1 #include "qemu/osdep.h" 2 #include "cpu.h" 3 #include "qemu/error-report.h" 4 #include "sysemu/kvm.h" 5 #include "sysemu/tcg.h" 6 #include "kvm_arm.h" 7 #include "internals.h" 8 #include "cpu-features.h" 9 #include "migration/cpu.h" 10 #include "target/arm/gtimer.h" 11 12 static bool vfp_needed(void *opaque) 13 { 14 ARMCPU *cpu = opaque; 15 16 return (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) 17 ? cpu_isar_feature(aa64_fp_simd, cpu) 18 : cpu_isar_feature(aa32_vfp_simd, cpu)); 19 } 20 21 static bool vfp_fpcr_fpsr_needed(void *opaque) 22 { 23 /* 24 * If either the FPCR or the FPSR include set bits that are not 25 * visible in the AArch32 FPSCR view of floating point control/status 26 * then we must send the FPCR and FPSR as two separate fields in the 27 * cpu/vfp/fpcr_fpsr subsection, and we will send a 0 for the old 28 * FPSCR field in cpu/vfp. 29 * 30 * If all the set bits are representable in an AArch32 FPSCR then we 31 * send that value as the cpu/vfp FPSCR field, and don't send the 32 * cpu/vfp/fpcr_fpsr subsection. 33 * 34 * On incoming migration, if the cpu/vfp FPSCR field is non-zero we 35 * use it, and if the fpcr_fpsr subsection is present we use that. 36 * (The subsection will never be present with a non-zero FPSCR field, 37 * and if FPSCR is zero and the subsection is not present that means 38 * that FPSCR/FPSR/FPCR are zero.) 39 * 40 * This preserves migration compatibility with older QEMU versions, 41 * in both directions. 42 */ 43 ARMCPU *cpu = opaque; 44 CPUARMState *env = &cpu->env; 45 46 return (vfp_get_fpcr(env) & ~FPSCR_FPCR_MASK) || 47 (vfp_get_fpsr(env) & ~FPSCR_FPSR_MASK); 48 } 49 50 static int get_fpscr(QEMUFile *f, void *opaque, size_t size, 51 const VMStateField *field) 52 { 53 ARMCPU *cpu = opaque; 54 CPUARMState *env = &cpu->env; 55 uint32_t val = qemu_get_be32(f); 56 57 if (val) { 58 /* 0 means we might have the data in the fpcr_fpsr subsection */ 59 vfp_set_fpscr(env, val); 60 } 61 return 0; 62 } 63 64 static int put_fpscr(QEMUFile *f, void *opaque, size_t size, 65 const VMStateField *field, JSONWriter *vmdesc) 66 { 67 ARMCPU *cpu = opaque; 68 CPUARMState *env = &cpu->env; 69 uint32_t fpscr = vfp_fpcr_fpsr_needed(opaque) ? 0 : vfp_get_fpscr(env); 70 71 qemu_put_be32(f, fpscr); 72 return 0; 73 } 74 75 static const VMStateInfo vmstate_fpscr = { 76 .name = "fpscr", 77 .get = get_fpscr, 78 .put = put_fpscr, 79 }; 80 81 static int get_fpcr(QEMUFile *f, void *opaque, size_t size, 82 const VMStateField *field) 83 { 84 ARMCPU *cpu = opaque; 85 CPUARMState *env = &cpu->env; 86 uint64_t val = qemu_get_be64(f); 87 88 vfp_set_fpcr(env, val); 89 return 0; 90 } 91 92 static int put_fpcr(QEMUFile *f, void *opaque, size_t size, 93 const VMStateField *field, JSONWriter *vmdesc) 94 { 95 ARMCPU *cpu = opaque; 96 CPUARMState *env = &cpu->env; 97 98 qemu_put_be64(f, vfp_get_fpcr(env)); 99 return 0; 100 } 101 102 static const VMStateInfo vmstate_fpcr = { 103 .name = "fpcr", 104 .get = get_fpcr, 105 .put = put_fpcr, 106 }; 107 108 static int get_fpsr(QEMUFile *f, void *opaque, size_t size, 109 const VMStateField *field) 110 { 111 ARMCPU *cpu = opaque; 112 CPUARMState *env = &cpu->env; 113 uint64_t val = qemu_get_be64(f); 114 115 vfp_set_fpsr(env, val); 116 return 0; 117 } 118 119 static int put_fpsr(QEMUFile *f, void *opaque, size_t size, 120 const VMStateField *field, JSONWriter *vmdesc) 121 { 122 ARMCPU *cpu = opaque; 123 CPUARMState *env = &cpu->env; 124 125 qemu_put_be64(f, vfp_get_fpsr(env)); 126 return 0; 127 } 128 129 static const VMStateInfo vmstate_fpsr = { 130 .name = "fpsr", 131 .get = get_fpsr, 132 .put = put_fpsr, 133 }; 134 135 static const VMStateDescription vmstate_vfp_fpcr_fpsr = { 136 .name = "cpu/vfp/fpcr_fpsr", 137 .version_id = 1, 138 .minimum_version_id = 1, 139 .needed = vfp_fpcr_fpsr_needed, 140 .fields = (const VMStateField[]) { 141 { 142 .name = "fpcr", 143 .version_id = 0, 144 .size = sizeof(uint64_t), 145 .info = &vmstate_fpcr, 146 .flags = VMS_SINGLE, 147 .offset = 0, 148 }, 149 { 150 .name = "fpsr", 151 .version_id = 0, 152 .size = sizeof(uint64_t), 153 .info = &vmstate_fpsr, 154 .flags = VMS_SINGLE, 155 .offset = 0, 156 }, 157 VMSTATE_END_OF_LIST() 158 }, 159 }; 160 161 static const VMStateDescription vmstate_vfp = { 162 .name = "cpu/vfp", 163 .version_id = 3, 164 .minimum_version_id = 3, 