xref: /openbmc/qemu/target/arm/machine.c (revision f104919d15a3f0be57a70b5499bc9fa5e06224fd)
1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
3 #include "cpu.h"
4 #include "hw/hw.h"
5 #include "hw/boards.h"
6 #include "qemu/error-report.h"
7 #include "sysemu/kvm.h"
8 #include "kvm_arm.h"
9 #include "internals.h"
10 #include "migration/cpu.h"
11 
12 static bool vfp_needed(void *opaque)
13 {
14     ARMCPU *cpu = opaque;
15     CPUARMState *env = &cpu->env;
16 
17     return arm_feature(env, ARM_FEATURE_VFP);
18 }
19 
20 static int get_fpscr(QEMUFile *f, void *opaque, size_t size,
21                      VMStateField *field)
22 {
23     ARMCPU *cpu = opaque;
24     CPUARMState *env = &cpu->env;
25     uint32_t val = qemu_get_be32(f);
26 
27     vfp_set_fpscr(env, val);
28     return 0;
29 }
30 
31 static int put_fpscr(QEMUFile *f, void *opaque, size_t size,
32                      VMStateField *field, QJSON *vmdesc)
33 {
34     ARMCPU *cpu = opaque;
35     CPUARMState *env = &cpu->env;
36 
37     qemu_put_be32(f, vfp_get_fpscr(env));
38     return 0;
39 }
40 
41 static const VMStateInfo vmstate_fpscr = {
42     .name = "fpscr",
43     .get = get_fpscr,
44     .put = put_fpscr,
45 };
46 
47 static const VMStateDescription vmstate_vfp = {
48     .name = "cpu/vfp",
49     .version_id = 3,
50     .minimum_version_id = 3,
51     .needed = vfp_needed,
52     .fields = (VMStateField[]) {
53         VMSTATE_FLOAT64_ARRAY(env.vfp.regs, ARMCPU, 64),
54         /* The xregs array is a little awkward because element 1 (FPSCR)
55          * requires a specific accessor, so we have to split it up in
56          * the vmstate:
57          */
58         VMSTATE_UINT32(env.vfp.xregs[0], ARMCPU),
59         VMSTATE_UINT32_SUB_ARRAY(env.vfp.xregs, ARMCPU, 2, 14),
60         {
61             .name = "fpscr",
62             .version_id = 0,
63             .size = sizeof(uint32_t),
64             .info = &vmstate_fpscr,
65             .flags = VMS_SINGLE,
66             .offset = 0,
67         },
68         VMSTATE_END_OF_LIST()
69     }
70 };
71 
72 static bool iwmmxt_needed(void *opaque)
73 {
74     ARMCPU *cpu = opaque;
75     CPUARMState *env = &cpu->env;
76 
77     return arm_feature(env, ARM_FEATURE_IWMMXT);
78 }
79 
80 static const VMStateDescription vmstate_iwmmxt = {
81     .name = "cpu/iwmmxt",
82     .version_id = 1,
83     .minimum_version_id = 1,
84     .needed = iwmmxt_needed,
85     .fields = (VMStateField[]) {
86         VMSTATE_UINT64_ARRAY(env.iwmmxt.regs, ARMCPU, 16),
87         VMSTATE_UINT32_ARRAY(env.iwmmxt.cregs, ARMCPU, 16),
88         VMSTATE_END_OF_LIST()
89     }
90 };
91 
92 static bool m_needed(void *opaque)
93 {
94     ARMCPU *cpu = opaque;
95     CPUARMState *env = &cpu->env;
96 
97     return arm_feature(env, ARM_FEATURE_M);
98 }
99 
100 static const VMStateDescription vmstate_m_faultmask_primask = {
101     .name = "cpu/m/faultmask-primask",
102     .version_id = 1,
103     .minimum_version_id = 1,
104     .fields = (VMStateField[]) {
105         VMSTATE_UINT32(env.v7m.faultmask[M_REG_NS], ARMCPU),
106         VMSTATE_UINT32(env.v7m.primask[M_REG_NS], ARMCPU),
