xref: /openbmc/qemu/target/arm/machine.c (revision b4be15a9)
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "qemu/error-report.h"
4 #include "sysemu/kvm.h"
5 #include "sysemu/tcg.h"
6 #include "kvm_arm.h"
7 #include "internals.h"
8 #include "cpu-features.h"
9 #include "migration/cpu.h"
10 #include "target/arm/gtimer.h"
11 
12 static bool vfp_needed(void *opaque)
13 {
14     ARMCPU *cpu = opaque;
15 
16     return (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
17             ? cpu_isar_feature(aa64_fp_simd, cpu)
18             : cpu_isar_feature(aa32_vfp_simd, cpu));
19 }
20 
21 static bool vfp_fpcr_fpsr_needed(void *opaque)
22 {
23     /*
24      * If either the FPCR or the FPSR include set bits that are not
25      * visible in the AArch32 FPSCR view of floating point control/status
26      * then we must send the FPCR and FPSR as two separate fields in the
27      * cpu/vfp/fpcr_fpsr subsection, and we will send a 0 for the old
28      * FPSCR field in cpu/vfp.
29      *
30      * If all the set bits are representable in an AArch32 FPSCR then we
31      * send that value as the cpu/vfp FPSCR field, and don't send the
32      * cpu/vfp/fpcr_fpsr subsection.
33      *
34      * On incoming migration, if the cpu/vfp FPSCR field is non-zero we
35      * use it, and if the fpcr_fpsr subsection is present we use that.
36      * (The subsection will never be present with a non-zero FPSCR field,
37      * and if FPSCR is zero and the subsection is not present that means
38      * that FPSCR/FPSR/FPCR are zero.)
39      *
40      * This preserves migration compatibility with older QEMU versions,
41      * in both directions.
42      */
43     ARMCPU *cpu = opaque;
44     CPUARMState *env = &cpu->env;
45 
46     return (vfp_get_fpcr(env) & ~FPSCR_FPCR_MASK) ||
47         (vfp_get_fpsr(env) & ~FPSCR_FPSR_MASK);
48 }
49 
50 static int get_fpscr(QEMUFile *f, void *opaque, size_t size,
51                      const VMStateField *field)
52 {
53     ARMCPU *cpu = opaque;
54     CPUARMState *env = &cpu->env;
55     uint32_t val = qemu_get_be32(f);
56 
57     if (val) {
58         /* 0 means we might have the data in the fpcr_fpsr subsection */
59         vfp_set_fpscr(env, val);
60     }
61     return 0;
62 }
63 
64 static int put_fpscr(QEMUFile *f, void *opaque, size_t size,
65                      const VMStateField *field, JSONWriter *vmdesc)
66 {
67     ARMCPU *cpu = opaque;
68     CPUARMState *env = &cpu->env;
69     uint32_t fpscr = vfp_fpcr_fpsr_needed(opaque) ? 0 : vfp_get_fpscr(env);
70 
71     qemu_put_be32(f, fpscr);
72     return 0;
73 }
74 
75 static const VMStateInfo vmstate_fpscr = {
76     .name = "fpscr",
77     .get = get_fpscr,
78     .put = put_fpscr,
79 };
80 
81 static int get_fpcr(QEMUFile *f, void *opaque, size_t size,
82                      const VMStateField *field)
83 {
84     ARMCPU *cpu = opaque;
85     CPUARMState *env = &cpu->env;
86     uint64_t val = qemu_get_be64(f);
87 
88     vfp_set_fpcr(env, val);
89     return 0;
90 }
91 
92 static int put_fpcr(QEMUFile *f, void *opaque, size_t size,
93                      const VMStateField *field, JSONWriter *vmdesc)
94 {
95     ARMCPU *cpu = opaque;
96     CPUARMState *env = &cpu->env;
97 
98     qemu_put_be64(f, vfp_get_fpcr(env));
99     return 0;
100 }
101 
102 static const VMStateInfo vmstate_fpcr = {
103     .name = "fpcr",
104     .get = get_fpcr,
105     .put = put_fpcr,
106 };
107 
108 static int get_fpsr(QEMUFile *f, void *opaque, size_t size,
109                      const VMStateField *field)
110 {
111     ARMCPU *cpu = opaque;
112     CPUARMState *env = &cpu->env;
113     uint64_t val = qemu_get_be64(f);
114 
115     vfp_set_fpsr(env, val);
116     return 0;
117 }
118 
119 static int put_fpsr(QEMUFile *f, void *opaque, size_t size,
120                      const VMStateField *field, JSONWriter *vmdesc)
121 {
122     ARMCPU *cpu = opaque;
123     CPUARMState *env = &cpu->env;
124 
125     qemu_put_be64(f, vfp_get_fpsr(env));
126     return 0;
127 }
128 
129 static const VMStateInfo vmstate_fpsr = {
130     .name = "fpsr",
131     .get = get_fpsr,
132     .put = put_fpsr,
133 };
134 
135 static const VMStateDescription vmstate_vfp_fpcr_fpsr = {
136     .name = "cpu/vfp/fpcr_fpsr",
137     .version_id = 1,
138     .minimum_version_id = 1,
139     .needed = vfp_fpcr_fpsr_needed,
140     .fields = (const VMStateField[]) {
141         {
142             .name = "fpcr",
143             .version_id = 0,
144             .size = sizeof(uint64_t),
145             .info = &vmstate_fpcr,
146             .flags = VMS_SINGLE,
147             .offset = 0,
148         },
149         {
150             .name = "fpsr",
151             .version_id = 0,
152             .size = sizeof(uint64_t),
153             .info = &vmstate_fpsr,
154             .flags = VMS_SINGLE,
155             .offset = 0,
156         },
157         VMSTATE_END_OF_LIST()
158     },
159 };
160 
161 static const VMStateDescription vmstate_vfp = {
162     .name = "cpu/vfp",
163     .version_id = 3,
164     .minimum_version_id = 3,
165     .needed = vfp_needed,
166     .fields = (const VMStateField[]) {
167         /* For compatibility, store Qn out of Zn here.  */
168         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[0].d, ARMCPU, 0, 2),
169         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[1].d, ARMCPU, 0, 2),
170         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[2].d, ARMCPU, 0, 2),
171         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[3].d, ARMCPU, 0, 2),
172         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[4].d, ARMCPU, 0, 2),
173         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[5].d, ARMCPU, 0, 2),