165 .needed = vfp_needed, 166 .fields = (const VMStateField[]) { 167 /* For compatibility, store Qn out of Zn here. */ 168 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[0].d, ARMCPU, 0, 2), 169 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[1].d, ARMCPU, 0, 2), 170 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[2].d, ARMCPU, 0, 2), 171 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[3].d, ARMCPU, 0, 2), 172 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[4].d, ARMCPU, 0, 2), 173 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[5].d, ARMCPU, 0, 2), 174 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[6].d, ARMCPU, 0, 2), 175 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[7].d, ARMCPU, 0, 2), 176 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[8].d, ARMCPU, 0, 2), 177 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[9].d, ARMCPU, 0, 2), 178 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[10].d, ARMCPU, 0, 2), 179 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[11].d, ARMCPU, 0, 2), 180 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[12].d, ARMCPU, 0, 2), 181 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[13].d, ARMCPU, 0, 2), 182 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[14].d, ARMCPU, 0, 2), 183 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[15].d, ARMCPU, 0, 2), 184 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[16].d, ARMCPU, 0, 2), 185 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[17].d, ARMCPU, 0, 2), 186 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[18].d, ARMCPU, 0, 2), 187 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[19].d, ARMCPU, 0, 2), 188 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[20].d, ARMCPU, 0, 2), 189 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[21].d, ARMCPU, 0, 2), 190 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[22].d, ARMCPU, 0, 2), 191 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[23].d, ARMCPU, 0, 2), 192 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[24].d, ARMCPU, 0, 2), 193 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[25].d, ARMCPU, 0, 2), 194 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[26].d, ARMCPU, 0, 2), 195 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[27].d, ARMCPU, 0, 2), 196 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[28].d, ARMCPU, 0, 2), 197 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[29].d, ARMCPU, 0, 2), 198 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[30].d, ARMCPU, 0, 2), 199 VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[31].d, ARMCPU, 0, 2), 200 201 /* The xregs array is a little awkward because element 1 (FPSCR) 202 * requires a specific accessor, so we have to split it up in 203 * the vmstate: 204 */ 205 VMSTATE_UINT32(env.vfp.xregs[0], ARMCPU), 206 VMSTATE_UINT32_SUB_ARRAY(env.vfp.xregs, ARMCPU, 2, 14), 207 { 208 .name = "fpscr", 209 .version_id = 0, 210 .size = sizeof(uint32_t), 211 .info = &vmstate_fpscr, 212 .flags = VMS_SINGLE, 213 .offset = 0, 214 }, 215 VMSTATE_END_OF_LIST() 216 }, 217 .subsections = (const VMStateDescription * const []) { 218 &vmstate_vfp_fpcr_fpsr, 219 NULL 220 } 221 }; 222 223 static bool iwmmxt_needed(void *opaque) 224 { 225 ARMCPU *cpu = opaque; 226 CPUARMState *env = &cpu->env; 227 228 return arm_feature(env, ARM_FEATURE_IWMMXT); 229 } 230 231 static const VMStateDescription vmstate_iwmmxt = { 232 .name = "cpu/iwmmxt", 233 .version_id = 1, 234 .minimum_version_id = 1, 235 .needed = iwmmxt_needed, 236 .fields = (const VMStateField[]) { 237 VMSTATE_UINT64_ARRAY(env.iwmmxt.regs, ARMCPU, 16), 238 VMSTATE_UINT32_ARRAY(env.iwmmxt.cregs, ARMCPU, 16), 239 VMSTATE_END_OF_LIST() 240 } 241 }; 242 243 #ifdef TARGET_AARCH64 244 /* The expression ARM_MAX_VQ - 2 is 0 for pure AArch32 build, 245 * and ARMPredicateReg is actively empty. This triggers errors 246 * in the expansion of the VMSTATE macros. 