107         VMSTATE_END_OF_LIST()
108     }
109 };
110 
111 static const VMStateDescription vmstate_m = {
112     .name = "cpu/m",
113     .version_id = 4,
114     .minimum_version_id = 4,
115     .needed = m_needed,
116     .fields = (VMStateField[]) {
117         VMSTATE_UINT32(env.v7m.vecbase, ARMCPU),
118         VMSTATE_UINT32(env.v7m.basepri[M_REG_NS], ARMCPU),
119         VMSTATE_UINT32(env.v7m.control[M_REG_NS], ARMCPU),
120         VMSTATE_UINT32(env.v7m.ccr, ARMCPU),
121         VMSTATE_UINT32(env.v7m.cfsr, ARMCPU),
122         VMSTATE_UINT32(env.v7m.hfsr, ARMCPU),
123         VMSTATE_UINT32(env.v7m.dfsr, ARMCPU),
124         VMSTATE_UINT32(env.v7m.mmfar, ARMCPU),
125         VMSTATE_UINT32(env.v7m.bfar, ARMCPU),
126         VMSTATE_UINT32(env.v7m.mpu_ctrl, ARMCPU),
127         VMSTATE_INT32(env.v7m.exception, ARMCPU),
128         VMSTATE_END_OF_LIST()
129     },
130     .subsections = (const VMStateDescription*[]) {
131         &vmstate_m_faultmask_primask,
132         NULL
133     }
134 };
135 
136 static bool thumb2ee_needed(void *opaque)
137 {
138     ARMCPU *cpu = opaque;
139     CPUARMState *env = &cpu->env;
140 
141     return arm_feature(env, ARM_FEATURE_THUMB2EE);
142 }
143 
144 static const VMStateDescription vmstate_thumb2ee = {
145     .name = "cpu/thumb2ee",
146     .version_id = 1,
147     .minimum_version_id = 1,
148     .needed = thumb2ee_needed,
149     .fields = (VMStateField[]) {
150         VMSTATE_UINT32(env.teecr, ARMCPU),
151         VMSTATE_UINT32(env.teehbr, ARMCPU),
152         VMSTATE_END_OF_LIST()
153     }
154 };
155 
156 static bool pmsav7_needed(void *opaque)
157 {
158     ARMCPU *cpu = opaque;
159     CPUARMState *env = &cpu->env;
160 
161     return arm_feature(env, ARM_FEATURE_PMSA) &&
162            arm_feature(env, ARM_FEATURE_V7) &&
163            !arm_feature(env, ARM_FEATURE_V8);
164 }
165 
166 static bool pmsav7_rgnr_vmstate_validate(void *opaque, int version_id)
167 {
168     ARMCPU *cpu = opaque;
169 
170     return cpu->env.pmsav7.rnr < cpu->pmsav7_dregion;
171 }
172 
173 static const VMStateDescription vmstate_pmsav7 = {
174     .name = "cpu/pmsav7",
175     .version_id = 1,
176     .minimum_version_id = 1,
177     .needed = pmsav7_needed,
178     .fields = (VMStateField[]) {
179         VMSTATE_VARRAY_UINT32(env.pmsav7.drbar, ARMCPU, pmsav7_dregion, 0,
180                               vmstate_info_uint32, uint32_t),
181         VMSTATE_VARRAY_UINT32(env.pmsav7.drsr, ARMCPU, pmsav7_dregion, 0,
182                               vmstate_info_uint32, uint32_t),
183         VMSTATE_VARRAY_UINT32(env.pmsav7.dracr, ARMCPU, pmsav7_dregion, 0,
184                               vmstate_info_uint32, uint32_t),
185         VMSTATE_VALIDATE("rgnr is valid", pmsav7_rgnr_vmstate_validate),
186         VMSTATE_END_OF_LIST()
187     }
188 };
189 
190 static bool pmsav7_rnr_needed(void *opaque)
191 {
192     ARMCPU *cpu = opaque;
193     CPUARMState *env = &cpu->env;
194 
195     /* For R profile cores pmsav7.rnr is migrated via the cpreg
196      * "RGNR" definition in helper.h. For M profile we have to
197      * migrate it separately.