174         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[6].d, ARMCPU, 0, 2),
175         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[7].d, ARMCPU, 0, 2),
176         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[8].d, ARMCPU, 0, 2),
177         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[9].d, ARMCPU, 0, 2),
178         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[10].d, ARMCPU, 0, 2),
179         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[11].d, ARMCPU, 0, 2),
180         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[12].d, ARMCPU, 0, 2),
181         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[13].d, ARMCPU, 0, 2),
182         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[14].d, ARMCPU, 0, 2),
183         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[15].d, ARMCPU, 0, 2),
184         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[16].d, ARMCPU, 0, 2),
185         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[17].d, ARMCPU, 0, 2),
186         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[18].d, ARMCPU, 0, 2),
187         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[19].d, ARMCPU, 0, 2),
188         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[20].d, ARMCPU, 0, 2),
189         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[21].d, ARMCPU, 0, 2),
190         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[22].d, ARMCPU, 0, 2),
191         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[23].d, ARMCPU, 0, 2),
192         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[24].d, ARMCPU, 0, 2),
193         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[25].d, ARMCPU, 0, 2),
194         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[26].d, ARMCPU, 0, 2),
195         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[27].d, ARMCPU, 0, 2),
196         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[28].d, ARMCPU, 0, 2),
197         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[29].d, ARMCPU, 0, 2),
198         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[30].d, ARMCPU, 0, 2),
199         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[31].d, ARMCPU, 0, 2),
200 
201         /* The xregs array is a little awkward because element 1 (FPSCR)
202          * requires a specific accessor, so we have to split it up in
203          * the vmstate:
204          */
205         VMSTATE_UINT32(env.vfp.xregs[0], ARMCPU),
206         VMSTATE_UINT32_SUB_ARRAY(env.vfp.xregs, ARMCPU, 2, 14),
207         {
208             .name = "fpscr",
209             .version_id = 0,
210             .size = sizeof(uint32_t),
211             .info = &vmstate_fpscr,
212             .flags = VMS_SINGLE,
213             .offset = 0,
214         },
215         VMSTATE_END_OF_LIST()
216     },
217     .subsections = (const VMStateDescription * const []) {
218         &vmstate_vfp_fpcr_fpsr,
219         NULL
220     }
221 };
222 
223 static bool iwmmxt_needed(void *opaque)
224 {
225     ARMCPU *cpu = opaque;
226     CPUARMState *env = &cpu->env;
227 
228     return arm_feature(env, ARM_FEATURE_IWMMXT);
229 }
230 
231 static const VMStateDescription vmstate_iwmmxt = {
232     .name = "cpu/iwmmxt",
233     .version_id = 1,
234     .minimum_version_id = 1,
235     .needed = iwmmxt_needed,
236     .fields = (const VMStateField[]) {
237         VMSTATE_UINT64_ARRAY(env.iwmmxt.regs, ARMCPU, 16),
238         VMSTATE_UINT32_ARRAY(env.iwmmxt.cregs, ARMCPU, 16),
239         VMSTATE_END_OF_LIST()
240     }
241 };
242 
243 #ifdef TARGET_AARCH64
244 /* The expression ARM_MAX_VQ - 2 is 0 for pure AArch32 build,
245  * and ARMPredicateReg is actively empty.  This triggers errors
246  * in the expansion of the VMSTATE macros.
247  */
248 
249 static bool sve_needed(void *opaque)
250 {
251     ARMCPU *cpu = opaque;
252 
253     return cpu_isar_feature(aa64_sve, cpu);
254 }
255 
256 /* The first two words of each Zreg is stored in VFP state.  */
257 static const VMStateDescription vmstate_zreg_hi_reg = {
258     .name = "cpu/sve/zreg_hi",
259     .version_id = 1,
260     .minimum_version_id = 1,
261     .fields = (const VMStateField[]) {
262         VMSTATE_UINT64_SUB_ARRAY(d, ARMVectorReg, 2, ARM_MAX_VQ - 2),
263         VMSTATE_END_OF_LIST()
264     }
265 };
266 
267 static const VMStateDescription vmstate_preg_reg = {
268     .name = "cpu/sve/preg",
269     .version_id = 1,
270     .minimum_version_id = 1,
271     .fields = (const VMStateField[]) {
272         VMSTATE_UINT64_ARRAY(p, ARMPredicateReg, 2 * ARM_MAX_VQ / 8),
273         VMSTATE_END_OF_LIST()
274     }
275 };
276 
277 static const VMStateDescription vmstate_sve = {
278     .name = "cpu/sve",
279     .version_id = 1,
280     .minimum_version_id = 1,
281     .needed = sve_needed,
282     .fields = (const VMStateField[]) {
283         VMSTATE_STRUCT_ARRAY(env.vfp.zregs, ARMCPU, 32, 0,
284                              vmstate_zreg_hi_reg, ARMVectorReg),
285         VMSTATE_STRUCT_ARRAY(env.vfp.pregs, ARMCPU, 17, 0,
286                              vmstate_preg_reg, ARMPredicateReg),
287         VMSTATE_END_OF_LIST()
288     }
289 };
290 
291 static const VMStateDescription vmstate_vreg = {
292     .name = "vreg",
293     .version_id = 1,
294     .minimum_version_id = 1,
295     .fields = (const VMStateField[]) {
296         VMSTATE_UINT64_ARRAY(d, ARMVectorReg, ARM_MAX_VQ * 2),
297         VMSTATE_END_OF_LIST()
298     }
299 };
300 
301 static bool za_needed(void *opaque)
302 {
303     ARMCPU *cpu = opaque;
304 
305     /*
306      * When ZA storage is disabled, its contents are discarded.