247 */ 248 249 static bool sve_needed(void *opaque) 250 { 251 ARMCPU *cpu = opaque; 252 253 return cpu_isar_feature(aa64_sve, cpu); 254 } 255 256 /* The first two words of each Zreg is stored in VFP state. */ 257 static const VMStateDescription vmstate_zreg_hi_reg = { 258 .name = "cpu/sve/zreg_hi", 259 .version_id = 1, 260 .minimum_version_id = 1, 261 .fields = (const VMStateField[]) { 262 VMSTATE_UINT64_SUB_ARRAY(d, ARMVectorReg, 2, ARM_MAX_VQ - 2), 263 VMSTATE_END_OF_LIST() 264 } 265 }; 266 267 static const VMStateDescription vmstate_preg_reg = { 268 .name = "cpu/sve/preg", 269 .version_id = 1, 270 .minimum_version_id = 1, 271 .fields = (const VMStateField[]) { 272 VMSTATE_UINT64_ARRAY(p, ARMPredicateReg, 2 * ARM_MAX_VQ / 8), 273 VMSTATE_END_OF_LIST() 274 } 275 }; 276 277 static const VMStateDescription vmstate_sve = { 278 .name = "cpu/sve", 279 .version_id = 1, 280 .minimum_version_id = 1, 281 .needed = sve_needed, 282 .fields = (const VMStateField[]) { 283 VMSTATE_STRUCT_ARRAY(env.vfp.zregs, ARMCPU, 32, 0, 284 vmstate_zreg_hi_reg, ARMVectorReg), 285 VMSTATE_STRUCT_ARRAY(env.vfp.pregs, ARMCPU, 17, 0, 286 vmstate_preg_reg, ARMPredicateReg), 287 VMSTATE_END_OF_LIST() 288 } 289 }; 290 291 static const VMStateDescription vmstate_vreg = { 292 .name = "vreg", 293 .version_id = 1, 294 .minimum_version_id = 1, 295 .fields = (const VMStateField[]) { 296 VMSTATE_UINT64_ARRAY(d, ARMVectorReg, ARM_MAX_VQ * 2), 297 VMSTATE_END_OF_LIST() 298 } 299 }; 300 301 static bool za_needed(void *opaque) 302 { 303 ARMCPU *cpu = opaque; 304 305 /* 306 * When ZA storage is disabled, its contents are discarded. 307 * It will be zeroed when ZA storage is re-enabled. 308 */ 309 return FIELD_EX64(cpu->env.svcr, SVCR, ZA); 310 } 311 312 static const VMStateDescription vmstate_za = { 313 .name = "cpu/sme", 314 .version_id = 1, 315 .minimum_version_id = 1, 316 .needed = za_needed, 317 .fields = (const VMStateField[]) { 318 VMSTATE_STRUCT_ARRAY(env.zarray, ARMCPU, ARM_MAX_VQ * 16, 0, 319 vmstate_vreg, ARMVectorReg), 320 VMSTATE_END_OF_LIST() 321 } 322 }; 323 #endif /* AARCH64 */ 324 325 static bool serror_needed(void *opaque) 326 { 327 ARMCPU *cpu = opaque; 328 CPUARMState *env = &cpu->env; 329 330 return env->serror.pending != 0; 331 } 332 333 static const VMStateDescription vmstate_serror = { 334 .name = "cpu/serror", 335 .version_id = 1, 336 .minimum_version_id = 1, 337 .needed = serror_needed, 338 .fields = (const VMStateField[]) { 339 VMSTATE_UINT8(env.serror.pending, ARMCPU), 340 VMSTATE_UINT8(env.serror.has_esr, ARMCPU), 341 VMSTATE_UINT64(env.serror.esr, ARMCPU), 342 VMSTATE_END_OF_LIST() 343 } 344 }; 345 346 static bool irq_line_state_needed(void *opaque) 347 { 348 return true; 349 } 350 351 static const VMStateDescription vmstate_irq_line_state = { 352 .name = "cpu/irq-line-state", 353 .version_id = 1, 354 .minimum_version_id = 1, 355 .needed = irq_line_state_needed, 356 .fields = (const VMStateField[]) { 357 VMSTATE_UINT32(env.irq_line_state, ARMCPU), 358 VMSTATE_END_OF_LIST() 359 } 360 }; 361 362 static bool wfxt_timer_needed(void *opaque) 363 { 364 ARMCPU *cpu = opaque; 365 366 /* We'll only have the timer object if FEAT_WFxT is implemented */ 367 return cpu->wfxt_timer; 368 } 369 370 static const VMStateDescription vmstate_wfxt_timer = { 371 .name = "cpu/wfxt-timer", 372 .version_id = 1, 373 .minimum_version_id = 1, 374 .needed = wfxt_timer_needed, 375 .fields = (const VMStateField[]) { 376 VMSTATE_TIMER_PTR(wfxt_timer, ARMCPU), 377 VMSTATE_END_OF_LIST() 378 } 379 }; 380 381 static bool m_needed(void *opaque) 382 { 383 ARMCPU *cpu = opaque; 384 CPUARMState *env = &cpu->env; 385 386 return arm_feature(env, ARM_FEATURE_M); 387 } 388 389 static const VMStateDescription vmstate_m_faultmask_primask = { 390 .name = "cpu/m/faultmask-primask", 391 .version_id = 1, 392 .minimum_version_id = 1, 393 .needed = m_needed, 394 .fields = (const VMStateField[]) { 395 VMSTATE_UINT32(env.v7m.faultmask[M_REG_NS], ARMCPU), 396 VMSTATE_UINT32(env.v7m.primask[M_REG_NS], ARMCPU), 397 VMSTATE_END_OF_LIST() 398 } 399 }; 400 401 /* CSSELR is in a subsection because we didn't implement it previously. 402 * Migration from an old implementation will leave it at zero, which 403 * is OK since the only CPUs in the old implementation make the 404 * register RAZ/WI. 405 * Since there was no version of QEMU which implemented the CSSELR for 406 * just non-secure, we transfer both banks here rather than putting 407 * the secure banked version in the m-security subsection. 