfo *fi) 3536 { 3537 if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) { 3538 return true; 3539 } 3540 if (!granule_protection_check(env, result->f.phys_addr, 3541 result->f.attrs.space, fi)) { 3542 fi->type = ARMFault_GPCFOnOutput; 3543 return true; 3544 } 3545 return false; 3546 } 3547 3548 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address, 3549 MMUAccessType access_type, 3550 ARMMMUIdx mmu_idx, ARMSecuritySpace space, 3551 GetPhysAddrResult *result, 3552 ARMMMUFaultInfo *fi) 3553 { 3554 S1Translate ptw = { 3555 .in_mmu_idx = mmu_idx, 3556 .in_space = space, 3557 }; 3558 return get_phys_addr_nogpc(env, &ptw, address, access_type, result, fi); 3559 } 3560 3561 bool get_phys_addr(CPUARMState *env, vaddr address, 3562 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3563 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 3564 { 3565 S1Translate ptw = { 3566 .in_mmu_idx = mmu_idx, 3567 }; 3568 ARMSecuritySpace ss; 3569 3570 switch (mmu_idx) { 3571 case ARMMMUIdx_E10_0: 3572 case ARMMMUIdx_E10_1: 3573 case ARMMMUIdx_E10_1_PAN: 3574 case ARMMMUIdx_E20_0: 3575 case ARMMMUIdx_E20_2: 3576 case ARMMMUIdx_E20_2_PAN: 3577 case ARMMMUIdx_Stage1_E0: 3578 case ARMMMUIdx_Stage1_E1: 3579 case ARMMMUIdx_Stage1_E1_PAN: 3580 case ARMMMUIdx_E2: 3581 ss = arm_security_space_below_el3(env); 3582 break; 3583 case ARMMMUIdx_Stage2: 3584 /* 3585 * For Secure EL2, we need this index to be NonSecure; 3586 * otherwise this will already be NonSecure or Realm. 3587 */ 3588 ss = arm_security_space_below_el3(env); 3589 if (ss == ARMSS_Secure) { 3590 ss = ARMSS_NonSecure; 3591 } 3592 break; 3593 case ARMMMUIdx_Phys_NS: 3594 case ARMMMUIdx_MPrivNegPri: 3595 case ARMMMUIdx_MUserNegPri: 3596 case ARMMMUIdx_MPriv: 3597 case ARMMMUIdx_MUser: 3598 ss = ARMSS_NonSecure; 3599 break; 3600 case ARMMMUIdx_Stage2_S: 3601 case ARMMMUIdx_Phys_S: 3602 case ARMMMUIdx_MSPrivNegPri: 3603 case ARMMMUIdx_MSUserNegPri: 3604 case ARMMMUIdx_MSPriv: 3605 case ARMMMUIdx_MSUser: 3606 ss = ARMSS_Secure; 3607 break; 3608 case ARMMMUIdx_E3: 3609 case ARMMMUIdx_E30_0: 3610 case ARMMMUIdx_E30_3_PAN: 3611 if (arm_feature(env, ARM_FEATURE_AARCH64) && 3612 cpu_isar_feature(aa64_rme, env_archcpu(env))) { 3613 ss = ARMSS_Root; 3614 } else { 3615 ss = ARMSS_Secure; 3616 } 3617 break; 3618 case ARMMMUIdx_Phys_Root: 3619 ss = ARMSS_Root; 3620 break; 3621 case ARMMMUIdx_Phys_Realm: 3622 ss = ARMSS_Realm; 3623 break; 3624 default: 3625 g_assert_not_reached(); 3626 } 3627 3628 ptw.in_space = ss; 3629 return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi); 3630 } 3631 3632 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 3633 MemTxAttrs *attrs) 3634 { 3635 ARMCPU *cpu = ARM_CPU(cs); 3636 CPUARMState *env = &cpu->env; 3637 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 3638 ARMSecuritySpace ss = arm_security_space(env); 3639 S1Translate ptw = { 3640 .in_mmu_idx = mmu_idx, 3641 .in_space = ss, 3642 .in_debug = true, 3643 }; 3644 GetPhysAddrResult res = {}; 3645 ARMMMUFaultInfo fi = {}; 3646 bool ret; 3647 3648 ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi); 3649 *attrs = res.f.attrs; 3650 3651 if (ret) { 3652 return -1; 3653 } 3654 return res.f.phys_addr; 3655 } 3656