198      */
199     return arm_feature(env, ARM_FEATURE_M);
200 }
201 
202 static const VMStateDescription vmstate_pmsav7_rnr = {
203     .name = "cpu/pmsav7-rnr",
204     .version_id = 1,
205     .minimum_version_id = 1,
206     .needed = pmsav7_rnr_needed,
207     .fields = (VMStateField[]) {
208         VMSTATE_UINT32(env.pmsav7.rnr, ARMCPU),
209         VMSTATE_END_OF_LIST()
210     }
211 };
212 
213 static bool pmsav8_needed(void *opaque)
214 {
215     ARMCPU *cpu = opaque;
216     CPUARMState *env = &cpu->env;
217 
218     return arm_feature(env, ARM_FEATURE_PMSA) &&
219         arm_feature(env, ARM_FEATURE_V8);
220 }
221 
222 static const VMStateDescription vmstate_pmsav8 = {
223     .name = "cpu/pmsav8",
224     .version_id = 1,
225     .minimum_version_id = 1,
226     .needed = pmsav8_needed,
227     .fields = (VMStateField[]) {
228         VMSTATE_VARRAY_UINT32(env.pmsav8.rbar, ARMCPU, pmsav7_dregion, 0,
229                               vmstate_info_uint32, uint32_t),
230         VMSTATE_VARRAY_UINT32(env.pmsav8.rlar, ARMCPU, pmsav7_dregion, 0,
231                               vmstate_info_uint32, uint32_t),
232         VMSTATE_UINT32(env.pmsav8.mair0, ARMCPU),
233         VMSTATE_UINT32(env.pmsav8.mair1, ARMCPU),
234         VMSTATE_END_OF_LIST()
235     }
236 };
237 
238 static bool m_security_needed(void *opaque)
239 {
240     ARMCPU *cpu = opaque;
241     CPUARMState *env = &cpu->env;
242 
243     return arm_feature(env, ARM_FEATURE_M_SECURITY);
244 }
245 
246 static const VMStateDescription vmstate_m_security = {
247     .name = "cpu/m-security",
248     .version_id = 1,
249     .minimum_version_id = 1,
250     .needed = m_security_needed,
251     .fields = (VMStateField[]) {
252         VMSTATE_UINT32(env.v7m.secure, ARMCPU),
253         VMSTATE_UINT32(env.v7m.basepri[M_REG_S], ARMCPU),
254         VMSTATE_UINT32(env.v7m.primask[M_REG_S], ARMCPU),
255         VMSTATE_UINT32(env.v7m.faultmask[M_REG_S], ARMCPU),
256         VMSTATE_UINT32(env.v7m.control[M_REG_S], ARMCPU),
257         VMSTATE_END_OF_LIST()
258     }
259 };
260 
261 static int get_cpsr(QEMUFile *f, void *opaque, size_t size,
262                     VMStateField *field)
263 {
264     ARMCPU *cpu = opaque;
265     CPUARMState *env = &cpu->env;
266     uint32_t val = qemu_get_be32(f);
267 
268     if (arm_feature(env, ARM_FEATURE_M)) {
269         if (val & XPSR_EXCP) {
270             /* This is a CPSR format value from an older QEMU. (We can tell
271              * because values transferred in XPSR format always have zero
272              * for the EXCP field, and CPSR format will always have bit 4
273              * set in CPSR_M.) Rearrange it into XPSR format. The significant
274              * differences are that the T bit is not in the same place, the
275              * primask/faultmask info may be in the CPSR I and F bits, and
276              * we do not want the mode bits.
277              * We know that this cleanup happened before v8M, so there
278              * is no complication with banked primask/faultmask.
279              */
280             uint32_t newval = val;
281 
282             assert(!arm_feature(env, ARM_FEATURE_M_SECURITY));
283 
284             newval &= (CPSR_NZCV | CPSR_Q | CPSR_IT | CPSR_GE);
285             if (val & CPSR_T) {
286                 newval |= XPSR_T;
287             }
288             /* If the I or F bits are set then this is a migration from
289              * an old QEMU which still stored the M profile FAULTMASK
290              * and PRIMASK in env->daif. For a new QEMU, the data is
291              * transferred using the vmstate_m_faultmask_primask subsection.