307      * It will be zeroed when ZA storage is re-enabled.
308      */
309     return FIELD_EX64(cpu->env.svcr, SVCR, ZA);
310 }
311 
312 static const VMStateDescription vmstate_za = {
313     .name = "cpu/sme",
314     .version_id = 1,
315     .minimum_version_id = 1,
316     .needed = za_needed,
317     .fields = (const VMStateField[]) {
318         VMSTATE_STRUCT_ARRAY(env.zarray, ARMCPU, ARM_MAX_VQ * 16, 0,
319                              vmstate_vreg, ARMVectorReg),
320         VMSTATE_END_OF_LIST()
321     }
322 };
323 #endif /* AARCH64 */
324 
325 static bool serror_needed(void *opaque)
326 {
327     ARMCPU *cpu = opaque;
328     CPUARMState *env = &cpu->env;
329 
330     return env->serror.pending != 0;
331 }
332 
333 static const VMStateDescription vmstate_serror = {
334     .name = "cpu/serror",
335     .version_id = 1,
336     .minimum_version_id = 1,
337     .needed = serror_needed,
338     .fields = (const VMStateField[]) {
339         VMSTATE_UINT8(env.serror.pending, ARMCPU),
340         VMSTATE_UINT8(env.serror.has_esr, ARMCPU),
341         VMSTATE_UINT64(env.serror.esr, ARMCPU),
342         VMSTATE_END_OF_LIST()
343     }
344 };
345 
346 static bool irq_line_state_needed(void *opaque)
347 {
348     return true;
349 }
350 
351 static const VMStateDescription vmstate_irq_line_state = {
352     .name = "cpu/irq-line-state",
353     .version_id = 1,
354     .minimum_version_id = 1,
355     .needed = irq_line_state_needed,
356     .fields = (const VMStateField[]) {
357         VMSTATE_UINT32(env.irq_line_state, ARMCPU),
358         VMSTATE_END_OF_LIST()
359     }
360 };
361 
362 static bool wfxt_timer_needed(void *opaque)
363 {
364     ARMCPU *cpu = opaque;
365 
366     /* We'll only have the timer object if FEAT_WFxT is implemented */
367     return cpu->wfxt_timer;
368 }
369 
370 static const VMStateDescription vmstate_wfxt_timer = {
371     .name = "cpu/wfxt-timer",
372     .version_id = 1,
373     .minimum_version_id = 1,
374     .needed = wfxt_timer_needed,
375     .fields = (const VMStateField[]) {
376         VMSTATE_TIMER_PTR(wfxt_timer, ARMCPU),
377         VMSTATE_END_OF_LIST()
378     }
379 };
380 
381 static bool m_needed(void *opaque)
382 {
383     ARMCPU *cpu = opaque;
384     CPUARMState *env = &cpu->env;
385 
386     return arm_feature(env, ARM_FEATURE_M);
387 }
388 
389 static const VMStateDescription vmstate_m_faultmask_primask = {
390     .name = "cpu/m/faultmask-primask",
391     .version_id = 1,
392     .minimum_version_id = 1,
393     .needed = m_needed,
394     .fields = (const VMStateField[]) {
395         VMSTATE_UINT32(env.v7m.faultmask[M_REG_NS], ARMCPU),
396         VMSTATE_UINT32(env.v7m.primask[M_REG_NS], ARMCPU),
397         VMSTATE_END_OF_LIST()
398     }
399 };
400 
401 /* CSSELR is in a subsection because we didn't implement it previously.
402  * Migration from an old implementation will leave it at zero, which
403  * is OK since the only CPUs in the old implementation make the
404  * register RAZ/WI.
405  * Since there was no version of QEMU which implemented the CSSELR for
406  * just non-secure, we transfer both banks here rather than putting
407  * the secure banked version in the m-security subsection.