408 */ 409 static bool csselr_vmstate_validate(void *opaque, int version_id) 410 { 411 ARMCPU *cpu = opaque; 412 413 return cpu->env.v7m.csselr[M_REG_NS] <= R_V7M_CSSELR_INDEX_MASK 414 && cpu->env.v7m.csselr[M_REG_S] <= R_V7M_CSSELR_INDEX_MASK; 415 } 416 417 static bool m_csselr_needed(void *opaque) 418 { 419 ARMCPU *cpu = opaque; 420 421 return !arm_v7m_csselr_razwi(cpu); 422 } 423 424 static const VMStateDescription vmstate_m_csselr = { 425 .name = "cpu/m/csselr", 426 .version_id = 1, 427 .minimum_version_id = 1, 428 .needed = m_csselr_needed, 429 .fields = (const VMStateField[]) { 430 VMSTATE_UINT32_ARRAY(env.v7m.csselr, ARMCPU, M_REG_NUM_BANKS), 431 VMSTATE_VALIDATE("CSSELR is valid", csselr_vmstate_validate), 432 VMSTATE_END_OF_LIST() 433 } 434 }; 435 436 static const VMStateDescription vmstate_m_scr = { 437 .name = "cpu/m/scr", 438 .version_id = 1, 439 .minimum_version_id = 1, 440 .needed = m_needed, 441 .fields = (const VMStateField[]) { 442 VMSTATE_UINT32(env.v7m.scr[M_REG_NS], ARMCPU), 443 VMSTATE_END_OF_LIST() 444 } 445 }; 446 447 static const VMStateDescription vmstate_m_other_sp = { 448 .name = "cpu/m/other-sp", 449 .version_id = 1, 450 .minimum_version_id = 1, 451 .needed = m_needed, 452 .fields = (const VMStateField[]) { 453 VMSTATE_UINT32(env.v7m.other_sp, ARMCPU), 454 VMSTATE_END_OF_LIST() 455 } 456 }; 457 458 static bool m_v8m_needed(void *opaque) 459 { 460 ARMCPU *cpu = opaque; 461 CPUARMState *env = &cpu->env; 462 463 return arm_feature(env, ARM_FEATURE_M) && arm_feature(env, ARM_FEATURE_V8); 464 } 465 466 static const VMStateDescription vmstate_m_v8m = { 467 .name = "cpu/m/v8m", 468 .version_id = 1, 469 .minimum_version_id = 1, 470 .needed = m_v8m_needed, 471 .fields = (const VMStateField[]) { 472 VMSTATE_UINT32_ARRAY(env.v7m.msplim, ARMCPU, M_REG_NUM_BANKS), 473 VMSTATE_UINT32_ARRAY(env.v7m.psplim, ARMCPU, M_REG_NUM_BANKS), 474 VMSTATE_END_OF_LIST() 475 } 476 }; 477 478 static const VMStateDescription vmstate_m_fp = { 479 .name = "cpu/m/fp", 480 .version_id = 1, 481 .minimum_version_id = 1, 482 .needed = vfp_needed, 483 .fields = (const VMStateField[]) { 484 VMSTATE_UINT32_ARRAY(env.v7m.fpcar, ARMCPU, M_REG_NUM_BANKS), 485 VMSTATE_UINT32_ARRAY(env.v7m.fpccr, ARMCPU, M_REG_NUM_BANKS), 486 VMSTATE_UINT32_ARRAY(env.v7m.fpdscr, ARMCPU, M_REG_NUM_BANKS), 487 VMSTATE_UINT32_ARRAY(env.v7m.cpacr, ARMCPU, M_REG_NUM_BANKS), 488 VMSTATE_UINT32(env.v7m.nsacr, ARMCPU), 489 VMSTATE_END_OF_LIST() 490 } 491 }; 492 493 static bool mve_needed(void *opaque) 494 { 495 ARMCPU *cpu = opaque; 496 497 return cpu_isar_feature(aa32_mve, cpu); 498 } 499 500 static const VMStateDescription vmstate_m_mve = { 501 .name = "cpu/m/mve", 502 .version_id = 1, 503 .minimum_version_id = 1, 504 .needed = mve_needed, 505 .fields = (const VMStateField[]) { 506 VMSTATE_UINT32(env.v7m.vpr, ARMCPU), 507 VMSTATE_UINT32(env.v7m.ltpsize, ARMCPU), 508 VMSTATE_END_OF_LIST() 509 }, 510 }; 511 512 static const VMStateDescription vmstate_m = { 513 .name = "cpu/m", 514 .version_id = 4, 515 .minimum_version_id = 4, 516 .needed = m_needed, 517 .fields = (const VMStateField[]) { 518 VMSTATE_UINT32(env.v7m.vecbase[M_REG_NS], ARMCPU), 519 VMSTATE_UINT32(env.v7m.basepri[M_REG_NS], ARMCPU), 520 VMSTATE_UINT32(env.v7m.control[M_REG_NS], ARMCPU), 521 VMSTATE_UINT32(env.v7m.ccr[M_REG_NS], ARMCPU), 522 VMSTATE_UINT32(env.v7m.cfsr[M_REG_NS], ARMCPU), 523 VMSTATE_UINT32(env.v7m.hfsr, ARMCPU), 524 VMSTATE_UINT32(env.v7m.dfsr, ARMCPU), 525 VMSTATE_UINT32(env.v7m.mmfar[M_REG_NS], ARMCPU), 526 VMSTATE_UINT32(env.v7m.bfar, ARMCPU), 527 VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_NS], ARMCPU), 528 VMSTATE_INT32(env.v7m.exception, ARMCPU), 529 VMSTATE_END_OF_LIST() 530 }, 531 .subsections = (const VMStateDescription * const []) { 532 &vmstate_m_faultmask_primask, 533 &vmstate_m_csselr, 534 &vmstate_m_scr, 535 &vmstate_m_other_sp, 536 &vmstate_m_v8m, 537 &vmstate_m_fp, 538 &vmstate_m_mve, 539 NULL 540 } 541 }; 542 543 static bool thumb2ee_needed(void *opaque) 544 { 545 ARMCPU *cpu = opaque; 546 CPUARMState *env = &cpu->env; 547 548 return arm_feature(env, ARM_FEATURE_THUMB2EE); 549 } 550 551 static const VMStateDescription vmstate_thumb2ee = { 552 .name = "cpu/thumb2ee", 553 .version_id = 1, 554 .minimum_version_id = 1, 555 .needed = thumb2ee_needed, 556 .fields = (const VMStateField[]) { 557 VMSTATE_UINT32(env.teecr, ARMCPU), 558 VMSTATE_UINT32(env.teehbr, ARMCPU), 559 VMSTATE_END_OF_LIST() 560 } 561 }; 562 563 static bool pmsav7_needed(void *opaque) 564 { 565 ARMCPU *cpu = opaque; 566 CPUARMState *env = &cpu->env; 567 568 return arm_feature(env, ARM_FEATURE_PMSA) && 569 arm_feature(env, ARM_FEATURE_V7) && 570 !arm_feature(env, ARM_FEATURE_V8); 571 } 572 573 static bool pmsav7_rgnr_vmstate_validate(void *opaque, int version_id) 574 { 575 ARMCPU *cpu = opaque; 576 577 return cpu->env.pmsav7.rnr[M_REG_NS] < cpu->pmsav7_dregion; 578 } 579 580 static const VMStateDescription vmstate_pmsav7 = { 581 .name = "cpu/pmsav7", 582 .version_id = 1, 583 .minimum_version_id = 1, 584 .needed = pmsav7_needed, 585 .fields = (const VMStateField[]) { 586 VMSTATE_VARRAY_UINT32(env.pmsav7.drbar, ARMCPU, pmsav7_dregion, 0, 587 vmstate_info_uint32, uint32_t), 588 VMSTATE_VARRAY_UINT32(env.pmsav7.drsr, ARMCPU, pmsav7_dregion, 0, 589 vmstate_info_uint32, uint32_t), 590 VMSTATE_VARRAY_UINT32(env.pmsav7.dracr, ARMCPU, pmsav7_dregion, 0, 591 vmstate_info_uint32, uint32_t), 592 VMSTATE_VALIDATE("rgnr is valid", pmsav7_rgnr_vmstate_validate), 593 VMSTATE_END_OF_LIST() 594 } 595 }; 596 597 static bool pmsav7_rnr_needed(void *opaque) 598 { 599 ARMCPU *cpu = opaque; 600 CPUARMState *env = &cpu->env; 601 602 /* For R profile cores pmsav7.rnr is migrated via the cpreg 603 * "RGNR" definition in helper.h. For M profile we have to 604 * migrate it separately. 605 */ 606 return arm_feature(env, ARM_FEATURE_M); 607 } 608 609 static const VMStateDescription vmstate_pmsav7_rnr = { 610 .name = "cpu/pmsav7-rnr", 611 .version_id = 1, 612 .minimum_version_id = 1, 613 .needed = pmsav7_rnr_needed, 614 .fields = (const VMStateField[]) { 615 VMSTATE_UINT32(env.pmsav7.rnr[M_REG_NS], ARMCPU), 616 VMSTATE_END_OF_LIST() 617 } 618 }; 619 620 static bool pmsav8_needed(void *opaque) 621 { 622 ARMCPU *cpu = opaque; 623 CPUARMState *env = &cpu->env; 624 625 return arm_feature(env, ARM_FEATURE_PMSA) && 626 arm_feature(env, ARM_FEATURE_V8); 627 } 628 629 static bool pmsav8r_needed(void *opaque) 630 { 631 ARMCPU *cpu = opaque; 632 CPUARMState *env = &cpu->env; 633 634 return arm_feature(env, ARM_FEATURE_PMSA) && 635 arm_feature(env, ARM_FEATURE_V8) && 636 !arm_feature(env, ARM_FEATURE_M); 637 } 638 639 static const VMStateDescription vmstate_pmsav8r = { 640 .name = "cpu/pmsav8/pmsav8r", 641 .version_id = 1, 642 .minimum_version_id = 1, 643 .needed = pmsav8r_needed, 644 .fields = (const VMStateField[]) { 645 VMSTATE_VARRAY_UINT32(env.pmsav8.hprbar, ARMCPU, 646 pmsav8r_hdregion, 0, vmstate_info_uint32, uint32_t), 647 VMSTATE_VARRAY_UINT32(env.pmsav8.hprlar, ARMCPU, 648 pmsav8r_hdregion, 0, vmstate_info_uint32, uint32_t), 649 VMSTATE_END_OF_LIST() 650 }, 651 }; 652 653 static const VMStateDescription vmstate_pmsav8 = { 654 .name = "cpu/pmsav8", 655 .version_id = 1, 656 .minimum_version_id = 1, 657 .needed = pmsav8_needed, 658 .fields = (const VMStateField[]) { 659 VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_NS], ARMCPU, pmsav7_dregion, 660 0, vmstate_info_uint32, uint32_t), 661 VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_NS], ARMCPU, pmsav7_dregion, 662 0, vmstate_info_uint32, uint32_t), 663 VMSTATE_UINT32(env.pmsav8.mair0[M_REG_NS], ARMCPU), 664 VMSTATE_UINT32(env.pmsav8.mair1[M_REG_NS], ARMCPU), 665 VMSTATE_END_OF_LIST() 666 }, 667 .subsections = (const VMStateDescription * const []) { 668 &vmstate_pmsav8r, 669 NULL 670 } 671 }; 672 673 static bool s_rnr_vmstate_validate(void *opaque, int version_id) 674 { 675 ARMCPU *cpu = opaque; 676 677 return cpu->env.pmsav7.rnr[M_REG_S] < cpu->pmsav7_dregion; 678 } 679 680 static bool sau_rnr_vmstate_validate(void *opaque, int version_id) 681 { 682 ARMCPU *cpu = opaque; 683 684 return cpu->env.sau.rnr < cpu->sau_sregion; 685 } 686 687 static bool m_security_needed(void *opaque) 688 { 689 ARMCPU *cpu = opaque; 690 CPUARMState *env = &cpu->env; 691 692 return arm_feature(env, ARM_FEATURE_M_SECURITY); 693 } 694 695 static const VMStateDescription vmstate_m_security = { 696 .name = "cpu/m-security", 697 .version_id = 1, 698 .minimum_version_id = 1, 699 .needed = m_security_needed, 700 .fields = (const VMStateField[]) { 701 VMSTATE_UINT32(env.v7m.secure, ARMCPU), 702 VMSTATE_UINT32(env.v7m.other_ss_msp, ARMCPU), 703 VMSTATE_UINT32(env.v7m.other_ss_psp, ARMCPU), 704 VMSTATE_UINT32(env.v7m.basepri[M_REG_S], ARMCPU), 705 VMSTATE_UINT32(env.v7m.primask[M_REG_S], ARMCPU), 706 