292              */
293             if (val & CPSR_F) {
294                 env->v7m.faultmask[M_REG_NS] = 1;
295             }
296             if (val & CPSR_I) {
297                 env->v7m.primask[M_REG_NS] = 1;
298             }
299             val = newval;
300         }
301         /* Ignore the low bits, they are handled by vmstate_m. */
302         xpsr_write(env, val, ~XPSR_EXCP);
303         return 0;
304     }
305 
306     env->aarch64 = ((val & PSTATE_nRW) == 0);
307 
308     if (is_a64(env)) {
309         pstate_write(env, val);
310         return 0;
311     }
312 
313     cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
314     return 0;
315 }
316 
317 static int put_cpsr(QEMUFile *f, void *opaque, size_t size,
318                     VMStateField *field, QJSON *vmdesc)
319 {
320     ARMCPU *cpu = opaque;
321     CPUARMState *env = &cpu->env;
322     uint32_t val;
323 
324     if (arm_feature(env, ARM_FEATURE_M)) {
325         /* The low 9 bits are v7m.exception, which is handled by vmstate_m. */
326         val = xpsr_read(env) & ~XPSR_EXCP;
327     } else if (is_a64(env)) {
328         val = pstate_read(env);
329     } else {
330         val = cpsr_read(env);
331     }
332 
333     qemu_put_be32(f, val);
334     return 0;
335 }
336 
337 static const VMStateInfo vmstate_cpsr = {
338     .name = "cpsr",
339     .get = get_cpsr,
340     .put = put_cpsr,
341 };
342 
343 static int get_power(QEMUFile *f, void *opaque, size_t size,
344                     VMStateField *field)
345 {
346     ARMCPU *cpu = opaque;
347     bool powered_off = qemu_get_byte(f);
348     cpu->power_state = powered_off ? PSCI_OFF : PSCI_ON;
349     return 0;
350 }
351 
352 static int put_power(QEMUFile *f, void *opaque, size_t size,
353                     VMStateField *field, QJSON *vmdesc)
354 {
355     ARMCPU *cpu = opaque;
356 
357     /* Migration should never happen while we transition power states */
358 
359     if (cpu->power_state == PSCI_ON ||
360         cpu->power_state == PSCI_OFF) {
361         bool powered_off = (cpu->power_state == PSCI_OFF) ? true : false;
362         qemu_put_byte(f, powered_off);
363         return 0;
364     } else {
365         return 1;
366     }
367 }
368 
369 static const VMStateInfo vmstate_powered_off = {
370     .name = "powered_off",
371     .get = get_power,
372     .put = put_power,
373 };
374 
375 static void cpu_pre_save(void *opaque)
376 {
377     ARMCPU *cpu = opaque;
378 
379     if (kvm_enabled()) {
380         if (!write_kvmstate_to_list(cpu)) {
381             /* This should never fail */
382             abort();
383         }
384     } else {
385         if (!write_cpustate_to_list(cpu)) {
386             /* This should never fail. */
387             abort();
388         }
389     }
390 
391     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
392     memcpy(cpu->cpreg_vmstate_indexes, cpu->cpreg_indexes,
393            cpu->cpreg_array_len * sizeof(uint64_t));
394     memcpy(cpu->cpreg_vmstate_values, cpu->cpreg_values,
395            cpu->cpreg_array_len * sizeof(uint64_t));
396 }
397 
398 static int cpu_post_load(void *opaque, int version_id)
399 {
400     ARMCPU *cpu = opaque;
401     int i, v;
402 
403     /* Update the values list from the incoming migration data.
404      * Anything in the incoming data which we don't know about is
405      * a migration failure; anything we know about but the incoming
406      * data doesn't specify retains its current (reset) value.
407      * The indexes list remains untouched -- we only inspect the
408      * incoming migration index list so we can match the values array
409      * entries with the right slots in our own values array.
410      */
411 
412     for (i = 0, v = 0; i < cpu->cpreg_array_len
413              && v < cpu->cpreg_vmstate_array_len; i++) {
414         if (cpu->cpreg_vmstate_indexes[v] > cpu->cpreg_indexes[i]) {
415             /* register in our list but not incoming : skip it */
416             continue;
417         }
418         if (cpu->cpreg_vmstate_indexes[v] < cpu->cpreg_indexes[i]) {
419             /* register in their list but not ours: fail migration */
420             return -1;
421         }
422         /* matching register, copy the value over */
423         cpu->cpreg_values[i] = cpu->cpreg_vmstate_values[v];
424         v++;
425     }
426 
427     if (kvm_enabled()) {
428         if (!write_list_to_kvmstate(cpu, KVM_PUT_FULL_STATE)) {
429             return -1;
430         }
431         /* Note that it's OK for the TCG side not to know about
432          * every register in the list; KVM is authoritative if
433          * we're using it.