408  */
409 static bool csselr_vmstate_validate(void *opaque, int version_id)
410 {
411     ARMCPU *cpu = opaque;
412 
413     return cpu->env.v7m.csselr[M_REG_NS] <= R_V7M_CSSELR_INDEX_MASK
414         && cpu->env.v7m.csselr[M_REG_S] <= R_V7M_CSSELR_INDEX_MASK;
415 }
416 
417 static bool m_csselr_needed(void *opaque)
418 {
419     ARMCPU *cpu = opaque;
420 
421     return !arm_v7m_csselr_razwi(cpu);
422 }
423 
424 static const VMStateDescription vmstate_m_csselr = {
425     .name = "cpu/m/csselr",
426     .version_id = 1,
427     .minimum_version_id = 1,
428     .needed = m_csselr_needed,
429     .fields = (const VMStateField[]) {
430         VMSTATE_UINT32_ARRAY(env.v7m.csselr, ARMCPU, M_REG_NUM_BANKS),
431         VMSTATE_VALIDATE("CSSELR is valid", csselr_vmstate_validate),
432         VMSTATE_END_OF_LIST()
433     }
434 };
435 
436 static const VMStateDescription vmstate_m_scr = {
437     .name = "cpu/m/scr",
438     .version_id = 1,
439     .minimum_version_id = 1,
440     .needed = m_needed,
441     .fields = (const VMStateField[]) {
442         VMSTATE_UINT32(env.v7m.scr[M_REG_NS], ARMCPU),
443         VMSTATE_END_OF_LIST()
444     }
445 };
446 
447 static const VMStateDescription vmstate_m_other_sp = {
448     .name = "cpu/m/other-sp",
449     .version_id = 1,
450     .minimum_version_id = 1,
451     .needed = m_needed,
452     .fields = (const VMStateField[]) {
453         VMSTATE_UINT32(env.v7m.other_sp, ARMCPU),
454         VMSTATE_END_OF_LIST()
455     }
456 };
457 
458 static bool m_v8m_needed(void *opaque)
459 {
460     ARMCPU *cpu = opaque;
461     CPUARMState *env = &cpu->env;
462 
463     return arm_feature(env, ARM_FEATURE_M) && arm_feature(env, ARM_FEATURE_V8);
464 }
465 
466 static const VMStateDescription vmstate_m_v8m = {
467     .name = "cpu/m/v8m",
468     .version_id = 1,
469     .minimum_version_id = 1,
470     .needed = m_v8m_needed,
471     .fields = (const VMStateField[]) {
472         VMSTATE_UINT32_ARRAY(env.v7m.msplim, ARMCPU, M_REG_NUM_BANKS),
473         VMSTATE_UINT32_ARRAY(env.v7m.psplim, ARMCPU, M_REG_NUM_BANKS),
474         VMSTATE_END_OF_LIST()
475     }
476 };
477 
478 static const VMStateDescription vmstate_m_fp = {
479     .name = "cpu/m/fp",
480     .version_id = 1,
481     .minimum_version_id = 1,
482     .needed = vfp_needed,
483     .fields = (const VMStateField[]) {
484         VMSTATE_UINT32_ARRAY(env.v7m.fpcar, ARMCPU, M_REG_NUM_BANKS),
485         VMSTATE_UINT32_ARRAY(env.v7m.fpccr, ARMCPU, M_REG_NUM_BANKS),
486         VMSTATE_UINT32_ARRAY(env.v7m.fpdscr, ARMCPU, M_REG_NUM_BANKS),
487         VMSTATE_UINT32_ARRAY(env.v7m.cpacr, ARMCPU, M_REG_NUM_BANKS),
488         VMSTATE_UINT32(env.v7m.nsacr, ARMCPU),
489         VMSTATE_END_OF_LIST()
490     }
491 };
492 
493 static bool mve_needed(void *opaque)
494 {
495     ARMCPU *cpu = opaque;
496 
497     return cpu_isar_feature(aa32_mve, cpu);
498 }
499 
500 static const VMStateDescription vmstate_m_mve = {
501     .name = "cpu/m/mve",
502     .version_id = 1,
503     .minimum_version_id = 1,
504     .needed = mve_needed,
505     .fields = (const VMStateField[]) {
506         VMSTATE_UINT32(env.v7m.vpr, ARMCPU),
507         VMSTATE_UINT32(env.v7m.ltpsize, ARMCPU),
508         VMSTATE_END_OF_LIST()
509     },
510 };
511 
512 static const VMStateDescription vmstate_m = {
513     .name = "cpu/m",
514     .version_id = 4,
515     .minimum_version_id = 4,
516     .needed = m_needed,
517     .fields = (const VMStateField[]) {
518         VMSTATE_UINT32(env.v7m.vecbase[M_REG_NS], ARMCPU),
519         VMSTATE_UINT32(env.v7m.basepri[M_REG_NS], ARMCPU),
520         VMSTATE_UINT32(env.v7m.control[M_REG_NS], ARMCPU),
521         VMSTATE_UINT32(env.v7m.ccr[M_REG_NS], ARMCPU),
522         VMSTATE_UINT32(env.v7m.cfsr[M_REG_NS], ARMCPU),
523         VMSTATE_UINT32(env.v7m.hfsr, ARMCPU),
524         VMSTATE_UINT32(env.v7m.dfsr, ARMCPU),
525         VMSTATE_UINT32(env.v7m.mmfar[M_REG_NS], ARMCPU),
526         VMSTATE_UINT32(env.v7m.bfar, ARMCPU),
527         VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_NS], ARMCPU),
528         VMSTATE_INT32(env.v7m.exception, ARMCPU),
529         VMSTATE_END_OF_LIST()
530     },
531     .subsections = (const VMStateDescription * const []) {
532         &vmstate_m_faultmask_primask,
533         &vmstate_m_csselr,
534         &vmstate_m_scr,
535         &vmstate_m_other_sp,
536         &vmstate_m_v8m,
537         &vmstate_m_fp,
538         &vmstate_m_mve,
539         NULL
540     }
541 };
542 
543 static bool thumb2ee_needed(void *opaque)
544 {
545     ARMCPU *cpu = opaque;
546     CPUARMState *env = &cpu->env;
547 
548     return arm_feature(env, ARM_FEATURE_THUMB2EE);
549 }
550 
551 static const VMStateDescription vmstate_thumb2ee = {
552     .name = "cpu/thumb2ee",
553     .version_id = 1,
554     .minimum_version_id = 1,
555     .needed = thumb2ee_needed,
556     .fields = (const VMStateField[]) {
557         VMSTATE_UINT32(env.teecr, ARMCPU),
558         VMSTATE_UINT32(env.teehbr, ARMCPU),
559         VMSTATE_END_OF_LIST()
560     }
561 };
562 
563 static bool pmsav7_needed(void *opaque)
564 {
565     ARMCPU *cpu = opaque;
566     CPUARMState *env = &cpu->env;
567 
568     return arm_feature(env, ARM_FEATURE_PMSA) &&
569            arm_feature(env, ARM_FEATURE_V7) &&
570            !arm_feature(env, ARM_FEATURE_V8);
571 }
572 
573 static bool pmsav7_rgnr_vmstate_validate(void *opaque, int version_id)
574 {
575     ARMCPU *cpu = opaque;
576 
577     return cpu->env.pmsav7.rnr[M_REG_NS] < cpu->pmsav7_dregion;
578 }
579 
580 static const VMStateDescription vmstate_pmsav7 = {
581     .name = "cpu/pmsav7",
582     .version_id = 1,
583     .minimum_version_id = 1,
584     .needed = pmsav7_needed,
585     .fields = (const VMStateField[]) {
586         VMSTATE_VARRAY_UINT32(env.pmsav7.drbar, ARMCPU, pmsav7_dregion, 0,
587                               vmstate_info_uint32, uint32_t),
588         VMSTATE_VARRAY_UINT32(env.pmsav7.drsr, ARMCPU, pmsav7_dregion, 0,
589                               vmstate_info_uint32, uint32_t),
590         VMSTATE_VARRAY_UINT32(env.pmsav7.dracr, ARMCPU, pmsav7_dregion, 0,
591                               vmstate_info_uint32, uint32_t),
592         VMSTATE_VALIDATE("rgnr is valid", pmsav7_rgnr_vmstate_validate),
593         VMSTATE_END_OF_LIST()
594     }
595 };
596 
597 static bool pmsav7_rnr_needed(void *opaque)
598 {
599     ARMCPU *cpu = opaque;
600     CPUARMState *env = &cpu->env;
601 
602     /* For R profile cores pmsav7.rnr is migrated via the cpreg
603      * "RGNR" definition in helper.h. For M profile we have to
604      * migrate it separately.