VMSTATE_UINT32(env.v7m.faultmask[M_REG_S], ARMCPU), 707 VMSTATE_UINT32(env.v7m.control[M_REG_S], ARMCPU), 708 VMSTATE_UINT32(env.v7m.vecbase[M_REG_S], ARMCPU), 709 VMSTATE_UINT32(env.pmsav8.mair0[M_REG_S], ARMCPU), 710 VMSTATE_UINT32(env.pmsav8.mair1[M_REG_S], ARMCPU), 711 VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_S], ARMCPU, pmsav7_dregion, 712 0, vmstate_info_uint32, uint32_t), 713 VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_S], ARMCPU, pmsav7_dregion, 714 0, vmstate_info_uint32, uint32_t), 715 VMSTATE_UINT32(env.pmsav7.rnr[M_REG_S], ARMCPU), 716 VMSTATE_VALIDATE("secure MPU_RNR is valid", s_rnr_vmstate_validate), 717 VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_S], ARMCPU), 718 VMSTATE_UINT32(env.v7m.ccr[M_REG_S], ARMCPU), 719 VMSTATE_UINT32(env.v7m.mmfar[M_REG_S], ARMCPU), 720 VMSTATE_UINT32(env.v7m.cfsr[M_REG_S], ARMCPU), 721 VMSTATE_UINT32(env.v7m.sfsr, ARMCPU), 722 VMSTATE_UINT32(env.v7m.sfar, ARMCPU), 723 VMSTATE_VARRAY_UINT32(env.sau.rbar, ARMCPU, sau_sregion, 0, 724 vmstate_info_uint32, uint32_t), 725 VMSTATE_VARRAY_UINT32(env.sau.rlar, ARMCPU, sau_sregion, 0, 726 vmstate_info_uint32, uint32_t), 727 VMSTATE_UINT32(env.sau.rnr, ARMCPU), 728 VMSTATE_VALIDATE("SAU_RNR is valid", sau_rnr_vmstate_validate), 729 VMSTATE_UINT32(env.sau.ctrl, ARMCPU), 730 VMSTATE_UINT32(env.v7m.scr[M_REG_S], ARMCPU), 731 /* AIRCR is not secure-only, but our implementation is R/O if the 732 * security extension is unimplemented, so we migrate it here. 733 */ 734 VMSTATE_UINT32(env.v7m.aircr, ARMCPU), 735 VMSTATE_END_OF_LIST() 736 } 737 }; 738 739 static int get_cpsr(QEMUFile *f, void *opaque, size_t size, 740 const VMStateField *field) 741 { 742 ARMCPU *cpu = opaque; 743 CPUARMState *env = &cpu->env; 744 uint32_t val = qemu_get_be32(f); 745 746 if (arm_feature(env, ARM_FEATURE_M)) { 747 if (val & XPSR_EXCP) { 748 /* This is a CPSR format value from an older QEMU. (We can tell 749 * because values transferred in XPSR format always have zero 750 * for the EXCP field, and CPSR format will always have bit 4 751 * set in CPSR_M.) Rearrange it into XPSR format. The significant 752 * differences are that the T bit is not in the same place, the 753 * primask/faultmask info may be in the CPSR I and F bits, and 754 * we do not want the mode bits. 755 * We know that this cleanup happened before v8M, so there 756 * is no complication with banked primask/faultmask. 757 */ 758 uint32_t newval = val; 759 760 assert(!arm_feature(env, ARM_FEATURE_M_SECURITY)); 761 762 newval &= (CPSR_NZCV | CPSR_Q | CPSR_IT | CPSR_GE); 763 if (val & CPSR_T) { 764 newval |= XPSR_T; 765 } 766 /* If the I or F bits are set then this is a migration from 767 * an old QEMU which still stored the M profile FAULTMASK 768 * and PRIMASK in env->daif. For a new QEMU, the data is 769 * transferred using the vmstate_m_faultmask_primask subsection. 770 */ 771 if (val & CPSR_F) { 772 env->v7m.faultmask[M_REG_NS] = 1; 773 } 774 if (val & CPSR_I) { 775 env->v7m.primask[M_REG_NS] = 1; 776 } 777 val = newval; 778 } 779 /* Ignore the low bits, they are handled by vmstate_m. */ 780 xpsr_write(env, val, ~XPSR_EXCP); 781 return 0; 782 } 783 784 env->aarch64 = ((val & PSTATE_nRW) == 0); 785 786 if (is_a64(env)) { 787 pstate_write(env, val); 788 return 0; 789 } 790 791 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw); 792 return 0; 793 } 794 795 static int put_cpsr(QEMUFile *f, void *opaque, size_t size, 796 const VMStateField *field, JSONWriter *vmdesc) 797 { 798 ARMCPU *cpu = opaque; 799 CPUARMState *env = &cpu->env; 800 uint32_t val; 801 802 if (arm_feature(env, ARM_FEATURE_M)) { 803 /* The low 9 bits are v7m.exception, which is handled by vmstate_m. */ 804 val = xpsr_read(env) & ~XPSR_EXCP; 805 } else if (is_a64(env)) { 806 val = pstate_read(env); 807 } else { 808 val = cpsr_read(env); 809 } 810 811 qemu_put_be32(f, val); 812 return 0; 813 } 814 815 static const VMStateInfo vmstate_cpsr = { 816 .name = "cpsr", 817 .get = get_cpsr, 818 .put = put_cpsr, 819 }; 820 821 static int get_power(QEMUFile *f, void *opaque, size_t size, 822 const VMStateField *field) 823 { 824 ARMCPU *cpu = opaque; 825 bool powered_off = qemu_get_byte(f); 826 cpu->power_state = powered_off ? PSCI_OFF : PSCI_ON; 827 return 0; 828 } 829 830 static int put_power(QEMUFile *f, void *opaque, size_t size, 831 const