434          */
435         write_list_to_cpustate(cpu);
436     } else {
437         if (!write_list_to_cpustate(cpu)) {
438             return -1;
439         }
440     }
441 
442     hw_breakpoint_update_all(cpu);
443     hw_watchpoint_update_all(cpu);
444 
445     return 0;
446 }
447 
448 const VMStateDescription vmstate_arm_cpu = {
449     .name = "cpu",
450     .version_id = 22,
451     .minimum_version_id = 22,
452     .pre_save = cpu_pre_save,
453     .post_load = cpu_post_load,
454     .fields = (VMStateField[]) {
455         VMSTATE_UINT32_ARRAY(env.regs, ARMCPU, 16),
456         VMSTATE_UINT64_ARRAY(env.xregs, ARMCPU, 32),
457         VMSTATE_UINT64(env.pc, ARMCPU),
458         {
459             .name = "cpsr",
460             .version_id = 0,
461             .size = sizeof(uint32_t),
462             .info = &vmstate_cpsr,
463             .flags = VMS_SINGLE,
464             .offset = 0,
465         },
466         VMSTATE_UINT32(env.spsr, ARMCPU),
467         VMSTATE_UINT64_ARRAY(env.banked_spsr, ARMCPU, 8),
468         VMSTATE_UINT32_ARRAY(env.banked_r13, ARMCPU, 8),
469         VMSTATE_UINT32_ARRAY(env.banked_r14, ARMCPU, 8),
470         VMSTATE_UINT32_ARRAY(env.usr_regs, ARMCPU, 5),
471         VMSTATE_UINT32_ARRAY(env.fiq_regs, ARMCPU, 5),
472         VMSTATE_UINT64_ARRAY(env.elr_el, ARMCPU, 4),
473         VMSTATE_UINT64_ARRAY(env.sp_el, ARMCPU, 4),
474         /* The length-check must come before the arrays to avoid
475          * incoming data possibly overflowing the array.
476          */
477         VMSTATE_INT32_POSITIVE_LE(cpreg_vmstate_array_len, ARMCPU),
478         VMSTATE_VARRAY_INT32(cpreg_vmstate_indexes, ARMCPU,
479                              cpreg_vmstate_array_len,
480                              0, vmstate_info_uint64, uint64_t),
481         VMSTATE_VARRAY_INT32(cpreg_vmstate_values, ARMCPU,
482                              cpreg_vmstate_array_len,
483                              0, vmstate_info_uint64, uint64_t),
484         VMSTATE_UINT64(env.exclusive_addr, ARMCPU),
485         VMSTATE_UINT64(env.exclusive_val, ARMCPU),
486         VMSTATE_UINT64(env.exclusive_high, ARMCPU),
487         VMSTATE_UINT64(env.features, ARMCPU),
488         VMSTATE_UINT32(env.exception.syndrome, ARMCPU),
489         VMSTATE_UINT32(env.exception.fsr, ARMCPU),
490         VMSTATE_UINT64(env.exception.vaddress, ARMCPU),
491         VMSTATE_TIMER_PTR(gt_timer[GTIMER_PHYS], ARMCPU),
492         VMSTATE_TIMER_PTR(gt_timer[GTIMER_VIRT], ARMCPU),
493         {
494             .name = "power_state",
495             .version_id = 0,
496             .size = sizeof(bool),
497             .info = &vmstate_powered_off,
498             .flags = VMS_SINGLE,
499             .offset = 0,
500         },
501         VMSTATE_END_OF_LIST()
502     },
503     .subsections = (const VMStateDescription*[]) {
504         &vmstate_vfp,
505         &vmstate_iwmmxt,
506         &vmstate_m,
507         &vmstate_thumb2ee,
508         /* pmsav7_rnr must come before pmsav7 so that we have the
509          * region number before we test it in the VMSTATE_VALIDATE
510          * in vmstate_pmsav7.
511          */
512         &vmstate_pmsav7_rnr,
513         &vmstate_pmsav7,
514         &vmstate_pmsav8,
515         &vmstate_m_security,
516         NULL
517     }
518 };
519