605      */
606     return arm_feature(env, ARM_FEATURE_M);
607 }
608 
609 static const VMStateDescription vmstate_pmsav7_rnr = {
610     .name = "cpu/pmsav7-rnr",
611     .version_id = 1,
612     .minimum_version_id = 1,
613     .needed = pmsav7_rnr_needed,
614     .fields = (const VMStateField[]) {
615         VMSTATE_UINT32(env.pmsav7.rnr[M_REG_NS], ARMCPU),
616         VMSTATE_END_OF_LIST()
617     }
618 };
619 
620 static bool pmsav8_needed(void *opaque)
621 {
622     ARMCPU *cpu = opaque;
623     CPUARMState *env = &cpu->env;
624 
625     return arm_feature(env, ARM_FEATURE_PMSA) &&
626         arm_feature(env, ARM_FEATURE_V8);
627 }
628 
629 static bool pmsav8r_needed(void *opaque)
630 {
631     ARMCPU *cpu = opaque;
632     CPUARMState *env = &cpu->env;
633 
634     return arm_feature(env, ARM_FEATURE_PMSA) &&
635         arm_feature(env, ARM_FEATURE_V8) &&
636         !arm_feature(env, ARM_FEATURE_M);
637 }
638 
639 static const VMStateDescription vmstate_pmsav8r = {
640     .name = "cpu/pmsav8/pmsav8r",
641     .version_id = 1,
642     .minimum_version_id = 1,
643     .needed = pmsav8r_needed,
644     .fields = (const VMStateField[]) {
645         VMSTATE_VARRAY_UINT32(env.pmsav8.hprbar, ARMCPU,
646                         pmsav8r_hdregion, 0, vmstate_info_uint32, uint32_t),
647         VMSTATE_VARRAY_UINT32(env.pmsav8.hprlar, ARMCPU,
648                         pmsav8r_hdregion, 0, vmstate_info_uint32, uint32_t),
649         VMSTATE_END_OF_LIST()
650     },
651 };
652 
653 static const VMStateDescription vmstate_pmsav8 = {
654     .name = "cpu/pmsav8",
655     .version_id = 1,
656     .minimum_version_id = 1,
657     .needed = pmsav8_needed,
658     .fields = (const VMStateField[]) {
659         VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_NS], ARMCPU, pmsav7_dregion,
660                               0, vmstate_info_uint32, uint32_t),
661         VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_NS], ARMCPU, pmsav7_dregion,
662                               0, vmstate_info_uint32, uint32_t),
663         VMSTATE_UINT32(env.pmsav8.mair0[M_REG_NS], ARMCPU),
664         VMSTATE_UINT32(env.pmsav8.mair1[M_REG_NS], ARMCPU),
665         VMSTATE_END_OF_LIST()
666     },
667     .subsections = (const VMStateDescription * const []) {
668         &vmstate_pmsav8r,
669         NULL
670     }
671 };
672 
673 static bool s_rnr_vmstate_validate(void *opaque, int version_id)
674 {
675     ARMCPU *cpu = opaque;
676 
677     return cpu->env.pmsav7.rnr[M_REG_S] < cpu->pmsav7_dregion;
678 }
679 
680 static bool sau_rnr_vmstate_validate(void *opaque, int version_id)
681 {
682     ARMCPU *cpu = opaque;
683 
684     return cpu->env.sau.rnr < cpu->sau_sregion;
685 }
686 
687 static bool m_security_needed(void *opaque)
688 {
689     ARMCPU *cpu = opaque;
690     CPUARMState *env = &cpu->env;
691 
692     return arm_feature(env, ARM_FEATURE_M_SECURITY);
693 }
694 
695 static const VMStateDescription vmstate_m_security = {
696     .name = "cpu/m-security",
697     .version_id = 1,
698     .minimum_version_id = 1,
699     .needed = m_security_needed,
700     .fields = (const VMStateField[]) {
701         VMSTATE_UINT32(env.v7m.secure, ARMCPU),
702         VMSTATE_UINT32(env.v7m.other_ss_msp, ARMCPU),
703         VMSTATE_UINT32(env.v7m.other_ss_psp, ARMCPU),
704         VMSTATE_UINT32(env.v7m.basepri[M_REG_S], ARMCPU),
705         VMSTATE_UINT32(env.v7m.primask[M_REG_S], ARMCPU),
706         VMSTATE_UINT32(env.v7m.faultmask[M_REG_S], ARMCPU),
707         VMSTATE_UINT32(env.v7m.control[M_REG_S], ARMCPU),
708         VMSTATE_UINT32(env.v7m.vecbase[M_REG_S], ARMCPU),
709         VMSTATE_UINT32(env.pmsav8.mair0[M_REG_S], ARMCPU),
710         VMSTATE_UINT32(env.pmsav8.mair1[M_REG_S], ARMCPU),
711         VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_S], ARMCPU, pmsav7_dregion,
712                               0, vmstate_info_uint32, uint32_t),
713         VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_S], ARMCPU, pmsav7_dregion,
714                               0, vmstate_info_uint32, uint32_t),
715         VMSTATE_UINT32(env.pmsav7.rnr[M_REG_S], ARMCPU),
716         VMSTATE_VALIDATE("secure MPU_RNR is valid", s_rnr_vmstate_validate),
717         VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_S], ARMCPU),
718         VMSTATE_UINT32(env.v7m.ccr[M_REG_S], ARMCPU),
719         VMSTATE_UINT32(env.v7m.mmfar[M_REG_S], ARMCPU),
720         VMSTATE_UINT32(env.v7m.cfsr[M_REG_S], ARMCPU),
721         VMSTATE_UINT32(env.v7m.sfsr, ARMCPU),
722         VMSTATE_UINT32(env.v7m.sfar, ARMCPU),
723         VMSTATE_VARRAY_UINT32(env.sau.rbar, ARMCPU, sau_sregion, 0,
724                               vmstate_info_uint32, uint32_t),
725         VMSTATE_VARRAY_UINT32(env.sau.rlar, ARMCPU, sau_sregion, 0,
726                               vmstate_info_uint32, uint32_t),
727         VMSTATE_UINT32(env.sau.rnr, ARMCPU),