VMStateField *field, JSONWriter *vmdesc) 832 { 833 ARMCPU *cpu = opaque; 834 835 /* Migration should never happen while we transition power states */ 836 837 if (cpu->power_state == PSCI_ON || 838 cpu->power_state == PSCI_OFF) { 839 bool powered_off = (cpu->power_state == PSCI_OFF) ? true : false; 840 qemu_put_byte(f, powered_off); 841 return 0; 842 } else { 843 return 1; 844 } 845 } 846 847 static const VMStateInfo vmstate_powered_off = { 848 .name = "powered_off", 849 .get = get_power, 850 .put = put_power, 851 }; 852 853 static int cpu_pre_save(void *opaque) 854 { 855 ARMCPU *cpu = opaque; 856 857 if (!kvm_enabled()) { 858 pmu_op_start(&cpu->env); 859 } 860 861 if (kvm_enabled()) { 862 if (!write_kvmstate_to_list(cpu)) { 863 /* This should never fail */ 864 g_assert_not_reached(); 865 } 866 867 /* 868 * kvm_arm_cpu_pre_save() must be called after 869 * write_kvmstate_to_list() 870 */ 871 kvm_arm_cpu_pre_save(cpu); 872 } else { 873 if (!write_cpustate_to_list(cpu, false)) { 874 /* This should never fail. */ 875 g_assert_not_reached(); 876 } 877 } 878 879 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 880 memcpy(cpu->cpreg_vmstate_indexes, cpu->cpreg_indexes, 881 cpu->cpreg_array_len * sizeof(uint64_t)); 882 memcpy(cpu->cpreg_vmstate_values, cpu->cpreg_values, 883 cpu->cpreg_array_len * sizeof(uint64_t)); 884 885 return 0; 886 } 887 888 static int cpu_post_save(void *opaque) 889 { 890 ARMCPU *cpu = opaque; 891 892 if (!kvm_enabled()) { 893 pmu_op_finish(&cpu->env); 894 } 895 896 return 0; 897 } 898 899 static int cpu_pre_load(void *opaque) 900 { 901 ARMCPU *cpu = opaque; 902 CPUARMState *env = &cpu->env; 903 904 /* 905 * In an inbound migration where on the source FPSCR/FPSR/FPCR are 0, 906 * there will be no fpcr_fpsr subsection so we won't call vfp_set_fpcr() 907 * and vfp_set_fpsr() from get_fpcr() and get_fpsr(); also the get_fpscr() 908 * function will not call vfp_set_fpscr() because it will see a 0 in the 909 * inbound data. Ensure that in this case we have a correctly set up 910 * zero FPSCR/FPCR/FPSR. 911 * 912 * This is not strictly needed because FPSCR is zero out of reset, but 913 * it avoids the possibility of future confusing migration bugs if some 914 * future architecture change makes the reset value non-zero. 915 */ 916 vfp_set_fpscr(env, 0); 917 918 /* 919 * Pre-initialize irq_line_state to a value that's never valid as 920 * real data, so cpu_post_load() can tell whether we've seen the 921 * irq-line-state subsection in the incoming migration state. 922 */ 923 env->irq_line_state = UINT32_MAX; 924 925 if (!kvm_enabled()) { 926 pmu_op_start(env); 927 } 928 929 return 0; 930 } 931 932 static int cpu_post_load(void *opaque, int version_id) 933 { 934 ARMCPU *cpu = opaque; 935 CPUARMState *env = &cpu->env; 936 int i, v; 937 938 /* 939 * Handle migration compatibility from old QEMU which didn't 940 * send the irq-line-state subsection. A QEMU without it did not 941 * implement the HCR_EL2.{VI,VF} bits as generating interrupts, 942 * so for TCG the line state matches the bits set in cs->interrupt_request. 943 * For KVM the line state is not stored in cs->interrupt_request 944 * and so this will leave irq_line_state as 0, but this is OK because 945 * we only need to care about it for TCG. 946 */ 947 if (env->irq_line_state == UINT32_MAX) { 948 CPUState *cs = CPU(cpu); 949 950 env->irq_line_state = cs->interrupt_request & 951 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ | 952 CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VFIQ); 953 } 954 955 /* Update the values list from the incoming migration data. 956 * Anything in the incoming data which we don't know about is 957 * a migration failure; anything we know about but the incoming 958 * data doesn't specify retains its current (reset) value. 959 * The indexes list remains untouched -- we only inspect the 960 * incoming migration index list so we can match the values array 961 * entries with the right slots in our own values array. 