728         VMSTATE_VALIDATE("SAU_RNR is valid", sau_rnr_vmstate_validate),
729         VMSTATE_UINT32(env.sau.ctrl, ARMCPU),
730         VMSTATE_UINT32(env.v7m.scr[M_REG_S], ARMCPU),
731         /* AIRCR is not secure-only, but our implementation is R/O if the
732          * security extension is unimplemented, so we migrate it here.
733          */
734         VMSTATE_UINT32(env.v7m.aircr, ARMCPU),
735         VMSTATE_END_OF_LIST()
736     }
737 };
738 
739 static int get_cpsr(QEMUFile *f, void *opaque, size_t size,
740                     const VMStateField *field)
741 {
742     ARMCPU *cpu = opaque;
743     CPUARMState *env = &cpu->env;
744     uint32_t val = qemu_get_be32(f);
745 
746     if (arm_feature(env, ARM_FEATURE_M)) {
747         if (val & XPSR_EXCP) {
748             /* This is a CPSR format value from an older QEMU. (We can tell
749              * because values transferred in XPSR format always have zero
750              * for the EXCP field, and CPSR format will always have bit 4
751              * set in CPSR_M.) Rearrange it into XPSR format. The significant
752              * differences are that the T bit is not in the same place, the
753              * primask/faultmask info may be in the CPSR I and F bits, and
754              * we do not want the mode bits.
755              * We know that this cleanup happened before v8M, so there
756              * is no complication with banked primask/faultmask.
757              */
758             uint32_t newval = val;
759 
760             assert(!arm_feature(env, ARM_FEATURE_M_SECURITY));
761 
762             newval &= (CPSR_NZCV | CPSR_Q | CPSR_IT | CPSR_GE);
763             if (val & CPSR_T) {
764                 newval |= XPSR_T;
765             }
766             /* If the I or F bits are set then this is a migration from
767              * an old QEMU which still stored the M profile FAULTMASK
768              * and PRIMASK in env->daif. For a new QEMU, the data is
769              * transferred using the vmstate_m_faultmask_primask subsection.
770              */
771             if (val & CPSR_F) {
772                 env->v7m.faultmask[M_REG_NS] = 1;
773             }
774             if (val & CPSR_I) {
775                 env->v7m.primask[M_REG_NS] = 1;
776             }
777             val = newval;
778         }
779         /* Ignore the low bits, they are handled by vmstate_m. */
780         xpsr_write(env, val, ~XPSR_EXCP);
781         return 0;
782     }
783 
784     env->aarch64 = ((val & PSTATE_nRW) == 0);
785 
786     if (is_a64(env)) {
787         pstate_write(env, val);
788         return 0;
789     }
790 
791     cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
792     return 0;
793 }
794 
795 static int put_cpsr(QEMUFile *f, void *opaque, size_t size,
796                     const VMStateField *field, JSONWriter *vmdesc)
797 {
798     ARMCPU *cpu = opaque;
799     CPUARMState *env = &cpu->env;
800     uint32_t val;
801 
802     if (arm_feature(env, ARM_FEATURE_M)) {
803         /* The low 9 bits are v7m.exception, which is handled by vmstate_m. */
804         val = xpsr_read(env) & ~XPSR_EXCP;
805     } else if (is_a64(env)) {
806         val = pstate_read(env);
807     } else {
808         val = cpsr_read(env);
809     }
810 
811     qemu_put_be32(f, val);
812     return 0;
813 }
814 
815 static const VMStateInfo vmstate_cpsr = {
816     .name = "cpsr",
817     .get = get_cpsr,
818     .put = put_cpsr,
819 };
820 
821 static int get_power(QEMUFile *f, void *opaque, size_t size,
822                     const VMStateField *field)
823 {
824     ARMCPU *cpu = opaque;
825     bool powered_off = qemu_get_byte(f);
826     cpu->power_state = powered_off ? PSCI_OFF : PSCI_ON;
827     return 0;
828 }
829 
830 static int put_power(QEMUFile *f, void *opaque, size_t size,
831                     const VMStateField *field, JSONWriter *vmdesc)
832 {
833     ARMCPU *cpu = opaque;
834 
835     /* Migration should never happen while we transition power states */
836 
837     if (cpu->power_state == PSCI_ON ||
838         cpu->power_state == PSCI_OFF) {
839         bool powered_off = (cpu->power_state == PSCI_OFF) ? true : false;
840         qemu_put_byte(f, powered_off);
841         return 0;
842     } else {
843         return 1;
844     }
845 }
846 
847 static const VMStateInfo vmstate_powered_off = {
848     .name = "powered_off",
849     .get = get_power,
850     .put = put_power,
851 };
852 
853 static int cpu_pre_save(void *opaque)
854 {
855     ARMCPU *cpu = opaque;
856 
857     if (!kvm_enabled()) {
858         pmu_op_start(&cpu->env);
859     }
860 
861     if (kvm_enabled()) {
862         if (!write_kvmstate_to_list(cpu)) {
863             /* This should never fail */
864             g_assert_not_reached();
865         }
866 
867         /*
868          * kvm_arm_cpu_pre_save() must be called after
869          * write_kvmstate_to_list()
870          */
871         kvm_arm_cpu_pre_save(cpu);
872     } else {
873         if (!write_cpustate_to_list(cpu, false)) {
874             /* This should never fail. */
875             g_assert_not_reached();
876         }
877     }
878 
879     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
880     memcpy(cpu->cpreg_vmstate_indexes, cpu->cpreg_indexes,
881            cpu->cpreg_array_len * sizeof(uint64_t));
882     memcpy(cpu->cpreg_vmstate_values, cpu->cpreg_values,
883            cpu->cpreg_array_len * sizeof(uint64_t));
884 
885     return 0;
886 }
887 
888 static int cpu_post_save(void *opaque)
889 {
890     ARMCPU *cpu = opaque;
891 
892     if (!kvm_enabled()) {
893         pmu_op_finish(&cpu->env);
894     }
895 
896     return 0;
897 }
898 
899 static int cpu_pre_load(void *opaque)
900 {
901     ARMCPU *cpu = opaque;
902     CPUARMState *env = &cpu->env;
903 
904     /*
905      * In an inbound migration where on the source FPSCR/FPSR/FPCR are 0,
906      * there will be no fpcr_fpsr subsection so we won't call vfp_set_fpcr()
907      * and vfp_set_fpsr() from get_fpcr() and get_fpsr(); also the get_fpscr()
908      * function will not call vfp_set_fpscr() because it will see a 0 in the
909      * inbound data. Ensure that in this case we have a correctly set up
910      * zero FPSCR/FPCR/FPSR.
911      *
912      * This is not strictly needed because FPSCR is zero out of reset, but
913      * it avoids the possibility of future confusing migration bugs if some
914      * future architecture change makes the reset value non-zero.
915      */
916     vfp_set_fpscr(env, 0);
917 
918     /*
919      * Pre-initialize irq_line_state to a value that's never valid as
920      * real data, so cpu_post_load() can tell whether we've seen the
921      * irq-line-state subsection in the incoming migration state.
922      */
923     env->irq_line_state = UINT32_MAX;
924 
925     if (!kvm_enabled()) {
926         pmu_op_start(env);
927     }
928 
929     return 0;
930 }
931 
932 static int cpu_post_load(void *opaque, int version_id)
933 {
934     ARMCPU *cpu = opaque;
935     CPUARMState *env = &cpu->env;
936     int i, v;
937 
938     /*
939      * Handle migration compatibility from old QEMU which didn't
940      * send the irq-line-state subsection. A QEMU without it did not
941      * implement the HCR_EL2.{VI,VF} bits as generating interrupts,
942      * so for TCG the line state matches the bits set in cs->interrupt_request.
943      * For KVM the line state is not stored in cs->interrupt_request
944      * and so this will leave irq_line_state as 0, but this is OK because
945      * we only need to care about it for TCG.
946      */
947     if (env->irq_line_state == UINT32_MAX) {
948         CPUState *cs = CPU(cpu);
949 
950         env->irq_line_state = cs->interrupt_request &
951             (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ |
952              CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VFIQ);
953     }
954 
955     /* Update the values list from the incoming migration data.
956      * Anything in the incoming data which we don't know about is
957      * a migration failure; anything we know about but the incoming
958      * data doesn't specify retains its current (reset) value.
959      * The indexes list remains untouched -- we only inspect the
960      * incoming migration index list so we can match the values array
961      * entries with the right slots in our own values array.
962      */
963 
964     for (i = 0, v = 0; i < cpu->cpreg_array_len
965              && v < cpu->cpreg_vmstate_array_len; i++) {
966         if (cpu->cpreg_vmstate_indexes[v] > cpu->cpreg_indexes[i]) {
967             /* register in our list but not incoming : skip it */
968             continue;
969         }
970         if (cpu->cpreg_vmstate_indexes[v] < cpu->cpreg_indexes[i]) {
971             /* register in their list but not ours: fail migration */
972             return -1;
973         }
974         /* matching register, copy the value over */
975         cpu->cpreg_values[i] = cpu->cpreg_vmstate_values[v];
976         v++;
977     }
978 
979     if (kvm_enabled()) {
980         if (!write_list_to_kvmstate(cpu, KVM_PUT_FULL_STATE)) {
981             return -1;
982         }
983         /* Note that it's OK for the TCG side not to know about
984          * every register in the list; KVM is authoritative if
985          * we're using it.
986          */
987         write_list_to_cpustate(cpu);
988         kvm_arm_cpu_post_load(cpu);
989     } else {
990         if (!write_list_to_cpustate(cpu)) {
991             return -1;
992         }
993     }
994 
995     /*
996      * Misaligned thumb pc is architecturally impossible. Fail the
997      * incoming migration. For TCG it would trigger the assert in
998      * thumb_tr_translate_insn().