962 */ 963 964 for (i = 0, v = 0; i < cpu->cpreg_array_len 965 && v < cpu->cpreg_vmstate_array_len; i++) { 966 if (cpu->cpreg_vmstate_indexes[v] > cpu->cpreg_indexes[i]) { 967 /* register in our list but not incoming : skip it */ 968 continue; 969 } 970 if (cpu->cpreg_vmstate_indexes[v] < cpu->cpreg_indexes[i]) { 971 /* register in their list but not ours: fail migration */ 972 return -1; 973 } 974 /* matching register, copy the value over */ 975 cpu->cpreg_values[i] = cpu->cpreg_vmstate_values[v]; 976 v++; 977 } 978 979 if (kvm_enabled()) { 980 if (!write_list_to_kvmstate(cpu, KVM_PUT_FULL_STATE)) { 981 return -1; 982 } 983 /* Note that it's OK for the TCG side not to know about 984 * every register in the list; KVM is authoritative if 985 * we're using it. 986 */ 987 write_list_to_cpustate(cpu); 988 kvm_arm_cpu_post_load(cpu); 989 } else { 990 if (!write_list_to_cpustate(cpu)) { 991 return -1; 992 } 993 } 994 995 /* 996 * Misaligned thumb pc is architecturally impossible. Fail the 997 * incoming migration. For TCG it would trigger the assert in 998 * thumb_tr_translate_insn(). 999 */ 1000 if (!is_a64(env) && env->thumb && (env->regs[15] & 1)) { 1001 return -1; 1002 } 1003 1004 if (tcg_enabled()) { 1005 hw_breakpoint_update_all(cpu); 1006 hw_watchpoint_update_all(cpu); 1007 } 1008 1009 /* 1010 * TCG gen_update_fp_context() relies on the invariant that 1011 * FPDSCR.LTPSIZE is constant 4 for M-profile with the LOB extension; 1012 * forbid bogus incoming data with some other value. 1013 */ 1014 if (arm_feature(env, ARM_FEATURE_M) && cpu_isar_feature(aa32_lob, cpu)) { 1015 if (extract32(env->v7m.fpdscr[M_REG_NS], 1016 FPCR_LTPSIZE_SHIFT, FPCR_LTPSIZE_LENGTH) != 4 || 1017 extract32(env->v7m.fpdscr[M_REG_S], 1018 FPCR_LTPSIZE_SHIFT, FPCR_LTPSIZE_LENGTH) != 4) { 1019 return -1; 1020 } 1021 } 1022 1023 if (!kvm_enabled()) { 1024 pmu_op_finish(env); 1025 } 1026 1027 if (tcg_enabled()) { 1028 arm_rebuild_hflags(env); 1029 } 1030 1031 return 0; 1032 } 1033 1034 const VMStateDescription vmstate_arm_cpu = { 1035 .name = "cpu", 1036 .version_id = 22, 1037 .minimum_version_id = 22, 1038 .pre_save = cpu_pre_save, 1039 .post_save = cpu_post_save, 1040 .pre_load = cpu_pre_load, 1041 .post_load = cpu_post_load, 1042 .fields = (const VMStateField[]) { 1043 VMSTATE_UINT32_ARRAY(env.regs, ARMCPU, 16), 1044 VMSTATE_UINT64_ARRAY(env.xregs, ARMCPU, 32), 1045 VMSTATE_UINT64(env.pc, ARMCPU), 1046 { 1047 .name = "cpsr", 1048 .version_id = 0, 1049 .size = sizeof(uint32_t), 1050 .info = &vmstate_cpsr, 1051 .flags = VMS_SINGLE, 1052 .offset = 0, 1053 }, 1054 VMSTATE_UINT32(env.spsr, ARMCPU), 1055 VMSTATE_UINT64_ARRAY(env.banked_spsr, ARMCPU, 8), 1056 VMSTATE_UINT32_ARRAY(env.banked_r13, ARMCPU, 8), 1057 VMSTATE_UINT32_ARRAY(env.banked_r14, ARMCPU, 8), 1058 VMSTATE_UINT32_ARRAY(env.usr_regs, ARMCPU, 5), 1059 VMSTATE_UINT32_ARRAY(env.fiq_regs, ARMCPU, 5), 1060 VMSTATE_UINT64_ARRAY(env.elr_el, ARMCPU, 4), 1061 VMSTATE_UINT64_ARRAY(env.sp_el, ARMCPU, 4), 1062 /* The length-check must come before the arrays to avoid 1063 * incoming data possibly overflowing the array. 1064 */ 1065 VMSTATE_INT32_POSITIVE_LE(cpreg_vmstate_array_len, ARMCPU), 1066 VMSTATE_VARRAY_INT32(cpreg_vmstate_indexes, ARMCPU, 1067 cpreg_vmstate_array_len, 1068 0, vmstate_info_uint64, uint64_t), 1069 VMSTATE_VARRAY_INT32(cpreg_vmstate_values, ARMCPU, 1070 cpreg_vmstate_array_len, 1071 0, vmstate_info_uint64, uint64_t), 1072 VMSTATE_UINT64(env.exclusive_addr, ARMCPU), 1073 VMSTATE_UINT64(env.exclusive_val, ARMCPU), 1074 VMSTATE_UINT64(env.exclusive_high, ARMCPU), 1075 VMSTATE_UNUSED(sizeof(uint64_t)), 1076 VMSTATE_UINT32(env.exception.syndrome, ARMCPU), 1077 VMSTATE_UINT32(env.exception.fsr, ARMCPU), 1078 VMSTATE_UINT64(env.exception.vaddress, ARMCPU), 1079 VMSTATE_TIMER_PTR(gt_timer[GTIMER_PHYS], ARMCPU), 1080 VMSTATE_TIMER_PTR(gt_timer[GTIMER_VIRT], ARMCPU), 1081 { 1082 .name = "power_state", 1083 .version_id = 0, 1084 .size = sizeof(bool), 1085 .info = &vmstate_powered_off, 1086 .flags = VMS_SINGLE, 1087 .offset = 0, 1088 }, 1089 VMSTATE_END_OF_LIST() 1090 }, 1091 .subsections = (const VMStateDescription * const []) { 1092 &vmstate_vfp, 1093 &vmstate_iwmmxt, 1094 &vmstate_m, 1095 &vmstate_thumb2ee, 1096 /* pmsav7_rnr must come before pmsav7 so that we have the 1097 * region number before we test it in the VMSTATE_VALIDATE 1098 * in vmstate_pmsav7. 1099 */ 1100 &vmstate_pmsav7_rnr, 1101 &vmstate_pmsav7, 1102 &vmstate_pmsav8, 1103 &vmstate_m_security, 1104 #ifdef TARGET_AARCH64 1105 &vmstate_sve, 1106 &vmstate_za, 1107 #endif 1108 &vmstate_serror, 1109 &vmstate_irq_line_state, 1110 &vmstate_wfxt_timer, 1111 NULL 1112 } 1113 }; 1114