999      */
1000     if (!is_a64(env) && env->thumb && (env->regs[15] & 1)) {
1001         return -1;
1002     }
1003 
1004     if (tcg_enabled()) {
1005         hw_breakpoint_update_all(cpu);
1006         hw_watchpoint_update_all(cpu);
1007     }
1008 
1009     /*
1010      * TCG gen_update_fp_context() relies on the invariant that
1011      * FPDSCR.LTPSIZE is constant 4 for M-profile with the LOB extension;
1012      * forbid bogus incoming data with some other value.
1013      */
1014     if (arm_feature(env, ARM_FEATURE_M) && cpu_isar_feature(aa32_lob, cpu)) {
1015         if (extract32(env->v7m.fpdscr[M_REG_NS],
1016                       FPCR_LTPSIZE_SHIFT, FPCR_LTPSIZE_LENGTH) != 4 ||
1017             extract32(env->v7m.fpdscr[M_REG_S],
1018                       FPCR_LTPSIZE_SHIFT, FPCR_LTPSIZE_LENGTH) != 4) {
1019             return -1;
1020         }
1021     }
1022 
1023     if (!kvm_enabled()) {
1024         pmu_op_finish(env);
1025     }
1026 
1027     if (tcg_enabled()) {
1028         arm_rebuild_hflags(env);
1029     }
1030 
1031     return 0;
1032 }
1033 
1034 const VMStateDescription vmstate_arm_cpu = {
1035     .name = "cpu",
1036     .version_id = 22,
1037     .minimum_version_id = 22,
1038     .pre_save = cpu_pre_save,
1039     .post_save = cpu_post_save,
1040     .pre_load = cpu_pre_load,
1041     .post_load = cpu_post_load,
1042     .fields = (const VMStateField[]) {
1043         VMSTATE_UINT32_ARRAY(env.regs, ARMCPU, 16),
1044         VMSTATE_UINT64_ARRAY(env.xregs, ARMCPU, 32),
1045         VMSTATE_UINT64(env.pc, ARMCPU),
1046         {
1047             .name = "cpsr",
1048             .version_id = 0,
1049             .size = sizeof(uint32_t),
1050             .info = &vmstate_cpsr,
1051             .flags = VMS_SINGLE,
1052             .offset = 0,
1053         },
1054         VMSTATE_UINT32(env.spsr, ARMCPU),
1055         VMSTATE_UINT64_ARRAY(env.banked_spsr, ARMCPU, 8),
1056         VMSTATE_UINT32_ARRAY(env.banked_r13, ARMCPU, 8),
1057         VMSTATE_UINT32_ARRAY(env.banked_r14, ARMCPU, 8),
1058         VMSTATE_UINT32_ARRAY(env.usr_regs, ARMCPU, 5),
1059         VMSTATE_UINT32_ARRAY(env.fiq_regs, ARMCPU, 5),
1060         VMSTATE_UINT64_ARRAY(env.elr_el, ARMCPU, 4),
1061         VMSTATE_UINT64_ARRAY(env.sp_el, ARMCPU, 4),
1062         /* The length-check must come before the arrays to avoid
1063          * incoming data possibly overflowing the array.
1064          */
1065         VMSTATE_INT32_POSITIVE_LE(cpreg_vmstate_array_len, ARMCPU),
1066         VMSTATE_VARRAY_INT32(cpreg_vmstate_indexes, ARMCPU,
1067                              cpreg_vmstate_array_len,
1068                              0, vmstate_info_uint64, uint64_t),
1069         VMSTATE_VARRAY_INT32(cpreg_vmstate_values, ARMCPU,
1070                              cpreg_vmstate_array_len,
1071                              0, vmstate_info_uint64, uint64_t),
1072         VMSTATE_UINT64(env.exclusive_addr, ARMCPU),
1073         VMSTATE_UINT64(env.exclusive_val, ARMCPU),
1074         VMSTATE_UINT64(env.exclusive_high, ARMCPU),
1075         VMSTATE_UNUSED(sizeof(uint64_t)),
1076         VMSTATE_UINT32(env.exception.syndrome, ARMCPU),
1077         VMSTATE_UINT32(env.exception.fsr, ARMCPU),
1078         VMSTATE_UINT64(env.exception.vaddress, ARMCPU),
1079         VMSTATE_TIMER_PTR(gt_timer[GTIMER_PHYS], ARMCPU),
1080         VMSTATE_TIMER_PTR(gt_timer[GTIMER_VIRT], ARMCPU),
1081         {
1082             .name = "power_state",
1083             .version_id = 0,
1084             .size = sizeof(bool),
1085             .info = &vmstate_powered_off,
1086             .flags = VMS_SINGLE,
1087             .offset = 0,
1088         },
1089         VMSTATE_END_OF_LIST()
1090     },
1091     .subsections = (const VMStateDescription * const []) {
1092         &vmstate_vfp,
1093         &vmstate_iwmmxt,
1094         &vmstate_m,
1095         &vmstate_thumb2ee,
1096         /* pmsav7_rnr must come before pmsav7 so that we have the
1097          * region number before we test it in the VMSTATE_VALIDATE
1098          * in vmstate_pmsav7.
1099          */
1100         &vmstate_pmsav7_rnr,
1101         &vmstate_pmsav7,
1102         &vmstate_pmsav8,
1103         &vmstate_m_security,
1104 #ifdef TARGET_AARCH64
1105         &vmstate_sve,
1106         &vmstate_za,
1107 #endif
1108         &vmstate_serror,
1109         &vmstate_irq_line_state,
1110         &vmstate_wfxt_timer,
1111         NULL
1112     }
1113 };
1114